WO2003099434A1 - Catalyst for water gas shift reaction - Google Patents

Catalyst for water gas shift reaction Download PDF

Info

Publication number
WO2003099434A1
WO2003099434A1 PCT/JP2003/002618 JP0302618W WO03099434A1 WO 2003099434 A1 WO2003099434 A1 WO 2003099434A1 JP 0302618 W JP0302618 W JP 0302618W WO 03099434 A1 WO03099434 A1 WO 03099434A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
gas shift
shift reaction
water gas
reaction
Prior art date
Application number
PCT/JP2003/002618
Other languages
French (fr)
Japanese (ja)
Inventor
Atsushi Ueda
Yusuke Yamada
Tetsuhiko Kobayashi
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002129816A external-priority patent/JP4022615B2/en
Priority claimed from JP2002169615A external-priority patent/JP4016100B2/en
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to AU2003211726A priority Critical patent/AU2003211726A1/en
Publication of WO2003099434A1 publication Critical patent/WO2003099434A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6562Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a catalyst for a water gas shift reaction for producing hydrogen from carbon monoxide and water, and a method for performing a water gas shift reaction in the presence of the catalyst.
  • the present invention also relates to a fuel cell system including a water gas shift reaction catalyst. Background technology '
  • Hydrogen is useful as an industrial raw material, fuel, etc., and its production technology is extremely important for effective use of hydrogen. Hydrogen is widely used as an industrial raw material in fields such as ammonia production processes, crude oil refining processes, and methanol production processes.As fuels, various heat sources by combustion of hydrogen, internal combustion engines (hydrogen engines), It is used in fuel cell power generation (large-scale power sources, distributed power sources, fuel cell vehicles, etc.).
  • hydrogen is produced by the reaction of fossil fuels (hydrocarbon raw materials) such as natural gas, petroleum, and coal with steam (steam reforming reaction) and the subsequent hydrogas shift reaction, as outlined in Equation 1. It is manufactured industrially.
  • the gas produced by the steam reforming reaction is called reformed gas and contains hydrogen, carbon dioxide, carbon monoxide, 7j ⁇ steam, unreacted hydrocarbons, and the like.
  • a method for producing hydrogen by further reacting carbon monoxide and water vapor contained in the reformed gas is known as a water gas shift reaction. Since extremely useful hydrogen can be produced using carbon monoxide, which has few uses, this is an extremely important chemical process in industry.
  • a specific example of such a reaction is a reaction in a hydrogen supply device for a fuel cell that is assumed to be mounted on an automobile.
  • the engine In order to achieve the same convenience as a current gasoline engine or diesel engine vehicle, the engine must be started and stopped within a short time of about 10 seconds or less. Therefore, in fuel cell vehicles and fuel cells powered by hydrocarbons such as natural gas, gasoline, and light oil, and methanol-reformed fuel cell vehicles, the rapid hydrogen that can start and stop the shift reaction instantaneously Manufacturing equipment is required.
  • the shift reaction can proceed at a low temperature (for example, from around room temperature to about 150 ° C), the required reaction temperature within a short period of time, for example, by electric heating (electric heating by a heating wire) or heating by fuel combustion , And the shift reaction starts rapidly.
  • a low temperature for example, from around room temperature to about 150 ° C
  • the required reaction temperature within a short period of time, for example, by electric heating (electric heating by a heating wire) or heating by fuel combustion , And the shift reaction starts rapidly.
  • rapid start and stop of the engine can be realized in the above-described fuel cell vehicle as in the case of the gasoline vehicle.
  • polymer electrolyte fuel cells uses, for example, methanol directly as fuel, or converts hydrogen obtained by a water gas shift reaction or a methanol reforming reaction into electric power by a fuel cell and uses it. It is very important that this type of power generator (battery) operates from room temperature to about 80 ° C.
  • This equilibrium favors the forward reaction at lower temperatures (the lower the temperature, the higher the hydrogen concentration at equilibrium). That is, the lower the temperature at which the water gas shift reaction is carried out, the higher the efficiency of hydrogen production.
  • the water gas shift reaction described above must be performed at a relatively high temperature (About 250 to 350 ° C.).
  • a relatively high temperature (About 250 to 350 ° C.).
  • reactions (side reactions) other than the intended reaction in this case, the water gas shift reaction) are also promoted, and as a result, the reaction at a high temperature may reduce the hydrogen production efficiency.
  • This side reaction is
  • This methanation reaction is a major problem in that it consumes the target product, hydrogen, and reduces the efficiency of hydrogen production.
  • the aqueous shift reaction can proceed at a desired high reaction rate even at a low temperature, a heat source for performing the reaction at a high temperature becomes unnecessary, and consumption of hydrogen generated by the methanation reaction can be avoided.
  • the production efficiency of hydrogen can be significantly increased.
  • the present inventor has found that when a specific noble metal is supported on a specific metal oxide, a novel catalyst capable of promoting a water gas shift reaction with high efficiency under low temperature conditions can be obtained.
  • the inventor has also found that the novel catalyst can exert catalytic activity with high efficiency over a long period of time. j
  • the present invention relates to the following items 1 to 30.
  • Item 1 A water gas shift reaction catalyst containing gold and copper oxide.
  • Item 2. (1) Gold, (2) Copper oxide (3) At least one selected from the group consisting of magnesium, aluminum, manganese, iron, cobalt, nickel, zinc, zirconium and cerium
  • a water gas shift reaction catalyst comprising an oxide of a metal.
  • Item 3. A catalyst for a water gas shift reaction, wherein the catalyst according to Item 1 or 2 is supported on a carrier.
  • the carrier is a metal oxide carrier selected from the group consisting of alumina, silica, alumina-silica, cordierite, zirconia, cerium oxide, zeolite and titanium oxide, and stainless steel, iron, copper and aluminum.
  • Item 5 The water gas shift reaction catalyst according to any one of Items 1 to 4, wherein the content of gold is 0.05 to 30% by weight based on the total weight of the catalyst.
  • Item 6 The water gas shift reaction catalyst according to Item 5, wherein the gold content is 0.1 to 0% by weight based on the total weight of the catalyst.
  • Item 7 The water gas shift reaction catalyst according to Item 6, wherein the gold content is 0.1 to 3% by weight based on the total weight of the catalyst.
  • Item 8 A method for performing a water gas shift reaction in the presence of the catalyst according to any one of Items 1 to 7 above.
  • Item 9 A method for producing hydrogen by performing a water gas shift reaction in the presence of the catalyst according to any one of Items 1 to 7 above.
  • Item 10 A method for removing carbon monoxide by performing a water gas shift reaction in the presence of the catalyst according to any one of Items 1 to 7 above.
  • Item 11 (1) A catalyst reaction section containing the catalyst according to any of the above items 1 to 7, and (2) a water gas shift reaction including a supply section for supplying carbon monoxide and water to the catalyst reaction section.
  • Item 12. The method according to Item 11 above, wherein hydrogen is produced by a water gas shift reaction.
  • Item 13 A catalyst reaction section containing the catalyst according to any one of Items 1 to 7 above, wherein the catalyst reaction section includes the catalyst according to any one of Items 1 to 7 for removing carbon monoxide by a water gas shift reaction.
  • a fuel cell system including a fuel cell and a mechanism for supplying a hydrogen-containing gas having a reduced carbon monoxide level from the catalytic reaction section to the fuel cell.
  • Item 15 (1) A fuel cell, (2) a catalyst reaction section containing the catalyst according to any of Items 1 to 7 above, and (3) a carbon monoxide-containing gas from the fuel cell to the catalyst reaction section.
  • a fuel cell system comprising: a supply unit for supplying a gas containing carbon monoxide; and a mechanism for recycling a hydrogen-containing gas having a reduced carbon dioxide level from the catalyst reaction unit to the fuel cell.
  • Item 16. A water gas shift reaction catalyst comprising palladium and manganese oxide.
  • Item 17. (1) Palladium, (2) Oxide of manganese and (3) Oxide of at least one metal selected from the group consisting of iron, cobalt, nickel, copper, zinc, magnesium, zirconium and cerium A catalyst for a water gas shift reaction.
  • Item 18 A catalyst for a water gas shift reaction, wherein the catalyst according to Item 16 or 17 is supported on a carrier.
  • the carrier is a metal oxide carrier selected from the group consisting of alumina, silica, alumina-silica, cordierite, zirconia, cerium oxide, zeolite and titanium oxide, stainless steel, iron, copper and aluminum.
  • Item 20 The water gas shift reaction catalyst according to any one of Items 16 to 19, wherein the content of palladium is 0.1 to 30% by weight based on the total weight of the catalyst.
  • Item 21 The water gas shift reaction catalyst according to item 20, wherein the content of palladium is 0.1 to 10% by weight based on the total weight of the catalyst.
  • Item 22 The water gas shift reaction catalyst according to Item 21, wherein the content of palladium is from 0 :! to 3% by weight based on the total weight of the catalyst.
  • Item 23 A method for performing a water gas shift reaction in the presence of the catalyst according to any one of Items 16 to 22 above.
  • Item 2 Water gas shift reaction in the presence of the catalyst according to any of Items 16 to 22 above A method of producing hydrogen by performing a reaction.
  • Item 25 A method for removing carbon monoxide by performing a water gas shift reaction in the presence of the catalyst according to any one of Items 16 to 22 above.
  • Item 26 For a water gas shift reaction including a catalyst reaction section containing the catalyst according to any of the above items 16 to 22, and (2) a supply section for supplying carbon monoxide and water to the catalyst reaction section Item 27.
  • Item 29 (1) a catalyst reaction section including the catalyst according to any of the above items 16 to 22, and (2) a hydrogen-containing gas having a reduced carbon monoxide level from the catalyst reaction section including a fuel cell.
  • a fuel cell system including a mechanism for supplying a fuel cell.
  • Item 30 (1) A fuel cell, (2) a catalyst reaction section containing the catalyst according to any of the above items 16 to 22, and (3) a supply of supplying carbon monoxide from the fuel cell to the catalyst reaction section
  • a fuel cell system including a unit and a mechanism for recycling a hydrogen-containing gas having a reduced carbon monoxide level from a catalytic reaction unit to a fuel cell.
  • the present invention provides a water gas shift reaction catalyst obtained by using a combination of a specific noble metal and a specific metal oxide.
  • the catalyst according to the present invention can be roughly classified into a gold-copper oxide-based catalyst (referred to as “first catalyst”) and a palladium-manganese oxide-based catalyst (referred to as “second catalyst”). .
  • first catalyst gold-copper oxide-based catalyst
  • second catalyst palladium-manganese oxide-based catalyst
  • the water gas shift reaction catalyst as the first catalyst of the present invention is a catalyst containing gold and copper oxide as essential components.
  • the first catalyst of the present invention comprises (1) gold, (2) copper oxide and (3) magnesium, aluminum, manganese, iron, cobalt, nickel, zinc, zirconium and cell oxide. More preferably, the composition has a composition containing at least one metal oxide selected from the group consisting of platinum.
  • the metal oxide used in combination with gold includes a mixture of copper oxide and another metal oxide (hereinafter also referred to as “composite oxide”). say.), mixed oxide containing copper, as the AB 2 0 4 (a having a spinel crystal structure, Cu, Mg, Al, Mn , Fe, Co, Ni, Zn, Zr , etc. are exemplified, and as B is, Cu, Mn Fe, Co, or Ti are exemplified.
  • AB 2 0 4 a having a spinel crystal structure, Cu, Mg, Al, Mn , Fe, Co, Ni, Zn, Zr , etc.
  • B is, Cu, Mn Fe, Co, or Ti are exemplified.
  • a and a double oxide represented by not the same and B, Cu as CD0 3 (C having a perovskite-type crystal structure, Mn, Fe, etc. are exemplified, and D is Ce, etc.).
  • the first catalyst AuZCuAl 2 O 4, AuZCuMn 2 0 4, Au / CuFe 2 O 4, Au / CuZr 2 0 4> Au / Cu'Mg- Oxide, Au / Cu-Co-Oxide > AuZ Cu-Ni-Oxide, AuZCu_Zn-Oxide, Au / Cu-Ce- Oxide, Au / Cu-Fe-Oxide Au ZMg'Cu-Oxide, AuZAl-Cu-Oxide, AuZMn-Cu_Oxide, Au / Co-Cu- Oxide ⁇ Au / Ni-Cu-Oxide, AuZZirCu-Oxide, AuZZrCu-Oxide, Au / Ce-Cu-Oxide and the like (the description of "Oxide" indicates a composite oxide).
  • the raw material for forming the metal oxide is not particularly limited, and includes nitrates, sulfates, acetates, carbonates, and the like of various metals such as Cu, Mg Al, Mn, Fe Co, Ni, Zn, Zr, and Ce.
  • Various salts such as chlorides (hereinafter referred to as “metal salts”) can be used.
  • the metal oxide is prepared, for example, as follows.
  • a predetermined metal salt is dissolved in water according to the composition of the target catalyst to obtain a first aqueous solution.
  • concentration of the first aqueous solution can be appropriately selected according to the kind of the metal salt and the like, and is usually about 0.01 to 1 mol ZL, more preferably about 0.05 to 0.3 mol / L.
  • the concentration of the second aqueous solution is not particularly limited, and is usually about 0.01 to 1 mol ZL, more preferably about 0.05 to 0.3 mol ZL.
  • the first aqueous solution and the second aqueous solution are mixed, the resulting precipitate is washed with water, filtered, dried, and calcined to obtain the metal oxide in the first catalyst of the present invention.
  • the mixing ratio of the first aqueous solution and the second aqueous solution is not limited, but, for example, with respect to 1 volume of the first aqueous solution, about 0.3 to 3 volumes of the second aqueous solution, preferably about 0.5 to 1.5 volumes Use in proportions. At this mixing ratio, a precipitate is efficiently generated, and the loss of the metal salt can be suppressed.
  • drying may be performed at about 30 to 200 ° C., preferably at about 50 to 150 ° C .: for about! To about 15 hours, preferably for about 2 to about 10 hours. The higher the temperature, the shorter the drying time.
  • the firing conditions may be appropriately selected from the range in which a high-purity oxide is formed.
  • the firing temperature is usually about 200 to 600 ° C, preferably about 250 to 550 ° C, and more preferably 250 to 400 ° C. It may be carried out for about 0.5 to 12 hours, preferably for about 1 to 8 hours, more preferably for about 3 to 8 hours. The higher the temperature, the shorter the firing time.
  • Metal oxides can also be produced by heating the salts of these metals as raw materials, for example, by heating them at about 200 to 600 ° C in the air to remove the salt components and oxidize the metal components. can do.
  • the obtained metal oxide may be further purified according to a known method using a binder such as silica sol, alumina sol, or polyethylene glycol, using honeycomb, peas, pellets, plate, It can be formed into various shapes such as rings.
  • a binder such as silica sol, alumina sol, or polyethylene glycol
  • the molding method can be appropriately selected depending on the desired shape of the catalyst and the like. For example, injection molding, extrusion molding, compression molding, casting into a mold and the like can be mentioned.
  • the gold compound used as a gold component source includes a water-soluble gold compound, a compound soluble in an organic solvent, a sublimable compound, and further, gold chloride, chloroauric acid, And inorganic and organic gold complex compounds.
  • Examples of water-soluble compounds of gold include gold chloride and chloroauric acid.
  • Examples of compounds soluble in organic solvents include gold acetyl acetonate, and chloro (triphenylphosphine).
  • Gold (I) [AuCl ⁇ P (C 6 H 5 ) 3 ⁇ ] is exemplified, and the sublimable compound is exemplified by gold acetyl acetonate.
  • the method of immobilizing gold on the metal oxide or its molded body can be performed according to a conventional method. For example, (i) a method of immersing a metal oxide or a molded article thereof in a gold solution (impregnation method), and (ii) mixing the first aqueous solution, the second aqueous solution, and the gold solution, and then adding a gold-metal oxide (Iii) a method of depositing and depositing gold on the surface of a metal oxide or its molded body using a gold solution and various reducing agents, and (iv) using a gold solution.
  • CVD method Metal oxide or its molded surface
  • PVD gas phase
  • ix a method of vacuum-depositing an organic gold complex on the surface of a metal oxide or its molded body
  • the method can be carried out by a method of injecting gold ions into the surface of the metal oxide or molded article thereof, or (xi) a method of mixing ultrafine gold particles and metal oxide particles.
  • a binder is added to the gold-metal oxide-containing precipitate obtained by the co-precipitation method in the same manner as in the above-mentioned metal oxide molding method, and then, a binder, a bead, a pellet, a plate-like material is formed. It may be formed into a predetermined shape such as a ring shape.
  • the gold immobilized on the metal oxide is preferably in the form of ultrafine particles having a particle size of about lOnm or less, preferably about 2 to 5 mn.
  • a catalyst in which gold particles are immobilized on a metal oxide has a large contact area between the gold and the metal oxide, and can exhibit synergistically excellent catalytic activity.
  • the content (amount) of gold is usually about 0.05 to 30% by weight, preferably about 0.1 to 10% by weight, based on the total weight of the metal oxide and gold. , More preferably 0:! ⁇ 3 weight. /. It is about.
  • the fine-particle catalyst obtained in the above step (1-1) is further supported on a metal oxide-based carrier or a metal-based carrier of various shapes to achieve practicality. Can be further improved.
  • metal oxide-based carrier examples include alumina, silica, alumina-silica, zirconium, cerium oxide, titanium oxide, cordierite, and zeolite.
  • metal carrier examples include stainless steel, iron, copper, and aluminum.
  • the surface of the metal carrier (aluminum) is converted into an oxide, and the structure is made of fine particles of gold Z metal oxide Z oxide of aluminum (alumina) Z aluminum This is preferable since the adhesion to the catalyst is improved.
  • the metal oxide in the gold-metal oxide catalyst and the metal oxide used as the carrier may be the same or different.
  • the shape of the support is not particularly limited, and may be any shape generally used as a catalyst support.
  • carriers in the form of powder, sphere, granule, honeycomb, foam, fiber, cloth, plate, ring, etc. can be used.
  • the production of the catalyst with a carrier is not particularly limited, and is carried out by a known method such as a push coat method, a spraying method, a kneading method, and a binder-mixing method, depending on the method of using the carrier, the kind of the target catalyst, and the like. be able to. Among these production methods, the push coat method and the kneading method are more preferable.
  • a method for supporting a catalyst on a carrier by the wet coat method will be described in detail.
  • the fine particle catalyst produced in the above-mentioned step (1-1) is charged into a Pall mill apparatus, and then pulverized for about 1 to 5 hours. If necessary, a binder (for example, 3 to 20% of the catalyst weight) is used. Of silica sol) and water (for example, about 3 to 30% of the catalyst weight), and knead for about 1 to 5 hours.
  • a binder for example, 3 to 20% of the catalyst weight
  • silica sol silica sol
  • water for example, about 3 to 30% of the catalyst weight
  • a carrier for example, a cordierite honeycomb carrier
  • the carrier is taken out and the excess suspension is removed by blowing compressed air using a spray gun.
  • the carrier having been subjected to the above treatment is dried at about 50 to 150 ° C. for about 2 to about L0 hours, and then calcined in the air at about 250 to 400 ° C. for about 1 to 8 hours, thereby forming a carrier.
  • a catalyst structure carrying a catalyst can be obtained.
  • the above-mentioned catalyst for a water gas shift reaction which is the first catalyst of the present invention, it exhibits higher activity at a lower temperature than the conventional catalyst, so that the production of hydrogen and the removal of carbon monoxide are reduced. It can be performed efficiently.
  • examples of the gas for supplying carbon monoxide include, but are not limited to, those generated by reforming hydrocarbons derived from fossil fuels such as petroleum, coal, and natural gas. .
  • the removal of carbon monoxide and the production of hydrogen by the water gas shift reaction can vary depending on the concentration of carbon monoxide in the water gas, the coexisting components in the water gas, the content of gold in the catalyst, and the like. It is carried out by reacting water (steam) and carbon monoxide at a temperature of about 25 to 400 ° C, preferably about 80 to 200 ° C in the presence of the first catalyst of the invention.
  • the concentration of carbon monoxide in the water gas is not particularly limited.
  • concentration of carbon monoxide in the water gas is usually about 1 to 30% by volume, preferably about 5 to 30% by volume, and more preferably about 10 to 30% by volume. About 25% by volume. If the purpose is to remove carbon monoxide, 10 ppm to 10 volumes. /. Degree, preferably ⁇ ! About 1% by volume, more preferably about 10 ppm to 1000 ppm.
  • the amount of water (steam) in the reaction system should be at least the minimum necessary amount (equimolar to carbon monoxide) to completely decompose the carbon monoxide and produce the corresponding amount of hydrogen. Usually, about 1 to 5 times (molar ratio) of carbon monoxide, more preferably about 2 to 3 times water vapor may be present. Further, in the reaction system, for example, a gas such as hydrogen, carbon dioxide, or nitrogen may be present.
  • the flow rate of the gas containing carbon monoxide can be appropriately selected according to the concentration of carbon monoxide and the like. For example, usually about 50 mL to 10 LZ per gram of catalyst, preferably about 50 mL to: It is about 1 LZ.
  • the space velocity for example, typically, ⁇ , ⁇ ⁇ , ⁇ ⁇ 1 mm, preferably S ⁇ OC ⁇ eO'OOOhr 1 extent.
  • an inert gas such as nitrogen, argon, or helium is used.
  • Gas can be used as carrier gas.
  • a small amount of oxygen for example, about 10% by volume or less based on carbon monoxide
  • a small amount of air for example, 50% by volume or less based on carbon monoxide
  • the pressure of including gas an acid I ⁇ oxygen when performing the water gas shift reaction using the present invention is not particularly limited, for example, l X 10 2 kPa shell 5 MPa about high pressure conditions You can choose from a wide range up to the bottom.
  • the concentration of carbon monoxide can be further reduced, or the obtained hydrogen concentration can be increased.
  • the present invention according to the first catalyst comprises: a catalyst reaction section containing the first catalyst of the present invention obtained in (1-1) or (1-2); and supplying carbon monoxide and water to the catalyst reaction section.
  • An apparatus for a water gas shift reaction including a supply section is included. Such an apparatus can be used as a hydrogen production apparatus or as a carbon monoxide removal apparatus.
  • the present invention according to the first catalyst further comprises: (A) a catalyst reaction section containing the first catalyst of the present invention obtained in (1-1) or (1-2); and (B) a fuel cell,
  • the present invention also includes a fuel cell system provided with a mechanism for supplying a hydrogen-containing gas having a reduced carbon monoxide level to a fuel cell from a reaction section.
  • the present invention according to the first catalyst comprises (C) a fuel cell, (D) a catalyst reaction section containing the catalyst obtained in (1-1) or (112), and (E) the fuel cell.
  • the present invention also includes a fuel cell system provided with a mechanism for performing the above.
  • the first catalyst of the present invention can be supported on a metal oxide-based, semiconductor-based, or metal-based substrate material of any shape. Therefore, by finely processing the first catalyst of the present invention on a silicon substrate or a silicon oxide (silica) substrate generally used in the semiconductor industry and directly supporting the catalyst, a small-sized electronic device such as a portable personal computer, a PDA, and a mobile phone can be obtained. It can also be used in a form suitable as a hydrogen supply device for a source fuel cell. ⁇ Second catalyst>
  • the second catalyst of the present invention is a water gas shift reaction catalyst containing palladium and manganese oxide as essential components.
  • the second catalyst of the present invention is more preferably selected from the group consisting of (1) palladium, (2) manganese oxide and (3) cobalt, nickel, copper, zinc, magnesium, zirconium and cerium.
  • the catalyst contains at least one metal oxide.
  • the metal oxidized product excluding palladium is a mixture of a manganese oxide and another metal oxidized product (hereinafter, referred to as “metal oxide”). also referred to as "composite oxide”.), Fukusani ⁇ , mixed oxide containing iron containing manganese, as the AB 2 0 4 (a having a spinel type crystal structure Mn, Fe, Co, Ni, Cu , Zn, Mg or the like. Examples of the B Mn, Fe Co, and the like. However, composite oxide represented by not the same) and a and B, CD0 3 having a perovskite-type crystal structure (C is exemplified by Ce and the like, and D is exemplified by Mn, Fe and the like).
  • the second catalyst Pd / FeMn 2 O 4, PdZCoMn 2 O 4, Pd, NiMn 2 0 4, Pd, CuMn 2 0 4, Pd / ZnMn 2 0 4, Pd / MgMn 2 0 4 , Pd / MnCo 2 0 4, Pd / MnNi 2 0 4, PdZMnFe 2 0 4, PdZCoFe 2 0 4, Pd / NiPe 2 O 4,
  • the metal oxide raw material for obtaining the metal oxide is not particularly limited, and includes nitrates, sulfates, and acetic acids of various metals such as Mn, Fe, Co, Ni, Cu, Zn, Mg, ⁇ , La, Sr, and Ce.
  • Various salts such as salts, carbonates and chlorides (hereinafter referred to as “metal salts”) can be used.
  • a metal salt required according to the target catalyst is dissolved in water to obtain a third aqueous solution.
  • the concentration of the third aqueous solution can be appropriately selected according to the type of the metal salt and the like, and is, for example, about 0.01 to 1 mol / L, preferably about 0.05 to 0.3 mol ZL.
  • various hydroxides such as sodium hydroxide and 7_K potassium oxide, and carbonates such as sodium carbonate, potassium carbonate, ammonium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, ammonium hydrogen carbonate, etc.
  • the concentration of the fourth aqueous solution is not particularly limited, and may be about 0.01 to 1 mol / L, preferably about 0.05 to 0.3 mol ZL.
  • the third aqueous solution and the fourth aqueous solution are mixed, the resulting precipitate is washed with water, filtered, dried, and calcined, whereby the metal oxide in the second catalyst of the present invention can be obtained. .
  • the mixing ratio of the third aqueous solution and the fourth aqueous solution is not limited, but about 0.3 to 3 volumes, preferably about 0.5 to 1.5 volumes, of the fourth aqueous solution is used per 1 volume of the third aqueous solution. Is preferred. This is because precipitates can be efficiently generated and the loss of metal salts can be suppressed.
  • the conditions for washing, filtration, drying, and baking are not particularly limited and can be appropriately selected.
  • the same conditions as those used for obtaining the first catalyst of the present invention may be used.
  • the obtained metal oxidized product may be mixed with a known binder such as silica sol, alumina sol, or polyethylene glycol, if necessary, and then molded, dried, and fired to obtain a honeycomb, beads, or the like. It can be formed into various shapes such as pellets, plates and rings.
  • a known binder such as silica sol, alumina sol, or polyethylene glycol
  • the molding method can be appropriately selected according to the desired shape of the catalyst and the like, and examples thereof include injection molding, extrusion molding, compression molding, and casting into a mold.
  • the palladium compound used as the source of the palladium component includes a water-soluble compound of palladium, a compound soluble in an organic solvent, a sublimable compound, and further, palladium salt and palladium nitrate. , Palladium acetate and various inorganic and organic palladium complex conjugates.
  • the method of immobilizing palladium on a metal oxide or its molded body can be performed according to a standard method.
  • gold can be used instead of palladium.
  • the palladium immobilized on the metal oxidized product is preferably in the form of fine particles having a particle diameter of about 10 nm or less, preferably about 2 to 5 nm.
  • a catalyst in which palladium fine particles are immobilized on a metal oxide film has a large contact area between the palladium and the metal oxide film, and can exhibit synergistically excellent catalytic activity.
  • the content (supporting amount) of palladium is about 0 :! to about 30% by weight, preferably about 0.1 to: L0% by weight, based on the total amount of the metal oxide and the palladium. It is more preferably about 0.1 to 3% by weight.
  • the particulate catalyst obtained in (2-1) is further supported on a metal oxide-based carrier or a metal-based carrier in various shapes to improve the practicality.
  • a metal oxide-based carrier or a metal-based carrier in various shapes to improve the practicality.
  • the same catalyst as the first catalyst of the present invention can be used as the metal oxide-based carrier and the metal-based carrier.
  • the metal oxide in the palladium-metal oxide catalyst and the metal oxide used as the carrier may be the same or different.
  • the shape of the carrier is not particularly limited, and those exemplified for the first catalyst of the present invention can be used. Further, the method for supporting the catalyst on the carrier and the production conditions are not limited, and for example, the method used for the first catalyst of the present invention can be used.
  • the above-mentioned water gas shift reaction catalyst which is the second catalyst of the present invention, it exhibits higher activity at a lower temperature than the conventional catalyst, so that the production of hydrogen and the removal of carbon monoxide are reduced. It can be performed efficiently.
  • the concentration of carbon monoxide can be further reduced, or the obtained hydrogen concentration can be increased.
  • the second catalyst of the present invention can also be used in a water gas shift reaction device, a hydrogen production device, a carbon monoxide removal device, or a fuel cell system. Further, similarly to the first catalyst of the present invention, it can be used in a form suitable as a hydrogen supply device for a fuel cell for a small power source such as a portable personal computer, a portable terminal, and a mobile phone.
  • Examples are shown below to further clarify the features of the present invention.
  • Examples 11 to 11 are examples relating to the first catalyst of the present invention
  • Examples 2-1 to 2-3 are examples relating to the second catalyst of the present invention.
  • the water gas shift reaction was carried out at a flow rate of 50 mlZ to measure the hydrogen concentration and the carbon monoxide concentration. Next, based on the following formula, the hydrogen generation rate (%) and the carbon monoxide removal rate (%) were calculated for each catalyst. Hydrogen production rate (%)
  • the concentration of the generated carbon dioxide was measured with an infrared carbon dioxide meter, and was almost equal to the amount of the consumed carbon. This indicates that carbon monoxide reacted stoichiometrically with water and was converted to carbon dioxide.
  • the resulting catalyst was washed with water, dried and calcined 2 hours at 400 ° C, ultrafine gold particles immobilized copper-manganese oxide on alumina beads catalyst (AuZCuMn 2 0 4 Z ⁇ Ruminabi Ichizu, containing gold the amount 0.5 wt% to obtain a CuMn 2 0 4 content 3 wt%).
  • 0.75 g of the above catalyst is filled in a glass tube with an inner diameter of 12 mm, and at each temperature of 80, 120, and 150 ° C, 500 ml of nitrogen gas containing 1% by volume of carbon monoxide and 2% by volume of 7K vapor in this glass tube.
  • the hydrogen gas and carbon monoxide concentrations were measured by performing a water gas shift reaction at a flow rate of 1 min, and the hydrogen production rate (%) and the carbon monoxide removal rate (%) were calculated. .
  • the results obtained 3 hours after the start of the reaction are shown in Table 12 (I), and the results obtained 24 hours after the start of the reaction are shown in Table 12 (II).
  • CuFe 2 0 4 support amount (CuFe 2 O 4 calculated by the weight change of the honeycomb that put around the carrier) was 3 wt%.
  • the obtained catalyst is washed with water, and then calcined at 400 ° C. for 5 hours to obtain a gold-immobilized copper-iron oxide-carrying copper oxide having fine-particle gold having a particle diameter of about 2 to 3 nm immobilized thereon.
  • a honeycomb catalyst AuZCuFe 2 O 4 Z cordierite honeycomb, gold content 0.3% by weight, CuFe 2 O 4 content 3% by weight was obtained.
  • a part of the above catalyst was cut out (5 cells x 5 cells x 1 cm in length), filled into a glass tube with an inner diameter of 12 mm, and 1 volume of carbon monoxide was added to this glass tube at 80, 120, and 150 ° C. Gas at a flow rate of 140 mlZ (equivalent to a space velocity of 20,000 / hr) while measuring the concentration of hydrogen and carbon monoxide in the gas at the outlet of the glass tube, and then shifting the water gas flow. The catalytic performance for the reaction was determined. The results 3 hours after the start of the reaction are shown in Table 13 (I), and the results 24 hours after the start of the reaction are shown in Table 1-3 (II).
  • This mixture is calcined in air at 400 ° C for 5 hours, and subjected to a reduction treatment at 400 ° C for 2 hours while flowing a nitrogen gas containing hydrogen (2% by volume) to oxidize palladium-fixed cobalt manganese.
  • objects invention catalyst No. 2-2
  • catalysts of the present invention Nos. 2-7 to 2-9 were obtained using various metal salts in the same manner as described above.
  • the obtained mixture is washed with water, dried, and calcined in air at 400 ° C for 5 hours, and subjected to a reduction treatment at 400 ° C for 2 hours while flowing nitrogen gas containing hydrogen (2% by volume).
  • each of the above catalysts (No. 2-1 to 2-19) was sieved to 70 to: 120 mesh, and 0.15 g was filled in a glass tube with an inner diameter of 8 mm. At this temperature, while flowing a nitrogen gas containing 1% by volume of carbon monoxide and 2% by volume of water vapor in the glass tube at a flow rate of 50 mlZ, the hydrogen concentration and the carbon monoxide concentration were measured. The hydrogen generation rate (%) and the carbon monoxide removal rate (%) were calculated in the same manner as in 1.
  • NiFe 2 0 4 support amount (calculated by weight change before and after NiFe 2 0 4 supported) was 2 wt%.
  • the obtained catalyst is washed with water, calcined at 400 ° C. for 5 hours, and subjected to a reduction treatment for 2 hours while flowing a nitrogen gas containing hydrogen (2% by volume) to obtain a particle diameter of 2 to 4 nm.
  • Cordierite honeycomb catalyst supporting palladium-immobilized nickel-iron oxide on which palladium in the form of particles is immobilized (PdZNiFe 2 O 4 Z cordierite honeycomb, 0.3% by weight of palladium, NiFe 2 O 4 2% by weight).
  • One of the above catalysts was filled in a glass tube with an inner diameter of 12 nm.
  • the glass tube contained 140 ml of nitrogen gas containing 1% by volume of carbon monoxide and 2% by volume of steam.
  • the catalytic performance for the water gas shift reaction is measured. I asked. The results 3 hours after the start of the reaction are shown in Table 2-3 (I), and the results 24 hours after the start of the reaction are shown in Table 2-3 (II).
  • the catalyst for aqueous shift reaction of the present invention When the catalyst for aqueous shift reaction of the present invention is used, the reaction between carbon monoxide and water (water gas shift reaction) can efficiently proceed even under low temperature conditions. As a result, the production of hydrogen and the removal of Z or carbon monoxide can be performed efficiently. Further, the catalyst for aqueous shift reaction of the present invention can continue to exhibit high activity for a long time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

A catalyst for water gas shift reaction comprising gold and copper oxides, or a catalyst for water gas shift reaction comprising palladium and manganese oxides. These catalysts, as compared with conventional catalysts, are effective at low temperatures and can advance a water gas shift reaction for a prolonged period of time, so that production of hydrogen and removal of carbon monoxide can be performed efficiently.

Description

明 細 書 水性ガスシフト反応用触媒 技術分野  Description Water gas shift reaction catalyst Technical field
本発明は、 一酸化炭素と水から水素を生成するための水性ガスシフト反応用触 媒、 及び前記触媒の存在下に水性ガスシフト反応を行う方法に関する。 また、 本 発明は、 水性ガスシフト反応用触媒を含む燃料電池システムにも関する。 背景技術'  The present invention relates to a catalyst for a water gas shift reaction for producing hydrogen from carbon monoxide and water, and a method for performing a water gas shift reaction in the presence of the catalyst. The present invention also relates to a fuel cell system including a water gas shift reaction catalyst. Background technology '
水素は、 工業用原材料、 燃料などとして有用であり、 その製造技術は、 水素の 有効利用のために、 極めて重要である。 水素は、 工業的な原材料としては、 アン モニァ製造プロセス、 原油精製プロセス、 メタノール製造プロセスなどの分野で 広く用いられており、 燃料としては、 水素の燃焼による各種熱源および内燃機関 (水素エンジン)、燃料電池による発電(大規模電源、 分散型電源、 燃料電池自動 車など) などにおいて用いられている。  Hydrogen is useful as an industrial raw material, fuel, etc., and its production technology is extremely important for effective use of hydrogen. Hydrogen is widely used as an industrial raw material in fields such as ammonia production processes, crude oil refining processes, and methanol production processes.As fuels, various heat sources by combustion of hydrogen, internal combustion engines (hydrogen engines), It is used in fuel cell power generation (large-scale power sources, distributed power sources, fuel cell vehicles, etc.).
現在、 水素は、 参考式 1に概要を示すように、 天然ガス、 石油、 石炭などの化 石燃料 (炭化水素原料) と水蒸気との反応 (水蒸気改質反応)およびそれに続く水 性ガスシフト反応により、 工業的に製造されている。 水蒸気改質反応により製造 されるガスは、 改質ガスと呼ばれ、 水素、 二酸化炭素、 一酸化炭素、 7j<蒸気、 未 反応の炭化水素などを含んでいる。  At present, hydrogen is produced by the reaction of fossil fuels (hydrocarbon raw materials) such as natural gas, petroleum, and coal with steam (steam reforming reaction) and the subsequent hydrogas shift reaction, as outlined in Equation 1. It is manufactured industrially. The gas produced by the steam reforming reaction is called reformed gas and contains hydrogen, carbon dioxide, carbon monoxide, 7j <steam, unreacted hydrocarbons, and the like.
参考式 1  Reference formula 1
天然ガス/石油/石炭 +水蒸気 [水蒸気改質反応] →改質ガス— [水性ガスシ フト反応] →水素  Natural gas / oil / coal + steam [steam reforming reaction] → reformed gas – [water gas shift reaction] → hydrogen
改質ガス中に含まれる一酸化炭素と水蒸気 (一酸化炭素と水蒸気とを含むガス は、 「水性ガス」 と呼ばれる) とをさらに反応させることにより、水素を製造する 手法 (水性ガスシフト反応) は、 用途の乏しい一酸化炭素を用いて、 極めて有用 な水素を製造できるので、 工業的に極めて重要な化学プロセスである。  A method for producing hydrogen by further reacting carbon monoxide and water vapor contained in the reformed gas (a gas containing carbon monoxide and water vapor is referred to as “water gas”) is known as a water gas shift reaction. Since extremely useful hydrogen can be produced using carbon monoxide, which has few uses, this is an extremely important chemical process in industry.
一酸化炭素と水 (水蒸気) の反応 (水性ガスシフト反応) は、 CO + H2O → H2 + CO2 The reaction between carbon monoxide and water (water vapor) (water gas shift reaction) CO + H 2 O → H 2 + CO 2
という反応式で示される。 It is shown by the reaction formula.
現在、 この水性ガスシフト反応を効率良く行うために、 比較的低温な条件下で も反応を速やかに進行させることができる新規な触媒が求められている。 低温下 でも水性ガスシフト反応 (以下、 単に 「シフト反応」 ということがある)を効率良 く行うための新し ^触媒が求められている主な理由を、 以下に示す。  At present, in order to carry out the water gas shift reaction efficiently, a new catalyst capable of promptly proceeding the reaction even under relatively low temperature conditions is required. The main reasons for the need for a new ^ catalyst to efficiently perform the water gas shift reaction (hereinafter sometimes simply referred to as the "shift reaction") even at low temperatures are described below.
( 1 ) 水素の供給を極めて短時間内に開始し、 かつ極めて短時間内に停止するこ とが求められる場合がある。  (1) In some cases, it is required to start the supply of hydrogen in a very short time and stop it in a very short time.
この様な具体例として、 自動車への搭載を想定した燃料電池への水素供給装置 における反応が挙げられる。  A specific example of such a reaction is a reaction in a hydrogen supply device for a fuel cell that is assumed to be mounted on an automobile.
現在のガソリンエンジン自動車あるいはディ一ゼルェンジン自動車と同等の利 便性を達成する場合には、 10秒程度以下の短時間以内にエンジン始動およびェン ジン停止を実現しなければならない。 従って、 天然ガス、 ガソリン、 軽油などの 炭化水素を燃料とする燃料電池自動車、 メタノ一ル改質型燃料電池自動車などに おいては、 シフト反応を瞬時に開始し、 かつ瞬時に停止できる急速水素製造装置 が必要である。  In order to achieve the same convenience as a current gasoline engine or diesel engine vehicle, the engine must be started and stopped within a short time of about 10 seconds or less. Therefore, in fuel cell vehicles and fuel cells powered by hydrocarbons such as natural gas, gasoline, and light oil, and methanol-reformed fuel cell vehicles, the rapid hydrogen that can start and stop the shift reaction instantaneously Manufacturing equipment is required.
シフト反応を低温下 (例えば室温付近から 150°C程度) で進行させることがで きれば、例えば、 電熱加熱(電熱線による電気加熱)、燃料燃焼による加熱により、 短時間内に必要な反応温度に到達することが可能となり、 シフト反応が急速に始 まる。 この場合には、 上述の燃料電池自動車においても、 ガソリン自動車と同様 の急速なェンジン始動および停止が実現できる。  If the shift reaction can proceed at a low temperature (for example, from around room temperature to about 150 ° C), the required reaction temperature within a short period of time, for example, by electric heating (electric heating by a heating wire) or heating by fuel combustion , And the shift reaction starts rapidly. In this case, rapid start and stop of the engine can be realized in the above-described fuel cell vehicle as in the case of the gasoline vehicle.
( 2 ) 水素を必要とする装置が、 室温近傍の低温度で使われる場合がある。  (2) Devices that require hydrogen may be used at low temperatures near room temperature.
その様な具体例として、 携帯型パソコン用電源、 携帯電話用電源 (移動体電源) などへの応用が挙げられる。  Specific examples of such applications include power supplies for portable personal computers and power supplies for mobile phones (mobile power supplies).
現在の携帯型パソコン、 携帯電話などの携帯型電子機器は、 非常に高速な情報 処理能力を備えており、 その利便性が著しく向上している。 これは、 主として、 各種電子デバイス (CPUプロセッサ、ハードディスクユニットなど)などのハー ドウエアの進化によるものである。 しかしながら、 処理能力の高速化は、 必然的 に消費電力量の増大をもたらす。 これに対し、 各種電池の技術的発展は、 電子デバイスの発展に比し、 相対的に 遅れている。 例えば、 最新の携帯型パソコン、 携帯電話などでは、 処理速度や通 信速度の飛躍的な向上は実現しているが、 特に可働時間の短縮が起こっており、 総合的利便性は低下している場合が見受けられる。 Today's portable electronic devices, such as portable personal computers and mobile phones, have extremely high-speed information processing capabilities, and their convenience has been significantly improved. This is mainly due to the evolution of hardware such as various electronic devices (CPU processor, hard disk unit, etc.). However, faster processing power necessarily leads to higher power consumption. On the other hand, the technological development of various batteries is relatively behind the development of electronic devices. For example, in the latest portable personal computers and mobile phones, the processing speed and communication speed have been dramatically improved, but the working time has been shortened, and overall convenience has declined. Is seen.
このような移動体電源に関する問題を解決する手段の一つとして、 固体高分子 形燃料電池の利用が注目されている。 固体高分子形燃料電池は、 例えばメタノ一 ルを燃料として直接利用するか、 または水性ガスシフト反応あるいはメタノール 改質反応により得られた水素を、 燃料電池により電力に変換して利用するもので ある。 この形式の電力発生装置(電池) は、 室温から 80°C程度の温度で作動する ことが極めて重要である。  Use of polymer electrolyte fuel cells has attracted attention as one of the means for solving such problems related to mobile power sources. The polymer electrolyte fuel cell uses, for example, methanol directly as fuel, or converts hydrogen obtained by a water gas shift reaction or a methanol reforming reaction into electric power by a fuel cell and uses it. It is very important that this type of power generator (battery) operates from room temperature to about 80 ° C.
また、水性ガスシフト反応に要する熱源として、 CPUプロセッサ等からの発熱 を用いることも考えられる。 この場合、 CPUプロセッサ等の冷却および熱ェネル ギ一の有効利用 (省エネルギー化) を両立することが出来る。  It is also conceivable to use heat generated from a CPU processor or the like as a heat source required for the water gas shift reaction. In this case, both cooling of the CPU processor and effective use of heat energy (energy saving) can be achieved.
上述の水性ガスシフト反応において、 80°C程度以下で、 より好ましくは室温近 傍で十分な反応速度が得られれば、 新しい燃料電池の形態で、 携帯型電子機器へ の応用が大いに期待できる。  In the above-mentioned water gas shift reaction, if a sufficient reaction rate can be obtained at about 80 ° C or less, more preferably near room temperature, application to portable electronic devices in the form of a new fuel cell can be greatly expected.
( 3 ) 低温における水素の製造効率を高める必要がある。  (3) It is necessary to increase the production efficiency of hydrogen at low temperatures.
まず、 化学平衡に着目すると、 水性ガスシフト反応には、  First, focusing on chemical equilibrium, the water gas shift reaction
順反応: CO + H20 → H2 + C02 Order reaction: CO + H 2 0 → H 2 + C0 2
逆反応: CO + H20 — H2 + C02 Reverse reaction: CO + H 2 0 — H 2 + C0 2
という反応式で示される、 順方向の反応 (水性ガスシフト反応) と逆方向の反応 (逆水性ガスシフト反応) との平衡関係が存在する。 There is an equilibrium between the forward reaction (water gas shift reaction) and the reverse reaction (reverse water gas shift reaction), as shown by the reaction formula:
この平衡は、 低温であるほど順反応に有利である (低温であるほど平衡状態で の水素濃度が高くなる)。すなわち、水性ガスシフト反応を低温度で行うほど水素 の製造効率が高くなるので、 低温でも反応速度が高い新規な触媒が求められてい る。  This equilibrium favors the forward reaction at lower temperatures (the lower the temperature, the higher the hydrogen concentration at equilibrium). That is, the lower the temperature at which the water gas shift reaction is carried out, the higher the efficiency of hydrogen production.
さらに、 反応温度に着目すると、 一般に、 化学反応は高温度ほど反応速度が速 くなるため、 水素の製造効率を高めるためには、 原理的には上述の水性ガスシフ ト反応を比較的高温度 (250〜350°C程度) で行うことが有利である。 しかしながら、 高温では、 目的とする反応 (この場合、 水性ガスシフト反応) 以外の反応 (副反応) も促進され、 結果として、 高温度で反応を行うことにより 水素の製造効率が低下する場合がある。 この副反応は、 Furthermore, focusing on the reaction temperature, in general, the higher the temperature of a chemical reaction, the faster the reaction rate. Therefore, in order to increase the efficiency of hydrogen production, in principle, the water gas shift reaction described above must be performed at a relatively high temperature ( (About 250 to 350 ° C.). However, at high temperatures, reactions (side reactions) other than the intended reaction (in this case, the water gas shift reaction) are also promoted, and as a result, the reaction at a high temperature may reduce the hydrogen production efficiency. This side reaction is
CO + 3H2 → CH4 + H2O CO + 3H 2 → CH 4 + H 2 O
C02 + 4H2 → CH4 + 2H20 C0 2 + 4H 2 → CH 4 + 2H 2 0
という反応式で示される、 メタン化反応である。 It is a methanation reaction represented by the following reaction formula.
このメタン化反応は、 目的とする生成物である水素を消費して、 水素の製造効 率を低下させる点で、 大きな問題となる。 換言すれば、 低温下でも水性シフト反 応を所望の高い反応速度で進行させることができれば、 高温での反応を行うため の熱源が不要となり、かつメタン化反応による生成水素の消費が回避できるので、 水素の製造効率を著しく高めることが可能となる。  This methanation reaction is a major problem in that it consumes the target product, hydrogen, and reduces the efficiency of hydrogen production. In other words, if the aqueous shift reaction can proceed at a desired high reaction rate even at a low temperature, a heat source for performing the reaction at a high temperature becomes unnecessary, and consumption of hydrogen generated by the methanation reaction can be avoided. However, the production efficiency of hydrogen can be significantly increased.
上述の理由により、 低温度での水性ガスシフト反応を実現し得る新規な高活性 触媒の開発が極めて強く求められている。  For the above reasons, there is a strong demand for the development of a new highly active catalyst that can realize a water gas shift reaction at low temperatures.
従来、 水性ガスシフト反応に触媒活性を示す触媒として、 下記の触媒が報告さ れているが、 いずれも水素製造効率は低い。  Conventionally, the following catalysts have been reported as catalysts exhibiting catalytic activity in the water gas shift reaction, but all have low hydrogen production efficiency.
1 . 銅を担持した酸化クロム触媒  1. Chromium oxide catalyst supporting copper
2 . 銅を担持した酸化鉄触媒 . 2. Iron oxide catalyst supporting copper.
3 . 銅を担持した酸化亜鉛触媒 3. Copper supported zinc oxide catalyst
4. 白金を担持した酸化セリウム触媒  4. Cerium oxide catalyst supporting platinum
5 . パラジウムを担持した酸化セリウム触媒  5. Palladium-supported cerium oxide catalyst
6 . 金を担持した酸化マンガン触媒  6. Gold supported manganese oxide catalyst
7 . 金を担持した酸化チタン触媒 発明の開示  7. Titanium oxide catalyst supporting gold Disclosure of the invention
本発明者は、 特定の金属酸化物に特定の貴金属を担持させる場合には、 低温条 件下に高い効率で水性ガスシフト反応を進行させる新規な触媒が得られることを 見出した。  The present inventor has found that when a specific noble metal is supported on a specific metal oxide, a novel catalyst capable of promoting a water gas shift reaction with high efficiency under low temperature conditions can be obtained.
本発明者はまた、 当該新規な触媒が長時間にわたって高い効率で触媒活性を発 揮することができることも見出した。 j The inventor has also found that the novel catalyst can exert catalytic activity with high efficiency over a long period of time. j
5  Five
すなわち、 本発明は、 下記の項 1〜 3 0に関する。  That is, the present invention relates to the following items 1 to 30.
項 1 . 金と銅の酸化物とを含む水性ガスシフト反応用触媒。 Item 1. A water gas shift reaction catalyst containing gold and copper oxide.
項 2 . (1) 金、 (2) 銅の酸化物おょぴ (3) マグネシウム、 アルミニウム、 マン ガン、 鉄、 コバルト、 ニッケル、 亜鉛、 ジルコニウム及びセリウムからなる群か ら選ばれた少なくとも 1種の金属の酸化物を含む、 水性ガスシフト反応用触媒。 項 3 . 上記項 1又は 2に記載の触媒を担体に担持させた水性ガスシフト反応用触 媒。 Item 2. (1) Gold, (2) Copper oxide (3) At least one selected from the group consisting of magnesium, aluminum, manganese, iron, cobalt, nickel, zinc, zirconium and cerium A water gas shift reaction catalyst comprising an oxide of a metal. Item 3. A catalyst for a water gas shift reaction, wherein the catalyst according to Item 1 or 2 is supported on a carrier.
項 4. 担体が、 アルミナ、 シリカ、 アルミナ—シリカ、 コージエライト、 ジルコ ニァ、 酸化セリウム、 ゼォライト及び酸ィ匕チタンからなる群から選ばれる金属酸 化物系担体、 並びにステンレススチール、 鉄、 銅及びアルミニウムからなる群か ら選ばれる金属系担体の少なくとも 1種である上記項 3に記載の水性ガスシフト 反応用触媒。 Item 4. The carrier is a metal oxide carrier selected from the group consisting of alumina, silica, alumina-silica, cordierite, zirconia, cerium oxide, zeolite and titanium oxide, and stainless steel, iron, copper and aluminum. Item 4. The water gas shift reaction catalyst according to the above item 3, wherein the catalyst is at least one metal support selected from the group consisting of:
項 5 . 金の含有量が、 触媒全重量を基準として、 0.05〜30重量%である上記項 1 〜4のいずれかに記載の水性ガスシフト反応用触媒。 Item 5. The water gas shift reaction catalyst according to any one of Items 1 to 4, wherein the content of gold is 0.05 to 30% by weight based on the total weight of the catalyst.
項 6 . 金の含有量が、 触媒全重量を基準として、 0.1〜: L0重量%である上記項 5 に記載の水性ガスシフト反応用触媒。 Item 6. The water gas shift reaction catalyst according to Item 5, wherein the gold content is 0.1 to 0% by weight based on the total weight of the catalyst.
項 7 . 金の含有量が、 触媒全重量を基準として、 0.1〜3重量%である上記項 6に 記載の水性ガスシフト反応用触媒。 Item 7. The water gas shift reaction catalyst according to Item 6, wherein the gold content is 0.1 to 3% by weight based on the total weight of the catalyst.
項 8 . 上記項 1〜7のいずれかに記載の触媒の存在下に、 水性ガスシフト反応を 行う方法。 Item 8. A method for performing a water gas shift reaction in the presence of the catalyst according to any one of Items 1 to 7 above.
項 9 . 上記項 1〜7のいずれかに記載の触媒の存在下に、 水性ガスシフト反応を 行うことにより、 水素を製造する方法。 Item 9. A method for producing hydrogen by performing a water gas shift reaction in the presence of the catalyst according to any one of Items 1 to 7 above.
項 1 0 . 上記項 1〜7のいずれかに記載の触媒の存在下に、 水性ガスシフト反応 を行うことにより、 一酸化炭素を除去する方法。 Item 10. A method for removing carbon monoxide by performing a water gas shift reaction in the presence of the catalyst according to any one of Items 1 to 7 above.
項 1 1 . (1) 上記項 1〜7のいずれかに記載の触媒を含む触媒反応部、 及び (2) 該触媒反応部に一酸化炭素及び水を供給する供給部を含む水性ガスシフト反応用 項 1 2 . 水性ガスシフト反応により、 水素を製造するための上記項 1 1に記載の 項 1 3 . 水性ガスシフト反応により、 一酸化炭素を除去するための上記項 1 1に 項 1 4. (1) 上記項 1〜7のいずれかに記載の触媒を含む触媒反応部、 及び (2) 燃料電池を含み、 触媒反応部から一酸化炭素レベルの低減された水素含有ガスを 燃料電池に供給する機構を備えた燃料電池システム。 Item 11. (1) A catalyst reaction section containing the catalyst according to any of the above items 1 to 7, and (2) a water gas shift reaction including a supply section for supplying carbon monoxide and water to the catalyst reaction section. Item 12. The method according to Item 11 above, wherein hydrogen is produced by a water gas shift reaction. Item 13. A catalyst reaction section containing the catalyst according to any one of Items 1 to 7 above, wherein the catalyst reaction section includes the catalyst according to any one of Items 1 to 7 for removing carbon monoxide by a water gas shift reaction. ) A fuel cell system including a fuel cell and a mechanism for supplying a hydrogen-containing gas having a reduced carbon monoxide level from the catalytic reaction section to the fuel cell.
項 1 5 . (1) 燃料電池、 (2) 上記項 1〜7のいずれかに記載の触媒を含む触媒反 応部および (3) 該燃料電池から該触媒反応部に一酸化炭素含有ガスを供給する 一酸化炭素含有ガス供給部を含み、 該触媒反応部からー酸ィ匕炭素レベルの低減さ れた水素含有ガスを該燃料電池にリサイクルする機構を備えた燃料電池システム。 項 1 6 . パラジウムとマンガンの酸ィ匕物とを含む水性ガスシフト反応用触媒。 項 1 7 . (1) パラジウム、 (2) マンガンの酸化物および (3) 鉄、 コバルト、 二 ッケル、 銅、 亜鉛、 マグネシウム、 ジルコニウム及びセリウムからなる群から選 ばれる少なくとも 1種の金属の酸化物を含む、 水性ガスシフト反応用触媒。 Item 15. (1) A fuel cell, (2) a catalyst reaction section containing the catalyst according to any of Items 1 to 7 above, and (3) a carbon monoxide-containing gas from the fuel cell to the catalyst reaction section. A fuel cell system comprising: a supply unit for supplying a gas containing carbon monoxide; and a mechanism for recycling a hydrogen-containing gas having a reduced carbon dioxide level from the catalyst reaction unit to the fuel cell. Item 16. A water gas shift reaction catalyst comprising palladium and manganese oxide. Item 17. (1) Palladium, (2) Oxide of manganese and (3) Oxide of at least one metal selected from the group consisting of iron, cobalt, nickel, copper, zinc, magnesium, zirconium and cerium A catalyst for a water gas shift reaction.
項 1 8 .上記項 16又は 17に記載の触媒を担体に担持させた水性ガスシフト反応 用触媒。 Item 18. A catalyst for a water gas shift reaction, wherein the catalyst according to Item 16 or 17 is supported on a carrier.
項 1 9 . 担体が、 アルミナ、 シリカ、 アルミナ一シリカ、 コージエライト、 ジル コニァ、 酸化セリウム、 ゼォライトおよび酸化チタンからなる群から選ばれる金 属酸化物系担体、 ステンレススチール、 鉄、 銅およびアルミニウムからなる群か ら選ばれる金属系担体の少なくとも 1種である上記項 18に記載の水性ガスシフ ト反応用触媒。 Item 19. The carrier is a metal oxide carrier selected from the group consisting of alumina, silica, alumina-silica, cordierite, zirconia, cerium oxide, zeolite and titanium oxide, stainless steel, iron, copper and aluminum. Item 19. The water gas shift reaction catalyst according to Item 18, which is at least one metal-based support selected from the group.
項 2 0 . パラジウムの含有量が、 触媒全重量を基準として、 0.1〜30重量%であ る上記項 16〜: 19のいずれかに記載の水性ガスシフト反応用触媒。 Item 20. The water gas shift reaction catalyst according to any one of Items 16 to 19, wherein the content of palladium is 0.1 to 30% by weight based on the total weight of the catalyst.
項 2 1 . パラジウムの含有量が、 触媒全重量を基準として、 0.1〜10重量%であ る上記項 20に記載の水性ガスシフ卜反応用触媒。 Item 21. The water gas shift reaction catalyst according to item 20, wherein the content of palladium is 0.1 to 10% by weight based on the total weight of the catalyst.
項 2 2 . パラジウムの含有量が、 触媒全重量を基準として、 0.:!〜 3重量%である 上記項 21に記載の水性ガスシフ卜反応用触媒。 Item 22. The water gas shift reaction catalyst according to Item 21, wherein the content of palladium is from 0 :! to 3% by weight based on the total weight of the catalyst.
項 2 3 . 上記項 16〜22のいずれかに記載の触媒の存在下に、 水性ガスシフト反 応を行う方法。 Item 23. A method for performing a water gas shift reaction in the presence of the catalyst according to any one of Items 16 to 22 above.
項 2 4. 上記項 16〜22のいずれかに記載の触媒の存在下に、 水性ガスシフト反 応を行うことにより、 水素を製造する方法。 Item 2 4. Water gas shift reaction in the presence of the catalyst according to any of Items 16 to 22 above A method of producing hydrogen by performing a reaction.
項 2 5 . 上記項 16〜22のいずれかに記載の触媒の存在下に、 水性ガスシフト反 応を行うことにより、 一酸化炭素を除去する方法。 Item 25. A method for removing carbon monoxide by performing a water gas shift reaction in the presence of the catalyst according to any one of Items 16 to 22 above.
項 2 6 . (1)上記項 16〜22のいずれかに記載の触媒を含む触媒反応部、及び(2) 該触媒反応部に一酸化炭素及び水を供給する供給部を含む水性ガスシフト反応用 項 2 7 . 水性ガスシフト反応により、 水素を製造するための上記項 26に記載の 項 2 8 . 水性ガスシフト反応により、 一酸化炭素を除去するための上記項 26に 記載の装置。 Item 26. (1) For a water gas shift reaction including a catalyst reaction section containing the catalyst according to any of the above items 16 to 22, and (2) a supply section for supplying carbon monoxide and water to the catalyst reaction section Item 27. The apparatus according to the above item 26, wherein the water gas shift reaction removes carbon monoxide according to the above item 26 for producing hydrogen by the water gas shift reaction.
項 2 9 . (1)上記項 16〜22のいずれかに記載の触媒を含む触媒反応部、及び(2) 燃料電池を含み、 触媒反応部から一酸化炭素レベルの低減された水素含有ガスを 燃料電池に供給する機構を備えた燃料電池システム。 Item 29. (1) a catalyst reaction section including the catalyst according to any of the above items 16 to 22, and (2) a hydrogen-containing gas having a reduced carbon monoxide level from the catalyst reaction section including a fuel cell. A fuel cell system including a mechanism for supplying a fuel cell.
項 3 0 . (1) 燃料電池、 (2) 上記項 16〜22のいずれかに記載の触媒を含む触媒 反応部および (3) 該燃料電池から該触媒反応部に一酸化炭素を供給する供給部 を含み、 触媒反応部から一酸化炭素レベルの低減された水素含有ガスを燃料電池 にリサイクルする機構を備えた燃料電池システム。 発明の詳細な記述 Item 30. (1) A fuel cell, (2) a catalyst reaction section containing the catalyst according to any of the above items 16 to 22, and (3) a supply of supplying carbon monoxide from the fuel cell to the catalyst reaction section A fuel cell system including a unit and a mechanism for recycling a hydrogen-containing gas having a reduced carbon monoxide level from a catalytic reaction unit to a fuel cell. Detailed description of the invention
本発明は、 特定の貴金属と特定の金属酸化物とを組み合わせて用いることによ り得られる水性ガスシフト反応用触媒を提供する。  The present invention provides a water gas shift reaction catalyst obtained by using a combination of a specific noble metal and a specific metal oxide.
本発明による触媒は、 以下に詳述するように、 金-銅酸化物系触媒(「第 1触媒」 という)とパラジウム-マンガン酸化物系触媒(「第 2触媒」 という)とに大別できる。  As described in detail below, the catalyst according to the present invention can be roughly classified into a gold-copper oxide-based catalyst (referred to as “first catalyst”) and a palladium-manganese oxide-based catalyst (referred to as “second catalyst”). .
<第 1触媒 >  <First catalyst>
( 1 - 1 ) 金-銅酸化物触媒  (1-1) Gold-copper oxide catalyst
本発明第 1触媒である水性ガスシフト反応用触媒は、 金と銅の酸化物とを必須 成分として含む触媒である。  The water gas shift reaction catalyst as the first catalyst of the present invention is a catalyst containing gold and copper oxide as essential components.
本発明第 1触媒は、 (1) 金、 (2) 銅の酸化物および (3) マグネシウム、 アル ミニゥム、 マンガン、 鉄、 コバルト、 ニッケル、 亜鉛、 ジルコニウムおよびセリ ゥムからなる群から選ばれた少なくとも 1種の金属の酸ィヒ物を含む組成を有する ことが、 より好ましい。 The first catalyst of the present invention comprises (1) gold, (2) copper oxide and (3) magnesium, aluminum, manganese, iron, cobalt, nickel, zinc, zirconium and cell oxide. More preferably, the composition has a composition containing at least one metal oxide selected from the group consisting of platinum.
本発明第 1触媒において、 金と併用する金属の酸化物 (以下、 「金属酸化物」 という)としては、銅の酸化物と他の金属酸化物との混合物(以下、「複合酸化物」 ともいう。)、 銅を含む複酸化物、 スピネル型結晶構造を有する AB204 (Aとして は、 Cu、 Mg、 Al、 Mn、 Fe、 Co、 Ni、 Zn、 Zrなどが例示され、 B としては、 Cu、 Mn Fe、 Co、 Tiなどが例示される。 ただし、 Aと Bとは同一ではない) で表される複酸化物、ベロブスカイト型結晶構造を有する CD03 (Cとしては Cu、 Mn、 Feなどが例示され、 Dとしては Ceなどが例示される。) で表される複酸ィ匕 物などが好ましい。 In the first catalyst of the present invention, the metal oxide used in combination with gold (hereinafter referred to as “metal oxide”) includes a mixture of copper oxide and another metal oxide (hereinafter also referred to as “composite oxide”). say.), mixed oxide containing copper, as the AB 2 0 4 (a having a spinel crystal structure, Cu, Mg, Al, Mn , Fe, Co, Ni, Zn, Zr , etc. are exemplified, and as B is, Cu, Mn Fe, Co, or Ti are exemplified. However, a and a double oxide represented by not the same) and B, Cu as CD0 3 (C having a perovskite-type crystal structure, Mn, Fe, etc. are exemplified, and D is Ce, etc.).
本発明第 1触媒の特に好ましいものとして、 AuZCuAl2O4、 AuZCuMn204、 Au/CuFe2O4, Au/CuZr204> Au/ Cu'Mg- Oxide、 Au/Cu-Co-Oxide> AuZ Cu-Ni-Oxide、 AuZCu_Zn-Oxide、 Au/Cu-Ce- Oxide , Au/Cu-Fe- Oxide Au ZMg'Cu-Oxide、 AuZAl-Cu- Oxide、 AuZMn-Cu_Oxide、 Au/Co-Cu-Oxide^ Au/Ni-Cu-Oxide, AuZZirCu- Oxide、 AuZ ZrCu- Oxide、 Au/Ce-Cu- Oxide 等が挙げられる ( 「Oxide」 という記載しているものは複合酸化物を示す。 ) 。 金属酸化物を形成させるための原料としては、 特に限定されず、 Cu、 Mg Al、 Mn、 Fe Co、 Ni、 Zn、 Zr、 Ce等の各種金属の硝酸塩、 硫酸塩、 酢酸塩、 炭酸 塩、塩化物などの各種の塩(以下、 「金属の塩」 という) を使用することができる。 金属酸化物の調製は、 例えば、 以下のようにして行う。 As particularly preferred of the present invention the first catalyst, AuZCuAl 2 O 4, AuZCuMn 2 0 4, Au / CuFe 2 O 4, Au / CuZr 2 0 4> Au / Cu'Mg- Oxide, Au / Cu-Co-Oxide > AuZ Cu-Ni-Oxide, AuZCu_Zn-Oxide, Au / Cu-Ce- Oxide, Au / Cu-Fe-Oxide Au ZMg'Cu-Oxide, AuZAl-Cu-Oxide, AuZMn-Cu_Oxide, Au / Co-Cu- Oxide ^ Au / Ni-Cu-Oxide, AuZZirCu-Oxide, AuZZrCu-Oxide, Au / Ce-Cu-Oxide and the like (the description of "Oxide" indicates a composite oxide). The raw material for forming the metal oxide is not particularly limited, and includes nitrates, sulfates, acetates, carbonates, and the like of various metals such as Cu, Mg Al, Mn, Fe Co, Ni, Zn, Zr, and Ce. Various salts such as chlorides (hereinafter referred to as “metal salts”) can be used. The metal oxide is prepared, for example, as follows.
まず、 目的とする触媒の組成に応じて所定の金属の塩を水に溶解して、 第一の 水溶液を得る。 第一の水溶液の濃度は、 金属の塩の種類などに応じて適宜選択す ることができ、 通常 0.01〜1モル ZL程度であり、 より好ましくは 0.05〜0.3モ ル /L程度である。  First, a predetermined metal salt is dissolved in water according to the composition of the target catalyst to obtain a first aqueous solution. The concentration of the first aqueous solution can be appropriately selected according to the kind of the metal salt and the like, and is usually about 0.01 to 1 mol ZL, more preferably about 0.05 to 0.3 mol / L.
別に、 水酸ィヒナトリウム、 水酸化カリウムなどの水酸化物、 炭酸ナトリウム、 炭酸カリウム、 炭酸アンモニゥム、 炭酸水素ナトリウム、 炭酸水素カリウム、 炭 酸水素アンモニゥムなどの炭酸塩からなる群から選ばれる少なくとも 1種を水に 溶解して、第二の水溶液を得る。第二の水溶液の濃度も特に限定されず、通常 0.01 〜1モル ZL程度であり、 より好ましくは 0.05〜0.3モル ZL程度である。 次いで、 第一の水溶液と第二の水溶液とを混合し、 生じる沈殿物を水洗し、 ろ 過し、 乾燥した後、 焼成することにより、 本発明第 1触媒における金属酸ィ匕物を 得ることができる。 , Separately, at least one selected from the group consisting of hydroxides such as sodium hydroxide and potassium hydroxide, and carbonates such as sodium carbonate, potassium carbonate, ammonium carbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, and ammonium hydrogencarbonate. Dissolve in water to obtain a second aqueous solution. The concentration of the second aqueous solution is not particularly limited, and is usually about 0.01 to 1 mol ZL, more preferably about 0.05 to 0.3 mol ZL. Next, the first aqueous solution and the second aqueous solution are mixed, the resulting precipitate is washed with water, filtered, dried, and calcined to obtain the metal oxide in the first catalyst of the present invention. Can be. ,
第一の水溶液と第二の水溶液との混合割合は、 限定されないが、 例えば、 第一 の水溶液の 1容量に対して、 第二の水溶液を 0.3〜3容量程度、 好ましくは 0.5〜 1.5容量程度の割合で使用する。 この混合割合においては、 沈殿物が効率良く生 じ、 且つ、 金属の塩のロスを抑えることができる。  The mixing ratio of the first aqueous solution and the second aqueous solution is not limited, but, for example, with respect to 1 volume of the first aqueous solution, about 0.3 to 3 volumes of the second aqueous solution, preferably about 0.5 to 1.5 volumes Use in proportions. At this mixing ratio, a precipitate is efficiently generated, and the loss of the metal salt can be suppressed.
沈殿物の水洗、 ろ過、 乾燥および焼成の条件は、 特に限定されず、 適宜選択す ることができる。 例えば、 乾燥は、 30〜200°C程度、 好ましくは 50〜: 150°C程度 で:!〜 15時間程度、 好ましくは 2〜: 10時間程度行えばよい。温度が高ければ、 乾 燥時間は短くてすむ。  The conditions for washing, filtering, drying, and baking the precipitate are not particularly limited, and can be appropriately selected. For example, drying may be performed at about 30 to 200 ° C., preferably at about 50 to 150 ° C .: for about! To about 15 hours, preferably for about 2 to about 10 hours. The higher the temperature, the shorter the drying time.
焼成条件も、 高純度の酸化物が形成される範囲から適宜選択すればよく、 大気 中で、 通常 200〜600°C程度、 好ましくは 250〜550°C程度、 より好ましくは 250 〜400°C程度で 0.5〜12時間程度、 好ましくは 1〜8時間程度、 より好ましくは 3 〜8時間程度行えばよい。 温度が高ければ、 焼成時間は短くてすむ。  The firing conditions may be appropriately selected from the range in which a high-purity oxide is formed.In the atmosphere, the firing temperature is usually about 200 to 600 ° C, preferably about 250 to 550 ° C, and more preferably 250 to 400 ° C. It may be carried out for about 0.5 to 12 hours, preferably for about 1 to 8 hours, more preferably for about 3 to 8 hours. The higher the temperature, the shorter the firing time.
また、 金属の酸化物は、 原料であるこれらの金属の塩を、 例えば、 大気中 200 〜600°C程度で加熱して、 塩成分を除去するとともに、 金属成分を酸化すること によっても、 製造することができる。  Metal oxides can also be produced by heating the salts of these metals as raw materials, for example, by heating them at about 200 to 600 ° C in the air to remove the salt components and oxidize the metal components. can do.
得られた金属の酸化物は、 必要にならば、 さらに、 公知の方法に準じて、 シリ 力ゾル、 アルミナゾル、 ポリエチレングリコールなどのバインダ一を用いて、 ハ 二カム、 ピーズ、 ペレット、 板状、 リング状などの各種形状に成形することがで さる。  If necessary, the obtained metal oxide may be further purified according to a known method using a binder such as silica sol, alumina sol, or polyethylene glycol, using honeycomb, peas, pellets, plate, It can be formed into various shapes such as rings.
成形方法は、 目的とする触媒の形状などに応じて、適宜選択することができる。 例えば、 射出成形、押出成形、圧縮成形、型への流し込み成形などが挙げられる。 本発明第 1触媒の製造方法において、 金成分源として使用する金化合物として は、 金の水溶性化合物、 有機溶媒に可溶性の化合物、 昇華性の化合物、 更には塩 化金、 塩化金酸、 各種無機および有機金錯体化合物などが挙げられる。  The molding method can be appropriately selected depending on the desired shape of the catalyst and the like. For example, injection molding, extrusion molding, compression molding, casting into a mold and the like can be mentioned. In the method for producing the first catalyst of the present invention, the gold compound used as a gold component source includes a water-soluble gold compound, a compound soluble in an organic solvent, a sublimable compound, and further, gold chloride, chloroauric acid, And inorganic and organic gold complex compounds.
金の水溶性化合物としては塩化金、 塩化金酸などが例示され、 有機溶媒に可溶 性の化合物としては金ァセチルァセトナート、クロ口 (トリフエニルホスフィン) 金 (I) [AuCl{P(C6H5)3}]などが例示され、 昇華性の化合物としては金ァセチル ァセトナートなどが例示される。 Examples of water-soluble compounds of gold include gold chloride and chloroauric acid.Examples of compounds soluble in organic solvents include gold acetyl acetonate, and chloro (triphenylphosphine). Gold (I) [AuCl {P (C 6 H 5 ) 3 }] is exemplified, and the sublimable compound is exemplified by gold acetyl acetonate.
金属酸化物あるいはその成形体上に金を固定化する方法は、 常法に従って行う ことができる。 例えば、 (i) 金溶液に金属酸化物あるいはその成形体を浸漬する 方法 (含浸法)、 (ii)上記第一の水溶液、第二の水溶液および金溶液を混合した後、 金-金属酸化物含有沈殿物を形成させる方法 (共沈法)、 (iii)金溶液と各種還元剤を 用いて、金属酸化物或いはその成形体表面に金を還元付着'析出させる方法、 (iv) 金溶液を用いて、 光照射により金属酸化物或いはその成形体表面に金を還元付 着 ·析出させる方法、 (V) 金溶液の pH制御中和により、 金属酸化物或いはその 成形体表面に金を析出沈殿させる方法、 (vi)金属酸化物或いはその成形体表面に、 溶液中の有機金錯体を吸着させる方法、 (vii) 金属酸化物或いはその成形体表面 に対して、 気相の有機金錯体を化学的に蒸着させる方法 (CVD法)、 (viii) 金属酸 化物或いはその成形体表面に対して、 気相の有機金錯体を物理的に蒸着させる方 法 (PVD) 法、 (ix) 金属酸化物或いはその成形体表面に対して、 有機金錯体を 真空蒸着させる方法、 (X) 金属酸ィ匕物或いはその成形体表面に対して、 金イオン を注入する方法、 (xi)金超微粒子と金属酸化物粒子とを混合する方法、などによ り行うことができる。 あるいは、 上記の金属酸化物の成形方法と同様にして、 共 沈法により得られた金-金属酸化物含有沈殿物にバインダ一を配合した後、八二力 ム、 ビーズ、 ペレツ卜、 板状、 リング状などの所定の形状に成形しても良い。 金属酸化物上に固定化する金は、 粒径が lOnm程度以下、 好ましくは 2〜5mn 程度の超微粒子状であることが好ましい。 金微粒子を金属酸化物上に固定化した 触媒は、 金と金属酸化物との接触面積が大きくなり、 相乗的に優れた触媒活性を 発揮することができる。  The method of immobilizing gold on the metal oxide or its molded body can be performed according to a conventional method. For example, (i) a method of immersing a metal oxide or a molded article thereof in a gold solution (impregnation method), and (ii) mixing the first aqueous solution, the second aqueous solution, and the gold solution, and then adding a gold-metal oxide (Iii) a method of depositing and depositing gold on the surface of a metal oxide or its molded body using a gold solution and various reducing agents, and (iv) using a gold solution. A method of depositing and depositing gold on the surface of a metal oxide or its molded product by light irradiation, and (V) Precipitating and depositing gold on the surface of the metal oxide or its molded product by pH-controlled neutralization of the gold solution (Vi) a method of adsorbing an organic gold complex in a solution on the surface of a metal oxide or a molded body thereof, and (vii) a chemical reaction of an organic gold complex in a gas phase with the surface of the metal oxide or the molded body thereof. (CVD method), (viii) Metal oxide or its molded surface A method of physically vapor-depositing an organic gold complex in the gas phase (PVD); (ix) a method of vacuum-depositing an organic gold complex on the surface of a metal oxide or its molded body; (X) The method can be carried out by a method of injecting gold ions into the surface of the metal oxide or molded article thereof, or (xi) a method of mixing ultrafine gold particles and metal oxide particles. Alternatively, a binder is added to the gold-metal oxide-containing precipitate obtained by the co-precipitation method in the same manner as in the above-mentioned metal oxide molding method, and then, a binder, a bead, a pellet, a plate-like material is formed. It may be formed into a predetermined shape such as a ring shape. The gold immobilized on the metal oxide is preferably in the form of ultrafine particles having a particle size of about lOnm or less, preferably about 2 to 5 mn. A catalyst in which gold particles are immobilized on a metal oxide has a large contact area between the gold and the metal oxide, and can exhibit synergistically excellent catalytic activity.
本発明第 1触媒では、 金の含有量 (担持量) は、 金属酸化物と金の合計重量に 対して、通常 0.05〜30重量%程度であり、好ましくは 0.1〜: 10重量%程度であり、 より好ましくは 0.:!〜 3重量。/。程度である。  In the first catalyst of the present invention, the content (amount) of gold is usually about 0.05 to 30% by weight, preferably about 0.1 to 10% by weight, based on the total weight of the metal oxide and gold. , More preferably 0:! ~ 3 weight. /. It is about.
( 1 - 2 ) ( 1 - 1 ) で得られた触媒を担体に担持させた触媒体  (1-2) A catalyst obtained by supporting the catalyst obtained in (1-1) on a carrier
本発明においては、 上記の工程 (1— 1 ) で得られた微粒子状の触媒を、 さら に各種形状の金属酸ィヒ物系担体又は金属系担体に担持させることにより、 実用性 をより一層向上させることができる。 In the present invention, the fine-particle catalyst obtained in the above step (1-1) is further supported on a metal oxide-based carrier or a metal-based carrier of various shapes to achieve practicality. Can be further improved.
金属酸化物系担体としては、 アルミナ、 シリカ、 アルミナ一シリカ、 ジルコ二 ァ、酸化セリウム、酸化チタン、コージェライト、ゼォライトなどが例示できる。 また、 金属系担体としては、 ステンレススチール、 鉄、 銅、 アルミニウム等が例 示できる。  Examples of the metal oxide-based carrier include alumina, silica, alumina-silica, zirconium, cerium oxide, titanium oxide, cordierite, and zeolite. Examples of the metal carrier include stainless steel, iron, copper, and aluminum.
例えば、 金属系担体としてアルミニウムを用いた場合も、 金属担体 (アルミ二 ゥム) の表面が酸化物になり、 金の微粒子 Z金属酸化物 Zアルミニウムの酸化物 (アルミナ) Zアルミニウムという構造を取り、 触媒との密着性が向上するので 好ましい。  For example, when aluminum is used as a metal-based carrier, the surface of the metal carrier (aluminum) is converted into an oxide, and the structure is made of fine particles of gold Z metal oxide Z oxide of aluminum (alumina) Z aluminum This is preferable since the adhesion to the catalyst is improved.
金-金属酸化物触媒中の金属酸化物と担体として使用する金属酸化物とは、同種 であっても良く、 異なっていても良い。  The metal oxide in the gold-metal oxide catalyst and the metal oxide used as the carrier may be the same or different.
担体の形状は、 特に限定されず、 触媒担体として一般に採用されている任意の 形状とすることができる。例えば、粉末状、球状、粒状、ハニカム状、発泡体状、 繊維状、 布状、 板状、 リング状などの形状の担体を使用することができる。 担体付触媒の製造は、 特に限定されず、 担体の使用方法、 目的とする触媒の種 類などに応じて、 ゥォッシュコート法、 吹き付け法、 混練法、 バインダ一混合法 などの公知の方法により、 行うことができる。 これらの製造方法の中でも、 ゥォ ッシュコート法および混練法が、 より好ましい。 以下に、 ゥォッシュコート法に よる担体への触媒の坦持方法について、 詳細に説明する。  The shape of the support is not particularly limited, and may be any shape generally used as a catalyst support. For example, carriers in the form of powder, sphere, granule, honeycomb, foam, fiber, cloth, plate, ring, etc. can be used. The production of the catalyst with a carrier is not particularly limited, and is carried out by a known method such as a push coat method, a spraying method, a kneading method, and a binder-mixing method, depending on the method of using the carrier, the kind of the target catalyst, and the like. be able to. Among these production methods, the push coat method and the kneading method are more preferable. Hereinafter, a method for supporting a catalyst on a carrier by the wet coat method will be described in detail.
まず、 前述の工程 (1— 1 ) により製造した微粒子状触媒をポールミル装置に 装入した後、 1〜5時間程度粉砕し、 さらに必要に応じて、 バインダー (例えば、 触媒重量の 3〜20%程度のシリカゾル) と水 (例えば、 触媒重量の 3〜30%程度) とを添加し、 さらに 1〜5時間程度混練する。  First, the fine particle catalyst produced in the above-mentioned step (1-1) is charged into a Pall mill apparatus, and then pulverized for about 1 to 5 hours. If necessary, a binder (for example, 3 to 20% of the catalyst weight) is used. Of silica sol) and water (for example, about 3 to 30% of the catalyst weight), and knead for about 1 to 5 hours.
得られた懸濁液に担体 (例えば、 コージエライト製ハニカム担体) を 1〜20分 程度浸漬した後、 担体を取り出し、 スプレーガンを用いて圧縮空気を吹き付ける ことにより、 過剰の懸濁液を取り除く。  After immersing a carrier (for example, a cordierite honeycomb carrier) in the obtained suspension for about 1 to 20 minutes, the carrier is taken out and the excess suspension is removed by blowing compressed air using a spray gun.
次いで、上記の処理を経た担体を 50〜150°C程度で 2〜: L0時間程度乾燥した後、 例えば空気中で、 250〜400°C程度で 1〜8時間程度焼成することにより、 担体に 触媒を担持させた触媒構造体を得ることができる。 ( 1 - 3 ) 水素の製造または一酸化炭素の除去 Then, the carrier having been subjected to the above treatment is dried at about 50 to 150 ° C. for about 2 to about L0 hours, and then calcined in the air at about 250 to 400 ° C. for about 1 to 8 hours, thereby forming a carrier. A catalyst structure carrying a catalyst can be obtained. (1-3) Production of hydrogen or removal of carbon monoxide
本発明第 1触媒である上記の水性ガスシフト反応用触媒を用いる場合には、 従 来の触媒に比して、 より低温で高い活性を発揮するので、 水素の製造および一酸 化炭素の除去を効率良く行うことができる。  When the above-mentioned catalyst for a water gas shift reaction, which is the first catalyst of the present invention, is used, it exhibits higher activity at a lower temperature than the conventional catalyst, so that the production of hydrogen and the removal of carbon monoxide are reduced. It can be performed efficiently.
本発明において、 一酸化炭素を供給するガスとしては、 石油、 石炭、 天然ガス などの化石燃料に由来する炭化水素の改質により生じたものが例示できるが、 こ れに限定されるものではない。  In the present invention, examples of the gas for supplying carbon monoxide include, but are not limited to, those generated by reforming hydrocarbons derived from fossil fuels such as petroleum, coal, and natural gas. .
水性ガスシフト反応による一酸化炭素の除去および水素の製造は、 水性ガス中 の一酸化炭素濃度、 水性ガス中の共存成分、 触媒中の金の含有量などに依存して 変わりうるが、 例えば、 本発明第 1触媒の存在下に水 (水蒸気) と一酸化炭素と を 25〜400°C程度、 好ましくは 80〜200°C程度の温度で反応させることにより、 行われる。  The removal of carbon monoxide and the production of hydrogen by the water gas shift reaction can vary depending on the concentration of carbon monoxide in the water gas, the coexisting components in the water gas, the content of gold in the catalyst, and the like. It is carried out by reacting water (steam) and carbon monoxide at a temperature of about 25 to 400 ° C, preferably about 80 to 200 ° C in the presence of the first catalyst of the invention.
水性ガス中の一酸化炭素の濃度は、 特に限定されないが、 例えば、 水素製造を 目的とする場合には、 通常 1〜30容量%程度、 好ましくは 5〜30容量%程度、 よ り好ましくは 10〜25容量%程度である。 また、 一酸化炭素除去を目的とする場 合には、 10ppm〜10容量。/。程度、好ましくは ΙΟρρπ!〜 1容量%程度、より好まし くは 10ppm〜1000ppm程度である。  The concentration of carbon monoxide in the water gas is not particularly limited. For example, for the purpose of producing hydrogen, it is usually about 1 to 30% by volume, preferably about 5 to 30% by volume, and more preferably about 10 to 30% by volume. About 25% by volume. If the purpose is to remove carbon monoxide, 10 ppm to 10 volumes. /. Degree, preferably ΙΟρρπ! About 1% by volume, more preferably about 10 ppm to 1000 ppm.
反応系内における水 (水蒸気) の量は、 一酸ィ匕炭素を完全に分解して、 対応量 の水素を生成させるための最小限必要量 (一酸化炭素と等モル) 以上であれば良 く、 通常一酸化炭素の 1〜5倍程度 (モル比)、 より好ましくは 2〜3倍程度の水 蒸気を存在させればよい。 また、 反応系には、 例えば、 水素、 二酸化炭素、 窒素 などのガスが存在していても良い。  The amount of water (steam) in the reaction system should be at least the minimum necessary amount (equimolar to carbon monoxide) to completely decompose the carbon monoxide and produce the corresponding amount of hydrogen. Usually, about 1 to 5 times (molar ratio) of carbon monoxide, more preferably about 2 to 3 times water vapor may be present. Further, in the reaction system, for example, a gas such as hydrogen, carbon dioxide, or nitrogen may be present.
水性ガスシフト反応において、 一酸化炭素を含むガスの流速は、 一酸化炭素の 濃度などに応じて適宜選択することができ、例えば、触媒 lg当たり、通常 50mL 〜10LZ分程度、 好ましくは 50mL〜: 1LZ分程度である。 また、 空間速度として は、 例えば、 通常、 Β,ΟΟΟ βΟΟ,ΟΟΟΙιτ·1程度、 好ましくは S^OC^eO'OOOhr 1程 度である。 In the water gas shift reaction, the flow rate of the gas containing carbon monoxide can be appropriately selected according to the concentration of carbon monoxide and the like. For example, usually about 50 mL to 10 LZ per gram of catalyst, preferably about 50 mL to: It is about 1 LZ. As the space velocity, for example, typically, Β, ΟΟΟ βΟΟ, ΟΟΟΙιτ · 1 mm, preferably S ^ OC ^ eO'OOOhr 1 extent.
本発明第 1触媒の存在下に、 水蒸気と一酸化炭素とを含むガスを水性ガスシフ ト反応に供するに際し、 必要に応じて、 窒素、 アルゴン、 ヘリウムなどの不活性 ガスをキャリアガスとして使用することができる。 また、 キャリアガス中に少量 の酸素 (例えば、 一酸化炭素に対して 10容量%程度以下)、 又は少量の空気 (例 えば、 一酸ィ匕炭素に対して 50容量%以下) が共存していてもよい。 When a gas containing water vapor and carbon monoxide is subjected to the water gas shift reaction in the presence of the first catalyst of the present invention, if necessary, an inert gas such as nitrogen, argon, or helium is used. Gas can be used as carrier gas. Further, a small amount of oxygen (for example, about 10% by volume or less based on carbon monoxide) or a small amount of air (for example, 50% by volume or less based on carbon monoxide) coexist in the carrier gas. You may.
更に、 本発明第 1触媒を用いて水性ガスシフト反応を行う際の一酸ィ匕炭素を含 むガスの圧力も特に限定されず、 例えば、 l X 102 kPaカら 5 MPa程度の高圧条 件下にまでの広い範囲から、 選択できる。 Furthermore, the pressure of including gas an acid I匕炭oxygen when performing the water gas shift reaction using the present invention the first catalyst is not particularly limited, for example, l X 10 2 kPa shell 5 MPa about high pressure conditions You can choose from a wide range up to the bottom.
本発明第 1触媒を使用する水性ガスシフト反応においては、 反応させるガスを 循環させることにより、 一酸化炭素濃度をより低下させたり、 あるいは得られる 水素濃度を増大させたりすることができる。  In the water gas shift reaction using the first catalyst of the present invention, by circulating the gas to be reacted, the concentration of carbon monoxide can be further reduced, or the obtained hydrogen concentration can be increased.
第 1触媒に係る本発明は、 (1— 1 )又は(1— 2 )で得られた本発明第 1触媒 を含む触媒反応部、 及び該触媒反応部に一酸化炭素と水とを供給する供給部を含 む、 水性ガスシフト反応用装置を包含する。 このような装置は、 水素製造装置と しても、 あるいは一酸化炭素除去装置としても、 使用することができる。  The present invention according to the first catalyst comprises: a catalyst reaction section containing the first catalyst of the present invention obtained in (1-1) or (1-2); and supplying carbon monoxide and water to the catalyst reaction section. An apparatus for a water gas shift reaction including a supply section is included. Such an apparatus can be used as a hydrogen production apparatus or as a carbon monoxide removal apparatus.
さらに、 第 1触媒に係る本発明は、 (A) ( 1 - 1 ) 又は (1— 2 ) で得られた 本発明第 1触媒を含む触媒反応部、 及び (B) 燃料電池を含み、 触媒反応部から 一酸化炭素レベルの低減された水素含有ガスを燃料電池に供給する機構を備えた 燃料電池システムをも包含する。  The present invention according to the first catalyst further comprises: (A) a catalyst reaction section containing the first catalyst of the present invention obtained in (1-1) or (1-2); and (B) a fuel cell, The present invention also includes a fuel cell system provided with a mechanism for supplying a hydrogen-containing gas having a reduced carbon monoxide level to a fuel cell from a reaction section.
さらにまた、第 1触媒に係る本発明は、 (C)燃料電池、 (D) ( 1— 1 )又は(1 一 2 ) で得られた触媒を含む触媒反応部、 及び (E) 該燃料電池から該触媒反応 部に一酸化炭素含有ガスを供給する一酸ィ匕炭素含有ガス供給部を含み、 触媒反応 部から一酸化炭素レベルの低減された水素含有ガスを燃料電池に循環供給 (リサ ィクル) する機構を備えた燃料電池システムをも包含する。  Furthermore, the present invention according to the first catalyst comprises (C) a fuel cell, (D) a catalyst reaction section containing the catalyst obtained in (1-1) or (112), and (E) the fuel cell. A hydrogen-containing gas having a reduced carbon monoxide level from the catalyst reaction section to the fuel cell, including a carbon monoxide-containing gas supply section for supplying a carbon monoxide-containing gas to the catalyst reaction section from the fuel cell (recycle) The present invention also includes a fuel cell system provided with a mechanism for performing the above.
これらの燃料電池システムは、 本発明第 1触媒を必須とする以外の点では、 公 知の燃料電池システムと同様の構成要素を備えている。  These fuel cell systems have the same components as the known fuel cell system except that the first catalyst of the present invention is essential.
本発明第 1触媒は、 任意の形状の金属酸化物系、 半導体系及び金属系基板材の 上に担持することも、 できる。 従って、 半導体産業において一般的に用いられる シリコン基板又は酸化シリコン (シリカ) 基板上に本発明第 1触媒を微細加工し て、 直接担持させることにより、 携帯型パソコン、 PDA、 携帯電話などの小型電 源用燃料電池への水素供給デバィスとして適した形態で、使用することもできる。 <第 2触媒 > The first catalyst of the present invention can be supported on a metal oxide-based, semiconductor-based, or metal-based substrate material of any shape. Therefore, by finely processing the first catalyst of the present invention on a silicon substrate or a silicon oxide (silica) substrate generally used in the semiconductor industry and directly supporting the catalyst, a small-sized electronic device such as a portable personal computer, a PDA, and a mobile phone can be obtained. It can also be used in a form suitable as a hydrogen supply device for a source fuel cell. <Second catalyst>
( 2 - 1 ) パラジウム-マンガン酸化物系触媒  (2-1) Palladium-manganese oxide catalyst
本発明の第 2触媒は、 パラジウムおよびマンガン酸化物を必須成分として含む 水性ガスシフト反応用触媒である。  The second catalyst of the present invention is a water gas shift reaction catalyst containing palladium and manganese oxide as essential components.
本発明の第 2触媒は、 より好ましくは、 (1) パラジウム、 (2) マンガンの酸ィ匕 物および (3) コバルト、 ニッケル、 銅、 亜鉛、 マグネシウム、 ジルコニウム及 びセリウムからなる群から選ばれる少なくとも 1種の金属の酸化物を含む触媒で ある。  The second catalyst of the present invention is more preferably selected from the group consisting of (1) palladium, (2) manganese oxide and (3) cobalt, nickel, copper, zinc, magnesium, zirconium and cerium. The catalyst contains at least one metal oxide.
本発明第 2触媒において、 パラジウムを除いた金属の酸ィ匕物 (以下、 「金属酸 化物」 という) としては、 マンガンの酸化物と他の金属の酸ィ匕物との混合物 (以 下、 「複合酸化物」 ともいう。)、 マンガンを含む複酸ィ匕物、 鉄を含む複酸化物、 ス ピネル型結晶構造を有する AB204 (Aとしては Mn、 Fe、 Co、 Ni、 Cu、 Zn、 Mg 等が例示され、 Bとしては Mn、 Fe Co等が例示される。 ただし、 Aと Bとは 同一ではない) で表される複酸化物、 ベロブスカイト型結晶構造を有する CD03 (Cとしては Ce等が例示され、 Dとしては Mn、 Fe等が例示される。)で表され る複酸化物などが好ましい。 In the second catalyst of the present invention, the metal oxidized product excluding palladium (hereinafter referred to as “metal oxide”) is a mixture of a manganese oxide and another metal oxidized product (hereinafter, referred to as “metal oxide”). also referred to as "composite oxide".), Fukusani匕物, mixed oxide containing iron containing manganese, as the AB 2 0 4 (a having a spinel type crystal structure Mn, Fe, Co, Ni, Cu , Zn, Mg or the like. Examples of the B Mn, Fe Co, and the like. However, composite oxide represented by not the same) and a and B, CD0 3 having a perovskite-type crystal structure (C is exemplified by Ce and the like, and D is exemplified by Mn, Fe and the like).
本発明第 2触媒の特に好ましいものとして、 Pd/FeMn2O4、 PdZCoMn2O4、 Pd,NiMn204、 Pd,CuMn204、 Pd/ZnMn204、 Pd/MgMn204、 Pd/MnCo204, Pd/MnNi204、 PdZMnFe204、 PdZCoFe204、 Pd/ NiPe2O4,
Figure imgf000016_0001
As particularly preferred of the present invention the second catalyst, Pd / FeMn 2 O 4, PdZCoMn 2 O 4, Pd, NiMn 2 0 4, Pd, CuMn 2 0 4, Pd / ZnMn 2 0 4, Pd / MgMn 2 0 4 , Pd / MnCo 2 0 4, Pd / MnNi 2 0 4, PdZMnFe 2 0 4, PdZCoFe 2 0 4, Pd / NiPe 2 O 4,
Figure imgf000016_0001
Pd/ZnFe204、 Pd/MgFe204、 Pd/FeCo204、 Pd/ZrMn xide, Pd/Ce- Mn-Oxide、 Pd/Zr-Fe-Oxide Pd/ Ce'Fe- Oxide、 等が挙げられる (「Oxide」 と記載してあるものは複合酸化物を示す。 )。 Pd / ZnFe 2 0 4, Pd / MgFe 2 0 4, Pd / FeCo 2 0 4, Pd / ZrMn xide, Pd / Ce- Mn-Oxide, Pd / Zr-Fe-Oxide Pd / Ce'Fe- Oxide, etc. (What is described as “Oxide” indicates a composite oxide.)
金属酸化物を得るための金属酸化物原料としては特に限定されず、 Mn、 Fe、 Co、 Ni、 Cu、 Zn、 Mg、 Τί、 La、 Sr、 Ce等の各種金属の硝酸塩、 硫酸塩、 酢酸 塩、 炭酸塩、 塩化物等の各種の塩 (以下、 「金属の塩」 という。) を使用すること ができる。  The metal oxide raw material for obtaining the metal oxide is not particularly limited, and includes nitrates, sulfates, and acetic acids of various metals such as Mn, Fe, Co, Ni, Cu, Zn, Mg, Τί, La, Sr, and Ce. Various salts such as salts, carbonates and chlorides (hereinafter referred to as “metal salts”) can be used.
まず、 目的とする触媒に応じて必要とする金属の塩を水に溶解し、 第三の水溶 液を得る。 第三の水溶液の濃度は、 金属の塩の種類等に応じて適宜選択すること ができ、 0.01〜1モル/ L程度、好ましくは 0.05〜0.3モル ZL程度が例示できる。 次に、 水酸化ナトリウム、 7_K酸化カリウム等の種々の水酸ィ匕物、 及び炭酸ナト リウム、 炭酸カリウム、 炭酸アンモニゥム、 炭酸水素ナトリウム、 炭酸水素カリ ゥム、 炭酸水素アンモニゥム等の炭酸塩からなる少なくとも 1種を水に溶解して 第四の水溶液を得る。 第四の水溶液の濃度も特に限定されず、 0.01〜1 モル/ L 程度、 好ましくは 0.05〜0.3モル ZL程度が例示できる。 First, a metal salt required according to the target catalyst is dissolved in water to obtain a third aqueous solution. The concentration of the third aqueous solution can be appropriately selected according to the type of the metal salt and the like, and is, for example, about 0.01 to 1 mol / L, preferably about 0.05 to 0.3 mol ZL. Next, various hydroxides such as sodium hydroxide and 7_K potassium oxide, and carbonates such as sodium carbonate, potassium carbonate, ammonium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, ammonium hydrogen carbonate, etc. Dissolve at least one species in water to obtain a fourth aqueous solution. The concentration of the fourth aqueous solution is not particularly limited, and may be about 0.01 to 1 mol / L, preferably about 0.05 to 0.3 mol ZL.
次いで、 第三の水溶液と第四の水溶液とを混合し、 生じる沈殿物を水洗し、 濾 過し、 乾燥した後、 焼成することにより、 本発明第 2触媒における金属酸化物を 得ることができる。  Next, the third aqueous solution and the fourth aqueous solution are mixed, the resulting precipitate is washed with water, filtered, dried, and calcined, whereby the metal oxide in the second catalyst of the present invention can be obtained. .
第三の水溶液および第四の水溶液を混合する割合は限定されないが、 第三の水 溶液の 1容量に対して、 第四の水溶液を 0.3〜3容量程度、 好ましくは 0.5〜1.5 容量程度使用するのが好ましい。 沈殿物が効率良く生じ、 且つ、 金属の塩のロス を抑えることができるからである。  The mixing ratio of the third aqueous solution and the fourth aqueous solution is not limited, but about 0.3 to 3 volumes, preferably about 0.5 to 1.5 volumes, of the fourth aqueous solution is used per 1 volume of the third aqueous solution. Is preferred. This is because precipitates can be efficiently generated and the loss of metal salts can be suppressed.
水洗、 濾過、 乾燥および焼成の条件は特に限定されず、 適宜選択することがで きる。 例えば、 本発明第 1触媒を得る際に用いるのと同じ条件でよい。  The conditions for washing, filtration, drying, and baking are not particularly limited and can be appropriately selected. For example, the same conditions as those used for obtaining the first catalyst of the present invention may be used.
また、 金属酸化物原料であるこれらの金属の塩を、 例えば 200〜600°C程度で 空気中で加熱することにより製造することもできる。  In addition, it can also be produced by heating salts of these metals, which are metal oxide raw materials, in air at, for example, about 200 to 600 ° C.
得られた金属酸ィ匕物を、 必要に応じて、 例えば、 シリカゾル、 アルミナゾル、 ポリエチレングリコール等の公知のバインダ一剤等を混合し、 成形し、 乾燥し、 焼成することによって、 ハニカム、 ビーズ、 ペレット、 板状、 リング状等の各種 形状に成形することができる。  The obtained metal oxidized product may be mixed with a known binder such as silica sol, alumina sol, or polyethylene glycol, if necessary, and then molded, dried, and fired to obtain a honeycomb, beads, or the like. It can be formed into various shapes such as pellets, plates and rings.
成形の方法としては、 目的とする触媒の形状等に応じて適宜選択することがで き、 例えば、 射出成形、押出成形、 圧縮成形、 型への流し込みなどが挙げられる。 本発明第 2触媒の製造方法において、 パラジウム成分源として使用するパラジ ゥム化合物としては、 パラジウムの水溶性化合物、 有機溶媒に可溶性の化合物、 昇華性の化合物、 更には塩ィ匕パラジウム、 硝酸パラジウム、 酢酸パラジウム、 各 種無機および有機パラジウム錯体ィ匕合物も例示できる。  The molding method can be appropriately selected according to the desired shape of the catalyst and the like, and examples thereof include injection molding, extrusion molding, compression molding, and casting into a mold. In the method for producing the second catalyst of the present invention, the palladium compound used as the source of the palladium component includes a water-soluble compound of palladium, a compound soluble in an organic solvent, a sublimable compound, and further, palladium salt and palladium nitrate. , Palladium acetate and various inorganic and organic palladium complex conjugates.
パラジウムの水溶性化合物としては、 硝酸パラジウム、 硫酸パラジウム、 塩ィ匕 パラジウム、 臭化パラジウム、 H2PdCl4、 K2PdCl4、 K2PdBi'4、 Pd(NH3)4Cl2、 Pd(NH3)2Cl2, Pd(N02)2(NHL)2、 Pd(NH3)4(OH)2, PdCl2(C2H8N2)等カ例示でき、 有機溶媒に可溶性の化合物としては、 酢酸パラジウム、 パラジウム (II) ァセチ ルァセトナート、 塩化パラジウム、 Pd(NH3)4Cl2、 Pd(NH3)2Cl2 Pd(N02)2(NH3)2、 Pd(N03)2等が例示でき、 昇華性の化合物としてパラジウム (Π) ァセチルァセト ナート等が例示できる。 The water-soluble compound of palladium, palladium nitrate, palladium sulfate, Shioi匕palladium, palladium bromide, H 2 PdCl 4, K 2 PdCl 4, K 2 PdBi '4, Pd (NH 3) 4 Cl 2, Pd ( NH 3 ) 2 Cl 2 , Pd (N0 2 ) 2 (NHL) 2 , Pd (NH 3 ) 4 (OH) 2 , PdCl 2 (C 2 H 8 N 2 ) Compounds soluble in organic solvents include palladium acetate, palladium (II) acetylacetonate, palladium chloride, Pd (NH 3 ) 4 Cl 2 , Pd (NH 3 ) 2 Cl 2 Pd (N0 2 ) 2 (NH 3 ) 2 , Pd (N0 3) 2 and the like. examples of palladium ([pi) Asechiruaseto diisocyanate and the like can be exemplified as a sublimable compound.
金属酸化物あるいはその成形体上にパラジウムを固定ィヒする方法は、 定法に従 つて行うことができる。 例えば、 本発明第 1触媒の (i)〜(xi) に記載された方 法において、 金をパラジウムに代えて用いることができる。  The method of immobilizing palladium on a metal oxide or its molded body can be performed according to a standard method. For example, in the methods described in (i) to (xi) of the first catalyst of the present invention, gold can be used instead of palladium.
金属酸ィ匕物上に固定化するパラジウムは、 パラジウムを粒径 10nm程度以下、 好ましくは 2〜5nm程度の微粒子状であることが好ましい。パラジウム微粒子を 金属酸ィ匕物上に固定化した触媒は、 パラジウムと金属酸ィ匕物との接触面積が大き くなり、 相乗的に優れた触媒活性を発揮することができる。  The palladium immobilized on the metal oxidized product is preferably in the form of fine particles having a particle diameter of about 10 nm or less, preferably about 2 to 5 nm. A catalyst in which palladium fine particles are immobilized on a metal oxide film has a large contact area between the palladium and the metal oxide film, and can exhibit synergistically excellent catalytic activity.
本発明第 2触媒では、 パラジウムの含有量 (担持量) は、 金属酸化物とパラジ ゥムの合計量に対して、 0.:!〜 30重量%程度、 好ましくは 0.1〜: L0重量%程度、 より好ましくは 0.1〜3重量%程度である。  In the second catalyst of the present invention, the content (supporting amount) of palladium is about 0 :! to about 30% by weight, preferably about 0.1 to: L0% by weight, based on the total amount of the metal oxide and the palladium. It is more preferably about 0.1 to 3% by weight.
( 2 - 2 ) ( 2 - 1 ) で得られた触媒を担体に担持させた触媒体  (2-2) A catalyst body in which the catalyst obtained in (2-1) is supported on a carrier
本発明第 2態様では、 (2— 1 ) で得られた粒子状の触媒を、 さらに各種の形 状の金属酸化物系担体又は金属系担体上に担持させることにより、 実用性を向上 させることができる。 金属酸化物系担体、 金属系担体としては、 本発明第 1触媒 と同じ物が使用できる。  In the second aspect of the present invention, the particulate catalyst obtained in (2-1) is further supported on a metal oxide-based carrier or a metal-based carrier in various shapes to improve the practicality. Can be. The same catalyst as the first catalyst of the present invention can be used as the metal oxide-based carrier and the metal-based carrier.
パラジゥム-金属酸化物触媒中の金属酸化物と担体として使用する金属酸化物 とは、 同じであっても異なっていても良い。  The metal oxide in the palladium-metal oxide catalyst and the metal oxide used as the carrier may be the same or different.
担体の形状は特に限定されず、 本発明第 1触媒で例示したものが使用できる。 また、 担体に触媒を担持させ方法、 製造条件としても限定されず、 例えば、 本発 明第 1触媒で使用した方法を用いることができる。  The shape of the carrier is not particularly limited, and those exemplified for the first catalyst of the present invention can be used. Further, the method for supporting the catalyst on the carrier and the production conditions are not limited, and for example, the method used for the first catalyst of the present invention can be used.
( 2 - 3 ) 水素の製造又は一酸化炭素の除去  (2-3) Production of hydrogen or removal of carbon monoxide
本発明第 2触媒である上記の水性ガスシフト反応用触媒を用いる場合には、 従 来の触媒に比して、 より低温で高い活性を発揮するので、 水素の製造および一酸 化炭素の除去を効率良く行うことができる。  In the case where the above-mentioned water gas shift reaction catalyst, which is the second catalyst of the present invention, is used, it exhibits higher activity at a lower temperature than the conventional catalyst, so that the production of hydrogen and the removal of carbon monoxide are reduced. It can be performed efficiently.
本発明第 2触媒を用いて水性ガスシフト反応を行う際の種々の条件も限定され ない。 例えば、 本発明第 1触媒を用いて水性ガスシフト反応を行う際の条件と同 じ条件が挙げられる。 Various conditions for performing the water gas shift reaction using the second catalyst of the present invention are also limited. Absent. For example, the same conditions as those for performing a water gas shift reaction using the first catalyst of the present invention can be mentioned.
特に、 例えば、 一酸化炭素 0.5容量。/。程度、 水素 2.7容量。/。程度、 二酸化炭素 In particular, for example, 0.5 volume of carbon monoxide. /. Degree, hydrogen 2.7 capacity. /. Degree, carbon dioxide
0.3容量。/。程度、水蒸気 1〜1.5容量。/。程度を含むガスに場合は 80〜: 120°C程度で、 一酸化炭素 1容量%程度、 水素 5容量%程度、 二酸化炭素 0.5容量。/。程度、 水蒸 気 2〜3容量%程度含むガスの場合は、 80〜: LOOt:程度で、 パラジウムの量 lgに 対して 1〜7LZ分程度の流速で通過させると、 出口ガス中の一酸化炭素の濃度が0.3 capacity. /. Degree, steam 1 ~ 1.5 volume. /. 80 ~: 120 ° C, about 1% by volume of carbon monoxide, about 5% by volume of hydrogen, 0.5% of carbon dioxide. /. If the gas contains about 2 to 3% by volume of water vapor, 80 to: LOOt: About 1 to 7 LZ of palladium is passed through at a flow rate of about 1 to 7 LZ. Carbon concentration
20ppm程度以下という非常に低い値になり、固体高分子形燃料電池用水素として も使用することができる。 This is a very low value of about 20 ppm or less, and can be used as hydrogen for polymer electrolyte fuel cells.
本発明第 2触媒を使用する水性ガスシフト反応においても、 反応させるガスを 循環させることにより、 一酸化炭素濃度をより低下させたり、 あるいは得られる 水素濃度を増大させたりすることができる。  Also in the water gas shift reaction using the second catalyst of the present invention, by circulating the gas to be reacted, the concentration of carbon monoxide can be further reduced, or the obtained hydrogen concentration can be increased.
本発明第 2触媒はまた、 本発明第 1触媒と同様に、 水性ガスシフト反応用装置、 水素製造装置、 一酸化炭素除去装置または燃料電池システムにも使用することが できる。 さらに、 本発明第 1触媒と同様に、 携帯型パソコン、 携帯型端末、 携帯 電話などの小型電源用燃料電池への水素供給デバィスとして適した形態で、 使用 することもできる。 実施例  The second catalyst of the present invention, like the first catalyst of the present invention, can also be used in a water gas shift reaction device, a hydrogen production device, a carbon monoxide removal device, or a fuel cell system. Further, similarly to the first catalyst of the present invention, it can be used in a form suitable as a hydrogen supply device for a fuel cell for a small power source such as a portable personal computer, a portable terminal, and a mobile phone. Example
以下に、 実施例を示し、 本発明の特徴とするところをより一層明瞭にする。 以 下において、 実施例 1一 1〜 1一 3は本発明第 1触媒に関する実施例であり、 実 施例 2— 1 ~ 2— 3は本発明第 2触媒に関する実施例である。  Examples are shown below to further clarify the features of the present invention. Hereinafter, Examples 11 to 11 are examples relating to the first catalyst of the present invention, and Examples 2-1 to 2-3 are examples relating to the second catalyst of the present invention.
実施例 1一 1  Example 11
*触媒 No.l-l〜l-9の調製 * Preparation of catalyst Nos. L-l to l-9
塩化金酸 [HAuCl4'4H20] 0.250g (0.000606モル)、 硝酸銅 [Cu(N03)2' 3H20] 4.83g (0.020モル)、 硝酸鉄 [Fe(N03)3'9H20] 16.2g (0.040モル) を 600mlの蒸 留水に溶解させて A液を得た。 一方、 炭酸ナトリウム [Na2C03] 9.47g (0.0893 モル) を 400mlの蒸留水に溶解させて B液を得た。 Chloroauric acid [HAuCl 4 '4H 2 0] 0.250 g (0.000606 mol), Copper nitrate [Cu (N0 3 ) 2 ' 3H 20 ] 4.83 g (0.020 mol), Iron nitrate [Fe (N0 3 ) 3 '9H 20 ] 16.2 g (0.040 mol) was dissolved in 600 ml of distilled water to obtain solution A. On the other hand, 9.47 g (0.0893 mol) of sodium carbonate [Na 2 CO 3 ] was dissolved in 400 ml of distilled water to obtain a solution B.
上記 B液中に A液を滴下し、 1時間撹拌した後、 得られた沈澱物を十分に水洗 し、 乾燥し、 空気中にて 400°Cで 5時間焼成することにより、 粒径 2〜3nm程度 の超微粒子状の金が固定化された金固定化銅鉄酸化物 (本発明触媒 No.1-4) [Au /CuFe2O4> 原子比 Au: Cu: Fe二 1: 33: 66]を得た。 Solution A was added dropwise to Solution B above, and the mixture was stirred for 1 hour.The obtained precipitate was washed thoroughly with water. Then, by drying and baking in air at 400 ° C. for 5 hours, a gold-immobilized copper-iron oxide in which ultrafine gold particles having a particle diameter of about 2 to 3 nm are immobilized (catalyst No. 1-4) [Au / CuFe 2 O 4 > atomic ratio Au: Cu: Fe 2 1:33:66] was obtained.
さらに、 各種金属塩を用い、 上記と同様の手法により、 本発明触媒 No.l-l〜 No.l-3、 No.l-5〜No.l-9を得た。  In addition, the catalysts of the present invention No.l-l to No.l-3 and No.l-5 to No.l-9 were obtained in the same manner as described above using various metal salts.
*触媒 No.1-10〜: L-18の調製 * Catalyst No.1-10 ~: Preparation of L-18
硝酸マンガン [Μη(ΝΟ3)2 · 6Η20] 11.5g (0.040 モル) 及び硝酸銅 [Cu(N03)2 - 3H20] 19.3g (0.080モル) を l,000mlの蒸留水に溶解させて C液を得た。 一方、 炭酸ナトリゥム [Na2CO3] 17.8g (0.168モル) を 700mlの蒸留水に溶解させて D 液を得た。 Manganese nitrate [Μη (ΝΟ 3) 2 · 6Η 2 0] 11.5g (0.040 mol) and copper nitrate [Cu (N0 3) 2 - 3H 2 0] dissolved 19.3g of (0.080 mol) l, distilled water 000ml The solution C was obtained. On the other hand, 17.8 g (0.168 mol) of sodium carbonate [Na 2 CO 3 ] was dissolved in 700 ml of distilled water to obtain a solution D.
上記 D液中に C液を滴下し、 1時間撹拌した後、得られた沈殿物を十分に洗浄 して乾燥し、 空気中にて 400°Cで 5時間焼成することにより、 マンガン銅酸化物 [MnCu2Ox]を得た。 The solution C was dropped into the solution D, and the mixture was stirred for 1 hour.The resulting precipitate was thoroughly washed and dried, and calcined in air at 400 ° C for 5 hours to obtain manganese copper oxide. [MnCu 2 Ox] was obtained.
0.0877g (0.000213モル) の塩ィ匕金酸 [HAuCl4'4H20]を含む 0.001モル ZLの 水溶液に水酸化力リゥム [KOH]の 0.1モル ZL水溶液を加えて、 pHを 8に調整 した後、 上述のマンガン銅酸ィヒ物 [MnCu2Ox] 5gを加え、 1時間熟成した。 To a 0.001 mol ZL aqueous solution containing 0.0877 g (0.000213 mol) of salted arsenic acid [HAuCl 4 '4H 20 ], a 0.1 mol ZL aqueous solution of hydroxylating sphere [KOH] was added to adjust the pH to 8. Thereafter, 5 g of the above-mentioned manganese cuprate [MnCu 2 O x ] was added, and the mixture was aged for 1 hour.
得られた混合物を水洗し、 乾燥した後、 空気中にて 400°Cで 5時間焼成するこ とにより、 金超微粒子固定化マンガン銅酸化物 (本発明触媒 No.1-12) [AuZ The obtained mixture was washed with water, dried, and then calcined in air at 400 ° C. for 5 hours to obtain manganese copper oxide immobilized with ultrafine gold particles (catalyst No. 1-12 of the present invention) [AuZ
MnCu2Ox、 原子比 Au: Mn: Cu=l: 33: 66]を得た。 MnCu 2 O x , atomic ratio Au: Mn: Cu = 1: 33: 66] was obtained.
また、 また、 各種金属塩を用い、 上記と同様の手法により、 本発明触媒 No.l- Further, using various metal salts, the catalyst of the present invention No. 1-
10、 No.l-ll、 No.l-13〜No.l-18を得た。 10, No.l-ll, No.l-13 to No.l-18 were obtained.
*水素の生成および一酸化炭素の除去  * Hydrogen generation and carbon monoxide removal
続いて、 上記各触媒(No.l-:!〜 1-18) を 70〜: 120メッシュにふるい分けしたも の 0.15gを内径 8nmiのガラス管に充填し、 50、 80、 120、 150°Cの各温度におい て、 このガラス管中に一酸化炭素を 1容量%、 水蒸気 2容量%を含む窒素ガスを Next, 0.15 g of each of the above catalysts (No.l-:! ~ 1-18) sieved to 70 ~: 120 mesh was filled into a glass tube with an inner diameter of 8 nmi, and the temperature was reduced to 50, 80, 120, 150 ° C. At each temperature of, nitrogen gas containing 1% by volume of carbon monoxide and 2% by volume of water vapor was contained in this glass tube.
50mlZ分の流量で流通させて水性ガスシフト反応を行うことにより、水素濃度と 一酸化炭素濃度とを測定した。 次いで、 下記の式に基いて、 それぞれの触媒につ いて、 水素の生成率 (%) 及び一酸化炭素の除去率 (%) を算出した。 水素の生成率 (%) The water gas shift reaction was carried out at a flow rate of 50 mlZ to measure the hydrogen concentration and the carbon monoxide concentration. Next, based on the following formula, the hydrogen generation rate (%) and the carbon monoxide removal rate (%) were calculated for each catalyst. Hydrogen production rate (%)
二 {触媒層出口の水素濃度 (%) /触媒層入口の一酸化炭素濃度 (%) } X 100 一酸化炭素の除去率 (%) Ii {H2 concentration at catalyst layer outlet (%) / Carbon monoxide concentration at catalyst layer inlet (%)} X 100 Removal rate of carbon monoxide (%)
=[1— {触媒層出口の一酸化炭素濃度 (%)/触媒層入口の一酸化炭素濃度 (%)}] X 100 反応開始から 3時間後の結果を表 1一 1に示す。  = [1— {Carbon monoxide concentration at catalyst layer outlet (%) / carbon monoxide concentration at catalyst layer inlet (%)}] X 100 The results after 3 hours from the start of the reaction are shown in Table 11-11.
なお、 表 1—1には、 比較のため Cu-ZnO-Al2O3 (比較例 1— 1 ) [Cu=38重 量%、 ズード 'ケミー (株) 製]、 Au/Mn02 (比較例 1— 2 ) [Au=8重量%]、 Au/TiO2 (比較例 1— 3 ) [Au=3重量%]を用いた場合の結果を併記した。 In Table 1-1, for comparison Cu-ZnO-Al 2 O 3 ( Comparative Example 1- 1) [Cu = 38 by weight%, Sud 'Chemie Ltd.], Au / Mn0 2 (Comparison Example 1-2) The results when Au = 8% by weight and Au / TiO 2 (Comparative Example 1-3) [Au = 3% by weight] are also shown.
表 1— 1に示す結果から、 金超微粒子を金属酸ィ匕物に固定ィ匕した本発明による 触媒を用いることにより、水蒸気と一酸化炭素とから、比較的低温度で効率良く、 水素を製造できることが明らかである。 更に、 一酸化炭素を効率良く除去できる ことも明らかである。  From the results shown in Table 1-1, the use of the catalyst according to the present invention in which ultrafine gold particles were fixed to a metal oxide showed that hydrogen was efficiently converted from water vapor and carbon monoxide at a relatively low temperature. It is clear that it can be manufactured. Furthermore, it is clear that carbon monoxide can be removed efficiently.
また、 生成した二酸化炭素の濃度を赤外式二酸化炭素計で測定したところ、 消 費された一酸ィ匕炭素の量とほぼ一致した。 このことから、 一酸化炭素は水と化学 量論的に反応し、 二酸化炭素に転化されたことが分かる。 Further, the concentration of the generated carbon dioxide was measured with an infrared carbon dioxide meter, and was almost equal to the amount of the consumed carbon. This indicates that carbon monoxide reacted stoichiometrically with water and was converted to carbon dioxide.
(Μ)
Figure imgf000022_0001
(Μ)
Figure imgf000022_0001
z一 τ mm z-τ mm
Figure imgf000022_0002
Figure imgf000022_0002
Τ一!:拏  Τ 一! : Halla
 0Ζ
819蒙 Odf/ェ:) d 1^660/£0 OAV 製、 GB_43) 50gに、 硝酸マンガン DVtn(N03)2'6H20] 3.63gと硝酸銅 [Cu(N03)2. 3H2O] 1.53gを溶解した水溶液を含浸させ、 400°Cで 5時間焼成し、 CuMn204を 担持したアルミナビーズを得た。 819 Mongolian Odf / e :) d 1 ^ 660 / £ 0 OAV Ltd., the GB_ 43) 50g, manganese nitrate DVtn (N0 3) 2 '6H 2 0] 3.63g and copper nitrate [Cu (N0 3) 2. 3H 2 O] 1.53g impregnated with an aqueous solution of, 400 ° It was fired for 5 hours in C, and to obtain an alumina beads carrying CuMn 2 0 4.
塩ィ匕金酸 [HAuCl4'4H20] 0.542gを 300mlの蒸留水に溶解させ、 τΚ酸化力リゥ ム [ΚΟΗ]の 0.5モル ZLの水溶液を用いて ρΗ8に調整し、 Α液を得た。 A液をナ ス型フラスコに移し、 その中に上述の CuMn204担持アルミナビーズを加えた。 このナス型フラスコを口一タリ一装置に取り付け、 60°Cで 1時間熟成した。 得られた触媒を水洗し、 乾燥した後、 400°Cで 2時間焼成することにより、 金 超微粒子固定化銅マンガン酸化物担持アルミナビーズ触媒 (AuZCuMn204Zァ ルミナビ一ズ、 金の含有量 0.5重量%、 CuMn204の含有量 3重量%) を得た。 上記触媒 0.75gを内径 12mmのガラス管に充填し、 80、 120、 150°Cの各温度 において、 このガラス管に一酸化炭素を 1容量%、 7K蒸気を 2容量%含む窒素ガ スを 500mlZ分の流速で流通させて、 水性ガスシフト反応を行うことにより、 水 素濃度と一酸化炭素濃度を測定した後、 水素の生成率 (%) 及び一酸化炭素の除 去率 (%) を算出した。 反応開始から 3時間後の結果を表 1一 2 (I) に、 反応開 始から 24時間後の結果を表 1一 2 (II) 示す。 Dissolve 0.542 g of salted acid [HAuCl 4 '4H 20 ] in 300 ml of distilled water and adjust it to ρΗ8 using a 0.5 mol ZL aqueous solution of τΚoxidizing realm [ΚΟΗ] to obtain a solution. Was. Transfer the solution A to Na scan type flask, was added CuMn 2 0 4 supported alumina beads described above therein. This eggplant type flask was attached to a mouthpiece and aged at 60 ° C. for 1 hour. The resulting catalyst was washed with water, dried and calcined 2 hours at 400 ° C, ultrafine gold particles immobilized copper-manganese oxide on alumina beads catalyst (AuZCuMn 2 0 4 Z § Ruminabi Ichizu, containing gold the amount 0.5 wt% to obtain a CuMn 2 0 4 content 3 wt%). 0.75 g of the above catalyst is filled in a glass tube with an inner diameter of 12 mm, and at each temperature of 80, 120, and 150 ° C, 500 ml of nitrogen gas containing 1% by volume of carbon monoxide and 2% by volume of 7K vapor in this glass tube. The hydrogen gas and carbon monoxide concentrations were measured by performing a water gas shift reaction at a flow rate of 1 min, and the hydrogen production rate (%) and the carbon monoxide removal rate (%) were calculated. . The results obtained 3 hours after the start of the reaction are shown in Table 12 (I), and the results obtained 24 hours after the start of the reaction are shown in Table 12 (II).
表 1一 2 (I) Table 11-2 (I)
Figure imgf000023_0001
表 1一 2 (I) および (Π) に示す結果から、 実用的な形態として、 金超微粒子 を固定化した金属酸化物をアルミナビーズに担持させた場合にも、 水蒸気と一酸 化炭素とから、 比較的低温で効率よく、 長時間にわたって水素を製造できること が分かる。 更に、 一酸化炭素を、 比較的低温で効率よく、 しかも長時間にわたつ て除去できることが明らかである。 実施例 1一 3
Figure imgf000023_0001
From the results shown in Tables 1-2 (I) and (Π), as a practical form, even when the metal oxide on which ultrafine gold particles were immobilized was supported on alumina beads, water vapor and carbon monoxide were This shows that hydrogen can be produced efficiently at a relatively low temperature for a long time. Furthermore, it is clear that carbon monoxide can be removed efficiently at relatively low temperatures and over a long period of time. Example 11
セル数 400 (400セル/平方インチ) のコージエライト製ハニカム (15セル X 15セル X長さ 2cm、 重さ 5g) に、 銅ナフテネート (5%ナフテックス銅 (登録商 標)、 日本化学産業(株) 製) と鉄ナフテネ一ト (5%ナフテックス鉄(登録商標)、 日本化学産業 (株) 製) との混合溶液 (原子比 CnZFe=l/2になるように混合) をディップコートし、 乾燥した後、 400°Cで 5時間焼成して、 CuFe204を担持し たコ一ジエライトハニカムを得た。 CuFe204担持量(CuFe2O4担持の前後におけ るハニカムの重量変化により算出) は 3重量%であった。 Cordierite honeycomb with 400 cells (400 cells / square inch) (15 cells x 15 cells x length 2cm, weight 5g), copper naphthenate (5% Naphtex copper (registered trademark), Nippon Chemical Industry Co., Ltd.) Dip coating of a mixed solution (mixed so that the atomic ratio becomes CnZFe = l / 2) with iron naphthenate (5% Naphtex iron (registered trademark), manufactured by Nippon Chemical Industry Co., Ltd.) and dried. after, and calcined 5 hours at 400 ° C, to obtain a co-one diethyl write honeycomb carrying CuFe 2 0 4. CuFe 2 0 4 support amount (CuFe 2 O 4 calculated by the weight change of the honeycomb that put around the carrier) was 3 wt%.
一方、 塩ィ匕金酸 [HAuCl4'4H2O] 0.0314gを 50mlの蒸留水に溶解させ、 水酸化 力リゥム [KOH]の 0.5モル ZLの水溶液を用いて pH8に調整し、 A液を得た。 こ の A液中に上述の CuFe204担持コージェライト製ハ二カム浸漬し、 60°Cで 1時 間保持した。 On the other hand, 0.0314 g of salted gold acid [HAuCl 4 '4H 2 O] was dissolved in 50 ml of distilled water, and the pH was adjusted to 8 with an aqueous solution of 0.5 mol ZL of a hydroxide hydroxide [KOH]. Obtained. A liquid above CuFe 2 0 4 supported a cordierite Ha and second cam immersed in this, and kept for 1 hour at 60 ° C.
得られた触媒を水で洗浄した後、 400°Cで 5時間焼成することにより、 粒径 2 〜3nm程度の微粒子状の金が固定化された金固定化銅-鉄酸化物担持コ一ジエラ ィトハニカム触媒(AuZCuFe2O4Zコージ工ライトハニカム、 金の含有量 0.3重 量%、 CuFe2O4の含有量 3重量%) を得た。 The obtained catalyst is washed with water, and then calcined at 400 ° C. for 5 hours to obtain a gold-immobilized copper-iron oxide-carrying copper oxide having fine-particle gold having a particle diameter of about 2 to 3 nm immobilized thereon. A honeycomb catalyst (AuZCuFe 2 O 4 Z cordierite honeycomb, gold content 0.3% by weight, CuFe 2 O 4 content 3% by weight) was obtained.
上記触媒の一部を切り出し (5セル X 5セル X長さ 1cm)、 内径 12mmのガラ ス管に充填し、 80、 120、 150°Cの各温度において、 このガラス管に一酸化炭素 1 容量%と水蒸気 2容量%を含む窒素ガス 140mlZ分の流量で流通 (空間速度 20,000/時間に相当) させつつ、 ガラス管出口におけるガス中の水素および一酸 化炭素の濃度を測定して、 水性ガスシフト反応に対する触媒性能を求めた。 反応 開始から 3時間後の結果を表 1一 3 (I) に、 反応開始から 24時間後の結果を表 1—3 (II) に示す。  A part of the above catalyst was cut out (5 cells x 5 cells x 1 cm in length), filled into a glass tube with an inner diameter of 12 mm, and 1 volume of carbon monoxide was added to this glass tube at 80, 120, and 150 ° C. Gas at a flow rate of 140 mlZ (equivalent to a space velocity of 20,000 / hr) while measuring the concentration of hydrogen and carbon monoxide in the gas at the outlet of the glass tube, and then shifting the water gas flow. The catalytic performance for the reaction was determined. The results 3 hours after the start of the reaction are shown in Table 13 (I), and the results 24 hours after the start of the reaction are shown in Table 1-3 (II).
表 1—3 (I)  Table 1-3 (I)
温度 (°C) 80 120 150 水素の生成率 (%) 15.4 28.4 42.1 一酸化炭素の除去率 (%) 16.1 28.9 43.7 表 1—3 (II)
Figure imgf000025_0001
以上の結果より、 実用的な形態として、 金超微粒子を固定化した金属酸化物を コ一ジェライト製ハ二カムに担持した場合にも、 水蒸気と一酸化炭素とを原料と する水素製造用触媒として、 あるいは一酸化炭素除去用触媒として、 実用上十分 な活性を示すことが分かる。
Temperature (° C) 80 120 150 Hydrogen generation rate (%) 15.4 28.4 42.1 Carbon monoxide removal rate (%) 16.1 28.9 43.7 Table 1-3 (II)
Figure imgf000025_0001
From the above results, as a practical form, a catalyst for hydrogen production using steam and carbon monoxide as raw materials even when a metal oxide having immobilized ultrafine gold particles is supported on a cordierite honeycomb. As a result, or as a catalyst for removing carbon monoxide, it can be seen that the catalyst exhibits practically sufficient activity.
実施例 2— 1  Example 2-1
*触媒 No.2-l、 2-4〜2-6の調製 * Preparation of catalyst No. 2-l, 2-4 to 2-6
硝酸パラジウム [Pd(NO3)2] 0.140g (0.000606モル)、硝酸マンガン [Μη(Ν03)2· 6H20] 11.5g (0.040モル)、 及び硝酸鉄 [Fe(N03)3 · 9H20] 8.08g (0.020モル) を 600mlの蒸留水に溶解させて A液を得た。一方、 炭酸ナトリゥム [Na2C03] 8.98g (0.0847モル) を 400mlの蒸留水に溶解させて B液を得た。 0.140 g (0.000606 mol) of palladium nitrate [Pd (NO 3 ) 2 ], 11.5 g (0.040 mol) of manganese nitrate [Μη (Ν0 3 ) 2 · 6H 2 0], and iron nitrate [Fe (N0 3 ) 3 · 9H 20 ] 8.08 g (0.020 mol) was dissolved in 600 ml of distilled water to obtain solution A. On the other hand, 8.98 g (0.0847 mol) of sodium carbonate [Na 2 CO 3 ] was dissolved in 400 ml of distilled water to obtain a solution B.
上記 B液中に A液を滴下し、 1時間撹拌した後、得られた沈殿物を十分に水洗 して乾燥し、 空気中にて 400°Cで 5時間焼成し、 水素 (2容量%) を含む窒素ガ スを流通させながら 400°Cで 2時間還元処理を行うことにより、 粒径 2〜5mn程 度の超微粒子状のパラジウムが固定化されたパラジウム固定化鉄マンガン酸化物 (本発明触媒 No. 2-1) [PdZFeMn204、 原子比 Pd: Fe: Mn=l: 33: 66]を得た' また、上記と同様の手法により、各種金属塩を用いて、本発明第 2触媒 No.2-4 〜No. 2-6を得た。 After the solution A is dropped into the solution B and stirred for 1 hour, the obtained precipitate is sufficiently washed with water, dried, and calcined in air at 400 ° C. for 5 hours to obtain hydrogen (2% by volume). By carrying out a reduction treatment at 400 ° C for 2 hours while flowing nitrogen gas containing palladium, palladium-immobilized iron manganese oxide in which ultrafine palladium having a particle size of about 2 to 5 mn is immobilized (the present invention) catalyst No. 2-1) [PdZFeMn 2 0 4 , an atomic ratio Pd: Fe: Mn = l: 33: 66] to obtain a 'Further, by the same method as above, using various metal salts, the present invention 2 Catalyst Nos. 2-4 to 2-6 were obtained.
*触媒 No.2-2、 2-7〜2_9の調製 * Preparation of catalyst No.2-2, 2-7 ~ 2_9
硝酸マンガン [Μη(Ν03)2 · 6Η20] 23.0g (0.080 モル) 及び硝酸コバルト [Co(N03)3-6H2O] 11.6g (0.040モル) を 1, 000mlの蒸留水に溶解させて C液を 得た。 一方、 炭酸ナトリゥム [Na2C03] 15.3g (0.144モル) を 700mlの蒸留水に 溶解させて D液を得た。 Dissolve 23.0 g (0.080 mol) of manganese nitrate [Μη (Ν0 3 ) 2 · 6Η 20 ] and 11.6 g (0.040 mol) of cobalt nitrate [Co (N0 3 ) 3 -6H 2 O] in 1,000 ml of distilled water The solution C was obtained. On the other hand, 15.3 g (0.144 mol) of sodium carbonate [Na 2 CO 3 ] was dissolved in 700 ml of distilled water to obtain a solution D.
上記 D液中に C液を滴下し、 1時間撹拌した後、得られた沈殿物を十分に水洗 して乾燥し、 空気中にて 400°Cで 5時間焼成することにより、 コバルトマンガン 酸ィ匕物 [CoMn2Ojを得た。 硝酸パラジウム [Pd(NO3)2] 0.0500g (0.000217モル)を 100mlの蒸留水に溶解 させて E液を得た。 E液をナス型フラスコ容器に移し、 その中に上述のコバルト マンガン酸ィ匕物 [CoMn2O4] 5gを加えた。このナス型フラスコをロータリーエバポ レ一夕一装置に取り付けて、 60°C、 減圧下で乾燥し、 水分を取り除き、 混合物を 得た。 After the solution C was dropped into the solution D and stirred for 1 hour, the obtained precipitate was thoroughly washed with water, dried, and calcined in air at 400 ° C for 5 hours to obtain cobalt manganese oxide. Danimono [CoMn 2 Oj was obtained. 0.0500 g (0.000217 mol) of palladium nitrate [Pd (NO 3 ) 2 ] was dissolved in 100 ml of distilled water to obtain a solution E. Solution E was transferred to an eggplant-shaped flask container, and 5 g of the above-mentioned cobalt manganese oxide [CoMn 2 O 4 ] was added thereto. This eggplant-shaped flask was attached to a rotary evaporator overnight, and dried under reduced pressure at 60 ° C. to remove water to obtain a mixture.
この混合物を空気中にて 400°Cで 5時間焼成し、 水素 (2容量%) を含む窒素 ガスを流通させながら 400°Cで 2時間還元処理を行うことにより、 パラジウム固 定化コバルトマンガン酸化物(本発明触媒 No. 2-2) [Pd/CoMn204,原子比 Pd: Co: Mn=l: 33: 66]を得た。 This mixture is calcined in air at 400 ° C for 5 hours, and subjected to a reduction treatment at 400 ° C for 2 hours while flowing a nitrogen gas containing hydrogen (2% by volume) to oxidize palladium-fixed cobalt manganese. objects (invention catalyst No. 2-2) [Pd / CoMn 2 0 4, the atomic ratio Pd: Co: Mn = l: 33: 66] was obtained.
また、 上記と同様の手法により、 各種金属塩を用いて、 本発明触媒 No. 2-7〜 2-9を得た。  Further, catalysts of the present invention Nos. 2-7 to 2-9 were obtained using various metal salts in the same manner as described above.
氺触媒 No.2-3、 2-10の調製 氺 Preparation of catalyst Nos. 2-3 and 2-10
硝酸マンガン [Mn(NO3)2 ' 6H20] 23.0g (0.080 モル) および硝酸ニッケル [Ni(N03)2-6H2O] 11.6g (0.040モル) を 1,000mlの蒸留水に溶解させて F液を 得た。 一方、 炭酸ナトリゥム [Na2C03] 15.3g (0.144モル) を 700mlの蒸留水に 溶解させて G液を得た。 Dissolved manganese nitrate [Mn (NO 3) 2 ' 6H 2 0] 23.0g (0.080 mol) and nickel nitrate [Ni (N0 3) 2 -6H 2 O] 11.6g of (0.040 mol) of distilled water 1,000ml To obtain solution F. On the other hand, 15.3 g (0.144 mol) of sodium carbonate [Na 2 CO 3 ] was dissolved in 700 ml of distilled water to obtain a solution G.
上記 G液中に F液を滴下し、 1時間撹拌した後、 得られた沈殿物を十分に水洗 して乾燥し、 空気中にて 400°Cで 5時間焼成することにより、 ニッケルマンガン 酸化物 [NiMn2O を得た。 After the solution F was dropped into the solution G and stirred for 1 hour, the obtained precipitate was sufficiently washed with water, dried, and calcined in air at 400 ° C for 5 hours to obtain a nickel manganese oxide. [NiMn 2 O was obtained.
0.0487g (0.000217モル) の酢酸パラジウム [Pd(C COO)2]を含む 0.001モル のエタノール混合溶液(水:エタノールの体積比 =1: 1)に水酸化力リゥム [KOH] の 0.1モル水溶液を加え、 pH8に調整した。 この液に、 上述のニッケルマンガン 酸ィ匕物 [NiMn2O4] 5gを加え、 1時間保持した。 To a 0.001 mol ethanol mixed solution containing 0.0487 g (0.000217 mol) of palladium acetate [Pd (CCOO) 2 ] (water: ethanol volume ratio = 1: 1), add a 0.1 mol aqueous solution of hydroxylating water [KOH]. In addition, the pH was adjusted to 8. To this solution, 5 g of the above-mentioned nickel manganese oxide [NiMn 2 O 4 ] was added and kept for 1 hour.
得られた混合物を水洗し、 乾燥した後、 空気中にて 400°Cで 5時間焼成し、 水 素 (2容量%) を含む窒素ガスを流通させながら 400°Cで 2時間還元処理を行う ことにより、パラジウム固定化ニッケルマンガン酸化物(本発明触媒 No. 2-3) [Pd ZNiMn2O4、 原子比 Pd: Ni: Mn=l: 33: 66]を得た。 The obtained mixture is washed with water, dried, and calcined in air at 400 ° C for 5 hours, and subjected to a reduction treatment at 400 ° C for 2 hours while flowing nitrogen gas containing hydrogen (2% by volume). As a result, a palladium-immobilized nickel manganese oxide (catalyst No. 2-3 of the present invention) [Pd ZNiMn 2 O 4 , atomic ratio Pd: Ni: Mn = 1: 33: 66] was obtained.
また、 上記と同様の手法により、 各種金属塩 (硝酸マンガン、 硝酸ニッケル及 び酢酸パラジウム) を用いて、 本発明触媒 No. 2-10を得た。 *触媒 No.2-ll、 2-14〜2-16の調製 In addition, in the same manner as described above, various catalysts (manganese nitrate, nickel nitrate, and palladium acetate) were used to obtain Catalyst No. 2-10 of the present invention. * Preparation of Catalyst No. 2-ll, 2-14 to 2-16
硝酸パラジウム [Pd(NO3)2] 0.140g (0.000606モル)、 硝酸鉄 [Fe(N03)3 · 9H20] 16.2g (0.040モル)、 および硝酸マンガン [Μη(ΝΟ3)2·6 0] 5.73g (0.020モル) を 600mlの蒸留水に溶解させて H液を得た。 一方、 炭酸ナトリウム [Na2C03] 10.3g (0.0967モル) を 400mlの蒸留水に溶解させて I液を得た。 0.140 g (0.000606 mol) of palladium nitrate [Pd (NO 3 ) 2 ], 16.2 g (0.040 mol) of iron nitrate [Fe (N0 3 ) 3 9H 20 ], and manganese nitrate [Μη (ΝΟ 3 ) 2 6 0] 5.73 g (0.020 mol) was dissolved in 600 ml of distilled water to obtain solution H. On the other hand, 10.3 g (0.0967 mol) of sodium carbonate [Na 2 CO 3 ] was dissolved in 400 ml of distilled water to obtain a solution I.
上記 I液中に H液を滴下し、 1時間撹拌した後、 得られた沈殿物を十分に水洗 して乾燥し、 空気中にて 400°Cで 5時間焼成し、 水素 (2容量%) を含む窒素ガ スを流通させながら 400°Cで 2時間還元処理を行うことにより、 粒径 2〜5mn程 度の超微粒子状のパラジウムが固定ィ匕されたパラジウム固定化マンガン鉄酸ィ匕物 (本発明触媒 No.2-11) [Pd/MnFe204、 原子比 Pd: Mn: Fe=l: 33: 66]を得た c また、 上記と同様の手法により、 各種金属塩を用いて本発明触媒 No.2-14〜2- 16を得た。 After the solution H was dropped into the solution I and stirred for 1 hour, the obtained precipitate was thoroughly washed with water, dried, and calcined in air at 400 ° C for 5 hours to obtain hydrogen (2% by volume). Palladium-immobilized manganese iron oxide with ultra-fine palladium particles having a particle size of about 2 to 5 mn fixed by performing a reduction treatment at 400 ° C for 2 hours while flowing nitrogen gas containing (invention catalyst No.2-11) [Pd / MnFe 2 0 4, an atomic ratio Pd: Mn: Fe = l: 33: 66] c also give, in the same manner as above, using various metal salts Thus, Catalyst Nos. 2-14 to 2-16 of the present invention were obtained.
*触媒 Νο.2-12、 2-Γ7〜2·18の調製  * Preparation of catalyst Νο.2-12, 2-Γ7 ~ 2 ・ 18
硝酸鉄 [Fe(NO3)3'9H20] 32.4g (0.080 モル) および硝酸コバルト [Co(NO3)3' 6H20] 11.6g (0.040モル) を 1,000mlの蒸留水に溶解させて J液を得た。 一方、 炭酸ナトリゥム [Na2C03] 22.9g (0.216モル) を 1,000mlの蒸留水に溶解させて K液を得た。 32.4 g (0.080 mol) of iron nitrate [Fe (NO 3 ) 3 '9H 20 ] and 11.6 g (0.040 mol) of cobalt nitrate [Co (NO 3 ) 3 ' 6H 20 ] are dissolved in 1,000 ml of distilled water. To obtain liquid J. Separately, 22.9 g (0.216 mol) of sodium carbonate [Na 2 CO 3 ] was dissolved in 1,000 ml of distilled water to obtain a liquid K.
上記 K液中に J液を滴下し、 1時間撹拌した後、 得られた沈殿物を十分に水洗 して乾燥し、 空気中にて 400°Cで 5時間焼成することにより、 コバルト鉄酸化物 [CoFe2Ojを得た。 The solution J was dropped into the solution K and stirred for 1 hour.The resulting precipitate was thoroughly washed with water, dried, and calcined in air at 400 ° C for 5 hours to obtain cobalt iron oxide. [CoFe 2 Oj was obtained.
硝酸パラジウム [Pd(N03)2] 0.0496g (0.000215モル)を 100mlの蒸留水に溶解 させて K液を得た。 K液をナス型フラスコ容器に移し、その中に上述のコバルト
Figure imgf000027_0001
5gを加えた。 このナス型フラスコをロータリーエバポレー夕 一装置に取り付けて、 60°C、 減圧下で乾燥し、 水分を取り除き、 混合物を得た。 この混合物を空気中にて 400°Cで 5時間焼成し、 水素 (2容量%) を含む窒素ガ スを流通させながら 400°Cで 2時間還元処理を行うことにより、 パラジウム固定 化コバルト鉄酸化物(本発明触媒 No.2-12) [Pd/CoFe204原子比 Pd: Co: Fe=l: 33: 66]を得た。
Palladium nitrate [Pd (N0 3) 2] 0.0496g of (0.000215 mol) was dissolved in 100ml distilled water to obtain a K solution. Liquid K was transferred to an eggplant-shaped flask container, and the cobalt
Figure imgf000027_0001
5 g was added. This eggplant-shaped flask was attached to a rotary evaporator, dried at 60 ° C. under reduced pressure to remove water, and a mixture was obtained. This mixture is calcined in air at 400 ° C for 5 hours, and subjected to a reduction treatment at 400 ° C for 2 hours while flowing a nitrogen gas containing hydrogen (2% by volume), so that the palladium-immobilized cobalt iron oxide is oxidized. objects (invention catalyst No.2-12) [Pd / CoFe 2 0 4 atomic ratio Pd: Co: Fe = l: 33: 66] was obtained.
また、 上記と同様の手法により、 各種金属塩を用いて、 本発明触媒 No.2-17〜 2-18を得た。 In addition, in the same manner as above, using various metal salts, the present catalyst No. 2-17 ~ 2-18 were obtained.
水触媒 No.2-13、 2-19の調製 Preparation of water catalyst No.2-13, 2-19
硝酸鉄 [Fe(N03)3 '9¾0] 32.4g (0.080モル) および硝酸ニッケル [Ni(NO3)2- 6H2O] 11.6g (0.040モル) を 1,000mlの蒸留水に溶解させて L液を得た。 一方、 炭酸ナトリゥム [Na2C03] 20.4g (0.192モル) を 900mlの蒸留水に溶解させて M 液を得た。 Iron nitrate [Fe (N0 3) 3 ' 9¾0] 32.4g (0.080 mol) and nickel nitrate [Ni (NO 3) 2 - 6H 2 O] 11.6g of (0.040 mol) was dissolved in distilled water 1,000ml with L A liquid was obtained. On the other hand, to obtain a M solution carbonate Natoriumu [Na 2 C0 3] 20.4g of (0.192 mol) was dissolved in distilled water 900 ml.
上記 M液中に L液を滴下し、 1時間撹拌した後、得られた沈殿物を十分に水洗 して乾燥し、 空気中にて 400°Cで 5時間焼成することにより、 ニッケル鉄酸化物 [NiFe2O4]を得た。 After the solution L was dropped into the solution M and stirred for 1 hour, the resulting precipitate was thoroughly washed with water, dried, and calcined in air at 400 ° C for 5 hours to obtain a nickel-iron oxide. [NiFe 2 O 4 ] was obtained.
0.0483g (0.000215モル) の酢酸パラジウム [Pd(CH3COO)2]を含む 0.001モル の水エタノール混合溶液 (水:エタノールの体積比 =1: 1) に水酸化カリウム [KOH]の 0.1モル水溶液を加えて、 pH8に調整した。 この液に、 上述のニッケル 鉄酸化物 5gを加え、 1時間保持した。得られた混合物を水洗し、 乾燥した後、 空 気中にて 400°Cで 5時間焼成し、 水素 (2容量%) を含む窒素ガスを流通させな がら 400°Cで 2時間還元処理を行うことにより、 パラジウム固定化ニッケル鉄酸 化物 (本発明触媒 No.2-13) [PdZNiFe204、 原子比 Pd: Ni: Fe=l: 33: 66]を 得た。 0.0483 g (0.000215 mol) of palladium acetate [Pd (CH 3 COO) 2 ] in a 0.001 mol water-ethanol mixture solution (water: ethanol volume ratio = 1: 1) in 0.1 mol aqueous solution of potassium hydroxide [KOH] Was added to adjust the pH to 8. To this solution, 5 g of the above-mentioned nickel iron oxide was added and kept for 1 hour. The obtained mixture is washed with water, dried, and calcined in the air at 400 ° C for 5 hours, and subjected to a reduction treatment at 400 ° C for 2 hours while flowing a nitrogen gas containing hydrogen (2% by volume). by performing, palladium immobilized nickel ferrate product (invention catalyst No.2-13) [PdZNiFe 2 0 4, the atomic ratio Pd: Ni: Fe = l: 33: 66] was obtained.
また、 上記と同様の手法により、 各種金属塩 (硝酸鉄、 硝酸コバルト及び酢酸 パラジウム) を用いて、 本発明触媒 No.2-19を得た。  Also, in the same manner as described above, various catalysts (iron nitrate, cobalt nitrate, and palladium acetate) were used to obtain Catalyst No. 2-19 of the present invention.
*水素の生成および一酸化炭素の除去 * Hydrogen generation and carbon monoxide removal
続いて、 上記各触媒 (No. 2-1〜2-19) を 70〜: 120メッシュにふるい分けした もの 0.15gを内径 8mmのガラス管に充填し、 50、 80、 120、 150°Cの各温度にお いて、 このガラス管中に一酸化炭素を 1容量%、 水蒸気 2容量%含む窒素ガスを 50mlZ分の流量で流通させつつ、水素濃度と一酸化炭素濃度を測定し、実施例 1 一 1と同様にして、 水素の生成率 (%) 及び一酸化炭素の除去率 (%) を算出し た。  Subsequently, each of the above catalysts (No. 2-1 to 2-19) was sieved to 70 to: 120 mesh, and 0.15 g was filled in a glass tube with an inner diameter of 8 mm. At this temperature, while flowing a nitrogen gas containing 1% by volume of carbon monoxide and 2% by volume of water vapor in the glass tube at a flow rate of 50 mlZ, the hydrogen concentration and the carbon monoxide concentration were measured. The hydrogen generation rate (%) and the carbon monoxide removal rate (%) were calculated in the same manner as in 1.
反応開始から 3時間後の結果を表 2— 1に示す。 なお、 表 2—1には、 比較の ために Cu-ZnO_Al203 (比較品 1) [Cu=38重量%、 ス一ド'ケミー (株)製]、 PtZ Ce02 (比較例 2-2) [Pt=10重量%]、 PdZMnO。 (比較例 2-3) [Pd: Mn二 1: 99]、 8 The results 3 hours after the start of the reaction are shown in Table 2-1. In Table 2-1, Cu-ZnO_Al 2 0 3 for comparison (comparative product 1) [Cu = 38 wt%, scan one de 'Chemie Ltd.], PTZ CeO 2 (Comparative Example 2 2) [Pt = 10% by weight], PdZMnO. (Comparative Example 2-3) [Pd: Mn two 1: 99], 8
27  27
Pd/Fe203 (比較品 4) [Pd: Fe=] : 99] を用いた場合の結果を併記した。 Pd / Fe 2 0 3 (Comparative Product 4) [Pd: Fe =] : 99] are also shown the results obtained by using.
表 2— 1  Table 2-1
Figure imgf000029_0001
表 2— 1に示す結果から、 パラジウム超微粒子を金属酸化物に固定化した触媒 を用いることにより、 水蒸気と一酸化炭素とから、 比較的低温度で効率よく、 水 素を製造できることが明らかである。 更に、 一酸化炭素を効率よく除去できるこ とも明らかである。
Figure imgf000029_0001
From the results shown in Table 2-1, it is clear that hydrogen can be produced efficiently from water vapor and carbon monoxide at a relatively low temperature by using a catalyst in which ultrafine palladium particles are fixed to metal oxide. is there. It is also clear that carbon monoxide can be removed efficiently.
また、 生成した二酸化炭素の濃度を赤外式二酸化炭素計で測定したところ、 消 費された一酸化炭素の量とほぼ一致した。 このことにより、 一酸化炭素は水と化 学量論的に反応し、 二酸化炭素に転化されたことが分かる。  When the concentration of the generated carbon dioxide was measured by an infrared carbon dioxide meter, it almost coincided with the amount of carbon monoxide consumed. This indicates that carbon monoxide reacted stoichiometrically with water and was converted to carbon dioxide.
実施例 2— 2  Example 2-2
200mVgの比表面積を有する直径 3mmの T -ァルミナビーズ (水澤化学 (株)、 GB-43) 50gに、硝酸マンガン [Μη(ΝΟ3)2·6Η20] 3.63gと硝酸銅 [Cu(NO3)2'3H20] 1.53gを溶解した水溶液を含浸させ、 400°Cで 5時間焼成し、 CuMn204を担持し たアルミナビ一ズを得た。 硝酸パラジウム [Pd(N03)2] 0.541gを 300mlの蒸留水 に溶解させて A液を得た。 A液をナス型フラスコ容器に移し、 その中に上述の CuM 04担持アルミナビーズを加えた。このナス型フラスコをロータリーエバポ レー夕一装置に取り付け、 60° (:、 減圧下で乾燥し水分を取り除いた。 得られた触 媒を 400°Cで 5時間焼成し、 水素 (2容量%) を含む窒素ガスを流通させながら 400°Cで 2時間還元処理を行うことにより、 パラジウム固定ィ匕銅マンガン酸ィ匕物 担持アルミナビ一ズ触媒 (PdZCuMi^OaZアルミナビーズ、 パラジウムの含有 量 0.5重量%、 CuMn204の含有量 3重量%) を得た。 To 50 g of 3 mm diameter T-Alumina beads having a specific surface area of 200 mVg (Mizusawa Chemical Co., Ltd., GB-43), 3.63 g of manganese nitrate [Μη (ΝΟ 3 ) 2 · 6Η 20 ] and copper nitrate [Cu (NO 3 ) 2 '3H 2 0] 1.53g impregnated with an aqueous solution of, and calcined 5 hours at 400 ° C, to obtain an aluminum navigation one's carrying CuMn 2 0 4. Palladium nitrate [Pd (N0 3) 2] and dissolved in distilled water 300 ml 0.541 g was obtained A solution. Transfer the solution A in an eggplant type flask vessel were added CuM 0 4 supported alumina beads described above therein. This eggplant-shaped flask was attached to a rotary evaporator, and dried under reduced pressure at 60 ° (to remove water). The obtained catalyst was calcined at 400 ° C for 5 hours to obtain hydrogen (2% by volume). A reduction treatment is performed at 400 ° C for 2 hours while flowing nitrogen gas containing palladium, whereby a palladium-fixed copper manganese oxide-supported alumina beads catalyst (PdZCuMi ^ OaZ alumina beads, palladium content 0.5 wt. % to obtain a CuMn content of 2 0 4 3 wt%).
上記触媒 0.75gを内径 12mraのガラス管に充填し、 50、 80、 120、 150°Cの各 温度において、 このガラス管に一酸化炭素を 1容量%、 水蒸気 2容量%含む窒素 ガスを 500mlZ分の流速で流通させて、 水性ガスシフ卜反応を行うことにより、 ガラス管出口における水素濃度と一酸化炭素濃度を測定して、水素の生成率 (%) 一酸化炭素の除去率 ( )を求めた。反応開始から 3時間後の結果を表 2— 2 (I) に、 反応開始から 24時間後の結果を表 2— 2 (II) に示す。  0.75 g of the above catalyst was filled in a glass tube with an inner diameter of 12 mra. At each temperature of 50, 80, 120, and 150 ° C, 500 ml of nitrogen gas containing 1% by volume of carbon monoxide and 2% by volume of steam The hydrogen gas and carbon monoxide concentrations at the outlet of the glass tube were measured by conducting a water gas shift reaction at a flow rate of, and the hydrogen production rate (%) and the carbon monoxide removal rate () were determined. . The results 3 hours after the start of the reaction are shown in Table 2-2 (I), and the results 24 hours after the start of the reaction are shown in Table 2-2 (II).
表 2— 2 (I)  Table 2-2 (I)
温度 O 50 80 120 150 水素の生成率(%) 34.6 48.8 71.8 89.4 一酸化炭素の除去率 (%) 35.4 49.7 73.6 91.7 表 2— 2 (II)
Figure imgf000031_0001
表 2— 2 (I) および (Π) に示す結果から、 実用的な形態として、 パラジウム 超微粒子を固定した金属酸化物をアルミナビーズに担持させた場合にも、 水蒸気 と一酸化炭素とから、 比較的低温度で効率よく、 しかも長時間にわたって水素を 製造できることが分かる。 更に、 一酸化炭素を比較的低温度で効率よく、 長時間 にわたつて除去出来ることが明らかである。
Temperature O 50 80 120 150 Hydrogen generation rate (%) 34.6 48.8 71.8 89.4 Carbon monoxide removal rate (%) 35.4 49.7 73.6 91.7 Table 2-2 (II)
Figure imgf000031_0001
From the results shown in Tables 2-2 (I) and (Π), as a practical form, even when metal oxide on which ultrafine palladium particles were fixed was supported on alumina beads, water vapor and carbon monoxide were It can be seen that hydrogen can be produced efficiently at a relatively low temperature and for a long time. Furthermore, it is clear that carbon monoxide can be removed efficiently at relatively low temperatures over a long period of time.
実施例 2— 3  Example 2-3
セル数 400 (400セル Z平方インチ) のコージエライト製ハニカム (5セル X 5 セル X長さ lcm) に、 鉄ナフテネート (5%ナフテックス鉄 (登録商標)、 日本化 学産業 (株)製) とニッケルナフテネート (5%ナフテックスニッケル (登録商標)、 日本化学産業 (株)製) との混合溶液 (原子比 NiZFe=lZ2になるように混合) を ディップコートし、 乾燥後、 400 で 5時間焼成し、 NiFe204を担持したコージ ェライトハニカムを得た。 A cordierite honeycomb (5 cells x 5 cells x length lcm) with 400 cells (400 cells Z square inch), iron naphthenate (5% Naphtex iron (registered trademark), Nippon Chemical Industry Co., Ltd.) and nickel Dip coat a mixed solution with naphthenate (5% Naphtex nickel (registered trademark), manufactured by Nippon Kagaku Sangyo Co., Ltd. (mixed so that the atomic ratio is NiZFe = lZ2)), dry and bake at 400 for 5 hours to obtain a cordierite E light honeycomb carrying NiFe 2 0 4.
NiFe204担持量(NiFe204担持の前後における重量変化により算出)は 2重量% であった。硝酸パラジウム [Pd(N03)2] 0.002モル水溶液 100mlに水酸化力リゥム [KOH]の 0.5モル水溶液を用いて pH8に調整した。 この液の 2mlに NiFe204担 持コージェライトハニカムを 1個加え、 70°Cで 1時間熟成した。 NiFe 2 0 4 support amount (calculated by weight change before and after NiFe 2 0 4 supported) was 2 wt%. Palladium nitrate [Pd (N0 3) 2] using 0.5 molar aqueous solution of hydroxide force Riumu [KOH] 0.002 molar aqueous solution 100ml was adjusted to pH 8. Adding one of NiFe 2 0 4 responsible lifting cordierite honeycomb to 2ml of the liquid was aged for 1 hour at 70 ° C.
得られた触媒を水で洗浄した後、 400°Cで 5時間焼成し、 水素 (2容量%) を 含む窒素ガスを流通させながら、 で 2時間還元処理を行うことにより、 粒 径 2〜4nm程度の微粒子状のパラジウムが固定化されたパラジウム固定化エッケ ル鉄酸化物担持コ一ジェライトハニカム触媒 (PdZNiFe2O4Zコ一ジェライトハ 二カム、 パラジウムの含有量 0.3重量%、 NiFe2O4の含有量 2重量%) を得た。 上記触媒 1個を内径 12nimのガラス管に充填し、 50、 80、 120、 150°Cの各温 度において、 このガラス管に一酸化炭素 1容量%と水蒸気 2容量%を含む窒素ガ ス 140mlZ分の流量で流通(空間速度 20,000Z時間に相当) させつつ、水素およ び一酸化炭素の濃度を測定することにより水性ガスシフ卜反応に対する触媒性能 を求めた。 反応開始から 3時間後の結果を表 2— 3 (I) に 反応開始から 24時 間後の結果を表 2— 3 (II) に示す。 The obtained catalyst is washed with water, calcined at 400 ° C. for 5 hours, and subjected to a reduction treatment for 2 hours while flowing a nitrogen gas containing hydrogen (2% by volume) to obtain a particle diameter of 2 to 4 nm. Cordierite honeycomb catalyst supporting palladium-immobilized nickel-iron oxide on which palladium in the form of particles is immobilized (PdZNiFe 2 O 4 Z cordierite honeycomb, 0.3% by weight of palladium, NiFe 2 O 4 2% by weight). One of the above catalysts was filled in a glass tube with an inner diameter of 12 nm. At each temperature of 50, 80, 120, and 150 ° C, the glass tube contained 140 ml of nitrogen gas containing 1% by volume of carbon monoxide and 2% by volume of steam. By measuring the concentrations of hydrogen and carbon monoxide while circulating at a flow rate per minute (equivalent to a space velocity of 20,000Z hours), the catalytic performance for the water gas shift reaction is measured. I asked. The results 3 hours after the start of the reaction are shown in Table 2-3 (I), and the results 24 hours after the start of the reaction are shown in Table 2-3 (II).
表 2— 3 (I) Table 2-3 (I)
Figure imgf000032_0001
表 2— 3 (I) および (II) に示す結果から、 実用的な形態としてパラジウム微 粒子を固定化した金属酸化物をコージェライト製ハ二カムに担持した場合にも、 水蒸気と一酸ィヒ炭素とを原料とする水素製造用触媒として実用上十分な活性を発 揮して、 効率良く水素を製造し、 かつ一酸化炭素除去出来ることが分かる。 産業上の利用可能性
Figure imgf000032_0001
From the results shown in Tables 2-3 (I) and (II), as a practical form, even when metal oxide on which palladium fine particles are immobilized is supported on cordierite honeycomb, water vapor and monoacid It can be seen that the catalyst exhibits practically sufficient activity as a catalyst for hydrogen production using arsenic carbon as a raw material, can efficiently produce hydrogen, and can remove carbon monoxide. Industrial applicability
本発明の水性シフト反応用触媒を使用する場合には、低温度条件下においても、 一酸化炭素と水との反応 (水性ガスシフト反応) を効率良く進行させることがで きる。 その結果、 水素の製造および Zまたは一酸化炭素の除去を効率良く行うこ とが出来る。 また、 本発明の水性シフト反応用触媒は、 長時間にわたっても高い 活性を発揮しつづけることができる。  When the catalyst for aqueous shift reaction of the present invention is used, the reaction between carbon monoxide and water (water gas shift reaction) can efficiently proceed even under low temperature conditions. As a result, the production of hydrogen and the removal of Z or carbon monoxide can be performed efficiently. Further, the catalyst for aqueous shift reaction of the present invention can continue to exhibit high activity for a long time.

Claims

請求の範囲 The scope of the claims
1 . 金と銅の酸化物とを含む水性ガスシフト反応用触媒。  1. Water-gas shift reaction catalyst containing gold and copper oxide.
2 . (1) 金、 (2) 銅の酸化物および (3) マグネシウム、 アルミニウム、 マンガ ン、 鉄、 コバルト、 ニッケル、 亜鉛、 ジルコニウム及びセリウムからなる群 から選ばれた少なくとも 1種の金属の酸化物を含む、 水性ガスシフト反応用 触媒。  2. Oxidation of (1) gold, (2) copper oxide and (3) at least one metal selected from the group consisting of magnesium, aluminum, manganese, iron, cobalt, nickel, zinc, zirconium and cerium. Catalyst for water gas shift reaction,
3 . 請求項 1又は 2に記載の触媒を担体に担持させた水性ガスシフト反応用触媒。 3. A catalyst for a water gas shift reaction, wherein the catalyst according to claim 1 or 2 is supported on a carrier.
4. 担体が、 アルミナ、 シリカ、 アルミナ一シリカ、 コ一ジエライト、 ジルコ二 ァ、 酸化セリウム、 ゼォライト及び酸化チタンからなる群から選ばれる金属 酸化物系担体、 並びにステンレススチール、 鉄、 銅及びアルミニウムからな る群から選ばれる金属系担体の少なくとも 1種である請求項 3に記載の水性 ガスシフト反応用触媒。 4. The carrier is a metal oxide carrier selected from the group consisting of alumina, silica, alumina-silica, cordierite, zirconium, cerium oxide, zeolite and titanium oxide, and stainless steel, iron, copper and aluminum. 4. The water gas shift reaction catalyst according to claim 3, wherein the catalyst is at least one kind of a metal-based carrier selected from the group consisting of:
5 . 金の含有量が、 触媒全重量を基準として、 0.05〜30重量%である請求項 1〜  5. The content of gold is 0.05 to 30% by weight based on the total weight of the catalyst.
4のいずれかに記載の水性ガスシフト反応用触媒。  5. The catalyst for a water gas shift reaction according to any one of 4.
6 . 金の含有量が、 触媒全重量を基準として、 0.1〜: L0重量%である請求項 5に 記載の水性ガスシフト反応用触媒。 6. The water gas shift reaction catalyst according to claim 5, wherein the content of gold is 0.1 to 0% by weight based on the total weight of the catalyst.
7 . 金の含有量が、 触媒全重量を基準として、 0.1〜3重量%である請求項 6に記 載の水性ガスシフト反応用触媒。  7. The water gas shift reaction catalyst according to claim 6, wherein the content of gold is 0.1 to 3% by weight based on the total weight of the catalyst.
8 . 請求項 1〜7のいずれかに記載の触媒の存在下に、 水性ガスシフト反応を行 う方法。  8. A method for performing a water gas shift reaction in the presence of the catalyst according to any one of claims 1 to 7.
9 . 請求項;!〜 7のいずれかに記載の触媒の存在下に、 7_性ガスシフト反応を行 うことにより、 水素を製造する方法。  9. A method for producing hydrogen by performing a 7_ gas shift reaction in the presence of the catalyst according to any one of! To 7.
1 0 . 請求項 1〜7のいずれかに記載の触媒の存在下に、水性ガスシフト反応を 行うことにより、 一酸化炭素を除去する方法。  10. A method for removing carbon monoxide by performing a water gas shift reaction in the presence of the catalyst according to any one of claims 1 to 7.
1 1 . (1) 請求項 1〜7のいずれかに記載の触媒を含む触媒反応部、 及び (2) 該触媒反応部に一酸化炭素及び水を供給する供給部を含む水性ガスシフト 反応用装置。 11. An apparatus for a water gas shift reaction including (1) a catalyst reaction section containing the catalyst according to any one of claims 1 to 7, and (2) a supply section for supplying carbon monoxide and water to the catalyst reaction section. .
1 2 . 水性ガスシフト反応により、 水素を製造するための請求項 1 1に記載の 12. The method according to claim 11 for producing hydrogen by a water gas shift reaction.
1 3 . 水性ガスシフト反応により、 一酸化炭素を除去するための請求項 1 1 13. The claim for removing carbon monoxide by a water gas shift reaction.
1 4 . (1) 請求項:!〜 7のいずれかに記載の触媒を含む触媒反応部、 及び (2) 燃料電池を含み、 触媒反応部から一酸化炭素レベルの低減された水素含有ガ スを燃料電池に供給する機構を備えた燃料電池システム。 14. (1) Claim: a catalytic reaction section including the catalyst according to any of! To 7, and (2) a hydrogen-containing gas including a fuel cell and having a reduced carbon monoxide level from the catalytic reaction section. Cell system provided with a mechanism for supplying fuel to the fuel cell.
1 5 . (1) 燃料電池、 (2) 請求項 1〜7のいずれかに記載の触媒を含む触媒反 応部および (3) 該燃料電池から該触媒反応部に一酸化炭素含有ガスを供給 する一酸化炭素含有ガス供給部を含み、 該触媒反応部から一酸化炭素レベル の低減された水素含有ガスを該燃料電池にリサイクルする機構を備えた燃 料電池システム。  15. (1) A fuel cell, (2) a catalyst reaction section containing the catalyst according to any one of claims 1 to 7, and (3) a carbon monoxide-containing gas is supplied from the fuel cell to the catalyst reaction section. A fuel cell system, comprising: a carbon monoxide-containing gas supply section for recycling a hydrogen-containing gas having a reduced carbon monoxide level from the catalytic reaction section to the fuel cell.
1 6 . パラジウムとマンガンの酸化物とを含む水性ガスシフト反応用触媒。  16. Water gas shift reaction catalyst containing palladium and manganese oxide.
1 7 . (1) パラジウム、 (2) マンガンの酸化物および(3) 鉄、 コバルト、 二 ッケル、 銅、 亜鉛、 マグネシウム、 ジルコニウム及びセリウムからなる群か ら選ばれる少なくとも 1種の金属の酸化物を含む、 水性ガスシフト反応用触 媒。 17. (1) Oxide of palladium, (2) manganese and (3) oxide of at least one metal selected from the group consisting of iron, cobalt, nickel, copper, zinc, magnesium, zirconium and cerium A catalyst for a water gas shift reaction.
1 8 . 請求項 16又は 17に記載の触媒を担体に担持させた水性ガスシフト反応 用触媒。  18. A water gas shift reaction catalyst comprising the carrier according to claim 16 or 17 supported on a carrier.
1 9 . 担体が、 アルミナ、 シリカ、 アルミナ一シリカ、 コージエライト、 ジル コニァ、 酸化セリウム、 ゼォライトおよび酸化チタンからなる群から選ばれ る金属酸化物系担体、 ステンレススチール、 鉄、 銅およびアルミニウムから なる群から選ばれる金属系担体の少なくとも 1種である請求項 18に記載の 水性ガスシフト反応用触媒。  1 9. The carrier is a metal oxide carrier selected from the group consisting of alumina, silica, alumina-silica, cordierite, zirconia, cerium oxide, zeolite and titanium oxide, and a group consisting of stainless steel, iron, copper and aluminum. 19. The water gas shift reaction catalyst according to claim 18, wherein the catalyst is at least one metal support selected from the group consisting of:
2 0 . パラジウムの含有量が、触媒全重量を基準として、 0.1〜30重量%である 請求項 16〜: 19のいずれかに記載の水性ガスシフト反応用触媒。 20. The water gas shift reaction catalyst according to any one of claims 16 to 19, wherein the content of palladium is 0.1 to 30% by weight based on the total weight of the catalyst.
2 1 . パラジウムの含有量が、触媒全重量を基準として、 0.1~10重量%である 請求項 20に記載の水性ガスシフト反応用触媒。 21. The water gas shift reaction catalyst according to claim 20, wherein the content of palladium is 0.1 to 10% by weight based on the total weight of the catalyst.
2 2 . パラジウムの含有量が、 触媒全重量を基準として、 0.1〜3重量%である 請求項 21に記載の水性ガスシフト反応用触媒。 22. The water gas shift reaction catalyst according to claim 21, wherein the content of palladium is 0.1 to 3% by weight based on the total weight of the catalyst.
2 3 . 請求項 16〜22のいずれかに記載の触媒の存在下に、水性ガスシフト反応 を行う方法。 23. A water gas shift reaction in the presence of the catalyst according to any one of claims 16 to 22. How to do.
2 4 . 請求項 16〜22のいずれかに記載の触媒の存在下に、水性ガスシフト反応 を行うことにより、 水素を製造する方法。  24. A method for producing hydrogen by performing a water gas shift reaction in the presence of the catalyst according to any one of claims 16 to 22.
2 5 . 請求項 16〜22のいずれかに記載の触媒の存在下に、水性ガスシフト反応 • を行うことにより、 一酸化炭素を除去する方法。  25. A method for removing carbon monoxide by performing a water gas shift reaction in the presence of the catalyst according to any one of claims 16 to 22.
2 6 . (1)請求項 16〜22のいずれかに記載の触媒を含む触媒反応部、及び(2) 該触媒反応部に一酸化炭素及び水を供給する供給部を含む水性ガスシフト 反応用装置。  26. An apparatus for a water gas shift reaction comprising (1) a catalyst reaction section containing the catalyst according to any one of claims 16 to 22, and (2) a supply section for supplying carbon monoxide and water to the catalyst reaction section. .
2 7 . 水性ガスシフト反応により、水素を製造するための請求項 26に記載の装  27. The apparatus according to claim 26 for producing hydrogen by a water gas shift reaction.
2 8 . 水性ガスシフト反応により、一酸化炭素を除去するための請求項 26に記 載の装置。 28. The apparatus according to claim 26 for removing carbon monoxide by a water gas shift reaction.
2 9 . (1)請求項 16〜22のいずれかに記載の触媒を含む触媒反応部、及び(2) 燃料電池を含み、 触媒反応部から一酸ィヒ炭素レベルの低減された水素含有ガ スを燃料電池に供給する機構を備えた燃料電池システム。  29. (1) a catalyst reaction section containing the catalyst according to any one of claims 16 to 22, and (2) a hydrogen-containing gas containing a fuel cell and having a reduced level of carbon monoxide from the catalyst reaction section. A fuel cell system provided with a mechanism for supplying fuel to a fuel cell.
3 0 . (1) 燃料電池、 (2) 請求項 16〜22のいずれかに記載の触媒を含む触媒 反応部および (3) 該燃料電池から該触媒反応部に一酸化炭素を供給する供 給部を含み、 触媒反応部から一酸化炭素レベルの低減された水素含有ガスを 燃料電池にリサイクルする機構を備えた燃料電池システム。  30. (1) a fuel cell, (2) a catalyst reaction section containing the catalyst according to any one of claims 16 to 22, and (3) a supply of carbon monoxide from the fuel cell to the catalyst reaction section. A fuel cell system including a unit, and a mechanism for recycling a hydrogen-containing gas having a reduced carbon monoxide level from a catalytic reaction unit to a fuel cell.
PCT/JP2003/002618 2002-05-01 2003-03-06 Catalyst for water gas shift reaction WO2003099434A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003211726A AU2003211726A1 (en) 2002-05-01 2003-03-06 Catalyst for water gas shift reaction

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002/129816 2002-05-01
JP2002129816A JP4022615B2 (en) 2002-05-01 2002-05-01 Catalyst for water gas shift reaction and methanol steam reforming reaction
JP2002/169615 2002-06-11
JP2002169615A JP4016100B2 (en) 2002-06-11 2002-06-11 Catalyst for water gas shift reaction

Publications (1)

Publication Number Publication Date
WO2003099434A1 true WO2003099434A1 (en) 2003-12-04

Family

ID=29585957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/002618 WO2003099434A1 (en) 2002-05-01 2003-03-06 Catalyst for water gas shift reaction

Country Status (2)

Country Link
AU (1) AU2003211726A1 (en)
WO (1) WO2003099434A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110508282A (en) * 2019-09-18 2019-11-29 福州大学 A kind of copper-based water gas converting catalyst and its preparation method and application
CN110937965A (en) * 2019-12-03 2020-03-31 西北大学 Preparation method and application of high-energy composite material copper ferrite/GO/Al

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5765331A (en) * 1980-10-07 1982-04-20 Japan Tobacco Inc Removing agent of carbon monoxide
JPS60238148A (en) * 1984-05-11 1985-11-27 Agency Of Ind Science & Technol Auriferous oxide catalyst for catalytic combustion of combustible gas
JPS61227842A (en) * 1985-03-30 1986-10-09 Japan Tobacco Inc Removing agent for carbon monoxide
JPH08295502A (en) * 1995-04-25 1996-11-12 Agency Of Ind Science & Technol Method for removing carbon monoxide in hydrogen-containing gas with gold catalyst
US5635439A (en) * 1993-10-29 1997-06-03 Tsuyoshi Masumoto Catalyst for methanol reforming, process for producing the same and method for reforming methanol
JP2001026422A (en) * 1999-05-10 2001-01-30 Nippon Shokubai Co Ltd Production of gold-containing combined body
JP2003080072A (en) * 2001-09-07 2003-03-18 Mitsubishi Heavy Ind Ltd Co shift catalyst and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5765331A (en) * 1980-10-07 1982-04-20 Japan Tobacco Inc Removing agent of carbon monoxide
JPS60238148A (en) * 1984-05-11 1985-11-27 Agency Of Ind Science & Technol Auriferous oxide catalyst for catalytic combustion of combustible gas
JPS61227842A (en) * 1985-03-30 1986-10-09 Japan Tobacco Inc Removing agent for carbon monoxide
US5635439A (en) * 1993-10-29 1997-06-03 Tsuyoshi Masumoto Catalyst for methanol reforming, process for producing the same and method for reforming methanol
JPH08295502A (en) * 1995-04-25 1996-11-12 Agency Of Ind Science & Technol Method for removing carbon monoxide in hydrogen-containing gas with gold catalyst
JP2001026422A (en) * 1999-05-10 2001-01-30 Nippon Shokubai Co Ltd Production of gold-containing combined body
JP2003080072A (en) * 2001-09-07 2003-03-18 Mitsubishi Heavy Ind Ltd Co shift catalyst and method for producing the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ATSUSHI UEDA ET AL.: "Combinatorial shuho o mochiita co shift hanno shokubai no jinsoku tansaku", SHOKUBAI, vol. 44, no. 2, 10 March 2002 (2002-03-10), pages 109, XP002970473 *
ATSUSHI UEDA ET AL.: "Combinatorial shuho o mochiita CO shift hanno shokubai no jonsoku tansuka", DAI 88 KAI SHOKUBAI TORONKAI, TORONKAI A YOKOSHU, 20 September 2001 (2001-09-20), pages 20, XP002970472 *
ATSUSHI UEDA ET AL.: "Palladium tanji fukugo sankabutsu-jo ni okeru co shift hanno oyobi MeOH kaishitsu hanno", DAI 90 KAI SHOKUBAI TORONKAI, TORONKAI A YOKOSHU, 10 September 2002 (2002-09-10), pages 383, XP002970474 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110508282A (en) * 2019-09-18 2019-11-29 福州大学 A kind of copper-based water gas converting catalyst and its preparation method and application
CN110937965A (en) * 2019-12-03 2020-03-31 西北大学 Preparation method and application of high-energy composite material copper ferrite/GO/Al
CN110937965B (en) * 2019-12-03 2020-10-27 西北大学 Preparation method and application of high-energy composite material copper ferrite/GO/Al

Also Published As

Publication number Publication date
AU2003211726A1 (en) 2003-12-12

Similar Documents

Publication Publication Date Title
JP4035654B2 (en) Catalyst particles and method for producing the same
CN101356004B (en) Highly dispersed metal catalysts
US5134109A (en) Catalyst for reforming hydrocarbon with steam
JP4022615B2 (en) Catalyst for water gas shift reaction and methanol steam reforming reaction
JP3532282B2 (en) Method for producing perovskite-type composite oxide
JP2007313493A (en) Catalyst for cleaning exhaust gas and its manufacturing method
EP2155366B1 (en) Oxygen storage/release material and exhaust gas purifying catalyst comprising the same
JP5691119B2 (en) Method for producing hydrogenation catalyst and method for producing methane gas using the same
JP4016100B2 (en) Catalyst for water gas shift reaction
JPH0691958B2 (en) Catalyst for hydrogenation reaction of carbon monoxide or carbon dioxide
CA2382236A1 (en) A catalyst and process for removing carbon monoxide from a reformate gas
US9387470B2 (en) Sulfur-tolerant and carbon-resistant catalysts
EP1312413A2 (en) Process for producing hydrogen-containing gas
JP2007136339A (en) Catalytic particle and its manufacturing method
WO2003099434A1 (en) Catalyst for water gas shift reaction
JP3574469B2 (en) Method for oxidizing CO to CO2 and method for producing hydrogen-containing gas for fuel cell
CN101371984B (en) CO removing catalyst as well as preparation method and use thereof
JP3914984B2 (en) Catalyst for water gas shift reaction of fuel reformed gas
JP2001185190A (en) Producing method of hydrogen for fuel cell
JP2003305364A (en) Aqueous gas shift reaction catalyst
JP2001149781A (en) Catalyst for selectively oxidizing gaseous carbon monoxide in hydrogen-rich gas and method for removing carbon monoxide using the same
JP2001179100A (en) Hydrogen producing catalyst, exhaust gas cleaning catalyst and exhaust gas cleaning method
JP4206813B2 (en) Carbon monoxide conversion catalyst and carbon monoxide conversion method using the catalyst
JP2004330106A (en) Catalyst for modifying carbon monoxide and method for modifying carbon monoxide using it
CN117920214A (en) Preparation method and application of reversed-phase copper-based catalyst for ammonia selective catalytic oxidation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase