WO2003095779A1 - Method and device for adjusting an internal obstruction force setting for a motorized garage door operator - Google Patents

Method and device for adjusting an internal obstruction force setting for a motorized garage door operator Download PDF

Info

Publication number
WO2003095779A1
WO2003095779A1 PCT/US2003/008985 US0308985W WO03095779A1 WO 2003095779 A1 WO2003095779 A1 WO 2003095779A1 US 0308985 W US0308985 W US 0308985W WO 03095779 A1 WO03095779 A1 WO 03095779A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
operator
external secondary
force
secondary entrapment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2003/008985
Other languages
English (en)
French (fr)
Inventor
James S. Murray
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wayne Dalton Corp
Original Assignee
Wayne Dalton Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wayne Dalton Corp filed Critical Wayne Dalton Corp
Priority to CA002483539A priority Critical patent/CA2483539C/en
Priority to EP03726105A priority patent/EP1504167B1/en
Priority to JP2004503755A priority patent/JP2005525489A/ja
Priority to DE60309310T priority patent/DE60309310T2/de
Priority to AU2003228357A priority patent/AU2003228357A1/en
Publication of WO2003095779A1 publication Critical patent/WO2003095779A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/40Safety devices, e.g. detection of obstructions or end positions
    • E05F15/41Detection by monitoring transmitted force or torque; Safety couplings with activation dependent upon torque or force, e.g. slip couplings
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/60Power-operated mechanisms for wings using electrical actuators
    • E05F15/603Power-operated mechanisms for wings using electrical actuators using rotary electromotors
    • E05F15/665Power-operated mechanisms for wings using electrical actuators using rotary electromotors for vertically-sliding wings
    • E05F15/668Power-operated mechanisms for wings using electrical actuators using rotary electromotors for vertically-sliding wings for overhead wings
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/40Safety devices, e.g. detection of obstructions or end positions
    • E05F15/42Detection using safety edges
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2400/00Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/10Electronic control
    • E05Y2400/52Safety arrangements associated with the wing motor
    • E05Y2400/53Wing impact prevention or reduction
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2400/00Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/10Electronic control
    • E05Y2400/52Safety arrangements associated with the wing motor
    • E05Y2400/53Wing impact prevention or reduction
    • E05Y2400/54Obstruction or resistance detection
    • E05Y2400/55Obstruction or resistance detection by using load sensors
    • E05Y2400/554Obstruction or resistance detection by using load sensors sensing motor load
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2400/00Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/10Electronic control
    • E05Y2400/52Safety arrangements associated with the wing motor
    • E05Y2400/53Wing impact prevention or reduction
    • E05Y2400/54Obstruction or resistance detection
    • E05Y2400/58Sensitivity setting or adjustment
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2400/00Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/80User interfaces
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2800/00Details, accessories and auxiliary operations not otherwise provided for
    • E05Y2800/20Combinations of elements
    • E05Y2800/246Combinations of elements with at least one element being redundant
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/10Application of doors, windows, wings or fittings thereof for buildings or parts thereof
    • E05Y2900/106Application of doors, windows, wings or fittings thereof for buildings or parts thereof for garages

Definitions

  • the present invention relates to a garage door operator system for use on a closure member moveable relative to a fixed member. More particularly, the present invention relates to an operator-controlled motor for controlling the operation of a closure member, such as a gate or door, between a closed position and an open position. More specifically, the present invention relates to a door or gate operator, wherein the operator automatically adjusts a force threshold depending upon whether an external secondary entrapment device is connected to the operator.
  • BACKGROUND ART For convenience purposes, it is well known to provide garage doors which utilize a motor to provide opening and closing movements of the door. Motors may also be coupled with other types of movable barriers such as gates, windows, retractable overhangs and the like. An operator is employed to control the motor and related functions with respect to the door. The operator receives command signals for the purpose of opening and closing the door from a wireless remote, from a wired wall station or other similar device. It is also known to provide safety devices that are connected to the operator for the purpose of detecting an obstruction so that the operator may then take corrective action with the motor to avoid entrapment of the obstruction.
  • Safety devices come in many forms for use with a garage door operator.
  • One of the more widely used devices is a photoelectric eye which projects a light beam across the door's travel path. If the light beam is interrupted during closure of the door, the operator stops and/or stops and reverses the travel of the door. This is sometimes referred to as a non-contacting or an external secondary entrapment device.
  • Contact type safety devices such as an edge-sensitive pressure switch, which is attached to the bottom edge of the door and runs the complete width of the door, may also be used.
  • Other contact safety devices directly monitor the operating characteristics of the driving motor to determine whether an obstruction is present. Typically, shaft speed of the motor is monitored by projecting an infrared light through an interrupter wheel.
  • Hall effect switches or tachometers can be used to monitor shaft speed.
  • the motor current could be monitored such that when an excessive amount of current is drawn by the motor — which indicates that the motor is working harder than normal — it is presumed that an obstruction has been encountered.
  • a sliding potentiometer wherein a rate of change is equated to the speed of the door and wherein unexpected slowing of the door triggers corrective action by the operator.
  • the safety devices their purpose is to ensure that individuals, especially children, are not entrapped by a closing door. Opening forces of the door are also monitored to preclude damage to the operating system for instances where an object or individual is caught upon a door panel as the door moves upwardly.
  • an input jumper switch is set to disable and the fifteen pound force threshold is used during barrier movement. If the end-user selects an operator model with the external secondary entrapment feature, then the input jumper is permanently enabled and the force threshold value is set at a higher value, typically twenty-five pounds. If the end-user desires to later add the external secondary entrapment feature, then the jumper must be physically moved from a disabled position to an enabled position. If the jumper is not moved to an enabled position then the external secondary entrapment feature will work, but the force threshold remains at fifteen pounds. It has been found that the fifteen pound threshold is quite sensitive and as a result phantom obstructions are encountered.
  • the operator falsely detects and reacts to a non-existent obstruction in the barrier's path.
  • Such false detections may be the result of the wind, temperature, debris in the door track and the like. These false detections cause the barrier to reverse direction and require the user to wait unnecessarily for the barrier to complete its opening or closing cycle.
  • the present invention contemplates a method for adjusting an internal force setting for a motorized garage door operator comprising checking for the presence of an external secondary entrapment safety feature and increasing a force threshold setting from a first value to a second value if the external secondary entrapment safety feature is detected.
  • the invention contemplates a method for adjusting an internal force setting for a motorized garage door operator, comprising checking for the presence of an external secondary entrapment safety feature, and decreasing a force threshold setting from a first value to a second value if the external secondary entrapment safety feature is not detected.
  • the invention further contemplates an operator system for controlling the operation of a movable barrier comprising a motor for moving the barrier between open and closed positions, an operator for controlling the operation of said motor so that said motor applies a force within a threshold of force value, and a controller carried by said operator for detecting the presence of an external safety device and adjusting said threshold of force value accordingly.
  • Fig. 1 is a fragmentary perspective view depicting a sectional garage door and showing an operating mechanism embodying the concepts of the present invention
  • Fig. 2 is a schematic diagram of an operator mechanism
  • Fig. 3 is an operational flow chart employed by operator of the present invention for adjusting the force setting.
  • a system and related method for adjusting an internal obstruction force setting for a motorized garage door operator is generally indicated by the numeral 10 in Fig. 1 of the drawings.
  • the system 10 is employed in conjunction with a conventional sectional garage door generally indicated by the numeral 12.
  • the door 12 is most likely an anti-pinch type door.
  • the opening in which the door is positioned for opening and closing movements relative thereto is surrounded by a frame, generally indicated by the numeral 14, which consists of a pair of a vertically spaced jamb members 16 that, as seen in Fig. 1, are generally parallel and extend vertically upwardly from the ground (not shown).
  • the jambs 16 are spaced and joined at their vertically upper extremity by a header 18 to thereby form a generally u-shaped frame 14 around the opening for the door 12.
  • the frame 14 is normally constructed of lumber or other structural building materials for the purpose of reinforcement and to facilitate the attachment of elements supporting and controlling the door 12.
  • L-shaped vertical members 20 Secured to the jambs 16 are L-shaped vertical members 20 which have a leg 22 attached to the jambs 16 and a projecting leg 24 which perpendicularly extends from respective legs 22.
  • the L-shaped vertical members 20 may also be provided in other shapes depending upon the particular frame and garage door with which it is associated.
  • Secured to each projecting leg 24 is a track 26 which extends perpendicularly from each projecting leg 24.
  • Each track 26 receives a roller 28 which extends from the top edge of the garage door 12. Additional rollers 28 may also be provided on each top vertical edge of each section of the garage door to facilitate transfer between opening and closing positions.
  • a counterbalancing system generally indicated by the numeral 30 may be employed to move the garage door 12 back and forth between opening and closing positions.
  • a counterbalancing system is disclosed in U.S. Patent No. 5,419,010, which is incorporated herein by reference.
  • the counter-balancing system 30 includes a housing 32, which is affixed to the header 18 which contains an operator mechanism generally indicated by the numeral 34 as seen in Fig. 2.
  • tensioning assemblies 38 Carried within the drive shaft 36 are counterbalance springs as described in the '010 patent.
  • a header-mounted operator is specifically discussed herein, the control features to be discussed later are equally applicable to other types of operators used with movable barriers.
  • the teachings of the present invention are equally applicable to other types of movable barriers such as single panel doors, gates, windows, retractable overhangs, and any device that at least partially encloses an area.
  • a remote transmitter 40 or a wall station transmitter 42 may be actuated.
  • the remote transmitter 40 may use infrared, acoustic or radio frequency signals that are received by the operator mechanism to initiate movement of the door.
  • the wall station 42 may perform the same functions as the remote transmitter 40 and also provide additional functions such as the illumination of lights and provide other programming functions to control the manner in which the garage door works.
  • the wall station 42 may either be connected directly to the operator mechanism 34 by a wire or it may employ radio frequency or infrared signals.
  • an external secondary entrapment system which is designated generally by the numeral 50, may be included with the system 10.
  • the entrapment system 50 is a photoelectric sensor which has a sending device 52 and a receiving device 54.
  • the sending device 52 is mounted to either the jamb 16 or the track 26 near the floor of the door area.
  • the devices 52 and 54 are mounted at about 5 inches above the floor and on the inside of the door opening to minimize any interference by the sun. It will be appreciated that the position of the devices 52 and 54 may be switched if needed.
  • the sending device 52 emits a light beam, either laser or infrared, that is detected by the receiver 54 which is connected to the operator mechanism 34.
  • the receiver relays this information to the controller which initiates the appropriate corrective action. In this way, if an object interrupts a light beam during a downward motion of the garage door the motion of the door is at least stopped and/or returned to the opening position.
  • other external secondary entrapment features or systems such as a contact-type safety edge on the bottom panel of the door, motor speed detectors, shaft speed detectors, motor current detectors, door speed monitors or the like may be used with the present invention.
  • Fig. 2 it can be seen that the operator mechanism employs a controller 58 which receives power from batteries or some other appropriate power supply.
  • the controller 58 includes the necessary hardware, software, and a memory device 60 to implement operation of the operator 34.
  • a receiver 64 receives the signal and converts it into a form useable by the controller 58. If a valid signal is received by the controller 58, it initiates movement of the motor 62 which, in turn, generates rotatable movement of the drive shaft 36 and the door is driven in the appropriate direction.
  • the external secondary entrapment system 50 particularly the sending and receiving units 52, 54, are also connected to the controller 58 to provide appropriate input.
  • a flow chart, designated generally by the numeral 100 is representative of the software embodied and contained within the controller for controlling operation of the operator.
  • the operator is installed and if desired, the external secondary entrapment system is also installed.
  • the external secondary entrapment system 50 is not required for operation of the operator 34.
  • the controller 58 limits the power applied to the motor 62 to a threshold of about fifteen pounds. In other words, the controller with the use of various force sensors and the like, is able to determine the amount of force applied by the motor at any instant during travel of the door from an open position to a closed position or vice versa.
  • the controller 58 From this base line application of force, the controller knows to allow application of fifteen pounds more or fifteen pounds less to the base line force profile. Accordingly, if an obstruction is detected which is greater than fifteen pounds or less than fifteen pounds from the force profile, the controller 58 takes the appropriate corrective action.
  • the controller 58 determines whether an external secondary entrapment system such as the photoelectric sensor 50 has been attached to the operator mechanism 34. If not, then at step 108, the lower threshold value, which in the preferred embodiment is fifteen pounds, is set and implemented. Accordingly, at step 112, the system is operational and the appropriate functions are performed. It will be appreciated that at step 112 the controller 58 monitors to determine whether the external secondary system is still connected to the operator by returning to the decision step 106.
  • a higher threshold level is set which, in the preferred embodiment is twenty-five pounds. In other words, the motor is allowed to deviate twenty-five pounds plus or minus from the operational force profile set by the controller 58.
  • the controller proceeds with its normal operation. The methodology then returns to step 106 to check to ensure that the external secondary entrapment system is still attached. If, for some reason, the sensor is rendered inoperative and not detected, then the lower force threshold profile is used.
  • an operator system may be used which allows the force threshold setting to be automatically changed, depending upon the type of external secondary entrapment systems associated with the operator. If an external secondary entrapment feature is not attached to the operator, then a minimal force threshold is set and provides the most sensitivity for detecting obstructions that impede with travel of the door. And the system also provides that if an external secondary entrapment system is attached to the operator then the threshold can be set at a higher level to reduce the occurrence of phantom detections. By automatically detecting the presence or absence of the external secondary entrapment system, the user is not physically required to move a jumper or attach ajumper when installing the safety feature.

Landscapes

  • Power-Operated Mechanisms For Wings (AREA)
  • Operating, Guiding And Securing Of Roll- Type Closing Members (AREA)
PCT/US2003/008985 2002-05-10 2003-03-24 Method and device for adjusting an internal obstruction force setting for a motorized garage door operator Ceased WO2003095779A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002483539A CA2483539C (en) 2002-05-10 2003-03-24 Method and device for adjusting an internal obstruction force setting for a motorized garage door operator
EP03726105A EP1504167B1 (en) 2002-05-10 2003-03-24 Method and device for adjusting an internal obstruction force setting for a motorized garage door operator
JP2004503755A JP2005525489A (ja) 2002-05-10 2003-03-24 モニターされるガレージドアのオペレータ装置のための、内部障害物力の設定を調節する方法および装置
DE60309310T DE60309310T2 (de) 2002-05-10 2003-03-24 Verfahren und vorrichtung zum anpassen einer internen blockierkrafteinstellung für einen motorisierten garagentürantrieb
AU2003228357A AU2003228357A1 (en) 2002-05-10 2003-03-24 Method and device for adjusting an internal obstruction force setting for a motorized garage door operator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/142,642 2002-05-10
US10/142,642 US6873127B2 (en) 2002-05-10 2002-05-10 Method and device for adjusting an internal obstruction force setting for a motorized garage door operator

Publications (1)

Publication Number Publication Date
WO2003095779A1 true WO2003095779A1 (en) 2003-11-20

Family

ID=29399957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/008985 Ceased WO2003095779A1 (en) 2002-05-10 2003-03-24 Method and device for adjusting an internal obstruction force setting for a motorized garage door operator

Country Status (9)

Country Link
US (3) US6873127B2 (enExample)
EP (1) EP1504167B1 (enExample)
JP (1) JP2005525489A (enExample)
CN (1) CN100338326C (enExample)
AT (1) ATE343697T1 (enExample)
AU (1) AU2003228357A1 (enExample)
CA (1) CA2483539C (enExample)
DE (1) DE60309310T2 (enExample)
WO (1) WO2003095779A1 (enExample)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8493081B2 (en) 2009-12-08 2013-07-23 Magna Closures Inc. Wide activation angle pinch sensor section and sensor hook-on attachment principle
US9234979B2 (en) 2009-12-08 2016-01-12 Magna Closures Inc. Wide activation angle pinch sensor section

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6873127B2 (en) * 2002-05-10 2005-03-29 Wayne-Dalton Corp. Method and device for adjusting an internal obstruction force setting for a motorized garage door operator
US7211975B2 (en) * 2002-05-10 2007-05-01 Wayne-Dalton Corp. Motorized barrier operator system adaptable to different safety configurations and methods for programming the same
US6870334B2 (en) * 2002-12-31 2005-03-22 The Chamberlain Group, Inc. Movable barrier operator auto-force setting method and apparatus
US7138912B2 (en) 2003-03-20 2006-11-21 The Chamberlain Group, Inc. Movable barrier operations method and apparatus
US6989767B2 (en) 2003-05-29 2006-01-24 The Chamberlain Group, Inc. Obstacle detector-responsive movable barrier operator apparatus and method
US6940240B2 (en) * 2003-05-29 2005-09-06 The Chamberlain Group, Inc. Movable barrier operator multi-technique excess force avoidance apparatus and method
US7109677B1 (en) * 2004-05-07 2006-09-19 Wayne-Dalton Corp. Motorized barrier operator system for controlling a barrier after an obstruction detection and related methods
US7132813B2 (en) * 2004-06-24 2006-11-07 The Chamberlain Group, Inc. System and method for adapting to barrier nuisances and obstructions
US7034486B1 (en) * 2004-12-06 2006-04-25 Overhead Door Corporation Barrier operator controller with user adjustable force setpoint
US8040217B2 (en) 2005-02-15 2011-10-18 The Chamberlain Group, Inc. Barrier movement operator communications
US7525265B2 (en) * 2005-04-20 2009-04-28 The Chamberlain Group, Inc. Drive motor reversal for a barrier operator or the like
US7119509B1 (en) * 2005-06-01 2006-10-10 The Chamberlain Group, Inc System and method for automatically requiring secondary safety sensors
US7034487B1 (en) * 2005-06-30 2006-04-25 Overhead Door Corporation Barrier operator controller with user settable control limits when entrapment device present
US7576502B2 (en) * 2005-07-28 2009-08-18 Arvinmeritor Light Vehicle Systems - France Method and apparatus for closing a powered closure of a vehicle
US7518326B2 (en) * 2006-01-20 2009-04-14 Albany International Corp. Wireless communication system for a roll-up door
US7737654B2 (en) * 2006-03-15 2010-06-15 Aspen Motion Technologies, Inc. Vertically-mounted garage door operator
US7564202B2 (en) * 2007-02-15 2009-07-21 Chung-Hsien Hsieh Door opener error-start prevention device
FR2913506B1 (fr) * 2007-03-07 2009-07-03 Somfy Soc Par Actions Simplifi Procede de reglage d'une installation domotique et outil pour la mise en oeuvre d'un tel procede
DE202007009576U1 (de) * 2007-07-02 2008-11-13 Marantec Antriebs- Und Steuerungstechnik Gmbh & Co. Kg Tor
US8375635B2 (en) * 2009-08-26 2013-02-19 Richard Hellinga Apparatus for opening and closing overhead sectional doors
US8341885B2 (en) * 2010-09-23 2013-01-01 Dynaco Europe Door control system with obstacle detection
US8495834B2 (en) * 2011-01-07 2013-07-30 Linear Llc Obstruction detector power control
US9388621B2 (en) 2011-05-24 2016-07-12 Overhead Door Corporation Decryption of access codes of diverse protocols in barrier operator systems
US20120324791A1 (en) * 2011-06-24 2012-12-27 Maximum Controls, L.L.C. System and method for sensing a gate obstruction
DE102011111450A1 (de) * 2011-08-30 2013-02-28 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Hallstadt Verfahren und Vorrichtung zur Überwachung eines einen rotierenden Antriebsmotor aufweisenden Antriebsaggregats, insbesondere eines Fensterhebers
CN103774952A (zh) * 2014-01-16 2014-05-07 李永忠 一种多功能的开门机
HUE042976T2 (hu) * 2015-01-21 2019-07-29 Entrematic Belgium Nv Szélálló ajtó
US10145981B2 (en) 2016-02-12 2018-12-04 Garadget Inc. System, device, and method for monitoring and controlling the position of a remote object
DE102016204104B4 (de) * 2016-03-11 2019-11-21 Geze Gmbh Antrieb für den flügel eines fensters oder einer tür
HUE041688T2 (hu) 2016-06-28 2019-05-28 Gabrijel Rejc Függõlegesen mozgatható kapu egy kapulappal
ES2704712T3 (es) 2016-06-28 2019-03-19 Gabrijel Rejc Puerta levadiza activable a motor y que puede moverse verticalmente
DE102016225079A1 (de) 2016-12-15 2018-06-21 Gabrijel Rejc Gmbh & Co. Kg Tor mit einer Absturzsicherung
US10968676B2 (en) 2018-04-24 2021-04-06 Gmi Holdings, Inc. Movable barrier apparatus and methods for responding to barrier travel obstructions and abnormalities
US11746584B2 (en) 2019-04-24 2023-09-05 Gmi Holdings, Inc. Remote monitoring and control of moveable barrier in jackshaft door operator system
CN116873412A (zh) * 2023-08-22 2023-10-13 中国第一汽车股份有限公司 一种用于焊装车间侧围外板上件器具的柔性双层料塔

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0839980A1 (de) * 1996-10-31 1998-05-06 Robert Bosch Gmbh Elektrischer Garagentorantrieb

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814551B2 (ja) * 1975-06-10 1983-03-19 ワイケイケイ株式会社 ジドウトビラノヒタイクドウホウホウ
US4212297A (en) * 1978-10-16 1980-07-15 Nasa Micro-fluid exchange coupling apparatus
US5051672A (en) 1989-04-28 1991-09-24 Kabushiki Kaisha Riken Automatic window/door system
US4922168A (en) 1989-05-01 1990-05-01 Genie Manufacturing, Inc. Universal door safety system
US5218282A (en) * 1990-03-22 1993-06-08 Stanley Home Automation Automatic door operator including electronic travel detection
US5357183A (en) 1992-02-07 1994-10-18 Lin Chii C Automatic control and safety device for garage door opener
US5278480A (en) * 1992-10-26 1994-01-11 Stanley Home Automation Door opener control with adaptive limits and method therefor
US5419010A (en) * 1993-05-03 1995-05-30 Wayne-Dalton Corp. Compact counterbalancing system for sectional doors
JP2857048B2 (ja) 1993-12-22 1999-02-10 株式会社小糸製作所 安全装置付パワーウインド装置
DE4402899C1 (de) * 1994-02-02 1995-08-17 Dorma Gmbh & Co Kg Betriebsverfahren für den Betrieb einer Karusselltür
US5412297A (en) 1994-06-27 1995-05-02 Stanley Home Automation Monitored radio frequency door edge sensor
BR9606494A (pt) 1995-06-06 1997-10-28 Chamberlain Group Inc Dispositívo operador de barreira móvel
KR100245971B1 (ko) * 1995-11-30 2000-03-02 포만 제프리 엘 중합접착제를 금속에 접착시키기 위한 접착력 촉진층을 이용하는 히트싱크어셈블리 및 그 제조방법
DE19804175A1 (de) 1997-02-04 1998-09-03 Nissan Motor Vorrichtung und Verfahren zur Feststellung des Vorhandenseins oder der Abwesenheit eines Fremdkörpers oder dergleichen, der in einem motorbetriebenen Öffnungs/Schließmechanismus gefangen ist
US6133703A (en) 1998-03-12 2000-10-17 The Chamberlain Group, Inc. Bi-directional pass-point system for controlling the operation of movable barriers
DE19840162A1 (de) * 1998-09-03 2000-03-16 Webasto Karosseriesysteme Antriebsvorrichtung und Verfahren zum Verstellen eines Fahrzeugteils
US6161438A (en) * 1998-10-20 2000-12-19 Wayne-Dalton Corp. System and related methods for detecting a force profile deviation of a garage door
US6118243A (en) 1999-04-07 2000-09-12 Overhead Door Corporation Door operator system
DE10008040A1 (de) * 2000-02-22 2001-09-13 Bosch Gmbh Robert Verfahren zur Überbrückung partieller Schwergängigkeit an verfahrbaren Flächen
GB0017823D0 (en) * 2000-07-21 2000-09-06 Meritor Light Vehicle Sys Ltd Closure system
FR2815449B1 (fr) * 2000-10-16 2003-03-14 Four Group M Boitier de commande pour systeme d'occultation motorise
US6667591B2 (en) * 2001-10-18 2003-12-23 Wayne-Dalton Corp. Method and device for increasing the allowed motor power of a motorized garage door operator
US6873127B2 (en) * 2002-05-10 2005-03-29 Wayne-Dalton Corp. Method and device for adjusting an internal obstruction force setting for a motorized garage door operator
US6879122B1 (en) * 2002-07-08 2005-04-12 Linear Corporation Garage door control system and method of operation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0839980A1 (de) * 1996-10-31 1998-05-06 Robert Bosch Gmbh Elektrischer Garagentorantrieb

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8493081B2 (en) 2009-12-08 2013-07-23 Magna Closures Inc. Wide activation angle pinch sensor section and sensor hook-on attachment principle
US9234979B2 (en) 2009-12-08 2016-01-12 Magna Closures Inc. Wide activation angle pinch sensor section
US9417099B2 (en) 2009-12-08 2016-08-16 Magna Closures Inc. Wide activation angle pinch sensor section

Also Published As

Publication number Publication date
DE60309310D1 (de) 2006-12-07
AU2003228357A1 (en) 2003-11-11
ATE343697T1 (de) 2006-11-15
CN100338326C (zh) 2007-09-19
US7075256B2 (en) 2006-07-11
JP2005525489A (ja) 2005-08-25
US20030210005A1 (en) 2003-11-13
EP1504167A1 (en) 2005-02-09
CA2483539C (en) 2009-09-22
US20040261317A1 (en) 2004-12-30
EP1504167B1 (en) 2006-10-25
US20050146298A1 (en) 2005-07-07
US6873127B2 (en) 2005-03-29
CA2483539A1 (en) 2003-11-20
CN1650086A (zh) 2005-08-03
DE60309310T2 (de) 2007-05-10

Similar Documents

Publication Publication Date Title
CA2483539C (en) Method and device for adjusting an internal obstruction force setting for a motorized garage door operator
CA2404587C (en) Method and device for increasing the allowed motor power of a motorized garage door operator
EP1529146B1 (en) System and related methods for sensing forces on a movable barrier
US7109677B1 (en) Motorized barrier operator system for controlling a barrier after an obstruction detection and related methods
AU771245B2 (en) System and related methods for detecting a force profile deviation of a garage door
CA2267693C (en) System and related methods for detecting and measuring the operational parameters of a garage door
CA2400129C (en) Method and device for setting custom door travel limits on a motorized garage door operator
AU782535B2 (en) System and related methods for detecting and measuring the operational parameters of a garage door utilizing a lift cable system
US7116072B1 (en) Motorized barrier operator system for setting a down force adjustment to a minimum value and method for programming the same
US7211975B2 (en) Motorized barrier operator system adaptable to different safety configurations and methods for programming the same
US7183732B2 (en) Motorized barrier operator system for controlling a stopped, partially open barrier and related methods
US7228883B1 (en) Motorized barrier operator system utilizing multiple photo-eye safety system and methods for installing and using the same
AU2005203767A1 (en) System and related methods for detecting and measuring the operational parameters of a garage door utilizing a lift cable system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2483539

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2003228357

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2003726105

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038095661

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004503755

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2003726105

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2003726105

Country of ref document: EP