WO2003095146A1 - Dry ice injector - Google Patents

Dry ice injector

Info

Publication number
WO2003095146A1
WO2003095146A1 PCT/JP2002/004598 JP0204598W WO03095146A1 WO 2003095146 A1 WO2003095146 A1 WO 2003095146A1 JP 0204598 W JP0204598 W JP 0204598W WO 03095146 A1 WO03095146 A1 WO 03095146A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
dry ice
valve
passage
injection device
Prior art date
Application number
PCT/JP2002/004598
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuyuki Sekota
Yoshifumi Tsuchiya
Original Assignee
Itec Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000346415A priority Critical patent/JP3509738B2/en
Priority claimed from JP2000346415A external-priority patent/JP3509738B2/en
Priority to TW091109612A priority patent/TW548141B/en
Application filed by Itec Co., Ltd. filed Critical Itec Co., Ltd.
Priority to PCT/JP2002/004598 priority patent/WO2003095146A1/en
Priority to KR1020037013740A priority patent/KR100841550B1/en
Publication of WO2003095146A1 publication Critical patent/WO2003095146A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C5/00Devices or accessories for generating abrasive blasts
    • B24C5/02Blast guns, e.g. for generating high velocity abrasive fluid jets for cutting materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/003Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods using material which dissolves or changes phase after the treatment, e.g. ice, CO2

Definitions

  • the present invention relates to a dry ice injection device that generates dry ice particles and injects them together with a dew condensation preventing gas.
  • FIG. 6 is a longitudinal sectional view of the dry ice injection device according to the conventional example
  • FIG. 7 is a piping diagram of the dry ice injection device.
  • a first cylinder B1 storing liquefied carbon dioxide L and a carbon dioxide gas introducing chamber 101a are connected by a pipeline, and a second cylinder B2 storing nitrogen gas N2 is connected to a nitrogen cylinder.
  • the raw gas introduction chamber 101b is connected to the raw gas introduction chamber 101b by a pipeline, and the liquefied carbon dioxide gas L introduced into the carbon dioxide gas introduction chamber 101a flows out into the gas expansion chamber 103 via the orifice 102.
  • dry ice particles D are generated, and the dry ice particles D are injected from the tip of the injection cylinder 105 together with the nitrogen gas N 2 introduced into the gas expansion chamber 103.
  • P indicates a pressure gauge
  • S indicates a solenoid on-off valve
  • B3 indicates a buffer tank.
  • nitrogen gas N 2 is also stored.
  • a second cylinder B2 is required, and a nitrogen gas introduction chamber 101b and a passage for introducing nitrogen gas N2 into the gas expansion chamber 103 in addition to the carbon dioxide gas introduction chamber 101a. Is necessary, and the configuration is complicated and costly.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a dry ice injection device that can be implemented at a low cost with a simple configuration and that can effectively prevent dew condensation. Disclosure of the invention
  • the present invention is configured as follows.
  • the liquefied carbon dioxide gas L in the gas introduction chamber 1 is caused to flow out into the gas expansion chamber 3 through the orifice valve 2 to generate dry ice particles D, and the dry ice particles D are injected together with the dew condensation preventing gas G into the injection cylinder 5.
  • a gas diverter 4 is provided downstream of the gas expansion chamber 3 at the base end side of the injection cylinder 5, and a dry ice passage 6 is provided in the injection cylinder 5.
  • a gas passage 7, and a heating means 8 is disposed in close proximity to the gas passage 7, and a mixed fluid of dry ice particles D and carbon dioxide in the gas expansion chamber 3 is divided by the branching section 5.
  • Flush The mixed fluid containing the dry ice particles D is allowed to flow through the lye passage 6, and the mixed fluid flowing through the gas passage 7 is heated by the heating means 8 to generate the dew condensation preventing gas G.
  • the liquefied carbon dioxide gas L in the gas introduction chamber 1 flows out into the gas expansion chamber 3 through the orifice valve 2 to generate dry ice particles D.
  • the mixed fluid of the dry ice particles D and the carbon dioxide gas in the gas expansion chamber 3 is diverted by the gas diverter 4 and flows through the dry ice passage 6 and the gas passage 7.
  • the mixed fluid containing the dry ice particles D flowing through the gas passage 7 is heated by the heating means 8 disposed close to the gas passage 7 to become the dew condensation preventing gas G.
  • the dew condensation preventing gas G is injected from the tip of the injection cylinder 5 together with the dry ice particles D flowing through the dry ice passage 6 to prevent dew condensation on the object.
  • a temperature drop prevention means 45 can be arranged in the vicinity of the gas introduction chamber 1, the gas expansion chamber 3, and the gas branching section 4. .
  • prevention of dew condensation on the outer surface of the device 1 1, prevention of adhesion of dry ice to the orifice valve 2, and icing of trace water contained in carbon dioxide, together with the efficiency of dry ice particle D generation Can be increased.
  • a guide cylinder 10 is mounted in the injection cylinder 5, the dry ice passage 6 is formed in the guide cylinder 10, and the dry ice passage 6 is formed around the guide cylinder 10.
  • the gas passage 7 is formed, and the charging means 35 is connected to the injection cylinder 5.
  • the charging means 35 is provided with one plate-like electrode 36 fitted inside the injection cylinder 5, and a discharge part 37 formed on an inner peripheral portion of the electrode 36 is provided with the gas passage 7. And can be arranged to face the guide tube 10 constituting the other electrode.
  • one plate-like electrode 36 constituting the charging means 35 is fitted in the injection cylinder 5 and formed on the inner periphery of the electrode 36. Since the discharge part 37 faces the gas passage 7 and is arranged to face the guide cylinder 10 constituting the other electrode, one of the divided dew condensation preventing gases G is ionized.
  • the ionized anti-condensation gas G eliminates the static charge of the injected dry ice particles D and increases the flow velocity and charge density. The increased charge density also eliminates the static charge generated when the dry ice particles D hit the target.
  • the high-pressure charging means 35 can be housed in the injection cylinder 5 and can be configured safely and compactly.
  • the present invention also provides a method for discharging liquefied carbon dioxide gas in the gas introduction chamber 1 into the gas expansion chamber 3 through the orifice valve 2 to generate dry ice particles D.
  • the orifice valve 2 is connected to the orifice hole 21 opened in the partition wall 20 between the gas introduction chamber 1 and the gas expansion chamber 3, and the orifice hole 2 A valve stem 2 2 that can be inserted into and retracted from 1 to open and close the orifice hole 2 1 in a meterable manner, a valve closing panel 24 that urges the valve stem 22 to the valve closing side, and the above valve Stopper 25 that regulates the retraction position of rod 22 so that it can be adjusted to set the valve opening amount, and piles valve stem 22 on valve-closing panel 24 and opens the valve.
  • the liquefied carbon dioxide gas in the gas introduction chamber 1 flows out through the orifice valve 2 into the gas expansion chamber 3 to generate dry ice particles D.
  • the opening degree of the orifice hole 21 opened in the partition wall 20 between the gas introduction chamber 1 and the gas expansion chamber 3 is Insert the valve stem 22 into the chair hole 21 so that the advance / retreat position can be adjusted, and weigh it. That is, the retracted position of the valve stem 22 is regulated so as to be adjustable by the stopper 25, and the opening amount of the orifice valve 2 is set.
  • the valve stem 22 is piled on the valve-closing valve 24 by the valve-opening operation means 26, and the valve is opened to the position regulated by the storage valve 25. It can be fully opened instantaneously with the desired valve opening.
  • the above-mentioned dry ice injection device is configured such that the valve opening operation means 26 is coaxially and integrally formed with the valve stem 22 and is provided with a driven port which can be moved forward and backward.
  • a drive rod 27 arranged side by side with the driven rod 23 so as to be able to move forward and backward, a driven rack 23a formed on the driven rod 23 and a drive formed on the drive rod 27
  • It can be composed of a pinion 28 that engages with the rack 27a, and a manual operation lever 29 that moves the drive rod 27 in an adjustable manner.
  • the solenoid on-off valve S unlike the conventional example is not required, it can be implemented at a low cost with a simple configuration.
  • the valve opening amount can be appropriately adjusted as needed within the range regulated by the stop lever 25 by the manual operation lever 29, which is convenient.
  • the dry ice injection device includes a panel force setting means 16 for setting the valve closing force of the valve closing panel 24 so as to be adjustable, and the driven rod 23 A pressure receiving step 23 b for urging the driven rod 23 toward the valve-opening side by gas pressure is formed at a position located in the gas introduction chamber 1 of the valve closing chamber 2.
  • the valve can be configured to function as a safety valve by antagonizing the valve opening force due to pressure.
  • the orifice valve 2 functions as a safety valve because the valve closing force of the valve closing panel 24 and the valve opening force of the gas pressure oppose each other, so that it is safe.
  • FIG. 1 shows a dry ice injection device according to the present invention
  • FIG. 1 (A) is a longitudinal sectional view of the dry ice injection device
  • FIG. 1 (B) is a line A—A in FIG. 1 (A).
  • FIG. FIG. 2 shows a main part of the dry ice injection device
  • FIG. 2 (A) is a longitudinal sectional view of a branch portion of the dry ice injection device
  • FIG. 2 (B) is FIG. 2 (A).
  • FIG. 3 is a vertical sectional view taken along line B-B in FIG.
  • FIG. 3 shows a main part of the dry ice injection device
  • FIG. 3 (A) is a longitudinal sectional view of the injection cylinder in FIG. 1 (A)
  • FIG. 3 (C) is a diagram corresponding to FIG. 3 (B) according to Modification 1 of the charging means
  • FIG. 3 (D) is a drawing of the charging means
  • FIG. 6 is a diagram corresponding to FIG. 3 (B) according to Modification 2.
  • FIG. 4 shows an example of the arrangement of the means for preventing temperature drop to be mounted in the apparatus main body of the dry ice apparatus.
  • FIG. 4 (A) is an external view of the apparatus main body, and FIG. 4 (B).
  • FIG. 4 is a longitudinal sectional view taken along line BB in FIG. 4 (A).
  • FIG. 5 shows an example of a modified arrangement of the dry ice passage, the gas passage, and the heating means of the above-mentioned dry ice apparatus.
  • FIG. 4 (A) is a diagram corresponding to FIG. (B) is a diagram corresponding to FIG. 1 (B) according to Modified Arrangement Example 2.
  • FIG. 6 and 7 show a conventional example, FIG. 6 is a longitudinal sectional view of a dry ice injection device, and FIG. 7 is a piping diagram of the dry ice injection device.
  • this dry ice injection device has an apparatus main body 11 in which a gas introduction chamber 1, an orifice valve 2, a gas expansion chamber 3, and a gas diverting section 4 are accommodated in series, and this apparatus main body 1
  • An injection cylinder 5 provided coaxially in series with 1 and a grip portion 12 for supporting the apparatus main body 11 are assembled so as to form a handgun.
  • a gas introduction pipe 14 described later conductive terminals 40 for heating means 8, and conductive wiring 4 1 ⁇ 4 2 and the ground terminal 4 3 are additionally provided inside the grip portion 12.
  • the conductive terminals and conductive wires of the charging means 36 described later are separately provided and arranged.
  • this dry ice injection device causes the liquefied carbon dioxide gas L in the gas introduction chamber 1 to flow out into the gas expansion chamber 3 through the orifice valve 2 to generate dry ice particles D.
  • the mixed fluid of the dry ice particles D and the carbon dioxide gas is divided into two in the gas distribution part 4, and one of the mixed fluids is circulated through the dry ice passage 6 formed in the axis of the injection cylinder 5, The other mixed fluid is allowed to flow through a cylindrical gas passage 7 formed around the dry ice passage 6, and the mixed fluid flowing through the gas passage 7 is heated by a heating means 8 arranged close to the gas passage 7.
  • the deicing prevention gas G is generated, and the dry ice particles D that have been circulated through the dry path 6 are jetted from the tip of the injection cylinder 4 together with the dew condensation preventing gas G.
  • the gas introduction chamber 1 is formed at the center in the front-rear direction of the apparatus main body 11, and the gas introduction chamber 1 is provided inside the grip portion 12 through a communication passage 13. It is in communication with the inlet pipe 14 for liquefied carbon dioxide L contained in the tank.
  • the orifice valve 2 has an orifice hole 21 opened in a partition wall 20 between the gas introduction chamber 1 and the gas expansion chamber 3, and is inserted into the orifice hole 21 so as to be able to advance and retreat.
  • a taper-shaped valve stem 22 that opens and closes the orifice hole 21, a valve-closing spring 24 that urges the valve stem 22 toward the valve-closing side via a driven rod 23, and the valve stem described above.
  • Stopper 25 that regulates the retreat position so that the retreat position can be adjusted to set the valve opening amount; and valve opening operating means 26 that opens the valve rod 22 against the valve closing panel 24 to open the valve. It is composed of
  • the valve closing panel 24 includes a flange 15 attached to a rear portion of the driven rod 23 and a panel receiving member 16 screwed to a rear portion of the apparatus main body 11 to constitute panel force setting means. It is constructed so as to be interposed therebetween, and to adjust the valve closing force of the valve closing panel 24 by moving the panel receiving member 16 forward and backward.
  • the stopper 25 is screwed onto the panel receiving member 16 so as to be concentric with the driven rod 23, and the driven rod 23 is retracted. The position is regulated so as to be adjustable, and the valve opening amount of the valve stem 22 is set.
  • Reference numerals 17a and 17b denote fixing screws for fixing the panel holder 16 and the stopper 25, respectively.
  • the valve opening operation means 26 is integrally formed coaxially with the valve rod 22 and is provided with the driven rod 23 provided so as to be able to advance and retreat, and is provided side by side with the driven rod 23 so as to be able to advance and retreat.
  • the orifice valve 2 is opened by the manual operation lever 29 in a moment.
  • an assisting panel 18 for assisting the drive rod 27 to the valve closing side is provided, but this assisting panel 18 may be omitted. .
  • the liquefied carbon dioxide in the gas introduction chamber 1 flows out into the gas expansion chamber 3 via the orifice valve 2 to generate dry ice particles D.
  • the opening degree of the orifice hole 21 opened in the partition wall 20 is measured by inserting the valve stem 22 into the orifice hole 21 so as to be able to adjust the advance / retreat position. That is, the retracted position of the driven rod 23 formed coaxially and integrally with the valve rod 22 and being adjustable so as to be adjustable by the stopper 25 is set to the opening amount of the orifice valve 2. .
  • the desired follow-up rod 23 is piled on the valve-closing panel 24 by the valve-opening operation means 26 and the valve is opened to the position regulated by the stopper 25, thereby instantly fully opening the desired valve-opening amount. can do. That is, since the solenoid on-off valve S unlike the conventional example is not required, it can be implemented at a low cost with a simple configuration. Moreover, by operating the manual operation handle 29 within the range regulated by the stopper 25, the valve opening amount can be appropriately adjusted, which is convenient.
  • the insertion hole 27 b of the drive rod 27 is closed by a stopper 30, but the stopper 30 receives the rear end of the drive port 27 in a position-adjustable manner and closes the drive hole 27.
  • the orifice hole 21 can be opened by an appropriate amount to allow the mixed fluid to flow through the gas passage 7 by an appropriate amount.
  • the stopper 30, the drive rod 27, the pinion 28, and the driven rod 23 function as, for example, a means for preventing the heating means 8 from overheating.
  • a diverter housing 31 having the diverter 4 is screwed near the tip of the apparatus main body 11, and
  • the branch part 4 is configured by screwing a branch metal fitting 33 into the branch part housing 31 via a predetermined gap downstream of the gas expansion chamber 3.
  • the branch metal fitting 33 forms a central passage 6 a at the shaft center and three peripheral passages 7 a at the peripheral part.
  • the mixed fluid split by the splitting section 4 is configured to flow through the central passage 6a and the peripheral passage 7a.
  • the split ratio between the central passage 6a and the peripheral passage 7a can be reduced. It can be set appropriately. Incidentally, in order to increase the flow rate of the dry ice particles D or to increase the cleaning power by the dry ice particles D, increase the ratio of the flow to the central passage 6a. Also, in order to enhance the shielding performance of the dry ice particles D by the dew condensation preventing gas G, the ratio of the flow to the peripheral passage 7a is increased. As shown in FIG. 1 (A) and FIG. 1 (B), a heating section storage tube 32 is formed coaxially and integrally with the branching section housing 31. Is stored in the injection cylinder 5.
  • a cylindrical guide tube 10 is coaxially mounted in the heating unit housing tube 32, and the guide tube 10 is coaxial with the branch metal fitting 33 as shown in FIG. 2 (A).
  • a dry ice passage 6 is formed in series with the central passage 6a, and a cylindrical gas passage 7 communicating with the peripheral passage 7a is formed around the dry ice passage 6.
  • a heater 8 as a heating means is disposed close to the outside of the gas passage 7 inside the heating section housing cylinder 32. I have.
  • a thermostat 34 is additionally provided in the lower space of the heating unit housing cylinder 32, and the heating by the heater 8 is performed. It is configured to control the temperature constantly.
  • the mixed fluid containing the dry ice particles D is divided into two by the gas distribution part 4, and one of the mixed fluids flows through the dry ice passage 6 formed in the axial center of the injection cylinder 5.
  • the other mixed fluid flows through the gas passage 7, and the mixed fluid flowing through the gas passage 7 is heated by the heating means 8 disposed in the vicinity to become the dew condensation preventing gas G and flows through the dry ice passage 6.
  • the surroundings of the dried ice particles D are surrounded by the above-mentioned dew-prevention gas G heated and sprayed from the tip of the spray cylinder 5.
  • the dry ice particles D are used to remove the scale and clean the surface of the workpiece, and the deicing prevention gas G surrounds the periphery of the dry ice particles D so that the dry ice particles D can be removed from the air containing moisture. Isolate and blow off the moist air with heated dew condensation prevention gas G to prevent dew condensation on the workpiece. Also, by keeping the object to be treated warm with the heated dew condensation prevention gas G, dew condensation due to a decrease in the temperature of the object to be treated is prevented.
  • the mixed fluid containing the dry ice particles D in the gas expansion chamber 3 is diverted in the diverter 4, so that the single liquefied carbon dioxide gas L is used to prevent the dry ice particles and dew condensation from occurring.
  • a nitrogen gas as a dew condensation preventing gas, a nitrogen gas introduction chamber, and a passage for introducing nitrogen gas into the gas expansion chamber as in the conventional example. It can be implemented at low cost. It is desirable to increase the heating efficiency of the gas flowing through the gas passage 7 by increasing the passage wall area of the gas passage 7.
  • the passage may be formed in a spiral shape or a female screw, or the residence time of gas in the passage may be extended.
  • FIG. 3 shows a main part of the dry ice injection device according to the present invention.
  • FIG. 3 (A) is a longitudinal sectional view of the injection cylinder portion in FIG. 1 (A)
  • FIG. (A) Charging means in the figure 35 C
  • FIG. 1 is a vertical sectional view taken along line C of FIG.
  • a charging means 35 is provided near the tip of the injection cylinder 5.
  • the charging means 35 includes one disc-shaped electrode 36 fitted inside the injection cylinder 5, and includes three discharge portions 37 formed on the inner periphery of the electrode 36, and the gas passage 7. It is arranged so as to face the above-described guide cylinder 10 constituting the other electrode so as to face, and for example, is configured to generate a corona discharge by applying a load of about 500 V.
  • the guide cylinder 10 constituting the other electrode is screwed to the shunt container 31 via the shunt bracket 33, and the shunt container 3
  • the electrode terminal 44 connected to 1 is electrically connected to the electrode terminal 44 via the shunt 33.
  • reference numeral 38 in FIG. 3 (B) denotes an electrode conductor
  • 39 denotes an insulator.
  • the one dew condensation preventing gas G that has been diverted is ionized at the outlet side of the gas passage 7.
  • the ionized anti-condensation gas G removes the static charge of the injected dry ice particles D, and increases the flow velocity and charge density.
  • the increased charge density also eliminates static charges generated when the dry ice particles D collide with the target.
  • the high-pressure charging means 35 can be housed in the injection cylinder 4 and can be configured safely and compactly.
  • FIG. 3 (C) is a diagram corresponding to FIG. 3 (B) according to a first modification of the charging means.
  • a large number of discharge units 37 are arranged in opposition to the guide cylinder 10 so as to face the gas passage 7 instead of the three discharge units 37.
  • FIG. 3 (D) is a diagram corresponding to FIG. 3 (B) according to a second modification of the charging means.
  • a discharge portion 37 having a disk shape in a front view and a blade-like shape in a longitudinal section is arranged facing the guide tube 10 so as to face the gas passage 7. It is.
  • the first and second modifications have the same operation and effects as those of the embodiment shown in FIG. 3 (B).
  • FIG. 4 shows an example of the arrangement of the temperature drop prevention means and the like mounted in the apparatus main body 11.
  • 4 (A) is an external view of the apparatus main body 11
  • FIG. 4 (B) is a vertical cross-sectional view taken along line B-B in FIG. 4 (A).
  • the main body 11 of the device has a gas chamber opening 9 containing a gas introduction chamber 1, a gas expansion chamber 3, and a gas diverting section 4.
  • a rod mounting hole 19 for mounting the drive rod 27; a pair of left and right heater mounting holes 46 for mounting a heater 45 which is a means for preventing temperature decrease; and a thermostat mounting hole 47. are formed.
  • the pair of heaters 45 is disposed adjacent to the lower side of the gas chamber enclosure 9 and has a length extending over the gas introduction chamber 1, the gas expansion chamber 3, and the gas branching section 4. (1) Prevents the temperature from dropping to prevent dew condensation on the outer surface, and prevents the adhesion of dry ice to the orifice valve (2) and the icing of trace water contained in carbon dioxide, thereby improving the efficiency of dry ice particle D generation. It is intended to be enhanced.
  • FIG. 5 shows a modified arrangement example of the dry ice passage 6, the gas passage 7, and the heating means 8.
  • FIG. 5 (A) is a diagram corresponding to FIG. 1 (B) according to Modified Arrangement Example 1, and in this Modified Arrangement Example 1, a dry ice passage 6 and a gas passage 7 are juxtaposed in a heating unit housing tube 32. However, a plurality of heating means 8 are arranged close to the gas passage 7.
  • FIG. 5 (B) is a diagram corresponding to FIG. 1 (B) according to Modified Arrangement Example 2.
  • a single dry ice passage 6 The two gas passages 7 are arranged in parallel above and below the dry ice passage 6, and a plurality of heating means 8 are arranged close to each gas passage 7.
  • the mixed fluid containing the dry ice particles is divided into two in the gas distribution section 4, and one of the mixed fluids flows through the dry ice passage 6 while the other is mixed.
  • the mixed fluid flows through the gas passage 7, and the mixed fluid flowing through the gas passage 7 is heated by the heating means 8 disposed in proximity to become the dew condensation preventing gas G, and the dry ice particles D flowing through the dry ice passage 6 are formed.
  • the fuel is injected from the tip of the injection cylinder 5. This makes it possible to remove scale and clean the surface of the workpiece with dry ice particles.
  • the dew condensation preventing gas G is used to prevent dew condensation on the object.
  • the heating means 8 only needs to heat the dry ice particles D contained in the mixed fluid flowing through the gas passage 7 to be gasified.
  • a fin or the like that absorbs heat and exchanges heat may be arranged close to the gas passage 7.
  • the guide tube 10 is not limited to a cylindrical one and may be a polygonal one.
  • the position of the charging means 35 is not limited to the position near the tip of the injection cylinder 5, and the power source of the charging means 35 is not limited to DC.
  • valve opening operation means 26 may use, for example, an electromagnetic on-off valve in place of the manual operation lever 29 or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

A dry ice injector capable of injecting dry ice at a low cost with a simple structure, wherein liquefied carbon dioxide gas (L) in a gas chamber (1) is allowed to flow into a gas expansion chamber (3) through an orifice valve (2) to produce dry ice particles (D) and the dry ice particles (D) are injected from the tip of an injection tube (5) together with dew formation prevention gas (G), a gas dividing part (4) is provided on the base side of the injection tube (5) on the downstream side of the gas expansion chamber (3) and a dry ice passage (6) and a gas passage (7) are dividedly formed in the injection tube (5), a heating means (8) is disposed closely to the gas passage (7), the mixed fluid of the dry ice particles (D) inside the gas expansion chamber (3) and carbon dioxide gas is divided at the dividing part (4) to allow the mixed fluid containing the dry ice particles (D) to flow in the dry ice passage (6), and the mixed flow flowing through the gas passage (7) is heated by the heating means (8) to produce the dew formation prevention gas (G).

Description

明 細 書  Specification
ドライアイス噴射装置 技術分野  Dry ice sprayer Technical field
本発明は、 ドライアイス粒子を生成して結露防止ガスとともに噴射するドライ アイス噴射装置に関する。 従来の技術  The present invention relates to a dry ice injection device that generates dry ice particles and injects them together with a dew condensation preventing gas. Conventional technology
この種のドライアイス噴射装置としては、 例えば第 6図及び第 7図に示すもの で、 実用新案登録公報第 2 5 5 7 3 8 3号に開示されたものが知られている。 こ こで第 6図は上記従来例に係るドライアイス噴射装置の縦断面図、 第 7図はその ドライアイス噴射装置の配管図である。  As this type of dry ice injection device, for example, the one shown in FIGS. 6 and 7 and disclosed in Utility Model Registration Publication No. 25557383 is known. Here, FIG. 6 is a longitudinal sectional view of the dry ice injection device according to the conventional example, and FIG. 7 is a piping diagram of the dry ice injection device.
この従来例は、 液化炭酸ガス Lを貯溜した第 1ボンべ B 1 と炭酸ガス導入室 1 0 1 aとをパイプラインで連結し、 窒素ガス N 2を貯溜した第 2ボンべ B 2と窒 素ガス導入室 1 0 1 bとをパイプラインで連結し、 炭酸ガス導入室 1 0 1 a内へ 導入した液化炭酸ガス Lをオリフィス 1 0 2を介してガス膨張室 1 0 3内へ流出 させてドライアイス粒子 Dを生成し、 このドライアイス粒子 Dをガス膨張室 1 0 3内へ導入した窒素ガス N 2とともに噴射筒 1 0 5の先端から噴射するように構 成されている。 なお、 第 6図中の符号 Pは圧力計を、 Sは電磁開閉弁を、 B 3は バッファータンクを、 それぞれ示す。  In this conventional example, a first cylinder B1 storing liquefied carbon dioxide L and a carbon dioxide gas introducing chamber 101a are connected by a pipeline, and a second cylinder B2 storing nitrogen gas N2 is connected to a nitrogen cylinder. The raw gas introduction chamber 101b is connected to the raw gas introduction chamber 101b by a pipeline, and the liquefied carbon dioxide gas L introduced into the carbon dioxide gas introduction chamber 101a flows out into the gas expansion chamber 103 via the orifice 102. Thus, dry ice particles D are generated, and the dry ice particles D are injected from the tip of the injection cylinder 105 together with the nitrogen gas N 2 introduced into the gas expansion chamber 103. In FIG. 6, P indicates a pressure gauge, S indicates a solenoid on-off valve, and B3 indicates a buffer tank.
このドライアイス噴射装置によれば、 ドライアイス粒子 Dを水分を含まない窒 素ガス N 2とともに噴射筒 1 0 5の先端から噴射することから、 被処理物に結露 が生じるのをある程度防止することができるが、 なお、 以下の点で改善の余地が ある。  According to this dry ice injection device, since the dry ice particles D are injected from the tip of the injection cylinder 105 together with the nitrogen gas N2 containing no water, it is possible to prevent dew condensation on the object to some extent. However, there is room for improvement in the following points.
( 1 ) 液化炭酸ガス Lを貯溜した第 1ボンべ B 1の他に窒素ガス N 2を貯溜し た第 2ボンべ B 2を必要とし、 しかも、 炭酸ガス導入室 1 0 1 aの他に窒素ガス 導入室 1 0 1 bと、 窒素ガス N 2をガス膨張室 1 0 3内へ導入する通路も必要で あり、 構成が複雑でコスト高になる。 (1) In addition to the first cylinder B 1 storing liquefied carbon dioxide L, nitrogen gas N 2 is also stored. A second cylinder B2 is required, and a nitrogen gas introduction chamber 101b and a passage for introducing nitrogen gas N2 into the gas expansion chamber 103 in addition to the carbon dioxide gas introduction chamber 101a. Is necessary, and the configuration is complicated and costly.
( 2 ) 電磁開閉弁 Sを開弁して液化炭酸ガス Lを炭酸ガス導入室 1 0 1 a内へ 導入し、 その液化炭酸ガスしをオリフィス 1 0 2を介してガス膨張室 1 0 3内へ 流出させてドライアイス粒子 Dを生成するが、 オリフィス 1 0 2の開度を調量す るための構成 (例えばニードル弁) の他に上記電磁開閉弁 Sを別途必要とするた め、 この点でも構成が複雑でコスト高になる。  (2) Open the solenoid on-off valve S to introduce the liquefied carbon dioxide gas L into the carbon dioxide gas introduction chamber 101a, and the liquefied carbon dioxide gas into the gas expansion chamber 103 via the orifice 102. Dry ice particles D are generated by flowing out to the orifice 102. However, in addition to the structure for adjusting the opening degree of the orifice 102 (for example, a needle valve), the above-mentioned electromagnetic on-off valve S is required separately, In this respect, the configuration is complicated and the cost is high.
( 3 ) 上記従来例では、 ドライアイス粒子 Dと窒素ガス N 2とを十分長いガス 膨張室 1 0 3内で混合し、 その混合物を噴射する構成であるから、 ドライアイス 粒子 Dを取り囲む窒素ガス N 2の層が薄くなり、 水分を含む空気を窒素ガス N 2 の層で十分に遮断することができず、 結露防止効果が十分でない。  (3) In the above conventional example, since the dry ice particles D and the nitrogen gas N 2 are mixed in a sufficiently long gas expansion chamber 103 and the mixture is injected, the nitrogen gas surrounding the dry ice particles D The N2 layer becomes thin, and air containing moisture cannot be sufficiently blocked by the nitrogen gas N2 layer, and the dew condensation preventing effect is not sufficient.
本発明はこのような事情に鑑みてなされたものであり、 その目的は、 簡素な構 成で安価に実施でき、 かつ、 効果的に結露防止できるドライアイス噴射装置を提 供することにある。 発明の開示  The present invention has been made in view of such circumstances, and an object of the present invention is to provide a dry ice injection device that can be implemented at a low cost with a simple configuration and that can effectively prevent dew condensation. Disclosure of the invention
上記課題を解決するために、 本発明は以下のように構成される。  In order to solve the above problems, the present invention is configured as follows.
即ち、 ガス導入室 1内の液化炭酸ガス Lをオリフィス弁 2を介してガス膨張室 3内へ流出させてドライアイス粒子 Dを生成し、 当該ドライアイス粒子 Dを結露 防止ガス Gとともに噴射筒 5の先端から噴射するように構成したドライアイス噴 射装置において、 上記ガス膨張室 3の下流で上記噴射筒 5の基端側にガス分流部 4を設け、 上記噴射筒 5内にドライアイス通路 6とガス通路 7とを区画形成する とともに、 上記ガス通路 7に加熱手段 8を近接配置し、 上記ガス膨張室 3内のド ライアイス粒子 Dと炭酸ガスとの混合流体を、 上記分流部 5で分流して、 上記ド ライアイス通路 6にドライアイス粒子 Dを含む混合流体を流通させるとともに、 上記ガス通路 7に流通する混合流体を上記加熱手段 8で加熱して上記結露防止ガ ス Gを生成するように構成したことを特徴とする。 That is, the liquefied carbon dioxide gas L in the gas introduction chamber 1 is caused to flow out into the gas expansion chamber 3 through the orifice valve 2 to generate dry ice particles D, and the dry ice particles D are injected together with the dew condensation preventing gas G into the injection cylinder 5. In the dry ice spraying device configured to inject from the tip of the nozzle, a gas diverter 4 is provided downstream of the gas expansion chamber 3 at the base end side of the injection cylinder 5, and a dry ice passage 6 is provided in the injection cylinder 5. And a gas passage 7, and a heating means 8 is disposed in close proximity to the gas passage 7, and a mixed fluid of dry ice particles D and carbon dioxide in the gas expansion chamber 3 is divided by the branching section 5. Flush The mixed fluid containing the dry ice particles D is allowed to flow through the lye passage 6, and the mixed fluid flowing through the gas passage 7 is heated by the heating means 8 to generate the dew condensation preventing gas G. Features.
例えば第 1図及び第 2図に示すように、 上記のガス導入室 1内の液化炭酸ガス Lは、 オリフィス弁 2を介してガス膨張室 3内へ流出してドライアイス粒子 Dを 生成する。 上記ガス膨張室 3内のドライアイス粒子 Dと炭酸ガスとの混合流体は 、 上記ガス分流部 4で分流されてドライアイス通路 6とガス通路 7に流通する。 そしてガス通路 7に流通するドライアイス粒子 Dを含む混合流体は、 ガス通路 7 に近接配置された加熱手段 8で加熱されて結露防止ガス Gとなる。 この結露防止 ガス Gは、 ドライアイス通路 6を流通したドライアイス粒子 Dとともに噴射筒 5 の先端から噴射されて、 被処理物の結露を防止する。 つまり、 単一の液化炭酸ガ ス Lを用いてドライアイス粒子 Dと結露防止ガス Gとを生成して噴射することに より、 従来例のような結露防止ガスとしての窒素ガス N 2や窒素ガス導入室 1 0 1 b、 窒素ガス N 2をガス膨張室 1 0 3内へ導入する通路も不要になり、 簡素な 構成で安価に実施できる。 しかも、 ドライアイス粒子 Dと結露防止ガス Gとは互 いに異なる通路を通過して噴射されるので、 結露防止ガス Gによりドライアイス 粒子 Dの周囲を包囲することも可能になリ、 効果的に結露を防止できる。  For example, as shown in FIG. 1 and FIG. 2, the liquefied carbon dioxide gas L in the gas introduction chamber 1 flows out into the gas expansion chamber 3 through the orifice valve 2 to generate dry ice particles D. The mixed fluid of the dry ice particles D and the carbon dioxide gas in the gas expansion chamber 3 is diverted by the gas diverter 4 and flows through the dry ice passage 6 and the gas passage 7. Then, the mixed fluid containing the dry ice particles D flowing through the gas passage 7 is heated by the heating means 8 disposed close to the gas passage 7 to become the dew condensation preventing gas G. The dew condensation preventing gas G is injected from the tip of the injection cylinder 5 together with the dry ice particles D flowing through the dry ice passage 6 to prevent dew condensation on the object. In other words, by using a single liquefied carbon dioxide L to generate and inject the dry ice particles D and the dew-condensing gas G, nitrogen gas N2 and The introduction chamber 101b and the passage for introducing the nitrogen gas N2 into the gas expansion chamber 103 are not required, and can be implemented at a low cost with a simple configuration. Moreover, since the dry ice particles D and the dew condensation gas G are injected through different passages, the dew condensation gas G can surround the dry ice particles D, which is effective. Can prevent condensation.
上記のドライアイス噴射装置は、 例えば第 4図に示すように、 上記ガス導入室 1、 ガス膨張室 3、 及びガス分流部 4に近接して温度低下防止手段 4 5を配置す ることができる。 この場合には、 装置本体 1 1外面の結露防止と、 オリフィス弁 2へのドライアイスの付着、 並びに二酸化炭素に含有される微量水分の氷結を防 止し、 併せてドライアイス粒子 Dの生成効率を高めることができる。  In the above-described dry ice injection device, for example, as shown in FIG. 4, a temperature drop prevention means 45 can be arranged in the vicinity of the gas introduction chamber 1, the gas expansion chamber 3, and the gas branching section 4. . In this case, prevention of dew condensation on the outer surface of the device 1 1, prevention of adhesion of dry ice to the orifice valve 2, and icing of trace water contained in carbon dioxide, together with the efficiency of dry ice particle D generation Can be increased.
また、 上記のドライアイス噴射装置は、 上記噴射筒 5内にガイド筒 1 0を装着 して、 そのガイド筒 1 0内に上記ドライアイス通路 6を形成するとともに、 その ガイド筒 1 0の周囲に上記ガス通路 7を形成し、 上記噴射筒 5に荷電手段 3 5を 付設し、 上記荷電手段 3 5は、 上記噴射筒 5に内嵌された一方の板状電極 3 6を 備え、 当該電極 3 6の内周部に形成した放電部 3 7を、 上記ガス通路 7に臨ませ て他方の電極を構成する上記ガイド筒 1 0に対向配置することができる。 Further, in the above-mentioned dry ice injection device, a guide cylinder 10 is mounted in the injection cylinder 5, the dry ice passage 6 is formed in the guide cylinder 10, and the dry ice passage 6 is formed around the guide cylinder 10. The gas passage 7 is formed, and the charging means 35 is connected to the injection cylinder 5. The charging means 35 is provided with one plate-like electrode 36 fitted inside the injection cylinder 5, and a discharge part 37 formed on an inner peripheral portion of the electrode 36 is provided with the gas passage 7. And can be arranged to face the guide tube 10 constituting the other electrode.
この場合には、 例えば第 3図に示すように、 荷電手段 3 5を構成する一方の板 状電極 3 6が噴射筒 5に内嵌されており、 当該電極 3 6の内周部に形成した放電 部 3 7がガス通路 7に臨み、 かつ、 他方の電極を構成する上記ガイド筒 1 0に対 向配置されているので、 分流した一方の結露防止ガス Gはイオン化される。 この イオン化された結露防止ガス Gは、 噴射されるドライアイス粒子 Dの静電荷を除 電するとともに、 その流速と荷電密度を高める。 高められた荷電密度は、 ドライ アイス粒子 Dが対象物に衝突した際に発生する静電荷をも除電する。 また、 上記 構成によれば、 高圧の荷電手段 3 5を噴射筒 5内に収容して安全、 かつ、 コンパ ク卜に構成することができる。 また、 本発明は、 ガス導入室 1内の液化炭酸ガスしをオリフィス弁 2を介して ガス膨張室 3内へ流出させてドライアイス粒子 Dを生成し、 当該ドライアイス粒 子 Dを噴射筒 5の先端から噴射するように構成したドライアイス噴射装置におい て、 上記オリフィス弁 2を、 上記ガス導入室 1とガス膨張室 3との隔壁 2 0に開 口したオリフィス孔 2 1と、 このオリフィス孔 2 1に進退可能に挿入して当該才 リフィス孔 2 1を調量可能に開閉する弁棒 2 2と、 この弁棒 2 2を閉弁側へ付勢 する閉弁パネ 2 4と、 上記弁棒 2 2の後退位置を調節可能に規制して開弁量を設 定するストツバ 2 5と、 上記弁棒 2 2を上記閉弁パネ 2 4に杭して開弁操作する 開弁操作手段 2 6とから構成したことを特徴とする。 この場合、 例えば第 1図及 び第 2図に示すように、 ガス導入室 1内の液化炭酸ガスしは、 オリフィス弁 2を 介してガス膨張室 3内へ流出してドライアイス粒子 Dを生成する。 ガス導入室 1 とガス膨張室 3との隔壁 2 0に開口したオリフィス孔 2 1の開度は、 このオリフ イス孔 2 1に弁棒 2 2を進退位置調節可能に挿入して調量する。 即ち、 この弁棒 2 2の後退位置を、 ストッパ 2 5で調節可能に規制してオリフィス弁 2の開弁量 を設定する。 この構成によれば、 上記開弁操作手段 2 6により弁棒 2 2を閉弁バ ネ 2 4に杭してス卜ッノ\° 2 5で規制される位置まで開弁操作することにより、 所 望の開弁量で瞬時に全開することができる。 In this case, for example, as shown in FIG. 3, one plate-like electrode 36 constituting the charging means 35 is fitted in the injection cylinder 5 and formed on the inner periphery of the electrode 36. Since the discharge part 37 faces the gas passage 7 and is arranged to face the guide cylinder 10 constituting the other electrode, one of the divided dew condensation preventing gases G is ionized. The ionized anti-condensation gas G eliminates the static charge of the injected dry ice particles D and increases the flow velocity and charge density. The increased charge density also eliminates the static charge generated when the dry ice particles D hit the target. Further, according to the above configuration, the high-pressure charging means 35 can be housed in the injection cylinder 5 and can be configured safely and compactly. Further, the present invention also provides a method for discharging liquefied carbon dioxide gas in the gas introduction chamber 1 into the gas expansion chamber 3 through the orifice valve 2 to generate dry ice particles D. In the dry ice injection device configured to inject from the tip of the orifice, the orifice valve 2 is connected to the orifice hole 21 opened in the partition wall 20 between the gas introduction chamber 1 and the gas expansion chamber 3, and the orifice hole 2 A valve stem 2 2 that can be inserted into and retracted from 1 to open and close the orifice hole 2 1 in a meterable manner, a valve closing panel 24 that urges the valve stem 22 to the valve closing side, and the above valve Stopper 25 that regulates the retraction position of rod 22 so that it can be adjusted to set the valve opening amount, and piles valve stem 22 on valve-closing panel 24 and opens the valve. And 6. In this case, as shown in FIGS. 1 and 2, for example, the liquefied carbon dioxide gas in the gas introduction chamber 1 flows out through the orifice valve 2 into the gas expansion chamber 3 to generate dry ice particles D. I do. The opening degree of the orifice hole 21 opened in the partition wall 20 between the gas introduction chamber 1 and the gas expansion chamber 3 is Insert the valve stem 22 into the chair hole 21 so that the advance / retreat position can be adjusted, and weigh it. That is, the retracted position of the valve stem 22 is regulated so as to be adjustable by the stopper 25, and the opening amount of the orifice valve 2 is set. According to this configuration, the valve stem 22 is piled on the valve-closing valve 24 by the valve-opening operation means 26, and the valve is opened to the position regulated by the storage valve 25. It can be fully opened instantaneously with the desired valve opening.
上記のドライアイス噴射装置は、 例えば第 1図に示すように、 上記開弁操作手 段 2 6を、 上記弁棒 2 2と同軸で一体に形成され、 進退可能に設けられた従動口 ッド 2 3と、 上記従動ロッド 2 3に並置され、 進退可能に設けられた駆動ロッド 2 7と、 上記従動ロッド 2 3に形成された従動ラック 2 3 aと上記駆動ロッド 2 7に形成された駆動ラック 2 7 aとに係合するピニオン 2 8と、 上記駆動ロッド 2 7を調節可能に進退させる手動操作レバー 2 9とから構成することができる。 この場合には、 従来例のような電磁開閉弁 Sを必要としないので、 簡素な構成で 安価に実施できる。 しかも、 手動操作レバー 2 9によりス卜ツバ 2 5で規制され る範囲内で必要に応じて開弁量を適宜調節できるので、 至便である。  For example, as shown in FIG. 1, the above-mentioned dry ice injection device is configured such that the valve opening operation means 26 is coaxially and integrally formed with the valve stem 22 and is provided with a driven port which can be moved forward and backward. 23, a drive rod 27 arranged side by side with the driven rod 23 so as to be able to move forward and backward, a driven rack 23a formed on the driven rod 23 and a drive formed on the drive rod 27 It can be composed of a pinion 28 that engages with the rack 27a, and a manual operation lever 29 that moves the drive rod 27 in an adjustable manner. In this case, since the solenoid on-off valve S unlike the conventional example is not required, it can be implemented at a low cost with a simple configuration. In addition, the valve opening amount can be appropriately adjusted as needed within the range regulated by the stop lever 25 by the manual operation lever 29, which is convenient.
また、 例えば第 1図に示すように、 上記のドライアイス噴射装置は、 上記閉弁 パネ 2 4の閉弁カを調節可能に設定するパネ力設定手段 1 6を設けるとともに、 上記従動ロッド 2 3のガス導入室 1内に位置する箇所に、 ガス圧により当該従動 ロッド 2 3を開弁側へ付勢する受圧段差部 2 3 bを形成し、 上記閉弁パネ 2 4の 閉弁力とガス圧による開弁力とを拮抗させて、 上記才リフィス弁 2を安全弁とし て機能させるように構成することができる。 この場合には、 ガス導入室 1内のガ ス圧が上昇して、 上記受圧段差部 2 3 bが受ける圧力が上記閉弁パネ 2 4の閉弁 力を超えたなら、 液化炭酸ガスは、 上記オリフィス孔 2 1を通ってガス膨張室 3 へ流出し、 前記ドライアイス通路 6とガス通路 7を通って機外へ放出される。 つ まり、 上記閉弁パネ 2 4の閉弁力とガス圧による開弁力とが拮抗することにより 、 上記オリフィス弁 2は安全弁として機能するので安全である。 図面の簡単な説明 Further, as shown in FIG. 1, for example, the dry ice injection device includes a panel force setting means 16 for setting the valve closing force of the valve closing panel 24 so as to be adjustable, and the driven rod 23 A pressure receiving step 23 b for urging the driven rod 23 toward the valve-opening side by gas pressure is formed at a position located in the gas introduction chamber 1 of the valve closing chamber 2. The valve can be configured to function as a safety valve by antagonizing the valve opening force due to pressure. In this case, if the gas pressure in the gas introduction chamber 1 increases and the pressure received by the pressure receiving step portion 23 b exceeds the valve closing force of the valve closing panel 24, the liquefied carbon dioxide gas becomes The gas flows out to the gas expansion chamber 3 through the orifice hole 21 and is discharged to the outside through the dry ice passage 6 and the gas passage 7. In other words, the orifice valve 2 functions as a safety valve because the valve closing force of the valve closing panel 24 and the valve opening force of the gas pressure oppose each other, so that it is safe. BRIEF DESCRIPTION OF THE FIGURES
第 1図は本発明に係るドライアイス噴射装置を示し、 第 1 (A)図はそのドライ アイス噴射装置の縦断面図、 第 1 (B)図は第 1 (A)図中の A— A線矢視縦断面図 である。 また、 第 2図は上記ドライアイス噴射装置の要部を示し、 第 2 (A)図は 上記ドライアイス噴射装置の分流部の縦断面図、 第 2 (B)図は第 2 (A)図中の B 一 B線矢視縦断面図である。 第 3図は上記ドライアイス噴射装置の要部を示し、 第 3 (A)図は第 1 (A)図中の噴射筒部の縦断面図、 第 3 (B)図は第 3 (A)図中の 荷電手段の C一 C線矢印視縦断面図、 第 3 (C)図は荷電手段の変形例 1に係る第 3 (B)図相当図、 第 3 (D)図は荷電手段の変形例 2に係る第 3 (B)図相当図であ る。  FIG. 1 shows a dry ice injection device according to the present invention, FIG. 1 (A) is a longitudinal sectional view of the dry ice injection device, and FIG. 1 (B) is a line A—A in FIG. 1 (A). FIG. FIG. 2 shows a main part of the dry ice injection device, FIG. 2 (A) is a longitudinal sectional view of a branch portion of the dry ice injection device, and FIG. 2 (B) is FIG. 2 (A). FIG. 3 is a vertical sectional view taken along line B-B in FIG. FIG. 3 shows a main part of the dry ice injection device, FIG. 3 (A) is a longitudinal sectional view of the injection cylinder in FIG. 1 (A), and FIG. 3 (C) is a diagram corresponding to FIG. 3 (B) according to Modification 1 of the charging means, and FIG. 3 (D) is a drawing of the charging means. FIG. 6 is a diagram corresponding to FIG. 3 (B) according to Modification 2.
第 4図は上記ドライアイス装置の装置本体内に装着される温度低下防止手段等の 配置構成を例示するもので、 第 4 (A)図はその装置本体の外形図、 第 4 (B)図は 第 4 (A)図中の B— B線矢視縱断面図である。 第 5図は上記ドライアイス装置の ドライアイス通路とガス通路及び加熱手段の変形配置例を示し、 第 4 (A)図は変 形配置例 1に係る第 1 (B)図相当図、 第 4 (B)図は変形配置例 2に係る第 1 (B) 図相当図である。 第 6図と第 7図は従来例を示し、 第 6図はドライアイス噴射装 置の縦断面図、 第 7図はドライアイス噴射装置の配管図である。 発明を実施するための最良の形態 FIG. 4 shows an example of the arrangement of the means for preventing temperature drop to be mounted in the apparatus main body of the dry ice apparatus. FIG. 4 (A) is an external view of the apparatus main body, and FIG. 4 (B). FIG. 4 is a longitudinal sectional view taken along line BB in FIG. 4 (A). FIG. 5 shows an example of a modified arrangement of the dry ice passage, the gas passage, and the heating means of the above-mentioned dry ice apparatus. FIG. 4 (A) is a diagram corresponding to FIG. (B) is a diagram corresponding to FIG. 1 (B) according to Modified Arrangement Example 2. FIG. 6 and 7 show a conventional example, FIG. 6 is a longitudinal sectional view of a dry ice injection device, and FIG. 7 is a piping diagram of the dry ice injection device. BEST MODE FOR CARRYING OUT THE INVENTION
このドライアイス噴射装置は、 第 1図に示すように、 ガス導入室 1 とオリフィ ス弁 2とガス膨張室 3とガス分流部 4とを直列に収容した装置本体 1 1と、 この 装置本体 1 1 と同軸直列状に設けられた噴射筒 5と、 装置本体 1 1を支える握り 部 1 2とを拳銃の形態をなすように組付けて構成されている。 上記握り部 1 2内 には、 後述するガス導入管 1 4と、 加熱手段 8のための導電端子 4 0、 導電配線 4 1 · 4 2と、 アース端子 4 3が付設配置されている。 なお、 後述する荷電手段 3 6の導電端子や導電配線は別途付設配置されている。 As shown in FIG. 1, this dry ice injection device has an apparatus main body 11 in which a gas introduction chamber 1, an orifice valve 2, a gas expansion chamber 3, and a gas diverting section 4 are accommodated in series, and this apparatus main body 1 An injection cylinder 5 provided coaxially in series with 1 and a grip portion 12 for supporting the apparatus main body 11 are assembled so as to form a handgun. Inside the grip portion 12, a gas introduction pipe 14 described later, conductive terminals 40 for heating means 8, and conductive wiring 4 1 · 4 2 and the ground terminal 4 3 are additionally provided. The conductive terminals and conductive wires of the charging means 36 described later are separately provided and arranged.
このドライアイス噴射装置は、 第 1図に示すように、 ガス導入室 1内の液化炭 酸ガス Lをオリフィス弁 2を介してガス膨張室 3内へ流出させてドライアイス粒 子 Dを生成し、 当該ドライアイス粒子 Dと炭酸ガスの混合流体をガス分流部 4で 二つに分流し、 一方の混合流体を上記噴射筒 5内の軸心部に形成したドライアイ ス通路 6に流通させ、 他方の混合流体を上記ドラィアイス通路 6の周囲に形成し た筒状のガス通路 7に流通させ、 上記ガス通路 7に流通する混合流体を当該ガス 通路 7に近接配置した加熱手段 8で加熱して結露防止ガス Gを生成し、 ドライア ィス通路 6に流通させたドラィアイス粒子 Dを上記結露防止ガス Gとともに噴射 筒 4の先端から噴射するように構成されている。  As shown in FIG. 1, this dry ice injection device causes the liquefied carbon dioxide gas L in the gas introduction chamber 1 to flow out into the gas expansion chamber 3 through the orifice valve 2 to generate dry ice particles D. The mixed fluid of the dry ice particles D and the carbon dioxide gas is divided into two in the gas distribution part 4, and one of the mixed fluids is circulated through the dry ice passage 6 formed in the axis of the injection cylinder 5, The other mixed fluid is allowed to flow through a cylindrical gas passage 7 formed around the dry ice passage 6, and the mixed fluid flowing through the gas passage 7 is heated by a heating means 8 arranged close to the gas passage 7. The deicing prevention gas G is generated, and the dry ice particles D that have been circulated through the dry path 6 are jetted from the tip of the injection cylinder 4 together with the dew condensation preventing gas G.
上記ガス導入室 1は、 第 1図に示すように、 装置本体 1 1の前後方向中央部に 形成されており、 このガス導入室 1は、 連通路 1 3を介して上記握り部 1 2内に 収容した液化炭酸ガス Lの導入管 1 4と連通されている。 また、 上記オリフィス 弁 2は、 第 2図に示すように、 上記ガス導入室 1とガス膨張室 3との隔壁 2 0に 開口したオリフィス孔 2 1 と、 このオリフィス孔 2 1に進退可能に挿入して当該 オリフィス孔 2 1を開閉する先細りテーパ状の弁棒 2 2と、 この弁棒 2 2を従動 ロッド 2 3を介して閉弁側へ付勢する閉弁バネ 2 4と、 上記弁棒 2 2の後退位置 を調節可能に規制して開弁量を設定するストツバ 2 5と、 上記弁棒 2 2を上記閉 弁パネ 2 4に抗して開弁操作する開弁操作手段 2 6とから構成されている。 上記閉弁パネ 2 4は、 上記従動ロッド 2 3の後部に装着されたフランジ 1 5と 、 上記装置本体 1 1の後部に螺着され、 パネ力設定手段を構成するパネ受け具 1 6との間に架着され、 上記パネ受け具 1 6を進退調節して当該閉弁パネ 2 4の閉 弁力を調節するように構成されている。 そして上記ストッパ 2 5は、 従動ロッド 2 3と同心となるようにパネ受け具 1 6に螺着され、 上記従動ロッド 2 3の後退 位置を調節可能に規制して上記弁棒 2 2の開弁量を設定するように構成されてい る。 なお、 符号 1 7 aと 1 7 bは、 それぞれパネ受け具 1 6とストツバ 2 5とを 固定する固定ネジを示す。 As shown in FIG. 1, the gas introduction chamber 1 is formed at the center in the front-rear direction of the apparatus main body 11, and the gas introduction chamber 1 is provided inside the grip portion 12 through a communication passage 13. It is in communication with the inlet pipe 14 for liquefied carbon dioxide L contained in the tank. As shown in FIG. 2, the orifice valve 2 has an orifice hole 21 opened in a partition wall 20 between the gas introduction chamber 1 and the gas expansion chamber 3, and is inserted into the orifice hole 21 so as to be able to advance and retreat. A taper-shaped valve stem 22 that opens and closes the orifice hole 21, a valve-closing spring 24 that urges the valve stem 22 toward the valve-closing side via a driven rod 23, and the valve stem described above. 22 Stopper 25 that regulates the retreat position so that the retreat position can be adjusted to set the valve opening amount; and valve opening operating means 26 that opens the valve rod 22 against the valve closing panel 24 to open the valve. It is composed of The valve closing panel 24 includes a flange 15 attached to a rear portion of the driven rod 23 and a panel receiving member 16 screwed to a rear portion of the apparatus main body 11 to constitute panel force setting means. It is constructed so as to be interposed therebetween, and to adjust the valve closing force of the valve closing panel 24 by moving the panel receiving member 16 forward and backward. The stopper 25 is screwed onto the panel receiving member 16 so as to be concentric with the driven rod 23, and the driven rod 23 is retracted. The position is regulated so as to be adjustable, and the valve opening amount of the valve stem 22 is set. Reference numerals 17a and 17b denote fixing screws for fixing the panel holder 16 and the stopper 25, respectively.
上記開弁操作手段 2 6は、 上記弁棒 2 2と同軸で一体に形成され、 進退可能に 設けられた上記従動ロッド 2 3と、 この従動ロッド 2 3に並置され、 進退可能に 設けられた駆動ロッド 2 7と、 上記従動ロッド 2 3に形成された従動ラック 2 3 aと上記駆動ロッド 2 7に形成された駆動ラック 2 7 aとに係合するピニオン 2 8と、 上記閉弁パネ 2 4に杭して上記駆動ロッド 2 7を位置調節可能に進退させ る手動操作レバー 2 9とから成り、 上記オリフィス弁 2を手動操作レバー 2 9で 一瞬に開弁するように構成されている。 なお、 この実施形態では、 閉弁パネ 2 4 の他に上記駆動ロッド 2 7を閉弁側へ助勢する助勢パネ 1 8が付設されているが 、 この助勢パネ 1 8は省略しても差し支えない。  The valve opening operation means 26 is integrally formed coaxially with the valve rod 22 and is provided with the driven rod 23 provided so as to be able to advance and retreat, and is provided side by side with the driven rod 23 so as to be able to advance and retreat. A drive rod 27, a pinion 28 engaging with a driven rack 23 a formed on the driven rod 23 and a drive rack 27 a formed on the driven rod 27, and a valve closing panel 2. The orifice valve 2 is opened by the manual operation lever 29 in a moment. In this embodiment, in addition to the valve closing panel 24, an assisting panel 18 for assisting the drive rod 27 to the valve closing side is provided, but this assisting panel 18 may be omitted. .
上記構成によれば、 ガス導入室 1内の液化炭酸ガスしは、 オリフィス弁 2を介 してガス膨張室 3内へ流出してドライアイス粒子 Dを生成する。 上記隔壁 2 0に 開口したオリフィス孔 2 1の開度は、 このオリフィス孔 2 1に弁棒 2 2を進退位 置調節可能に挿入して調量する。 即ち、 この弁棒 2 2と同軸 ·一体に形成され、 進退可能に設けられた従動ロッド 2 3の後退位置を、 ストツバ 2 5で調節可能に 規制してオリフィス弁 2の開弁量を設定する。 そして上記開弁操作手段 2 6によ リ従動ロッド 2 3を閉弁パネ 2 4に杭してストツバ 2 5で規制される位置まで開 弁操作することにより、 所望の開弁量を瞬時に全開することができる。 つまり、 従来例のような電磁開閉弁 Sを必要としないので、 簡素な構成で安価に実施でき る。 しかも、 ス卜ッパ 2 5で規制される範囲内で上記手動操作ハンドル 2 9を操 作することにより開弁量を適宜調節することができるので、 至便である。  According to the above configuration, the liquefied carbon dioxide in the gas introduction chamber 1 flows out into the gas expansion chamber 3 via the orifice valve 2 to generate dry ice particles D. The opening degree of the orifice hole 21 opened in the partition wall 20 is measured by inserting the valve stem 22 into the orifice hole 21 so as to be able to adjust the advance / retreat position. That is, the retracted position of the driven rod 23 formed coaxially and integrally with the valve rod 22 and being adjustable so as to be adjustable by the stopper 25 is set to the opening amount of the orifice valve 2. . Then, the desired follow-up rod 23 is piled on the valve-closing panel 24 by the valve-opening operation means 26 and the valve is opened to the position regulated by the stopper 25, thereby instantly fully opening the desired valve-opening amount. can do. That is, since the solenoid on-off valve S unlike the conventional example is not required, it can be implemented at a low cost with a simple configuration. Moreover, by operating the manual operation handle 29 within the range regulated by the stopper 25, the valve opening amount can be appropriately adjusted, which is convenient.
上記駆動ロッド 2 7の挿入孔 2 7 bは、 閉止栓 3 0により閉止されているが、 この閉止栓 3 0で上記駆動口ッド 2 7の後端を位置調節可能に受け止めて上記閉 弁パネ 2 4の閉弁カを殺すことにより、 上記オリフィス孔 2 1を適量だけ開弁し て、 前記ガス通路 7に前記混合流体を適量だけ流通させることもできる。 その場 合には、 上記閉止栓 3 0、 駆動ロッド 2 7、 ピニオン 2 8、 及び従動ロッド 2 3 は、 例えば前記加熱手段 8のオーバーヒー卜防止手段として機能する。 The insertion hole 27 b of the drive rod 27 is closed by a stopper 30, but the stopper 30 receives the rear end of the drive port 27 in a position-adjustable manner and closes the drive hole 27. By killing the valve closing member of the valve panel 24, the orifice hole 21 can be opened by an appropriate amount to allow the mixed fluid to flow through the gas passage 7 by an appropriate amount. In this case, the stopper 30, the drive rod 27, the pinion 28, and the driven rod 23 function as, for example, a means for preventing the heating means 8 from overheating.
第 1 (A)図及び第 2 (A)図に示すように、 前記装置本体 1 1の先端寄りには、 前記分流部 4を有する分流部収容体 3 1が螺着されており、 上記ガス分流部 4は 、 前記ガス膨張室 3の下流に所定の隙間を介して分流金具 3 3を上記分流部収容 体 3 1内に螺着することにより構成されている。 上記分流金具 3 3は、 第 2 ( A) 図と第 2 ( B )図に示すように、 軸心部に中央通路 6 aを形成し、 周辺部に 3つの 周辺通路 7 aを形成し、 上記分流部 4で分流した前記混合流体がこれらの中央通 路 6 aと周辺通路 7 aを流通するように構成されている。  As shown in FIG. 1 (A) and FIG. 2 (A), a diverter housing 31 having the diverter 4 is screwed near the tip of the apparatus main body 11, and The branch part 4 is configured by screwing a branch metal fitting 33 into the branch part housing 31 via a predetermined gap downstream of the gas expansion chamber 3. As shown in FIG. 2 (A) and FIG. 2 (B), the branch metal fitting 33 forms a central passage 6 a at the shaft center and three peripheral passages 7 a at the peripheral part. The mixed fluid split by the splitting section 4 is configured to flow through the central passage 6a and the peripheral passage 7a.
上記分流金具 3 3の螺着位置を進退調節して、 当該分流金具 3 3とガス膨張室 3との隙間を調節することにより、 上記中央通路 6 aと周辺通路 7 aを流通する 分流比を適宜設定することができる。 ちなみに、 ドライアイス粒子 Dの流通速度 を高め、 あるいはドライアイス粒子 Dによる洗浄力をアップする場合には、 中央 通路 6 aへの分流比を大きくする。 また、 結露防止ガス Gによるドライアイス粒 子 Dのシールド性を高める場合には、 周辺通路 7 aへの分流比を大きくする。 上記分流部収容体 3 1には、 第 1 (A)図と第 1 ( B )図に示すように、 加熱部収 容筒 3 2が同軸 ·一体に形成され、 この加熱部収容筒 3 2は前記噴射筒 5内に収 容されている。 この加熱部収容筒 3 2内には、 円筒形のガイド筒 1 0が同軸状に 装着され、 このガイド筒 1 0は、 第 2 ( A)図に示すように、 前記分流金具 3 3と 同軸 ·直列に連結されている。 そしてこのガイド筒 1 0内には、 前記中央通路 6 aと直列にドライアイス通路 6が形成されるとともに、 その周囲に上記周辺通路 7 aと連通する筒状のガス通路 7が形成されている。 また、 この加熱部収容筒 3 2内で、 上記ガス通路 7の外側には、 加熱手段であるヒータ 8が近接配置されて いる。 また、 上記加熱部収容筒 3 2の下側空間には、 第 1 (A)図と第 1 ( B )図に 示すように、 サーモスタット 3 4が付設配置されており、 上記ヒータ 8による加 熱温度を一定にコン卜ロールするように構成されている。 By adjusting the gap between the split metal fitting 33 and the gas expansion chamber 3 by adjusting the screw position of the split metal fitting 33, the split ratio between the central passage 6a and the peripheral passage 7a can be reduced. It can be set appropriately. Incidentally, in order to increase the flow rate of the dry ice particles D or to increase the cleaning power by the dry ice particles D, increase the ratio of the flow to the central passage 6a. Also, in order to enhance the shielding performance of the dry ice particles D by the dew condensation preventing gas G, the ratio of the flow to the peripheral passage 7a is increased. As shown in FIG. 1 (A) and FIG. 1 (B), a heating section storage tube 32 is formed coaxially and integrally with the branching section housing 31. Is stored in the injection cylinder 5. A cylindrical guide tube 10 is coaxially mounted in the heating unit housing tube 32, and the guide tube 10 is coaxial with the branch metal fitting 33 as shown in FIG. 2 (A). · Connected in series. In the guide tube 10, a dry ice passage 6 is formed in series with the central passage 6a, and a cylindrical gas passage 7 communicating with the peripheral passage 7a is formed around the dry ice passage 6. . A heater 8 as a heating means is disposed close to the outside of the gas passage 7 inside the heating section housing cylinder 32. I have. As shown in FIGS. 1 (A) and 1 (B), a thermostat 34 is additionally provided in the lower space of the heating unit housing cylinder 32, and the heating by the heater 8 is performed. It is configured to control the temperature constantly.
上記構成によれば、 ドライアイス粒子 Dを含む混合流体は、 ガス分流部 4で二 つに分流され、 一方の混合流体は上記噴射筒 5内の軸心部に形成したドライアイ ス通路 6を流通し、 他方の混合流体は上記ガス通路 7を流通し、 上記ガス通路 7 を流通する混合流体は、 近接配置した加熱手段 8で加熱されて結露防止ガス Gと なり、 ドライアイス通路 6を流通したドライアイス粒子 Dの周囲を加熱した上記 結露防止ガス Gで包囲して噴射筒 5の先端から噴射する。 これにより、 ドライア イス粒子 Dで被処理物表面のスケール除去や洗浄処理を行うとともに、 結露防止 ガス Gでドライアイス粒子 Dの周囲を包囲することにより、 ドライアイス粒子 D を湿気を含んだ空気から隔離し、 併せて、 加熱した結露防止ガス Gで湿気を含ん だ空気を吹き飛ばして被処理物の結露を防止する。 また、 加熱した結露防止ガス Gで処理対象物を保温することにより、 処理対象物の温度低下による結露を防止 する。  According to the above configuration, the mixed fluid containing the dry ice particles D is divided into two by the gas distribution part 4, and one of the mixed fluids flows through the dry ice passage 6 formed in the axial center of the injection cylinder 5. The other mixed fluid flows through the gas passage 7, and the mixed fluid flowing through the gas passage 7 is heated by the heating means 8 disposed in the vicinity to become the dew condensation preventing gas G and flows through the dry ice passage 6. The surroundings of the dried ice particles D are surrounded by the above-mentioned dew-prevention gas G heated and sprayed from the tip of the spray cylinder 5. As a result, the dry ice particles D are used to remove the scale and clean the surface of the workpiece, and the deicing prevention gas G surrounds the periphery of the dry ice particles D so that the dry ice particles D can be removed from the air containing moisture. Isolate and blow off the moist air with heated dew condensation prevention gas G to prevent dew condensation on the workpiece. Also, by keeping the object to be treated warm with the heated dew condensation prevention gas G, dew condensation due to a decrease in the temperature of the object to be treated is prevented.
また、 上記構成によれば、 ガス膨張室 3内のドライアイス粒子 Dを含む混合流 体は、 分流部 4で分流されるので、 単一の液化炭酸ガス Lを用いてドライアイス 粒子と結露防止ガス Gとを生成して噴射することにより、 従来例のような結露防 止ガスとしての窒素ガスや窒素ガス導入室、 窒素ガスをガス膨張室内へ導入する 通路も不要になり、 簡素な構成で安価に実施できる。 なお、 上記ガス通路 7の通 路壁面積を増やすことによリ、 当該ガス通路 7を流通するガスの加熱効率を高め るのが望ましい。 それには、 例えば当該通路を螺旋形や雌ネジに形成したり、 当 該通路内におけるガスの滞留時間を長くする等が考えられる。  Further, according to the above configuration, the mixed fluid containing the dry ice particles D in the gas expansion chamber 3 is diverted in the diverter 4, so that the single liquefied carbon dioxide gas L is used to prevent the dry ice particles and dew condensation from occurring. By generating and injecting gas G, it is not necessary to use a nitrogen gas as a dew condensation preventing gas, a nitrogen gas introduction chamber, and a passage for introducing nitrogen gas into the gas expansion chamber as in the conventional example. It can be implemented at low cost. It is desirable to increase the heating efficiency of the gas flowing through the gas passage 7 by increasing the passage wall area of the gas passage 7. For example, the passage may be formed in a spiral shape or a female screw, or the residence time of gas in the passage may be extended.
第 3図は本発明に係るドライアイス噴射装置の要部を示し、 第 3 ( A)図は第 1 ( A)図中の噴射筒部の縦断面図、 第 3 ( B )図は第 3 ( A)図中の荷電手段 3 5の C 一 C線矢視縦断面図である。 第 3 (A)図と第 3 ( B )図に示すように、 上記噴射筒 5の先端寄りには、 荷電手段 3 5が付設されている。 この荷電手段 3 5は、 上記 噴射筒 5に内嵌された一方の円盤状電極 3 6を備え、 当該電極 3 6の内周部に形 成した 3つの放電部 3 7を、 上記ガス通路 7に臨ませて他方の電極を構成する上 記ガイド筒 1 0に対向配置し、 例えば約 5 0 0 0 Vを負荷してコロナ放電を発生 させるように構成されている。 FIG. 3 shows a main part of the dry ice injection device according to the present invention. FIG. 3 (A) is a longitudinal sectional view of the injection cylinder portion in FIG. 1 (A), and FIG. (A) Charging means in the figure 35 C FIG. 1 is a vertical sectional view taken along line C of FIG. As shown in FIGS. 3 (A) and 3 (B), a charging means 35 is provided near the tip of the injection cylinder 5. The charging means 35 includes one disc-shaped electrode 36 fitted inside the injection cylinder 5, and includes three discharge portions 37 formed on the inner periphery of the electrode 36, and the gas passage 7. It is arranged so as to face the above-described guide cylinder 10 constituting the other electrode so as to face, and for example, is configured to generate a corona discharge by applying a load of about 500 V.
他方の電極を構成する上記ガイド筒 1 0は、 第 3 ( A)図に示すように、 前記分 流金具 3 3を介して分流収容体 3 1 に螺着されており、 上記分流収容体 3 1 に連 結された電極端子 4 4と分流金具 3 3を介して電導連結されている。 なお、 第 3 ( B )図中の符号 3 8は電極導線を示し、 3 9は絶縁体を示す。  As shown in FIG. 3 (A), the guide cylinder 10 constituting the other electrode is screwed to the shunt container 31 via the shunt bracket 33, and the shunt container 3 The electrode terminal 44 connected to 1 is electrically connected to the electrode terminal 44 via the shunt 33. Note that reference numeral 38 in FIG. 3 (B) denotes an electrode conductor, and 39 denotes an insulator.
上記構成によれば、 分流した一方の結露防止ガス Gは、 ガス通路 7の出口側で イオン化される。 このイオン化された結露防止ガス Gは、 噴射されるドライアイ ス粒子 Dの静電荷を除電するとともに、 その流速と荷電密度を高める。 高められ た荷電密度は、 ドライアイス粒子 Dが対象物に衝突した際に発生する静電荷をも 除電する。 また、 上記構成によれば、 高圧の荷電手段 3 5を噴射筒 4内に収容し て安全、 かつ、 コンパク卜に構成することができる。  According to the above configuration, the one dew condensation preventing gas G that has been diverted is ionized at the outlet side of the gas passage 7. The ionized anti-condensation gas G removes the static charge of the injected dry ice particles D, and increases the flow velocity and charge density. The increased charge density also eliminates static charges generated when the dry ice particles D collide with the target. Further, according to the above configuration, the high-pressure charging means 35 can be housed in the injection cylinder 4 and can be configured safely and compactly.
第 3 ( C )図は荷電手段の変形例 1 に係る第 3 ( B )図相当図である。 この変形例 1では、 上記 3つの放電部 3 7に代えて多数の放電部 3 7を上記ガス通路 7に臨 ませてガイド筒 1 0に対向配置したものである。  FIG. 3 (C) is a diagram corresponding to FIG. 3 (B) according to a first modification of the charging means. In the first modification, a large number of discharge units 37 are arranged in opposition to the guide cylinder 10 so as to face the gas passage 7 instead of the three discharge units 37.
また、 第 3 ( D)図は荷電手段の変形例 2に係る第 3 ( B )図相当図である。 この 変形例 2では、 上記複数の放電部 3 7に代えて、 正面視円盤状で縱断面視刃物状 の放電部 3 7を上記ガス通路 7に臨ませてガイド筒 1 0に対向配置したものであ る。 上記変形例 1及び変形例 2においても、 第 3 ( B )図の実施形態と同様の作用 •効果を奏する。  FIG. 3 (D) is a diagram corresponding to FIG. 3 (B) according to a second modification of the charging means. In this modified example 2, instead of the plurality of discharge portions 37, a discharge portion 37 having a disk shape in a front view and a blade-like shape in a longitudinal section is arranged facing the guide tube 10 so as to face the gas passage 7. It is. The first and second modifications have the same operation and effects as those of the embodiment shown in FIG. 3 (B).
第 4図は前記装置本体 1 1内に装着される温度低下防止手段等の配置構成を例 示し、 第 4 (A)図はその装置本体 1 1の外形図、 第 4 ( B )図は第 4 ( A)図中の B 一 B線矢視縦断面図である。 この装置本体 1 1には第 4 (A)図と第 4 ( B )図に示 すように、 ガス導入室 1、 ガス膨張室 3、 及びガス分流部 4を内包するガス室内 包孔 9と、 前記駆動ロッド 2 7を装着するロッド装着孔 1 9と、 温度低下防止手 段であるヒータ 4 5を装着する左右一対のヒータ装着孔 4 6 · 4 6と、 サーモス タツ卜装着孔 4 7とが形成されている。 上記一対のヒータ 4 5は、 上記ガス室内 包孔 9の下側に近接され、 ガス導入室 1、 ガス膨張室 3、 及びガス分流部 4にわ たる長さで配置されており、 装置本体 1 1の温度低下を防止してその外面の結露 防止と、 オリフィス弁 2へのドライアイスの付着、 並びに二酸化炭素に含有され る微量水分の氷結を防止することにより、 ドライアイス粒子 Dの生成効率を高め ることを意図したものである。 FIG. 4 shows an example of the arrangement of the temperature drop prevention means and the like mounted in the apparatus main body 11. 4 (A) is an external view of the apparatus main body 11, and FIG. 4 (B) is a vertical cross-sectional view taken along line B-B in FIG. 4 (A). As shown in FIGS. 4 (A) and 4 (B), the main body 11 of the device has a gas chamber opening 9 containing a gas introduction chamber 1, a gas expansion chamber 3, and a gas diverting section 4. A rod mounting hole 19 for mounting the drive rod 27; a pair of left and right heater mounting holes 46 for mounting a heater 45 which is a means for preventing temperature decrease; and a thermostat mounting hole 47. Are formed. The pair of heaters 45 is disposed adjacent to the lower side of the gas chamber enclosure 9 and has a length extending over the gas introduction chamber 1, the gas expansion chamber 3, and the gas branching section 4. (1) Prevents the temperature from dropping to prevent dew condensation on the outer surface, and prevents the adhesion of dry ice to the orifice valve (2) and the icing of trace water contained in carbon dioxide, thereby improving the efficiency of dry ice particle D generation. It is intended to be enhanced.
第 5図はドライアイス通路 6とガス通路 7及び前記加熱手段 8の変形配置例を 示す。 第 5 (A)図は変形配置例 1に係る第 1 ( B )図相当図であり、 この変形配置 例 1は、 加熱部収容筒 3 2内にドライアイス通路 6とガス通路 7を並設し、 上記 ガス通路 7に複数の加熱手段 8を近接配置してものである。 また、 第 5 ( B )図は 変形配置例 2に係る第 1 ( B )図相当図であり、 この変形配置例 2は、 加熱部収容 筒 3 2内中央部に単一のドライアイス通路 6を形成し、 このドライアイス通路 6 の上下に二つのガス通路 7を並設し、 各ガス通路 7の近傍に複数の加熱手段 8を 近接配置したものである。  FIG. 5 shows a modified arrangement example of the dry ice passage 6, the gas passage 7, and the heating means 8. FIG. 5 (A) is a diagram corresponding to FIG. 1 (B) according to Modified Arrangement Example 1, and in this Modified Arrangement Example 1, a dry ice passage 6 and a gas passage 7 are juxtaposed in a heating unit housing tube 32. However, a plurality of heating means 8 are arranged close to the gas passage 7. FIG. 5 (B) is a diagram corresponding to FIG. 1 (B) according to Modified Arrangement Example 2. In Modified Arrangement Example 2, a single dry ice passage 6 The two gas passages 7 are arranged in parallel above and below the dry ice passage 6, and a plurality of heating means 8 are arranged close to each gas passage 7.
上記変形配置例 1及び変形配置例 2においても、 ドライアイス粒子を含む混合 流体は、 ガス分流部 4で二つに分流され、 一方の混合流体は上記ドライアイス通 路 6を流通し、 他方の混合流体は上記ガス通路 7を流通し、 上記ガス通路 7を流 通する混合流体は、 近接配置した加熱手段 8で加熱されて結露防止ガス Gとなり 、 ドライアイス通路 6を流通したドライアイス粒子 Dとともに噴射筒 5の先端か ら噴射する。 これにより、 ドライアイス粒子で被処理物表面のスケール除去や洗 浄処理を行うとともに、 上記結露防止ガス Gにより被処理物の結露を防止する。 なお、 本発明は上記の実施形態に限定されるものではなく、 この発明の要旨を変 更しない範囲内において、 例えば下記のように種々の設計変更を施すことが可能 である。 Also in the above modified arrangement examples 1 and 2, the mixed fluid containing the dry ice particles is divided into two in the gas distribution section 4, and one of the mixed fluids flows through the dry ice passage 6 while the other is mixed. The mixed fluid flows through the gas passage 7, and the mixed fluid flowing through the gas passage 7 is heated by the heating means 8 disposed in proximity to become the dew condensation preventing gas G, and the dry ice particles D flowing through the dry ice passage 6 are formed. At the same time, the fuel is injected from the tip of the injection cylinder 5. This makes it possible to remove scale and clean the surface of the workpiece with dry ice particles. In addition to performing the cleaning process, the dew condensation preventing gas G is used to prevent dew condensation on the object. It should be noted that the present invention is not limited to the above-described embodiment, and various design changes can be made as follows, for example, within the scope that does not change the gist of the present invention.
( 1 ) 上記の加熱手段 8は、 ガス通路 7内を流通する混合流体に含まれるドラ ィアイス粒子 Dを加熱してガス化するものであればよいので、 前記ヒータ 8に代 えて、 例えば常温外気等の熱を吸収して熱交換するフィン等をガス通路 7に近接 配置したものでも差し支えない。  (1) The heating means 8 only needs to heat the dry ice particles D contained in the mixed fluid flowing through the gas passage 7 to be gasified. A fin or the like that absorbs heat and exchanges heat may be arranged close to the gas passage 7.
( 2 ) 上記のガイド筒 1 0は、 円筒形のものに限らず、 多角形のものでも差し 支えない。 また、 荷電手段 3 5の位置は噴射筒 5の先端寄りに限らず、 荷電手段 3 5の電源は直流に限らない。  (2) The guide tube 10 is not limited to a cylindrical one and may be a polygonal one. The position of the charging means 35 is not limited to the position near the tip of the injection cylinder 5, and the power source of the charging means 35 is not limited to DC.
( 3 ) 上記の開弁操作手段 2 6は、 前記手動操作レバー 2 9等に代えて、 例え ば電磁開閉弁を用いるものでも差し支えない。  (3) The valve opening operation means 26 may use, for example, an electromagnetic on-off valve in place of the manual operation lever 29 or the like.

Claims

請 求 の 範 囲 The scope of the claims
1. ガス導入室 (1 ) 内の液化炭酸ガス (L) をオリフィス弁 (2) を介してガ ス膨張室 (3) 内へ流出させてドライアイス粒子 (D) を生成し、 当該ドライア イス粒子 (D) を結露防止ガス (G) とともに噴射筒 (5) の先端から噴射する ように構成したドライアイス噴射装置において、  1. The liquefied carbon dioxide gas (L) in the gas introduction chamber (1) flows out into the gas expansion chamber (3) through the orifice valve (2) to generate dry ice particles (D), and the dry ice In a dry ice injection device configured to inject particles (D) together with the dew condensation gas (G) from the tip of the injection cylinder (5),
上記ガス膨張室 (3) の下流で上記噴射筒 (5) の基端側にガス分流部 (4) を設け、  Downstream of the gas expansion chamber (3), a gas branching section (4) is provided on the base end side of the injection cylinder (5),
上記噴射筒 (5) 内にドライアイス通路 (6) とガス通路 (7) とを区画形成 するとともに、 上記ガス通路 (7) に加熱手段 (8) を近接配置し、  A dry ice passage (6) and a gas passage (7) are defined in the injection cylinder (5), and a heating means (8) is arranged close to the gas passage (7).
上記ガス膨張室 (3) 内のドライアイス粒子 (D) と炭酸ガスとの混合流体を 、 上記分流部 (4) で分流して、 上記ドライアイス通路 (6) にドライアイス粒 子 (D) を含む混合流体を流通させるとともに、 上記ガス通路 (7) に流通する 混合流体を上記加熱手段 (8) で加熱して上記結露防止ガス (G) を生成するよ うに構成したことを特徴とするドライアイス噴射装置。  The mixed fluid of the dry ice particles (D) and the carbon dioxide gas in the gas expansion chamber (3) is diverted in the diverter (4), and the dry ice particles (D) are diverted to the dry ice passage (6). And the mixed fluid flowing through the gas passage (7) is heated by the heating means (8) to generate the dew condensation preventing gas (G). Dry ice injection device.
2. 請求の範囲第 1項に記載したドライアイス噴射装置において、 2. In the dry ice injection device described in claim 1,
上記ガス導入室 (1 ) 、 ガス膨張室 (3) 、 及びガス分流部 (4) に近接して 温度低下防止手段 (45) を配置したことを特徴とするドライアイス噴射装置。  A dry ice injection device characterized in that a temperature lowering prevention means (45) is arranged in close proximity to the gas introduction chamber (1), the gas expansion chamber (3), and the gas branching section (4).
3. 請求の範囲第 1項又は第 2項に記載したドライアイス噴射装置において、 上記噴射筒 (5) 内にガイド筒 (1 0) を装着して、 そのガイド筒 (1 0) 内 に上記ドライアイス通路 (6) を形成するとともに、 そのガイド筒 (1 0) の周 囲に上記ガス通路 (7) を形成し、 3. The dry ice injection device according to claim 1 or 2, wherein a guide cylinder (10) is mounted in the injection cylinder (5), and the guide cylinder (10) is mounted in the guide cylinder (10). A dry ice passage (6) is formed, and the gas passage (7) is formed around the guide tube (10).
上記噴射筒 (5) に荷電手段 (35) を付設し、  A charging means (35) is attached to the injection cylinder (5),
上記荷電手段 (35) は、 上記噴射筒 (5) に内嵌された一方の板状電極 (3 6) を備え、 当該電極 (36) の内周部に形成した放電部 (37) を、 上記ガス 通路 (7) に臨ませて他方の電極を構成する上記ガイド筒 (1 0) に対向配置し たことを特徴とするドライアイス噴射装置。 The charging means (35) includes one plate-like electrode (36) fitted inside the injection cylinder (5), and includes a discharge unit (37) formed on an inner peripheral portion of the electrode (36). It faces the above-mentioned guide tube (10) which constitutes the other electrode so as to face the above-mentioned gas passage (7). A dry ice injection device, characterized in that:
4. ガス導入室 (1 ) 内の液化炭酸ガス (L) をオリフィス弁 (2) を介してガ ス膨張室 (3) 内へ流出させてドライアイス粒子 (D) を生成し、 当該ドライア イス粒子 (D) を噴射筒 (5) の先端から噴射するように構成したドライアイス 噴射装置において、  4. The liquefied carbon dioxide (L) in the gas introduction chamber (1) is discharged into the gas expansion chamber (3) through the orifice valve (2) to generate dry ice particles (D), and the dry ice In a dry ice injection device configured to inject particles (D) from the tip of the injection cylinder (5),
上記オリフィス弁 (2) を、 上記ガス導入室 (1 ) とガス膨張室 (3) との隔 壁 (20) に開口したオリフィス孔 (2 1 ) と、 このオリフィス孔 (2 1 ) に進 退可能に挿入して当該オリフィス孔 (2 1 ) を調量可能に開閉する弁棒 (22) と、 この弁棒 (22) を閉弁側へ付勢する閉弁パネ (24) と、 上記弁棒 (22 ) の後退位置を調節可能に規制して開弁量を設定するストツバ (25) と、 上記 弁棒 (22) を上記閉弁パネ (24) に杭して開弁操作する開弁操作手段 (2 6 ) とから構成したことを特徴とするドライアイス噴射装置。  The orifice valve (2) is moved into and out of the orifice hole (2 1) opened in the partition (20) between the gas introduction chamber (1) and the gas expansion chamber (3), and the orifice hole (2 1). A valve stem (22) that is inserted as much as possible to open and close the orifice hole (2 1) in a meterable manner, a valve closing panel (24) that urges the valve stem (22) toward the valve closing side, Stopper (25) that regulates the retreat position of the rod (22) so that it can be adjusted to set the valve opening amount, and valve opening that operates by opening the valve rod (22) to the valve closing panel (24) A dry ice injection device characterized by comprising an operating means (26).
5. 請求の範囲第 4項に記載したドライアイス噴射装置において、  5. In the dry ice injection device described in claim 4,
上記開弁操作手段 (26) を、 上記弁棒 (22) と同軸で一体に形成され、 進 退可能に設けられた従動ロッド (23) と、 上記従動ロッド (23) に並置され 、 進退可能に設けられた駆動ロッド (27) と、 上記従動ロッド (23) に形成 された従動ラック (23 a) と上記駆動ロッド (27) に形成された駆動ラック (27 a) とに係合するピニオン (28) と、 上記駆動ロッド (2 7) を調節可 能に進退させる手動操作レバー (29) とから構成したことを特徴とするドライ アイス噴射装置。  The valve opening operating means (26) is coaxially and integrally formed with the valve rod (22), and is arranged side by side with the driven rod (23) provided so as to be able to advance and retreat. , A pinion that engages with a driven rack (23a) formed on the driven rod (23) and a driven rack (27a) formed on the driven rod (27). (28) and a manual operation lever (29) for adjusting and retracting the drive rod (27) in a dry ice injection device.
6. 請求の範囲第 4項に記載したドライアイス噴射装置において、  6. In the dry ice injection device described in claim 4,
上記閉弁パネ (24) の閉弁カを調節可能に設定するパネ力設定手段 (1 6) を設けるとともに、 上記従動ロッド (23) のガス導入室 (1 ) 内に位置する箇 所に、 ガス圧により当該従動ロッド (23) を開弁側へ付勢する受圧段差部 (2 3 b) を形成し、 上記閉弁パネ (2 4 ) の閉弁力とガス圧による開弁力とを拮抗させて、 上記才 リフィス弁 (2 ) を安全弁として機能させるように構成したことを特徴とするド ライアイス噴射装置。 Panel force setting means (16) for setting the valve closing force of the valve closing panel (24) to be adjustable is provided, and the driven rod (23) is located in the gas introduction chamber (1). A pressure receiving step (23 b) is formed to urge the driven rod (23) toward the valve opening side by gas pressure, A dry ice injection device characterized in that the valve closing force of the valve closing panel (24) and the valve opening force of the gas pressure are antagonized so that the valve (2) functions as a safety valve. .
PCT/JP2002/004598 2000-11-14 2002-05-10 Dry ice injector WO2003095146A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000346415A JP3509738B2 (en) 2000-11-14 2000-11-14 Dry ice injection device
TW091109612A TW548141B (en) 2000-11-14 2002-05-08 Dry ice spraying apparatus
PCT/JP2002/004598 WO2003095146A1 (en) 2000-11-14 2002-05-10 Dry ice injector
KR1020037013740A KR100841550B1 (en) 2002-05-10 2002-05-10 A dry ice spray equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000346415A JP3509738B2 (en) 2000-11-14 2000-11-14 Dry ice injection device
PCT/JP2002/004598 WO2003095146A1 (en) 2000-11-14 2002-05-10 Dry ice injector

Publications (1)

Publication Number Publication Date
WO2003095146A1 true WO2003095146A1 (en) 2003-11-20

Family

ID=31995819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/004598 WO2003095146A1 (en) 2000-11-14 2002-05-10 Dry ice injector

Country Status (2)

Country Link
TW (1) TW548141B (en)
WO (1) WO2003095146A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3763481A1 (en) * 2019-07-10 2021-01-13 ACP Systems AG Method for creating a co2 snow jet
CN114599606A (en) * 2019-10-25 2022-06-07 梅塞尔集团有限公司 Apparatus and method for producing and transporting dry ice pellets

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110091256A (en) * 2019-06-12 2019-08-06 上海悦威电子设备有限公司 A kind of liquid carbon dioxide cleaning equipment
CN111515866B (en) * 2020-06-08 2024-05-03 李森 Novel handheld water jet cutting gun

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2557383Y2 (en) * 1991-12-06 1997-12-10 大陽東洋酸素株式会社 Dry ice blast injection gun
JP2002143731A (en) * 2000-11-14 2002-05-21 Itec Co Ltd Dry ice spraying apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2557383Y2 (en) * 1991-12-06 1997-12-10 大陽東洋酸素株式会社 Dry ice blast injection gun
JP2002143731A (en) * 2000-11-14 2002-05-21 Itec Co Ltd Dry ice spraying apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3763481A1 (en) * 2019-07-10 2021-01-13 ACP Systems AG Method for creating a co2 snow jet
CN114599606A (en) * 2019-10-25 2022-06-07 梅塞尔集团有限公司 Apparatus and method for producing and transporting dry ice pellets

Also Published As

Publication number Publication date
TW548141B (en) 2003-08-21

Similar Documents

Publication Publication Date Title
CN101172270B (en) Electrostatic atomization device
CN101653047B (en) Plasma spraying device and method
US5090619A (en) Snow gun having optimized mixing of compressed air and water flows
CA2809566C (en) Ion source for mass spectrometry
CA2680390A1 (en) Opposed inductor improvements
JP2002143731A (en) Dry ice spraying apparatus
WO2003095146A1 (en) Dry ice injector
KR100841550B1 (en) A dry ice spray equipment
CN205893301U (en) Blast furnace top device of fetching water
JPS57171073A (en) Fuel injection device
GB1305293A (en)
US4437314A (en) Atomizer nozzle for continuous fuel injection
Horisawa et al. Influence of constrictor size on thrust performance of a very low power arcjet
JP2009131743A (en) Dry ice spraying device
KR20100047778A (en) Ultrafine particles sprayer
JP4376392B2 (en) Dry ice snow spraying device for cleaning and cleaning method using the same
RU2187041C2 (en) Pulsating combustion heat generator
US1819423A (en) Air humidifier
JPS5919241B2 (en) Superheated steam burner using flame jet
AU5576694A (en) Mixing/metering unit
KR0125769Y1 (en) Mist blower equipped with a cooling apparatus
CN115823619B (en) Plasma jet collision nozzle device
CN203342964U (en) Spray nozzle
JP2013204940A (en) Boiler system
CN109099421B (en) Vaporization combustion device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1020037013740

Country of ref document: KR

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase