WO2003094173A1 - Device for controlling an excitation signal from a resonant mechanical oscillating element, measuring device, method of controlling the excitation signal, method of taking measurements, computer program and storage device - Google Patents

Device for controlling an excitation signal from a resonant mechanical oscillating element, measuring device, method of controlling the excitation signal, method of taking measurements, computer program and storage device Download PDF

Info

Publication number
WO2003094173A1
WO2003094173A1 PCT/ES2003/000100 ES0300100W WO03094173A1 WO 2003094173 A1 WO2003094173 A1 WO 2003094173A1 ES 0300100 W ES0300100 W ES 0300100W WO 03094173 A1 WO03094173 A1 WO 03094173A1
Authority
WO
WIPO (PCT)
Prior art keywords
oscillation
signal
amplitude
frequency
excitation
Prior art date
Application number
PCT/ES2003/000100
Other languages
Spanish (es)
French (fr)
Inventor
Francisco Javier Tamayo De Miguel
Laura M. LECHUGA GOMÉZ
M. del Mar ÁLVAREZ SÁNCHEZ
Original Assignee
Consejo Superior De Investigaciones Científicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas filed Critical Consejo Superior De Investigaciones Científicas
Priority to AU2003214265A priority Critical patent/AU2003214265A1/en
Publication of WO2003094173A1 publication Critical patent/WO2003094173A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/32AC mode
    • G01Q60/34Tapping mode

Definitions

  • the invention falls within the field of mechanical oscillators and measurements based on the dynamic response of said oscillators.
  • the dynamic response of a mechanical oscillator means the relationship between the oscillator movement and an excitation force with a certain frequency.
  • the dynamic response is determined by the resonance frequency, quality factor, damping factor, elastic constant and mass.
  • relevant mechanical oscillators are cantilevers used in atomic force microscopy (AFM), fiber optic probes used in near field optical microscopy (SNOM), and resonant structures of sensors and mechanical biosensors.
  • the basic idea of the atomic force microscope is to measure the force between a very sharp point (radius of curavature of the order of the nanometer) and a surface that you want to characterize, which can be located at a distance between 0.1 and 100 nm.
  • the tip is attached to the end of a cantilever (micro lever) of micrometric dimensions, so that the force is measured from the cantilever deflection.
  • the cantilever is deflected in response to force following approximately Hooke's law, that is, it behaves like a harmonic oscillator.
  • Deflection is usually measured with sub-nanometric resolution by an optical system illustrated schematically in Figure 1: a laser beam 1 emitted by a laser diode 2 strikes the surface of the cantilever or oscillating element 3 (which is provided with the tip 4) and is reflected in a segmented photodetector 5; the object on which the measurement is carried bears the numerical reference 6.
  • Other optical, capacitive, piezoresistive detection methods etc. can also be used.
  • the images are obtained by sweeping the sample with respect to the tip or vice versa, which have an accuracy of 0.01-0.1 nm.
  • the scanning is usually done using piezoelectric crystals.
  • a feedback system can maintain constant force (constant deflection), vertically moving the sample with respect to the tip or vice versa.
  • the vertical displacement with respect to the horizontal provides the topography of the surface of the sample.
  • the AFM it is worth highlighting its high spatial resolution that is determined by the dimensions of the tip and which allows sub-nanometric resolution to be obtained.
  • it allows the topographic visualization of surfaces in different media such as vacuum, air, gases or liquids. It also shows great versatility and allows visualizing magnetic domains, spatial variations of electrical properties or mechanical properties.
  • the AFM has become a fundamental tool in nanotechnology and its use is widespread in the fields of materials physics, physicochemical, biology and biomedicine.
  • the expansion of the atomic forces microscope has led to the commercialization of microfabricated cantilevers with silicon technology.
  • the cantilevers have a length of the order of 100 ⁇ m, a width of the order of 10 ⁇ m and a thickness of less than approximately 1 ⁇ m.
  • the elastic constant (k) is determined by the dimensions of the cantilever, being of the order of 0.1 N / m.
  • static mode To detect and measure the force between the tip and the sample in an AFM there are two modes: static mode and dynamic mode.
  • static mode also called contact mode
  • the tip is usually in contact with the surface of the sample, with a repulsive force appearing.
  • the minimum detectable force that can be applied to the sample is mainly limited by the thermal noise produced by a fluctuation in cantilever deflection. Using the static method, forces below 0.01 nN can hardly be used.
  • the dynamic mode allows lower forces to be measured in the air and vacuum media.
  • the cantilever oscillates with an amplitude of the order of the nanometer, excited by an external sine force with frequency equal to that of the resonance of the Cantilever, or next.
  • the cantilever oscillation changes when the tip is close to the surface of the sample due to the force between the tip and the sample.
  • the oscillation parameters that can be measured are the amplitude and the lag with respect to the exciting force, and its change due to the tip / sample interaction.
  • the change in amplitude or offset is due to the change in the resonant frequency and the change in the damping factor.
  • the forces exerted in the dynamic mode of an AFM can be analyzed by modeling the cantilever as a forced harmonic oscillator whose equation of motion is:
  • m is the effective cantilever mass
  • z is the cantilever deflection
  • is the damping factor
  • F 0 cos ( ⁇ t) is the excitation force
  • F ⁇ nt is the interaction force between the tip and the sample.
  • the damping factor ( ⁇ ) depends on the internal friction of the material and the friction of the cantilever with the medium.
  • Q is Another magnitude directly related to the damping factor
  • ⁇ 0 is the angular resonance frequency.
  • the Q varies depending on the viscosity of the medium, so in vacuum it can reach values of the order of 10,000, in air of the order of 100 and in liquids very low values of 1 to 10.
  • One way to obtain complete information on the interaction between the tip and the sample is to measure the frequency spectrum of the cantilever, that is, the amplitude and the lag of the oscillation with respect to the frequency of the exciter signal (see Figure 2) .
  • Two magnitudes are measured from the frequency spectrum, the resonance frequency f 0 and the quality factor Q.
  • the measurement of the offset allows to determine the resonant frequency of the cantilever and its change due to the tip / sample interaction, given that the definition of Resonance frequency is that frequency at which the offset between the cantilever oscillation and the exciter signal is 90 degrees. This frequency is where the maximum amplitude is approximately. However, in the case of low quality factors the Maximum amplitude position differs from the resonant frequency.
  • the quality factor is measured by the width of the amplitude curve as a function of the frequency of the exciter signal by this expression:
  • ⁇ f 0 is the width of the curve at which the amplitude has decayed by half.
  • the cantilever In the dynamic mode of an AFM, the cantilever is excited at a fixed frequency, equal to or close to that of resonance and the interaction between the tip and the sample can be measured by changing the amplitude of the oscillation. Assume that the interaction between the tip and the sample displaces the resonance frequency and that the system can detect amplitude changes above a certain threshold. The amount that the resonance frequency has to be displaced, that is, the amount of interaction between the tip and the sample, so that a change in amplitude can be detected depends on the quality factor (Q) as illustrated in Figure 3. Thus, it is understood why the dynamic mode of AFM in liquids implies high normal forces.
  • Q quality factor
  • a change in detectable amplitude in liquids only occurs when there are high forces between the tip and the sample (high resonance frequency shift), due to the low Q. Similarly, if the interaction between the tip and the sample were measured by changing the oscillation offset the same would happen; The change in offset due to a change in the resonance frequency is proportional to the quality factor.
  • AFM AFM
  • This limitation is fundamental when you want to visualize biological samples (DNA, proteins, cells, etc.). To visualize the native structure of these samples, visualization is required in an aqueous medium. Under these conditions, the biological samples are soft and weakly adhere to the solid support (mica, graphite, silicon, glass, etc.) as a result of the great screening of the attractive forces between the biological samples and the solid support that is produced in solutions aqueous.
  • the tip In the contact mode, the tip displaces and / or destroys the sample during scanning (lateral forces), and visualization of the sample is prevented or made very difficult.
  • the tip usually touches the sample intermittently in each cycle of the oscillation.
  • resonant structures are microfabricated that can be used as sensors and biosensors.
  • Most sensors based on resonant structures have been developed for the detection of chemical compounds in gaseous media demonstrating very high sensitivity. They also allow real-time detection, require a minimum amount of analyte and the tiny size of these devices makes their miniaturization and integration into chips with low cost feasible.
  • An example is bio / sensors based on cantilevers such as those used in AFM, but in which the tip is not used.
  • An important application of this type of sensors is the biosensors and sensors of chemical substances in liquid media. Biosensors detect biological substances instead of chemical substances. For this reason, the detection must be performed in the liquid medium, in which the biological molecules are functional. From now on, cantilever is understood as any resonant mechanical structure.
  • receptor molecules are immobilized on one of the sides of the resonant mechanical structure (EMR), which specifically bind to the substance to be analyzed or detected (analyte).
  • EMR resonant mechanical structure
  • the analyte binds to the receptor molecules.
  • the surface composition has varied and therefore the surface tension. Since the receptor molecules have been immobilized only on one side of the cantilever, the surface tension on this side changes with respect to that on the other side, and a cantilever curvature occurs.
  • This cantilever curvature can be measured by an optical system such as that used in an AFM and described above, or by other optical, capacitive, piezoresistive methods, etc.
  • FIG. 4 An example of cantilevers-based biosensor for detecting DNA hybridization is shown in Figure 4.
  • the device It consists of a cantilevers microarray. Single-stranded DNA with different base sequences has been immobilized on each side of the cantilever. When the microarray is exposed to a liquid solution containing DNA from a chain whose base sequence is complementary to that previously immobilized in one of the cantilevers, this cantilever curves due to the change in surface tension produced by the double strand DNA formation.
  • the receptor molecules are immobilized on one or both sides of the cantilever.
  • the cantilever oscillates with an amplitude of the order of the nanometer and the oscillation is measured in the same way as in a dynamic microscope of forces.
  • the sensitivity to measure changes in cantilever oscillation is proportional to the quality factor.
  • the cantilever resonance frequency is obtained by measuring the oscillation offset with respect to the exciter signal.
  • a change in the resonance frequency produces a offset of the offset with respect to 90 degrees.
  • This deviation is proportional to Q, and therefore, the sensitivity to determine the change in the resonance frequency is proportional to Q.
  • the low sensitivity to measure the dynamic properties of the cantilever in the liquid medium has prevented them from having developed Cantilevers based biosensors using dynamic detection.
  • Cantilever-based biosensors that use the static measurement method have the disadvantage that the signal being measured, the cantilever deflection, has a large drift, making its use impractical. The origin of this drift is due to turbulence of the liquid, slow chemical reactions between the solution and the cantilever surface, and thermal fluctuations. The latter has a dramatic effect on the measurements. Normally to immobilize the receptor molecules on one side of the cantilever, it is necessary to previously evaporate a thin layer of gold (thickness «10-50 nm). As a consequence, the cantilever not only responds to analyte molecules when they bind to receptor molecules, but is very sensitive to very small variations in temperature.
  • WO-A-01/81857 (on which the ActivResonance Controller® product marketed by Infinitésima Ltd. is based, describes an arrangement that allows to increase the low quality factor Q of the cantilever in the liquid medium, by means of a system of electronic feedback
  • the applications of WO-A-01/81857 also They are described in the previous publications.
  • the dynamic response of the cantilever is more sensitive than the static response, as described above.
  • the dynamic response hardly suffers thermal drift, as with the static response, which requires a long stabilization time.
  • the measurement of the dynamic response of the cantilever in a liquid medium is limited by the very low quality factor Q. This makes the AFM in the liquid medium less sensitive and that the biosensors and chemical sensors that detect substances in liquid media traditionally measure The static answer.
  • the method described in WO-A-01/81857 allows to increase the sensitivity of AFM in liquids up to 3 orders of magnitude, which has a strong impact on the application of AFM in biology. Another area of impact is the field of chemical biosensors and sensors based on resonant mechanical microstructures that need to be measured in the liquid medium.
  • WO-A-01/81857 The idea behind the invention described in WO-A-01/81857 is to introduce a cantilever movement control system to increase the quality factor. Let's say that the cantilever reacts to an incident force with frequency ⁇ , F ⁇ ⁇ ) with a transfer function X ( ⁇ ) that corresponds to a damped harmonic oscillator.
  • ⁇ 0 is the angular resonance frequency
  • k is the elastic constant
  • Q is the quality factor of the cantilever.
  • the response of the oscillator can be modified by a feedback system with a transfer function C ( ⁇ ).
  • C transfer function
  • the invention described in WO-A-01/81857 is intended to increase the Q of the cantilever, and this can be done by a controller with a function of transfer:
  • the cantilever oscillated by an alternating magnetic field whose frequency is the one of resonance, or next to her.
  • the oscillating element 3 a thin layer of ferromagnetic material has previously evaporated to respond to the magnetic field.
  • Another excitation method that can be used is the generation of mechanical-acoustic waves in the fluid by means of a piezoelectric crystal.
  • the other important element of this device is the unit that detects the resonance frequency, which is done by means of a phase-locked loop (PLL) 7 comprising a phase detector 8, a Pl 9 controller and a voltage controlled oscillator ( VCO) 10.
  • PLL phase-locked loop
  • VCO voltage controlled oscillator
  • F 0 e ' ⁇ t is the exciting force that makes the cantilever swing.
  • the cantilever is oscillated by the sum of two exciting forces, one is the standard force F 0 e ' ⁇ t , and the other is a force that is proportional to the movement of the cantilever offset 90 degrees, G ze l ⁇ / 2 .
  • the differential equation of this system is:
  • Figure 8 shows the effect of this feedback system on the response of the cantilever immersed in a liquid.
  • the quality factor can be increased up to 3 orders of magnitude, being able to obtain Qs close to 1000. That is a Cantilever in a liquid can present a dynamic response comparable to that found in a vacuum.
  • the resonance frequency signal is compared with the deflection signal of the cantilever immersed in aqueous solution.
  • the deflection signal shows great drift due to the thermal drift of the positions of the laser beam, the photodetector, and the cantilever. There are also slow chemical reactions between the cantilever and the solution. However, the resonance frequency signal is immune to these drifts.
  • the resonance frequency was immune to this alteration.
  • the antigen was introduced, a deflection response similar to when the solution was simply introduced without antigen was introduced. This change in the signal is due to the turbulence produced, the effect of local temperature change and the effect of the reaction of the antigen with the antibodies immobilized in the cantilever.
  • the signal of the resonance frequency that was immune to the introduction of the PBS shows a marked jump when the antigen is introduced into the solution.
  • the feedback system although it does serve to substantially increase the quality factor discussed above, does not always provide optimum sensitivity in the dynamic response of the cantilever or mechanical oscillator element in general.
  • the feedback system described allows obtaining high quality factors.
  • high quality factors involve certain disadvantages due to the presence of transients in the oscillation.
  • the cantilever oscillation is composed of a transitory and a stationary element.
  • the cantilever swing for an excitation force F 0 e l ⁇ t can be expressed as follows :
  • the first adding is the transitory element and the second the steady state of the oscillation.
  • the measurement of the amplitude (A) and the offset of the steady state oscillation ( ⁇ ) requires that the transient oscillation disappears.
  • the magnitude of time that indicates how long it takes for the transient to disappear is the time constant ⁇ ,
  • One aspect of the invention relates to a device for controlling an excitation signal of a resonant mechanical oscillating element excited by said excitation signal.
  • the control device comprises: means for receiving a signal representative of the oscillation of the oscillating element; means for generating a feedback component (F 2 ) of the excitation signal so that said feedback component is a function of at least one characteristic of the signal representative of the oscillation (Z); the excitation signal comprising at least said feedback component (F 2 ) and the excitation signal having an excitation frequency ( ⁇ ).
  • the control device further comprises means of determining a lag.
  • the means of generating a feedback component (F 2 ) are configured so that the feedback component (F 2 ) has an amplitude (GA) that is a function of said offset ( ⁇ ).
  • GA amplitude
  • the control system allows changing the dynamic response of the resonant mechanical oscillator element and increasing its sensitivity to measure forces acting on the mechanical element or changes in the physical and / or chemical properties of the medium in which the mechanical element, or an object that is located in relation to the mechanical element.
  • the quality factor of a mechanical oscillator is determined by the energy dissipated during its oscillation due to internal friction of the material of the mechanical element and the friction of the mechanical element with the medium during oscillation.
  • a peak located approximately at the resonant frequency is observed. The width of this peak is smaller the greater the quality factor Q, that is, the less energy dissipates in the oscillation.
  • the offset changes more than 90 degrees when the frequency of the exciter signal deviates from the resonant frequency.
  • the oscillator dissipates more or less energy, it is indifferent when what is sought is to see changes in the oscillation of the mechanical element due to external changes that are to be measured (forces acting on the mechanical element or changes in the properties physical and / or chemical means of the medium in which the mechanical element is, or of an object that is located in relation to the mechanical element).
  • the control system of this invention apparently produces a high Q because it provides very narrow amplitude resonance peaks, but does not necessarily affect the energy dissipation of the system, which is the characteristic that determines the quality factor of a mechanical oscillator.
  • the control system of the present invention can cause major phase shifts when the excitation frequency deviates from the resonance frequency.
  • the control system according to the present invention allows a higher "apparent" quality factor to be obtained but, unlike the system set forth in WO-A-01/81857, it is not intended to increase the actual quality factor. It is intended that when measuring the amplitude of the mechanical oscillator with respect to the excitation frequency, a narrower maximum is obtained than that which the mechanical oscillator would have without this control system and was excited by an excitation force with a fixed amplitude. The maximum is at a frequency close to or equal to that of resonance. Similarly, it can be expected that the feedback system will produce a shift change when the excitation frequency deviates from that of the resonance, which is greater than if there was no control system.
  • the offset is not changed if the excitation force is composed only of the feedback component (F 2 ). However, if the excitation force is composed of a base component Fi and the feedback component F 2 in quadrature, the situation is complex, and several feedback loops are required to reach a steady state. This feedback system affects the offset and amplitude.
  • This control system does not change nor does it necessarily change the energy dissipation of the system.
  • the control system intends that the amplitude curve with respect to the frequency of the excitation signal has a narrow maximum around the resonant frequency or a frequency close to it. It can also be intended to increase the change in the oscillation offset when the frequency of the excitation signal deviates from the resonant frequency or a frequency close to it. This occurs when the quality effect is high, but it can also be obtained with a control system that produces these responses without increasing the quality factor, that is, without changing the energy dissipation of the mechanical oscillator.
  • changes in the resonance frequency of the mechanical oscillator can be measured with greater sensitivity as a result of forces acting on the mechanical element or changes in the physical and / or chemical properties of the medium in which the mechanical element is, or of an object that is located in relation to the mechanical element.
  • changes in the quality factor can also be measured with greater sensitivity as a result of forces acting on the mechanical element or changes in the physical and / or chemical properties of the medium in which the mechanical element is, or of an object which is located in relation to the mechanical element.
  • the control system increases the sensitivity of mechanical oscillators that have a low quality factor because they are made of a material with high internal friction or because measurements are made in a viscous medium such as a liquid.
  • the invention does not imply certain problems that the control system described in WO-A-01/81857 has, which it pursues increases the quality factor, see what we have commented in the "background of the invention" section.
  • the amplitude (GA) has a maximum at a lag ( ⁇ r ) corresponding to a frequency ( ⁇ r ) close to the resonant frequency of the oscillating element.
  • the excitation force acquires a maximum value at a frequency close to that of resonance and an amplitude curve is obtained with respect to the frequency of the exciter signal, which It has a narrow maximum around that frequency.
  • a change in the resonance frequency when the oscillator is being excited at that frequency causes a change in the amplitude (which may be related to the change in the resonance frequency) greater than the change in amplitude produced if excites the mechanical oscillator with an excitation force with a fixed amplitude (the situation is similar to that illustrated in Figure 3).
  • This allows measuring resonance frequency changes caused by forces acting on the mechanical element or changes in the physical and / or chemical properties of the medium in which the mechanical element is located, or of an object that is located in relation to the element mechanical. This is extremely important in mechanical oscillators with a low quality factor in which a change in the resonance frequency results in a too small change in amplitude or offset.
  • the amplitude has a maximum at a offset ( ⁇ ) corresponding to a frequency substantially equal to the resonant frequency of the oscillating element.
  • offset
  • the maximum narrow amplitude appears at the resonant frequency.
  • the amplitude (GA) has a maximum when the offset ( ⁇ ) is a determined offset.
  • the amplitude (GA) has a maximum of a lag that corresponds to the frequency of resonance. Also, if the offset corresponds to a frequency close to that of resonance, the invention works and gives similar results, although not as optimal.
  • the excitation signal (F) is composed of the feedback component (F 2 ), that is, it consists exclusively of said feedback component.
  • the excitation signal (F) comprises the feedback component (F 2 ) and a base component (Fi).
  • the base component can be generated by a substantially fixed oscillator and the feedback component can be generated by the control device according to preset parameters and depending on characteristics determined from the signal representative of the oscillation (Z).
  • the base component (F ⁇ can be a signal with a fixed excitation frequency ( ⁇ ) and with a fixed amplitude and the feedback component (F 2 ) can be a signal with the same excitation frequency ( ⁇ ) and that is out of phase + 90 ° or -90 ° with respect to the base component
  • the control device comprises means of modifying the excitation frequency ( ⁇ ) as a function of the signal representative of the oscillation (Z) so as to maintain a determined offset ( ⁇ ) between the representative signal of the oscillation (Z) and the feedback component (F 2 ).
  • said determined offset is an offset corresponding to the resonance oscillation of the oscillating element. In this way, it can be achieved that the oscillating element is kept oscillating at resonance or substantially at resonance.
  • the control device comprises means of modifying the excitation frequency ( ⁇ ) as a function of the amplitude of the signal representative of the oscillation (Z), in order to maximize the amplitude of the oscillation of the oscillator element.
  • excitation frequency
  • Z signal representative of the oscillation
  • the amplitude (GA) of the feedback component (F 2 ) is a function of both the offset ( ⁇ ) between the signal representative of the oscillation (Z) and the feedback component (F 2 ) as of the amplitude of the signal representative of the oscillation (Z).
  • the amplitude GA could have a maximum when the offset is the one that corresponds to the resonance, and in addition the amplitude GA of the feedback component could be greater the greater the amplitude of the signal representative of the oscillation (Z).
  • the means for receiving a signal representative of the oscillation (Z) are associated with a sensor that detects a signal directly related to the oscillation of the oscillating element.
  • the sensor could consist of a laser diode that emits a laser beam that is reflected in the oscillator or cantilever element and that goes to a segmented photodetector. The imbalance between the photocurrents generated in the photodetector segments is due to the deflection and movement of the cantilever.
  • the cantilever is made of a piezoresisitive material, so that when the cantilever bends the resistance of the cantilever changes.
  • the device includes a pass-band filter at the excitation frequency ( ⁇ ) to filter the signal representative of the oscillation (Z).
  • excitation frequency
  • Z signal representative of the oscillation
  • the device is constituted by a processing device with a data acquisition card (TAD), so that: the data acquisition card comprises the means of receiving a signal representative of the oscillation (Z) of the oscillating element; the processor device comprises the means of generating the feedback component (F 2 ); and the data acquisition card comprises an output for the component of feedback (F 2 ).
  • TAD data acquisition card
  • the processor device can be a digital processor device, which allows, for example, the amplitude (GA) and / or the excitation frequency ( ⁇ ) to be set in a specific way (digitally manipulable) depending on, for example, the characteristics of the signal representative of the oscillation (Z), for example, using conventional computer applications or specifically designed for a specific use or for a certain type of uses.
  • the amplitude (GA) and / or the excitation frequency ( ⁇ ) can be set in a specific way (digitally manipulable) depending on, for example, the characteristics of the signal representative of the oscillation (Z), for example, using conventional computer applications or specifically designed for a specific use or for a certain type of uses.
  • a measuring device for example, a biosensor device
  • a measuring device comprising: means for generating an excitation signal (F); a resonant mechanical oscillator element; coupling means of the excitation signal to the resonant mechanical oscillator element so that the excitation signal induces an oscillation in said element; a detector device comprising means of generating a signal representative of the oscillation (Z) of the oscillating element; and means for reading and interpreting the signal representative of the oscillation (Z) (for example, of the same type used in the conventional measuring devices discussed in the "background of the invention” section).
  • the means for generating the excitation signal include a control device according to the invention.
  • the oscillating element can be a micro lever (“cantilever”) that can be provided with a tip (for example, as in a microscope of atomic forces).
  • Another aspect of the invention relates to a method for controlling the excitation signal of a resonant mechanical oscillator element excited by said excitation signal (F).
  • the method comprises the steps of: receiving a signal representative of the oscillation (Z) of the oscillating element; generating a feedback component (F 2 ) of the excitation signal so that said feedback component is a function of at least one characteristic of the signal representative of the oscillation (Z), the excitation signal comprising at least , said feedback component (F 2 ) and the excitation signal having an excitation frequency ( ⁇ ); determine a lag ( ⁇ ) between the signal representing the oscillation (Z) of the oscillating element and the feedback component (F 2 ) and generate the feedback component (F 2 ) so that the feedback component (F 2 ) has an amplitude (GA) which is a function of said offset ( ⁇ ).
  • the amplitude has a maximum at a lag ( ⁇ ) corresponding to a frequency close to the resonant frequency of the oscillating element.
  • the amplitude has a maximum at a offset ( ⁇ ) corresponding to a frequency substantially equal to the resonant frequency of the oscillating element.
  • the amplitude (GA) can, for example, have a maximum when the offset ( ⁇ ) is a certain offset.
  • the excitation signal (F) may be composed of the feedback component (F 2 ) (i.e. consist exclusively of said component). There is also the possibility of generating the excitation signal by adding at least the component of feedback (F 2 ) and a base component (F ⁇ ) - As a base component (Fi) a signal with a fixed excitation frequency ( ⁇ ) and with a fixed amplitude can be chosen and as a feedback component (F 2 ) You can choose a signal with the same excitation frequency ( ⁇ ) and that is offset + 90 ° or -90 ° with respect to the base component (Fi).
  • the excitation frequency ( ⁇ ) is modified as a function of the signal representative of the oscillation (Z) so as to maintain a certain offset ( ⁇ ) between the signal representative of the oscillation ( Z) and the feedback component (F 2 ).
  • Said determined offset may be, for example, a offset corresponding to the oscillation of the oscillating element at its resonance frequency, so that the oscillating element is kept oscillating at resonance.
  • the excitation frequency ( ⁇ ) is modified as a function of the amplitude of the signal representative of the oscillation (Z), in order to maximize the amplitude of the oscillation of the oscillating element.
  • the amplitude (GA) of the feedback component (F 2 ) is a function of both the offset ( ⁇ ) between the signal representative of the oscillation (Z) and the feedback component (F 2 ) as of the amplitude of the signal representative of the oscillation (Z).
  • the signal representative of the oscillation (Z) is received through a sensor that detects a signal directly related to the oscillation of the oscillating element.
  • the signal is filtered representative of the oscillation (Z) with a pass-band filter at the excitation frequency ( ⁇ ).
  • the feedback component (F 2 ) is generated with a processor device.
  • Another aspect of the invention relates to a method for carrying out measurements on an object, comprising the steps of: locating the object in relation to the oscillating element of the device described in the foregoing, so that object characteristics affect the oscillation of the object. oscillating element (for example, at the resonant frequency and / or the quality factor of the oscillating element); measure at least one characteristic related to the oscillation of the resonant element; and interpret the result of said measurement.
  • the object can be located in the vicinity of the oscillating element (which may be convenient if the object is a substantially solid surface whose surface structure is to be studied) or in direct contact with the oscillating element (which may be convenient if the object is a liquid and if it is desired to detect the presence of a certain component in the liquid; this is applicable to, for example, biosensors).
  • the oscillating element which may be convenient if the object is a substantially solid surface whose surface structure is to be studied
  • the oscillating element which may be convenient if the object is a liquid and if it is desired to detect the presence of a certain component in the liquid; this is applicable to, for example, biosensors.
  • the object and the oscillating element immersed in a liquid (for example, if the object is a biological structure that must be kept immersed in a liquid).
  • the method may be suitable for studying very diverse objects, for example, liquids, biological substances, chemicals and / or solid surfaces.
  • Another aspect of the invention relates to a computer program, characterized in that it comprises program code means for performing all the steps of the control method described above when the program is executed on a computer.
  • Another aspect of the invention relates to a storage device comprising means for storing at least this computer program.
  • Figure 1 is a schematic representation of the detection of the deflection of a micro lever in an AFM system (according to the state of the art).
  • Figure 2 is a spectrum of cantilever frequencies with and without interaction
  • Figure 3 illustrates the effect of the resonance frequency shift, due to a possible tip-sample interaction, on the change in amplitude of the cantilever when it is excited to resonance or at a nearby frequency, for a high Q value and a low Q ( according to the state of the art).
  • Figure 4 schematically illustrates a cantilever-based biosensor for detecting DNA hybridization (according to the state of the art).
  • Figure 5 illustrates a frequency spectrum of a cantilever in air and in an aqueous medium (according to the state of the art).
  • Figure 6 schematically illustrates a feedback system (according to the state of the art).
  • Figure 7 schematically illustrates, in more detail, a feedback system used in WO-01/81857 (according to the state of the art).
  • Figure 8 shows the effect of the feedback system shown in Figure 7 on the response of a cantilever immersed in a liquid (according to the state of the art).
  • Figure 9 illustrates a comparison of the resonance frequency signal, with the cantilever deflection signal immersed in aqueous solution (according to the state of the art).
  • Figure 10 illustrates results of the feedback system shown in Figure 7 applied to the detection of biological molecules (according to the state of the art).
  • Figure 11 illustrates a general arrangement according to a preferred embodiment of the invention.
  • Figure 12 is a diagram reflecting the result of a practical test according to a preferred embodiment of the invention.
  • Figure 13 reflects the results of computer simulations of a preferred embodiment of the invention.
  • Figure 14 is a diagram reflecting the result of a practical test in accordance with a preferred embodiment of the invention.
  • Fig. 15 is a diagram reflecting the result of a practical test according to a preferred embodiment of the invention.
  • Figure 16 is a diagram reflecting the result of a practical test in accordance with a preferred embodiment of the invention.
  • Figure 17 is a diagram reflecting the result of a practical test in accordance with a preferred embodiment of the invention.
  • Figure 11 illustrates a general arrangement that includes the control device according to a preferred embodiment of the invention.
  • This arrangement includes a conventional configuration according to what has been said in the foregoing, based on an oscillating element 3 or cantilever in which oscillation is induced by an excitation signal F applied to an inductor coil 11.
  • This signal is obtained by measuring the oscillation with a conventional system comprising a laser diode 2 that emits a laser beam 1 that hits the surface of the cantilever or oscillating element 3 and is reflected in a segmented photodetector 5.
  • the difference between the photocurrents generated in the upper and lower segments is proportional to the cantilever deflection.
  • the cantilever is excited by an oscillating magnetic field generated in the inductor coil 11.
  • the cantilever may have been coated with, for example, a thin ferromagnetic layer of cobalt (thickness between 10 and 50 nm).
  • the illustrated arrangement includes the control device according to the invention, schematically illustrated in Figure 11.
  • Said device comprises a personal computer (PC) 13 and a data acquisition card (TAD) 12 (se These are conventional components, which are not illustrated in more detail).
  • PC personal computer
  • TAD data acquisition card
  • a digital control can be applied to increase the "apparent" quality factor of the mechanical oscillator element 3, to increase the sensitivity of the oscillation to forces acting on the mechanical element or changes in the physical properties and / or chemical of the medium in which the mechanical element is, or of an object that is located in relation to the mechanical element.
  • the data acquisition card used has inputs to record the movement of the cantilever, that is to say to record the photocurrents or photovoltaics of each segment of the photodetector 5 as a function of time.
  • amplifier By means of software programmed in, for example, LabView TM, the amplitude and phase of the fundamental harmonic of the oscillation are calculated.
  • the alternating current that excites the coil and oscillates the cantilever is calculated and generated.
  • the excitation signal is calculated by software and generated in a function generating instrument that is controlled by the computer.
  • the amplitude and offset of the oscillation are determined by software.
  • an excitation force (F) is generated, in this case only by the sinusoidal feedback component F 2 , whose amplitude is GA and which has a very high maximum to the offset corresponding to the resonant frequency.
  • GA B exp (-C without 2 ( ⁇ - ⁇ r )) has been chosen that has a maximum at the resonant frequency where the offset measured by the system is ⁇ r .
  • Figure 13 illustrates the result of a simulation of the effect of this GA function on resonance.
  • GA is a function that depends on the offset ( ⁇ ); preferably, GA has a maximum at a lag ( ⁇ ) corresponding to a frequency close to the resonant frequency of the oscillating element.
  • said offset would be 90 °, however, in reality and due to imperfections in the measurement, the offset measured at the resonant frequency will not necessarily be exactly 90 °, but may vary substantially.
  • the offset corresponding to the resonance frequency can be determined by measuring the amplitude and the offset depending on the excitation frequency. Approximately, the maximum amplitude of the oscillation is found at the resonance frequency, and therefore the offset that is measured at said frequency is the offset corresponding to the resonance frequency.
  • GA B exp (-Csin 2 ( ⁇ - ⁇ r )), where ⁇ is the offset measured by the device between the oscillation of the mechanical element and the excitation force, being equal to ⁇ r when the frequency of the excitation force It is the resonance.
  • ⁇ r 90 degrees, as shown in the diagram (a).
  • B 1 and its value determines the height of the curve but not its shape.
  • A is the amplitude of the mechanical oscillator if it were excited by a standard excitation signal with fixed amplitude equal to one
  • is the offset if the mechanical oscillator was excited by a standard excitation signal with fixed amplitude.
  • Curves A ( ⁇ ) and ⁇ ( ⁇ ) are represented in Figure 13 (a) in the case of a mechanical oscillator with a low quality factor.
  • the effect of the excitation force F 2 used in this control system can be seen in figure 13 (c). This control system does not change the dependence of the offset.
  • FIG 14 shows the experimental results of the control system represented in Figure 11.
  • the excitation force (F) is composed, in this case, of a sinusoidal feedback component F 2 whose amplitude is GA, which has a maximum accused approximately at the resonant frequency.
  • the chosen GA function is the same as in examples 12 and 13 except a constant component.
  • GA GAo + B exp (-C without 2 (( ⁇ - ⁇ r )).
  • GA has a maximum at approximately the resonant frequency, for which the measured offset is ⁇ r .
  • the constant component of the amplitude, GA 0 provides a sinusoidal excitation signal of constant amplitude that allows to measure the oscillation offset with low noise.
  • This component is particularly important in cases in which the mechanical oscillator oscillates little with the generated excitation signals.
  • the mechanical oscillator can be oscillated with an amplitude that allows the correct measurement of l offset of the swing.
  • the values of GA 0 and B are 0.05 and 3 V respectively.
  • the resonance frequency and the elastic constant of the cantilever are approximately 18.93 kHz and 0.06 N / m respectively.
  • Figure 15 shows other experimental results of the amplitude with respect to the excitation frequency, obtained with the experimental system represented in Figure 11, and in which the GA function is the same as that presented in Figure 14.
  • the amplitude is calibrated in angstroms (A °).
  • the mechanical oscillator is a microcantilever for microscopy of atomic forces, which has been coated on both sides with a thin layer of 25 nm thick cobalt by thermal evaporation. This allows it to be excited by a sinusoidal magnetic field over time, which is produced by a coil placed next to the microcantilever.
  • This control system allows to reduce the width of the resonance peak without necessarily increasing the amplitude of the oscillation, and therefore it is possible to work with systems in which the amplitude of the oscillator is of the order of 0.1 nm as shown here.
  • the effect of C on bandwidth can be analyzed in a simple way if some simplifications are made.
  • X (f) is approximately X (f 0 ), where f 0 is approximately the resonant frequency. This is because the variation of X as a function of f is approximately negligible with respect to the exponential variation of GA for frequencies close to that of resonance. If we assume that the cosine of the offset is approximately 2Q (ff 0 ) / fo, for frequencies close to that of resonance, we obtain that the bandwidth is 0.42 f 0 / (G 1/2 Q), approximately.
  • Figure 16 shows the average value and the mean square deviation of the amplitude as a function of the excitation frequency, without active control (a) and with control active (b), using the same experimental system of Figure 15 and described in the previous paragraph, for C values equal to zero (without control), 10 and 300.
  • the mean square deviation of the cantilever amplitude has been calculated at from 50 measurements for each frequency value.
  • the application of the control entails an increase in the noise of the cantilever movement signal, since it is fed back as an excitation force.
  • the amplified noise may come from the device for measuring the cantilever movement, and the Brownian movement due to the thermal coupling between the cantilever and the surrounding environment.
  • Figure 15a shows the amplitude and its noise as a function of the frequency without the active control of the excitation.
  • the noise is mainly distributed around the resonance frequency, indicating that the predominant source of the noise is the Brownian movement of the cantilever.
  • the cantilever behaves like a harmonic oscillator, which responds to the exciting force and also to the thermal forces of random collision whose spectral density is uniform.
  • the average value and the average quadratic value of the amplitude are the product of the oscillator transfer function module (X) and the excitation force and ⁇ F t respectively.
  • the amplitude noise shows a more complex behavior when the control system is applied (fig. 15b). The noise is not significantly increased near the resonance frequency and exhibits two maximums when the amplitude drops around 40% of its maximum value, which reaches an excitation frequency close to that of the resonance.
  • the excitation force (when the control system is applied) depends on the offset of the cantilever's oscillation with respect to the excitation force, there are two sources of noise in the amplitude, one is due to the thermal forces (which produced the Brownian movement of the Cantilever without control system), and the other comes from the noise of the oscillation phase.
  • is approximately equal to the quotient between ⁇ F th and the amplitude of the excitation force. Therefore, amplification of amplitude noise can be approximated as:
  • ⁇ A on off is the amplitude noise with and without oscillation control, respectively. It has been plunged that the resonance offset is 90 degrees.
  • the numerator of this equation is zero at resonance and increases approximately linearly with (ff 0 ) / foy C near the resonance. However, the denominator shows a minimum in resonance, and grows approximately exponentially with the square of (ff o ) / fo and C near the resonance. The combination of these dependencies give rise to two symmetrical maximums on both sides of the resonance peak. More interesting, the increase in noise due to feedback of the excitation force is a function of C and GA 0 / B. Thus, the signal-to-noise ratio can be modified by adjusting GA 0 and B (for a given value of C that first determines the bandwidth of the response amplitude).
  • Figure 17 shows the amplitude (a) and its noise (b) as a function of frequency.
  • the experimental system is the same as described for Figures 16 and 17 in the last two paragraphs.
  • the results in Figure 17 are for GA 0 / B equal to 0.25 and 2.5, keeping the total excitation force constant (GA 0 + B).
  • GA 0 + B the total excitation force constant
  • the amplitude noise approximately does not change for different values of F 0 and Fn, keeping the ratio between them constant. This is in accordance with the noise model produced with this control system described in the last paragraph.
  • the noise can be reduced by increasing the GA 0 / B ratio, and the signal-to-noise ratio can be improved by increasing the amount of feedback (B) while maintaining constant the relationship between the two excitation forces.
  • the materials, size, shape and arrangement of the elements will be subject to variation, provided that this does not imply an alteration of the basic concept of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

The invention relates to a device for controlling an excitation signal from a resonant mechanical oscillating element (3) which is excited by said excitation signal (F). The inventive control device also comprises means for determining a phase difference (?) between a signal that is representative of the oscillation (Z) of the oscillating element and a feedback component (F2) and means for generating the feedback component (F2) which are configured such that the amplitude (GA) of said feedback component (F2) is a function of the aforementioned phase difference (?). The invention also relates to a measuring device, a method of controlling the excitation signal, a method of taking measurements, a computer program and a storage device.

Description

TÍTULOTITLE
UN DISPOSITIVO DE CONTROL DE UNA SEÑAL DE EXCITACIÓN DE UN ELEMENTO OSCILADOR MECÁNICO RESONANTE, UN DISPOSITIVO DE MEDICIÓN, UN MÉTODO PARA CONTROLAR LA SEÑAL DE EXCITACIÓN, UN MÉTODO PARA REALIZAR MEDICIONES, UN PROGRAMA DE ORDENADOR Y UN DISPOSITIVO DE ALMACENAMIENTO.A CONTROL DEVICE FOR AN EXCITATION SIGNAL OF A RESONANT MECHANICAL OSCILLATOR ELEMENT, A MEASUREMENT DEVICE, A METHOD FOR CONTROLLING THE EXCITATION SIGNAL, A METHOD FOR PERFORMING MEASUREMENTS, A COMPUTER PROGRAM AND A STORAGE DEVICE.
CAMPO DE LA INVENCIÓNFIELD OF THE INVENTION
La invención se engloba en el campo de los osciladores mecánicos y de las mediciones basadas en la respuesta dinámica de dichos osciladores.The invention falls within the field of mechanical oscillators and measurements based on the dynamic response of said oscillators.
ANTECEDENTES DE LA INVENCIÓNBACKGROUND OF THE INVENTION
Por respuesta dinámica de un oscilador mecánico se entiende la relación entre el movimiento del oscilador y una fuerza de excitación con una frecuencia determinada. En un oscilador armónico, la respuesta dinámica viene determinada por la frecuencia de resonancia, factor de calidad, factor de amortiguamiento, constante elástica y masa. Ejemplos de osciladores mecánicos relevantes son los cantilevers usados en microscopía de fuerzas atómicas (AFM, atomic forcé microscopy), las sondas de fibra óptica empleadas en la microscopía óptica de campo próximo (SNOM, scanning near field optical microscopy), y las estructuras resonantes de sensores y biosensores mecánicos.The dynamic response of a mechanical oscillator means the relationship between the oscillator movement and an excitation force with a certain frequency. In a harmonic oscillator, the dynamic response is determined by the resonance frequency, quality factor, damping factor, elastic constant and mass. Examples of relevant mechanical oscillators are cantilevers used in atomic force microscopy (AFM), fiber optic probes used in near field optical microscopy (SNOM), and resonant structures of sensors and mechanical biosensors.
La idea básica del microscopio de fuerzas atómicas (AFM, atomic forcé microscope) es la de medir la fuerza entre una punta muy afilada (radio de curavatura del orden del nanometro) y una superficie que se desea caracterizar, que puede estar situada a una distancia de entre 0,1 y 100 nm. Para medir esta fuerza, que es del orden del nN, la punta va unida al final de un cantilever (micropalanca) de dimensiones micrométricas, de modo que la fuerza se mide a partir de la deflexión del cantilever. El cantilever se deflecta en respuesta a la fuerza siguiendo aproximadamente la ley de Hooke, es decir se comporta como un oscilador armónico. La deflexión se suele medir con resolución sub-nanométrica mediante un sistema óptico que se ilustra esquemáticamente en la Figura 1 : un haz láser 1 emitido por un diodo láser 2 incide sobre la superficie del cantilever o elemento oscilador 3 (que está dotado de la punta 4) y se refleja en un fotodetector 5 segmentado; el objeto sobre el que se realiza la medición lleva la referencia numérica 6. Otros métodos de detección ópticos, capacitivos, piezoresistivos etc, pueden ser igualmente empleados. Las imágenes son obtenidas mediante barridos de la muestra con respecto a la punta o viceversa, los cuales tienen una precisión de 0,01-0,1 nm. El barrido se suele realizar mediante cristales piezoeléctricos. Un sistema de realimentación puede mantener la fuerza constante (deflexión constante), trasladando verticalmente la muestra con respecto a la punta o viceversa. El desplazamiento vertical con respecto al horizontal proporciona la topografía de la superficie de la muestra. Entre las características del AFM cabe destacar su alta resolución espacial que viene determinada por las dimensiones de la punta y que permite obtener resolución sub-nanométrica. Por otro lado permite la visualización topográfica de superficies en diferentes medios tales como vacío, aire, gases o líquidos. También muestra gran versatilidad y permite visualizar dominios magnéticos, variaciones espaciales de las propiedades eléctricas o propiedades mecánicas. Actualmente el AFM se ha convertido en una herramienta fundamental en nanotecnología y su uso esta muy extendido en los campos de la física de materiales, fisico-química, biología y biomedicina. La expansión del microscopio de fuerzas atómicas ha dado lugar a la comercialización de cantilevers microfabricados con tecnología de silicio. Los cantilevers tienen una longitud del orden de 100 μm, una anchura del orden de 10 μm y un espesor inferior a 1 μm, aproximadamente. La constante elástica (k) está determinada por las dimesiones del cantilever, siendo del orden de 0,1 N/m. El bajo valor de k hace al cantilever muy sensible para medir fuerzas externas con alta sensibilidad, de tal modo que se puede medir la fuerza de un solo enlace entre un par de átomos o moléculas. Dado la pequeña masa de estos dispositivos, la frecuencia de resonancia es bastante alta, f0=10-1000 kHz.The basic idea of the atomic force microscope (AFM) is to measure the force between a very sharp point (radius of curavature of the order of the nanometer) and a surface that you want to characterize, which can be located at a distance between 0.1 and 100 nm. To measure this force, which is of the order of nN, the tip is attached to the end of a cantilever (micro lever) of micrometric dimensions, so that the force is measured from the cantilever deflection. The cantilever is deflected in response to force following approximately Hooke's law, that is, it behaves like a harmonic oscillator. Deflection is usually measured with sub-nanometric resolution by an optical system illustrated schematically in Figure 1: a laser beam 1 emitted by a laser diode 2 strikes the surface of the cantilever or oscillating element 3 (which is provided with the tip 4) and is reflected in a segmented photodetector 5; the object on which the measurement is carried bears the numerical reference 6. Other optical, capacitive, piezoresistive detection methods etc., can also be used. The images are obtained by sweeping the sample with respect to the tip or vice versa, which have an accuracy of 0.01-0.1 nm. The scanning is usually done using piezoelectric crystals. A feedback system can maintain constant force (constant deflection), vertically moving the sample with respect to the tip or vice versa. The vertical displacement with respect to the horizontal provides the topography of the surface of the sample. Among the characteristics of the AFM, it is worth highlighting its high spatial resolution that is determined by the dimensions of the tip and which allows sub-nanometric resolution to be obtained. On the other hand it allows the topographic visualization of surfaces in different media such as vacuum, air, gases or liquids. It also shows great versatility and allows visualizing magnetic domains, spatial variations of electrical properties or mechanical properties. Currently the AFM has become a fundamental tool in nanotechnology and its use is widespread in the fields of materials physics, physicochemical, biology and biomedicine. The expansion of the atomic forces microscope has led to the commercialization of microfabricated cantilevers with silicon technology. The cantilevers have a length of the order of 100 μm, a width of the order of 10 μm and a thickness of less than approximately 1 μm. The elastic constant (k) is determined by the dimensions of the cantilever, being of the order of 0.1 N / m. The low value of k makes the cantilever very sensitive to measure external forces with high sensitivity, so that the strength of a single bond between a pair of atoms or molecules can be measured. Given the small mass of these devices, the resonance frequency is quite high, f 0 = 10-1000 kHz.
Para detectar y medir la fuerza entre la punta y la muestra en un AFM existen dos modos: modo estático y modo dinámico.To detect and measure the force between the tip and the sample in an AFM there are two modes: static mode and dynamic mode.
En el modo estático, también llamado modo de contacto, la fuerza es medida a partir de la deflexión del cantilever (z), aplicando la ley de Hooke, F= k z. En este modo, la punta, por lo general, está en contacto con la superficie de la muestra, apareciendo una fuerza repulsiva. La fuerza mínima detectable y que se puede aplicar a la muestra, está principalmente limitada por el ruido térmico que produce una fluctuación en la deflexión del cantilever. Empleando el método estático apenas se puedan emplear fuerzas inferiores a 0,01 nN.In static mode, also called contact mode, force is measured from the deflection of the cantilever (z), applying Hooke's law, F = k z. In this mode, the tip is usually in contact with the surface of the sample, with a repulsive force appearing. The minimum detectable force that can be applied to the sample is mainly limited by the thermal noise produced by a fluctuation in cantilever deflection. Using the static method, forces below 0.01 nN can hardly be used.
El modo dinámico permite medir fuerzas inferiores en los medios aire y vacío. En este modo el cantilever oscila con una amplitud del orden del nanometro, excitado por una fuerza externa sinusoidal con frecuencia igual a la de resonancia del cantilever, o próxima. La oscilación del cantilever cambia cuando la punta está próxima a la superficie de la muestra debido a la fuerza entre la punta y la muestra. Los parámetros de la oscilación que pueden medirse son la amplitud y el desfase con respecto a la fuerza excitadora, y su cambio debido a la interacción punta/muestra. El cambio de amplitud o desfase se deben al cambio de la frecuencia de resonancia y el cambio del factor de amortiguamiento.The dynamic mode allows lower forces to be measured in the air and vacuum media. In this mode the cantilever oscillates with an amplitude of the order of the nanometer, excited by an external sine force with frequency equal to that of the resonance of the Cantilever, or next. The cantilever oscillation changes when the tip is close to the surface of the sample due to the force between the tip and the sample. The oscillation parameters that can be measured are the amplitude and the lag with respect to the exciting force, and its change due to the tip / sample interaction. The change in amplitude or offset is due to the change in the resonant frequency and the change in the damping factor.
Las fuerzas ejercidas en el modo dinámico de un AFM se pueden analizar modelando el cantilever como un oscilador armónico forzado cuya ecuación del movimiento es:The forces exerted in the dynamic mode of an AFM can be analyzed by modeling the cantilever as a forced harmonic oscillator whose equation of motion is:
d2z dz m—τ + γ—- + kz = FQ cos(fi)t) + Fm- t (z) (1) dt dtd 2 z dz m— τ + γ—- + kz = F Q cos (fi) t) + F m - t (z) (1) dt dt
donde m es la masa efectiva del cantilever, z es la deflexión del cantilever, γ es el factor de amortiguamiento, F0 cos(ωt) es la fuerza de excitación y F¡nt es la fuerza de interacción entre la punta y la muestra. El factor de amortiguamiento (γ) depende de la fricción interna del material y del rozamiento del cantilever con el medio. Otra magnitud relacionada directamente con el factor de amortiguamiento es el factor de calidad Q, el cual se define como:where m is the effective cantilever mass, z is the cantilever deflection, γ is the damping factor, F 0 cos (ωt) is the excitation force and F¡ nt is the interaction force between the tip and the sample. The damping factor (γ) depends on the internal friction of the material and the friction of the cantilever with the medium. Another magnitude directly related to the damping factor is the quality factor Q, which is defined as:
Q = */γ (2)Q = * / γ (2)
donde ω0 es la frecuencia angular de resonancia. El Q varía en función de la viscosidad del medio, así en vació puede alcanzar valores del orden de 10 000, en aire del orden de 100 y en líquidos valores muy bajos de 1 a 10.where ω 0 is the angular resonance frequency. The Q varies depending on the viscosity of the medium, so in vacuum it can reach values of the order of 10,000, in air of the order of 100 and in liquids very low values of 1 to 10.
Un modo de obtener una información completa de la interacción entre la punta y la muestra es midiendo el espectro de frecuencias del cantilever, es decir, la amplitud y el desfase de la oscilación con respecto a la frecuencia de la señal excitadora (ver Figura 2). Del espectro de frecuencias se miden dos magnitudes, la frecuencia de resonancia f0 y el factor de calidad Q. La medida del desfase permite determinar la frecuencia de resonancia del cantilever y su cambio debido a la interacción punta/muestra, dado que la definición de frecuencia de resonancia es aquella frecuencia a la cual el desfase entre la oscilación del cantilever y la señal excitadora es 90 grados. A esta frecuencia es donde aproximadamente se encuentra el máximo de la amplitud. Sin embargo, en el caso de factores de calidad bajos la posición del máximo de amplitud difiere de la frecuencia de resonancia. El factor de calidad se mide mediante la anchura de la curva de amplitud en función de la frecuencia de la señal excitadora mediante esta expresión:One way to obtain complete information on the interaction between the tip and the sample is to measure the frequency spectrum of the cantilever, that is, the amplitude and the lag of the oscillation with respect to the frequency of the exciter signal (see Figure 2) . Two magnitudes are measured from the frequency spectrum, the resonance frequency f 0 and the quality factor Q. The measurement of the offset allows to determine the resonant frequency of the cantilever and its change due to the tip / sample interaction, given that the definition of Resonance frequency is that frequency at which the offset between the cantilever oscillation and the exciter signal is 90 degrees. This frequency is where the maximum amplitude is approximately. However, in the case of low quality factors the Maximum amplitude position differs from the resonant frequency. The quality factor is measured by the width of the amplitude curve as a function of the frequency of the exciter signal by this expression:
Q*1,74 f0/Δf0. (3)Q * 1.74 f 0 / Δf 0 . (3)
donde Δf0 es la anchura de la curva a la cual la amplitud ha decaído la mitad.where Δf 0 is the width of the curve at which the amplitude has decayed by half.
En el modo dinámico de un AFM, el cantilever se excita a una frecuencia fija, igual o próxima a la de resonancia y la interacción entre la punta y la muestra se puede medir mediante el cambio de amplitud de la oscilación. Supongamos que la interacción entre la punta y la muestra desplaza la frecuencia de resonancia y que el sistema puede detectar cambios de amplitud por encima de un determinado umbral. La cantidad que se tiene que desplazar la frecuencia de resonancia, es decir, la cantidad de interacción entre la punta y la muestra, para que se pueda detectar un cambio de amplitud depende del factor de calidad (Q) como se ilustra en la Figura 3. De este modo, se entiende por qué el modo dinámico de AFM en líquidos implica fuerzas normales altas. Un cambio de amplitud en líquidos detectable solo se produce cuando hay fuerzas altas entre la punta y la muestra (desplazamiento de la frecuencia de resonancia alto), debido al bajo Q. Del mismo modo, si la interacción entre la punta y la muestra se midiera mediante cambio del desfase de la oscilación ocurriría lo mismo; el cambio de desfase debido a un cambio de la frecuencia de resonancia es proporcional al factor de calidad.In the dynamic mode of an AFM, the cantilever is excited at a fixed frequency, equal to or close to that of resonance and the interaction between the tip and the sample can be measured by changing the amplitude of the oscillation. Assume that the interaction between the tip and the sample displaces the resonance frequency and that the system can detect amplitude changes above a certain threshold. The amount that the resonance frequency has to be displaced, that is, the amount of interaction between the tip and the sample, so that a change in amplitude can be detected depends on the quality factor (Q) as illustrated in Figure 3. Thus, it is understood why the dynamic mode of AFM in liquids implies high normal forces. A change in detectable amplitude in liquids only occurs when there are high forces between the tip and the sample (high resonance frequency shift), due to the low Q. Similarly, if the interaction between the tip and the sample were measured by changing the oscillation offset the same would happen; The change in offset due to a change in the resonance frequency is proportional to the quality factor.
Una de las principales limitaciones para obtener alta resolución en AFM son las propiedades mecánicas de la muestra y la adhesión entre la muestra y el soporte sólido. Esta limitación es fundamental cuando se quieren visualizar muestras biológicas (ADN, proteínas, células, etc.). Para visualizar la estructura nativa de estas muestras se requiere visualización en un medio acuoso. En estas condiciones, las muestras biológicas son blandas y se adhieren débilmente al soporte sólido (mica, grafito, silicio, vidrio, etc.) como consecuencia del gran apantallamiento de las fuerzas atractivas entre las muestras biológicas y el soporte sólido que se produce en soluciones acuosas. En el modo de contacto, la punta desplaza y/o destruye la muestra durante el barrido (fuerzas laterales), y se impide o se hace muy difícil la visualización de la muestra. En el modo dinámico, la punta suele tocar intermitentemente la muestra en cada ciclo de la oscilación. De este modo, la fuerzas laterales que aparecen en el modo de contacto se eliminan y se puede visualizar la muestra. Sin embargo las fuerzas normales son elevadas (1-10 nN) para la visualización de materiales blandos. Estas elevadas fuerzas deforman y distorsionan estos materiales, obteniéndose baja resolución espacial. Investigadores han estimado que la visualización no distorsionada de moléculas biológicas requiere el uso de fuerzas inferiores a los 100 pN. Sin embargo, estas fuerzas no se pueden alcanzar en el modo dinámico de un AFM en el medio líquido debido al bajo Q. Se han realizado simulaciones que indican que se necesitan Qs por encima de 100 para alcanzar fuerzas inferiores a los 100 pN. Estos valores de Q son 2 órdenes de magnitud superiores a los valores que se encuentran en los cantilever debido a la fricción hidrodinámica entre el cantilever y el medio líquido durante la oscilación.One of the main limitations to obtain high resolution in AFM is the mechanical properties of the sample and the adhesion between the sample and the solid support. This limitation is fundamental when you want to visualize biological samples (DNA, proteins, cells, etc.). To visualize the native structure of these samples, visualization is required in an aqueous medium. Under these conditions, the biological samples are soft and weakly adhere to the solid support (mica, graphite, silicon, glass, etc.) as a result of the great screening of the attractive forces between the biological samples and the solid support that is produced in solutions aqueous. In the contact mode, the tip displaces and / or destroys the sample during scanning (lateral forces), and visualization of the sample is prevented or made very difficult. In dynamic mode, the tip usually touches the sample intermittently in each cycle of the oscillation. In this way, the lateral forces that appear in the contact mode are eliminated and the shows. However, normal forces are high (1-10 nN) for the visualization of soft materials. These high forces deform and distort these materials, obtaining low spatial resolution. Researchers have estimated that the undistorted visualization of biological molecules requires the use of forces below 100 pN. However, these forces cannot be reached in the dynamic mode of an AFM in the liquid medium due to the low Q. Simulations have been performed indicating that Qs above 100 are needed to reach forces below 100 pN. These values of Q are 2 orders of magnitude higher than the values found in the cantilever due to hydrodynamic friction between the cantilever and the liquid medium during oscillation.
Actualmente se microfabrican estructuras resonantes que pueden ser utilizados como sensores y biosensores. La mayoría de los sensores basados en estructuras resonantes han sido desarrollados para la detección de compuestos químicos en medios gaseosos demostrando muy alta sensibilidad. Además permiten detección en tiempo real, requieren de una mínima cantidad de analito y el tamaño diminuto de estos dispositivos hace factible su miniaturización e integración en chips con bajo coste. Un ejemplo son los bio/sensores basados en cantilevers como los utilizados en AFM, pero en los cuales la punta no se utiliza. Una importante aplicación de este tipo de sensores son los biosensores y sensores de sustancias químicas en medios líquidos. Los dispositivos biosensores detectan sustancias biológicas en lugar de sustancias químicas. Por tal razón, la detección debe ser realizada en el medio líquido, en el cual las moléculas biológicas son funcionales. A partir de ahora se entiende por cantilever, cualquier estructura mecánica resonante.Currently, resonant structures are microfabricated that can be used as sensors and biosensors. Most sensors based on resonant structures have been developed for the detection of chemical compounds in gaseous media demonstrating very high sensitivity. They also allow real-time detection, require a minimum amount of analyte and the tiny size of these devices makes their miniaturization and integration into chips with low cost feasible. An example is bio / sensors based on cantilevers such as those used in AFM, but in which the tip is not used. An important application of this type of sensors is the biosensors and sensors of chemical substances in liquid media. Biosensors detect biological substances instead of chemical substances. For this reason, the detection must be performed in the liquid medium, in which the biological molecules are functional. From now on, cantilever is understood as any resonant mechanical structure.
En el método de detección estático, sobre uno de los lados de la estructura mecánica resonante (EMR) se inmovilizan las moléculas receptoras, que se enlazan específicamente con la substancia que se desea analizar o detectar (analito). Cuando la sustancia a analizar se introduce en la celda de fluidos donde está el EMR, el analito se enlaza a las moléculas receptoras. De este modo la composición superficial ha variado y por lo tanto la tensión superficial (surface stress). Dado que las moléculas receptoras se han inmovilizado solo en un lado del cantilever, la tensión superficial de este lado cambia con respecto a la del otro lado, y se produce un curvamiento del cantilever. Este curvamiento del cantilever puede medirse mediante un sistema óptico como el que se usa en un AFM y que se ha descrito arriba, o por otros métodos ópticos, capacitivos, piezoresistivos, etc. Un ejemplo de biosensor basado en cantilevers para detectar hibridación de ADN se muestra en la Figura 4. El dispositivo consta de una microarray de cantilevers. Sobre cada lado del cantilever se ha inmovilizado ADN de una sola cadena con diferentes secuencias de bases. Cuando la microarray se expone a una solución líquida en la que se encuentra ADN de una cadena cuya secuencia de bases es complementaria a la que se ha inmovilizado previamente en uno de los cantilevers, este cantilever se curva debido al cambio de tensión superficial producido por la formación de ADN de doble cadena.In the static detection method, receptor molecules are immobilized on one of the sides of the resonant mechanical structure (EMR), which specifically bind to the substance to be analyzed or detected (analyte). When the substance to be analyzed is introduced into the fluid cell where the EMR is, the analyte binds to the receptor molecules. In this way the surface composition has varied and therefore the surface tension. Since the receptor molecules have been immobilized only on one side of the cantilever, the surface tension on this side changes with respect to that on the other side, and a cantilever curvature occurs. This cantilever curvature can be measured by an optical system such as that used in an AFM and described above, or by other optical, capacitive, piezoresistive methods, etc. An example of cantilevers-based biosensor for detecting DNA hybridization is shown in Figure 4. The device It consists of a cantilevers microarray. Single-stranded DNA with different base sequences has been immobilized on each side of the cantilever. When the microarray is exposed to a liquid solution containing DNA from a chain whose base sequence is complementary to that previously immobilized in one of the cantilevers, this cantilever curves due to the change in surface tension produced by the double strand DNA formation.
En el modo de detección dinámico, en uno o los dos lados del cantilever se inmovilizan las moléculas receptoras. El cantilever oscila con una amplitud del orden del nanómetro y la oscilación es medida del mismo modo que en un microscopio de fuerzas en el modo dinámico. Cuando el analito se enlaza en la superficie receptora del cantilever se produce un incremento de la masa que va producir una disminución de la frecuencia de resonancia (la frecuencia de resonada se puede expresar como f0=1/2π (k/m*)1 2). Aunque este método es utilizado básicamente para medir variaciones de masa asociadas a la adsorción del analito en la superficie del cantilever, se ha descubierto que la tensión superficial puede provocar cambios de la frecuencia de resonancia. Hasta ahora, los pocos trabajos en los que se ha usado cantilevers para la detección de sustancias biológicas han utilizado el método estático. La razón es el bajo factor de calidad del cantilever en el medio líquido debido a la fuerte fricción hidrodinámica que experimenta el cantilever cuando oscila. En la Figura 5 se muestra el efecto del cambio de medio en la respuesta del cantilever. En aire el factor de calidad es relativamente alto (Q=50-500). Cuando el cantilever se introduce en un medio líquido se observan dos cambios en la respuesta dinámica del cantilever. La frecuencia de resonancia disminuye un factor entre 2 y 3, indicando que la masa efectiva del cantilever (m*) ha aumentado. Esto se debe al movimiento asociado del líquido próximo al cantilever cuando oscila. El segundo cambio y más importante es que el factor de calidad es muy bajo, del orden de 1. Esto proporciona una curva de amplitud vs. frecuencia de la señal excitadora muy ancha, Q«1 ,74 f0/Δf.In the dynamic detection mode, the receptor molecules are immobilized on one or both sides of the cantilever. The cantilever oscillates with an amplitude of the order of the nanometer and the oscillation is measured in the same way as in a dynamic microscope of forces. When the analyte is bound in the cantilever receptor surface, an increase in the mass that will produce a decrease in the resonance frequency occurs (the resonant frequency can be expressed as f 0 = 1 / 2π (k / m *) 1 2 ). Although this method is basically used to measure mass variations associated with the adsorption of the analyte on the cantilever surface, it has been found that surface tension can cause resonance frequency changes. Until now, the few works in which cantilevers have been used for the detection of biological substances have used the static method. The reason is the low quality factor of the cantilever in the liquid medium due to the strong hydrodynamic friction that the cantilever experiences when it oscillates. Figure 5 shows the effect of the medium change in the cantilever response. In air the quality factor is relatively high (Q = 50-500). When the cantilever is introduced into a liquid medium, two changes in the dynamic response of the cantilever are observed. The resonance frequency decreases a factor between 2 and 3, indicating that the effective mass of the cantilever (m * ) has increased. This is due to the associated movement of the liquid near the cantilever when it oscillates. The second and most important change is that the quality factor is very low, on the order of 1. This provides an amplitude vs. curve. Very wide exciter signal frequency, Q «1, 74 f 0 / Δf.
La sensibilidad para medir cambios de la oscilación del cantilever es proporcional al factor de calidad. De este modo, la frecuencia de resonancia del cantilever se obtiene mediante la medida del desfase de la oscilación con respecto a la señal excitadora. Un cambio de la frecuencia de resonancia produce una desviación del desfase con respecto a 90 grados. Esta desviación es proporcional a Q, y por lo tanto, la sensibilidad para determinar el cambio de la frecuencia de resonancia es proporcional a Q. En definitiva, la baja sensibilidad para medir las propiedades dinámicas del cantilever en el medio líquido ha impedido que se hayan desarrollado biosensores basados en cantilevers utilizando detección dinámica.The sensitivity to measure changes in cantilever oscillation is proportional to the quality factor. In this way, the cantilever resonance frequency is obtained by measuring the oscillation offset with respect to the exciter signal. A change in the resonance frequency produces a offset of the offset with respect to 90 degrees. This deviation is proportional to Q, and therefore, the sensitivity to determine the change in the resonance frequency is proportional to Q. In short, the low sensitivity to measure the dynamic properties of the cantilever in the liquid medium has prevented them from having developed Cantilevers based biosensors using dynamic detection.
Los biosensores basados en cantilevers que utilizan el método de medida estático presentan el inconveniente de que la señal que se mide, la deflexión del cantilever, presenta gran deriva, haciendo poco práctico su uso. El origen de esta deriva se debe a turbulencias del líquido, a lentas reacciones químicas entre la solución y la superficie del cantilever, y a fluctuaciones térmicas. Esto último tiene un efecto dramático en las medidas. Normalmente para inmovilizar las moléculas receptoras en uno de los lados del cantilever, se precisa evaporar previamente una capa delgada de oro (espesor«10-50 nm). Como consecuencia, el cantilever no solo responde a las moléculas analito cuando se enlazan a las moléculas receptoras, sino que es muy sensible a variaciones muy pequeñas de la temperatura. Dado que el metal tiene un coeficiente de dilatación térmica diferente que el del cantilever, variaciones de temperatura producen una expansión o contracción de la capa de oro con respecto al resto del cantilever, que produce una curvatura del cantilever. Este fenómeno se conoce como efecto bimetálico y ha sido previamente usado para medir cambios de temperatura tan pequeños como 10~5 °C. De este modo, cuando se introduce el analito en la celda de fluidos donde está el cantilever, el cambio de deflexión es debido en parte a la diferencia de temperatura entre la solución donde se encuentra el analito y la solución de la celda de fluidos, enmascarando el cambio de señal propio de la detección del analito.Cantilever-based biosensors that use the static measurement method have the disadvantage that the signal being measured, the cantilever deflection, has a large drift, making its use impractical. The origin of this drift is due to turbulence of the liquid, slow chemical reactions between the solution and the cantilever surface, and thermal fluctuations. The latter has a dramatic effect on the measurements. Normally to immobilize the receptor molecules on one side of the cantilever, it is necessary to previously evaporate a thin layer of gold (thickness «10-50 nm). As a consequence, the cantilever not only responds to analyte molecules when they bind to receptor molecules, but is very sensitive to very small variations in temperature. Since the metal has a coefficient of thermal expansion different from that of the cantilever, temperature variations produce an expansion or contraction of the gold layer with respect to the rest of the cantilever, which produces a curvature of the cantilever. This phenomenon is known as bimetallic effect and has been previously used to measure temperature changes as small as 10 ~ 5 ° C. Thus, when the analyte is introduced into the fluid cell where the cantilever is located, the change in deflection is due in part to the temperature difference between the solution where the analyte is found and the fluid cell solution, masking the change of the analyte detection signal itself.
Las tecnologías comentadas en lo anterior y diferentes aspectos relacionados se describen en, por ejemplo:The technologies discussed in the above and different related aspects are described in, for example:
Piconewton Regime Dynamic Forcé Microscopy in Liquid (Javier Tamayo, Andrew D.L. Humphris & Mervyn J. Miles; Appl. Phys. Lett.77, 582 (2000)); Chemical Sensors and Biosensors in Liquid Environment based onPiconewton Regime Dynamic Forcé Microscopy in Liquid (Javier Tamayo, Andrew D.L. Humphris & Mervyn J. Miles; Appl. Phys. Lett. 77, 582 (2000)); Chemical Sensors and Biosensors in Liquid Environment based on
Microcantilevers with the Quality Factor Amplified (J. Tamayo, A.D.L. Humphries, A.R. Malloy & M.J. Miles; Ultramicroscopy 86, 167 (2001));Microcantilevers with the Quality Factor Amplified (J. Tamayo, A.D.L. Humphries, A.R. Malloy & M.J. Miles; Ultramicroscopy 86, 167 (2001));
High Q Dynamic Forcé Microscopy in Liquids (J.Tamayo, A.D.L. Humphries, R. Owen & M. Miles; Biophys. J. 81, 526 (2001)); y Active Quality Factor Control in Liquids for Forcé Spectroscopy (A.D.L.High Q Dynamic Forced Microscopy in Liquids (J.Tamayo, A.D.L. Humphries, R. Owen & M. Miles; Biophys. J. 81, 526 (2001)); and Active Quality Factor Control in Liquids for Forcé Spectroscopy (A.D.L.
Humphris, J. Tamayo & M.J. Miles, Langmuir, 16, 7891 , (2000)).Humphris, J. Tamayo & M.J. Miles, Langmuir, 16, 7891, (2000)).
Por otra parte, WO-A-01/81857 (en la que se basa el producto ActivResonance Controller® comercializado por Infinitésima Ltd., describe una disposición que permite aumentar el bajo factor de calidad Q del cantilever en el medio líquido, mediante un sistema de realimentación electrónico. Las aplicaciones de WO-A-01/81857 también vienen descritas en las publicaciones anteriores.On the other hand, WO-A-01/81857 (on which the ActivResonance Controller® product marketed by Infinitésima Ltd. is based, describes an arrangement that allows to increase the low quality factor Q of the cantilever in the liquid medium, by means of a system of electronic feedback The applications of WO-A-01/81857 also They are described in the previous publications.
La respuesta dinámica del cantilever es más sensible que la respuesta estática, tal y como se ha descrito arriba. Además la respuesta dinámica apenas sufre deriva térmica, como ocurre con la respuesta estática, la cual requiere un largo tiempo de estabilización. La medida de la respuesta dinámica del cantilever en un medio líquido está limitada por el muy bajo factor de calidad Q. Esto hace que el AFM en el medio líquido sea poco sensible y que los biosensores y sensores químicos que detectan sustancias en medios líquidos tradicionalmente midan la respuesta estática. El método descrito en WO-A-01/81857 permite aumentar la sensibilidad del AFM en líquidos hasta 3 órdenes de magnitud, lo cual tiene un fuerte impacto en la aplicación del AFM en biología. Otra área de impacto es el campo de los biosensores y sensores químicos basados en microestructuras mecánicas resonantes que necesitan medir en el medio líquido. La idea detrás de la invención descrita en WO-A-01/81857 es introducir un sistema de control del movimiento del cantilever para aumentar el factor de calidad. Digamos que el cantilever reacciona a una fuerza incidente con frecuencia ω, F^ω) con una función de transferencia X(ω) que es la correspondiente a un oscilador armónico amortiguado.The dynamic response of the cantilever is more sensitive than the static response, as described above. In addition, the dynamic response hardly suffers thermal drift, as with the static response, which requires a long stabilization time. The measurement of the dynamic response of the cantilever in a liquid medium is limited by the very low quality factor Q. This makes the AFM in the liquid medium less sensitive and that the biosensors and chemical sensors that detect substances in liquid media traditionally measure The static answer. The method described in WO-A-01/81857 allows to increase the sensitivity of AFM in liquids up to 3 orders of magnitude, which has a strong impact on the application of AFM in biology. Another area of impact is the field of chemical biosensors and sensors based on resonant mechanical microstructures that need to be measured in the liquid medium. The idea behind the invention described in WO-A-01/81857 is to introduce a cantilever movement control system to increase the quality factor. Let's say that the cantilever reacts to an incident force with frequency ω, F ^ ω) with a transfer function X (ω) that corresponds to a damped harmonic oscillator.
Figure imgf000010_0001
donde ω0 es la frecuencia angular de resonancia, k es la constante elástica y Q es el factor de calidad del cantilever. La frecuencia angular de resonancia ω0 está relacionada con la frecuencia de resonancia f0 a través de la expresión ω0=2πf0.
Figure imgf000010_0001
where ω 0 is the angular resonance frequency, k is the elastic constant and Q is the quality factor of the cantilever. The angular resonance frequency ω 0 is related to the resonance frequency f 0 through the expression ω 0 = 2πf 0 .
Sin embargo, la respuesta del oscilador puede ser modificado mediante un sistema de realimentación con una función de transferencia C(ω). El esquema se muestra en la Figura 6. Con la inclusión de este sistema, la respuesta del cantilever cambia a:However, the response of the oscillator can be modified by a feedback system with a transfer function C (ω). The scheme is shown in Figure 6. With the inclusion of this system, the cantilever response changes to:
Figure imgf000010_0002
Figure imgf000010_0002
De este modo, se puede cambiar las respuesta del cantilever según se requiera. La invención descrita en WO-A-01/81857 pretende aumentar el Q del cantilever, y esto se puede realizar mediante un controlador con una función de transferencia:In this way, the cantilever response can be changed as required. The invention described in WO-A-01/81857 is intended to increase the Q of the cantilever, and this can be done by a controller with a function of transfer:
Figure imgf000011_0001
Figure imgf000011_0001
donde QΘff es el factor de calidad efectivo que se quiere obtener. Dado que se suele operar a frecuencias próximas a la de resonancia, y por simplicidad de la electrónica, esta función se simplifica a:where Q Θff is the effective quality factor that you want to obtain. Since it is usually operated at frequencies close to that of resonance, and for simplicity of electronics, this function is simplified to:
Figure imgf000011_0002
Figure imgf000011_0002
Este sistema de realimentación se puede implementar fácilmente a nivel de electrónica analógica y digital mediante un desfasador variable (término elπ 2 en ecuación 7) y un amplificador de ganancia variable cuya ganancia G se relaciona con el factor de calidad efectivo a través de la expresión G=k(1/Q-1/Qθff) (ecuación 7), tal y como se ilustra en la Figura 7. En esta implementación, el cantilever (el elemento oscilador 3) es oscilado mediante un campo magnético alterno cuya frecuencia es la de resonancia, o próxima a ella. Sobre el cantilever (el elemento oscilador 3) se ha evaporado previamente un delgada capa de material ferromagnético para que responda al campo magnético. Otro método de excitación que se puede emplear es la generación de ondas mecánico-acústicas en el fluido mediante un cristal piezoeléctrico.This feedback system can be easily implemented at the level of analog and digital electronics using a variable phase shifter (term e lπ 2 in equation 7) and a variable gain amplifier whose gain G is related to the effective quality factor through the expression G = k (1 / Q-1 / Q θff ) (equation 7), as illustrated in Figure 7. In this implementation, the cantilever (oscillator element 3) is oscillated by an alternating magnetic field whose frequency is the one of resonance, or next to her. On the cantilever (the oscillating element 3) a thin layer of ferromagnetic material has previously evaporated to respond to the magnetic field. Another excitation method that can be used is the generation of mechanical-acoustic waves in the fluid by means of a piezoelectric crystal.
El otro elemento importante de este dispositivo es la unidad que detecta la frecuencia de resonancia, lo cual se hace mediante un phase-locked loop (PLL) 7 que comprende un detector de fase 8, un controlador Pl 9 y un oscilador controlado por tensión (VCO) 10. El PLL produce una señal excitadora de la forma F0exp(iωt) y mide la respuesta de cantilever, ajusfando la frecuencia excitadora, ω=2πf, para mantener un diferencia de fase de 90 grados entre la oscilación del cantilever y la señal excitadora, es decir, excita el cantilever a su frecuencia de resonancia.The other important element of this device is the unit that detects the resonance frequency, which is done by means of a phase-locked loop (PLL) 7 comprising a phase detector 8, a Pl 9 controller and a voltage controlled oscillator ( VCO) 10. The PLL produces an exciter signal of the form F 0 exp (iωt) and measures the cantilever response, adjusting the exciter frequency, ω = 2πf, to maintain a 90 degree phase difference between the cantilever oscillation and the exciter signal, that is, excites the cantilever at its resonance frequency.
El efecto del sistema de realimentación propuesto en WO-A-01/81857 puede entenderse mejor analizando la ecuación diferencial del movimiento del cantilever. Cuando no se incluye el sistema de realimentación, la ecuación del movimiento es la de un oscilador armónico amortiguado forzado: d2z dz m ^X- + γ— + kz = F0emt (8) dt dtThe effect of the feedback system proposed in WO-A-01/81857 can be better understood by analyzing the differential equation of cantilever movement. When the feedback system is not included, the equation of motion is that of a forced damped harmonic oscillator: d 2 z dz m ^ X- + γ— + kz = F 0 e mt (8) dt dt
F0 e'ωt es la fueza excitadora que hace oscilar el cantilever. Cuando incluimos el sistema de feedback, el cantilever es oscilado por la suma de dos fuerzas excitadoras, una es la fuerza standard F0 e'ωt, y la otra es una fuerza que es proporcional al movimiento del cantilever desfasado 90 grados, G z elπ/2. Así la ecuación diferencial de este sistema es:F 0 e ' ωt is the exciting force that makes the cantilever swing. When we include the feedback system, the cantilever is oscillated by the sum of two exciting forces, one is the standard force F 0 e ' ωt , and the other is a force that is proportional to the movement of the cantilever offset 90 degrees, G ze lπ / 2 . Thus the differential equation of this system is:
m*fl + γ^ + kz = F e>«< + Gze Á (9) dt2 dt ° m * fl + γ ^ + kz = F e >«< + Gze Á (9) dt 2 dt °
Dado que el movimiento del cantilever es sinusoidal, z=Aexp(iωt-φ), laSince the cantilever movement is sinusoidal, z = Aexp (iωt-φ), the
velocidad del cantilever puede expresarse — = iωAe'íωl~φ) = ωe'πl2 . Al introducirse dt esta expresión en la ecuación diferencial tenemosCantilever speed can be expressed - = iωAe ' íωl ~ φ) = ωe' πl2 . When entering dt this expression in the differential equation we have
m (10)
Figure imgf000012_0001
m (10)
Figure imgf000012_0001
Que da lugar a:Which gives rise to:
Figure imgf000012_0002
Figure imgf000012_0002
que es la ecuación de un oscilador armónico forzado con un factor de amortiguamiento que puede ser cambiado electrónicamente mediante la ganancia del amplificador G,which is the equation of a forced harmonic oscillator with a damping factor that can be changed electronically by the gain of the amplifier G,
reff = r ~- (1 ) ωr eff = r ~ - (1) ω
El factor de calidad efectivo es Qeff=mωo/γeff.The effective quality factor is Q eff = mωo / γ eff .
La Figura 8 muestra el efecto de este sistema de realimentación en la respuesta del cantilever inmerso en un líquido. El factor de calidad puede aumentarse hasta 3 órdenes de magnitud, pudiéndose obtener Qs cercanos a 1000. Es decir un cantilever en un líquido puede presentar una respuesta dinámica comparable a aquella encontrada en vacío.Figure 8 shows the effect of this feedback system on the response of the cantilever immersed in a liquid. The quality factor can be increased up to 3 orders of magnitude, being able to obtain Qs close to 1000. That is a Cantilever in a liquid can present a dynamic response comparable to that found in a vacuum.
En la Figura 9, se compara la señal de la frecuencia de resonancia, con la señal de deflexión del cantilever inmerso en solución acuosa. La señal de deflexión presenta gran deriva debido a la deriva térmica de las posiciones del haz láser, el fotodetector, y el cantilever. Además existen lentas reacciones químicas entre el cantilever y la solución. Sin embargo la señal de frecuencia de resonancia es inmune a estas derivas.In Figure 9, the resonance frequency signal is compared with the deflection signal of the cantilever immersed in aqueous solution. The deflection signal shows great drift due to the thermal drift of the positions of the laser beam, the photodetector, and the cantilever. There are also slow chemical reactions between the cantilever and the solution. However, the resonance frequency signal is immune to these drifts.
En la Figura 10 se muestran los resultados experimentales de aplicar el sistema descrito en WO-A-01/81857 para la detección de moléculas biológicas. En un lado del cantilever se inmovilizó anticuerpos que son específicos a los antígenos que se desean detectar. Los anticuerpos son inmovilizados en un lado del cantilever aplicando un protocolo de inmovilización que requiere la evaporación de una capa delgada de oro sobre ese lado del cantilever. El medio es una solución acuosa tampón llamada PBS. En este experimento se midieron la señal de deflexión y la de frecuencia de resonancia en tiempo real. Cuando se introdujo en la celda de fluidos 5 μl de PBS se observa un cambio en la señal de deflexión (el volumen en la celda de fluidos es 50 μl). Este cambio se debe a la turbulencia provocada y al cambio de temperatura producido. Sin embargo, la frecuencia de resonancia fue inmune a esta alteración. Cuando se introdujo el antígeno, se produjo una respuesta de la deflexión similar a cuando se introdujo simplemente la solución sin antígeno. Este cambio en la señal se debe a la turbulencia producida, el efecto de cambio de temperatura local y el efecto de la reacción del antígeno con los anticuerpos inmovilizados en el cantilever. Restando la señal de cuando se introdujo solo PBS, se vislumbra el cambio de deflexión asociado a la detección del antígeno en la solución. Sin embargo, la señal de la frecuencia de resonancia que fue inmune a la introducción del PBS, muestra un marcado salto cuando se introduce el antígeno en la solución.The experimental results of applying the system described in WO-A-01/81857 for the detection of biological molecules are shown in Figure 10. On one side of the cantilever, antibodies that are specific to the antigens to be detected were immobilized. The antibodies are immobilized on one side of the cantilever by applying an immobilization protocol that requires the evaporation of a thin layer of gold on that side of the cantilever. The medium is an aqueous buffer solution called PBS. In this experiment, the deflection signal and the real-time resonance frequency were measured. When 5 μl of PBS was introduced into the fluid cell, a change in the deflection signal is observed (the volume in the fluid cell is 50 μl). This change is due to the turbulence caused and the temperature change produced. However, the resonance frequency was immune to this alteration. When the antigen was introduced, a deflection response similar to when the solution was simply introduced without antigen was introduced. This change in the signal is due to the turbulence produced, the effect of local temperature change and the effect of the reaction of the antigen with the antibodies immobilized in the cantilever. By subtracting the signal when only PBS was introduced, the change in deflection associated with the detection of the antigen in the solution is envisioned. However, the signal of the resonance frequency that was immune to the introduction of the PBS shows a marked jump when the antigen is introduced into the solution.
El sistema de realimentación, aunque sí sirve para aumentar sustancialmente el factor de calidad comentado en lo anterior, no siempre proporciona una sensibilidad óptima en la respuesta dinámica del cantilever o elemento oscilador mecánico en general.The feedback system, although it does serve to substantially increase the quality factor discussed above, does not always provide optimum sensitivity in the dynamic response of the cantilever or mechanical oscillator element in general.
El sistema de realimentación descrito permite obtener factores de calidad elevados. Sin embargo, factores de calidad elevados implican ciertas desventajas debido a la presencia de transitorios en la oscilación. La oscilación del cantilever está compuesta por un elemento transitorio y otro estacionario. La oscilación del cantilever para una fuerza de excitación F0elωt puede expresarse así:The feedback system described allows obtaining high quality factors. However, high quality factors involve certain disadvantages due to the presence of transients in the oscillation. The cantilever oscillation is composed of a transitory and a stationary element. The cantilever swing for an excitation force F 0 e lωt can be expressed as follows :
z = Ceeiiω't+δ) + Aei{ωt-φ) (13)z = Ce ~ τ and iiω't + δ) + Ae i {ωt - φ) (13)
donde el primer sumando es el elemento transitorio y el segundo el estado estacionario de la oscilación. En AFM, SNOM y bio/sensores basados en estructuras mecánicas resonantes, la medida de la amplitud (A) y el desfase de la oscilación en estado estacionario (φ) requiere que el transitorio de la oscilación desaparezca. La magnitud de tiempo que indica lo que tarda en desaparecer el transitorio es la constante de tiempo τ,where the first adding is the transitory element and the second the steady state of the oscillation. In AFM, SNOM and bio / sensors based on resonant mechanical structures, the measurement of the amplitude (A) and the offset of the steady state oscillation (φ) requires that the transient oscillation disappears. The magnitude of time that indicates how long it takes for the transient to disappear is the time constant τ,
Figure imgf000014_0001
Figure imgf000014_0001
La obtención de Qs efectivos elevados por el sistema de realimentación descrito arriba implica constantes de tiempo (τ) elevadas, y por lo tanto se requieren tiempos largos para la estabilización de la oscilación del cantilever. En la práctica esto supone tiempos largos en la adquisición de imágenes en AFM, y tiempos de respuesta lentos en bio/sensores basados en estructuras mecánicas resonantes.Obtaining high effective Qs by the feedback system described above implies high time constants (τ), and therefore long times are required for stabilization of the cantilever oscillation. In practice this involves long times in the acquisition of images in AFM, and slow response times in bio / sensors based on resonant mechanical structures.
Por otro lado, cuando se utilizan ganancias (G) que dan un factor de calidad efectivo elevado se puede alcanzar situaciones en las cuales el factor de c amortiguamiento efectivo se haga negativo, γefr = γ , y por lo tanto la constante J ω de tiempo del transitorio (τ) se hace negativa, lo cual implica que el transitorio no desparece y aumenta con el tiempo hasta que la oscilación excede los límites de detección y se hace inestable. En general la obtención de Qs efectivos altos, aplicando la invención descrita en la citada publicación WO-A-01/81857, implica que la oscilación del cantilever sea en muchos casos inestable. El sistema de control da lugar a factoresOn the other hand, when profits (G) that give a high effective quality factor are used, situations can be reached in which the effective c damping factor becomes negative, γ efr = γ, and therefore the constant J ω of Transient time (τ) becomes negative, which implies that the transient does not disappear and increases over time until the oscillation exceeds the detection limits and becomes unstable. In general, obtaining high effective Qs, applying the invention described in said publication WO-A-01/81857, implies that the cantilever oscillation is in many cases unstable. The control system gives rise to factors
de amortiguamientos pequeños, donde γ ñ - γ es próximo a cero, de modo queof small damping, where γ ñ - γ is close to zero, so that
13 ω mínimas fluctuaciones del factor de amortiguamiento (γ) provocan cambios grandes del factor de calidad efectivo (Qeff=mωo/γeff), que se traduce en cambios grandes de la amplitud y el desfase de la oscilación, que no pueden ser controlados dando lugar a medidas ruidosas e inestables. El factor de amortiguamiento (γ) puede cambiar por cambios o fluctuaciones de la temperatura y de la composición del líquido. En general, la obtención de Qs efectivos altos implica medidas ruidosas e inestables. 13 ω minimum fluctuations in the damping factor (γ) cause large changes in the effective quality factor (Q eff = mωo / γ eff ), which results in large changes in the amplitude and offset of the oscillation, which cannot be controlled giving rise to loud and unstable measures. The damping factor (γ) may change due to changes or fluctuations in the temperature and composition of the liquid. Usually, Obtaining high effective Qs implies noisy and unstable measures.
Otro inconveniente del sistema de control descrito arriba es que el valor de la ganancia está limitado por el máximo valor de voltaje o corriente que la señal de excitación puede admitir; la suma de señal de excitación fija y la señal de realimentación (F0+GA) no pueden sobrepasar el límite de voltaje o corriente que admite el dispositivo excitador o el sistema que genera la señal de excitación. Esto limita el valor máximo del Q efectivo que se puede alcanzar.Another drawback of the control system described above is that the gain value is limited by the maximum voltage or current value that the excitation signal can admit; The sum of the fixed excitation signal and the feedback signal (F 0 + GA) cannot exceed the voltage or current limit that the exciter device or the system that generates the excitation signal admits. This limits the maximum value of the effective Q that can be achieved.
DESCRIPCIÓN DE LA INVENCIÓN Un aspecto de la invención se refiere a un dispositivo de control de una señal de excitación de un elemento oscilador mecánico resonante excitado por dicha señal de excitación. El dispositivo de control comprende: medios de recepción de una señal representativa de la oscilación del elemento oscilador; medios de generación de una componente de realimentación (F2) de la señal de excitación de modo que dicha componente de realimentación sea una función de, al menos, una característica de la señal representativa de la oscilación (Z); comprendiendo la señal de excitación, al menos, dicha componente de realimentación (F2) y teniendo la señal de excitación una frecuencia de excitación (ω). El dispositivo de control comprende además medios de determinar un desfaseDESCRIPTION OF THE INVENTION One aspect of the invention relates to a device for controlling an excitation signal of a resonant mechanical oscillating element excited by said excitation signal. The control device comprises: means for receiving a signal representative of the oscillation of the oscillating element; means for generating a feedback component (F 2 ) of the excitation signal so that said feedback component is a function of at least one characteristic of the signal representative of the oscillation (Z); the excitation signal comprising at least said feedback component (F 2 ) and the excitation signal having an excitation frequency (ω). The control device further comprises means of determining a lag.
(φ) entre la señal representativa de la oscilación (Z) del elemento oscilador y la componente de realimentación (F2). Los medios de generación de una componente de realimentación (F2) están configurados de modo que la componente de realimentación (F2) tiene una amplitud (GA) que es una función de dicho desfase (φ). De este modo, el sistema de control permite cambiar la respuesta dinámica del elemento oscilador mecánico resonante y aumentar la sensibilidad de ésta para medir fuerzas que actúan sobre el elemento mecánico o cambios de las propiedades físicas y/o químicas del medio en el que está el elemento mecánico, o de un objeto que está ubicado en relación con el elemento mecánico. Estos elementos mencionados producen un cambio en la oscilación de elemento mecánico, el cual es excitado para que oscile. Estos cambios pueden ser el cambio de la amplitud y del desfase como consecuencia de un cambio de la frecuencia de resonancia y/o del factor de calidad. El cambio de amplitud y desfase, para un cambio dado de la frecuencia de resonancia y/o el factor de calidad, es mayor cuanto mayor es el factor de calidad. El sistema de control correspondiente a esta invención produce un factor de calidad aparente mayor, y por lo tanto aumenta la sensibilidad de osciladores mecánicos con un factor de calidad bajo.(φ) between the signal representing the oscillation (Z) of the oscillating element and the feedback component (F 2 ). The means of generating a feedback component (F 2 ) are configured so that the feedback component (F 2 ) has an amplitude (GA) that is a function of said offset (φ). In this way, the control system allows changing the dynamic response of the resonant mechanical oscillator element and increasing its sensitivity to measure forces acting on the mechanical element or changes in the physical and / or chemical properties of the medium in which the mechanical element, or an object that is located in relation to the mechanical element. These mentioned elements produce a change in the oscillation of the mechanical element, which is excited to oscillate. These changes may be the change in amplitude and offset as a result of a change in the resonance frequency and / or the quality factor. The change in amplitude and offset, for a given change in the resonance frequency and / or the quality factor, is greater the greater the quality factor. The control system corresponding to this invention produces a higher apparent quality factor, and therefore increases the sensitivity of mechanical oscillators with a low quality factor.
Es interesante recalcar la diferencia entre factor de calidad y la definición que los autores de la presente invención hacen del concepto factor de calidad "aparente". El factor de calidad de un oscilador mecánico viene determinado por la energía disipada durante la oscilación de éste debido a fricción interna del material del elemento mecánico y al rozamiento del elemento mecánico con el medio durante la oscilación. Cuando se mide la amplitud de la oscilación de un oscilador mecánico en función de la frecuencia de excitación se observa un pico localizado aproximadamente a la frecuencia de resonancia. La anchura de este pico es menor cuanto mayor es el factor de calidad Q, es decir, cuanto menos energía se disipa en la oscilación. De igual modo, el desfase cambia más con respecto a 90 grados cuando la frecuencia de la señal excitadora se desvía de la frecuencia de resonancia. El que la amplitud y el desfase cambien una mayor cantidad cuanto mayor es el Q, es lo que hace que los osciladores mecánicos con un factor de calidad Q elevado sean mas sensibles ante cambios externos. Sin embargo, el que el oscilador disipe más o menos energía, resulta indiferente cuando lo que se persigue es ver cambios en la oscilación del elemento mecánico debido a cambios externos que se desean medir (fuerzas que actúan sobre el elemento mecánico o cambios de las propiedades físicas y/o químicas del medio en el que está el elemento mecánico, o de un objeto que está ubicado en relación con el elemento mecánico). El sistema de control de esta invención produce aparentemente un Q alto porque proporciona picos de resonancia de la amplitud muy estrechos, pero no necesariamente afecta a la disipación de energía del sistema, que es la característica que determina el factor de calidad de un oscilador mecánico. De igual modo, el sistema de control de la presente invención puede producir cambios del desfase mayores cuando la frecuencia de excitación se desvía de la de resonancia.It is interesting to emphasize the difference between quality factor and the definition that the authors of the present invention make of the concept of "apparent" quality factor. The quality factor of a mechanical oscillator is determined by the energy dissipated during its oscillation due to internal friction of the material of the mechanical element and the friction of the mechanical element with the medium during oscillation. When the amplitude of the oscillation of a mechanical oscillator is measured as a function of the excitation frequency, a peak located approximately at the resonant frequency is observed. The width of this peak is smaller the greater the quality factor Q, that is, the less energy dissipates in the oscillation. Similarly, the offset changes more than 90 degrees when the frequency of the exciter signal deviates from the resonant frequency. The fact that the amplitude and the offset change a greater amount the higher the Q, is what makes the mechanical oscillators with a high quality factor Q more sensitive to external changes. However, if the oscillator dissipates more or less energy, it is indifferent when what is sought is to see changes in the oscillation of the mechanical element due to external changes that are to be measured (forces acting on the mechanical element or changes in the properties physical and / or chemical means of the medium in which the mechanical element is, or of an object that is located in relation to the mechanical element). The control system of this invention apparently produces a high Q because it provides very narrow amplitude resonance peaks, but does not necessarily affect the energy dissipation of the system, which is the characteristic that determines the quality factor of a mechanical oscillator. Similarly, the control system of the present invention can cause major phase shifts when the excitation frequency deviates from the resonance frequency.
El sistema de control de acuerdo con la presente invención permite obtener un factor de calidad "aparente" mayor pero, a diferencia del sistema expuesto en WO-A- 01/81857, no se pretende aumentar el factor de calidad real. Se pretende que cuando se mida la amplitud del oscilador mecánico con respecto a la frecuencia de excitación se obtenga un máximo más estrecho que el que presentaría el oscilador mecánico sin este sistema de control y fuera excitado por una fuerza de excitación con una amplitud fija. El máximo se encuentra a una frecuencia próxima o igual a la de resonancia. De igual modo se puede pretender que el sistema de realimentación produzca un cambio del desfase cuando la frecuencia de excitación se desvía con respecto a la de resonancia, que es mayor que si no hubiera sistema de control. El desfase no es cambiado si la fuerza de excitación está compuesta solo por la componente de realimentación (F2). Ahora bien, si la fuerza de excitación está compuesta por una componente base Fi y la componente de realimentación F2 en cuadratura, la situación es compleja, y se requiere de varios loops de realimentación para alcanzar un estado estacionario. Este sistema de realimentación afecta al desfase y la amplitud.The control system according to the present invention allows a higher "apparent" quality factor to be obtained but, unlike the system set forth in WO-A-01/81857, it is not intended to increase the actual quality factor. It is intended that when measuring the amplitude of the mechanical oscillator with respect to the excitation frequency, a narrower maximum is obtained than that which the mechanical oscillator would have without this control system and was excited by an excitation force with a fixed amplitude. The maximum is at a frequency close to or equal to that of resonance. Similarly, it can be expected that the feedback system will produce a shift change when the excitation frequency deviates from that of the resonance, which is greater than if there was no control system. The offset is not changed if the excitation force is composed only of the feedback component (F 2 ). However, if the excitation force is composed of a base component Fi and the feedback component F 2 in quadrature, the situation is complex, and several feedback loops are required to reach a steady state. This feedback system affects the offset and amplitude.
Este sistema de control no cambia ni persigue cambiar necesariamente la disipación de energía del sistema. El sistema de control pretende que la curva de amplitud con respecto de la frecuencia de la señal de excitación presente un máximo estrecho alrededor de la frecuencia de resonancia o una frecuencia próxima a esta. Igualmente se puede pretender aumentar el cambio del desfase de la oscilación cuando la frecuencia de la señal de excitación se desvía con respecto a la frecuencia de resonancia o una frecuencia próxima a ésta. Esto ocurre cuando el efecto de calidad es elevado, pero se puede obtener igualmente con un sistema de control que produzca estas respuestas sin aumentar el factor de calidad, es decir, sin cambiar la disipación de energía del oscilador mecánico. De este modo, se puede medir con mayor sensibilidad cambios de la frecuencia de resonancia del oscilador mecánico como consecuencia de fuerzas que actúan sobre el elemento mecánico o cambios de las propiedades físicas y/o químicas del medio en el que está el elemento mecánico, o de un objeto que está ubicado en relación con el elemento mecánico. De modo similar, se puede también medir con mayor sensibilidad cambios del factor de calidad como consecuencia de fuerzas que actúan sobre el elemento mecánico o cambios de las propiedades físicas y/o químicas del medio en el que está el elemento mecánico, o de un objeto que está ubicado en relación con el elemento mecánico. El sistema de control aumenta la sensibilidad de osciladores mecánicos que tienen un factor de calidad bajo debido a que están fabricados en un material con alta fricción interna o porque se realizan medidas en un medio viscoso como puede ser un líquido. Sin embargo, la invención no implica ciertos problemas que tiene el sistema de control descrito en WO-A-01/81857, el cual persigue aumenta el factor de calidad, véanse lo que hemos comentado en la sección de "antecedentes de la invención".This control system does not change nor does it necessarily change the energy dissipation of the system. The control system intends that the amplitude curve with respect to the frequency of the excitation signal has a narrow maximum around the resonant frequency or a frequency close to it. It can also be intended to increase the change in the oscillation offset when the frequency of the excitation signal deviates from the resonant frequency or a frequency close to it. This occurs when the quality effect is high, but it can also be obtained with a control system that produces these responses without increasing the quality factor, that is, without changing the energy dissipation of the mechanical oscillator. In this way, changes in the resonance frequency of the mechanical oscillator can be measured with greater sensitivity as a result of forces acting on the mechanical element or changes in the physical and / or chemical properties of the medium in which the mechanical element is, or of an object that is located in relation to the mechanical element. Similarly, changes in the quality factor can also be measured with greater sensitivity as a result of forces acting on the mechanical element or changes in the physical and / or chemical properties of the medium in which the mechanical element is, or of an object which is located in relation to the mechanical element. The control system increases the sensitivity of mechanical oscillators that have a low quality factor because they are made of a material with high internal friction or because measurements are made in a viscous medium such as a liquid. However, the invention does not imply certain problems that the control system described in WO-A-01/81857 has, which it pursues increases the quality factor, see what we have commented in the "background of the invention" section.
De acuerdo con una realización preferida de la invención, la amplitud (GA) tiene un máximo a un desfase (φr) correspondiente a una frecuencia (ωr) próxima a la frecuencia de resonancia del elemento oscilador. De este modo la fuerza de excitación adquiere un valor máximo a una frecuencia próxima a la de resonancia y se obtiene una curva de amplitud con respecto a la frecuencia de la señal excitadora, que presenta un máximo estrecho alrededor de dicha frecuencia. Cuanto más estrecho es el máximo de la amplitud (GA) alrededor de un desfase predeterminado (φr), más estrecho es el máximo de amplitud alrededor de la frecuencia correspondiente (ωr). De este modo, un cambio de la frecuencia de resonancia cuando el oscilador está siendo excitado a dicha frecuencia, provoca un cambio de la amplitud (que se puede relacionar con el cambio de la frecuencia de resonancia) mayor que el cambio de amplitud producido si se excita el oscilador mecánico con una fuerza de excitación con una amplitud fija (la situación es similar a la ilustrada en la Figura 3). Esto permite medir cambios de la frecuencia de resonancia provocados por fuerzas que actúan sobre el elemento mecánico o cambios de las propiedades físicas y/o químicas del medio en el que está el elemento mecánico, o de un objeto que está ubicado en relación con el elemento mecánico. Esto es extremadamente importante en osciladores mecánicos con bajo factor de calidad en los cuales un cambio de la frecuencia de resonancia conlleva un cambio demasiado pequeño de la amplitud o el desfase.According to a preferred embodiment of the invention, the amplitude (GA) has a maximum at a lag (φ r ) corresponding to a frequency (ω r ) close to the resonant frequency of the oscillating element. In this way the excitation force acquires a maximum value at a frequency close to that of resonance and an amplitude curve is obtained with respect to the frequency of the exciter signal, which It has a narrow maximum around that frequency. The narrower the maximum of the amplitude (GA) around a predetermined offset (φ r ), the narrower the maximum of amplitude around the corresponding frequency (ω r ). Thus, a change in the resonance frequency when the oscillator is being excited at that frequency causes a change in the amplitude (which may be related to the change in the resonance frequency) greater than the change in amplitude produced if excites the mechanical oscillator with an excitation force with a fixed amplitude (the situation is similar to that illustrated in Figure 3). This allows measuring resonance frequency changes caused by forces acting on the mechanical element or changes in the physical and / or chemical properties of the medium in which the mechanical element is located, or of an object that is located in relation to the element mechanical. This is extremely important in mechanical oscillators with a low quality factor in which a change in the resonance frequency results in a too small change in amplitude or offset.
En el caso en que además de F2 existe una fuerza de excitación fija F-i desfasada 90 grados, se puede obtener además un cambio muy sensible del desfase cuando cambia la frecuencia de resonancia y/o el factor de calidad. En un principio, este sistema permite un mayor número de posibilidades que pueden resultar interesantes. Cuando la realimentación es solo F2 la respuesta es fácilmente predecible. Es un oscilador armónico que en vez de estar excitado por una fuerza de excitación fija, está excitado por una fuerza cuya amplitud depende del desfase. La curva de amplitud resultante es el producto de la curva estándar por la curva GA. De este modo, una curva GA más estrecha alrededor de la frecuencia de resonancia implica una curva de amplitud más estrecha. Sin embargo la respuesta del desfase es la misma.In the case where in addition to F 2 there is a fixed excitation force Fi 90 degrees out of phase, a very sensitive change of the offset can also be obtained when the resonance frequency and / or the quality factor changes. Initially, this system allows a greater number of possibilities that may be interesting. When the feedback is only F 2 the answer is easily predictable. It is a harmonic oscillator that instead of being excited by a fixed excitation force, is excited by a force whose amplitude depends on the offset. The resulting amplitude curve is the product of the standard curve by the GA curve. Thus, a narrower GA curve around the resonance frequency implies a narrower amplitude curve. However, the offset response is the same.
De acuerdo con una realización preferida de la invención, la amplitud tiene un máximo a un desfase (φ) correspondiente a una frecuencia sustancialmente igual a la frecuencia de resonancia del elemento oscilador. De este modo, el máximo de amplitud estrecho aparece a la frecuencia de resonancia. Esto es lo ideal, sin embargo resultados muy similares pueden obtenerse si la amplitud (GA) tiene un máximo a un desfase que corresponde a una frecuencia próxima a la de resonancia.According to a preferred embodiment of the invention, the amplitude has a maximum at a offset (φ) corresponding to a frequency substantially equal to the resonant frequency of the oscillating element. Thus, the maximum narrow amplitude appears at the resonant frequency. This is ideal, however, very similar results can be obtained if the amplitude (GA) has a maximum at a lag that corresponds to a frequency close to that of resonance.
De acuerdo con una realización preferida de la invención, la amplitud (GA) tiene un máximo cuando el desfase (φ) es un desfase determinado. Lo idóneo es que la amplitud (GA) tenga máximo a un desfase que corresponde con la frecuencia de resonancia. También si el desfase corresponde a una frecuencia próxima a la de resonancia la invención funciona y da resultados similares aunque no tan óptimos.According to a preferred embodiment of the invention, the amplitude (GA) has a maximum when the offset (φ) is a determined offset. Ideally, the amplitude (GA) has a maximum of a lag that corresponds to the frequency of resonance. Also, if the offset corresponds to a frequency close to that of resonance, the invention works and gives similar results, although not as optimal.
De acuerdo con una realización preferida de la invención, la señal de excitación (F) está compuesta por la componente de realimentación (F2), es decir, consiste exclusivamente en dicha componente de realimentación.According to a preferred embodiment of the invention, the excitation signal (F) is composed of the feedback component (F 2 ), that is, it consists exclusively of said feedback component.
De acuerdo con otra realización preferida de la invención, la señal de excitación (F) comprende la componente de realimentación (F2) y una componente base (F-i). Cada una de estas puede ser generada por un dispositivo diferente, por ejemplo, la componente base puede ser generada por un oscilador sustancialmente fijo y la componente de realimentación puede ser generada por el dispositivo de control de acuerdo con unos parámetros preesstablecidos y en función de características determinadas de la señal representativa de la oscilación (Z).According to another preferred embodiment of the invention, the excitation signal (F) comprises the feedback component (F 2 ) and a base component (Fi). Each of these can be generated by a different device, for example, the base component can be generated by a substantially fixed oscillator and the feedback component can be generated by the control device according to preset parameters and depending on characteristics determined from the signal representative of the oscillation (Z).
Tal y como se ha sugerido en lo anterior, la componente base (F^ puede ser una señal con una frecuencia de excitación (ω) fija y con una amplitud fija y la componente de realimentación (F2) puede ser una señal con la misma frecuencia de excitación (ω) y que esté desfasada +90° o -90° con respecto a la componente baseAs suggested above, the base component (F ^ can be a signal with a fixed excitation frequency (ω) and with a fixed amplitude and the feedback component (F 2 ) can be a signal with the same excitation frequency (ω) and that is out of phase + 90 ° or -90 ° with respect to the base component
De acuerdo con una realización preferida de la invención, el dispositivo de control comprende medios de modificar la frecuencia de excitación (ω) en función de la señal representativa de la oscilación (Z) de modo que se mantenga un desfase (φ) determinado entre la señal representativa de la oscilación (Z) y la componente de realimentación (F2). Preferiblemente, dicho desfase determinado es un desfase correspondiente a la oscilación a resonancia del elemento oscilador. De esta manera, se puede conseguir que el elemento oscilador se mantenga oscilando a resonancia o sustancialmente a resonancia.According to a preferred embodiment of the invention, the control device comprises means of modifying the excitation frequency (ω) as a function of the signal representative of the oscillation (Z) so as to maintain a determined offset (φ) between the representative signal of the oscillation (Z) and the feedback component (F 2 ). Preferably, said determined offset is an offset corresponding to the resonance oscillation of the oscillating element. In this way, it can be achieved that the oscillating element is kept oscillating at resonance or substantially at resonance.
De acuerdo con una realización preferida de la invención, el dispositivo de control comprende medios de modificar la frecuencia de excitación (ω) en función de la amplitud de la señal representativa de la oscilación (Z), con el fin de maximizar la amplitud de la oscilación del elemento oscilador. De esta manera, se puede conseguir que el elemento oscilador se mantenga oscilando a resonancia o sustancialmente a resonancia, ya que el máximo de amplitud ocurre a una frecuencia aproximadamente igual a la de resonancia.According to a preferred embodiment of the invention, the control device comprises means of modifying the excitation frequency (ω) as a function of the amplitude of the signal representative of the oscillation (Z), in order to maximize the amplitude of the oscillation of the oscillator element. In this way, it can be achieved that the oscillating element is kept oscillating at resonance or substantially at resonance, since the maximum amplitude occurs at a frequency approximately equal to that of resonance.
De acuerdo con una realización preferida de la invención, la amplitud (GA) de la componente de realimentación (F2) es una función tanto del desfase (φ) entre la señal representativa de la oscilación (Z) y la componente de realimentación (F2) como de la amplitud de la señal representativa de la oscilación (Z). De este forma, se introduce una variable más en la dependencia de la amplitud GA. Es más complejo pero el objetivo es obtener un Q "aparente" mayor. Por ejemplo, la amplitud GA podría tener un máximo cuando el desfase es el que corresponde a la resonancia, y además la amplitud GA de la componente de realimentación podría ser mayor cuanto mayor sea la amplitud de la señal representativa de la oscilación (Z). De este modo, la fuerza de excitación presentaría un máximo muy acusado a resonancia, ya que a resonancia el desfase es el desfase para el que la amplitud GA tiene un máximo y además a resonancia ocurre un máximo de amplitud. De acuerdo con una realización preferida de la invención, los medios de recepción de una señal representativa de la oscilación (Z) están asociados a un sensor que detecta una señal directamente relacionada con la oscilación del elemento oscilador. Por ejemplo, el sensor podría consistir en un diodo láser que emite un haz láser que se refleja en el elemento oscilador o cantilever y que va a un fotodetector segmentado. El desequilibrio entre las fotocorrientes generadas en los segmentos del fotodetector se deben a la deflexión y movimiento del cantilever. Este método es usado en la mayoría de los AFM comerciales. Otros métodos son ópticos interferométricos, capacitivos y piezoresistivos. En este último el cantilever es fabricado en un material piezoresisitivo, de modo que cuando el cantilever se dobla la resistencia de éste cambia.According to a preferred embodiment of the invention, the amplitude (GA) of the feedback component (F 2 ) is a function of both the offset (φ) between the signal representative of the oscillation (Z) and the feedback component (F 2 ) as of the amplitude of the signal representative of the oscillation (Z). In this way, one more variable is introduced in the dependence of the amplitude GA. It is more complex but the objective is to obtain a higher "apparent" Q. For example, the amplitude GA could have a maximum when the offset is the one that corresponds to the resonance, and in addition the amplitude GA of the feedback component could be greater the greater the amplitude of the signal representative of the oscillation (Z). In this way, the excitation force would have a very pronounced maximum at resonance, since at resonance the offset is the offset for which the amplitude GA has a maximum and in addition to resonance a maximum of amplitude occurs. According to a preferred embodiment of the invention, the means for receiving a signal representative of the oscillation (Z) are associated with a sensor that detects a signal directly related to the oscillation of the oscillating element. For example, the sensor could consist of a laser diode that emits a laser beam that is reflected in the oscillator or cantilever element and that goes to a segmented photodetector. The imbalance between the photocurrents generated in the photodetector segments is due to the deflection and movement of the cantilever. This method is used in most commercial AFMs. Other methods are interferometric, capacitive and piezoresistive optics. In the latter, the cantilever is made of a piezoresisitive material, so that when the cantilever bends the resistance of the cantilever changes.
De acuerdo con una realización preferida de la invención, el dispositivo incluye un filtro paso-banda a la frecuencia de excitación (ω) para filtrar la señal representativa de la oscilación (Z). De esta forma, se eliminan frecuencias indeseadas procedentes de ruido eléctrico en la detección de la oscilación, ruido mecánico que afecta al elemento mecánico resonante, ruido térmico del elemento mecánico resonante, harmónicos provocados por fuerzas externas que actúan en el cantilever, etc.According to a preferred embodiment of the invention, the device includes a pass-band filter at the excitation frequency (ω) to filter the signal representative of the oscillation (Z). In this way, unwanted frequencies from electrical noise are eliminated in the oscillation detection, mechanical noise affecting the resonant mechanical element, thermal noise of the resonant mechanical element, harmonics caused by external forces acting in the cantilever, etc.
De acuerdo con una realización preferida de la invención, el dispositivo está constituido por un dispositivo procesador con una tarjeta de adquisición de datos (TAD), de modo que: la tarjeta de adquisición de datos comprende los medios de recepción de una señal representativa de la oscilación (Z) del elemento oscilador; el dispositivo procesador comprende los medios de generar la componente de realimentación (F2); y la tarjeta de adquisición de datos comprende una salida para la componente de realimentación (F2).According to a preferred embodiment of the invention, the device is constituted by a processing device with a data acquisition card (TAD), so that: the data acquisition card comprises the means of receiving a signal representative of the oscillation (Z) of the oscillating element; the processor device comprises the means of generating the feedback component (F 2 ); and the data acquisition card comprises an output for the component of feedback (F 2 ).
El dispositivo procesador puede ser un dispositivo procesador digital, lo cual permite que, por ejemplo, la amplitud (GA) y/o la frecuencia de excitación (ω) se establezcan de una forma específica (manipulable digitalmente) en función de, por ejemplo, las características de la señal representativa de la oscilación (Z), por ejemplo, utilizando aplicaciones informáticas convencionales o diseñadas de forma específica para un uso concreto o para un determinado tipo de usos.The processor device can be a digital processor device, which allows, for example, the amplitude (GA) and / or the excitation frequency (ω) to be set in a specific way (digitally manipulable) depending on, for example, the characteristics of the signal representative of the oscillation (Z), for example, using conventional computer applications or specifically designed for a specific use or for a certain type of uses.
Otro aspecto de la invención se refiere a un dispositivo de medición (por ejemplo, un dispositivo biosensor), que comprende: medios de generación de una señal de excitación (F); un elemento oscilador mecánico resonante; medios de acoplamiento de la señal de excitación al elemento oscilador mecánico resonante de modo que la señal de excitación induzca una oscilación en dicho elemento; un dispositivo detector que comprende medios de generar una señal representativa de la oscilación (Z) del elemento oscilador; y medios de lectura e interpretación de la señal representativa de la oscilación (Z) (por ejemplo, del mismo tipo que se usan en los dispositivos de medición convencionales comentados en la sección de "antecedentes de la invención"). Los medios de generación de la señal de excitación incluyen un dispositivo de control de acuerdo con la invención.Another aspect of the invention relates to a measuring device (for example, a biosensor device), comprising: means for generating an excitation signal (F); a resonant mechanical oscillator element; coupling means of the excitation signal to the resonant mechanical oscillator element so that the excitation signal induces an oscillation in said element; a detector device comprising means of generating a signal representative of the oscillation (Z) of the oscillating element; and means for reading and interpreting the signal representative of the oscillation (Z) (for example, of the same type used in the conventional measuring devices discussed in the "background of the invention" section). The means for generating the excitation signal include a control device according to the invention.
El elemento oscilador puede ser una micropalanca ("cantilever") que puede estar dotada de una punta (por ejemplo, como en un microscopio de fuerzas atómicas).The oscillating element can be a micro lever ("cantilever") that can be provided with a tip (for example, as in a microscope of atomic forces).
Otro aspecto de la invención se refiere a un método para controlar la señal de excitación de un elemento oscilador mecánico resonante excitado por dicha señal de excitación (F). El método comprende los pasos de: recibir una señal representativa de la oscilación (Z) del elemento oscilador; generar una componente de realimentación (F2) de la señal de excitación de modo que dicha componente de realimentación sea una función de, al menos, una característica de la señal representativa de la oscilación (Z), comprendiendo la señal de excitación, al menos, dicha componente de realimentación (F2) y teniendo la señal de excitación una frecuencia de excitación (ω); determinar un desfase (φ) entre la señal representativa de la oscilación (Z) del elemento oscilador y la componente de realimentación (F2) y generar la componente de realimentación (F2) de modo que la componente de realimentación (F2) tenga una amplitud (GA) que es una función de dicho desfase (φ). De acuerdo con una realización preferida de la invención, la amplitud tiene un máximo a un desfase (φ) correspondiente a una frecuencia próxima a la frecuencia de resonancia del elemento oscilador.Another aspect of the invention relates to a method for controlling the excitation signal of a resonant mechanical oscillator element excited by said excitation signal (F). The method comprises the steps of: receiving a signal representative of the oscillation (Z) of the oscillating element; generating a feedback component (F 2 ) of the excitation signal so that said feedback component is a function of at least one characteristic of the signal representative of the oscillation (Z), the excitation signal comprising at least , said feedback component (F 2 ) and the excitation signal having an excitation frequency (ω); determine a lag (φ) between the signal representing the oscillation (Z) of the oscillating element and the feedback component (F 2 ) and generate the feedback component (F 2 ) so that the feedback component (F 2 ) has an amplitude (GA) which is a function of said offset (φ). According to a preferred embodiment of the invention, the amplitude has a maximum at a lag (φ) corresponding to a frequency close to the resonant frequency of the oscillating element.
De acuerdo con una realización preferida de la invención, la amplitud tiene un máximo a un desfase (φ) correspondiente a una frecuencia sustancialmente igual a la frecuencia de resonancia del elemento oscilador.According to a preferred embodiment of the invention, the amplitude has a maximum at a offset (φ) corresponding to a frequency substantially equal to the resonant frequency of the oscillating element.
La amplitud (GA) puede, por ejemplo, tener un máximo cuando el desfase (φ) es un desfase determinado.The amplitude (GA) can, for example, have a maximum when the offset (φ) is a certain offset.
La señal de excitación (F) puede estar compuesta por la componente de realimentación (F2) (es decir, consistir exclusivamente en dicha componente).También existe la posibilidad de generar la señal de excitación por la adición de, al menos, la componente de realimentación (F2) y una componente base (F^)- Como componente base (F-i) se puede elegir una señal con una frecuencia de excitación (ω) fija y con una amplitud fija y como componente de realimentación (F2) se puede elegir una señal con la misma frecuencia de excitación (ω) y que esté desfasada +90° o -90° con respecto a la componente base (F-i).The excitation signal (F) may be composed of the feedback component (F 2 ) (i.e. consist exclusively of said component). There is also the possibility of generating the excitation signal by adding at least the component of feedback (F 2 ) and a base component (F ^) - As a base component (Fi) a signal with a fixed excitation frequency (ω) and with a fixed amplitude can be chosen and as a feedback component (F 2 ) You can choose a signal with the same excitation frequency (ω) and that is offset + 90 ° or -90 ° with respect to the base component (Fi).
De acuerdo con una realización preferida de la invención, la frecuencia de excitación (ω) se modifica en función de la señal representativa de la oscilación (Z) de modo que se mantenga un desfase (φ) determinado entre la señal representativa de la oscilación (Z) y la componente de realimentación (F2). Dicho desfase determinado puede ser, por ejemplo, un desfase correspondiente a la oscilación del elemento oscilador a su frecuencia de resonancia, con el fin de que el elemento oscilador se mantenga oscilando a resonancia.According to a preferred embodiment of the invention, the excitation frequency (ω) is modified as a function of the signal representative of the oscillation (Z) so as to maintain a certain offset (φ) between the signal representative of the oscillation ( Z) and the feedback component (F 2 ). Said determined offset may be, for example, a offset corresponding to the oscillation of the oscillating element at its resonance frequency, so that the oscillating element is kept oscillating at resonance.
De acuerdo con una realización preferida de la invención, se modifica la frecuencia de excitación (ω) en función de la amplitud de la señal representativa de la oscilación (Z), con el fin de maximizar la amplitud de la oscilación del elemento oscilador.According to a preferred embodiment of the invention, the excitation frequency (ω) is modified as a function of the amplitude of the signal representative of the oscillation (Z), in order to maximize the amplitude of the oscillation of the oscillating element.
De acuerdo con una realización preferida de la invención, la amplitud (GA) de la componente de realimentación (F2) es una función tanto del desfase (φ) entre la señal representativa de la oscilación (Z) y la componente de realimentación (F2) como de la amplitud de la señal representativa de la oscilación (Z).According to a preferred embodiment of the invention, the amplitude (GA) of the feedback component (F 2 ) is a function of both the offset (φ) between the signal representative of the oscillation (Z) and the feedback component (F 2 ) as of the amplitude of the signal representative of the oscillation (Z).
De acuerdo con una realización preferida de la invención, la señal representativa de la oscilación (Z) se recibe a través de un sensor que detecta una señal directamente relacionada con la oscilación del elemento oscilador. De acuerdo con una realización preferida de la invención, se filtra la señal representativa de la oscilación (Z) con un filtro paso-banda a la frecuencia de excitación (ω).According to a preferred embodiment of the invention, the signal representative of the oscillation (Z) is received through a sensor that detects a signal directly related to the oscillation of the oscillating element. In accordance with a preferred embodiment of the invention, the signal is filtered representative of the oscillation (Z) with a pass-band filter at the excitation frequency (ω).
De acuerdo con una realización preferida de la invención, la componente de realimentación (F2) se genera con un dispositivo procesador. Otro aspecto de la invención se refiere a un método para realizar mediciones sobre un objeto, que comprende los pasos de: ubicar el objeto en relación con el elemento oscilador del dispositivo descrito en lo anterior, de modo que características del objeto afecten a la oscilación del elemento oscilador (por ejemplo, a la frecuencia de resonancia y/o al factor de calidad del elemento oscilador); medir al menos una característica relacionada con la oscilación del elemento resonante; e interpretar el resultado de dicha medición.According to a preferred embodiment of the invention, the feedback component (F 2 ) is generated with a processor device. Another aspect of the invention relates to a method for carrying out measurements on an object, comprising the steps of: locating the object in relation to the oscillating element of the device described in the foregoing, so that object characteristics affect the oscillation of the object. oscillating element (for example, at the resonant frequency and / or the quality factor of the oscillating element); measure at least one characteristic related to the oscillation of the resonant element; and interpret the result of said measurement.
Según el tipo de objeto que se desea estudiar, se puede ubicar el objeto en la proximidad del elemento oscilador (lo cual puede ser conveniente si el objeto es una superficie sustancialmente sólida cuya estructura superficial se desea estudiar) o en contacto directo con el elemento oscilador (lo cual puede ser conveniente si el objeto es un líquido y si se desea detectar la presencia de algún componente determinado en el líquido; esto es aplicable a, por ejemplo, biosensores). También existe la posibilidad de tener tanto el objeto como el elemento oscilador inmersos en un líquido (por ejemplo, si el objeto es una estructura biológica que debe mantenerse inmersa en un líquido).Depending on the type of object to be studied, the object can be located in the vicinity of the oscillating element (which may be convenient if the object is a substantially solid surface whose surface structure is to be studied) or in direct contact with the oscillating element (which may be convenient if the object is a liquid and if it is desired to detect the presence of a certain component in the liquid; this is applicable to, for example, biosensors). There is also the possibility of having both the object and the oscillating element immersed in a liquid (for example, if the object is a biological structure that must be kept immersed in a liquid).
Tal y como se ha sugerido en lo anterior, el método puede ser adecuado para estudiar objetos muy diversos, por ejemplo, líquidos, sustancias biológicas, sustancias químicas y/o superficies sólidas.As suggested above, the method may be suitable for studying very diverse objects, for example, liquids, biological substances, chemicals and / or solid surfaces.
Otro aspecto de la invención se refiere a un programa de ordenador, caracterizado porque comprende medios de código de programa para realizar todos los pasos del método de control descrito en lo anterior cuando el programa se ejecuta en un ordenador. Otro aspecto de la invención se refiere a un dispositivo de almacenamiento que comprende medios para almacenar, al menos, este programa de ordenador.Another aspect of the invention relates to a computer program, characterized in that it comprises program code means for performing all the steps of the control method described above when the program is executed on a computer. Another aspect of the invention relates to a storage device comprising means for storing at least this computer program.
BREVE DESCRIPCIÓN DE LOS DIBUJOSBRIEF DESCRIPTION OF THE DRAWINGS
A continuación se pasa a describir de manera muy breve una serie de dibujos que ayudan a comprender mejor la invención y algunas de las cuales se relacionan expresamente con una realización de dicha invención que se presenta como un ejemplo ilustrativo y no limitativo de ésta.Next, a series of drawings that help to better understand the invention and some of which are related are described very briefly. expressly with an embodiment of said invention presented as an illustrative and non-limiting example thereof.
La Figura 1 es una representación esquemática de la detección de la deflexión de una micropalanca en un sistema AFM (según el estado de la técnica). La Figura 2 es un espectro de frecuencias del cantilever con y sin interacciónFigure 1 is a schematic representation of the detection of the deflection of a micro lever in an AFM system (according to the state of the art). Figure 2 is a spectrum of cantilever frequencies with and without interaction
(según el estado de la técnica).(according to the state of the art).
La Figura 3 ilustra el efecto del desplazamiento de la frecuencia de resonancia, debido a una posible interacción punta-muestra, en el cambio de amplitud del cantilever cuando es excitado a resonancia o a una frecuencia próxima, para un valor de Q alto y otro bajo (según el estado de la técnica).Figure 3 illustrates the effect of the resonance frequency shift, due to a possible tip-sample interaction, on the change in amplitude of the cantilever when it is excited to resonance or at a nearby frequency, for a high Q value and a low Q ( according to the state of the art).
La Figura 4 ilustra, de forma esquemática, un biosensor basado en cantilevers para detectar hibridación de ADN (según el estado de la técnica).Figure 4 schematically illustrates a cantilever-based biosensor for detecting DNA hybridization (according to the state of the art).
La Figura 5 ilustra un espectro de frecuencias de un cantilever en aire y en un medio acuoso (según el estado de la técnica). La Figura 6 ilustra esquemáticamente un sistema de realimentación (según el estado de la técnica).Figure 5 illustrates a frequency spectrum of a cantilever in air and in an aqueous medium (according to the state of the art). Figure 6 schematically illustrates a feedback system (according to the state of the art).
La Figura 7 ilustra esquemáticamente, de forma más detallada, un sistema de realimentación empleado en WO-01/81857 (según el estado de la técnica).Figure 7 schematically illustrates, in more detail, a feedback system used in WO-01/81857 (according to the state of the art).
La Figura 8 muestra el efecto del sistema de realimentación mostrado en la figura 7 en la respuesta de un cantilever inmerso en un líquido (según el estado de la técnica).Figure 8 shows the effect of the feedback system shown in Figure 7 on the response of a cantilever immersed in a liquid (according to the state of the art).
La Figura 9 ilustra una comparación de la señal de la frecuencia de resonancia, con la señal de deflexión del cantilever inmerso en solución acuosa (según el estado de la técnica). La Figura 10 ilustra resultados del sistema de realimentación mostrado en la figura 7 aplicado a la detección de moléculas biológicas (según el estado de la técnica).Figure 9 illustrates a comparison of the resonance frequency signal, with the cantilever deflection signal immersed in aqueous solution (according to the state of the art). Figure 10 illustrates results of the feedback system shown in Figure 7 applied to the detection of biological molecules (according to the state of the art).
La Figura 11 ilustra una disposición general de acuerdo con una realización preferida de la invención. La Figura 12 es un diagrama que refleja el resultado de una prueba práctica de acuerdo con una realización preferida de la invención.Figure 11 illustrates a general arrangement according to a preferred embodiment of the invention. Figure 12 is a diagram reflecting the result of a practical test according to a preferred embodiment of the invention.
La Figura 13 refleja los resultados de unas simulaciones en ordenador de una realización preferida de la invención.Figure 13 reflects the results of computer simulations of a preferred embodiment of the invention.
La figura 14 es un diagrama que refleja el resultado de una prueba práctica de acuerdo con una realización preferida de la invención. La figura 15 es un diagrama que refleja el resultado de una prueba práctica de acuerdo con una realización preferida de la invención.Figure 14 is a diagram reflecting the result of a practical test in accordance with a preferred embodiment of the invention. Fig. 15 is a diagram reflecting the result of a practical test according to a preferred embodiment of the invention.
La figura 16 es un diagrama que refleja el resultado de una prueba práctica de acuerdo con una realización preferida de la invención. La figura 17 es un diagrama que refleja el resultado de una prueba práctica de acuerdo con una realización preferida de la invención.Figure 16 is a diagram reflecting the result of a practical test in accordance with a preferred embodiment of the invention. Figure 17 is a diagram reflecting the result of a practical test in accordance with a preferred embodiment of the invention.
DESCRIPCIÓN DE UNA REALIZACIÓN PREFERIDA DE LA INVENCIÓNDESCRIPTION OF A PREFERRED EMBODIMENT OF THE INVENTION
La Figura 11 ilustra una disposición general que incluye el dispositivo de control de acuerdo con una realización preferida de la invención. Esta disposición incluye una configuración convencional de acuerdo con lo que se ha comentado en lo anterior, basado en un elemento oscilador 3 o cantilever en la que se induce oscilación mediante una señal de excitación F aplicada a una bobina inductora 11. Por otra parte, se obtiene una señal representativa de la oscilación Z; esta señal se obtiene midiendo la oscilación con un sistema convencional que comprende un diodo láser 2 que emite un haz láser 1 que incide sobre la superficie del cantilever o elemento oscilador 3 y se refleja en un fotodetector 5 segmentado. La diferencia entre las fotocorrientes generadas en los segmentos superiores e inferiores es proporcional a la deflexión del cantilever. El cantilever se excita mediante un campo magnético oscilante generado en la bobina inductora 11. Para ello el cantilever puede haber sido recubierto con, por ejemplo, una fina capa ferromágnetica de cobalto (espesor entre 10 y 50 nm).Figure 11 illustrates a general arrangement that includes the control device according to a preferred embodiment of the invention. This arrangement includes a conventional configuration according to what has been said in the foregoing, based on an oscillating element 3 or cantilever in which oscillation is induced by an excitation signal F applied to an inductor coil 11. On the other hand, obtains a signal representative of the oscillation Z; This signal is obtained by measuring the oscillation with a conventional system comprising a laser diode 2 that emits a laser beam 1 that hits the surface of the cantilever or oscillating element 3 and is reflected in a segmented photodetector 5. The difference between the photocurrents generated in the upper and lower segments is proportional to the cantilever deflection. The cantilever is excited by an oscillating magnetic field generated in the inductor coil 11. For this purpose the cantilever may have been coated with, for example, a thin ferromagnetic layer of cobalt (thickness between 10 and 50 nm).
Por otra parte, la disposición ilustrada incluye el dispositivo de control de acuerdo con la invención, ilustrado de forma esquemática en la Figura 11. Dicho dispositivo comprende un ordenador personal (PC) 13 y una tarjeta de adquisición de datos (TAD) 12 (se trata de componentes en sí convencionales, por lo cual no se ilustran más detalladamente). Mediante dicho PC y TAD se puede aplicar un control digital para aumentar el factor de calidad "aparente" del elemento oscilador 3 mecánico, para aumentar la sensibilidad de la oscilación a fuerzas que actúan sobre el elemento mecánico o cambios de las propiedades físicas y/o químicas del medio en el que está el elemento mecánico, o de un objeto que está ubicado en relación con el elemento mecánico.On the other hand, the illustrated arrangement includes the control device according to the invention, schematically illustrated in Figure 11. Said device comprises a personal computer (PC) 13 and a data acquisition card (TAD) 12 (se These are conventional components, which are not illustrated in more detail). By means of said PC and TAD, a digital control can be applied to increase the "apparent" quality factor of the mechanical oscillator element 3, to increase the sensitivity of the oscillation to forces acting on the mechanical element or changes in the physical properties and / or chemical of the medium in which the mechanical element is, or of an object that is located in relation to the mechanical element.
La tarjeta de adquisición de datos empleada tiene entradas para registrar el movimiento del cantilever, es decir registrar las fotocorrientes o fotovoltajes de cada segmento del fotodetector 5 en función del tiempo La señales de las fotocorrientes o fotovoltajes pueden haber sido previamente amplificadas y filtradas en una etapa amplificadora . Mediante software programado en, por ejemplo, LabView™, se calcula la amplitud y la fase del armónico fundamental de la oscilación. Mediante software se calcula y se genera la corriente alterna que excita la bobina y hace oscilar el cantilever. Alternativamente, mediante software se calcula la señal de excitación y se genera en un instrumento generador de funciones que es controlado por el ordenador.The data acquisition card used has inputs to record the movement of the cantilever, that is to say to record the photocurrents or photovoltaics of each segment of the photodetector 5 as a function of time. amplifier By means of software programmed in, for example, LabView ™, the amplitude and phase of the fundamental harmonic of the oscillation are calculated. Using software, the alternating current that excites the coil and oscillates the cantilever is calculated and generated. Alternatively, the excitation signal is calculated by software and generated in a function generating instrument that is controlled by the computer.
Las entradas de la tarjeta de adquisición de datos (TAD) 12 registran el movimiento del oscilador, es decir, reciben la señal representativa de la oscilación Z, cuya forma es Z=Acos(ωt-φ)+N, donde N es una señal que puede comprender ruido térmico, ruido inducido por la medida, ruido asociado a la medida, y elementos no armónicos de la oscilación producidos por una respuesta no perfectamente armónica del elemento oscilador o por el efecto de introducir el oscilador en un campo de fuerzas no lineal. Mediante software se determina la amplitud y el desfase de la oscilación. A través de las salidas de la tarjeta de adquisión de datos TAD 12 se genera una fuerza de excitación (F) compuesta, en este caso, únicamente por la componente de realimentación F2 sinusoidal, cuya amplitud es GA y que presenta un máximo muy acusado al desfase correspondiente a la frecuencia de resonancia. En este caso se ha escogido una función GA=B exp(-C sin2(φ-φr)) que presenta un máximo a la frecuencia de resonancia donde el desfase medido por el sistema es φr.The data acquisition card (TAD) 12 inputs record the oscillator movement, that is, they receive the signal representative of the oscillation Z, whose form is Z = Acos (ωt-φ) + N, where N is a signal which may include thermal noise, measurement induced noise, measurement associated noise, and non-harmonic oscillation elements produced by a non-perfectly harmonic response of the oscillator element or by the effect of introducing the oscillator into a nonlinear force field . The amplitude and offset of the oscillation are determined by software. Through the outputs of the TAD 12 data acquisition card, an excitation force (F) is generated, in this case only by the sinusoidal feedback component F 2 , whose amplitude is GA and which has a very high maximum to the offset corresponding to the resonant frequency. In this case a function GA = B exp (-C without 2 (φ-φ r )) has been chosen that has a maximum at the resonant frequency where the offset measured by the system is φ r .
En la Figura 12 se muestra el efecto de este sistema de control sobre la curva de la amplitud de la oscilación de un cantilever con respecto a la frecuencia de la señal excitadora.The effect of this control system on the amplitude curve of a cantilever's oscillation with respect to the frequency of the exciter signal is shown in Figure 12.
La Figura 13 ilustra el resultado de una simulación del efecto del esta función GA en la resonancia. Tal y como se ha definido en lo anterior, GA es una función que depende del desfase (φ); preferiblemente, GA tiene un máximo a un desfase (φ) correspondiente a una frecuencia próxima a la frecuencia de resonancia del elemento oscilador. En un caso ideal, dicho desfase sería de 90°, sin embargo, en realidad y debido a imperfecciones en la medición, el desfase medido a la frecuencia de resonancia no será necesariamente exactamente 90°, sino que puede variar sustancialmente. Ahora bien, el desfase que corresponde a la frecuencia de resonancia se puede determinar midiendo la amplitud y el desfase en función de la frecuencia de excitación. Aproximadamente, a la frecuencia de resonancia se encuentra el máximo de amplitud de la oscilación, y por lo tanto el desfase que se mide a dicha frecuencia, es el desfase que corresponde a la frecuencia de resonancia.Figure 13 illustrates the result of a simulation of the effect of this GA function on resonance. As defined in the foregoing, GA is a function that depends on the offset (φ); preferably, GA has a maximum at a lag (φ) corresponding to a frequency close to the resonant frequency of the oscillating element. In an ideal case, said offset would be 90 °, however, in reality and due to imperfections in the measurement, the offset measured at the resonant frequency will not necessarily be exactly 90 °, but may vary substantially. However, the offset corresponding to the resonance frequency can be determined by measuring the amplitude and the offset depending on the excitation frequency. Approximately, the maximum amplitude of the oscillation is found at the resonance frequency, and therefore the offset that is measured at said frequency is the offset corresponding to the resonance frequency.
En la Figura 13 se muestra una simulación de la curva de amplitud con respecto a la frecuencia de la señal de excitación, utilizando el sistema de control de la señal de acuerdo con la realización descrita de la invención, para varios valores del parámetro O Concretamente, el diagrama (a) en la Figura 13 refleja una simulación de las curvas de amplitud y del desfase con respecto a la frecuencia de la señal excitadora para un oscilador armónico con factor de calidad bajo Q=2.5, constante elástica k=0,1 N/m y frecuencia de resonancia f0=10 kHz. El diagrama (b) refleja curvas de la amplitud (GA) de la señal de excitación de realimentación (F2=GA eosA simulation of the amplitude curve with respect to the frequency of the excitation signal is shown in Figure 13, using the control system of the signal according to the described embodiment of the invention, for various values of parameter O Specifically, the diagram (a) in Figure 13 reflects a simulation of the amplitude curves and the offset with respect to the frequency of the exciter signal for a harmonic oscillator with low quality factor Q = 2.5, elastic constant k = 0.1 N / m and resonant frequency f 0 = 10 kHz. Diagram (b) reflects amplitude curves (GA) of the feedback excitation signal (F 2 = GA eos
(ωt)) en función de la frecuencia de excitación:(ωt)) depending on the excitation frequency:
GA=B exp(-Csin2(φ-φr)), donde φ es el desfase medido por el dispositivo entre la oscilación del elemento mecánico y la fuerza de excitación, siendo igual a φr cuando la frecuencia de la fuerza de excitación es la de resonancia. En esta simulación φr=90 grados, como se observa en el diagrama (a). Según el valor de C es mayor, se obtiene un máximo más estrecho a la frecuencia de resonancia. B=1 y su valor determina la altura de la curva pero no su forma.GA = B exp (-Csin 2 (φ-φ r )), where φ is the offset measured by the device between the oscillation of the mechanical element and the excitation force, being equal to φ r when the frequency of the excitation force It is the resonance. In this simulation φ r = 90 degrees, as shown in the diagram (a). As the value of C is higher, a narrower maximum at the resonant frequency is obtained. B = 1 and its value determines the height of the curve but not its shape.
El diagrama (c) de la Figura 13 refleja la simulación de las curvas de amplitud con respecto a la frecuencia de la señal excitadora para un oscilador mecánico con un factor de calidad bajo, Q=2.5, excitado por una señal de realimentación F2 cuya amplitud GA depende del desfase como se indica en (b).The diagram (c) of Figure 13 reflects the simulation of the amplitude curves with respect to the frequency of the exciter signal for a mechanical oscillator with a low quality factor, Q = 2.5, excited by a feedback signal F 2 whose GA amplitude depends on the offset as indicated in (b).
El efecto de este sistema de realimentación se puede analizar a partir de la ecuación diferencial del movimiento del oscilador mecánico, que es aproximadamente la de un oscilador armónico excitado por la señal de excitación F2=GA elωt. La ecuación del movimiento es la de un oscilador armónico amortiguado forzado:The effect of this feedback system can be analyzed from the differential equation of the movement of the mechanical oscillator, which is approximately that of a harmonic oscillator excited by the excitation signal F 2 = GA e lωt . The equation of motion is that of a forced damped harmonic oscillator:
m * — U Z τ- + γ — Q.Z + k .z = B _e -Csm2( κφψ-90) lωt dt2 dtm * - UZ τ- + γ - QZ + k .z = B _e -Csm 2 ( κ φ ψ -90) lωt dt 2 dt
La solución estacionaria de esta ecuación diferencial tiene una amplitud A' y un desfase φ' que dependen de la frecuencia de este modo:The stationary solution of this differential equation has an amplitude A 'and an offset φ' that depend on the frequency in this way:
A'(ω) = GA A(ω) φ'(ω) = φ(ω)A '(ω) = GA A (ω) φ' (ω) = φ (ω)
donde A es la amplitud del oscilador mecánico si fuera excitado por una señal de excitación estándar con amplitud fija igual a uno, y φ es el desfase si el oscilador mecánico fuera excitado por una señal de excitación estándar con amplitud fija. Las curvas A(ω) y φ(ω) están representadas en la figura 13(a) para el caso de un oscilador mecánico con un factor de calidad bajo. El efecto de la fuerza de excitación F2 empleada en este sistema de control se observa en la figura 13(c). Este sistema de control no cambia la dependencia del desfase. Produce un pico de amplitud a resonancia tan estrecho como uno desee, incrementando el valor del parámetro O La curva aparenta un factor de calidad muy alto, sin embargo, a efectos de disipación de energía el factor de calidad sigue siendo el mismo, a saber, Q=2.5. Por lo tanto, los transitorios de la oscilación son propios del factor de calidad bajo que tiene el oscilador mecánico, es decir cortos, y por lo tanto el tiempo de respuesta es también corto. Además la oscilación es muy estable, a diferencia del caso de factores de calidad muy altos donde fluctuaciones de temperatura y cambios de la composición del medio hacen muy inestable la oscilación. El sistema descrito en WO-A-01/81857 permite aumentar el factor de calidad, y proporciona curvas de amplitud con respecto a la frecuencia de la señal de excitación muy estrechas, pero sufre de la presencia de transitorios largos e inestabilidades de la oscilación. Un ejemplo de una función GA(φ) apropiada para la invención es: GA=B exp(-C sin2(φ-φr))where A is the amplitude of the mechanical oscillator if it were excited by a standard excitation signal with fixed amplitude equal to one, and φ is the offset if the mechanical oscillator was excited by a standard excitation signal with fixed amplitude. Curves A (ω) and φ (ω) are represented in Figure 13 (a) in the case of a mechanical oscillator with a low quality factor. The effect of the excitation force F 2 used in this control system can be seen in figure 13 (c). This control system does not change the dependence of the offset. It produces a peak of resonance amplitude as narrow as one wishes, increasing the value of parameter O The curve appears to be a very high quality factor, however, for the purpose of energy dissipation the quality factor remains the same, namely, Q = 2.5. Therefore, the oscillation transients are characteristic of the low quality factor that the mechanical oscillator has, that is to say short, and therefore the response time is also short. In addition the oscillation is very stable, unlike the case of very high quality factors where temperature fluctuations and changes in the composition of the medium make the oscillation very unstable. The system described in WO-A-01/81857 makes it possible to increase the quality factor, and provides amplitude curves with respect to the frequency of the very narrow excitation signal, but suffers from the presence of long transients and oscillation instabilities. An example of a GA (φ) function suitable for the invention is: GA = B exp (-C without 2 (φ-φ r ))
De forma más general, se podría considerar la función GA= B exp(-C sinn(φ-φr)), en la que n puede ser 1 , 2, 3,...More generally, the function GA = B exp (-C without n (φ-φ r )), in which n can be 1, 2, 3, ...
En la figura 14 se muestran los resultados experimentales del sistema de control representado en la figura 11. La fuerza de excitación (F) está compuesta, en este caso, por una componente de realimentación F2 sinusoidal cuya amplitud es GA, la cual presenta un máximo acusado aproximadamente a la frecuencia de resonancia. En este caso, la función GA escogida es la misma que en los ejemplos 12 y 13 excepto una componente constante. Así GA=GAo + B exp(-C sin2 ((φ-φr)). GA presenta un máximo aproximadamente a la frecuencia de resonancia, para la cual el desfase medido es φr. La componente constante de la amplitud, GA0, proporciona una señal de excitación sinusoidal de amplitud constante que permite medir el desfase de la oscilación con poco ruido. Esta componente es particularmente importante en casos en los cuales el oscilador mecánico oscile poco con las señales de excitación generadas. En estos casos, la fuerza de realimentación (F2) de las figuras 12 y 13 puede ser muy pequeña para frecuencias próximas pero no iguales a la de resonancia. De este modo, la señal de oscilación (Z), Z=Acos(ωt-φ)+N, puede tener una componente de ruido (N) que impida la medida correcta del desfase (φ), y por lo tanto el sistema de control puede no funcional correctamente. Con la inclusión de la componente GA0 se consigue que el oscilador mecánico oscile con una amplitud que permita la medida correcta del desfase de la oscilación. En el diagrama (a) se representa la amplitud del cantilever con respecto a la frecuencia de la señal excitadora en ausencia de sistema de control y para el sistema de control descrito con valores del parámetro C=10 y C=100. Los valores de GA0 y B son 0.05 y 3 V respectivamente. La frecuencia de resonancia y la constante elástica del cantilever son aproximadamente 18.93 kHz y 0.06 N/m respectivamente. Según el valor de C es mayor se obtiene un máximo más estrecho a la frecuencia de resonancia. En el diagrama (b) se muestra un máximo muy estrecho obtenido con C=1000.Figure 14 shows the experimental results of the control system represented in Figure 11. The excitation force (F) is composed, in this case, of a sinusoidal feedback component F 2 whose amplitude is GA, which has a maximum accused approximately at the resonant frequency. In this case, the chosen GA function is the same as in examples 12 and 13 except a constant component. Thus GA = GAo + B exp (-C without 2 ((φ-φ r )). GA has a maximum at approximately the resonant frequency, for which the measured offset is φ r . The constant component of the amplitude, GA 0 , it provides a sinusoidal excitation signal of constant amplitude that allows to measure the oscillation offset with low noise.This component is particularly important in cases in which the mechanical oscillator oscillates little with the generated excitation signals. Feedback force (F 2 ) of Figures 12 and 13 can be very small for frequencies near but not equal to that of resonance, thus the oscillation signal (Z), Z = Acos (ωt-φ) + N , it can have a noise component (N) that prevents the correct measurement of the offset (φ), and therefore the control system may not function properly.With the inclusion of component GA 0 , the mechanical oscillator can be oscillated with an amplitude that allows the correct measurement of l offset of the swing. In diagram (a) it is represents the amplitude of the cantilever with respect to the frequency of the exciter signal in the absence of control system and for the control system described with values of parameter C = 10 and C = 100. The values of GA 0 and B are 0.05 and 3 V respectively. The resonance frequency and the elastic constant of the cantilever are approximately 18.93 kHz and 0.06 N / m respectively. Depending on the value of C is higher, a narrower maximum is obtained at the resonant frequency. Diagram (b) shows a very narrow maximum obtained with C = 1000.
En la figura 15 se muestran otros resultados experimentales de la amplitud con respecto a la frecuencia de excitación, obtenidos con el sistema experimental representado en la figura 11, y en los cuales la función GA es la misma que la presentada en la figura 14. En este ejemplo la amplitud viene calibrada en angstroms (A°). El oscilador mecánico es un microcantilever para microscopía de fuerzas atómicas, el cual ha sido recubierto por ambos lados con una capa delgada de cobalto de 25 nm de espesor mediante evaporación térmica. Esto permite que pueda ser excitado mediante un campo magnético sinusoidal con el tiempo, el cual es producido mediante una bobina colocada próxima al microcantilever. El ancho de banda, definido por la frecuencias a las cuales la amplitud es la mitad de su valor máximo (que se alcanza a una frecuencia próxima a la de resonancia) es 560 Hz para cuando no se aplica control (C=0), y decrece a 84 y 14 Hz para C igual 10 y 300, respectivamente. Este sistema de control permite reducir la anchura del pico de resonancia sin incrementar necesariamente la amplitud de la oscilación, y por lo tanto se puede trabajar con sistemas en los cuales la amplitud del oscilador es del orden de 0.1 nm como se muestra aquí. El efecto de C en el ancho de banda puede analizarse de un modo sencillo si se realizan algunas simplificaciones. La amplitud del microcantilever puede aproximarse como A(f)=X(f)GA, donde X(f) es la relación entre amplitud y fuerza de excitación de un oscilador armónico, y f es la frecuencia de excitación. Para valores de C suficientemente altos, X(f) es aproximadamente X(f0), donde f0 es aproximadamente la frecuencia de resonancia. Esto es debido a que la variación de X en función de f es aproximadamente despreciable con respecto a la variación exponencial de GA para frecuencias próximas a la de resonancia. Si asumimos que el coseno del desfase es aproximadamente 2Q(f-f0)/fo, para frecuencias próximas a la de resonancia, obtenemos que el ancho de banda es 0.42 f0/(G1/2Q), aproximadamente.Figure 15 shows other experimental results of the amplitude with respect to the excitation frequency, obtained with the experimental system represented in Figure 11, and in which the GA function is the same as that presented in Figure 14. In this example the amplitude is calibrated in angstroms (A °). The mechanical oscillator is a microcantilever for microscopy of atomic forces, which has been coated on both sides with a thin layer of 25 nm thick cobalt by thermal evaporation. This allows it to be excited by a sinusoidal magnetic field over time, which is produced by a coil placed next to the microcantilever. The bandwidth, defined by the frequencies at which the amplitude is half of its maximum value (which is reached at a frequency close to that of resonance) is 560 Hz for when no control is applied (C = 0), and decreases to 84 and 14 Hz for C equal 10 and 300, respectively. This control system allows to reduce the width of the resonance peak without necessarily increasing the amplitude of the oscillation, and therefore it is possible to work with systems in which the amplitude of the oscillator is of the order of 0.1 nm as shown here. The effect of C on bandwidth can be analyzed in a simple way if some simplifications are made. The amplitude of the microcantilever can be approximated as A (f) = X (f) GA, where X (f) is the ratio between amplitude and excitation force of a harmonic oscillator, and f is the excitation frequency. For sufficiently high C values, X (f) is approximately X (f 0 ), where f 0 is approximately the resonant frequency. This is because the variation of X as a function of f is approximately negligible with respect to the exponential variation of GA for frequencies close to that of resonance. If we assume that the cosine of the offset is approximately 2Q (ff 0 ) / fo, for frequencies close to that of resonance, we obtain that the bandwidth is 0.42 f 0 / (G 1/2 Q), approximately.
En la figura 16 se muestra el valor medio y la desviación cuadrática media de la amplitud en función de la frecuencia de excitación, sin control activo (a) y con control activo (b), utilizando el mismo sistema experimental de la figura 15 y descrito en el anterior párrafo, para valores de C igual a cero (sin control), 10 y 300. La desviación cuadrática media de la amplitud del cantilever ha sido calculada a partir de 50 medidas por cada valor de frecuencia. Como en cualquier sistema de control activo de la oscilación del oscilador mecánico, la aplicación del control conlleva un incremento del ruido de la señal del movimiento del cantilever, ya que éste es realimentado como fuerza de excitación. El ruido amplificado puede proceder del dispositivo de medida del movimiento del cantilever, y del movimiento browniano debido al acoplamiento térmico entre el cantilever y el medio que le rodea. La figura 15a muestra la amplitud y su ruido en función de la frecuencia sin el control activo de la excitación. El ruido está principalmente distribuido en torno a la frecuencia de resonancia, indicando que la fuente predominante del ruido es el movimiento Browniano del cantilever. De hecho, el cantilever se comporta como un oscilador armónico, que responde a la fuerza excitadora y también a las fuerzas térmicas de colisión aleatoria cuya densidad espectral es uniforme. Dada una anchura de banda de la medida (B), la magnitud de la fuerza térmica se puede aproximar como δFth=(4kkBT/2πQ B/f0)1/2, donde k es la constante elástica del cantilever, kB es la constante de Boltsmann y T es la temperatura. Así, el valor medio y el valor cuadrático medio de la amplitud son el producto del modulo de la función de transferencia del oscilador (X) y de la fuerza de excitación y de δFt respectivamente. El ruido de la amplitud muestra un comportamiento más complejo cuando se aplica el sistema de control (fig. 15b). El ruido no se ve significativamente incrementado cerca de la frecuencia de resonancia y exhibe dos máximos cuando la amplitud cae alrededor del 40% de su valor máximo, el cual alcanza a una frecuencia de excitación próxima a la de resonancia. Dado que la fuerza de excitación (cuando se aplica el sistema de control) depende del desfase de la oscilación del cantilever con respecto a la fuerza de excitación, existen dos fuentes de ruido en la amplitud, una es debida a las fuerzas térmicas (que producían el movimiento browniano del Cantilever sin sistema de control), y la otra procede del ruido de la fase de la oscilación. La amplitud es A(f)=X(f)(GA0+Bexp(-C sin2(φ-φr))), de este modo, el ruido de la amplitud puede separarse en dos términos, δA=X(f)δFth+(dA/dφ) δφ. Dado que la principal fuente de ruido es el movimiento Browniano del cantilever, la fluctuación de fase δφ es producida por las fuerzas térmicas no coherentes δFlh , las cuales actúan por igual en fase y en cuadratura con respecto a la fuerza de excitación. Así, δφ es aproximadamente igual al cociente entre δFth y la amplitud de la fuerza de excitación. Por consiguiente, la amplificación del ruido de la amplitud puede aproximarse como:Figure 16 shows the average value and the mean square deviation of the amplitude as a function of the excitation frequency, without active control (a) and with control active (b), using the same experimental system of Figure 15 and described in the previous paragraph, for C values equal to zero (without control), 10 and 300. The mean square deviation of the cantilever amplitude has been calculated at from 50 measurements for each frequency value. As in any active oscillation control system of the mechanical oscillator, the application of the control entails an increase in the noise of the cantilever movement signal, since it is fed back as an excitation force. The amplified noise may come from the device for measuring the cantilever movement, and the Brownian movement due to the thermal coupling between the cantilever and the surrounding environment. Figure 15a shows the amplitude and its noise as a function of the frequency without the active control of the excitation. The noise is mainly distributed around the resonance frequency, indicating that the predominant source of the noise is the Brownian movement of the cantilever. In fact, the cantilever behaves like a harmonic oscillator, which responds to the exciting force and also to the thermal forces of random collision whose spectral density is uniform. Given a measurement bandwidth (B), the magnitude of the thermal force can be approximated as δF th = (4kk B T / 2πQ B / f 0 ) 1/2 , where k is the cantilever elastic constant, k B is the Boltsmann constant and T is the temperature. Thus, the average value and the average quadratic value of the amplitude are the product of the oscillator transfer function module (X) and the excitation force and δF t respectively. The amplitude noise shows a more complex behavior when the control system is applied (fig. 15b). The noise is not significantly increased near the resonance frequency and exhibits two maximums when the amplitude drops around 40% of its maximum value, which reaches an excitation frequency close to that of the resonance. Since the excitation force (when the control system is applied) depends on the offset of the cantilever's oscillation with respect to the excitation force, there are two sources of noise in the amplitude, one is due to the thermal forces (which produced the Brownian movement of the Cantilever without control system), and the other comes from the noise of the oscillation phase. The amplitude is A (f) = X (f) (GA 0 + Bexp (-C without 2 (φ-φ r ))), thus, the amplitude noise can be separated into two terms, δA = X ( f) δF th + (dA / dφ) δφ. Since the main source of noise is the Brownian movement of the cantilever, the δφ phase fluctuation is produced by the non-coherent thermal forces δF lh , which act equally in phase and quadrature with respect to the excitation force. Thus, δφ is approximately equal to the quotient between δF th and the amplitude of the excitation force. Therefore, amplification of amplitude noise can be approximated as:
δAm - δAoff 2CJcos φ sinδA m - δA off 2CJcos φ sin
Figure imgf000031_0001
donde δAon,off es el ruido de la amplitud con y sin control de la oscilación, respectivamente. Se ha sumido que el desfase resonancia es 90 grados. El numerador de esta ecuación es cero a resonancia y aumenta de forma aproximadamente lineal con (f-f0)/ f o y C cerca de la resonancia. Sin embargo, el denominador muestra un mínimo en la resonancia, y crece aproximadamente de forma exponencial con el cuadrado de (f-fo)/ fo y C cerca de la resonancia. La combinación de estas dependencias dan lugar a dos máximos simétricos a ambos lados del pico de resonancia. Más interesante, el incremento del ruido debido a la realimentación de la fuerza de excitación es una función de C y GA0/B. Así, la relación señal-ruido puede ser modificada ajusfando GA0 y B ( para un valor dado de C que primeramente determina el ancho de banda de la amplitud de respuesta).
Figure imgf000031_0001
where δA on , off is the amplitude noise with and without oscillation control, respectively. It has been plunged that the resonance offset is 90 degrees. The numerator of this equation is zero at resonance and increases approximately linearly with (ff 0 ) / foy C near the resonance. However, the denominator shows a minimum in resonance, and grows approximately exponentially with the square of (ff o ) / fo and C near the resonance. The combination of these dependencies give rise to two symmetrical maximums on both sides of the resonance peak. More interesting, the increase in noise due to feedback of the excitation force is a function of C and GA 0 / B. Thus, the signal-to-noise ratio can be modified by adjusting GA 0 and B (for a given value of C that first determines the bandwidth of the response amplitude).
En la figura 17 se muestra la amplitud (a) y su ruido (b) en función de la frecuencia. El sistema experimental es el mismo que el descrito para las figuras 16 y 17 en los dos últimos párrafos. Para comprobar el modelo de ruido descrito en el último párrafo, la amplitud y su ruido son medidos para un valor predeterminado valor de C=100, y diferentes valores de GA0 y B. En concreto, los resultados de la figura 17 son para GA0/B igual a 0.25 y 2.5, manteniendo constante la fuerza de excitación total (GA0+B). Para valores mayores del cociente GA0/B se produce una reducción significativa del ruido junto con un leve ensanchamiento del pico de amplitud. La altura de los picos de ruido a ambos lados de la frecuencia de resonancia disminuye alrededor de 4.5 veces, y su anchura también se reduce. En otro experimento, el ruido de la amplitud aproximadamente no cambia para diferentes valores de F0 y Fn, manteniendo constante el cociente entre ellos. Esto está de acuerdo con el modelo del ruido producido con este sistema de control descrito en el último párrafo. El ruido puede ser reducido mediante el incremento del cociente GA0/B, y puede mejorarse la relación señal-ruido aumentando la cantidad de realimentación (B) mientras se mantiene constante la relación entre las dos fuerzas de excitación. Los materiales, tamaño, forma y disposición de los elementos serán susceptibles de variación, siempre y cuando ello no suponga una alteración del concepto básico de la invención.Figure 17 shows the amplitude (a) and its noise (b) as a function of frequency. The experimental system is the same as described for Figures 16 and 17 in the last two paragraphs. To check the noise model described in the last paragraph, the amplitude and its noise are measured for a predetermined value of C = 100, and different values of GA 0 and B. Specifically, the results in Figure 17 are for GA 0 / B equal to 0.25 and 2.5, keeping the total excitation force constant (GA 0 + B). For higher values of the GA 0 / B ratio there is a significant reduction in noise along with a slight widening of the amplitude peak. The height of the noise peaks on both sides of the resonance frequency decreases about 4.5 times, and its width is also reduced. In another experiment, the amplitude noise approximately does not change for different values of F 0 and Fn, keeping the ratio between them constant. This is in accordance with the noise model produced with this control system described in the last paragraph. The noise can be reduced by increasing the GA 0 / B ratio, and the signal-to-noise ratio can be improved by increasing the amount of feedback (B) while maintaining constant the relationship between the two excitation forces. The materials, size, shape and arrangement of the elements will be subject to variation, provided that this does not imply an alteration of the basic concept of the invention.
A lo largo de la presente descripción y reivindicaciones la palabra "comprende" y variaciones de la misma, como "comprendiendo", no pretende excluir otros pasos o componentes. Throughout the present description and claims the word "comprises" and variations thereof, as "comprising", is not intended to exclude other steps or components.

Claims

REIVINDICACIONES
1.- Un dispositivo de control de una señal de excitación de un elemento oscilador mecánico resonante excitado por dicha señal de excitación (F), comprendiendo el dispositivo de control: medios de recepción de una señal representativa de la oscilación (Z) del elemento oscilador (3); medios de generación de una componente de realimentación (F2) de la señal de excitación de modo que dicha componente de realimentación sea una función de, al menos, una característica de la señal representativa de la oscilación (Z); comprendiendo la señal de excitación, al menos, dicha componente de realimentación (F2) y teniendo la señal de excitación una frecuencia de excitación (ω); caracterizado porque el dispositivo de control comprende además medios de determinar un desfase (φ) entre la señal representativa de la oscilación (Z) del elemento oscilador y la componente de realimentación (F2); y porque los medios de generación de una componente de realimentación (F2) están configurados de modo que la componente de realimentación (F2) tiene una amplitud (GA) que es una función de dicho desfase (φ).1. A control device for an excitation signal of a resonant mechanical oscillator element excited by said excitation signal (F), the control device comprising: means for receiving a signal representative of the oscillation (Z) of the oscillating element (3); means for generating a feedback component (F 2 ) of the excitation signal so that said feedback component is a function of at least one characteristic of the signal representative of the oscillation (Z); the excitation signal comprising at least said feedback component (F 2 ) and the excitation signal having an excitation frequency (ω); characterized in that the control device further comprises means for determining a gap (φ) between the signal representative of the oscillation (Z) of the oscillating element and the feedback component (F 2 ); and because the means of generating a feedback component (F 2 ) are configured so that the feedback component (F 2 ) has an amplitude (GA) that is a function of said offset (φ).
2.- Un dispositivo según la reivindicación 1 , caracterizado porque dicha amplitud tiene un máximo a un desfase (φ) correspondiente a una frecuencia próxima a la frecuencia de resonancia del elemento oscilador.2. A device according to claim 1, characterized in that said amplitude has a maximum at a offset (φ) corresponding to a frequency close to the resonant frequency of the oscillating element.
3.- Un dispositivo según la reivindicación 1 , caracterizado porque dicha amplitud tiene un máximo a un desfase (φ) correspondiente a una frecuencia sustancialmente igual a la frecuencia de resonancia del elemento oscilador.3. A device according to claim 1, characterized in that said amplitude has a maximum at a offset (φ) corresponding to a frequency substantially equal to the resonant frequency of the oscillating element.
4.- Un dispositivo según la reivindicación 1 , caracterizado porque dicha amplitud (GA) tiene un máximo cuando el desfase (φ) es un desfase determinado.4. A device according to claim 1, characterized in that said amplitude (GA) has a maximum when the offset (φ) is a determined offset.
5.- Un dispositivo según cualquiera de las reivindicaciones anteriores, caracterizado porque la señal de excitación (F) está compuesta por la componente de realimentación (F2).5. A device according to any of the preceding claims, characterized in that the excitation signal (F) is composed of the feedback component (F 2 ).
6.- Un dispositivo según cualquiera de las reivindicaciones 1-4, caracterizado porque la señal de excitación (F) comprende la componente de realimentación (F2) y una componente base (F-i). 6. A device according to any of claims 1-4, characterized in that the excitation signal (F) comprises the feedback component (F 2 ) and a base component (Fi).
7.- Un dispositivo según la reivindicación 6, caracterizado porque la componente base (F-i) es una señal con una frecuencia de excitación (ω) fija y con una amplitud fija y porque la componente de realimentación (F2) es una señal con la misma frecuencia de excitación (ω) y que está desfasada +90° ó -90° con respecto a la componente base (F^. 7. A device according to claim 6, characterized in that the base component (Fi) is a signal with a fixed excitation frequency (ω) and with a fixed amplitude and because the feedback component (F 2 ) is a signal with the same excitation frequency (ω) and is out of phase +90 ° or -90 ° with respect to the base component (F ^.
8.- Un dispositivo según cualquiera de las reivindicaciones anteriores, caracterizado porque comprende medios de modificar la frecuencia de excitación (ω) en función de la señal representativa de la oscilación (Z) de modo que se mantenga un desfase (φ) determinado entre la señal representativa de la oscilación (Z) y la componente de realimentación (F2). 8. A device according to any of the preceding claims, characterized in that it comprises means of modifying the excitation frequency (ω) as a function of the signal representative of the oscillation (Z) so as to maintain a determined offset (φ) between the representative signal of the oscillation (Z) and the feedback component (F 2 ).
9.- Un dispositivo según la reivindicación 8, caracterizado porque dicho desfase determinado es un desfase correspondiente a oscilación a resonancia del elemento oscilador, con el fin de que el elemento oscilador se mantenga oscilando a resonancia.9. A device according to claim 8, characterized in that said determined offset is an offset corresponding to the oscillation at resonance of the oscillating element, so that the oscillating element is kept oscillating at resonance.
10.- Un dispositivo según cualquiera de las reivindicaciones anteriores, caracterizado porque comprende medios de modificar la frecuencia de excitación (ω) en función de la amplitud de la señal representativa de la oscilación (Z), con el fin de maximizar la amplitud de la oscilación del elemento oscilador.10. A device according to any of the preceding claims, characterized in that it comprises means of modifying the excitation frequency (ω) as a function of the amplitude of the signal representative of the oscillation (Z), in order to maximize the amplitude of the oscillation of the oscillator element.
11.- Un dispositivo según cualquiera de las reivindicaciones anteriores, caracterizado porque la amplitud (GA) de la componente de realimentación (F2) es una función tanto del desfase (φ) entre la señal representativa de la oscilación (Z) y la componente de realimentación (F2) como de la amplitud de la señal representativa de la oscilación (Z).11. A device according to any of the preceding claims, characterized in that the amplitude (GA) of the feedback component (F 2 ) is a function of both the offset (φ) between the representative signal of the oscillation (Z) and the component of feedback (F 2 ) as of the amplitude of the signal representative of the oscillation (Z).
12.- Un dispositivo según cualquiera de las reivindicaciones anteriores, caracterizado porque los medios de recepción de una señal representativa de la oscilación (Z) están asociados a un sensor que detecta una señal directamente relacionada con la oscilación del elemento oscilador.12. A device according to any of the preceding claims, characterized in that the means for receiving a signal representative of the oscillation (Z) are associated with a sensor that detects a signal directly related to the oscillation of the oscillating element.
13.- Un dispositivo según cualquiera de las reivindicaciones anteriores, caracterizado porque incluye un filtro paso-banda a la frecuencia de excitación (ω) para filtrar la señal representativa de la oscilación (Z).13. A device according to any of the preceding claims, characterized in that it includes a pass-band filter at the excitation frequency (ω) to filter the signal representative of the oscillation (Z).
14.- Un dispositivo según cualquiera de las reivindicaciones anteriores, caracterizado porque está constituido por un dispositivo procesador con una tarjeta de adquisición de datos (12), de modo que: la tarjeta de adquisición de datos comprende los medios de recepción de una señal representativa de la oscilación (Z) del elemento oscilador; el dispositivo procesador comprende los medios de generar la componente de realimentación (F2); y la tarjeta de adquisición de datos comprende una salida para la componente de realimentación (F2). 14. A device according to any of the preceding claims, characterized in that it is constituted by a processing device with a data acquisition card (12), so that: the data acquisition card comprises the means of receiving a representative signal of the oscillation (Z) of the oscillating element; the processor device comprises the means of generating the feedback component (F 2 ); and the data acquisition card comprises an output for the feedback component (F 2 ).
15.- Un dispositivo según la reivindicación 14, caracterizado porque el dispositivo procesador es un dispositivo procesador digital.15. A device according to claim 14, characterized in that the processor device is a digital processor device.
16.- Un dispositivo de medición, que comprende: medios de generación de una señal de excitación (F); un elemento oscilador mecánico resonante; medios de acoplamiento de la señal de excitación al elemento oscilador mecánico resonante de modo que la señal de excitación induzca una oscilación en dicho elemento; un dispositivo detector que comprende medios de generar una señal representativa de la oscilación (Z) del elemento oscilador; medios de lectura e interpretación de la señal representativa de la oscilación16. A measuring device, comprising: means for generating an excitation signal (F); a resonant mechanical oscillator element; coupling means of the excitation signal to the resonant mechanical oscillator element so that the excitation signal induces an oscillation in said element; a detector device comprising means of generating a signal representative of the oscillation (Z) of the oscillating element; means of reading and interpretation of the signal representative of the oscillation
(Z); caracterizado porque los medios de generación de la señal de excitación incluyen un dispositivo de control según cualquiera de las reivindicaciones 1-15. (Z); characterized in that the excitation signal generating means includes a control device according to any of claims 1-15.
17.- Un dispositivo según la reivindicación 16, caracterizado porque el elemento oscilador es una micropalanca.17. A device according to claim 16, characterized in that the oscillating element is a micro lever.
18.- Un dispositivo de acuerdo con la reivindicación 17, caracterizado porque la micropalanca está dotada de una punta.18. A device according to claim 17, characterized in that the micro lever is provided with a tip.
19.- Un método para controlar la señal de excitación de un elemento oscilador mecánico resonante excitado por dicha señal de excitación (F), comprendiendo el método los pasos de: recibir una señal representativa de la oscilación (Z) del elemento oscilador; generar una componente de realimentación (F2) de la señal de excitación de modo que dicha componente de realimentación sea una función de, al menos, una característica de la señal representativa de la oscilación (Z), comprendiendo la señal de excitación, al menos, dicha componente de realimentación (F2) y teniendo la señal de excitación una frecuencia de excitación (ω); caracterizado porque se determina un desfase (φ) entre la señal representativa de la oscilación (Z) del elemento oscilador y la componente de realimentación (F2); y porque se genera la componente de realimentación (F2) de modo que la componente de realimentación (F2) tenga una amplitud (GA) que es una función de dicho desfase19. A method for controlling the excitation signal of a resonant mechanical oscillator element excited by said excitation signal (F), the method comprising the steps of: receiving a signal representative of the oscillation (Z) of the oscillating element; generating a feedback component (F 2 ) of the excitation signal so that said feedback component is a function of at least one characteristic of the signal representative of the oscillation (Z), the excitation signal comprising at least , said feedback component (F 2 ) and the excitation signal having an excitation frequency (ω); characterized in that a lag (φ) is determined between the signal representing the oscillation (Z) of the oscillating element and the feedback component (F 2 ); and because the feedback component (F 2 ) is generated so that the feedback component (F 2 ) has an amplitude (GA) that is a function of said offset
(φ). (φ).
20.- Un método según la reivindicación 19, caracterizado porque dicha amplitud tiene un máximo a un desfase (φ) correspondiente a una frecuencia próxima a la frecuencia de resonancia del elemento oscilador.20. A method according to claim 19, characterized in that said amplitude has a maximum at a offset (φ) corresponding to a frequency close to the resonant frequency of the oscillating element.
21.- Un método según la reivindicación 19, caracterizado porque dicha amplitud tiene un máximo a un desfase (φ) correspondiente a una frecuencia sustancialmente igual a la frecuencia de resonancia del elemento oscilador.21. A method according to claim 19, characterized in that said amplitude has a maximum at a offset (φ) corresponding to a frequency substantially equal to the resonant frequency of the oscillating element.
22.- Un método según la reivindicación 19, caracterizado porque dicha amplitud (GA) tiene un máximo cuando el desfase (φ) es un desfase determinado.22. A method according to claim 19, characterized in that said amplitude (GA) has a maximum when the offset (φ) is a determined offset.
23.- Un método según cualquiera de las reivindicaciones 19-22, caracterizado porque la señal de excitación (F) se compone por la componente de realimentación (F2).23. A method according to any of claims 19-22, characterized in that the excitation signal (F) is composed of the feedback component (F 2 ).
24.- Un método según cualquiera de las reivindicaciones 19-22, caracterizado porque la señal de excitación (F) se genera por la adición de, al menos, la componente de realimentación (F2) y una componente base (F^.24. A method according to any of claims 19-22, characterized in that the excitation signal (F) is generated by the addition of at least the feedback component (F 2 ) and a base component (F ^.
25.- Un método según la reivindicación 24, caracterizado porque como componente base (F^ se elige una señal con una frecuencia de excitación (ω) fija y con una amplitud fija y porque como componente de realimentación (F2) se elige una señal con la misma frecuencia de excitación (ω) y que está desfasada +90° ó -90° con respecto a la componente base (F^.25. A method according to claim 24, characterized in that as a base component (F ^ a signal with a fixed excitation frequency (ω) and with a fixed amplitude is chosen and because as a feedback component (F 2 ) a signal is chosen with the same excitation frequency (ω) and that it is offset + 90 ° or -90 ° with respect to the base component (F ^.
26.- Un método según cualquiera de las reivindicaciones 19-25, caracterizado porque se modifica la frecuencia de excitación (ω) en función de la señal representativa de la oscilación (Z) de modo que se mantenga un desfase (φ) determinado entre la señal representativa de la oscilación (Z) y la componente de realimentación (F2).26.- A method according to any of claims 19-25, characterized in that the excitation frequency (ω) is modified as a function of the signal representative of the oscillation (Z) so as to maintain a determined offset (φ) between the representative signal of the oscillation (Z) and the feedback component (F 2 ).
27.- Un método según la reivindicación 26, caracterizado porque dicho desfase determinado es un desfase correspondiente a oscilación a resonancia del elemento oscilador, con el fin de que el elemento oscilador se mantenga oscilando a resonancia.27. A method according to claim 26, characterized in that said determined offset is an offset corresponding to resonance oscillation of the oscillating element, so that the oscillating element is kept oscillating at resonance.
28.- Un método según cualquiera de las reivindicaciones 19-27, caracterizado porque se modifica la frecuencia de excitación (ω) en función de la amplitud de la señal representativa de la oscilación (Z), con el fin de maximizar la amplitud de la oscilación del elemento oscilador. 28. A method according to any of claims 19-27, characterized in that the excitation frequency (ω) is modified as a function of the amplitude of the signal representative of the oscillation (Z), in order to maximize the amplitude of the oscillation of the oscillator element.
29.- Un método según cualquiera de las reivindicaciones 19-28, caracterizado porque la amplitud (GA) de la componente de realimentación (F2) es una función tanto del desfase (φ) entre la señal representativa de la oscilación (Z) y la componente de realimentación (F2) como de la amplitud de la señal representativa de la oscilación (Z). 29. A method according to any of claims 19-28, characterized in that the amplitude (GA) of the feedback component (F 2 ) is a function of both the offset (φ) between the signal representative of the oscillation (Z) and the feedback component (F 2 ) as of the amplitude of the signal representative of the oscillation (Z).
30.- Un método según cualquiera de las reivindicaciones 19-29, caracterizado porque la señal representativa de la oscilación (Z) se recibe a través de un sensor que detecta una señal directamente relacionada con la oscilación del elemento oscilador.30. A method according to any of claims 19-29, characterized in that the signal representative of the oscillation (Z) is received through a sensor that detects a signal directly related to the oscillation of the oscillating element.
31.- Un método según cualquiera de las reivindicaciones 19-30, caracterizado porque se filtra la señal representativa de la oscilación (Z) con un filtro paso-banda a la frecuencia de excitación (ω).31. A method according to any of claims 19-30, characterized in that the representative signal of the oscillation (Z) is filtered with a pass-band filter at the excitation frequency (ω).
32.- Un método según cualquiera de las reivindicaciones 19-31 , caracterizado porque la componente de realimentación (F2) se genera con un dispositivo procesador.32. A method according to any of claims 19-31, characterized in that the feedback component (F 2 ) is generated with a processing device.
33.- Un método para realizar mediciones sobre un objeto, caracterizado porque comprende los pasos de: ubicar el objeto en relación con el elemento oscilador del dispositivo según cualquiera de las reivindicaciones 16-18, de modo que características del objeto afecten a la oscilación del elemento oscilador; medir al menos una característica relacionada con la oscilación del elemento resonante; e interpretar el resultado de dicha medición.33.- A method for carrying out measurements on an object, characterized in that it comprises the steps of: locating the object in relation to the oscillating element of the device according to any of claims 16-18, so that object characteristics affect the oscillation of the object. oscillating element; measure at least one characteristic related to the oscillation of the resonant element; and interpret the result of said measurement.
34.- Un método según la reivindicación 33, caracterizado porque el objeto se ubica en la proximidad del elemento oscilador.34. A method according to claim 33, characterized in that the object is located in the vicinity of the oscillating element.
35.- Un método según la reivindicación 33, caracterizado porque el objeto se ubica en contacto con el elemento oscilador, de modo que cambios en la constitución del objeto afecten a la frecuencia de resonancia del elemento oscilador.35. A method according to claim 33, characterized in that the object is placed in contact with the oscillating element, so that changes in the constitution of the object affect the resonance frequency of the oscillating element.
36.- Un método según cualquiera de las reivindicaciones 33-35, caracterizado porque tanto el objeto como el elemento oscilador están inmersos en un líquido.36. A method according to any of claims 33-35, characterized in that both the object and the oscillating element are immersed in a liquid.
37.- Un método según cualquiera de las reivindicaciones 33-35, caracterizado porque el objeto es un líquido. 37. A method according to any of claims 33-35, characterized in that the object is a liquid.
38.- Un método según cualquiera de las reivindicaciones 33-37, caracterizado porque el objeto comprende una sustancia biológica.38. A method according to any of claims 33-37, characterized in that the object comprises a biological substance.
39.- Un método según cualquiera de las reivindicaciones 33-37, caracterizado porque el objeto comprende una sustancia química.39. A method according to any of claims 33-37, characterized in that the object comprises a chemical substance.
40.- Un método según cualquiera de las reivindicaciones 33-36, caracterizado porque el objeto comprende una superficie sólida. 40. A method according to any of claims 33-36, characterized in that the object comprises a solid surface.
41.- Un programa de ordenador, caracterizado porque comprende medios de código de programa para realizar todos los pasos definidos en cualquiera de las reivindicaciones 19-32, cuando el programa se ejecuta en un ordenador.41. A computer program, characterized in that it comprises program code means for performing all the steps defined in any of claims 19-32, when the program is executed on a computer.
42.- Un dispositivo de almacenamiento que comprende medios para almacenar, al menos, un programa de ordenador, caracterizado porque contiene almacenado un programa de acuerdo con la reivindicación 41. 42.- A storage device comprising means for storing at least one computer program, characterized in that it contains a program stored in accordance with claim 41.
PCT/ES2003/000100 2002-05-03 2003-03-07 Device for controlling an excitation signal from a resonant mechanical oscillating element, measuring device, method of controlling the excitation signal, method of taking measurements, computer program and storage device WO2003094173A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003214265A AU2003214265A1 (en) 2002-05-03 2003-03-07 Device for controlling an excitation signal from a resonant mechanical oscillating element, measuring device, method of controlling the excitation signal, method of taking measurements, computer program and storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200201021A ES2194607B1 (en) 2002-05-03 2002-05-03 A CONTROL DEVICE FOR AN EXCITATION SIGNAL OF A RESONANT MECHANICAL OSCILLATING ELEMENT, A MEASUREMENT DEVICE, A METHOD FOR CONTROLLING THE EXCITATION SIGNAL, A METHOD FOR PERFORMING MEASUREMENTS, A COMPUTER PROGRAM AND A STORAGE DEVICE.
ESP200201021 2002-05-03

Publications (1)

Publication Number Publication Date
WO2003094173A1 true WO2003094173A1 (en) 2003-11-13

Family

ID=29286304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2003/000100 WO2003094173A1 (en) 2002-05-03 2003-03-07 Device for controlling an excitation signal from a resonant mechanical oscillating element, measuring device, method of controlling the excitation signal, method of taking measurements, computer program and storage device

Country Status (3)

Country Link
AU (1) AU2003214265A1 (en)
ES (1) ES2194607B1 (en)
WO (1) WO2003094173A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006040025A1 (en) * 2004-10-07 2006-04-20 Nambition Gmbh Device and method for scanning probe microscopy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996028706A1 (en) * 1995-03-10 1996-09-19 Molecular Imaging Corporation Magnetic modulation of force sensor for ac detection in an atomic force microscope
WO1996032623A1 (en) * 1995-04-10 1996-10-17 International Business Machines Corporation Apparatus and method for controlling a mechanical oscillator
US5955660A (en) * 1995-12-08 1999-09-21 Seiko Instruments Inc. Method of controlling probe microscope
US6079254A (en) * 1998-05-04 2000-06-27 International Business Machines Corporation Scanning force microscope with automatic surface engagement and improved amplitude demodulation
EP1037058A1 (en) * 1999-03-18 2000-09-20 Nanosurf AG Electronic frequency measuring device and its utilisation
WO2000058759A2 (en) * 1999-03-29 2000-10-05 Nanodevices, Inc. Active probe for an atomic force microscope and method of use thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996028706A1 (en) * 1995-03-10 1996-09-19 Molecular Imaging Corporation Magnetic modulation of force sensor for ac detection in an atomic force microscope
WO1996032623A1 (en) * 1995-04-10 1996-10-17 International Business Machines Corporation Apparatus and method for controlling a mechanical oscillator
US5955660A (en) * 1995-12-08 1999-09-21 Seiko Instruments Inc. Method of controlling probe microscope
US6079254A (en) * 1998-05-04 2000-06-27 International Business Machines Corporation Scanning force microscope with automatic surface engagement and improved amplitude demodulation
EP1037058A1 (en) * 1999-03-18 2000-09-20 Nanosurf AG Electronic frequency measuring device and its utilisation
WO2000058759A2 (en) * 1999-03-29 2000-10-05 Nanodevices, Inc. Active probe for an atomic force microscope and method of use thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006040025A1 (en) * 2004-10-07 2006-04-20 Nambition Gmbh Device and method for scanning probe microscopy
JP2008516207A (en) * 2004-10-07 2008-05-15 エヌアンビション・ゲーエムベーハー Apparatus and method for scanning probe microscopy
US7810166B2 (en) 2004-10-07 2010-10-05 Nambition Gmbh Device and method for scanning probe microscopy

Also Published As

Publication number Publication date
AU2003214265A1 (en) 2003-11-17
ES2194607A1 (en) 2003-11-16
ES2194607B1 (en) 2005-03-16

Similar Documents

Publication Publication Date Title
O'shea et al. Atomic force microscopy at solid− liquid interfaces
Maali et al. Hydrodynamics of oscillating atomic force microscopy cantilevers in viscous fluids
US20190195910A1 (en) Material Property Measurements Using Multiple Frequency Atomic Force Microscopy
Palacio et al. Normal and lateral force calibration techniques for AFM cantilevers
EP1274966B1 (en) Resonant probe driving arrangement and scanning probe microscope
JP3523688B2 (en) Probe device for sample measurement
Hölscher et al. Theory of Q-controlled dynamic force microscopy in air
Rabe et al. Atomic force acoustic microscopy
Ghatkesar et al. Multi-parameter microcantilever sensor for comprehensive characterization of Newtonian fluids
Rajput et al. The nano-scale viscoelasticity using atomic force microscopy in liquid environment
Canale et al. MicroMegascope
He et al. Optomechanical atomic force microscope
Hu et al. Combined experimental and simulation study of amplitude modulation atomic force microscopy measurements of self-assembled monolayers in water
WO2007036591A1 (en) Method of using an atomic force microscope and microscope
WO2003094173A1 (en) Device for controlling an excitation signal from a resonant mechanical oscillating element, measuring device, method of controlling the excitation signal, method of taking measurements, computer program and storage device
Shaik et al. Enhancing the optical lever sensitivity of microcantilevers for dynamic atomic force microscopy via integrated low frequency paddles
Weymouth et al. Advances in AFM: Seeing atoms in ambient conditions
US10656175B2 (en) Cantilever for atomic force microscopy
Clark et al. The stochastic dynamics of an array of atomic force microscopes in a viscous fluid
Lee et al. Beyond mass measurement for single microparticles via bimodal operation of microchannel resonators
Rust et al. Novel method for gated inductive readout for highly sensitive and low cost viscosity and density sensors
ES2732721B2 (en) DYNAMIC METHOD OF FORCE MICROSCOPY AND MICROSCOPE TO ACQUIRE SIMULTANEOUSLY TOPOGRAPHY IMAGES AND FORCE MAPS
Sone et al. Picogram mass sensor using microcantilever
Modigunta et al. Atomic Force Microscopy: An Advanced Imaging Technique—From Molecules to Morphologies
Gonzalez et al. Piezoelectric tuning fork biosensors for the quantitative measurement of biomolecular interactions

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP