WO2003091630A1 - Heating cooking utensil and method for manufacture thereof, and method for use thereof - Google Patents

Heating cooking utensil and method for manufacture thereof, and method for use thereof Download PDF

Info

Publication number
WO2003091630A1
WO2003091630A1 PCT/JP2003/005348 JP0305348W WO03091630A1 WO 2003091630 A1 WO2003091630 A1 WO 2003091630A1 JP 0305348 W JP0305348 W JP 0305348W WO 03091630 A1 WO03091630 A1 WO 03091630A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
cooking
aqueous coating
coating solution
zirconium oxide
Prior art date
Application number
PCT/JP2003/005348
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiyuki Nakanishi
Original Assignee
Toto Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd. filed Critical Toto Ltd.
Priority to AU2003235138A priority Critical patent/AU2003235138A1/en
Publication of WO2003091630A1 publication Critical patent/WO2003091630A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J36/00Parts, details or accessories of cooking-vessels
    • A47J36/02Selection of specific materials, e.g. heavy bottoms with copper inlay or with insulating inlay
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00

Definitions

  • the present invention relates to all cooking utensils used for heating cooking indoors and outdoors and methods of using the same. Background technology ''
  • Japanese Patent Application Laid-Open No. 8-187185 the outer peripheral surface of a heating cooker using infrared rays, that is, the surface that is not actually exposed to cooking, is used.
  • a ceramic layer is formed by spraying zirconium oxide.
  • Japanese Patent Application Laid-Open No. 8-187185 also mentions that burning after use is easy.
  • voids are generated on the surface of the ceramic layer, and the compactness and smoothness are inevitably impaired, and there is no luster, which is a limit in terms of easy burning. There was.
  • a zirconium oxide film is formed by forming a coating film using a Zr alcoholate as seen in Japanese Patent Application Laid-Open No. 5-317179.
  • Zr alcoholate since the raw material Zr alcoholate is expensive and has high reactivity with water, water cannot be used in the production process, and the organic solvent of the flammable material is not used. They had to be used and had the problem of high cost and fire risk.
  • Zr alcoholate is converted to zirconium oxide through hydrolysis and polycondensation.However, the volume shrinkage at that time is large, so voids and cracks are liable to be formed in the produced zirconium oxide film, which is sufficient for removing scorch.
  • the Zr alcoholate has a high hydrolysis rate, the surface of the coating film tends to be roughened if rapid hydrolysis occurs during film formation. In order to form a smooth and dense coating film, many measures are required and handling is not easy.
  • the present invention provides a cooking method which has excellent durability in an environment where it is constantly exposed to water, salt and the like at high temperature, and which can be easily removed by immersing it in water and rubbing lightly with a finger or a cloth. It is an object of the present invention to provide an appliance, a method for manufacturing the cooking appliance at low cost and safely, and a method for using the cooking appliance. Disclosure of the invention
  • a water-dispersible zirconium oxide sol having an average particle diameter of 50 nm or less and water is provided on at least the surface of the portion of the cooking device constituted by the heat-resistant base material.
  • a step of applying a water-based coating solution containing: and thereafter, a step of baking to form a surface layer is provided.
  • this cooking device since a smooth and strong surface layer containing zirconium oxide is formed on the surface, if the dirt attached during cooking is heated and scorched, this cooking device is suitable for water or hot water. If soaked for a long period of time, it is possible to provide a cooker that can remove the scorch by rubbing lightly with a finger or a cloth.
  • FIG. 1 is a sectional view schematically showing a cooking device according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a method of using the cooking device of the present invention.
  • FIG. 1 is a cross-sectional view schematically showing a cooking device according to an embodiment of the present invention (in FIG. 1, a water-soluble zirconium compound or an oxidized After applying an aqueous coating solution containing zirconium sol and water, the surface layer 2 is formed by firing.
  • Examples of cooking utensils include ovens used in indoor kitchens and kitchens, microwave ovens, cookers, pans, frying pans, grills for grilling fish, and iron plates and grills used outdoors for barbecues. Can be
  • the parts of these cooking utensils that are prone to burning due to the adhesion of foods and juices such as the inner walls of cooking rooms such as ovens and microwave ovens, viewing windows, pans, etc. Pans, pans, handles, etc. , Grilled water for grilling fish, grill net, window for grilling, etc.
  • the heat-resistant base material in the present invention refers to a material that constitutes the above-mentioned cooking device and can withstand an overheating load, such as a steel plate porcelain, a porcelain porcelain enamel, a glazed ceramic, and a heat-resistant glass.
  • an overheating load such as a steel plate porcelain, a porcelain porcelain enamel, a glazed ceramic, and a heat-resistant glass.
  • those having a vitreous surface can be suitably used.
  • a metal such as a steel sheet, a solid, a stainless steel, or a glass coated with a heat-resistant coating can be suitably used.
  • the heat-resistant coating refers to a coating whose main component contains a silicone resin or a fluororesin, and whose coating has a heat-resistant temperature of about 400 ° C. or higher.
  • the aqueous coating solution used to form the surface layer contains a water-soluble zirconium compound or a water-dispersible zirconium oxide sol, and water.
  • zirconyl nitrate, zirconyl acetate, zirconium ammonium carbonate, zirconium complex, or the like can be used alone or in combination.
  • zirconium complexes include; dicarponyl compounds such as 8-diketones, organic acids such as citric acid, malic acid, and succinic acid; compounds such as amines, pyridines, and pyrroles; and complexes and derivatives thereof with zirconium. Ammonium salt and the like.
  • the water-dispersible zirconium oxide sol of the present invention is a sol in which zirconium oxide is dispersed in water and Z or a water-soluble organic solvent, and a sol that can be diluted with water can be used.
  • zirconium oxide sol those having an average particle diameter of 5 Onm or less, preferably 10 nm or less, more preferably 2 nm or less are used.
  • Zirconium oxide sol having a particle diameter of more than 50 nm is not suitable because of poor smoothness, denseness and film forming property.
  • the method of measuring the average particle diameter is divided into the following two types depending on the size of the target particle diameter.
  • the average particle diameter is 10 nm or more
  • the average particle diameter is measured by a laser-diffraction method
  • the average particle diameter is 10 nm or less
  • it is measured by a laser-Doppler light scattering / heterodyne method.
  • the aqueous coating solution of the present invention at least one of the above-mentioned water-soluble zirconium compounds and zirconium oxide sol can be used.
  • the water-soluble zirconia compound and zirconium oxide sol may be mixed and dispersed in water.
  • Zirconium oxide (Z r 0 2) in terms of content level in the aqueous coating solution of the present invention is 0. 1% by weight or more and less than 5 wt%.
  • the content is less than 0.1% by weight, the compactness of the surface layer may be reduced and the effect may be weakened. If the content is more than 5% by weight, the surface layer is too thick, causing coating unevenness and the like, and the molding itself is difficult. Is not preferred.
  • zirconium oxide (Z R_ ⁇ 2) conversion calculation containing concentrations, '0.5 wt% or more and 3 wt% or less, more preferably 1 wt% or more, 3 weight % Or less.
  • a binder As other components of the aqueous coating solution used for forming the surface layer, a binder, a wettability adjuster, a PH adjuster, and the like can be added. These components are not essential, c binder can contribute to the improvement of stability improvement and the aqueous coating liquid of the coating properties, water glass, i.e., sodium Kei, potassium Kei acid, Ke I acid Alkali silicates such as lithium and ammonium silicate can be used.
  • the amount of the alkali carbonate added is 100 parts by weight or less based on 100 parts by weight of zirconium oxide in terms of silica (Si 2 ). If the amount exceeds 100 parts by weight, the charred salt is strongly adhered to the alkali silicate, which is not preferable.
  • binders bind substances from one substance to another, so if they are present in large quantities, the same effect will occur for charring.
  • amount By setting the amount to be 100 parts by weight or less, it is possible to easily form a surface layer without impairing the effect of zirconium oxide.
  • Surfactants and water-soluble organic solvents can be used as the wetting agent.
  • the type of surfactant is not particularly limited, and anionic, cationic, and nonionic surfactants can be used.
  • the surfactant is appropriately selected according to the pH of the aqueous coating solution and the dispersibility of zirconium oxide.
  • the amount of surfactant added depends on the wetting of the aqueous coating solution. It is sufficient if there is a minimum amount required to improve the properties, but as a rough guide, it is preferably about 0.1 to 10% by weight based on the aqueous coating solution.
  • water-soluble organic solvent examples include alcohols such as methanol, ethanol, and propanol, ethers such as tetrahydrofuran, methoxypropanol, ethoxyethoxypropanol, and esters such as hydroxyethyl acetate. It is about 0.5 to 50% by weight of the liquid, preferably about 1 to 20% by weight.
  • the surface to which the aqueous coating liquid is to be applied is pretreated to such an extent that the aqueous coating liquid is uniformly wetted.
  • Pretreatment methods include cleaning and degreasing with cleaning agents, abrasives, water, solvents, etc., corona discharge treatment, plasma treatment, under oxygen atmosphere,
  • a method of removing adhered dirt by baking at a temperature of about 500 or higher at 500 or more can be used.
  • the aqueous coating solution is applied.
  • Irregularities on the surface of the surface layer may cause scorching, so it is desirable to apply the coating as smoothly as possible during application. for that purpose,
  • the surface to which the aqueous coating solution is to be applied is heated in advance to ensure a surface temperature of 70 to 110 ° C, preferably 80 to 100 ° C, during coating ( Preheating),
  • baking is performed after the application of the aqueous coating solution.
  • the melting point of zirconium oxide is 270 ° C, but the melting temperature of the porcelain is about 500 ° C, and the glazed layer of ceramics begins to melt at 800 ° C. Desirably less than the softening point of quality.
  • the holding time of the firing temperature is about 10 seconds to 30 minutes.
  • the surface layer formed by the above-described method has an arithmetic average roughness (Ra) specified in JIS B0601 of not less than 0.1 m and less than 0.5 m.
  • a more preferable value of the average roughness is 0.1111 or more and less than 0.4 zm, particularly preferably 0.12 mm or more and 0.36 m or less.
  • arithmetic average roughness for example, a surface roughness profile measuring machine manufactured by Tokyo Seimitsu Co., Ltd., Surfcom 57 OA is used. Arbitrarily select three places from the sample surface, measure the arithmetic average roughness (Ra) described in JIS B0601 at a measurement distance of 1 mm, and calculate the average value.
  • the supported amount of zirconium oxide contained in the surface layer formed by the above method is 0.04 gZm 2 or more and less than 2.3 g / m 2 .
  • a more preferable range of the amount of the supported zirconium oxide is 0.04 gZm 2 or more and 1.4 gZm 2 or less.
  • the surface layer formed by the above method mainly contains zirconium oxide.
  • the content of zirconium oxide is 40% by weight or more, preferably 50% by weight or more and 100% by weight or less of the surface layer. By setting the content within the above range, it is possible to easily remove the burn as described later. (5) How to use cooking utensils
  • FIG. 2 is a schematic view showing a method of using the cooking device of the present invention.
  • the cookware When dirt attached during cooking is heated and burnt 3 adheres to the cooking device of the present invention, the cookware is immersed in water or hot water 4 to remove burnt easily thereafter. It will be easier. More specifically, it can be removed by lightly rubbing with a finger or a cloth.
  • the interface between the surface and the charred surface is very inert, probably due to the presence of a large amount of zirconium oxide, which has a very small amount of equilibrium adsorption of the ⁇ H group, and is immersed. Accordingly, the adhesive force is gradually weakened and the charred surface rises, so that the charred surface can be easily removed thereafter.
  • the scorch is weak, it is removed naturally, and even if it is relatively firm, it can be easily removed by rubbing it lightly with a sponge.
  • Immersion in water or hot water should take at least 1 hour, preferably at least 3 hours.
  • Bicarbonate Jill Conil ammonium Niu arm (first Kigenso Kagaku Co., Zr0 2 in terms of content concentration of 13 wt% stock solution) was adjusted with distilled water to Zr0 2 in terms of content level 1% by weight, water soluble coating solution # 1 I got Aqueous coating solution # 1 was applied by spraying to a coating of 45gZm 2 on a steel plate (one coated with a common underglaze or dull coat) for heating and cooking. Then, baking was performed at a maximum baking zone temperature of 450 ° C. for 30 minutes using a roller hearth kiln to obtain a sample of Example 1. The arithmetic average roughness (Ra) of the sample was 0.16 / m.
  • Arithmetic mean roughness (Ra) was measured using Surfcom 570A, a surface roughness profile measuring machine from Tokyo Seimitsu. Arbitrary three points were selected from the sample surface, and the arithmetic average roughness (Ra) described in JISB0601 was measured at a measurement distance of lmm, respectively, and the average value was calculated. In the following description, the arithmetic mean roughness (R a) was measured and calculated by this method.
  • Nitrate zirconyl (first Kigenso chemical stocks made, Zr0 2 in terms of content level 25-fold stock solution Adjust the amount%) in distilled water Zr0 2 in terms of content level 1% by weight to obtain an aqueous coating ⁇ night # 2.
  • Aqueous coating liquid # 2 was applied by spraying to a hollow steel plate for heating and cooking at a coating amount of 45 g / m 2 . Then, baking was carried out at a maximum baking zone temperature of 450 ° C. for 30 minutes using a roller hearth kiln to obtain a sample of Example 2.
  • the arithmetic average roughness (Ra) of the sample was 0.12 m.
  • Zirconyl acetate (first Kigenso Kagaku Co., Zr0 2 in terms of content concentration of 15 wt% stock solution) was adjusted with distilled water to Zr0 2 terms containing 1 wt% concentration to give an aqueous coating solution # 3.
  • Aqueous coating solution # 3 was coated on the enameled steel plate for cooking by spraying at a coating amount of 45 gZm 2 . Then, the sample was fired at a maximum sintering zone temperature of 450 with a roller and hearth kiln for 30 minutes to obtain a sample of Example 3.
  • the arithmetic mean roughness (Ra) of the sample was 0.16 m.
  • Aqueous coating solution # 1 was coated on a steel plate for heating and cooking with a spray at a coating amount of 45 gZm 2 . Then, the sample was fired at a maximum firing zone temperature of 150 ° C. for 30 minutes using a roller and hearth kiln to obtain a sample of Example 4.
  • the arithmetic average roughness (Ra) of the sample was 0.16 m.
  • the aqueous coating solution # 2 in E bite one steel plate for cooking it was co one coating at SPRAY under the conditions of coating amount 45GZm 2. Then, the sample was fired in a roller hearth kiln at a maximum firing zone temperature of 150 ° C for 30 minutes to obtain a sample of Example 5.
  • the arithmetic average roughness (Ra) of the sample was 0.16 m. '
  • Aqueous coating solution # 3 was coated on an enameled steel plate for cooking by spraying under the conditions of a coating amount of 45 gZm 2 . Then, the sample was fired at a maximum firing zone temperature of 150 ° C. for 30 minutes using a roller and hearth kiln to obtain a sample of Example 6. The arithmetic average roughness (R a) of the sample was 0.20 nm.
  • Example 7
  • Zirconium complex manufactured by Teikoku Chemical Co. Eorido Z- 66 1 B, Zr0 2 in terms of content concentration of 4% by weight of the stock solution
  • Zr0 2 in terms of content level 1% by weight
  • Aqueous coating solution # 7 was coated on an enameled steel plate for cooking by spraying under the conditions of a coating amount of 45 g / m 2 .
  • the sample was fired for 30 minutes at the maximum firing zone temperature of 450 ° C in a mouth-rhersharing to obtain a sample.
  • the arithmetic average roughness (Ra) of the sample was 0.20 m.
  • Zirconium oxide sol having an average particle diameter of 2 nm (Taki Chemical Co., Zr0 2 in terms of free organic concentration of 5 wt% stock solution) was adjusted with distilled water to Zr0 2 in terms of content level 1% by weight, the aqueous coating solution # 8 Obtained.
  • Aqueous coating solution # 8 was spray-coated on a steel plate of a hood for heating and heating at 80 ° C in advance with a coating amount of 45 gZm 2 .
  • the sample was fired at 450 ° C. for 30 minutes at a maximum firing zone temperature in a mouth laher kiln to obtain a sample of Example 8.
  • the particle size was measured by laser Doppler light scattering / heterodyne method using MI CROTRAC UP A of Nikkiso Co., Ltd.
  • the arithmetic mean roughness (Ra) of the sample was 0.16 m.
  • the average particle diameter of 10nm was adjusted to Zr0 2 terms containing 1 wt% concentration with distilled water zirconium oxide sol (primary Kigenso Kagaku Co., Zr0 2 in terms of content concentration of 10 wt% stock solution), an aqueous coating solution # 9 I got Aqueous coating liquid # 9 was sprayed onto a steel plate for heating and cooking heated to 80 ° C in advance at a coating amount of 45 gZm 2 . Then, sintering was performed at a maximum sintering zone temperature of 450 ° C. for 30 minutes using a roller hearth kiln to obtain a sample of Example 9.
  • the particle size was measured using a laser Doppler light scattering 'heterodyne method' using MIC ROT RACUP A from Nikkiso Co., Ltd.
  • the arithmetic mean roughness (Ra) of the sample was 0.20 m.
  • Example 10 The average particle diameter of 50nm was adjusted to Zr0 2 terms containing 1 wt% concentration with distilled water zirconium oxide sol (Nissan Chemical Industries, Ltd., Zr0 2 in terms of content concentration of 30 wt% stock solution), water soluble coating solution # 1 0 I got An aqueous coating liquid # 10 was coated by spraying on a hollow steel sheet for heating and heating at 80 ° C. in advance at a coating amount of 45 g / m 2 . The sample was fired at a maximum firing zone temperature of 450 ° C. for 30 minutes using a roller hearth kiln to obtain a sample of Example 10. The particle size was measured by a laser diffraction method using MI CROTRA C FRA manufactured by Nikkiso Co., Ltd. The arithmetic mean roughness (Ra) of the sample was 0.36 m.
  • the average particle diameter of 50nm zirconium oxide sol and water glass material (Nissan Chemical Industries, Ltd., Zr0 2 in terms of content concentration of 30 wt% stock solution) (Nippon Kagaku silicate lithium 3 5, Si0 2 in terms of concentration of the raw solution 20 the weight%), respectively Zr0 2 terms containing 1 wt% concentration with distilled water, 1 Si0 2 in terms of content concentration was adjusted to 1 wt%: 1 aqueous coating coating solution # 1 1 were mixed at a weight ratio Obtained.
  • the steel plate for heating and cooking was heated to 100 ° C. in advance, and the aqueous coating solution # 11 was coated by spraying under the conditions of a coating amount of 45 gZm 2 .
  • Example 11 The particle size was measured by a laser diffraction method using MI CROTRA CF RA manufactured by Nikkiso Co., Ltd.
  • the arithmetic average roughness (Ra) of the sample was 0.32 zm.
  • Nitrate zirconyl (first Kigenso chemical stocks made, Zr0 2 in terms of content concentration of 25 by weight% stock solution) was adjusted with distilled water to Zr0 2 in terms of content concentration of 3% by weight to obtain an aqueous coating solution # 1 2.
  • Aqueous coating solution # 12 was coated on a steel plate for heating and cooking with a spray at a coating amount of 45 g / m 2 . Then, the sample was fired at a maximum firing zone temperature of 450 in a roller hearth kiln for 30 minutes to obtain a sample of Example 12.
  • the arithmetic mean roughness (Ra) of the sample was 0.16 m.
  • the viewing window glass inside the grill was heated to 70 ° C.
  • Example 13 The arithmetic average roughness (Ra) of the sample was 0.20 tm.
  • the viewing window glass inside the grill was heated to 70 in advance, and the heat-resistant coating portion of the window glass was spray-coated with the aqueous coating solution # 2 at a coating amount of 45 g / m 2 . Then, the sample was fired at a maximum firing zone temperature of 450 in a roller hearth kiln for 30 minutes.
  • the arithmetic mean roughness (Ra) of the sample was 0.20 m.
  • the hollow steel sheet for heating and cooking was heated at 110 ° C. in advance, and the aqueous coating solution # 2 was spray-coated at a coating amount of 45 g / m 2 . Then, the sample was baked for 10 seconds using a mesh burner to obtain a sample of Example 15.
  • the mesh surface temperature of Mesh Pana was set at 850.
  • the maximum surface temperature of Hoguchi-Steel was 400 ° C.
  • the arithmetic mean roughness (Ra) of the sample was 0.24 m.
  • Nitrate zirconyl (first Kigenso chemical stocks made, Zr0 2 in terms of content concentration of 25 by weight% stock solution) was adjusted with distilled water to Zr0 2 in terms of content level 0.1% by weight to obtain an aqueous coating solution # 1 6 .
  • the hollow steel sheet for heating and cooking was heated to 110 ° C. in advance, and the aqueous coating solution # 16 was coated with a spray at a coating amount of 100 g / m 2 . Then, sintering was performed for 30 minutes at a maximum sintering zone temperature of 450 ° C using a roller eight-skillen.
  • Zirconium oxide sol with an average particle size of 80 nm (produced by Daiichi Rare Element Chemical Co., Ltd. Adjust the Zr0 2 in terms of content concentration of 20 wt%) of a liquid with distilled water Zr0 2 in terms of content level 1% by weight to obtain an aqueous coating solution # 22.
  • the aqueous coating solution # 22 was spray-coated on a hollow steel plate for heating and heating to 100 in advance under the condition of a coating amount of 45 gZm 2 . Then, the sample was fired at a maximum firing zone temperature of 450 ° C. for 30 minutes using a roller and a hearth kiln to obtain a sample of Comparative Example 2.
  • the particle size was measured by a laser diffraction method using MI CROTR AC FRA manufactured by Nikkiso Co., Ltd.
  • the arithmetic mean roughness (Ra) of the sample was 0.56 / m.
  • the sample was fired at a maximum firing zone temperature of 450 ° C. for 30 minutes using a roller and hearth kiln to obtain a sample of Comparative Example 3.
  • the particle size was measured by a laser diffraction method using MICROTRAC FRA manufactured by Nikkiso Co., Ltd.
  • the arithmetic mean roughness (Ra) of the sample was 0.52 m.
  • aqueous coating solution # 24 Adjusts the ceramic powder zirconium oxide having an average particle diameter of 5 ⁇ m with distilled water to Zr0 2 in terms of content level 1% by weight to obtain an aqueous coating solution # 24.
  • An aqueous coating solution # 24 was coated by spraying on an enameled steel plate for heating and heating to 100 ° C in advance at a coating amount of 45 g / m 2 .
  • the sample was fired at a maximum firing zone temperature of 450 ° C for 30 minutes using a roller hearth kiln to obtain a sample of Comparative Example 4.
  • the particle size was measured by a laser diffraction method using MIC ROTRAC FRA manufactured by Nikkiso Co., Ltd. It was not possible to determine the arithmetic mean roughness (R a) of the sample because the film had detached. Comparative Example 5
  • the aqueous coating solution # 24 was coated by spraying on an enameled steel plate for heating and heating previously heated to 100 ° C. under the conditions of a coating amount of 45 gZm 2 . Then, the sample was baked for 30 minutes at a maximum sintering zone temperature of 500 ° C. with a roller porch-skiln to obtain a sample of Comparative Example 5.
  • 500 ° C is the limit of the heat-resistant temperature of the enamel plate, and further heat treatment was not possible.
  • the particle size was measured by a laser diffraction method using MICROTRAC FRA manufactured by Nikkiso Co., Ltd. It was not possible to determine the arithmetic mean roughness (R a ) of the sample because the film had detached.
  • aqueous coating solution # 26 was spray-coated on a hot-rolled steel plate for heating, which was previously heated to 80, with a coating amount of 45 gZm 2 . Then, the sample was fired at a maximum firing zone temperature of 450 ° C. for 30 minutes using a roller hearth kiln to obtain a sample of Comparative Example 6. The arithmetic mean roughness (Ra) of the sample was 0.16 ⁇ m. Comparative Example 7
  • Nitrate zirconyl (first Kigenso chemical stocks made, Zr0 2 in terms of content concentration of 25 by weight% stock solution) was adjusted with distilled water to Zr0 2 terms containing 5 wt% to obtain an aqueous coating solution # 2 7.
  • Aqueous coating solution # 24 was coated on a steel plate for heating and cooking with a spray at a coating amount of 45 gZm 2 . Then, the sample was fired at 450 ° C for 30 minutes in a roller hearth kiln at a maximum firing zone temperature to obtain a sample. It was not possible to determine the arithmetic average roughness (R a) of the sample because the film had detached.
  • the ingredients to be scorched were soy sauce, sugar, and beaten eggs mixed at a weight ratio of 1: 1: 1.
  • 0.1 g of this mixture was applied to the surfaces of the examples and comparative examples in a circle having a diameter of about 1 cm at 10 places using a dropper, and heated in a dryer at 260 ° C. for 15 minutes to be completely scorched. .
  • This test is generally performed with a stove, etc. This is a test method. Then, it was taken out of the dryer, allowed to cool naturally in a normal room, and then immersed in tap water at room temperature (about 20 ° C). This was taken out at regular intervals and the number of burns removed was measured. When burnt, the same test was repeated at the same place again, and the durability was also evaluated. Table 1 shows the evaluation results.
  • the burnt removability can be stably maintained even at a relatively low temperature for a short period of time. It is possible to form a surface layer.
  • ADVANTAGE OF THE INVENTION While having excellent durability also in the use around the stove or the inside of a grill etc. which are constantly exposed to high temperature, water, salt, etc., after being immersed in water, lightly scorch with a finger or cloth. It is possible to provide a method for inexpensively and safely manufacturing a cooking appliance that can be easily removed by rubbing, and a method for using the cooking appliance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Food Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Cookers (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

A method for manufacturing a heating cooking utensil, characterized in that a surface layer is formed by a method comprising a step of applying an aqueous coating fluid containing water and a water-soluble zirconium compound or a water-dispersible zirconium oxide sol having an average particle diameter of 50 nm or less on the surface of at least the portion comprising a heat-resistant base material of the heating cooking utensil, and a step of firing the resultant surface. The method can be used for manufacturing, at a low cost and with safety, a heating cooking utensil which exhibits excellent durability even in the use in a place which is frequently exposed to a high temperature and also to water, a salt and the like, such as one around a kitchen range or in a grill, and allows a scorched material adhered to the surface thereof to be easily removed only by immersion into water and then light rubbing by a finger or a dishcloth.

Description

加熱調理器具及びその製造方法、 並びにその使用方法 技術分野 TECHNICAL FIELD OF THE INVENTION
本発明は、 屋内 ·屋外を問わず、 加熱調理に使われるあらゆる加熱調理器具と その使用方法に関する。 背景技術 '  The present invention relates to all cooking utensils used for heating cooking indoors and outdoors and methods of using the same. Background technology ''
屋内のキッチン、 厨房などで使用される鍋、 フライパン、 汁受け皿、 バーナー リング、 魚焼き用グリルの水入れ皿、 グリル内部の視き用窓ガラス、 焼き網、 ま た屋外でバーベキューなどに使用される鉄板、 焼き網など、 焦げが付き易い加熱 調理器具では、 これらに付着した焦げは基本的に研磨剤などを使って力任せに削 り落とす事が当たり前であった。  Pots used in indoor kitchens and kitchens, frying pans, soup trays, burner rings, water plates for grills for grilling fish, windowpanes for grills inside, grills, and barbecues outdoors In the case of hot cooking utensils such as iron plates and grills, which are liable to burn, it was natural to use abrasives or the like to basically remove the burns on the brute force.
また、 キッチンの天板などには焦げ付きに強いコ一ティング剤として、 フッ素 樹脂加工した製品があった。  In addition, some kitchen top plates and other products were processed with fluororesin as a coating agent that is resistant to scorching.
また、加熱調理器具においてコンロケ一スの温度上昇の抑制と生産性の向上を 目的として、赤外線を利用した加熱調理器の外周面に酸化ジルコニウムを溶射し, 形成するケースがあった。  In addition, for the purpose of suppressing the rise in the temperature of the stove and improving the productivity of cooking utensils, there have been cases where zirconium oxide is sprayed onto the outer peripheral surface of the cooking device using infrared rays.
付着した焦げを研磨剤などを使って力任せに削り落とすことは、結果としてメ ンテナンスに負担がかかり、かつ製品そのものの劣化が促進されて寿命が縮まる 事になる。  Shaving off the attached charcoal with an abrasive, etc., as a result, places a burden on maintenance and accelerates the deterioration of the product itself, resulting in a shortened life.
また、 フッ素樹脂加工した製品を高温かつ水、 塩などに絶えず曝されるコンロ 回りやグリル内などの部位に使用する場合は、 高耐久性が求められるため、 熱に よる変色や変形などの劣化の点から使用する事は難しい。  In addition, when a fluororesin-processed product is used in areas such as around a stove or inside a grill where it is constantly exposed to high temperatures and water, salt, etc., high durability is required, and deterioration such as discoloration and deformation due to heat is required. It is difficult to use from the point of view.
また、 過去においては特開平 8 - 1 8 7 1 8 5に見られるように、 赤外線を利 用した加熱調理器において、 その外周面、 つまり実際に調理に晒されない面側に おいて酸化ジルコニウムを溶射してセラミック層を形成するという知見がある。 さらに特開平 8— 1 8 7 1 8 5においては、使用後の焦げ落としが容易になると いう言及もされている。 しかしながら、 溶射による当該技術においては、 そのセ ラミック層の表面に空隙が生じ、 どうしても緻密性と平滑性が損なわれ、 また光 沢の無いものとなり、その結果焦げ落としが容易になる面においては限界があつ た。 In the past, as can be seen in Japanese Patent Application Laid-Open No. 8-187185, the outer peripheral surface of a heating cooker using infrared rays, that is, the surface that is not actually exposed to cooking, is used. There is a finding that a ceramic layer is formed by spraying zirconium oxide. Japanese Patent Application Laid-Open No. 8-187185 also mentions that burning after use is easy. However, in this technique by thermal spraying, voids are generated on the surface of the ceramic layer, and the compactness and smoothness are inevitably impaired, and there is no luster, which is a limit in terms of easy burning. There was.
また、 過去においては特開平 5— 3 1 7 1 7 9に見られるように、 Z rアルコ ラートを用いてコーティング膜を作製し、酸化ジルコニウム膜を形成するという 知見がある。 しかしながら、 Z rアルコラートによる当該技術においては、 原材 料の Z rアルコラートが高価であることや、 水との反応性が高いことから、 製造 過程において水が使えず、 引火性材料の有機溶剤を使用しなければならず、 高コ ストで火災のリスクが伴うという問題点があつた。 Z rアルコラ一トは加水分解、 縮重合を経て酸化ジルコニウムに変換されるが、その際の体積収縮が大きいため、 作製した酸化ジルコニウム膜に空隙やクラックが生じやすく、焦げの除去におい ては十分に満足のいく性能は得られにくい。 さらに、 Z rアルコラ一トは加水分 解速度が高いために、 製膜時に急激な加水分解が起こると、 塗膜の表面が荒れや すい。平滑で緻密な塗膜を形成させるためには多くの工夫が必要で取り扱いが容 易ではない。  In the past, there is a finding that a zirconium oxide film is formed by forming a coating film using a Zr alcoholate as seen in Japanese Patent Application Laid-Open No. 5-317179. However, in the technology using Zr alcoholate, since the raw material Zr alcoholate is expensive and has high reactivity with water, water cannot be used in the production process, and the organic solvent of the flammable material is not used. They had to be used and had the problem of high cost and fire risk. Zr alcoholate is converted to zirconium oxide through hydrolysis and polycondensation.However, the volume shrinkage at that time is large, so voids and cracks are liable to be formed in the produced zirconium oxide film, which is sufficient for removing scorch. It is difficult to obtain satisfactory performance. Furthermore, since the Zr alcoholate has a high hydrolysis rate, the surface of the coating film tends to be roughened if rapid hydrolysis occurs during film formation. In order to form a smooth and dense coating film, many measures are required and handling is not easy.
そこで、 本発明では、 高温かつ水、 塩などに絶えず曝される環境において優れ た耐久性を有するとともに、水に浸けた後に焦げを指や布巾で軽く擦る程度に容 易に除去可能な加熱調理器具、および該加熱調理器具を安価でかつ安全に製造す る方法、 ならびに該加熱調理器具の使用方法を提供することを目的とする。 発明の開示  Therefore, the present invention provides a cooking method which has excellent durability in an environment where it is constantly exposed to water, salt and the like at high temperature, and which can be easily removed by immersing it in water and rubbing lightly with a finger or a cloth. It is an object of the present invention to provide an appliance, a method for manufacturing the cooking appliance at low cost and safely, and a method for using the cooking appliance. Disclosure of the invention
上記課題を解決するために本発明においては、加熱調理器具の少なくとも耐熱 性基材で構成される部分の表面に、 水溶性ジルコニウム化合物と、 水とを含む水 性塗布液を適用する工程と、 その後、 焼成する工程とを具備する製造方法によつ て表面層を形成する事を特徴とする。 In order to solve the above-mentioned problems, in the present invention, a step of applying a water-based coating solution containing a water-soluble zirconium compound and water to at least the surface of a portion composed of a heat-resistant substrate of a cooking device, Thereafter, a firing step is provided. To form a surface layer.
本発明の他の態様においては、加熱調理器具の少なくとも耐熱性基材で構成さ れる部分の表面に、 平均粒子径 5 0 n m以下で、 かつ、 水分散性の酸化ジルコ二 ゥムゾルと、 水とを含む水性塗布液を適用する工程と、 その後、 焼成する工程と を具備する製造方法によって表面層を形成する事を特徴とする。  In another embodiment of the present invention, a water-dispersible zirconium oxide sol having an average particle diameter of 50 nm or less and water is provided on at least the surface of the portion of the cooking device constituted by the heat-resistant base material. A step of applying a water-based coating solution containing: and thereafter, a step of baking to form a surface layer.
本発明によれば、 表面に酸化ジルコニウムを含んでなる、 平滑で強固な表面層 が形成されるので、 調理中に付着した汚れが熱せられ焦げ付いた場合、 この加熱 調理器具を水またはお湯に適当な時間浸漬しておくと、指や布巾で軽く擦る程度 で焦げが除去可能な加熱調理器具が提供できる。 図面の簡単な説明  According to the present invention, since a smooth and strong surface layer containing zirconium oxide is formed on the surface, if the dirt attached during cooking is heated and scorched, this cooking device is suitable for water or hot water. If soaked for a long period of time, it is possible to provide a cooker that can remove the scorch by rubbing lightly with a finger or a cloth. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、本発明の一実施形態に係る加熱調理器具の概略を示す断面図である 第 2図は、 本発明の加熱調理器具の使用方法を示す概略図である。 発明を実施するための最良の形態  FIG. 1 is a sectional view schematically showing a cooking device according to an embodiment of the present invention. FIG. 2 is a schematic diagram showing a method of using the cooking device of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明の好ましい実施の形態について、 図面に基づき説明する。  Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
第 1図は、本発明の一実施形態に係る加熱調理器具の概略を示す断面図である ( 第 1図では、 加熱調理器具の耐熱性基材の表面 1に、 水溶性ジルコニウム化合 物または酸化ジルコニウムゾルと、 水とを含む水性塗布液を塗布後、 焼成によつ て表面層 2が形成されている。 FIG. 1 is a cross-sectional view schematically showing a cooking device according to an embodiment of the present invention (in FIG. 1, a water-soluble zirconium compound or an oxidized After applying an aqueous coating solution containing zirconium sol and water, the surface layer 2 is formed by firing.
( 1 ) 加熱調理器具  (1) Cooking utensils
加熱調理器具は、 屋内のキッチン、 厨房などで使用されるオーブン、 レンジ、 コン口、 鍋、 フライパン、 魚焼き用グリルなど、 また、 屋外でバーベキューなど に使用される鉄板、 焼き網、 などが挙げられる。  Examples of cooking utensils include ovens used in indoor kitchens and kitchens, microwave ovens, cookers, pans, frying pans, grills for grilling fish, and iron plates and grills used outdoors for barbecues. Can be
特に、これらの加熱調理器具の、食品やその汁が付着して焦げが生じ易い部位、 すなわち、 オーブンやレンジの加熱調理室内内壁、 視き用窓、 焼き皿など、 コン 口の天板、 汁受け皿、 バーナーリング、 五徳など、 鍋やフライパンの取っ手以外 の部分、 魚焼き用グリルの水入れ皿、 焼き網、 覼き用窓などが挙げられる。 In particular, the parts of these cooking utensils that are prone to burning due to the adhesion of foods and juices, such as the inner walls of cooking rooms such as ovens and microwave ovens, viewing windows, pans, etc. Pans, pans, handles, etc. , Grilled water for grilling fish, grill net, window for grilling, etc.
本発明における耐熱性基材とは、 上記の加熱調理器具を構成し、 過熱負荷に耐 え得る材料を指し、 鋼板ホー口一、 铸物ホ一ローなどのホーロー、 施釉した陶磁 器、 耐熱ガラスなど、 表面がガラス質のものが好適に利用できる。 さらに、 本発 明における耐熱性基材としては、 耐熱性塗装を施した鋼板、 铸物、 ステンレスな どの金属や、 ガラスなども好適に利用できる。 ここで、 耐熱性塗装とは、 主成分 がシリコーン樹脂やフッ素樹脂などを含有し、塗膜の耐熱温度が 4 0 0 °C程度か、 それ以上であるものを指す。  The heat-resistant base material in the present invention refers to a material that constitutes the above-mentioned cooking device and can withstand an overheating load, such as a steel plate porcelain, a porcelain porcelain enamel, a glazed ceramic, and a heat-resistant glass. For example, those having a vitreous surface can be suitably used. Further, as the heat-resistant base material of the present invention, a metal such as a steel sheet, a solid, a stainless steel, or a glass coated with a heat-resistant coating can be suitably used. Here, the heat-resistant coating refers to a coating whose main component contains a silicone resin or a fluororesin, and whose coating has a heat-resistant temperature of about 400 ° C. or higher.
( 2 ) 水性塗布液  (2) Aqueous coating liquid
表面層を形成させるために用いる水性塗布液は、水溶性ジルコニウム化合物ま たは水分散性の酸化ジルコニウムゾルと、 水とを含有する。  The aqueous coating solution used to form the surface layer contains a water-soluble zirconium compound or a water-dispersible zirconium oxide sol, and water.
本発明において、 水溶性ジルコニウム化合物は、 硝酸ジルコニール、 酢酸ジル コニール、 炭酸ジルコ二ルアンモニゥム、 ジルコニウム錯体などを単独で、 ある いは複数を組み合わせて用いることができる。 ジルコニウム錯体としては、 ;8ジ ケトンなどのジカルポニル化合物や、 クェン酸、 リンゴ酸、 コハク酸などの有機 酸、 ァミン、 ピリジン、 ピロールなどの化合物およびそれらの誘導体とジルコ二 ゥムとの錯体、 錯アンモニゥム塩などが挙げられる。  In the present invention, as the water-soluble zirconium compound, zirconyl nitrate, zirconyl acetate, zirconium ammonium carbonate, zirconium complex, or the like can be used alone or in combination. Examples of zirconium complexes include; dicarponyl compounds such as 8-diketones, organic acids such as citric acid, malic acid, and succinic acid; compounds such as amines, pyridines, and pyrroles; and complexes and derivatives thereof with zirconium. Ammonium salt and the like.
本発明における水分散性の酸化ジルコニウムゾルは、 酸化ジルコニウムが、 水 および Zまたは水溶性の有機溶媒に分散したゾルであって、水に希釈可能なゾル を利用することができる。 酸化ジルコニウムゾルにおいては、 平均粒子径 5 O n m以下、 好ましくは粒子径 1 0 n m以下、 さらに好ましくは 2 n m以下のものを 用いる。 5 0 n mより大きい粒子径の酸化ジルコニウムゾルにおいては、平滑性、 緻密性、 製膜性が劣るため、 適当ではない。  The water-dispersible zirconium oxide sol of the present invention is a sol in which zirconium oxide is dispersed in water and Z or a water-soluble organic solvent, and a sol that can be diluted with water can be used. In the zirconium oxide sol, those having an average particle diameter of 5 Onm or less, preferably 10 nm or less, more preferably 2 nm or less are used. Zirconium oxide sol having a particle diameter of more than 50 nm is not suitable because of poor smoothness, denseness and film forming property.
ここで平均粒子径の測定法は、対象の粒子径の大きさによって以下の 2種類に 分かれる。 平均粒子径が 1 0 n m以上の場合、 平均粒子径はレーザ一回折法にて 測定し、 1 0 n m以下の場合はレーザ一ドップラー式光散乱 ·ヘテロダイン法に て測定する。 本発明の水性塗布液においては、前記の水溶性ジルコニウム化合物ならびに酸 化ジルコニウムゾルの、 少なくとも 1種を用いることができる。 なお、 水溶性ジ ルコニゥム化合物および酸化ジルコニウムゾルを水に混合分散して用いても良 い。 Here, the method of measuring the average particle diameter is divided into the following two types depending on the size of the target particle diameter. When the average particle diameter is 10 nm or more, the average particle diameter is measured by a laser-diffraction method, and when the average particle diameter is 10 nm or less, it is measured by a laser-Doppler light scattering / heterodyne method. In the aqueous coating solution of the present invention, at least one of the above-mentioned water-soluble zirconium compounds and zirconium oxide sol can be used. The water-soluble zirconia compound and zirconium oxide sol may be mixed and dispersed in water.
本発明の水性塗布液における酸化ジルコニウム (Z r 0 2 ) 換算含有濃度は、 0 . 1重量%以上、 5重量%未満である。 Zirconium oxide (Z r 0 2) in terms of content level in the aqueous coating solution of the present invention is 0. 1% by weight or more and less than 5 wt%.
0 . 1重量%未満では、 表面層の緻密性が低下し、 効果が薄れる可能性があり、 5重量%以上では、 表面層としては厚過ぎてコーティングムラなどが発生し、 成 形自体が困難となるので好ましくない。  If the content is less than 0.1% by weight, the compactness of the surface layer may be reduced and the effect may be weakened. If the content is more than 5% by weight, the surface layer is too thick, causing coating unevenness and the like, and the molding itself is difficult. Is not preferred.
本発明の水性塗布液における、 より好ましい酸化ジルコニウム (Z r〇2 ) 換 算含有濃度は、' 0 . 5重量%以上、 3重量%以下であり、 さらに好ましくは、 1 重量%以上、 3重量%以下である。 In aqueous coating solution of the present invention, and more preferably zirconium oxide (Z R_〇 2) conversion calculation containing concentrations, '0.5 wt% or more and 3 wt% or less, more preferably 1 wt% or more, 3 weight % Or less.
表面層を形成させるために用いる水性塗布液の、他の成分として、バインダー、 ぬれ性調整剤、 P H調整剤などを添加することができる。 これらの成分は必須で はないが、塗膜特性の向上や水性塗布液の安定性の向上に寄与することができる c バインダーは、 水ガラス、 すなわち、 ケィ酸ナトリウム、 ケィ酸カリウム、 ケ ィ酸リチウム、 ケィ酸アンモニゥムなどのアルカリケィ酸塩が利用できる。 アル カリケィ酸塩の添加量は、 シリカ (S i〇2 ) 換算量で、 酸化ジルコニウム 1 0 0重量部に対して 1 0 0重量部以下である。 1 0 0重量部を超えると、 アルカリ ケィ酸塩に焦げが強固に付着することになり、 好ましくない。 従来バインダーは 物質と物質を結び付けるものなので、 大量に存在した場合、 同様の効果が焦げに 対しても発生してしまう。 添加量を 1 0 0重量部以下とすることで、 酸化ジルコ 二ゥムの効果を損なわず且つ容易に表面層を形成することが可能となる。 As other components of the aqueous coating solution used for forming the surface layer, a binder, a wettability adjuster, a PH adjuster, and the like can be added. These components are not essential, c binder can contribute to the improvement of stability improvement and the aqueous coating liquid of the coating properties, water glass, i.e., sodium Kei, potassium Kei acid, Ke I acid Alkali silicates such as lithium and ammonium silicate can be used. The amount of the alkali carbonate added is 100 parts by weight or less based on 100 parts by weight of zirconium oxide in terms of silica (Si 2 ). If the amount exceeds 100 parts by weight, the charred salt is strongly adhered to the alkali silicate, which is not preferable. Conventional binders bind substances from one substance to another, so if they are present in large quantities, the same effect will occur for charring. By setting the amount to be 100 parts by weight or less, it is possible to easily form a surface layer without impairing the effect of zirconium oxide.
ぬれ性調整剤としては、 界面活性剤および水溶性有機溶剤が利用できる。  Surfactants and water-soluble organic solvents can be used as the wetting agent.
界面活性剤の種類は特に限定されず、 ァニオン性、 カチオン性、 ノニオン性界 面活性剤が利用できる。 界面活性剤は、 水性塗布液の p H、 酸化ジルコニウムゾ ルの分散性に応じて適宜選定される。 界面活性剤の添加量は、 水性塗布液のぬれ 性が向上する必要最低限の量があれば良いが、おおよその目安として水性塗布液 に対して 0 . 1〜 1 0重量%程度が好ましい。 The type of surfactant is not particularly limited, and anionic, cationic, and nonionic surfactants can be used. The surfactant is appropriately selected according to the pH of the aqueous coating solution and the dispersibility of zirconium oxide. The amount of surfactant added depends on the wetting of the aqueous coating solution. It is sufficient if there is a minimum amount required to improve the properties, but as a rough guide, it is preferably about 0.1 to 10% by weight based on the aqueous coating solution.
水溶性有機溶剤は、メタノール、エタノール、プロパノールなどのアルコ一ル、 テトラヒドロフラン、 メトキシプロパノ一ル、 エトキシエトキシプロパノールな どのエーテル、 ヒドロキシェチルアセテートなどのエステル、 などが挙げられ、 添加量は水性塗布液の 0 . 5〜5 0重量%程度、 好ましくは 1〜2 0重量%程度 である。  Examples of the water-soluble organic solvent include alcohols such as methanol, ethanol, and propanol, ethers such as tetrahydrofuran, methoxypropanol, ethoxyethoxypropanol, and esters such as hydroxyethyl acetate. It is about 0.5 to 50% by weight of the liquid, preferably about 1 to 20% by weight.
( 3 ) 表面層の形成  (3) Formation of surface layer
次に、 表面層の形成方法について記述する。  Next, a method for forming the surface layer will be described.
前記水性塗布液を適用する表面には、 必要であれば、 水性塗布液が均一にぬれ る程度に、表面を前処理しておく。前処理の方法としては、洗浄剤、研磨剤、水、 溶剤などを用いた洗浄や脱脂、 コロナ放電処理、 プラズマ処理、 酸素雰囲気下、 If necessary, the surface to which the aqueous coating liquid is to be applied is pretreated to such an extent that the aqueous coating liquid is uniformly wetted. Pretreatment methods include cleaning and degreasing with cleaning agents, abrasives, water, solvents, etc., corona discharge treatment, plasma treatment, under oxygen atmosphere,
5 0 0で程度かそれ以上の温度で空焼きすることで付着汚れを除去する方法な どが利用できる。 A method of removing adhered dirt by baking at a temperature of about 500 or higher at 500 or more can be used.
前処理に次いで、 前記水性塗布液を適用する。  Following the pretreatment, the aqueous coating solution is applied.
適用方法としては、 幕掛け、 スプレーコート、 フローコート、 ロールコート、 デ ィップコートなどの周知のコ一ティング方法が利用できる。 Well-known coating methods such as curtain coating, spray coating, flow coating, roll coating, and dip coating can be used.
表面層の表面に凹凸があると焦げ付きの原因となるので、適用時はなるべく平 滑にコーティングを施す事が望ましい。 そのためには、  Irregularities on the surface of the surface layer may cause scorching, so it is desirable to apply the coating as smoothly as possible during application. for that purpose,
①コーティング前に前記水性塗布液を適用する表面を前もって加熱して、 コーテ ィング時において表面温度で 7 0 〜 1 1 0 °C、好ましくは 8 0 °C〜 1 0 0 °Cを 確保する (予備加熱) 、 (1) Before coating, the surface to which the aqueous coating solution is to be applied is heated in advance to ensure a surface temperature of 70 to 110 ° C, preferably 80 to 100 ° C, during coating ( Preheating),
あるいは、 Or,
②低濃度のコーティング液で何回かに分けてコーティングする、  ② Coat several times with low concentration coating solution,
などの処理を施し、 コーティングムラを発生させない工夫をする必要がある。 次に、水性塗布液を適用した後で、焼成を行なう。焼成の目的は主に 2つあり、 溶媒、 物理吸着水、 および可溶性塩類の脱却と、 酸化ジルコニウム被膜の形成で ある。 前記水性塗布液を適用する表面の耐熱温度を上限として、 出来るだけ高温 で処理することが、 膜の緻密化、 強度の点で有利であり、 望ましい。 具体的な例 としては、 焼成温度は 1 00°C以上、 好ましくは 1 50°C以上で処理することが 望ましい。 酸化ジルコニウムの融点は 2 7 0 0 °Cであるが、 ホ一口一は約 5 0 0°C、 陶磁器の施釉層は 800°Cで溶解が発生し始めるので、 焼成温度の上限は 表面のガラス質の軟化点以下が望ましい。 焼成温度の保持時間は、 1 0秒〜 30 分程度である。 It is necessary to take measures such as to prevent coating unevenness. Next, baking is performed after the application of the aqueous coating solution. There are two main purposes of calcination: removal of solvent, physisorbed water, and soluble salts, and formation of zirconium oxide film. is there. It is desirable and advantageous to treat the film at as high a temperature as possible, with the upper limit of the heat resistant temperature of the surface to which the aqueous coating liquid is applied, in terms of the densification and strength of the film. As a specific example, it is desirable to perform the treatment at a firing temperature of 100 ° C. or higher, preferably 150 ° C. or higher. The melting point of zirconium oxide is 270 ° C, but the melting temperature of the porcelain is about 500 ° C, and the glazed layer of ceramics begins to melt at 800 ° C. Desirably less than the softening point of quality. The holding time of the firing temperature is about 10 seconds to 30 minutes.
(4) 表面層  (4) Surface layer
上述の方法で形成した表面層は、 J I S B 060 1に規定される算術平均 粗さ (R a) が 0. l m以上 0. 5 m未満である。 該範囲とすることで、 焦 げが表面層の凹凸に物理的に固着するアンカ一効果を防止することが可能とな る。  The surface layer formed by the above-described method has an arithmetic average roughness (Ra) specified in JIS B0601 of not less than 0.1 m and less than 0.5 m. By setting the content within the above range, it is possible to prevent the anchoring effect in which the burning is physically fixed to the unevenness of the surface layer.
平均粗さの、 より好ましい値は 0. 1 111以上0. 4 zm未満であり、 特に好 ましくは、 0. 1 2 ΠΙ以上、 0. 36 m以下である。  A more preferable value of the average roughness is 0.1111 or more and less than 0.4 zm, particularly preferably 0.12 mm or more and 0.36 m or less.
より具体的な算術平均粗さ (R a) の測定は、 例えば㈱東京精密の表面粗さ形 状測定機サ一フコム 57 OAを用いる。 試料表面より任意に 3個所を選び、 J I S B 060 1に記載される算術平均粗さ(R a)を、測定距離 1 mmにて各々 測定し、 その平均値を算出する。  For a more specific measurement of the arithmetic average roughness (R a), for example, a surface roughness profile measuring machine manufactured by Tokyo Seimitsu Co., Ltd., Surfcom 57 OA is used. Arbitrarily select three places from the sample surface, measure the arithmetic average roughness (Ra) described in JIS B0601 at a measurement distance of 1 mm, and calculate the average value.
上述の方法で形成した表面層に含有される酸化ジルコニウムの担持量は、 0. 04 gZm2以上、 2. 3 g/m2未満である。 該範囲とすることで、 平滑性、 緻密性、 製膜性に優れた表面層を形成することが可能となる。 The supported amount of zirconium oxide contained in the surface layer formed by the above method is 0.04 gZm 2 or more and less than 2.3 g / m 2 . By setting the content within the above range, it becomes possible to form a surface layer excellent in smoothness, denseness, and film forming property.
酸化ジルコニウムの担持量の、より好ましい範囲は、 0. 04 gZm2以上 1. 4 gZm2以下である。 A more preferable range of the amount of the supported zirconium oxide is 0.04 gZm 2 or more and 1.4 gZm 2 or less.
上述の方法で形成した表面層は、 酸化ジルコニウムを主として含有してなる。 酸化ジルコニウムの含有率は、 表面層の 40重量%以上、 好ましくは 50重量% 以上、 1 00重量%以下である。 該範囲とすることで、 後述するように焦げの除 去を容易に行うことが可能となる。 (5) 加熱調理器具の使用方法 The surface layer formed by the above method mainly contains zirconium oxide. The content of zirconium oxide is 40% by weight or more, preferably 50% by weight or more and 100% by weight or less of the surface layer. By setting the content within the above range, it is possible to easily remove the burn as described later. (5) How to use cooking utensils
第 2図は本発明の加熱調理器具の使用方法を示す概略図である。  FIG. 2 is a schematic view showing a method of using the cooking device of the present invention.
本発明の加熱調理器具に、調理中に付着した汚れが熱せられて焦げ 3が付着し た場合、 この調理器具器具ごと水又はお湯 4に浸漬しておくことにより、 その後 容易に焦げを除去しやすくなる。より具体的には指や布巾で軽く擦る程度で除去 されるようになる。  When dirt attached during cooking is heated and burnt 3 adheres to the cooking device of the present invention, the cookware is immersed in water or hot water 4 to remove burnt easily thereafter. It will be easier. More specifically, it can be removed by lightly rubbing with a finger or a cloth.
本発明の表面層において、 この表面と焦げとの界面は、 おそらく〇H基の平衡 吸着量の極めて少ない酸化ジルコニウムが多量に存在することで、非常に不活性 なものとなっており、浸漬するに従ってその付着力は徐々に弱められて焦げが浮 き上がってくるので、 その後容易に焦げを除去する事が可能となる。  In the surface layer of the present invention, the interface between the surface and the charred surface is very inert, probably due to the presence of a large amount of zirconium oxide, which has a very small amount of equilibrium adsorption of the 〇H group, and is immersed. Accordingly, the adhesive force is gradually weakened and the charred surface rises, so that the charred surface can be easily removed thereafter.
焦げ付きが弱い場合は自然に離れて除去され、また比較的強固に焦げ付いてい る場合でも軽くスポンジなどで擦ってやる事により容易に除去される。水または 湯への浸漬は 1時間以上、 望ましくは 3時間以上時間を取るのが良い。  If the scorch is weak, it is removed naturally, and even if it is relatively firm, it can be easily removed by rubbing it lightly with a sponge. Immersion in water or hot water should take at least 1 hour, preferably at least 3 hours.
実施例 1 Example 1
炭酸水素ジルコニールアンモニゥム (第一希元素化学株式会社製、 原液の Zr02 換算含有濃度 13重量%) を蒸留水で Zr02換算含有濃度 1重量%に調整して、 水 性塗布液 # 1を得た。 加熱調理用のホー口一鋼板 (一般的な下釉、 もしくはダラ ンドコートが塗布されたもの) に水性塗布液 # 1を、 塗布量 45gZm2の条件で スプレーにてコーティングを行った。そしてローラ一ハースキルンにて最高焼成 帯温度 450°Cで 30分焼成を行い、 実施例 1のサンプルを得た。 サンプルの算術 平均粗さ (R a) は 0. 1 6 /mであった。 算術平均粗さ (R a) の測定は、 ㈱ 東京精密の表面粗さ形状測定機サーフコム 5 70Aを用いた。試料表面より任意 に 3個所を選び、 J I S B 0 60 1に記載される算術平均粗さ (R a) を、 測定距離 lmmにて各々測定し、 その平均値を算出した。 以下の記載も全てこの 方法にて算術平均粗さ (R a) を測定、 算出した。 Bicarbonate Jill Conil ammonium Niu arm (first Kigenso Kagaku Co., Zr0 2 in terms of content concentration of 13 wt% stock solution) was adjusted with distilled water to Zr0 2 in terms of content level 1% by weight, water soluble coating solution # 1 I got Aqueous coating solution # 1 was applied by spraying to a coating of 45gZm 2 on a steel plate (one coated with a common underglaze or dull coat) for heating and cooking. Then, baking was performed at a maximum baking zone temperature of 450 ° C. for 30 minutes using a roller hearth kiln to obtain a sample of Example 1. The arithmetic average roughness (Ra) of the sample was 0.16 / m. Arithmetic mean roughness (Ra) was measured using Surfcom 570A, a surface roughness profile measuring machine from Tokyo Seimitsu. Arbitrary three points were selected from the sample surface, and the arithmetic average roughness (Ra) described in JISB0601 was measured at a measurement distance of lmm, respectively, and the average value was calculated. In the following description, the arithmetic mean roughness (R a) was measured and calculated by this method.
実施例 2 Example 2
硝酸ジルコニール (第一希元素化学株式製、 原液の Zr02換算含有濃度 25 重 量%) を蒸留水で Zr02換算含有濃度 1 重量%に調整して、 水性塗布†夜 # 2を得 た。 加熱調理用のホ一ロー鋼板に水性塗布液 # 2を、 塗布量 45g/m2の条件で スプレーにてコーティングを行った。そしてローラ一ハースキルンにて最高焼成 帯温度 450°Cで 30分焼成を行い、 実施例 2のサンプルを得た。 サンプルの算術 平均粗さ (R a) は 0. 1 2 mであった。 Nitrate zirconyl (first Kigenso chemical stocks made, Zr0 2 in terms of content level 25-fold stock solution Adjust the amount%) in distilled water Zr0 2 in terms of content level 1% by weight to obtain an aqueous coating † night # 2. Aqueous coating liquid # 2 was applied by spraying to a hollow steel plate for heating and cooking at a coating amount of 45 g / m 2 . Then, baking was carried out at a maximum baking zone temperature of 450 ° C. for 30 minutes using a roller hearth kiln to obtain a sample of Example 2. The arithmetic average roughness (Ra) of the sample was 0.12 m.
実施例 3 Example 3
酢酸ジルコニール (第一希元素化学株式会社製、 原液の Zr02換算含有濃度 15 重量%) を蒸留水で Zr02換算含有濃度 1 重量%に調整して、 水性塗布液 # 3を 得た。 加熱調理用のホーロー鋼板に水性塗布液 # 3を、 塗布量 45gZm2の条件 でスプレーにてコーティングを行った。そしてローラ一ハースキルンにて最高焼 成帯温度 450 で 30分焼成を行い、 実施例 3のサンプルを得た。 サンプルの算 術平均粗さ (R a) は 0. 1 6 mであった。 Zirconyl acetate (first Kigenso Kagaku Co., Zr0 2 in terms of content concentration of 15 wt% stock solution) was adjusted with distilled water to Zr0 2 terms containing 1 wt% concentration to give an aqueous coating solution # 3. Aqueous coating solution # 3 was coated on the enameled steel plate for cooking by spraying at a coating amount of 45 gZm 2 . Then, the sample was fired at a maximum sintering zone temperature of 450 with a roller and hearth kiln for 30 minutes to obtain a sample of Example 3. The arithmetic mean roughness (Ra) of the sample was 0.16 m.
実施例 4 Example 4
加熱調理用のホー口一鋼板に水性塗布液 # 1を、 塗布量 45gZm2の条件でス プレーにてコ一ティングを行った。そしてローラ一ハースキルンにて最高焼成帯 温度 150°Cで 30分焼成を行い、 実施例 4のサンプルを得た。 サンプルの算術平 均粗さ (R a) は 0. 1 6 mであった。 Aqueous coating solution # 1 was coated on a steel plate for heating and cooking with a spray at a coating amount of 45 gZm 2 . Then, the sample was fired at a maximum firing zone temperature of 150 ° C. for 30 minutes using a roller and hearth kiln to obtain a sample of Example 4. The arithmetic average roughness (Ra) of the sample was 0.16 m.
実施例 5 Example 5
加熱調理用のホ一口一鋼板に水性塗布液 # 2を、 塗布量 45gZm2の条件でス プレーにてコ一ティングを行った。そしてローラーハースキルンにて最高焼成帯 温度 150°Cで 30分焼成を行い、 実施例 5のサンプルを得た。 サンプルの算術平 均粗さ (R a) は 0. 1 6. mであった。 ' The aqueous coating solution # 2 in E bite one steel plate for cooking, it was co one coating at SPRAY under the conditions of coating amount 45GZm 2. Then, the sample was fired in a roller hearth kiln at a maximum firing zone temperature of 150 ° C for 30 minutes to obtain a sample of Example 5. The arithmetic average roughness (Ra) of the sample was 0.16 m. '
実施例 6 Example 6
加熱調理用のホーロー鋼板に水性塗布液 # 3を、 塗布量 45gZm2の条件でス プレーにてコーティングを行った。そしてローラ一ハースキルンにて最高焼成帯 温度 150°Cで 30分焼成を行い、 実施例 6のサンプルを得た。 サンプルの算術平 均粗さ (R a) は 0. 2 0 nmであった。 実施例 7 Aqueous coating solution # 3 was coated on an enameled steel plate for cooking by spraying under the conditions of a coating amount of 45 gZm 2 . Then, the sample was fired at a maximum firing zone temperature of 150 ° C. for 30 minutes using a roller and hearth kiln to obtain a sample of Example 6. The arithmetic average roughness (R a) of the sample was 0.20 nm. Example 7
ジルコニウム錯体(帝国化学株式会社製ェォリード Z— 66 1 B、 原液の Zr02 換算含有濃度 4重量%) を蒸留水で Zr02換算含有濃度 1重量%に調整して、 水 性塗布液 # 7を得た。 加熱調理用のホーロー鋼板に水性塗布液 # 7を、 塗布量 45g/m2の条件でスプレ一にてコーティングを行った。そして口一ラーハースキ ルンにて最高焼成帯温度 450°Cで 30分焼成を行い、 サンプルを得た。 サンプル の算術平均粗さ (R a) は 0. 2 0 mであった。 Zirconium complex (manufactured by Teikoku Chemical Co. Eorido Z- 66 1 B, Zr0 2 in terms of content concentration of 4% by weight of the stock solution) was adjusted with distilled water to Zr0 2 in terms of content level 1% by weight, the water coating solution # 7 Obtained. Aqueous coating solution # 7 was coated on an enameled steel plate for cooking by spraying under the conditions of a coating amount of 45 g / m 2 . Then, the sample was fired for 30 minutes at the maximum firing zone temperature of 450 ° C in a mouth-rhersharing to obtain a sample. The arithmetic average roughness (Ra) of the sample was 0.20 m.
実施例 8 Example 8
平均粒子径 2nmの酸化ジルコニウムゾル (多木化学社製、 原液の Zr02換算含 有濃度 5重量%) を蒸留水で Zr02換算含有濃度 1重量%に調整して、 水性塗布 液 # 8を得た。 予め 80°Cに加熱した加熱調理用のホー口一鋼板に、 水性塗布液 # 8を塗布量 45gZm2の条件でスプレーにてコーティングを行った。 そして口 一ラーハースキルンにて最高焼成帯温度 450°Cで 30分焼成を行い、 実施例 8の サンプルを得た。 Zirconium oxide sol having an average particle diameter of 2 nm (Taki Chemical Co., Zr0 2 in terms of free organic concentration of 5 wt% stock solution) was adjusted with distilled water to Zr0 2 in terms of content level 1% by weight, the aqueous coating solution # 8 Obtained. Aqueous coating solution # 8 was spray-coated on a steel plate of a hood for heating and heating at 80 ° C in advance with a coating amount of 45 gZm 2 . The sample was fired at 450 ° C. for 30 minutes at a maximum firing zone temperature in a mouth laher kiln to obtain a sample of Example 8.
なお粒径測定は日機装株式会社の M I CROTRAC UP Aを使用し、 レ一 ザ一ドップラー式光散乱 ·ヘテロダイン法にて実施した。 サンプルの算術平均粗 さ (R a) は 0. 1 6 mであった。  The particle size was measured by laser Doppler light scattering / heterodyne method using MI CROTRAC UP A of Nikkiso Co., Ltd. The arithmetic mean roughness (Ra) of the sample was 0.16 m.
実施例 9 Example 9
平均粒子径 10nm (第一希元素化学株式会社製、 原液の Zr02換算含有濃度 10 重量%) の酸化ジルコニウムゾルを蒸留水で Zr02換算含有濃度 1重量%に調整 して、 水性塗布液 # 9を得た。 予め 80°Cに加熱した加熱調理用のホー 鋼板 に、 水性塗布液 # 9を塗布量 45gZm2の条件でスプレーにて ティングを行 つた。 そしてローラーハースキルンにて最高焼成帯温度 450°Cで 30分焼成を行 実施例 9のサンプルを得た。 なお粒径測定は日機装株式会社の M I C ROT R AC UP Aを使用し、 レーザードップラー式光散乱 'ヘテロダイン法にて実 施した。 サンプルの算術平均粗さ (R a) は 0. 20 mであった。 The average particle diameter of 10nm was adjusted to Zr0 2 terms containing 1 wt% concentration with distilled water zirconium oxide sol (primary Kigenso Kagaku Co., Zr0 2 in terms of content concentration of 10 wt% stock solution), an aqueous coating solution # 9 I got Aqueous coating liquid # 9 was sprayed onto a steel plate for heating and cooking heated to 80 ° C in advance at a coating amount of 45 gZm 2 . Then, sintering was performed at a maximum sintering zone temperature of 450 ° C. for 30 minutes using a roller hearth kiln to obtain a sample of Example 9. The particle size was measured using a laser Doppler light scattering 'heterodyne method' using MIC ROT RACUP A from Nikkiso Co., Ltd. The arithmetic mean roughness (Ra) of the sample was 0.20 m.
実施例 1 0 平均粒子径 50nm (日産化学株式会社製、原液の Zr02換算含有濃度 30重量%) の酸化ジルコニウムゾルを蒸留水で Zr02換算含有濃度 1 重量%に調整して、 水 性塗布液 # 1 0を得た。 予め 80°Cに加熱した加熱調理用のホ一ロー鋼板に、 水 性塗布液 # 1 0を塗布量 45g/m2の条件でスプレーにてコーティングを行った。 そしてローラーハースキルンにて最高焼成帯温度 450°Cで 30分焼成を行い、 実 施例 1 0のサンプルを得た。なお粒径測定は日機装株式会社の M I CROTRA C FRAを使用し、レーザ一回折法にて実施した。サンプルの算術平均粗さ(R a) は 0. 36 mであった。 Example 10 The average particle diameter of 50nm was adjusted to Zr0 2 terms containing 1 wt% concentration with distilled water zirconium oxide sol (Nissan Chemical Industries, Ltd., Zr0 2 in terms of content concentration of 30 wt% stock solution), water soluble coating solution # 1 0 I got An aqueous coating liquid # 10 was coated by spraying on a hollow steel sheet for heating and heating at 80 ° C. in advance at a coating amount of 45 g / m 2 . The sample was fired at a maximum firing zone temperature of 450 ° C. for 30 minutes using a roller hearth kiln to obtain a sample of Example 10. The particle size was measured by a laser diffraction method using MI CROTRA C FRA manufactured by Nikkiso Co., Ltd. The arithmetic mean roughness (Ra) of the sample was 0.36 m.
実施例 1 1 Example 1 1
平均粒子径 50nm (日産化学株式会社製、原液の Zr02換算含有濃度 30重量%) の酸化ジルコニウムゾルと水ガラス材料 (日本化学社製けい酸リチウム 3 5、 原 液の Si02換算含有濃度 20重量%)を、各々蒸留水で Zr02換算含有濃度 1重量%、 Si02換算含有濃度を 1重量%に調整した後に 1 : 1 (重量比) で混合して水性塗 布液 # 1 1を得た。 加熱調理用のホー口一鋼板を予め 1 0 0°Cに加熱して、 水性 塗布液 # 1 1を塗布量 45gZm2の条件でスプレーにてコーティングを行った。 そしてローラーハースキルンにて最高焼成帯温度 450°Cで 30 分焼成を行い、 実 施例 1 1のサンプルを得た。なお粒径測定は日機装株式会社の M I CROTRA C F RAを使用し、レーザー回折法にて実施した。サンプルの算術平均粗さ(R a) は 0. 32 zmであった。 The average particle diameter of 50nm zirconium oxide sol and water glass material (Nissan Chemical Industries, Ltd., Zr0 2 in terms of content concentration of 30 wt% stock solution) (Nippon Kagaku silicate lithium 3 5, Si0 2 in terms of concentration of the raw solution 20 the weight%), respectively Zr0 2 terms containing 1 wt% concentration with distilled water, 1 Si0 2 in terms of content concentration was adjusted to 1 wt%: 1 aqueous coating coating solution # 1 1 were mixed at a weight ratio Obtained. The steel plate for heating and cooking was heated to 100 ° C. in advance, and the aqueous coating solution # 11 was coated by spraying under the conditions of a coating amount of 45 gZm 2 . Then, the sample was fired in a roller hearth kiln at a maximum firing zone temperature of 450 ° C for 30 minutes to obtain a sample of Example 11. The particle size was measured by a laser diffraction method using MI CROTRA CF RA manufactured by Nikkiso Co., Ltd. The arithmetic average roughness (Ra) of the sample was 0.32 zm.
実施例 1 2 Example 1 2
硝酸ジルコニール (第一希元素化学株式製、 原液の Zr02換算含有濃度 25 重 量%) を蒸留水で Zr02換算含有濃度 3重量%に調整して、 水性塗布液 # 1 2を 得た。 加熱調理用のホー口一鋼板に水性塗布液 # 1 2を、 塗布量 45g/m2の条 件でスプレーにてコ一ティングを行った。そしてローラーハースキルンにて最高 焼成帯温度 450 で 30分焼成を行い、 実施例 1 2のサンプルを得た。 サンプル の算術平均粗さ (R a) は 0. 1 6 mであった。 グリル内部の視き用窓ガラスを予め 70°Cに加熱して、 水性塗布液 # 2を、 塗 布量 45g/m2の条件でスプレーにてコーティングを行った。 そして口一ラ一ハ ースキルンにて最高焼成帯温度 450°Cで 30分焼成を行い、 実施例 1 3のサンプ ルを得た。 サンプルの算術平均粗さ (R a) は 0. 2 0 tmであった。 Nitrate zirconyl (first Kigenso chemical stocks made, Zr0 2 in terms of content concentration of 25 by weight% stock solution) was adjusted with distilled water to Zr0 2 in terms of content concentration of 3% by weight to obtain an aqueous coating solution # 1 2. Aqueous coating solution # 12 was coated on a steel plate for heating and cooking with a spray at a coating amount of 45 g / m 2 . Then, the sample was fired at a maximum firing zone temperature of 450 in a roller hearth kiln for 30 minutes to obtain a sample of Example 12. The arithmetic mean roughness (Ra) of the sample was 0.16 m. The viewing window glass inside the grill was heated to 70 ° C. in advance, and the aqueous coating solution # 2 was coated by spraying at a coating amount of 45 g / m 2 . Then, baking was performed for 30 minutes at a maximum baking zone temperature of 450 ° C. in a mouth to hearth kiln, and a sample of Example 13 was obtained. The arithmetic average roughness (Ra) of the sample was 0.20 tm.
実施例 14 Example 14
グリル内部の視き用窓ガラスを予め 70 に加熱し、該窓ガラスの耐熱塗装部 に水性塗布液 # 2を、 塗布量 45g/m2の条件でスプレーにてコーティングを行 つた。 そしてローラーハースキルンにて最高焼成帯温度 450でで 30分焼成を行 レ 実施例 14のサンプルを得た。 サンプルの算術平均粗さ (R a) は 0. 2 0 mであった。 The viewing window glass inside the grill was heated to 70 in advance, and the heat-resistant coating portion of the window glass was spray-coated with the aqueous coating solution # 2 at a coating amount of 45 g / m 2 . Then, the sample was fired at a maximum firing zone temperature of 450 in a roller hearth kiln for 30 minutes. The arithmetic mean roughness (Ra) of the sample was 0.20 m.
実施例 1 5 Example 15
加熱調理用のホ一ロー鋼板を予め 1 1 0°Cで加熱して、 水性塗布液 # 2を、 塗 布量 45g/m2の条件でスプレーにてコ一ティングを行った。 そしてメッシュバ ーナ一にて 10秒間焼成を行い、 実施例 1 5のサンプルを得た。 メッシュパーナ —のメッシュ最表面温度は 850 で設定した。 ホー口一鋼板の最高表面温度は 400°Cであった。 サンプルの算術平均粗さ (R a) は 0. 24 mであった。 実施例 1 6 The hollow steel sheet for heating and cooking was heated at 110 ° C. in advance, and the aqueous coating solution # 2 was spray-coated at a coating amount of 45 g / m 2 . Then, the sample was baked for 10 seconds using a mesh burner to obtain a sample of Example 15. The mesh surface temperature of Mesh Pana was set at 850. The maximum surface temperature of Hoguchi-Steel was 400 ° C. The arithmetic mean roughness (Ra) of the sample was 0.24 m. Example 16
硝酸ジルコニール (第一希元素化学株式製、 原液の Zr02換算含有濃度 25 重 量%) を蒸留水で Zr02換算含有濃度 0. 1重量%に調整して、 水性塗布液 # 1 6を得た。 加熱調理用のホ一ロー鋼板を予め 1 1 0°Cに加熱して、 水性塗布液 # 1 6を、 塗布量 100g/m2の条件でスプレーにてコ一ティングを行った。 そして ローラー八—スキルンにて最高焼成帯温度 450°Cで 30分焼成を行い、 実施例 1Nitrate zirconyl (first Kigenso chemical stocks made, Zr0 2 in terms of content concentration of 25 by weight% stock solution) was adjusted with distilled water to Zr0 2 in terms of content level 0.1% by weight to obtain an aqueous coating solution # 1 6 . The hollow steel sheet for heating and cooking was heated to 110 ° C. in advance, and the aqueous coating solution # 16 was coated with a spray at a coating amount of 100 g / m 2 . Then, sintering was performed for 30 minutes at a maximum sintering zone temperature of 450 ° C using a roller eight-skillen.
6のサンプルを得た。サンプルの算術平均粗さ(R a)は 0. 1 6 mであった。 比較例 1 Six samples were obtained. The arithmetic average roughness (Ra) of the sample was 0.16 m. Comparative Example 1
加熱調理用のホ一ロー鋼板。 算術平均粗さ (R a) は 0. 20 2 mであった。 比較例 2  Hollow steel plate for cooking. The arithmetic average roughness (Ra) was 0.202 m. Comparative Example 2
平均粒子径 80nmの酸化ジルコニウムゾル (第一希元素化学株式会社製、 原 液の Zr02換算含有濃度 20重量%) を蒸留水で Zr02換算含有濃度 1重量%に調整 して、 水性塗布液 # 22を得た。 予め 1 0 0 に加熱した加熱調理用のホ一ロー 鋼板に、 水性塗布液 # 22を、 塗布量 45gZm2の条件でスプレーにてコ一ティ ングを行った。 そしてローラ一ハースキルンにて最高焼成帯温度 450°Cで 30分 焼成を行い、 比較例 2のサンプルを得た。 なお粒径測定は日機装株式会社の M I CROTR AC FRAを使用し、 レ一ザ一回折法にて実施した。 サンプルの算 術平均粗さ (R a) は 0. 56 /mであった。 Zirconium oxide sol with an average particle size of 80 nm (produced by Daiichi Rare Element Chemical Co., Ltd. Adjust the Zr0 2 in terms of content concentration of 20 wt%) of a liquid with distilled water Zr0 2 in terms of content level 1% by weight to obtain an aqueous coating solution # 22. The aqueous coating solution # 22 was spray-coated on a hollow steel plate for heating and heating to 100 in advance under the condition of a coating amount of 45 gZm 2 . Then, the sample was fired at a maximum firing zone temperature of 450 ° C. for 30 minutes using a roller and a hearth kiln to obtain a sample of Comparative Example 2. The particle size was measured by a laser diffraction method using MI CROTR AC FRA manufactured by Nikkiso Co., Ltd. The arithmetic mean roughness (Ra) of the sample was 0.56 / m.
比較例 3 Comparative Example 3
平均粒子径 80nmの酸化ジルコニウムゾル (第一希元素化学株式会社製、 原 液の Zr02換算含有濃度 20重量%) と水ガラス材料 (日本化学社製けぃ酸リチウ ム 3 5、 原液の Si02換算含有濃度 20重量%) を、 各々蒸留水で Zr02換算含有濃 度 1重量%、 Si02換算含有濃度を 1重量%に調整した後に 1 : 1 (重量比) で混 合して、 水性塗布液 # 2 3を得た。 予め 1 0 0°Cに加熱した加熱調理用のホ一口 一鋼板に、 水性塗布液 # 2 3を、 塗布量 45gZm2の条件でスプレーにてコーテ イングを行った。 そしてローラ一ハースキルンにて最高焼成帯温度 450°Cで 30 分焼成を行い、 比較例 3のサンプルを得た。 なお粒径測定は日機装株式会社の M I CROTRAC FRAを使用し、 レーザー回折法にて実施した。 サンプルの 算術平均粗さ (R a) は 0. 52 mであった。 The average particle diameter of 80nm zirconium oxide sol (primary Kigenso Kagaku Co., Zr0 2 in terms of content concentration of 20 wt% of the original solution) and water glass material (Nippon Kagaku Keisan lithium 3 5, Si0 stock solution 2 the terms containing a concentration of 20 wt%), respectively Zr0 2 terms containing concentration 1 wt% with distilled water, 1 Si0 2 in terms of content concentration was adjusted to 1 wt%: engaged mixed with 1 (by weight), aqueous Coating solution # 23 was obtained. Aqueous coating solution # 23 was coated with a spray at a coating amount of 45 gZm 2 on a single hot-rolled steel plate for heating at 100 ° C in advance. Then, the sample was fired at a maximum firing zone temperature of 450 ° C. for 30 minutes using a roller and hearth kiln to obtain a sample of Comparative Example 3. The particle size was measured by a laser diffraction method using MICROTRAC FRA manufactured by Nikkiso Co., Ltd. The arithmetic mean roughness (Ra) of the sample was 0.52 m.
比較例 4 Comparative Example 4
平均粒径 5^mの酸化ジルコニウムのセラミックパウダーを蒸留水で Zr02換算 含有濃度 1重量%に調整して、 水性塗布液 # 24を得た。 予め 1 00°Cに加熱し た加熱調理用のホーロー鋼板に、 水性塗布液 # 24を、 塗布量 45g/m2の条件 でスプレーにてコーティングを行った。そしてローラーハースキルンにて最高焼 成帯温度 450°Cで 30分焼成を行い、 比較例 4のサンプルを得た。 なお粒径測定 は日機装株式会社の M I C ROTRAC F R Aを使用し、 レーザー回折法にて 実施した。 膜が剥離してしまったため、 サンプルの算術平均粗さ (R a) の測定 は不可能であった。 比較例 5 Adjust the ceramic powder zirconium oxide having an average particle diameter of 5 ^ m with distilled water to Zr0 2 in terms of content level 1% by weight to obtain an aqueous coating solution # 24. An aqueous coating solution # 24 was coated by spraying on an enameled steel plate for heating and heating to 100 ° C in advance at a coating amount of 45 g / m 2 . The sample was fired at a maximum firing zone temperature of 450 ° C for 30 minutes using a roller hearth kiln to obtain a sample of Comparative Example 4. The particle size was measured by a laser diffraction method using MIC ROTRAC FRA manufactured by Nikkiso Co., Ltd. It was not possible to determine the arithmetic mean roughness (R a) of the sample because the film had detached. Comparative Example 5
予め 1 0 0°Cに加熱した加熱調理用のホーロー鋼板に、 水性塗布液 # 24を、 塗布量 45gZm2の条件でスプレーにてコーティングを行った。 そしてローラ一 Λ—スキルンにて最高焼成帯温度 500°Cで 30分焼成を行い、 比較例 5のサンプ ルを得た。 500°Cはホーロー板の耐熱温度の限界であり、 これ以上の加熱処理は 不可能であった。なお粒径測定は日機装株式会社の M I CROTRAC FRA を使用し、 レーザ一回折法にて実施した。 膜が剥離してしまったため、 サンプル の算術平均粗さ (R a) の測定は不可能であった。 The aqueous coating solution # 24 was coated by spraying on an enameled steel plate for heating and heating previously heated to 100 ° C. under the conditions of a coating amount of 45 gZm 2 . Then, the sample was baked for 30 minutes at a maximum sintering zone temperature of 500 ° C. with a roller porch-skiln to obtain a sample of Comparative Example 5. 500 ° C is the limit of the heat-resistant temperature of the enamel plate, and further heat treatment was not possible. The particle size was measured by a laser diffraction method using MICROTRAC FRA manufactured by Nikkiso Co., Ltd. It was not possible to determine the arithmetic mean roughness (R a ) of the sample because the film had detached.
比較例 6 Comparative Example 6
水ガラス材料 (日本化学社製けい酸リチウム 3 5、 原液の Si02換算含有濃度 20重量%) を蒸留水で Si02換算含有濃度を 1重量%に調整して、 水性塗布液 # 26を得た。 予め 8 0でに加熱した加熱調理用のホ一口一鋼板に、 水性塗布液 # 26を、 塗布量 45gZm2の条件でスプレーにてコーティングを行った。 そして ローラーハースキルンにて最高焼成帯温度 450°Cで 30分焼成を行い、 比較例 6 のサンプルを得た。 サンプルの算術平均粗さ (R a) は 0. 1 6 ^mであった。 比較例 7 Water glass material (Nippon Kagaku silicate lithium 3 5, Si0 2 in terms of content concentration of 20 wt% stock solution) of Si0 2 in terms of content level with distilled water and adjusted to 1 wt%, to obtain an aqueous coating solution # 26 Was. The aqueous coating solution # 26 was spray-coated on a hot-rolled steel plate for heating, which was previously heated to 80, with a coating amount of 45 gZm 2 . Then, the sample was fired at a maximum firing zone temperature of 450 ° C. for 30 minutes using a roller hearth kiln to obtain a sample of Comparative Example 6. The arithmetic mean roughness (Ra) of the sample was 0.16 ^ m. Comparative Example 7
硝酸ジルコニール (第一希元素化学株式製、 原液の Zr02換算含有濃度 25 重 量%) を蒸留水で Zr02換算含有濃度 5重量%に調整して、 水性塗布液 # 2 7を 得た。 加熱調理用のホー口一鋼板に水性塗布液 # 24を、 塗布量 45gZm2の条 件でスプレーにてコーティングを行った。そしてローラーハースキルンにて最高 焼成帯温度 450°Cで 30分焼成を行い、 サンプルを得た。 膜が剥離してしまった ため、 サンプルの算術平均粗さ (R a) の測定は不可能であった。 Nitrate zirconyl (first Kigenso chemical stocks made, Zr0 2 in terms of content concentration of 25 by weight% stock solution) was adjusted with distilled water to Zr0 2 terms containing 5 wt% to obtain an aqueous coating solution # 2 7. Aqueous coating solution # 24 was coated on a steel plate for heating and cooking with a spray at a coating amount of 45 gZm 2 . Then, the sample was fired at 450 ° C for 30 minutes in a roller hearth kiln at a maximum firing zone temperature to obtain a sample. It was not possible to determine the arithmetic average roughness (R a) of the sample because the film had detached.
評価 Evaluation
焦げ付かせる食材としては、 醤油、 砂糖、 溶き卵を重量比で 1:1:1にて混ぜ合 わせたものを使用した。 この混合物 0. 1 gを実施例および比較例の表面にスポ イトで 10個所直径約 1 c mの円形に塗布し、 乾燥機の中に 260°Cで 15分加熱し て完全に焦げ付かせた。 この試験はコンロメ一力一等で一般に行われる焦げ付き 試験の方法である。 その後乾燥機より取り出し、 通常の室内にて自然冷却させて 後に、 常温 (約 2 0 °C ) の水道水の中に浸漬させた。 これを一定時間毎に取り出 して焦げが除去された個数を測定した。焦げが取れた場合は再度同じ場所にて繰 り返し同様の試験を行い、 耐久性も合わせて評価した。 評価結果を表 1に示す。 The ingredients to be scorched were soy sauce, sugar, and beaten eggs mixed at a weight ratio of 1: 1: 1. 0.1 g of this mixture was applied to the surfaces of the examples and comparative examples in a circle having a diameter of about 1 cm at 10 places using a dropper, and heated in a dryer at 260 ° C. for 15 minutes to be completely scorched. . This test is generally performed with a stove, etc. This is a test method. Then, it was taken out of the dryer, allowed to cool naturally in a normal room, and then immersed in tap water at room temperature (about 20 ° C). This was taken out at regular intervals and the number of burns removed was measured. When burnt, the same test was repeated at the same place again, and the durability was also evaluated. Table 1 shows the evaluation results.
表 1 table 1
Figure imgf000018_0001
Figure imgf000018_0001
(表の注)  (Note in the table)
浸漬 3時間後に引き上げて、 自然に又は指で軽くなぞるだけで焦げが 10個中 何個除去できたかを表中に記載した。 例えば 2/10の場合は、 10個中 2個除去で きたことを表す。 平滑性が高い酸化ジルコニウム表面層を形成させた実施例では、安定して高い 焦げの除去性が得られた。比較例 1および比較例 6に記載の酸化ジルコニウムを 含有しない表面では、 焦げを除去することはできなかった。 また、 比較例 2およ び比較例 3においては酸化ジルコニウムを含有する表面を有するが、表面の算術 平均粗さ (R a) がそれぞれ 0. 5 6 xm、 0. 5 2 mと高く、 焦げの除去性 を安定して持続することができなかった。 これらの結果から、 焦げの除去性を安 定して持続させるには、 酸化ジルコニウムを主として含有し、 かつ、 算術平均粗 さ (R a ) が 0 . 5 m未満の表面が必要であることがわかった。 3 hours after immersion, the number of burns removed out of 10 was described in the table by simply tracing lightly or naturally with a finger. For example, 2/10 indicates that two out of ten were removed. In the example in which the zirconium oxide surface layer having high smoothness was formed, a high scorch removal property was obtained stably. On the surfaces containing no zirconium oxide described in Comparative Example 1 and Comparative Example 6, scorch could not be removed. Comparative Examples 2 and 3 each had a surface containing zirconium oxide, but the arithmetic average roughness (Ra) of the surface was high at 0.56 xm and 0.52 m, respectively, and the surface was scorched. Removability Could not be sustained stably. These results indicate that a surface that contains mainly zirconium oxide and has an arithmetic average roughness (R a) of less than 0.5 m is required to stably maintain the removability of scorch. all right.
また、 本発明の製造方法によれば、 実施例 4 , 5, 6および実施例 1 5に示し たように、 比較的低温で短時間の焼成でも、 焦げの除去性を安定して持続可能な 表面層を形成することが可能である。 産業上の利用可能性  In addition, according to the production method of the present invention, as shown in Examples 4, 5, 6 and 15, the burnt removability can be stably maintained even at a relatively low temperature for a short period of time. It is possible to form a surface layer. Industrial applicability
本発明によれば、 高温かつ水、 塩などに絶えず曝されるコンロ回りやグリル内 などの部位への使用においても優れた耐久性を有するとともに、水に浸けた後に 焦げを指や布巾で軽く擦る程度に容易に除去可能な加熱調理器具を、安価でかつ 安全に製造する方法、ならびに該加熱調理器具の使用方法を提供することが可能 となる。  ADVANTAGE OF THE INVENTION According to this invention, while having excellent durability also in the use around the stove or the inside of a grill etc. which are constantly exposed to high temperature, water, salt, etc., after being immersed in water, lightly scorch with a finger or cloth. It is possible to provide a method for inexpensively and safely manufacturing a cooking appliance that can be easily removed by rubbing, and a method for using the cooking appliance.

Claims

請求の範囲 The scope of the claims
1. 加熱調理器具の少なくとも耐熱性基材で構成される部分の表面に、 水溶性 ジルコニウム化合物と水とを含む水性塗布液を適用する工程と、 その後、 焼成す る工程とを具備することを特徴とする加熱調理器具の製造方法。 1. A step of applying an aqueous coating solution containing a water-soluble zirconium compound and water to at least the surface of a portion composed of a heat-resistant base material of a heating cooker, and thereafter, a step of firing. A method for producing a cooking appliance characterized by the above.
2. 加熱調理器具の少なくとも耐熱性基材で構成される部分の表面に、 平均粒 子径 5 O nm以下で、 かつ、 水分散性の酸化ジルコニウムゾルと、 水とを含む水 性塗布液を適用する工程と、 その後、 焼成する工程とを具備することを特徴とす る加熱調理器具の製造方法。  2. On the surface of at least the portion of the cooking utensil composed of the heat-resistant base material, apply an aqueous coating solution containing water and a water-dispersible zirconium oxide sol having an average particle size of 5 O nm or less and water. A method for manufacturing a heating cooker, comprising a step of applying and a step of baking thereafter.
3. 加熱調理器具の少なくとも耐熱性基材で構成される部分の表面に、 平均粒 子径 1 O nm以下で、 かつ、 水分散性の酸化ジルコニウムゾルと、 水とを含む水 性塗布液を適用する工程と、 その後、 焼成する工程とを具備することを特徴とす る加熱調理器具の製造方法。 3. On the surface of at least the portion of the cooking utensil composed of the heat-resistant base material, apply an aqueous coating solution containing water and a water-dispersible zirconium oxide sol having an average particle diameter of 1 O nm or less. A method for manufacturing a heating cooker, comprising a step of applying and a step of baking thereafter.
4. 加熱調理器具の少なくとも耐熱性基材で構成される部分の表面に、 平均粒 子径 2 nm以下で、 かつ、 水分散性の酸化ジルコニウムゾルと、 水とを含む水性 塗布液を適用する工程と、 その後、 焼成する工程とを具備することを特徴とする 加熱調理器具の製造方法。  4. Apply an aqueous coating solution containing water and a water-dispersible zirconium oxide sol having an average particle diameter of 2 nm or less to at least the surface of the portion of the cooking utensil composed of the heat-resistant base material. A method for producing a heating cooker, comprising: a step; and a firing step thereafter.
5. 請求の範囲第 1項から第 4項に記載の製造方法で表面層を形成してなる、 加熱調理器具。  5. A heating cooker comprising a surface layer formed by the production method according to claims 1 to 4.
6. 前記表面層の算術平均粗さ (R a) は 0. 以上 0. 5 ^m未満であ る、 請求の範囲第 5項に記載の加熱調理器具。 6. The cooking device according to claim 5, wherein the arithmetic average roughness (Ra) of the surface layer is 0.5 or more and less than 0.5 ^ m.
7. 前記表面層の酸化ジルコニウムの担持量は、 0. 04 gZm2以上 2. 3 gZm2未満である、 請求の範囲第 5項または第 6項に記載の加熱調理器具。 7. The cooking device according to claim 5, wherein the amount of zirconium oxide carried on the surface layer is 0.04 gZm 2 or more and less than 2.3 gZm 2 .
8. 請求の範囲第 5項〜第 7項のいずれか一項に記載の加熱調理器具に、 調理 中に付着した汚れが熱せられて焦げ付いた場合、前記加熱調理器具を水または湯 に浸漬しておくことにより、その後容易に焦げを除去しやすくすることを特徴と する、 加熱調理器具の使用方法。 8. If the dirt attached during cooking is heated and scorched on the cooking device according to any one of claims 5 to 7, the cooking device is immersed in water or hot water. The method of using cooking utensils, characterized by making it easier to remove burns afterwards.
PCT/JP2003/005348 2002-04-25 2003-04-25 Heating cooking utensil and method for manufacture thereof, and method for use thereof WO2003091630A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003235138A AU2003235138A1 (en) 2002-04-25 2003-04-25 Heating cooking utensil and method for manufacture thereof, and method for use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002124943A JP2005321108A (en) 2002-04-25 2002-04-25 Heating cooker and its manufacturing method as well as its using method
JP2002-124943 2002-04-25

Publications (1)

Publication Number Publication Date
WO2003091630A1 true WO2003091630A1 (en) 2003-11-06

Family

ID=29267546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005348 WO2003091630A1 (en) 2002-04-25 2003-04-25 Heating cooking utensil and method for manufacture thereof, and method for use thereof

Country Status (3)

Country Link
JP (1) JP2005321108A (en)
AU (1) AU2003235138A1 (en)
WO (1) WO2003091630A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100494787C (en) * 2004-11-29 2009-06-03 中国科学院金属研究所 Multifunctional energy saving heating pad

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4990789B2 (en) 2005-11-04 2012-08-01 エーザイ・アール・アンド・ディー・マネジメント株式会社 Screening method of substances useful for diseases using GPR40 and phospholipase
TWI497019B (en) 2007-01-30 2015-08-21 Sumitomo Osaka Cement Co Ltd Cooking utensil and method for manufacturing thereof
WO2008146880A1 (en) 2007-05-31 2008-12-04 Sumitomo Osaka Cement Co., Ltd. Sanitary ware and process for production thereof
JP5326962B2 (en) * 2009-09-17 2013-10-30 住友大阪セメント株式会社 Antifouling processed product and manufacturing method thereof
KR101557713B1 (en) * 2015-03-05 2015-10-06 유한회사 한국 타코닉 Cooking apparatus with improved non-stick property and method of manufacturing the same
US20220007883A1 (en) * 2015-06-12 2022-01-13 Sisteria Inertial cooktop and manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59225776A (en) * 1983-06-08 1984-12-18 Kishimoto Akira Surface treatment of aluminum material
JPS61154519A (en) * 1984-12-26 1986-07-14 古尾谷 述生 Improved heating cooking vessel
JPS6456386A (en) * 1987-08-27 1989-03-03 Toyama Prefecture Reinforcing method for ceramics
JPH0558637A (en) * 1991-09-05 1993-03-09 Tosoh Corp Production of hydrated zirconia sol and zirconia powder
JP2001214090A (en) * 2000-02-04 2001-08-07 Matsushita Electric Ind Co Ltd Non-adhesive coated film product, non-adhesive glass and cooking device using the same glass

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59225776A (en) * 1983-06-08 1984-12-18 Kishimoto Akira Surface treatment of aluminum material
JPS61154519A (en) * 1984-12-26 1986-07-14 古尾谷 述生 Improved heating cooking vessel
JPS6456386A (en) * 1987-08-27 1989-03-03 Toyama Prefecture Reinforcing method for ceramics
JPH0558637A (en) * 1991-09-05 1993-03-09 Tosoh Corp Production of hydrated zirconia sol and zirconia powder
JP2001214090A (en) * 2000-02-04 2001-08-07 Matsushita Electric Ind Co Ltd Non-adhesive coated film product, non-adhesive glass and cooking device using the same glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100494787C (en) * 2004-11-29 2009-06-03 中国科学院金属研究所 Multifunctional energy saving heating pad

Also Published As

Publication number Publication date
JP2005321108A (en) 2005-11-17
AU2003235138A1 (en) 2003-11-10

Similar Documents

Publication Publication Date Title
TWI537345B (en) Ceramic paints and protective coatings
KR101452535B1 (en) Cooking tool, and method for manufacture thereof
BRPI0910012B1 (en) ARTICLE AND PROCESS FOR MANUFACTURING AN ARTICLE
JP2010525095A (en) Anti-adhesion coating with improved hydrophobicity
EP3749720B1 (en) Non-stick ceramic coating comprising diamonds and coloured mica
JP2012513788A (en) Composite cookware with glassy protective coating
FR2487482A1 (en) INFRARED RADIATOR COMPRISING A MOLDED MASS OF A MATERIAL EMITTING INFRARED RADIATION AND A FRITTE MATERIAL
JP2912509B2 (en) Cooking surface structure of high-temperature heating cooking appliance and method of manufacturing the same
WO2003091630A1 (en) Heating cooking utensil and method for manufacture thereof, and method for use thereof
JP5435395B2 (en) Method for manufacturing glass article
JP5403094B2 (en) Manufacturing method of cookware
KR101789709B1 (en) Far infrared high emission ceramics coating method of heating cookware
JP5549308B2 (en) Antifouling processed product and manufacturing method thereof
JP5673286B2 (en) Articles and cooking utensils with excellent corrosion resistance and fingerprint resistance, and methods for producing articles with excellent corrosion resistance and fingerprint resistance
EP2803302B1 (en) Chemically stable, stain-, abrasion- and temperature-resistant, easy-to-clean sol-gel coated metalware for use in elevated temperatures
JP5879755B2 (en) Heating cooker, method for producing the same, and method for producing cooking utensils
JP5757312B2 (en) Glass article
JP2003138387A (en) Heat resistant porcelain enamel-coated stainless steel heating cooker, and production method therefor
JPH0343476A (en) Heat resistant coating film material and cooking utensil provided with the same material
JP2010037173A (en) Antifouling product and method for producing the same
KR100811228B1 (en) Teflon coating method of ceramic kitchen utensils and ceramic kitchen utensils with teflon coat by the method
JP2022059585A (en) Aluminum and aluminum alloy utensil, and manufacturing method of the same
JP6908982B2 (en) Surface-treated metal parts, heating appliances
JP2001323187A (en) Nontacky coated film product and cooking utensil using the same
JP2002322575A (en) Enamel product from which scorching can be easily removed

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP