WO2003091187A1 - Process for producing perhalogenated alkyl iodide telomer - Google Patents

Process for producing perhalogenated alkyl iodide telomer Download PDF

Info

Publication number
WO2003091187A1
WO2003091187A1 PCT/JP2003/004877 JP0304877W WO03091187A1 WO 2003091187 A1 WO2003091187 A1 WO 2003091187A1 JP 0304877 W JP0304877 W JP 0304877W WO 03091187 A1 WO03091187 A1 WO 03091187A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
column
rectification
general formula
Prior art date
Application number
PCT/JP2003/004877
Other languages
French (fr)
Japanese (ja)
Inventor
Jun Miki
Yoshito Tanaka
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2003091187A1 publication Critical patent/WO2003091187A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/272Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by addition reactions
    • C07C17/278Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by addition reactions of only halogenated hydrocarbons

Definitions

  • the present invention relates to a method of producing a perhalogenated alkyl iodide telomer and a high-purity perhalogenated alkyl iodide telomer.
  • the perhalogenated alkyl iodide telomer of the present invention is particularly useful when used as a pharmaceutical intermediate, an optical functional material intermediate, or a polymer raw material.
  • an optical functional material the presence of a hydrogen-containing compound as an impurity is extremely useful because optical characteristics are impaired.
  • Rf represents a perhalogenated alkyl group.
  • the purpose can be achieved with a mixture having an average n number of about 3.5.
  • high purity is required as a single component. Therefore, it was important how to efficiently purify compounds having a specific n number.
  • Rf— (CF 2 CF 2 ) n —H was a problem as an impurity.
  • a hydrogen-containing compound deteriorated the optical characteristics, and was deteriorated.
  • the purpose is to provide the law.
  • Another object of the present invention is to provide a perhalogenated alkyl iodide telomer having a low impurity content. It is a further object of the present invention to provide an optically functional material and an intermediate of Z or an optically functional material using them. Disclosure of the invention
  • the compound of formula (I), which is a starting material, is reacted with tetrafluoroethylene, the reaction mixture is introduced into a distillation column, and the overhead is reduced by distilling off a fraction mainly composed of the raw material compound of formula (I). It has been found that a highly pure compound of the general formula (II) can be efficiently produced by introducing the bottom liquid to the next rectification step.
  • the invention relates to a process for preparing a compound of the general formula (I):
  • X 1 represents F, C, I
  • X 2 represents F, C, CF 3.
  • a step of introducing the bottom liquid of the distillation column to a rectification step to purify the compound of formula (II) (n 2 to 5) with high purity.
  • the present invention is to provide a method for producing a compound represented by the general formula (II) which comprises a can, as an impurity, the general formula (III):
  • the present invention also relates to a perhalogenated alkyl iodide telomer characterized in that the content of the compound represented by the following formula (hereinafter abbreviated as Rf-H) is 50 ppm or less.
  • the perhalodialkyl alkyl iodide telomer according to the present invention is particularly useful when used as a pharmaceutical intermediate, an intermediate of an optically functional material, or a polymer raw material.
  • the optical functional material is, for example, an organic material for optical communication, such as an optical waveguide material, an optical switch, a modulator, a filter, an optical cross connect, an optical amplifier, a multiplexer / demultiplexer, a wavelength converter, 0ADM, a photonic crystal, and a non-linear type.
  • optical materials include optical recording materials such as holographic materials, photochromic materials, photorefractive materials, and liquid crystal materials.
  • display materials include organic EL materials, liquid crystal materials, and LEDs.
  • the obtained perhalogenated alkyl iodide telomer can be reacted with phosphorus to synthesize high-purity alkyl perphosphoric acid and / or bis-perhalogenated alkyl phosphoric acid.
  • These high-purity fluorinated phosphoric acids are extremely useful as intermediates for optically functional materials.
  • these fluorinated phosphoric acid and rare earth metal ions such as erbium (Er) ion, thulium (Tm) ion, praseodymium (Pr) ion, holmium (Ho) ion, neodymium (Nd) ion, europium ( Complexes with Eu) ions, cerium (Ce) ions, samarium (Sm) ions, dysprosium (Dy) ions, and terbium (Tb) ions can be expected as highly efficient light-emitting materials and optical amplification materials. .
  • C1CF 2 CF 2 I, ICF 2 CF 2 I, C1CF 2 CFC1I, (CF 3 ) 2 CFI are preferably exemplified CF 3 CFC1 I, ICF 2 CFC1I, C1CF 2 CF (CF 3 ) I, ICF 2 CF ( CF 3 ) I can also be used.
  • metal catalysts As the catalyst used for the telomerization reaction, known catalysts, in particular, metal catalysts can be widely used. 10 Examples of the metal type of the metal catalyst include copper, tin, zinc, magnesium, vanadium, renium, rhodium, ruthenium, platinum, silver, alloys of these metals, and mixtures of these metals. Alternatively, an alloy obtained by adding a small amount of a transition metal to these metals can be used. As the transition metal, it is possible to use a metal which does not show a catalytic action itself or a catalyst having a very small catalytic action, such as iron, nickel, chromium, molybdenum, tungsten,
  • Titanium etc. can be used.
  • tin using copper as a cocatalyst when copper, tin, or tin using copper as a cocatalyst is used as a catalyst, the catalytic activity and the selectivity of the medium-chain telomer are improved.
  • tin using copper as a cocatalyst a mixture of tin powder and copper powder, a tin-copper alloy, or the like can be used. Since both tin and copper can be used as catalysts for the telomerization reaction, the ratio of both can be arbitrarily determined. For example, if the ratio of tin is 0.
  • the size of tin powder, copper powder, tin-copper alloy powder, etc. used as a catalyst is not particularly limited, but may be, for example, 0.1 ⁇ m or more: about Lmm, preferably 20 ⁇ m to 0.3 mm. Particle size of about 20 ⁇ ! About 200 ⁇ m, preferably 45 to 100 ⁇ m
  • the reaction can be carried out batchwise or continuously.
  • the reaction When the reaction is carried out in a continuous manner, for example, a tubular reactor filled with a catalyst metal composed of spherical metal powder or sintered metal is used as the reactor, and the raw material of the formula (I) and tetrafluoride are added to the reactor.
  • the telomerization reaction can be carried out by continuously supplying ethylene to the mouth.
  • the amount of the catalyst used is not particularly limited, but is preferably about 0.2 to 50 raass% based on the weight of the compound of the formula (I) as the raw material. If the amount of the catalyst used is too large, it is uneconomical, and if the amount is too small, the reaction speed is undesirably slow.
  • These catalysts may be used in the form of a catalyst metal supported on a carrier such as alumina or zeolite.
  • the compound of the formula ( ⁇ ) wherein n is 2 or more is present under such conditions that 0.1 to 10 mol%, preferably 0.3 to 5 mol% is present (the compound of the formula (I) as a raw material and
  • the reaction is preferably carried out under the following conditions: ethylene ratio, pressure, temperature, time, type and amount of catalyst.
  • eta 5 mol% of the total product the production of 6 or more compounds or less, preferably 2 mol 0/0 or less, more preferably 0 - 5 mole 0/0 or less, in particular can be suppressed to 0.1 mole 0/0, it is possible to manufacture various telomers of interest efficiently.
  • the reaction temperature is usually about 60 to 200 ° C, preferably about 60 to 160 ° C, and more preferably about 100 to 140 ° C.
  • the pressure during the reaction is preferably about 0.1 to 5 MPa (gauge pressure).
  • the reaction proceeds at a pressure lower than this, which is not preferable because the space time yield decreases. If the reaction pressure is higher than the above range, the telomerization reaction proceeds, but safety risks and costs are increased.
  • the reactor is, for example, a reactor having a pressurized temperature control device so that the compound of the formula (I) can exist in a liquid phase, and having a stirring device,
  • the internal pressure is increased from 0.5 to 1.5M so that tetrafluoroethylene, the compound of formula (I), can exist mainly as a liquid
  • a tank reactor that can be adjusted within the range of Pa (gauge pressure) is suitable.
  • the telomerization reaction can be performed by introducing tetrafluoroethylene in a gas phase into a device in which a liquid phase containing the raw material of the formula (I) is stirred.
  • the reaction may be carried out by dissolving tetrafluoroethylene in the raw material of the formula (I), and then supplying this solution from a reactor introduced into the reactor.
  • a reactor equipped with a pressure controller at the outlet and having a temperature controller is suitable.
  • the internal pressure is about 0.5 to 3 MPa (gauge pressure) so that tetrafluoroethylene, which is a taxogen, is dissolved in telogen, for example, parafluoroethyl iodide, and can remain as a liquid. It is preferable to adjust in the range of.
  • the reaction mixture obtained by the above reaction is supplied to a distillation column to distill a fraction containing the i-adduct of the formula (I), which is a starting material at the top, as a main component.
  • the reaction mixture contains the compound represented by the formula (II)!
  • the reaction may be terminated in a state where the conversion is low and led to a distillation column.
  • the bottom liquid is guided to the next rectification step and further purified.
  • purification by a distillation column is exemplified.
  • the distillation column may be a single distillation column or may be purified using two or more distillation columns.
  • the bottom liquid may contain a small proportion of V as a raw material.
  • the distillation may be carried out under the conditions of the number of theoretical plates, temperature and pressure necessary to obtain the compound of the formula (II) of the formula (1) as a top distillate.
  • What is necessary is just to separate and collect.
  • the rectification step can be performed by the following steps (i) to (iii):
  • the present invention also has a feature that Rf-IH, which is an impurity contained in the conventional method for producing a telomer, is 50 ppm or less.
  • Rf-H of 50 ppm or less is determined by gas chromatography with FID detection.
  • telomer of the present invention the properties of the optical functional material can be improved.
  • the telomeri-dani reaction was performed at a supply rate of 9. OmlZ.
  • the reaction temperature was 60 to 120 ° C.
  • the reaction solution flowing out of the stainless tube was cooled, and the composition was analyzed by gas chromatography. The results are shown in Table 1 below.
  • the top fraction of the first distillation column was returned to the reactor and reused.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A process for producing a compound represented by the general formula (II): X1-CF2CFX2-(CF2CF2)n-I (II) [wherein X1 represents fluorine, chlorine, or iodine; X2 represents fluorine, chlorine, or CF3; and n is a or b (a and b each is an integer of 1 to 5, provided that a≤b)] by reacting a compound represented by the general formula (I): X1-CF2CFX2-I (I) (wherein X1 and X2 are as defined above) with tetrafluoroethylene in a reactor in the presence of a catalyst, characterized by comprising: a step in which the reaction is conducted under such conditions as to yield reaction products containing as a major component a compound represented by the formula (II) wherein n=1 and a liquid reaction mixture comprising the starting material represented by the general formula (I) as a major ingredient is introduced into a distillation column; a step in which a fraction consisting mainly of the starting material represented by the general formula (I) is taken out of the column top through distillation and is returned to the reactor for reuse; and a step in which the bottom residing in the distillation column is introduced into a rectification step to purity it to obtain the compound represented by the formula (II) having a high purity. Also provided is a perhalogenated alkyl iodide telomer produced through those steps which is represented by the general formula (III): X1-CF2CFX2-(CF2CF2)n-H (III) [wherein X1 and X2 are as defined above; and n is c or d (c and d each is an integer of 2 to 6, provided that c≤d)] and has an impurity content of 50 ppm or lower. An optical functional material and/or an intermediate for optical functional materials is further provided which is obtained from or comprises the telomer.

Description

明細書  Specification
パーハロゲン化アルキルアイオダイドテロマーの製造法  Method for producing perhalogenated alkyl iodide telomer
技術分野  Technical field
本発明は、パーハロゲンィ匕アルキルアイオダイドテロマーの製造法ならぴに高純度の パーハロゲン化アルキルアイオダイドテロマーに関する。本発明のパーハロゲン化アルキ ルアイオダイドテロマーは医薬品中間体や、光学機能材料の中間体、ポリマー原料とし て使用する場合、特に有用である。中でも光機能材料の中間体の場合、不純物として含 水素化合物があると光学特性が損なわれるため極めて有用である。  The present invention relates to a method of producing a perhalogenated alkyl iodide telomer and a high-purity perhalogenated alkyl iodide telomer. The perhalogenated alkyl iodide telomer of the present invention is particularly useful when used as a pharmaceutical intermediate, an optical functional material intermediate, or a polymer raw material. Above all, in the case of an intermediate of an optical functional material, the presence of a hydrogen-containing compound as an impurity is extremely useful because optical characteristics are impaired.
背景技術  Background art
パーハロゲン化アルキルアイオダイドテロマーは、下記の式で進行することが知られて レヽる(ドイツ特許公告第 1443517号、特開平 6— 305995号公報参照)。  It is known that the perhalogenated alkyl iodide telomer proceeds according to the following formula (see German Patent Publication No. 1443517 and JP-A-6-305995).
Rf-I + CF2CF2 → Rf—(CF2CF2) n— I Rf-I + CF 2 CF 2 → Rf— (CF 2 CF 2 ) n — I
(式中、 Rfはパーハロゲン化アルキル基を示す。) (In the formula, Rf represents a perhalogenated alkyl group.)
該反応において、 nが 6以上であるテロマーは利用価値が低いので、テロメリ化反応を 中鎖 (n= l〜5)に止めることが重要であり、この場合多量の原料が反応液中に残存した 状態で精製を行う必要がある。通常の用途である撥水撥油剤等に使用する場合にあって は、平均 n数が 3. 5程度の混合物で目的を達成し得るが、医薬品中間体や、光学機能 材料の中間体、ポリマー原料として使用する場合には単一成分として高純度が要求され る。したがって、特定の n数を持つ化合物の精製をいかに効率的に行うかが重要であつ た。  In the reaction, the telomer having n of 6 or more has low utility, so it is important to stop the telomerization reaction at a medium chain (n = 1 to 5), in which case a large amount of the raw material remains in the reaction solution. It is necessary to perform purification in this state. In the case of use in water- and oil-repellent agents, which are the usual applications, the purpose can be achieved with a mixture having an average n number of about 3.5. When used as a raw material, high purity is required as a single component. Therefore, it was important how to efficiently purify compounds having a specific n number.
また、不純物として Rf—(CF2CF2)n— Hが問題になるケースがあった。例えば光学機 能材料の中間体の場合、含水素化合物が光学特性を低下させてレヽた。 In some cases, Rf— (CF 2 CF 2 ) n —H was a problem as an impurity. For example, in the case of an intermediate of an optically functional material, a hydrogen-containing compound deteriorated the optical characteristics, and was deteriorated.
本発明は、一般式 (II)の化合物の製造法において、原料を多量に含む反応混合物 力 効率的に中鎖テロメリ化物(一般式 (Π)において n= l〜5の化合物)を製造する方 法を提供することを目的とする。また、本発明は、不純物の含有量の少ないパーハロゲン 化アルキルアイオダイドテロマーを提供することを目的とする。さらに本発明はそれらを用 レ、てなる光学機能材料および Zまたは光学機能材料の中間体を提供することを目的と する。 発明の開示 The present invention relates to a process for producing a compound of the general formula (II), wherein a reaction mixture containing a large amount of a raw material efficiently produces a medium-chain telomerized product (compound of n = 1 to 5 in the general formula (Π)). The purpose is to provide the law. Another object of the present invention is to provide a perhalogenated alkyl iodide telomer having a low impurity content. It is a further object of the present invention to provide an optically functional material and an intermediate of Z or an optically functional material using them. Disclosure of the invention
本発明者は上記課題に鑑み検討を重ねた結果、反応混合物中に多量の原料が残存 し、反応生成物において n= lの一般式 (II)の化合物が主成分となる反応条件下で原 料となる式 (I)の化合物とテトラフルォロエチレンを反応させ、反応混合物を蒸留塔に導 き、塔頂力も式 (I)の原料化合物を主成分とする留分を留出し、該ボトム液を次の精留ェ 程に導くことにより、高純度な一般式 (II)の化合物が効率的に製造できることを見出した。 このような方法とすることで、 n= l〜5の化合物の少なくとも 1種を効率的に合成でき、 n = 1〜5の 5種の化合物全てを同時に製造する場合であっても、このような条件で製造す るのが有利である。  As a result of repeated investigations in view of the above problems, the present inventors have found that a large amount of the raw material remains in the reaction mixture, and the reaction product under the reaction conditions in which the compound of the general formula (II) of n = l is the main component. The compound of formula (I), which is a starting material, is reacted with tetrafluoroethylene, the reaction mixture is introduced into a distillation column, and the overhead is reduced by distilling off a fraction mainly composed of the raw material compound of formula (I). It has been found that a highly pure compound of the general formula (II) can be efficiently produced by introducing the bottom liquid to the next rectification step. By adopting such a method, at least one of the compounds of n = 1 to 5 can be efficiently synthesized, and even when all of the five compounds of n = 1 to 5 are simultaneously produced, such a method can be used. It is advantageous to manufacture under such conditions.
本発明は、反応器中で、一般式 (I):  The invention relates to a process for preparing a compound of the general formula (I):
Xi— CFsCFX2— I (I) Xi—CFsCFX 2 — I (I)
(式中、 X1は F, Cほたは Iを示し、 X2は F、 Cほたは CF3を示す。) (In the formula, X 1 represents F, C, I, and X 2 represents F, C, CF 3. )
で表される化合物とテトラフルォロエチレンを触媒の存在下に反応させて、下記式 (Π): X1— CF2CFX2— (CF2CF2)n— I (II) Is reacted with tetrafluoroethylene in the presence of a catalyst to give the following formula (Π): X 1 — CF 2 CFX 2 — (CF 2 CF 2 ) n — I (II)
(式中、 X1及び X2は前記に定義されるとおりであり、 n=a〜b (a、 bは各々 1〜5の整数、 a≤b)を示す。) (Wherein X 1 and X 2 are as defined above, and n = a to b (a and b each represent an integer of 1 to 5, a ≦ b).)
で表される化合物を製造する方法にお!/、て、 In the method for producing the compound represented by
(a)反応生成物として n= lである式 (II)の化合物が主成分となる条件下で反応を行レ、、 一般式 (I)の原料を主成分とする反応液を蒸留塔に導く工程、  (a) The reaction is carried out under the condition that the compound of the formula (II) where n = l as the reaction product is the main component, and the reaction solution containing the raw material of the general formula (I) as the main component is fed to the distillation column. Guiding process,
塔頂より一般式 (I)の原料を主成分とする留分を留出し、該留分を反応器に戻して再利 用する工程、及ぴ A step of distilling a fraction containing the raw material of the general formula (I) as a main component from the top of the column, returning the fraction to the reactor for reuse, and
該蒸留塔のボトム液を精留工程に導レ、て、純度の高レ、式 (II)の化合物 (n=2〜5)を精製 する工程 A step of introducing the bottom liquid of the distillation column to a rectification step to purify the compound of formula (II) (n = 2 to 5) with high purity.
を含むことを特徴とする一般式 (II)で表される化合物の製造方法を提供するものである c さらに本発明は、不純物として、一般式 (III) : C The present invention is to provide a method for producing a compound represented by the general formula (II) which comprises a can, as an impurity, the general formula (III):
X1— CF2CFX2—(CF2CF2)n— H (III) X 1 — CF 2 CFX 2 — (CF 2 CF 2 ) n — H (III)
(式中、 X1及ぴ X2は前記に定義されるとおりであり、 n=c〜d(c、 dは各々 2〜6の整数、 c≤d)を示す。) で表される化合物(以下、 Rf—Hと略する)の含有量が 50ppm以下にあることを特徴とす るパーハロゲン化アルキルアイオダイドテロマーにも関する。 (Wherein X 1 and X 2 are as defined above, and n = c to d (c and d each represent an integer of 2 to 6, and c ≦ d).) The present invention also relates to a perhalogenated alkyl iodide telomer characterized in that the content of the compound represented by the following formula (hereinafter abbreviated as Rf-H) is 50 ppm or less.
本発明によるパーハロゲンィ匕アルキルアイオダイドテロマーは医薬品中間体や、光学 機能材料の中間体、ポリマー原料として使用する場合、特に有用である。中でも光機能 材料の中間体の場合、不純物として含水素化合物があると光学特^が損なわれるため 極めて有用である。ここで光学機能材料とは例えば光通信用有機材料として、光導波路 材料、光スィッチ、モジュレーター、フィルター、光クロスコネクト、光増幅器、合分波器、 波長変換器、 0ADM、フォトニック結晶、非線型光学材料等が、光記録材料としてはホログ ラム材料、フォトクロミック材料、フォトリフラクティブ材料、液晶材料等が、表示材料として は有機 EL材料、液晶材料、 LED等があげられる。  The perhalodialkyl alkyl iodide telomer according to the present invention is particularly useful when used as a pharmaceutical intermediate, an intermediate of an optically functional material, or a polymer raw material. Above all, in the case of an intermediate of an optical functional material, the presence of a hydrogen-containing compound as an impurity is extremely useful because optical characteristics are impaired. Here, the optical functional material is, for example, an organic material for optical communication, such as an optical waveguide material, an optical switch, a modulator, a filter, an optical cross connect, an optical amplifier, a multiplexer / demultiplexer, a wavelength converter, 0ADM, a photonic crystal, and a non-linear type. Examples of optical materials include optical recording materials such as holographic materials, photochromic materials, photorefractive materials, and liquid crystal materials. Examples of display materials include organic EL materials, liquid crystal materials, and LEDs.
また、 さらに、 得られたパーハロゲン化アルキルアイオダィドテロマーとリン を反応させて高純度のパーハ口ゲン化アルキルリン酸および/またはビス-パーハ ロゲン化アルキルリン酸を合成することができる。 これらの高純度の含フッ素リ ン酸は光学機能性材料の中間体として極めて有用である。 例えば、 これらの含フ ッ素リン酸と希土類金属イオン、 例えばエルビウム (E r) イオン、 ツリウム (Tm) イオン、 プラセォジゥム (P r ) イオン、 ホルミゥム (Ho) イオン、 ネオジゥム (Nd) イオン、 ユーロピウム (Eu) イオン、 セリウム (C e) ィ オン、 サマリウム (Sm) イオン、 ジスプロシウム (Dy) イオンおよびテルビ ゥム (Tb) イオン等との錯体は、 高効率の発光材料、 光増幅材料として期待で きる。 これは、 R f _ (CF2CF2) n— Hが存在すると、 C一 H結合へ発光の エネルギーが移動し、 発光効率が低下するが、 本発明のパーハロゲン化アルキル アイオダィドテロマーを原料に用いることにより、 エネルギー移動を抑制できる ためと考えられる。 Further, the obtained perhalogenated alkyl iodide telomer can be reacted with phosphorus to synthesize high-purity alkyl perphosphoric acid and / or bis-perhalogenated alkyl phosphoric acid. These high-purity fluorinated phosphoric acids are extremely useful as intermediates for optically functional materials. For example, these fluorinated phosphoric acid and rare earth metal ions, such as erbium (Er) ion, thulium (Tm) ion, praseodymium (Pr) ion, holmium (Ho) ion, neodymium (Nd) ion, europium ( Complexes with Eu) ions, cerium (Ce) ions, samarium (Sm) ions, dysprosium (Dy) ions, and terbium (Tb) ions can be expected as highly efficient light-emitting materials and optical amplification materials. . This is because the presence of R f _ (CF 2 CF 2 ) n — H transfers the energy of light emission to the C-H bond and lowers the light emission efficiency, but the perhalogenated alkyl iodide telomer of the present invention It is thought that energy transfer can be suppressed by using as a raw material.
原料として用レ、る一般式 (I)の化合物の具体例としては、 CF3CF2I, Specific examples of the compound of the general formula (I) used as a raw material include CF 3 CF 2 I,
C1CF2CF2I, ICF2CF2I, C1CF2CFC1I、(CF3) 2CFIが好ましく例示される力 CF3CFC1 I、 ICF2CFC1I、 C1CF2CF(CF3)I、 ICF2CF(CF3)Iを用いることもできる。 C1CF 2 CF 2 I, ICF 2 CF 2 I, C1CF 2 CFC1I, (CF 3 ) 2 CFI are preferably exemplified CF 3 CFC1 I, ICF 2 CFC1I, C1CF 2 CF (CF 3 ) I, ICF 2 CF ( CF 3 ) I can also be used.
一般式 (Π)の目的化合物の具体例としては、  Specific examples of the target compound of the general formula (Π) include
CF3CF2— (CF2CF2)n-I (n=l〜5); CF 3 CF 2 — (CF 2 CF 2 ) n -I (n = l to 5);
C1CF2CF2I- (CF。CF2)n— I (n=l〜5); ICF2CF2I- (CF2CF2) n— I (n= l〜5); C1CF 2 CF 2 I- (CF.CF 2 ) n - I (n = l~5); ICF 2 CF 2 I- (CF 2 CF 2 ) n — I (n = l to 5);
C1CF2CFC1I—(CF2CF2) n— I (n= l〜5); C1CF 2 CFC1I— (CF 2 CF 2 ) n — I (n = l to 5);
(CF3) 2CFI—(CF2CF2) n - 1 (n= l〜5); (CF 3 ) 2 CFI— (CF 2 CF 2 ) n -1 (n = l to 5);
CF3CFC1I—(CF2CF2) n— I (n= l〜5) ; CF 3 CFC1I— (CF 2 CF 2 ) n — I (n = l to 5);
5 ICF2CFC1I— (CF2CF2) n_I (n= l〜5) ; 5 ICF 2 CFC1I— (CF 2 CF 2 ) n _I (n = l ~ 5);
ClCF2CF (CF3) I_ (CF2CF2) n— I (n= l〜5);及び ClCF 2 CF (CF 3 ) I_ (CF 2 CF 2 ) n — I (n = l to 5); and
ICF2CF (CF3) I—(CF2CF2) n— I (n= l〜5) ICF 2 CF (CF 3 ) I— (CF 2 CF 2 ) n — I (n = l ~ 5)
が例示できる。  Can be exemplified.
該テロメリ化反応に用レ、る触媒としては、公知の触媒、特に金属触媒が広く使用できる。 10 金属触媒の金属の種類としては、例えば、銅、錫、亜鉛、マグネシウム、バナジウム、レニ ゥム、ロジウム、ルテニウム、白金、銀、これらの金属同士の合金、これらの金属の混合物 等を用レ、ることができ、またはこれらの金属に遷移金属を少量添加した合金などを用いる こともできる。遷移金属としては、それ自身は触媒作用を示さなレ、か、触媒作用が非常に 小さい金属を用いることができ、例えば、鉄、ニッケル、クロム、モリブデン、タングステン、 As the catalyst used for the telomerization reaction, known catalysts, in particular, metal catalysts can be widely used. 10 Examples of the metal type of the metal catalyst include copper, tin, zinc, magnesium, vanadium, renium, rhodium, ruthenium, platinum, silver, alloys of these metals, and mixtures of these metals. Alternatively, an alloy obtained by adding a small amount of a transition metal to these metals can be used. As the transition metal, it is possible to use a metal which does not show a catalytic action itself or a catalyst having a very small catalytic action, such as iron, nickel, chromium, molybdenum, tungsten,
15 チタン等を用レ、ることができる。 15 Titanium etc. can be used.
特に、銅、錫、又は銅を共触媒とする錫を触媒として用いる場合には、触媒活性及び中 鎖テロマーの選択性が良好になる。銅を共触媒とする錫については、錫粉と銅粉の混合 物、錫一銅合金等を用レ、ることができる。錫と銅はいずれもテロメリ化反応の触媒として用 レ、ることができるので、両者の割合は、任意に決めることができる。例えば錫の比率が 0. In particular, when copper, tin, or tin using copper as a cocatalyst is used as a catalyst, the catalytic activity and the selectivity of the medium-chain telomer are improved. As for tin using copper as a cocatalyst, a mixture of tin powder and copper powder, a tin-copper alloy, or the like can be used. Since both tin and copper can be used as catalysts for the telomerization reaction, the ratio of both can be arbitrarily determined. For example, if the ratio of tin is 0.
20 01〜100mass%程度の範囲の触媒が使用できる力 特に、加工性、価格の低減、入手 の容易さなどから、錫の比率が 2〜35mass%程度となる量とすることが好ましい。 The ability to use a catalyst in the range of about 200 to 100% by mass It is preferable to set the amount of tin to about 2 to 35% by mass, especially from the viewpoint of processability, cost reduction, and availability.
触媒として用いる錫粉、銅粉、錫一銅合金粉等の大きさについては、特に限定的ではな いが、例えば、 0. 1 μ m〜: Lmm程度、好ましくは 20 μ m〜0. 3mm程度の粒子径を有し、 20 μ η!〜 200 μ m程度、好ましくは 45〜100 μ m程度の平均粒径を有するものを用い The size of tin powder, copper powder, tin-copper alloy powder, etc. used as a catalyst is not particularly limited, but may be, for example, 0.1 μm or more: about Lmm, preferably 20 μm to 0.3 mm. Particle size of about 20 μη! About 200 μm, preferably 45 to 100 μm
25 ることがでさる。 25
反応はバッチ式及ぴ連続式で行うことができる。  The reaction can be carried out batchwise or continuously.
反応を連続式で行う場合には、例えば反応器として、球状金属粉体又は焼結金属から なる触媒金属を充填した管型反応器を用い、この反応器に、式 (I)の原料とテトラフルォ 口エチレンを連続的に供給してテロメリ化反応を行うことができる。 反応をバッチ式で行う場合、触媒の使用量については、特に限定的ではないが、原料 の式 (I)の化合物の重量に対して 0. 2〜50raass%程度とすることが好ましい。触媒の使 用量が多すぎると不経済であり、少なすぎると反応速度が遅くなるので好ましくない。 When the reaction is carried out in a continuous manner, for example, a tubular reactor filled with a catalyst metal composed of spherical metal powder or sintered metal is used as the reactor, and the raw material of the formula (I) and tetrafluoride are added to the reactor. The telomerization reaction can be carried out by continuously supplying ethylene to the mouth. When the reaction is carried out in a batch system, the amount of the catalyst used is not particularly limited, but is preferably about 0.2 to 50 raass% based on the weight of the compound of the formula (I) as the raw material. If the amount of the catalyst used is too large, it is uneconomical, and if the amount is too small, the reaction speed is undesirably slow.
これらの触媒は、アルミナ、ゼォライト等の担体に触媒金属を担持させた形で用いても 良い。  These catalysts may be used in the form of a catalyst metal supported on a carrier such as alumina or zeolite.
本発明の方法では、蒸留塔に供給される反応混合物中には、  In the method of the present invention, in the reaction mixture supplied to the distillation column,
式(I)の原料が 80〜98モル0 /0、好ましくは 85〜96モノレ0 /0Feedstock from 80 to 98 mole 0/0 of formula (I), preferably 85 to 96 Monore 0/0,
n= lである式(II)の化合物は、 1〜: 12モノレ0ん好ましくは 3〜: 10モル0 /0Compounds of n = l is a formula (II), 1: 12 Monore 0 I preferably 3: 10 mole 0/0,
nが 2以上の式(Π)の化合物は 0. 1〜10モル%、好ましくは 0. 3〜5モル%程度存在す るような条件 (原料である式 (I)の化合物とテトラフルォロエチレンの比率、圧力、温度、時 間、触媒の種類及び量)下に反応することが好ましい。このようにして得られた反応混合 物を蒸留塔での分離及びその後の精製工程に供することで、目的とする式 (II)の化合 物 (n= l〜5)の少なくとも 1種の化合物、好ましくは同時に 5種 (n= 1〜5)の化合物を得 ることができ、かつ、 ηが 6以上の化合物の生成を生成物全体の 5モル%以下、好ましくは 2モル0 /0以下、さらに好ましくは 0· 5モル0 /0以下、特に 0. 1モル0 /0に抑制することができ、 目的とする各種テロマーの製造を効率的に行うことが可能になる。 The compound of the formula (の) wherein n is 2 or more is present under such conditions that 0.1 to 10 mol%, preferably 0.3 to 5 mol% is present (the compound of the formula (I) as a raw material and The reaction is preferably carried out under the following conditions: ethylene ratio, pressure, temperature, time, type and amount of catalyst. By subjecting the reaction mixture thus obtained to separation in a distillation column and subsequent purification steps, at least one compound of the desired compound of the formula (II) (n = l to 5), preferably can Rukoto give the compound of five (n = 1 to 5) At the same time, and, eta 5 mol% of the total product the production of 6 or more compounds or less, preferably 2 mol 0/0 or less, more preferably 0 - 5 mole 0/0 or less, in particular can be suppressed to 0.1 mole 0/0, it is possible to manufacture various telomers of interest efficiently.
テトラフルォロエチレン Ζ式 (I)の化合物 (モル比) =0. 01〜1程度とすればよ 0. 1 〜0. 5程度とすることが好ましい。  Tetrafluoroethylene Compound of formula (I) (molar ratio) = 0.01-1 It is preferable to be about 0.1-0.5.
反応温度は、通常、 60〜200°C程度、好ましくは 60〜160°C程度、より好ましくは 100 〜: 140°C程度とすればよい。  The reaction temperature is usually about 60 to 200 ° C, preferably about 60 to 160 ° C, and more preferably about 100 to 140 ° C.
反応時の圧力は、 0. l〜5MPa (ゲージ圧)程度とすることが好ましい。これを下回る圧 力でも反応は進行する力 空時収率(space time yield)が低下するので好ましくない。 また、反応圧力が上記範囲を上回る場合には、テロメリ化反応は進行するが、安全面で の危険性やコストが増大することになる。  The pressure during the reaction is preferably about 0.1 to 5 MPa (gauge pressure). The reaction proceeds at a pressure lower than this, which is not preferable because the space time yield decreases. If the reaction pressure is higher than the above range, the telomerization reaction proceeds, but safety risks and costs are increased.
本発明の製造方法では、反応器としては、例えば、式 (I)の化合物が液相で存在できる ように加圧式で温度調節装置を有し、かつ攪拌装置を備えた反応器であって、テトラフル ォロエチレン、式 (I)の化合物が主に液体のままで存在できるように内圧を 0. 5〜: 1. 5M In the production method of the present invention, the reactor is, for example, a reactor having a pressurized temperature control device so that the compound of the formula (I) can exist in a liquid phase, and having a stirring device, The internal pressure is increased from 0.5 to 1.5M so that tetrafluoroethylene, the compound of formula (I), can exist mainly as a liquid
Pa (ゲージ圧)の範囲で調節できる槽型反応器が適してレ、る。この様な反応装置を用レ、、 式 (I)の原料を含む液相が撹拌されてレ、る装置中に、テトラフルォロエチレンを気相で導 入することによって、テロメリ化反応を行なわせることができる。 A tank reactor that can be adjusted within the range of Pa (gauge pressure) is suitable. Using such a reactor, The telomerization reaction can be performed by introducing tetrafluoroethylene in a gas phase into a device in which a liquid phase containing the raw material of the formula (I) is stirred.
或いは、あら力じめ式 (I)の原料にテトラフルォロエチレンを溶解し、この溶液を反応器 の導入ロカゝら供給して反応を行っても良い。この場合には、排出口には圧力制御装置を 備え、温度調節装置を有する反応器が適している。この場合には、テロゲン中、例えばパ 一フルォロェチルアイオダイドにタクソゲンであるテトラフルォロエチレンが溶存し、かつ 液体のまま存在できるように内圧を 0. 5〜3MPa (ゲージ圧)程度の範囲で調節すること が好ましレ、。  Alternatively, the reaction may be carried out by dissolving tetrafluoroethylene in the raw material of the formula (I), and then supplying this solution from a reactor introduced into the reactor. In this case, a reactor equipped with a pressure controller at the outlet and having a temperature controller is suitable. In this case, the internal pressure is about 0.5 to 3 MPa (gauge pressure) so that tetrafluoroethylene, which is a taxogen, is dissolved in telogen, for example, parafluoroethyl iodide, and can remain as a liquid. It is preferable to adjust in the range of.
上記反応で得られた反応混合物は、蒸留塔に供され、塔頂力 原料である式 (I)のィ匕 合物を主成分として含む留分を留出させる。該反応混合物中には、式 (II)にお!/、て通 常 n= 1〜5の化合物が含まれてレ、るが、転化率が低レ、場合には nが大きレ、化合物の割 合は低下する。 nが少ない化合物を製造する場合には、転化率が低い状態で反応を終 了させて蒸留塔に導けばよい。例えば式(II)において n= l〜5 (a= l, b=5)の 5種の 化合物を同時に得る場合の転化率 (式 (I)の化合物の反応した割合)は 5〜: 15%程度が 好まし n= 3 (a=b = 3)の化合物を得る場合には、転化率は 2〜: 10%程度が好ましく、 n= l (a=b= l)の化合物を得る場合には、転化率は 3%以下が好ましい。該塔頂留分 は、蒸留条件にもよるが、式 (I)の化合物を通常 85モル%以上、好ましくは 90モル%以 上含み、 n= lである式(II)の化合物を 5〜: 15モル%、好ましくは 7〜: 11モル%程度含 み、 n= 2以上の式 (Π)の化合物は通常 3モル%以下、好ましくは 1. 5モル%以下であ る。  The reaction mixture obtained by the above reaction is supplied to a distillation column to distill a fraction containing the i-adduct of the formula (I), which is a starting material at the top, as a main component. The reaction mixture contains the compound represented by the formula (II)! In general, compounds containing n = 1 to 5 are included, but the conversion is low, in which case n is large and the ratio of the compounds is reduced. In the case of producing a compound having a small n, the reaction may be terminated in a state where the conversion is low and led to a distillation column. For example, in formula (II), when five compounds of n = l to 5 (a = l, b = 5) are obtained at the same time, the conversion (reaction ratio of the compound of formula (I)) is 5 to: 15% When a compound of n = 3 (a = b = 3) is obtained, the conversion is preferably about 2 to 10%. When a compound of n = l (a = b = l) is obtained, The conversion is preferably 3% or less. The overhead fraction generally contains at least 85 mol%, preferably at least 90 mol% of the compound of the formula (I), and the compound of the formula (II) wherein n = 1 : About 15 mol%, preferably about 7 to 11 mol%, and the compound of the formula (II) where n = 2 or more is usually 3 mol% or less, preferably 1.5 mol% or less.
塔頂留分は、蒸留塔の理論段数を大きくし、精密に蒸留すれば式 (I)の原料のみを回 収することも可能である力 n=lの式 (II)の化合物を回収する場合であっても、この段 階で式 (I)の原料のみを回収するのは、該原料が n= lの式 (II)の化合物に対して圧倒 的に多い割合で存在するので適切ではなく、該原料の大半がなくなり、 n= lの式 (II)の 化合物が少し含まれる塔頂留分を留出させてテロメリ化反応に再利用し、 n= lの式 (II) の化合物が濃縮されたボトム液をさらに精製工程により精製するのが好ましい。  For the overhead fraction, it is possible to recover only the raw material of formula (I) by increasing the number of theoretical plates in the distillation column and performing precise distillation.Recover the compound of formula (II) with a force n = l. Even in this case, it is not appropriate to recover only the raw material of the formula (I) at this stage, since the raw material is predominantly present in the compound of the formula (II) where n = l. And the majority of the raw material disappears, the overhead fraction containing a small amount of the compound of the formula (II) of n = l is distilled and reused in the telomerization reaction, and the compound of the formula (II) of n = l Is preferably further purified by a purification step.
n=2〜5 (a=2, b = 5)の式 (II)の化合物の少なくとも 1種、好ましくは n=3以上の式 (II)の化合物(a= 3, b=3〜5)の少なくとも 1種、特に n= 3〜5の式(II)の化合物(a= 3, b= 5)を分離、回収する場合には、 n= lである式(II)の化合物を回収する必要はな ぐ原料と η= 1の式 (Π)の化合物を含む塔頂留分を再利用するのが、有利である。 ボトム液は、次の精留工程に導かれて、さらに精製される。この精留工程としては、蒸留 塔による精製が例示される。蒸留塔は、 1本の蒸留塔でもよぐ 2本以上の蒸留塔を用い て精製してもよい。 n = 2 to 5 (a = 2, b = 5) at least one compound of the formula (II), preferably n = 3 or more compounds of the formula (II) (a = 3, b = 3 to 5) At least one compound of formula (II) wherein n = 3 to 5 (a = In the case of separating and recovering 3, b = 5), it is not necessary to recover the compound of formula (II) where n = l, and the overhead containing the compound of formula (Π) with η = 1 It is advantageous to reuse the minutes. The bottom liquid is guided to the next rectification step and further purified. As the rectification step, purification by a distillation column is exemplified. The distillation column may be a single distillation column or may be purified using two or more distillation columns.
反応混合物中には多量の式 (I)の原料が含まれてレ、るので、該ボトム液にも割合は少な V、が原料ィ匕合物が含まれてレ、る場合がある。 Since a large amount of the raw material of the formula (I) is contained in the reaction mixture, the bottom liquid may contain a small proportion of V as a raw material.
精製工程において、 1本の蒸留塔を用いる場合、 η==1の式 (II)の化合物のみを精製 する場合には、原料化合物がボトム液中に含まれていない場合には、 η= 1の式(II)の 化合物を塔頂留分として得るのに必要な理論段数、温度、圧力条件下で蒸留を行えば よ ボトム液中に式 (I)の原料が含まれる場合には、塔頂留分として式 (I)の原料を分離 し、 η= 1の式 (I)の化合物は、サイドカットして得る力、ボトム液として第 2の蒸留塔に供給 し、第 2の蒸留塔で塔頂留分として回収してもよい。  In the purification step, when one distillation column is used, when only the compound of the formula (II) where η == 1 is purified, when the starting compound is not contained in the bottom liquid, η = 1 The distillation may be carried out under the conditions of the number of theoretical plates, temperature and pressure necessary to obtain the compound of the formula (II) of the formula (1) as a top distillate. The raw material of the formula (I) is separated as the top fraction, and the compound of the formula (I) with η = 1 is supplied to the second distillation column as the bottom cut liquid and the force obtained by side cutting, and the second distillation column May be collected as a top distillate.
η= 2以上の式 (II)の化合物(a≥ 2)を得る場合には、精留工程にぉレ、て (n=0)の原 料または式(II)の生成物 (n= l〜(a— 1)、 a≥2)を蒸留塔の塔頂力 又はサイドカット 留分として抜き出してテロメリ化反応に再利用し、 n= 2以上の目的とする式 (II)の化合 物を分離、回収すればよい。具体的には、 n=2以上の目的とする式 (II)の化合物は、 第 2精留塔或いは必要に応じてさらに第 (b— a + 1)本までの精留塔を用いて第 1精留塔 ボトム液から目的とする n=a〜bの式 (II)の化合物を分離、回収することができる。  In order to obtain a compound of the formula (II) (a≥2) with η = 2 or more, the raw material of the formula (n = 0) or the product of the formula (II) (n = l ~ (A-1) and a≥2) are withdrawn as a top power or a side cut fraction of the distillation column and reused in the telomerization reaction, and the desired compound of the formula (II) with n = 2 or more is obtained. What is necessary is just to separate and collect. Specifically, the compound of the formula (II) in which n = 2 or more is obtained by using the second rectification column or, if necessary, further using the (b−a + 1) th rectification column. (1) Fractionation column The desired compound of the formula (II) of n = ab can be separated and recovered from the bottom liquid.
n=3〜5の式(II)の化合物が特に有用である。  Compounds of formula (II) where n = 3-5 are particularly useful.
n=3〜5の式(II)の化合物(a = 3, b=5)を得る場合、精留工程において、 n= l及び 2 の化合物を分離し、ボトム液中に式 (I)の原料が含まれてレ、る場合には、該原料化合物 を回収し、これらの前駆ィ匕合物 (原料及び n= l, 2の生成物)を反応器に戻して再利用 する。テロメリ化反応では n= 3〜5の式 (II)の化合物を得る目的であっても、 n= lの式 (II)の化合物が最もよく生成する条件下で反応させるので、蒸留塔に供する反応混合 物には、式 (I)の原料化合物が最も多く(通常 80モル%以上)存在し、生成物としては、 n =1の成分が最も多ぐ ηが 1〜5に大きくなるに従って生成物としても割合は低下すること になる。従って、 ηが 0〜2の前駆化合物が多く存在することになる。精製工程において、 1本又は 2本の蒸留塔を用いてこの前駆ィヒ合物を回収して再利用し、 η= 3〜5の化合物 は蒸留塔のボトム液として抜き出し、さらにこれら目的物の分離用の蒸留塔を用いて回収 するのが好ましい。 n=3〜5の式 (II)の目的物を含むボトム液は、常法に従い、蒸留に より分離する。具体的には、以下の(i)〜(iii)の工程により精留工程を行うことができ る: When obtaining the compound of the formula (II) (a = 3, b = 5) of n = 3 to 5, in the rectification step, the compounds of n = l and 2 are separated, and the compound of the formula (I) When the raw material is contained, the raw material compound is recovered, and the precursor conjugate (the raw material and the product of n = l, 2) is returned to the reactor and reused. In the telomerization reaction, even for the purpose of obtaining the compound of the formula (II) of n = 3 to 5, the reaction is carried out under the condition where the compound of the formula (II) of n = l is most often produced, so that it is supplied to the distillation column. The reaction mixture contains the largest amount of the raw material compound of the formula (I) (usually 80 mol% or more), and as the product, the component with n = 1 is the largest, and as η increases from 1 to 5, The ratio will decrease as a product. Therefore, there are many precursor compounds having η of 0 to 2. In the purification step, the precursor compound is recovered and reused using one or two distillation columns, and the compound having η = 3 to 5 is obtained. Is preferably withdrawn as a bottom liquid of a distillation column, and further recovered using a distillation column for separating these objective substances. The bottom liquid containing the target compound of the formula (II) where n = 3 to 5 is separated by distillation according to a conventional method. Specifically, the rectification step can be performed by the following steps (i) to (iii):
(i)前記蒸留塔力 のボトム液を第 1精留塔に導き n=0〜2の化合物を含む塔頂留分と して分離し、 11=2〜5の式(11)の化合物を含むボトム液を第 2精留塔に導き、 η=0〜2 の式 (II)の化合物を反応器に戻して再利用する工程; (i) The bottom liquid having the distillation column power is led to the first rectification column and separated as a top fraction containing a compound of n = 0 to 2, and a compound of the formula (11) of 11 = 2 to 5 is obtained. Introducing the bottom liquid containing the compound of the formula (II) of η = 0 to 2 into the second rectification column and reusing it in the reactor;
(ii) n=2の式 (II)の化合物を第 2蒸留塔の塔頂留分として分離し、 η=3〜5の式 (II) の化合物を含むボトム液を第 3精留塔に導き、 η=2の式 (II)の化合物を含む塔頂留分 を反応器に戻して再利用する工程;及び  (ii) The compound of the formula (II) of n = 2 is separated as a top distillate of the second distillation column, and the bottom liquid containing the compound of the formula (II) of η = 3 to 5 is supplied to the third rectification column. Deriving the overhead fraction containing the compound of formula (II) with η = 2 by returning it to the reactor for reuse; and
(iii)第 3精留塔及び必要に応じて第 4、第 5の精留塔を用い、 n=3〜5の式 (II)の化 合物を分離回収する工程。  (iii) a step of separating and recovering the compound of the formula (II) of n = 3 to 5 using a third rectification column and, if necessary, fourth and fifth rectification columns.
さらに本発明は従来のテロマーの作製方法では含まれていた不純物である R f 一 Hが 5 0 p p m以下であるといった特徴をあわせもつ。  Further, the present invention also has a feature that Rf-IH, which is an impurity contained in the conventional method for producing a telomer, is 50 ppm or less.
ここで、 Rf—Hが 50ppm以下とは FID検出のガスクロマトグラフィーで(条件:カラムが Here, Rf-H of 50 ppm or less is determined by gas chromatography with FID detection.
SE- 30、充填剤 15% Uniport HP 60/80、長さ 3m、内径 3ram、サンプル量 2mg)分析し た際に、検出されない状態を示す。これは、あらかじめ Rf_Hで検量線を作製したところ、 上記の条件での検出限界がほぼ 0. 1 μ gであることを別途確認している (サンプル量 2m こ対して 0. ま 50ppmこネ目当する)。 SE-30, filler 15% Uniport HP 60/80, length 3m, inner diameter 3ram, sample amount 2mg) shows no detection when analyzed. For this, when a calibration curve was prepared in advance with Rf_H, the detection limit under the above conditions was separately confirmed to be approximately 0.1 μg (for a sample volume of 2 m, the detection limit was 0.1 to 50 ppm. Hit).
また、これらのテロマーを中間体として、例えば、光機能材料を作製するには、従来か ら行われている各種合成方法が採用できる。本発明のテロマーを用いることで、光機能 材料の特性の向上をは力ることができる。  In addition, in order to prepare, for example, an optically functional material using these telomers as intermediates, various conventional synthesis methods can be employed. By using the telomer of the present invention, the properties of the optical functional material can be improved.
本発明の製造方法によれば、所望の中鎖テロマー (n= l〜5)を効率的に製造'精製 することが可能である。さらに不純物として Rf— Hが 50ppm以下の高純度の中鎖テロマ 一 (n== l〜5)が製造できる。それらは医薬品中間体や、光学機能材料の中間体、ポリマ 一原料として使用する場合、特に有用である。中でも光学機能材料の中間体として極め て有用である。 発明を実施するための最良の形態 According to the production method of the present invention, it is possible to efficiently produce and purify a desired medium-chain telomer (n = l to 5). Furthermore, high-purity medium-chain telomers (n == l-5) with Rf-H of 50 ppm or less can be produced as impurities. They are particularly useful when used as intermediates for pharmaceuticals, intermediates for optically functional materials, and raw materials for polymers. Among them, they are extremely useful as intermediates for optically functional materials. BEST MODE FOR CARRYING OUT THE INVENTION
以下、実施例を挙げて本発明を更に詳細に説明する。  Hereinafter, the present invention will be described in more detail with reference to examples.
実施例 1 Example 1
球状銅粉 (三井金属社製、粒径 330メッシュ以下) 46gを充填した外径 3Z8インチのス テンレス管を反応管として用レ、、テトラフルォロエチレン (TFE)をパーフルォロェチルァ ィォダイドに溶解した原料溶液 (テトラフルォロエチレン濃度 (TFE/ (テロゲン +TFE) ) =4. 25mol%)を該ステンレス管に連続的に供給して、反応圧力 3MPa (ゲージ圧)、原 料供給速度 9. OmlZ分でテロメルィ匕反応を行った。反応温度は 60〜120°Cとした。 ステンレス管から流出した反応液を冷却して、ガスクロマトグラフィーによって組成を分 析した。結果を下記表 1に示す。  A 3Z8-inch stainless steel tube filled with 46 g of spherical copper powder (Mitsui Metals Co., Ltd., particle size of 330 mesh or less) was used as a reaction tube, and tetrafluoroethylene (TFE) was used as a perfluoroethyla. The raw material solution (tetrafluoroethylene concentration (TFE / (telogen + TFE)) = 4.25 mol%) dissolved in iodide was continuously supplied to the stainless steel tube, and the reaction pressure was 3 MPa (gauge pressure). The telomeri-dani reaction was performed at a supply rate of 9. OmlZ. The reaction temperature was 60 to 120 ° C. The reaction solution flowing out of the stainless tube was cooled, and the composition was analyzed by gas chromatography. The results are shown in Table 1 below.
Figure imgf000011_0001
得られた、反応混合物について、第 1蒸留塔から第 3蒸留塔を用い、以下の条件で式 (I)の原料化合物及び式 (II)において n= 1又は 2の前駆化合物を分離した。
Figure imgf000011_0001
From the obtained reaction mixture, the starting compound of the formula (I) and the precursor compound of n = 1 or 2 in the formula (II) were separated under the following conditions using the first to third distillation columns.
第 1蒸留塔 1st distillation column
スチル温度 120°C、塔頂温度 60°C、理論段数 12段、圧力 0. 15MPa Still temperature 120 ° C, tower top temperature 60 ° C, number of theoretical plates 12 stages, pressure 0.15MPa
留出組成: n=0 (90モル%)、 n= 1 (9モル%)、 n= 2 (1. 0モル0 /0) スチル温度 120°C、塔頂温度 65° (:、理論段数 23段、微、减圧(ほぼ常圧) Distillate composition: n = 0 (90 mol%), n = 1 (9 mole%), n = 2 (1. 0 mole 0/0) still temperature 120 ° C, column top temperature 65 ° (:, theoretical plate number 23 stages, fine, low pressure (almost normal pressure)
留出組成: n=0 (7. 9モノレ0 /o)、n= l (49. 7モル0 /0)、 n=2 (42. 0モル0 /0)、n= 3 (0. 4 モル0 /0) スチル温度 118。C、塔頂温度 58°C、理論段数 23段、圧力- 0. 087 MPa 留出組成: n= 2 (99. 9モル0 /o)、n=3 (0. 1モル0 /0) Distillate composition: n = 0 (7. 9 Monore 0 / o), n = l (49. 7 mol 0/0), n = 2 (42. 0 mol 0/0), n = 3 (0. 4 mole 0/0) still temperature 118. C, overhead temperature 58 ° C, number of theoretical plates 23, pressure-0.087 MPa Distillate composition: n = 2 (99. 9 mole 0 / o), n = 3 (0. 1 mole 0/0)
なお不純物である Rf—Hは FID検出のガスクロマトグラフィーで(条件:カラムが SE - 30、 充填剤 15% Uniport HP 60/80、長さ 3m、内径 3匪、サンプル量 2mg)分析した際に、 検知されなかった。 Note Rf-H which is an impurity in the gas chromatography FID detector (conditions: column SE - 30, filler 15% Uniport HP 60/80, length 3m, inner diameter 3 negation, sample volume 2m g) when analyzed On the other hand, it was not detected.
第 3蒸留塔のボトム液は、さらなる蒸留塔に導き、 n=3, 4, 5の各化合物を分離精製し た。それぞれの化合物に関しても不純物である Rf— Hはガスクロ上では検知されなかつ た。  The bottom liquid of the third distillation column was led to a further distillation column to separate and purify each compound of n = 3, 4, and 5. Rf-H, an impurity, was not detected on gas chromatography for each compound.
第 1蒸留塔の塔頂留分は、反応器に戻して再利用された。  The top fraction of the first distillation column was returned to the reactor and reused.
また、第 2蒸留塔及び第 3蒸留塔の留分は、 n= l、 2のテロマーが必要である場合に は蒸留塔に導き各々の留分を得、 n=3〜5の式 (II)の化合物が重要な場合には、これ 以上精製することなく反応器に戻して再利用される。 実施例 2 (中間体合成例)  The fractions of the second distillation column and the third distillation column are led to the distillation column when n = l and 2 telomers are required, and the respective fractions are obtained. If the compound of (1) is important, it is recycled back to the reactor without further purification. Example 2 (Example of intermediate synthesis)
実施例で得られた C8F17I、 5gと赤リンを 230°Cで 48時間反応させることにより(C8F17) 2PIを約 3g得た。その後、液体窒素温度で二酸化窒素と反応させた後、室温まで放冷さ せた後、得られた化合物を加水分解させることで (C8F17) 2P〇OHを約 2. 6g得た。得ら れた化合物の同定は NMRおよび IRによりおこなった。 実施例 3 (光機能材料の作製例) By reacting 5 g of C 8 F 17 I obtained in the example with red phosphorus at 230 ° C. for 48 hours, about 3 g of (C 8 F 17 ) 2 PI was obtained. After that, it was reacted with nitrogen dioxide at the temperature of liquid nitrogen, allowed to cool to room temperature, and then hydrolyzed to obtain about 2.6 g of (C 8 F 17 ) 2 P〇OH. . The obtained compound was identified by NMR and IR. Example 3 (Production example of optical functional material)
実施例 2で得られた (C8F17) 2POOH (2. 5g、 2. 7ramol)と酢酸ユーロピウム 4水和物 (1.0g、 2.5mmol)、を水 50mlにカロえ、室温で 3日間攪拌した。沈殿した固体をろ過、水 洗後、水メタノール混合溶媒で再結晶し、錯体 (Eu[ (C8F17CO)2POO]3) )を得た。ブラッ クライトを照射したところユーロピウムイオン特有の赤色発光が観測された。 (C 8 F 17 ) 2 POOH obtained in Example 2 (2.5 g, 2.7 ramol) and europium acetate tetrahydrate (1.0 g, 2.5 mmol) were calored in 50 ml of water and kept at room temperature for 3 days. Stirred. The precipitated solid was filtered, washed with water, and then recrystallized with a mixed solvent of water and methanol to obtain a complex (Eu [(C 8 F 17 CO) 2 POO] 3 ). When irradiated with black light, red emission characteristic of europium ion was observed.

Claims

請求の範囲 The scope of the claims
1. 反応器中で、一般式 (I) :  1. In a reactor, the general formula (I):
X1— CF2CFX2— I (I) X 1 — CF 2 CFX 2 — I (I)
(式中、 X1は F, Cほたは Iを示し、 X2は F、 Cほたは CF3を示す。) (In the formula, X 1 represents F, C, and I, and X 2 represents F, C, and CF 3. )
で表される化合物とテトラフルォロエチレンを触媒の存在下に反応させて、下記式 (II): X1— CF2CFX2—(CF2CF2)n— I (II) Is reacted with tetrafluoroethylene in the presence of a catalyst to give the following formula (II): X 1 —CF 2 CFX 2 — (CF 2 CF 2 ) n — I (II)
(式中、 X1及ぴ X2は前記に定義されるとおりであり、 n=a〜b (a、 bは各々 1〜5の整数、 a≤b)を示す。) (Wherein X 1 and X 2 are as defined above, and n = a to b (a and b each represent an integer of 1 to 5, a ≦ b).)
で表される化合物を製造する方法において、 In a method for producing a compound represented by
反応生成物として n= lである式(Π)の化合物が主成分となる条件下で反応を行レ、、一 般式 (I)の原料を主成分とする反応液を蒸留塔に導く工程、 Carrying out the reaction under the condition that the compound of the formula (Π) where n = l as the reaction product is the main component, and introducing the reaction solution mainly containing the raw material of the general formula (I) into the distillation column ,
塔頂より一般式 (I)の原料を主成分とする留分を留出し、該留分を反応器に戻して再利 用する工程、 Distilling a fraction containing the raw material of the general formula (I) as a main component from the top of the column, returning the fraction to the reactor, and reusing the fraction;
該蒸留塔のボトム液を精留工程に導レ、て、純度の高レ、式 (II)の化合物を精製する工程 を含むことを特徴とする一般式 (II)で表される化合物の製造方法。 Producing the compound represented by the general formula (II), which comprises a step of conducting the bottom liquid of the distillation column to a rectification step to purify the compound of the formula (II) with high purity. Method.
2. 精留工程を以下のようにして行うことを特徴とする請求項 1に記載の方法: 前記蒸留塔のボトム液を第 1精留塔に導き、式 (II)におレ、て n=0〜(a— 1)の化合物を 塔頂留分又はサイドカットとして抜き出し、反応器に戻して再利用し、さらに n=a〜bの式 (II)の目的物をサイドカットとして得ることを特徴とする請求項 1に記載の方法。  2. The method according to claim 1, wherein the rectification step is performed as follows: The bottom liquid of the distillation column is led to a first rectification column, and is represented by the formula (II). = 0 to (a-1) is withdrawn as a fraction at the top or as a side cut, returned to the reactor and reused, and the target product of formula (II) of n = a to b is obtained as a side cut. The method of claim 1, wherein:
3. 精留工程を以下のようにして行うことを特徴とする請求項 1に記載の方法: 前記蒸留塔のボトム液を第 1精留塔に導き、式 (II)において n=0〜(a— 1)の化合物を 塔項留分又はサイドカットとして抜き出し、 n=a〜bの式(Π)の目的物を含むボトム液を 第 2精留塔に導く工程、 3. The method according to claim 1, wherein the rectification step is carried out as follows: The bottom liquid of the distillation column is led to a first rectification column, and in formula (II), n = 0 to ( extracting the compound of a-1) as a column fraction or a side cut, and leading a bottom liquid containing the target compound of the formula (Π) of n = a to b to a second rectification column,
第 2精留塔或いは必要に応じてさらに第 (b— a + 1)本までの精留塔を用いて第 1精留塔 ボトム液から目的とする n==a〜bの式 (II)の化合物を分離、回収することを特徴とする請 求項 1に記載の方法。 From the bottom liquid of the first rectification column using the second rectification column or, if necessary, up to the (b−a + 1) th rectification column, the desired formula of n == a to b (II) 2. The method according to claim 1, wherein the compound is separated and recovered.
4. a= 3、 b = 5であり、精留工程を以下の(i)〜(iii)の工程により行うことを特徴とす る請求項 1に記載の方法: (i)前記蒸留塔力 のボトム液を第 1精留塔に導き n=0〜2の化合物を含む塔頂留分と して分離し、 n=2〜5の式(II)の化合物を含むボトム液を第 2精留塔に導き、 η=0〜2 の式 (II)の化合物を反応器に戻して再利用する工程; 4. The method according to claim 1, wherein a = 3 and b = 5, and the rectification step is performed by the following steps (i) to (iii): (i) The bottom liquid having the distillation column power is led to the first rectification column and separated as a top fraction containing a compound of n = 0 to 2, and a compound of the formula (II) of n = 2 to 5 is separated. Introducing the bottom liquid containing the compound of the formula (II) of η = 0 to 2 into the second rectification column and reusing it in the reactor;
(ii) n==2の式 (II)の化合物を第 2蒸留塔の塔頂留分として分離し、 η=3〜5の式 (II) の化合物を含むボトム液を第 3精留塔に導き、 η== 2の式 (II)の化合物を含む塔頂留分 を反応器に戻して再利用する工程;及び  (ii) Separating the compound of the formula (II) of n == 2 as a top distillate of the second distillation column, and converting the bottom liquid containing the compound of the formula (II) of η = 3 to 5 to the third rectification column Returning the overhead fraction containing the compound of the formula (II) of η == 2 to the reactor for reuse; and
(iii)第 3精留塔及び必要に応じて第 4、第 5の精留塔を用い、 n=3〜5の式 (II)の化 合物を分離回収する工程  (iii) a step of separating and recovering the compound of the formula (II) of n = 3 to 5 using the third rectification column and, if necessary, the fourth and fifth rectification columns.
5. 不純物として  5. As impurities
一般式(III) : General formula (III):
X1— CF2CFX2—(CF2CF2)n— H (III) X 1 — CF 2 CFX 2 — (CF 2 CF 2 ) n — H (III)
(式中、 X1及ぴ X2は前記に定義されるとおりであり、 n=c〜d (c、 dは各々 2〜6の整数、 c≤d)を示す。 ) (In the formula, X 1 and X 2 are as defined above, and represent n = c to d (c and d are each an integer of 2 to 6, c ≦ d).)
で表される化合物が 50pPm以下にあることを特徴とする請求項 1〜4記載の製造方法に よりなるパーハロゲン化アルキルアイオダイドテロマー。 In more it becomes perhalogenated alkyl iodide telomer to the manufacturing method of claim 1, wherein the compound is characterized in that below 50p P m represented.
6 . 請求項 5記載のパーハロゲン化アルキルアイオダィドテロマーを原料に用い てなる光学機能材料および/または光学機能材料の中間体。  6. An optically functional material and / or an intermediate of an optically functional material using the perhalogenated alkyl iodide telomer according to claim 5 as a raw material.
PCT/JP2003/004877 2002-04-24 2003-04-17 Process for producing perhalogenated alkyl iodide telomer WO2003091187A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002123086 2002-04-24
JP2002-123086 2002-04-24

Publications (1)

Publication Number Publication Date
WO2003091187A1 true WO2003091187A1 (en) 2003-11-06

Family

ID=29267477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/004877 WO2003091187A1 (en) 2002-04-24 2003-04-17 Process for producing perhalogenated alkyl iodide telomer

Country Status (1)

Country Link
WO (1) WO2003091187A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7888538B1 (en) 2009-11-04 2011-02-15 E.I. Du Pont De Nemours And Company Catalyzed olefin insertion
US7951983B2 (en) 2009-11-04 2011-05-31 E.I. Du Pont De Nemours And Company Catalyzed olefin insertion
CN109988058A (en) * 2017-12-29 2019-07-09 山东东岳高分子材料有限公司 A kind of synthetic method of shorter chain length perfluoroalkyl iodide telomer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1535408A (en) * 1975-09-24 1978-12-13 Hoechst Ag Process for the preparation of perfluoroalkyl iodide telomers
US5068471A (en) * 1989-12-21 1991-11-26 Hoechst Aktiengesellschaft Continuous telomerization process
US5073651A (en) * 1989-11-11 1991-12-17 Hoechst Aktiengesellschaft Process for the preparation of extensively fluorinated alkyl bromides

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1535408A (en) * 1975-09-24 1978-12-13 Hoechst Ag Process for the preparation of perfluoroalkyl iodide telomers
US5073651A (en) * 1989-11-11 1991-12-17 Hoechst Aktiengesellschaft Process for the preparation of extensively fluorinated alkyl bromides
US5068471A (en) * 1989-12-21 1991-11-26 Hoechst Aktiengesellschaft Continuous telomerization process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7888538B1 (en) 2009-11-04 2011-02-15 E.I. Du Pont De Nemours And Company Catalyzed olefin insertion
US7951983B2 (en) 2009-11-04 2011-05-31 E.I. Du Pont De Nemours And Company Catalyzed olefin insertion
CN109988058A (en) * 2017-12-29 2019-07-09 山东东岳高分子材料有限公司 A kind of synthetic method of shorter chain length perfluoroalkyl iodide telomer
CN109988058B (en) * 2017-12-29 2021-07-20 山东东岳高分子材料有限公司 Synthesis method of perfluoroalkyl iodide telomer with shorter chain length

Similar Documents

Publication Publication Date Title
TWI401250B (en) Method for preparation of cyclic disulfonate ester
US7102028B2 (en) Method for producing 3,5-di-tert-butyl-4-hydroxybenzoic acid
EP3812357B1 (en) Method for producing hexafluoro-1,3-butadiene
JP4021199B2 (en) Method for producing 2-alkyl-2-adamantyl ester
JP5848819B2 (en) Method for producing adamantyl (meth) acrylate
WO2003091187A1 (en) Process for producing perhalogenated alkyl iodide telomer
EP1711449A1 (en) Purification of 1,1,1,3,3,3-hexafluoroisopropanol
US7405331B2 (en) High-purity (fluoroalkyl)benzene derivative and process for producing the same
CN110002967B (en) Method for producing halide, method for producing potassium salt, and potassium salt
US6596906B2 (en) Process for preparing fluorine-containing benzaldehydes
KR101676550B1 (en) Method for producing mixture of fluoroalkyl iodides
JP3579923B2 (en) Method for producing alicyclic diketone compound
JP4127017B2 (en) Method for producing benzylcarbazate compound
JP5999371B2 (en) Method for producing 4,4'-diformyldiphenylalkane
WO2009123091A1 (en) Process for producing mixture of fluorinated (meth)acrylic esters
CN116730813A (en) Method for preparing 4,4' -difluorobenzophenone from 4-chlorofluorobenzene
JP2012224761A (en) Method for producing aromatic polycarbonate
JP2013091623A (en) Method for producing alicyclic diamine
JPH0338537A (en) Synthesis of biphenyl-4,4'-diol
JPH0347144A (en) Production of m-phenoxybenzyl alcohol
JPH0327338A (en) Production of bis(2-hydroxyhexafluoro-2-propyl)-benzene derivative
JPH0733781A (en) Method for purifying triisobutylaluminum
JPH1160558A (en) Production of n-vinylcaprolactam
JPS5923295B2 (en) Method for producing orthophenylphenols
JP2003342227A (en) Method for producing biphenyltetracarboxylic acid

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WA Withdrawal of international application