WO2003089669A1 - Novel method of assaying nucleic acid - Google Patents

Novel method of assaying nucleic acid Download PDF

Info

Publication number
WO2003089669A1
WO2003089669A1 PCT/JP2003/005118 JP0305118W WO03089669A1 WO 2003089669 A1 WO2003089669 A1 WO 2003089669A1 JP 0305118 W JP0305118 W JP 0305118W WO 03089669 A1 WO03089669 A1 WO 03089669A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
probe
internal standard
target nucleic
acid probe
Prior art date
Application number
PCT/JP2003/005118
Other languages
French (fr)
Japanese (ja)
Inventor
Shinya Kurata
Ichiro Watanabe
Takahiro Kanagawa
Yoichi Kamagata
Original Assignee
Kankyo Engineering Co., Ltd.
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kankyo Engineering Co., Ltd., National Institute Of Advanced Industrial Science And Technology filed Critical Kankyo Engineering Co., Ltd.
Publication of WO2003089669A1 publication Critical patent/WO2003089669A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to a method for measuring a target nucleic acid using a nucleic acid probe labeled with a fluorescent dye.
  • a target nucleic acid probe that specifically hybridizes to a target nucleic acid in a measurement system or a reaction system in which a nucleic acid hybridization reaction and Z or a substance that inhibits a nucleic acid amplification reaction is present.
  • This is a method for specifically and accurately measuring at least one type of target nucleic acid by adding an internal standard nucleic acid probe that specifically hybridizes to an internal standard nucleic acid corresponding to the target nucleic acid.
  • the target is characterized in that after all nucleic acids including the target nucleic acid are cleaved by at least one restriction enzyme that does not cut the target nucleic acid base sequence region, only the nucleic acid fraction containing the target nucleic acid base sequence is separated and recovered. This is a nucleic acid separation and recovery / concentration method.
  • the present invention is characterized in that a gene is amplified using an artificially synthesized single-stranded oligonucleotide nucleic acid nucleic acid having an arbitrary sequence of 50 bp or more having a type I and a double-stranded DNA having an arbitrary sequence is obtained. This is a method for obtaining artificially synthesized genes.
  • Fluorescent dyes interact with specific nucleobases to reduce the amount of fluorescent light using probes.
  • Method for measuring the concentration or copy number of DNA KURATA et al., Nucleic acids Research, 2001, vol. 29, No. 6 e34
  • a probe labeled with a fluorescent dye is used in a measurement system in which one kind of corresponding nucleic acid is present (meaning that there is more than one nucleic acid species in the measurement system, but one corresponding nucleic acid exists).
  • a donor probe may be simply referred to as a luminescent probe or a nucleic acid probe
  • an acceptor probe sometimes simply referred to as a quencher probe
  • a fluorescence reaction and / or a nucleic acid amplification reaction is performed to measure the fluorescence intensity of the measurement system.
  • a method using a nucleic acid amplification reaction is a method in which a corresponding nucleic acid is amplified by a PCR method in the presence of a nucleic acid probe, and the PCR product is monitored in real time to measure the corresponding nucleic acid before amplification.
  • complex samples often contain inhibitors of the hybridization reaction or nucleic acid amplification reaction.
  • the real-time monitor ring setting In the quantitative PCR method, a calibration curve is created based on the assumption that the inhibitor is not contained.In such a case, the target nucleic acid in a complex sample or the target nucleic acid before the nucleic acid amplification reaction is used in such a case. Can not be measured accurately.
  • the real-time monitoring quantitative PCR method the corresponding nucleic acids before amplification were quantified using an exponential calibration curve.
  • the total number of gene types present in a particular sample is enormous, and the amount is often biased toward one.
  • the target gene of interest is rarely present in such a sample.
  • the amount of genes that can be added to a measurement system for detecting and measuring the target gene (PCR methods, real-time quantitative PCR methods, etc. can be mentioned as suitable examples) is limited. Even if such a gene is added to the limit amount, a case may occur in which only a small amount of the target gene of interest or an undetectable amount is present in the added gene. This is often the case when detecting and measuring a target gene in a sample having the above characteristics. In this case, it is impossible or difficult to accurately and specifically detect and measure the target gene. For this reason, it is preferable to isolate and collect the target gene. Further, it is particularly desirable to concentrate the separated and recovered material. However, at present there is no such means.
  • a single-stranded oligonucleotide (DNA) of an arbitrary sequence and an arbitrary length is synthesized using a commercially available nucleic acid synthesizer.
  • a commercially available nucleic acid synthesizer there are many cases.
  • the efficiency of synthesizing a single base is not 100%, the longer the base length of the oligonucleotide, the more the synthesis stops, and the sequence other than the target sequence is not included.
  • the proportion of oligonucleotides that increase is increased. For this reason, it is generally said that the limit at which oligonucleotides can be synthesized is up to about 100 bases (hereinafter referred to as bp).
  • the ratio of oligonucleotides having a sequence other than the target increases, so that a complicated separation operation is required. Even when the above operation is performed, when a long oligo DNA having a length of 5 O bp or more is synthesized, the acquisition ratio of the target oligonucleotide is often lower than that obtained with a short oligo DNA. Therefore, there has been a demand for a method for easily obtaining an artificial gene having an arbitrary sequence of 50 bases or more.
  • An object of the present invention is to solve the above problems.
  • An object of the present invention is to provide a method for specifically measuring a target nucleic acid by a simple method when at least one or more target nucleic acids are present in a measurement system including a complicated sample.
  • a new method that can measure accurately, in a short time, in a short time, easily and accurately, a novel nucleic acid amplification method, a method for determining the concentration or copy number of a target nucleic acid before nucleic acid amplification using it, and the data obtained by these methods.
  • the purpose of the present invention is to provide a method for analyzing, and a method for applying these methods to various methods.
  • a device such as a DNA chip used in the method, a measuring reagent kit, a computer-readable recording medium in which a procedure for causing a computer to execute a process of a data analysis method is recorded as a program, and a target according to the method of the present invention.
  • An object of the present invention is to provide a measuring device for measuring nucleic acids, a measuring device incorporating a computer-readable recording medium, a method for separating, collecting and concentrating a target nucleic acid, a method for synthesizing an artificial gene having an arbitrary sequence, and the like.
  • KURATA et al. Nucleic acid Reseach, 2001, vol. 29, No. 6 e34
  • a target nucleic acid probe hereinafter, referred to as a hybridizer
  • a target nucleic acid probe that hybridizes specifically with the internal standard nucleic acid (hereinafter referred to as an internal standard nucleic acid probe) is added to the measurement system, and the hybridization reaction and the Z or nucleic acid amplification reaction are performed.
  • the target nucleic acid and the internal standard nucleic acid are simultaneously measured, and the total nucleic acid containing the target nucleic acid is cleaved by at least one or more restriction enzymes so as not to cut the target nucleic acid base sequence region.
  • nucleic acid probe comprising at least one kind of oligonucleotide labeled with at least one kind of fluorescent dye (hereinafter, simply referred to as “nucleic acid probe”), which is hybridized to a corresponding nucleic acid (target nucleic acid).
  • nucleic acid probe A method for measuring a target nucleic acid using at least one kind of nucleic acid probe that changes the fluorescent character of the labeled fluorescent dye (hereinafter, simply referred to as “a method for measuring nucleic acid using a nucleic acid probe”).
  • the target nucleic acid in the assay system contains at least one target nucleic acid and at least one known amount of an internal standard nucleic acid corresponding to the target nucleic acid, and is labeled with at least one fluorescent dye specific to the target nucleic acid.
  • a nucleic acid probe consisting of a leotide hereinafter simply referred to as It is called “target nucleic acid probe”.
  • at least one nucleic acid probe (hereinafter simply referred to as "internal standard nucleic acid probe") consisting of an oligonucleotide labeled with at least one fluorescent dye specific to the internal standard nucleic acid.
  • a hybridization reaction and / or a nucleic acid amplification reaction is carried out, and the reaction is caused by the hybridization between the target nucleic acid probe and the target nucleic acid.
  • the change or amount of change before and after the A novel nucleic acid measurement method comprising measuring a target nucleic acid and Z or a target nucleic acid before a nucleic acid amplification reaction based on a measured value obtained at a constant wavelength and the amount of the internal standard nucleic acid added.
  • the internal standard nucleic acid has a base sequence that can be distinguished from the target nucleic acid based on the change or the amount of change in the fluorescent character obtained by hybridization with the corresponding nucleic acid probe.
  • the internal standard nucleic acid has a base sequence that hybridizes only with the internal standard nucleic acid probe under certain conditions and does not hybridize with the target nucleic acid.
  • the internal standard nucleic acid has a base sequence partially different from that of the target nucleic acid.
  • the base length of the internal standard nucleic acid is different from that of the target nucleic acid.
  • the internal standard nucleic acid can be amplified simultaneously with the target nucleic acid using the same primer.
  • the internal standard nucleic acid probe has at least the following characteristics: 3.
  • the internal standard nucleic acid probe has a base sequence capable of hybridizing with the corresponding nucleic acid.
  • the internal standard nucleic acid probe has a base sequence that hybridizes only with the internal standard nucleic acid under certain conditions and does not hybridize with the target nucleic acid.
  • the target nucleic acid hybridizes to the target nucleic acid probe due to the change in the fluorescent character or the amount of change of the fluorescent dye labeled on the internal standard nucleic acid probe caused by the hybridization of the internal standard nucleic acid probe with the internal standard nucleic acid.
  • the change or the amount of change in the fluorescent character of the fluorescent dye labeled on the target nucleic acid probe can be clearly distinguished.
  • Each of the target nucleic acid probe and the Z or internal standard nucleic acid probe is a single-stranded oligonucleotide that hybridizes to a corresponding nucleic acid, and is a kind of a single dye (including a reporter dye). ) And at least one nucleic acid probe obtained by labeling or a type of an acceptor dye (including a quencher dye or a quencher substance), wherein the nucleic acid probe hybridizes to a corresponding nucleic acid.
  • a novel method for measuring a nucleic acid according to any one of claims 1 to 3.
  • a kind of probe consisting of one kind of oligonucleotide labeled with one kind of dye and one kind of probe consisting of one kind of oligonucleotide and one kind of oligonucleotide labeled with one receptor dye Is a form in which two kinds of probes of the acceptor probe form a pair, and the donor probe and / or the acceptor probe hybridize with the corresponding nucleic acid, so that the donor dye and the acceptor dye before and after hybridization are formed.
  • the change or amount of change in the fluorescent character is negative or positive.
  • the target nucleic acid probe and Z or the internal standard nucleic acid are hybridized with the corresponding nucleic acid in the form of one kind of oligonucleotide labeled with a donor dye and an acceptor dye, so as to be before and after hybridization.
  • the change or the amount of change in the fluorescent character of the donor dye and the acceptor dye is negative, and the terminal is labeled with a donor dye or an acceptor dye, and the nucleic acid probe is supported at the corresponding end.
  • the base sequence of the lobe should be one to three bases away from the terminal base of the corresponding nucleic acid hybridized to the probe when hybridized to the nucleic acid, so that at least one base G (guanine) is present in the base sequence of the corresponding nucleic acid.
  • the target nucleic acid probe and / or the internal standard nucleic acid is hybridized with the corresponding nucleic acid in the form of one kind of oligonucleotide labeled with a donor dye and an acceptor dye, so that the nucleic acid before and after the hybridization is obtained.
  • the change or the amount of change in the fluorescent character of the donor dye and the acceptor dye is negative, and when hybridized to the corresponding nucleic acid, the probe or nucleic acid hybrid at the donor or acceptor dye-labeled portion has multiple nucleotides
  • the target nucleic acid probe and / or the internal standard nucleic acid probe is composed of a single-stranded oligonucleotide labeled with at least one kind of fluorescent dye, and has at least one of the following characteristics.
  • the novel nucleic acid measurement method according to any one of claims 1 to 3, wherein a probe for which the probe is designed is used.
  • a function can be exhibited with a kind of probe in the reaction system or the measurement system.
  • the fluorescent dye When hybridized to the target nucleic acid and ⁇ or the internal standard nucleic acid, the fluorescent dye reduces the change or the amount of change of the fluorescent character in the absence of quencher dye and ⁇ or quencher probe. To increase.
  • the probe is labeled at least with a fluorescent dye at its end.
  • nucleic acid probe hybridizes to the target nucleic acid, it is 1 to 3 bases away from the dye-labeled base of the probe (the labeled base is counted as 1), and at least G (guanine) is present. 1 base present I do.
  • At least one G (guanine) and C (cytosine) primer in the terminal portion has a plurality of probe-nucleic acid hybrid base pairs.
  • the target nucleic acid probe according to claim 8 and the internal standard nucleic acid probe are labeled with the fluorescent dye at a portion other than the OH group at the 3 ′ end, and the nucleic acid probe is When hybridized to the corresponding nucleic acid, the target nucleic acid probe and Z or the target nucleic acid probe, in which a plurality of base pairs of the probe-nucleic acid hybrid form at least one G (guanine) and C (cytosine) primer in the modified portion.
  • the novel nucleic acid measurement method according to claim 8 wherein an internal standard nucleic acid probe is used.
  • Fluorescence character or fluorescence of a reaction system in which the probe is decomposed and removed by a polymerase during a nucleic acid extension reaction during a nucleic acid amplification reaction of a standard nucleic acid, or a reaction system during a nucleic acid denaturing reaction or a nucleic acid denaturing reaction is completed
  • the fluorescent character of the fluorescent dye is measured, and the reduction rate of the measurement value of the character from the former is calculated.
  • New method for measuring a nucleic acid characterized in that the concentration or copy number of the standard nucleic acid, measuring the number of concentration or copy prior to amplification of the target nucleic acid.
  • a target nucleic acid and a known concentration are determined by using the target nucleic acid probe according to any one of claims 2 to 10 and Z or an internal standard nucleic acid probe as a primer by a nucleic acid amplification method.
  • a nucleic acid amplification reaction of a copy number of the internal standard nucleic acid is performed, and the target nucleic acid or the amplified target nucleic acid and the target nucleic acid probe and the internal standard nucleic acid or the amplified internal target nucleic acid and the internal standard nucleic acid probe are not hybridized.
  • Reaction system fluorescent character or fluorescent dye fluorescent character and reaction system when target nucleic acid or amplified target nucleic acid and target nucleic acid probe and internal standard nucleic acid or amplified internal target nucleic acid and internal standard nucleic acid probe are hybridized Measurement of the fluorescent character or fluorescent dye of the fluorescent dye, and measurement of the character from the former By calculating the rate of decrease, the decrease ratio
  • a novel method for measuring nucleic acid comprising measuring the concentration or copy number of a target nucleic acid before amplification from the concentration or copy number of an internal standard nucleic acid.
  • [Claim 14] The method for amplifying a nucleic acid according to any one of the PCR method, the ICAN method, the LAMP method, the NASBA method, the RCA method, the TAMA method, and the LCR method. 14. The novel method for measuring a nucleic acid according to any one of 13 to 13.
  • nucleic acid measurement method comprising: correcting a measured value of a fluorescent character of a reaction system when a nucleic acid probe is hybridized with a measured value of a fluorescent character of a reaction system when a hybridized product is dissociated; Data analysis method for.
  • [Claim 19] A method for measuring the nucleic acid according to any one of claims 1 to 10 and / or a method for amplifying the nucleic acid according to any one of claims 11 to 15 or Any of the FISH method, LCR method, SD method, and TAS method, wherein nucleic acid is measured and Z or obtained data is analyzed using Z and the data analysis method according to claims 16 and 17. Or one way.
  • Claims 1 to 15 and claim 1 wherein the nucleic acid is hybridized, and the change or the amount of change in the fluorescent character of the fluorescent dye labeled on the target nucleic acid probe and / or the internal standard nucleic acid probe is measured.
  • a plurality of the target nucleic acid probes and Z or internal standard nucleic acid probes according to at least any one of Claims 1 and 3 to 10 are bound to the surface of a solid support, and the target nucleic acid probe is provided.
  • the target nucleic acid probe and Z or an internal standard probe are arrayed and bound to the surface of the solid support in an array form to measure one or more target nucleic acids, respectively. 22.
  • a device DNA chip
  • the measuring device according to claim 25, which is a device capable of measuring fluorescence while changing the temperature.
  • a computer-readable recording medium characterized by recording, as a program, a procedure for causing a computer to execute the steps of the data analysis method according to claim 16 to 19.
  • a target nucleic acid separation / collection / concentration method which comprises cleaving all nucleic acids including a target nucleic acid with a kind of restriction enzyme, and then separating and collecting only a nucleic acid fraction containing a target nucleic acid base sequence.
  • [Claim 30] It is intended to obtain a double-stranded DNA having an arbitrary sequence by performing gene amplification using an artificially synthesized single-stranded oligonucleotide nucleic acid having an arbitrary sequence of 50 bp or more as a ⁇ type. How to obtain the characteristic synthetic artificial gene.
  • An internal standard nucleic acid corresponding to the target nucleic acid, a nucleic acid probe specifically hybridizing to the target nucleic acid (hereinafter, simply referred to as a target nucleic acid probe), and an internal standard nucleic acid in a measurement system containing at least one target nucleic acid.
  • a method for measuring a target nucleic acid by adding or allowing a nucleic acid probe (hereinafter simply referred to as an internal standard nucleic acid probe) that specifically hybridizes to a nucleic acid;
  • a target nucleic acid probe and / or an internal standard nucleic acid probe that can be suitably used in the above-described novel nucleic acid measurement method; and 5) a preferably-used novel nucleic acid measurement method of the present invention.
  • a novel nucleic acid amplification method using a target nucleic acid probe and Z or an internal standard nucleic acid probe (described later) that can be used as a mere nucleic acid probe or a nucleic acid amplification primer in a nucleic acid amplification method, and a nucleic acid of a target nucleic acid by the method A novel method for measuring the concentration or copy number of a target nucleic acid before amplification (preferred specific methods will be described later), and 6) A method of analyzing data obtained by the method of the present invention (preferred specific methods are described later), and
  • Reaction solutions or measurement kits that can be used in the method of the present invention and that can carry out the method of the present invention, comprising an internal standard nucleic acid, a target nucleic acid probe and / or an internal standard nucleic acid probe, and ,
  • a plurality of target nucleic acid probes and / or internal standard nucleic acid probes that can be used in the method of the present invention are bound to the surface of the solid support, and the target nucleic acid probe and / or the internal standard nucleic acid probe are attached to the target nucleic acid probe and / or the internal standard nucleic acid probe. And measuring the change or the amount of change in the fluorescent character of the fluorescent dye labeled on the target nucleic acid probe and Z or the internal standard nucleic acid probe so that the method of the present invention can be carried out.
  • a reaction solution or a measurement kit containing the internal standard nucleic acid and capable of performing the method of the present invention using the devices and 9) a measuring apparatus for performing the method of the present invention; and ,
  • Figure 1 shows the position of each primer hybridizing to a gene (target nucleic acid) in the gene.
  • Fig. 2 shows a hybridization product of a target nucleic acid (gene (wild type)) or an internal standard nucleic acid (nec1 mutated type) and a target nucleic acid probe (NECB-24) (target nucleic acid probe). Dissociation curve of the complex).
  • b Internal standard nucleic acid (necl mutated type)
  • c Target nucleic acid (necl gene (wild type))
  • FIG. 3 shows a hybridization product of a target nucleic acid (necl gene (wild type)) or an internal standard nucleic acid (necl mutated type) and an internal standard nucleic acid probe (NECM B-24). Dissociation curve of the nucleic acid probe complex).
  • b Internal standard nucleic acid (necl mutated type)
  • c Target nucleic acid (necl gene (wild type))
  • Probe Internal standard nucleic acid probe ⁇ 18-24
  • Fig. 4 shows real-time monitoring of PCR using a target nucleic acid probe as a type II mixture of target nucleic acid and internal standard nucleic acid.
  • Target nucleic acid Mix ratio of internal standard nucleic acid is 14 4 Target nucleic acid Mix ratio of internal standard nucleic acid is 4 1
  • Target nucleic acid Mix ratio of internal standard nucleic acid is 10
  • Target nucleic acid Mix ratio of internal standard nucleic acid is 2 1
  • Replacement paper Fig. 5 shows real-time monitoring of PC'R using a mixture of target nucleic acid and internal standard nucleic acid with an internal standard nucleic acid probe.
  • Target nucleic acid Mix ratio of internal standard nucleic acid is 1
  • Target nucleic acid Mix ratio of internal standard nucleic acid is 2 40 Target nucleic acid Mix ratio of internal standard nucleic acid is 40
  • FIG. 6 is a diagram showing the relational expression between the DNA concentration and the change in the fluorescence intensity (rate) of the dye labeled on the target nucleic acid probe.
  • A Real-time monitoring rig of PCR at various DNA concentrations in a measurement system to which no soil sample was added.
  • B calibration curve based on A.
  • FIG. 8 shows real-time monitoring by a conventionally known quantitative PCR method.
  • Type III nucleic acid 700,000 PCR products that set the a and b probes of the necl gene.
  • Fig. 9 shows the positional relationship between the probes during hybridization.
  • Fig. 10 shows the dissociation curves of the Nec-donor and NECB-24 accep tor probe sets for the internal standard gene and the necl gene.
  • Fig. 11 shows the dissociation curves of the Nec-donor and NECMB-24 acceptor probe sets for the internal standard gene and the necl gene.
  • Fig. 12 shows the relationship between the ratio of the increase in the fluorescence intensity derived from the amplification product of the target nucleic acid and the ratio of the concentration of the target nucleic acid to the internal standard nucleic acid before amplification and the increase in the fluorescence intensity derived from the amplification product of the internal standard nucleic acid. .
  • Fig. 13 shows the dissociation curves of the NECMB-24 beacon internal control gene and necl gene.
  • Fig. 14 shows the dissociation curves of the NECMB-24 beacon internal control gene and necl gene.
  • Fig. 15 shows the relationship between the fluorescence intensity increase rate derived from the target nucleic acid amplification product and the fluorescence intensity increase rate derived from the internal standard nucleic acid amplification product with respect to the concentration ratio of the target nucleic acid and the internal standard nucleic acid before amplification.
  • Formula (when using a sunrise primer) shows the relationship between the fluorescence intensity increase rate derived from the target nucleic acid amplification product and the fluorescence intensity increase rate derived from the internal standard nucleic acid amplification product with respect to the concentration ratio of the target nucleic acid and the internal standard nucleic acid before amplification.
  • Fig. 16 shows the dissociation curves of the NECB-23 LAMP internal control gene and necl gene.
  • Fig. 17 shows the dissociation curves of the NECB-23 LAMP internal control gene and necl gene.
  • the present invention relates to a nucleic acid probe labeled with at least one kind of fluorescent dye (to be simply referred to as a nucleic acid probe), which comprises a corresponding nucleic acid ⁇ a nucleic acid that can be simply hybridized (all bases do not necessarily have to be complementary). That is, all the bases do not have to correspond to hydrogen bonds.
  • the method for measuring the corresponding nucleic acid using at least one kind of nucleic acid probe, which changes the fluorescent character of the labeled fluorescent dye by hybridizing to a nucleic acid is at least used for hybridization.
  • Fluorescent dye labeled on each nucleic acid probe generated by the hybridization reaction with nucleic acid The change or amount of change in the fluorescence character of the measurement system before and after hybridization is measured at least at one wavelength, and the concentration of the target nucleic acid and / or nucleic acid amplification reaction is determined based on the measured value and the concentration of the internal standard nucleic acid. This is a new concept measurement method that specifically measures the concentration or copy number of the previous target nucleic acid.
  • This method is based on the principle of the present invention and aims to solve various problems when at least one kind of target nucleic acid is measured using various nucleic acid probes, preferably in a homogeneous system.
  • nucleic acids including the target nucleic acid are cleaved by at least one or more restriction enzymes so as not to cleave the target nucleobase sequence region, and only a nucleic acid fraction containing the target nucleobase sequence is separated / collected, and / or Target nucleic acids to be further concentrated This is a concentration method.
  • the terms used in the present invention have the same meanings as those generally used in biology, molecular biology, genetics or genetic engineering, microbiology or microbiological engineering, etc. is there.
  • the fluorescent character refers to fluorescent characteristics such as fluorescence intensity, fluorescence lifetime, fluorescence polarization, and fluorescence anisotropy (hereinafter, abbreviated as “fluorescence intensity” for simplicity).
  • a complex of a probe and a nucleic acid by hybridization of a nucleic acid probe and a corresponding nucleic acid is referred to as a hybrid (or a hybrid) complex, or simply a nucleic acid / probe complex or a probe / nucleic acid complex. That.
  • the measurement of the nucleic acid or the measurement of the nucleic acid concentration means not only the measurement of the concentration of the target nucleic acid, but also the quantitative detection, or the mere detection.
  • a method for measuring a target nucleic acid using at least one kind of a target nucleic acid probe which is a target nucleic acid probe and changes the fluorescence intensity of a labeled fluorescent dye by hybridizing to a corresponding nucleic acid
  • the term simply refers to a method for measuring a nucleic acid using a nucleic acid probe. It may be known or unknown. For example, the presently known method described below and the method of the present invention can be mentioned.
  • the “corresponding nucleic acid” is as described above.
  • the target nucleic acid refers to a nucleic acid or a gene for measuring a nucleic acid. With or without purification. Also, the size of the concentration does not matter.
  • Various nucleic acids may be mixed. For example, complex microbial systems (multiple micro A mixed system of biological RNA or gene DNA, for example, nucleic acids and genes in soil can be mentioned. ) Or a symbiotic microbial system (mixed system of RNA or gene DNA of multiple animals and plants and / or multiple microorganisms).
  • nucleic acid examples include DNA, RNA, PNA, oligodeoxyribonucleotides, oligoribonucleotides, and chemically modified nucleic acids of the nucleic acids. be able to.
  • Chemically modified nucleic acids include 2′-O.-methyl (Me) RNA and the like.
  • an internal target nucleic acid is a nucleic acid corresponding to a target nucleic acid, preferably having at least one of the following characteristics:
  • the internal standard nucleic acid has a base sequence that can be distinguished from the target nucleic acid based on the change or the amount of change in the fluorescence intensity of the fluorescent dye labeled on the probe caused by the nucleic acid being hybridized with the internal standard nucleic acid probe.
  • This embodiment is shown in FIGS. 2 and 3 of the first embodiment. That is, based on the change in the fluorescence intensity or the amount of change in the fluorescent intensity of the internal standard nucleic acid and the internal standard nucleic acid probe, and the fluorescent dye labeled on the probe nucleic acid complex of the target nucleic acid and the target nucleic acid probe or each probe of the reaction system, The difference in base sequence between the target nucleic acid and the internal target nucleic acid can be identified.
  • the internal standard nucleic acid hybridizes only with the internal standard nucleic acid probe that specifically hybridizes with the internal standard nucleic acid under certain conditions (the method for obtaining suitable conditions is described later), and does not hybridize with the target nucleic acid probe. It has a base sequence.
  • the nucleotide sequence of the internal standard nucleic acid is partially different from that of the target nucleic acid.
  • the partial sequence is 1 to 30, preferably 1 to 10, and particularly preferably 1 to 6, the number of bases.
  • the base length of the internal standard nucleic acid may be different from that of the target nucleic acid.
  • the internal standard nucleic acid can be amplified simultaneously with the target nucleic acid using the same primer.
  • An internal standard nucleic acid is, for example, a nucleotide sequence in which a part of the base sequence of a target nucleic acid is substituted or deleted with another base, and is a mutant nucleic acid or a kind of polymorphic nucleic acid. It is said that. Nucleotide sequences that produce the following effects are preferred: the effect of hybridization of the target nucleic acid and the target nucleic acid probe is the same as or less than the effect of hybridization of the internal standard nucleic acid and the internal standard nucleic acid probe. They are similar (they need not be exactly the same).
  • the site of inhibition or the inhibitory effect of the substance that inhibits nucleic acid amplification of the target nucleic acid is similar or similar to that of the substance that inhibits nucleic acid amplification of the internal standard nucleic acid (need to be exactly the same). It is preferable to have a site of inhibition or a base sequence that produces the inhibitory effect.
  • the above-mentioned internal standard nucleic acid can be prepared or synthesized by the methods described in Examples 1 and 7 and the nucleic acid probe described later.
  • the “measurement system in which at least one or more target nucleic acids are present” means that one or more target nucleic acids are present in the measurement system.
  • the type of the target nucleic acid probe and Z or the internal standard nucleic acid probe to be present in the measurement system may be one or more.
  • the expression “there may be more than one” means that a kind of target nucleic acid has a plurality of sites having different base sequences, and a plurality of kinds of target nucleic acid probes that hybridize to the site may be used. Internal standard nucleic acid The same can be said for.
  • a plurality of types of target nucleic acids when a plurality of types of target nucleic acids are present in the measurement system and Z or the reaction system, a plurality of types of target nucleic acid probes and / or internal standard nucleic acids and / or internal standard nucleic acid probes are present.
  • the target nucleic acid and the target nucleic acid probe are at least the same in the number of types. The same can be said for the internal standard nucleic acid and the internal standard nucleic acid probe.
  • the “at least the same number” means that a base sequence site where multiple types of nucleic acid probes hybridize is set in one type of target nucleic acid, and multiple types of nucleic acid probes are set in the measurement system for one type of target nucleic acid. This means that it may exist.
  • the “plurality of target nucleic acids and / or internal standard nucleic acid and Z or internal standard nucleic acid probe” “Probe, plural kinds of internal standard nucleic acid probes” have the following meanings. That is, (a) a plurality of different types of probes in the nucleic acid probe of the present invention. For example, probes having the same form or structure but different dyes for labeling each other can be exemplified. (B) A combination of nucleic acid probes having different probe forms or structures, but different types of labeling dyes. That is, it means that a combination of nucleic acid probes having different forms described later may be used.
  • Measurement of the change or the amount of change in the fluorescence intensity of the nucleic acid probe before and after the hybridization is, for example, a difference between the measured value of the fluorescence intensity of the nucleic acid probe before and after the hybridization, and It refers to the rate of change in fluorescence intensity as a function of the time of the hybridization reaction system.
  • the change in the fluorescence intensity with respect to the reaction cycle Or rate of change is, for example, a difference between the measured value of the fluorescence intensity of the nucleic acid probe before and after the hybridization, and It refers to the rate of change in fluorescence intensity as a function of the time of the hybridization reaction system.
  • the invention of the present application comprises the first to eighth inventions.
  • the first invention relates to a method for measuring a nucleic acid without performing a nucleic acid amplification reaction.
  • the first invention is as described above, but in a method for measuring a nucleic acid using a nucleic acid probe (whether known or unknown), a measurement system or a reaction system containing at least one or more target nucleic acids. (Hereinafter simply referred to as a measurement system), a known amount of an internal standard nucleic acid corresponding to a target nucleic acid and at least one fluorescent dye specific to the target nucleic acid.
  • a measurement system a known amount of an internal standard nucleic acid corresponding to a target nucleic acid and at least one fluorescent dye specific to the target nucleic acid.
  • the hybridization reaction The change in the fluorescence intensity of the fluorescent dye modified on the target nucleic acid probe caused by the hybridization of the target nucleic acid probe and the target nucleic acid, and the hybridization between the internal standard nucleic acid probe and the internal standard nucleic acid.
  • the change or the amount of change in the fluorescence intensity of the fluorescent dye modified to the internal standard nucleic acid probe caused by the zeosion is reduced to the number of nucleic acid probe types (sum of the number of target nucleic acid probe types and the number of internal standard nucleic acid probe types). Both are measured at the same number of wavelengths.
  • This is a novel nucleic acid measurement method for measuring a target nucleic acid from the measured value and the amount of the internal standard nucleic acid.
  • the target nucleic acid probe and / or the internal standard nucleic acid probe suitably used in the method take the following forms.
  • Target nucleic acid probe and internal or standard nucleic acid probe A single-stranded oligonucleotide that hybridizes to a nucleic acid, and identifies one kind of donor dye (including a reporter dye) and z or one type of acceptor dye (including a Taentia dye or a quencher substance). At least one kind of nucleic acid probe, and when the nucleic acid probe is hybridized to the corresponding nucleic acid, the change or the amount of change in the fluorescent character of the hybridization reaction system is increased. A donor dye and an acceptor dye are labeled on the oligonucleotide.
  • the target nucleic acid probe and Z or the internal standard nucleic acid probe according to 1) have any of the following forms:
  • One kind of donor probe consisting of one kind of oligonucleotide labeled with one kind of donor dye
  • one kind of receptor probe consisting of one kind of oligonucleotide labeled with one kind of receptor dye
  • the two types of probes form a pair, and the change or amount of change in the fluorescent character of the donor dye and the acceptor dye before and after hybridization due to the hybridization of the donor probe and / or the acceptor probe with the corresponding nucleic acid. Is minus or plus.
  • the target nucleic acid probe and / or the internal standard nucleic acid of 1) is By hybridizing with the corresponding nucleic acid in the form of a type of oligonucleotide labeled with an element and an acceptor dye, the change or the amount of change in the fluorescent character of the donor dye and the acceptor dye before and after hybridization is reduced.
  • the nucleic acid probe has been labeled with a donor dye or an acceptor dye at its terminal and the nucleic acid probe has hybridized to the corresponding nucleic acid at the terminal, the corresponding probe hybridized to the probe.
  • the base sequence of the probe is designed so that at least one base is G (guanine) in the base sequence of the corresponding nucleic acid at a distance of one to three bases from the terminal base of the nucleic acid.
  • the change or the amount of change in the fluorescent character of the donor dye and the acceptor dye before and after the reaction is negative, and when the corresponding nucleic acid is hybridized, the probe is not detected in the labeled portion of the donor dye or the acceptor dye.
  • the nucleotide sequence of the probe is designed so that a plurality of base pairs of the nucleic acid hybrid form at least one pair of G (guayun) and C (cytosine).
  • the target nucleic acid probe and the Z or internal standard nucleic acid probe are each composed of a single-stranded oligonucleotide labeled with at least one kind of fluorescent dye, and have at least one of the following characteristics.
  • the probe is designed for:
  • the fluorescent dye negatively increases the change or amount of change of the fluorescent character in the absence of the quencher dye and / or the quencher probe
  • the probe is labeled at least with a fluorescent dye at its end
  • One to three bases apart (however, the number of labeled bases is counted as 1), and at least one G (guanine) is present in the base sequence of the target nucleic acid.
  • At least one base pair of the probe nucleic acid hybrid at the end has at least one G (guanine) binding (cytosine) pair.
  • the target nucleic acid probe and the internal or standard nucleic acid probe of the above 5) are labeled with the fluorescent dye at a portion other than the OH group at the 3 ′ end, and the nucleic acid probe is hybridized to the corresponding nucleic acid.
  • the fluorescent color of the fluorescent dye labeling the target nucleic acid probe and the fluorescent color of the fluorescent dye labeling the internal standard nucleic acid probe are mutually different. Therefore, it is preferable to design a target nucleic acid probe and an internal standard nucleic acid probe. Specifically, it is preferable that the type of the fluorescent dye labeling the target nucleic acid probe and the fluorescent dye labeling the internal standard nucleic acid probe be different.
  • nucleic acid measurement method using the above-described nucleic acid probe are described below.
  • the method uses double-stranded DNA as the corresponding nucleic acid and uses two types of nucleic acid probes.
  • One of the two types hybridizes to a leading chain, and the other hybridizes to a coding chain.
  • one of the probes is labeled with one fluorescent dye at the 5 'end, and the other is labeled with one fluorescent dye at the other end.
  • One of the dyes of the probe is a donor dye having a quenching effect (also called a reporter dye), and the other dye is also called an acceptor (quencher) dye. ) It is a pigment.
  • the nucleotide sequences of the two probes are designed so that they can hybridize with each other. When the two types of probes form a hybrid complex, the FRET phenomenon acts to suppress the fluorescence intensity of the measurement system to a low level.
  • the measurement system first add two types of probes to the measurement system, measure the fluorescence intensity, and then add a sample containing the corresponding nucleic acid to measure the fluorescence change value or change rate before and after
  • two types of probes are added to a measurement system containing the corresponding nucleic acid, and the rate of change in fluorescence intensity as a function of time is measured. In this way, the concentration of the corresponding nucleic acid can be measured. This is because the magnitude or rate of change of the fluorescence intensity is proportional to the concentration of the corresponding nucleic acid.
  • nucleic acid probes are hybridized to a single-stranded corresponding nucleic acid. If one of the two probes is labeled with one donor dye, the other is labeled with one receptor dye. In addition, one of the probes is labeled at the 5 'terminal site with a fluorescent dye, and the other is labeled at the 3' terminal site.
  • the donor dye can act on the receptor dye to increase the fluorescence emission of the receptor dye at a specific wavelength. Donor dyes, also called reporter dyes, weaken their own fluorescence when applied to an acceptor dye. Acceptor dyes are also referred to as dyes.
  • the dye-labeled terminal site of one probe and the dye The terminals are designed so that they face each other.
  • the nucleotide sequences are designed so that the distance between the dye-labeled bases of both probes is 1 to 9 bases apart and both probes hybridize to the corresponding nucleic acid.
  • the actual measurement procedure is the same as the Morrison method.
  • the above probe is generally labeled with a fluorescent dye at one end and a quencher substance which does not emit fluorescence in the other region. Then, when not hybridized to the corresponding nucleic acid, a stem-loop structure is formed from the homology of the base sequence in the probe molecule. Due to the formation of the structure, the fluorescent dye and the quencher substance are arranged at positions close to each other. The FRET phenomenon occurs due to this arrangement, and the fluorescence emission of the donor dye is suppressed. However, when the probe hybridizes to the corresponding nucleic acid, the conformation of the probe changes, and the stem 'loop structure becomes loose. This will eliminate the FRET phenomenon and increase the fluorescence emission of the fluorescent dye. The concentration of the corresponding nucleic acid is proportional to the increase in the fluorescence intensity of the fluorescent dye in the measurement system. The actual measurement procedure is the same as the Morrison method.
  • a nucleic acid probe in which single-stranded oligonucleotides are labeled with a single fluorescent dye when a site labeled with a fluorescent dye hybridizes with a corresponding nucleic acid, the corresponding nucleic acid corresponding to the base at the labeled site A nucleic acid probe designed so that at least one G exists at or near the base thereof, and that a GC pair exists in the probe nucleic acid complex at or near the labeling site. When the probe is hybridized to the corresponding nucleic acid, the intensity of the fluorescence emission of the hybrid complex is significantly reduced as compared to that before the hybridization.
  • the corresponding nucleic acid can be measured.
  • the actual measurement procedure is almost the same as the method of Morrison et al. Except that the decrease value or the decrease rate of the fluorescence intensity is measured.
  • the measurement may be performed by adding a helper probe for allowing the hybridization reaction system to efficiently perform the hybridization reaction.
  • the corresponding nucleic acid is measured using a probe in which a fluorescent dye is attached to the 3 ′ end of the oligonucleotide via a spacer having 18 carbon atoms.
  • the fluorescence intensity becomes 10 times higher than when a probe having the dye directly bonded to the 3 ′ end is used.
  • a probe consisting of a single-stranded oligonucleotide, but labeled at one end with a BODIPY dye.
  • the base sequences at both ends are designed to hybridize with each other.
  • both ends are hybridized to form one loop.
  • the emission of the fluorescent dye is suppressed.
  • the loop shape is broken because the probe hybridizes to the corresponding nucleic acid. Then, since the fluorescent dye emits light, the concentration of the corresponding nucleic acid can be determined by measuring the fluorescence intensity.
  • a method of measuring a corresponding nucleic acid using a nucleic acid probe labeled with a fluorescent dye in a measurement system in which at least one kind of the corresponding nucleic acid is present, the corresponding nucleic acid hybridizes to the corresponding nucleic acid and emits a different fluorescent color. At least the same number of nucleic acid probes as the number of the corresponding nucleic acids are present, and the hybridization reaction and the Z or nucleic acid amplification reaction are performed.At least as many wavelength species as the number of the nucleic acid probe species before and after hybridization.
  • the nucleic acid probe is a nucleic acid probe comprising a single-stranded oligonucleotide that hybridizes to the corresponding nucleic acid and a fluorescent dye (donor dye) and a quencher dye labeled, and the nucleic acid probe hybridizes to the corresponding nucleic acid.
  • the fluorescent dye (donor dye) and quencher dye are labeled on the oligonucleotide, and the fluorescent dye (donor dye) is labeled so that the fluorescence intensity of the hybridization reaction system increases.
  • nucleic acid probe comprising an oligonucleotide that does not form a stem-loop structure between the base chain where the quencher dye is labeled and the base where the quencher dye is labeled. Measuring method. iii) The nucleic acid probe according to i) above further comprises at least one of the following:
  • a fluorescent dye (donor dye) and a quencher dye are labeled at the same base of a single-stranded oligonucleotide.
  • Fluorescent dye (donor dye) and quencher dye are labeled
  • the base position of the single-stranded oligonucleotide is the 3 'end or the 5' end.
  • the distance between the base where the fluorescent dye (donor dye) is labeled and the base where the quencher dye is labeled is 1 to 20 or ⁇ (3 to 8 + 1 0 n ⁇ (where n is an integer including 0).
  • Fluorescent dye (donor dye) or quencher dye is labeled at the 5 ′ end or 3 ′ end of the oligonucleotide, and the corresponding quencher dye or fluorescent dye is labeled in the chain.
  • a fluorescent dye (donor dye) or quencher dye is labeled at the 5 'end of the oligonucleotide, and a corresponding quencher dye or fluorescent dye is labeled at the 6th to 8th base from the 5' end. ing.
  • the single-stranded oligonucleotide has the same length as the corresponding nucleic acid.
  • the phosphoric acid groups at the 5 'end and 3' end of the nucleic acid probe are labeled with a fluorescent dye (donor dye).
  • Fluorescent dye that labels nucleic acid probes: TexaSet K Texas red
  • EDANS (2,1-aminoethy ⁇ atninonaphthalene-1—sulfonic acid), Tetramethizolerota, Mine (tetramethylrhodomine) or a derivative thereof, FITC or a derivative thereof, bodypi (BODIPY) F, bodypi (BODIPY) R6G, bodypi (BODIPY) TMR, bodypi (BODIPY) TR, or at least one of 6-TAMU RA is there.
  • the fluorescent dye (donor dye) and the quencher dye labeled on one kind of nucleic acid probe are each one kind, and the labeled portions of the oligonucleotides are respectively At least one location.
  • the nucleic acid measurement method hybridizes to the corresponding nucleic acid and causes at least the same number of nucleic acid probes having different fluorescent colors to be present as the number of the corresponding nucleic acid species. After hybridizing the nucleic acid probe and the corresponding nucleic acid, the change in the fluorescence intensity of the nucleic acid probe before and after the hybridization or the change in the negative change at least at the same number of wavelengths as the number of the nucleic acid probe species is observed.
  • a novel method for measuring nucleic acids characterized by measuring an increase.
  • the nucleic acid probe forms at least one pair of a fluorescent dye pair that causes the FRET phenomenon, that is, a pair of a fluorescent dye (donor dye) that can be a donor dye and a fluorescent dye (acceptor dye) that can be an acceptor dye.
  • a fluorescent dye donor dye
  • acceptor dye acceptor dye
  • a nucleic acid probe consisting of a single-stranded oligonucleotide labeled with a plurality of types of fluorescent dyes as described above, when the probe hybridizes to the corresponding nucleic acid, hybridization of the axceptor dye is performed in the absence of the quencher probe.
  • the novel nucleic acid measurement method according to i), wherein the nucleotide sequence is designed so that the change or the amount of change in the fluorescence intensity before and after the hybridization is negatively increased and the dye is labeled.
  • nucleic acid probe wherein the change or the amount of change in the fluorescence intensity of the donor dye and the acceptor dye increases in the absence of the quenching nucleic acid probe when the nucleic acid probe hybridizes to the corresponding nucleic acid; I) or ii) using the nucleic acid probe described in A novel method for measuring a nucleic acid according to the above.
  • nucleic acid probe according to i i) or i i i) uses a nucleic acid probe having at least any one of the following characteristics. .
  • Fluorescent dye in which the dye labeling the nucleic acid probe can be a donor dye, and is at least one kind of BODIPY F BODIPY 493/503, 5-FAM, Tetramethylrhodamine, or 6-TAMRA.
  • the nucleic acid probe is labeled with one dye pair of a donor dye and an acceptor dye.
  • the nucleic acid probe is labeled at its end with a donor dye or an acceptor dye, and when the nucleic acid probe is hybridized to a corresponding nucleic acid, the base labeled with the donor dye or the acceptor dye in the probe is used. 1 to 3 bases away from the base (in this case, the terminal base is counted as one base. The same applies to the following invention), and at least one base G (guanine) is contained in the base sequence of the corresponding nucleic acid.
  • the base sequence of the lobe is designed to be present.
  • nucleic acid probe When the nucleic acid probe is hybridized to the corresponding nucleic acid, at least one G (guanine) and C (cytosine) pair of one or more base pairs of the probe-nucleic acid hybrid at the donor dye labeling site
  • the base sequence of the probe is designed so as to form
  • the donor dye labels the 5 'end (including the 5' end) of the nucleic acid probe.
  • the donor dye labels the 3 'end (including the 3' end) of the nucleic acid probe.
  • the 5 'terminal base of the nucleic acid probe is G or C and the 5' terminal is Labeled with one dye.
  • the nucleotide at the 3 ′ end of the nucleic acid probe is G or C, and the 3 ′ end is labeled with a donor dye.
  • the acceptor dye labels the 5 'end (including the 5' end) of the nucleic acid probe.
  • An acceptor dye labels the 3 'end of the nucleic acid probe (including the 3' end).
  • the 5 ′ terminal base of the nucleic acid probe is labeled with G or C, and the 5 ′ terminal is labeled with an acceptor dye.
  • the 3 'terminal base of the nucleic acid probe is labeled with G or C, and the 3' terminal is labeled with an acceptor dye.
  • the base sequence of the corresponding nucleic acid is designed so that G (guan) is present in at least one base.
  • a nucleic acid probe comprising a single-stranded oligonucleotide labeled with a fluorescent dye, wherein when the nucleic acid probe hybridizes to a corresponding nucleic acid, the fluorescent dye is replaced with a quenching probe or a quenching probe. In the absence of the dye, the change in the fluorescence intensity or the amount of change is negatively increased, and the probe is labeled with the fluorescent dye at its end, and the nucleic acid probe is labeled with the corresponding nucleic acid at the end.
  • the probe When hybridized to the probe, the probe should be 1 to 3 bases away from the terminal base of the corresponding nucleic acid hybridized to the probe, and at least one G (guanine) should be present in the base sequence of the corresponding nucleic acid.
  • the nucleus according to the above i), wherein the nucleic acid probe whose nucleotide sequence is designed is used. A new method for measuring acids.
  • the nucleic acid probe is labeled at the 3 'end with a fluorescent dye.
  • the nucleic acid probe is labeled at the 5 'end with a fluorescent dye.
  • a nucleic acid probe whose change or amount of change in fluorescence intensity increases negatively, and the probe is labeled with the fluorescent dye at the end thereof, and the nucleic acid probe is hybridized to the corresponding nucleic acid.
  • the nucleotide sequence of the probe is determined so that a plurality of base pairs of the probe-nucleic acid hybrid form at least one G (guanine) binding (cytosine) pair at the terminal portion.
  • nucleic acid probe according to vii) uses a nucleic acid probe having at least one of the following characteristics.
  • the 3′-terminal base of the nucleic acid probe is G or C, and the 3′-terminal is labeled with a fluorescent dye.
  • the nucleic acid probe is labeled with a G or C at the 5'-terminal base and labeled with a fluorescent dye at the 5'-terminal.
  • a nucleic acid probe whose G-terminal is G or C and whose 5′-terminal is labeled with a fluorescent dye is a 3′-terminal ribose or The hydroxyl group of 3 'carbon of oxyribose or the 2' carbon of ribose at the 3 'end is phosphorylated.
  • the phosphate group at the 5 'end and / or 3' end of the nucleic acid probe is labeled with a fluorescent dye.
  • a nucleic acid probe consisting of a single-stranded oligonucleotide labeled with a fluorescent dye, and when hybridized to the corresponding nucleic acid, the fluorescent dye is used in the absence of the quencher-nucleic acid probe.
  • the probe is a nucleic acid probe whose fluorescence intensity changes or the amount of change increases negatively, and the probe has a fluorescent dye at a portion other than the phosphate group at the 5 ′ end or the OH group at the 3 ′ end.
  • the nucleic acid probe is hybridized to the corresponding nucleic acid, at least a plurality of base pairs of the probe mononucleotide complex in the labeled portion is bound to at least one G (guanine).
  • the novel method for measuring a nucleic acid according to i), wherein a nucleic acid probe whose nucleotide sequence is designed to form a pair is used.
  • the nucleic acid probe in order to apply the above-mentioned various known methods, and the methods A and B of the present invention to the novel method for measuring a nucleic acid of the present invention, the nucleic acid probe must be at least one kind of fluorescent dye ( It is necessary to use a kind of target nucleic acid probe and / or an internal standard nucleic acid probe labeled with a fluorescent dye which can be used in the present invention, including a donor dye and an acceptor dye.
  • the nucleic acid probe to be added to the measurement system, that is, the target nucleic acid probe and the internal standard nucleic acid probe are at least one each.
  • “measurement of a change in the fluorescence intensity of the nucleic acid probe before and after hybridization or an increase in a negative change” is, for example, a nucleic acid probe before and after hybridization.
  • Minus the difference in the measured fluorescence intensity of It refers to a negative change rate of the fluorescence intensity as a function of the reaction time. or,
  • PCR refers to the change or rate of change of the fluorescence intensity as a function of the reaction cycle. "The change in the fluorescence intensity or the amount of the negative change increases" means that the simplest case in this case is that the decrease in the fluorescence intensity of the measurement system increases.
  • the measured value of the change (eg, decrease) in the fluorescence intensity after hybridization of a measurement system derived from the luminescence of the nucleic acid probe is measured.
  • the rate of change (for example, the rate of decrease) of the fluorescence intensity as a function of the reaction cycle is measured.
  • quencher probe and quencher nucleic acid probe mean a nucleic acid probe that acts on the nucleic acid probe and suppresses the luminescence of the nucleic acid probe. Refers to a probe.
  • this probe when it does not hybridize to the corresponding nucleic acid, the emission of the fluorescent dye is inhibited by quencher dye, but when it hybridizes, the inhibition is released and the fluorescence intensity is released. Is a probe that changes (eg, increases).
  • the fluorescent substance is a kind of fluorescent dye which is generally used for measuring and detecting nucleic acid by labeling a nucleic acid probe.
  • fluorescein or derivatives thereof eg, fluorescein Sochioshiane 1 Bok (f luoresce ini sothiocyanate) (FITC ) or its derivatives such as, Alexa 488, Alexa 532, cy3 , cy5, 6_joe, EDANS, rhodamine (rhodamine) 6G (R6G) or derivatives thereof (e.g., Te Toramechiruro Teramethy lrhodamine (TMR), artof;> ⁇ > tetramethy lrhodaraine i sothiocyanate (T RITC), x —rogue min x—rhodamine, Texas red BODIPY FL (BODIPY is a trade name, FL is a trade name; Molecular Probes,
  • FITC Fluorescence Activated Cell Sorting
  • EDANS Texas Red, 6-joe, TMR
  • Alexa 488 Alexa 532
  • BODIPY FL / C3, BODIPY R6G BODIPY (BODIPY) FL, Alexa532, BODIPY (BODIPY) ) FL / C6, BODIPY (TMR), TMR, 5-FAM, BODIPY (BODIPY) 493/503, BODIPY (BODIPY) 564, BODIPY (BODIPY) 581, 6-TAMURA, Cy3, Cy5, Texas red, x-Rhodami ne And the like can be cited as preferable ones.
  • a quencher substance is a substance that acts on the fluorescent substance to suppress or extinguish its emission.
  • Dabcyl, QSY7 (Molecular 'probe), QSY33 (Monolecular' probe), Ferrocene or its derivative, methyl viologen, N, N'-dimethyl_2,9-diazopyrenium, preferably Dabcyl, etc. Can be.
  • a quenching effect is caused by one substance.
  • a single-stranded strand that forms the nucleic acid probe of the present invention and does not form a stem 'loop structure between the base strand where the fluorescent substance is labeled and the base strand where the quencher substance is labeled Oligonucleotides in the self-chain due to the complementarity of at least two or more base sequences between the base where the fluorescent substance is labeled and the base where the quencher is labeled
  • the term refers to an oligonucleotide which forms a double chain and does not form a stem-loop structure.
  • the fluorescent substance and the quencher substance are combined with the oligonucleotide of the present invention so that the fluorescence intensity of the hybridization reaction system changes (eg, increases).
  • the following may be performed.
  • the distance between the base where the fluorescent substance is labeled and the base where the quencher substance is labeled is zero in terms of the number of bases, i.e., the same nucleotide of the single-stranded oligonucleotide with the fluorescent substance and the quencher substance.
  • the number of bases is 1 to 20 or the number of bases, or ⁇ (3 forces, any integer of 8) + 10n ⁇ (where n is an integer including 0) .
  • 10 is added to the position of the same nucleotide in the single-stranded oligonucleotide, or 3 to 8 or any number thereof. More preferably, it is at the same nucleotide position of a single-stranded oligonucleotide, or 3 to 8. Thus, it is preferable to label each substance on the oligonucleotide.
  • the distance between bases strongly depends on the nucleotide sequence of the probe, the fluorescent substance and the labeling substance used for labeling, and the length of the linker that binds them to the oligonucleotide. Therefore, it is difficult to completely specify the base interval, and the above base interval is a general example to the last, and there are many exceptions.
  • each substance may be labeled in the oligonucleotide chain, and one of the substances may be labeled at the 5 ′ end of the oligonucleotide. Alternatively, it may be labeled at the 3 ′ end, and another corresponding substance may be labeled in the chain.
  • a fluorescent substance or a quencher is labeled at the 5 ′ end or 3 ′ end of the oligonucleotide, and a corresponding quencher or fluorescent substance is labeled from the terminal at the above-mentioned base number interval. Is good.
  • a base when labeling at the 3′-end or the 5′-end, a base, a phosphate, or a ribose or deoxyribose moiety, preferably a phosphoric acid, ribose or deoxyribose moiety, more preferably Is preferably labeled on the phosphate moiety.
  • labeling in a chain it is preferable to label a base in the chain.
  • the donor dye that can be a donor dye in the present invention is at least a. That is excited at a specific wavelength and emits light at a specific wavelength, and b. Transfers luminescence energy to a specific dye (a dye that can be an acceptor dye). Yes, c. A complex of GC base pairs generated when a nucleic acid probe hybridizes with the corresponding nucleic acid (GC base pair hydrogen bond) (hereinafter sometimes referred to as GC hydrogen bond for the sake of simplicity) Force donor dye , The energy can be transferred to the base pair. Defined to be satisfied. That is, any dye that satisfies this condition may be used.
  • dyes that can be donor dyes in the FRET phenomenon and that change (eg, decrease) the fluorescence intensity of a probe when a nucleic acid probe that is itself labeled alone hybridizes to a corresponding nucleic acid are preferably used ( Nucleic Acid, Vol. 29 , No. 6 e 34 , 2001).
  • the dyes used are specifically the same as the dyes used in the present invention A.
  • BODIPY FL, BODIPY FL-based dyes described above, and BODIPY 493/503), -FAM, bodypy (BODIPY) 5-FAM, Tetramethylrhodamine 6-TAMRA, and the like are more preferable, and B0DIP YF BODIPY 493/503, 5-FAM, Tetramethylrhodamine, 6-TAMRA and the like can be mentioned.
  • the present invention is not limited to these examples.
  • an acceptor dye can undergo energy transfer from an acceptor dye, ie, a donor dye, in a FRET phenomenon in a pair with a donor dye.
  • the donor dye has a quenching effect on the donor dye.
  • Any pigment can be used. And it depends on the kind of the donor dye forming the pair. For example, if BODIPY FL, the above-mentioned dye of BODIPY FL system, BODIPY 493/503, 5-FAM, bodepy (BODIPY) 5-FAM, Tetramethylrhodamine, 6-TAMRA, etc. are used as donor dyes, Rhodamine X, BODIPY 581/591, etc. can be used as the acceptor dye.
  • the present invention is not limited to these examples.
  • a preferred nucleic acid probe structure is labeled with a donor dye at its end, and when the nucleic acid probe hybridizes to the corresponding nucleic acid at the end, the end of the corresponding nucleic acid hybridized to the probe is obtained.
  • the base sequence of the probe is designed so that at least one to three bases apart from the terminal base are present in the base sequence of the amino acid with C (cytosine) or G (guanine).
  • At least one base pair of the probe-nucleic acid hybrid in the donor dye-labeled portion has at least one G (guanine) bond (cytosine).
  • the base sequence of the probe is designed to form a pair>.
  • the donor dye labeling site is a G (guanine) or C (cytosine) base, or a phosphate group of a nucleotide having the base, or an OH group of ribose.
  • the labeling site of the donor dye or the acceptor dye is determined when the donor dye or the acceptor dye labels the base, phosphate, deoxyribose, or ribose at the 5 ′ end of the nucleic acid probe.
  • the dye or donor dye is in the nucleic acid probe strand or at the 3 'end (including the 3, terminal base).
  • the donor dye or the acceptor dye may be in the nucleic acid probe strand or It is the 5 'terminal (including the 5' terminal base).
  • both ends may be labeled.
  • one of the two may be labeled with a phosphate moiety, and the other may be labeled with a deoxyribose moiety, a reporter moiety, or a base moiety (for example, when the distance between the labeled moiety of the donor dye and the acceptor dye is 0).
  • both may be bonded to one spacer using a spacer having a side chain.
  • both the donor dye and the acceptor dye have chains. It goes without saying that even if the inside is marked, the above conditions only need to be satisfied.
  • the binding position of the fluorescent dye at each of the above-mentioned sites is bonded to an OH group or an amino group via a spacer.
  • the distance between the labeled dye bases of the donor dye and the acceptor dye depends essentially on the kind of the dye pair of the donor dye and the acceptor dye, but generally ranges from 0 to 50 bases, preferably from 0 to 4 bases. It has 0 bases, more preferably 0 to 35 bases, and particularly preferably 0 to 15 bases. Beyond 50 bases, the FRET phenomenon becomes unstable. At 15 to 50 bases, the fluorescent intensity of the acceptor dye changes (eg, decreases), but the fluorescent intensity of the donor dye may also change (eg, increases).
  • the three-dimensional structure of the nucleic acid probe may change.
  • the change may eliminate the FRET phenomenon between the dyes of the nucleic acid probe.
  • the fluorescence intensity of the donor dye may increase from before the hybridization, Or decrease.
  • the quenching effect of the hydrogen bond of the GC decreases when it is larger, but may increase when it is smaller.
  • the labeled part of the donor dye and the receptor dye has a distance between bases
  • the donor dye is BODIPY FL, B0DIP Y 493/503, 5-FAM, Tetramethylrhodatine, or 6-.
  • the receptor dye is 6-TAMRA, BODIPY 581/591, X-rhodamine
  • the 5 'terminal base is G or J
  • the 5' terminal is labeled with a donor dye or receptor dye
  • the 3 'terminal base of the nucleic acid probe is labeled with G or C
  • the 3' terminal is labeled with a donor dye or an acceptor dye. Is what it is.
  • the base of the corresponding nucleic acid corresponding to the dye labeling site is G. In this case, the base at the dye labeling site does not necessarily need to be C.
  • the structure of the novel nucleic acid probe for nucleic acid measurement of the present invention is as described above. With such a structure, the energy of the excited donor dye is transferred to the acceptor dye when it is not hybridized to the corresponding nucleic acid, so that the acceptor dye emits light and has a strong fluorescence intensity. ing. Therefore, the fluorescence intensity is kept at a low level because the emission of the donor dye is suppressed.
  • the energy of the dye or the acceptor dye is transferred to the GC hydrogen bond formed by the probe nucleic acid hybrid complex or to the G of the corresponding nucleic acid. I do.
  • the fluorescence intensity of the emitted light of the nucleic acid probe is significantly reduced as compared to before the hybridization. Further, in the present invention, since a plurality of receptor dyes can be combined with one kind of donor dye, a number of nucleic acid probes corresponding to the combination can be obtained. Moreover, it has the above-mentioned properties.
  • nucleic acid measurement the decrease in the fluorescence intensity of the acceptor dye is measured, so that one nucleic acid probe can be used simultaneously at one excitation wavelength. This means that when there are many kinds of corresponding nucleic acids in the same measurement system, if such nucleic acid probes are simultaneously added, many kinds of nucleic acids can be measured at the same excitation wavelength. That is, many kinds of nucleic acids can be measured simultaneously with a simple device.
  • a fluorescent dye and a fluorescent dye labeled on one nucleic acid probe may be used.
  • Each of the enchia dyes is unique, and the number of labeled oligonucleotides is at least one each.
  • This nucleic acid probe is characterized by being composed of a single-stranded oligonucleotide labeled with at least one kind of fluorescent dye.
  • the presence of the quencher probe or quencher dye in other words, the fluorescence intensity of the nucleic acid probe changes (eg, decreases) without interaction with the quencher dye (ie, without the presence of the quencher probe in the measurement system).
  • the number of bases of the probe of the present invention is the same as in the above invention.
  • the base sequence of the probe is not particularly limited as long as it specifically hybridizes to the corresponding nucleic acid.
  • the nucleic acid probe is labeled with a fluorescent dye and hybridized to the corresponding nucleic acid,
  • a plurality of base pairs of the nucleic acid hybrid complex form at least one pair of G (guanine) and (cytosine) pairs, or correspond to a fluorescent dye labeling site.
  • a probe labeled with a fluorescent dye at a portion other than the 5 ′ terminal phosphate group and the 3 ′ terminal 0H group at least one pair of G (guanine) base pairs in the portion labeled with the fluorescent dye It is preferable that the base sequence of the probe is designed so that a pair of C and cytosine is formed, or the base of the nucleic acid corresponding to the fluorescent dye labeling site is G.
  • the fluorescent dye to be labeled on the oligonucleotide is the same as described above.
  • FITC, EDANS, Texas Red (Texas red), 6-joe, TMR, x-rhodaraine, Cy3, Cy5, A1 exa 488, Alexa 532, 5-FAM, Bodepi (BODIPY) FL, BODIPY (BODIPY) 493/503, BODIPY (BODIPY) R6G, BODIPY (BODIPY) 564, BODIPY (BODIPY) 581, BODIPY (BODIPY) FL / C3 N PODEPY (BODIPY) FL / C6, PODIPYE (BODIPY) TMR, 6- TAMURA etc. are preferred, and among them, 5-FAM, BODIPY 493/503, BODIPY Fle 6-joe, TMR, 6-TAMURA etc. are more preferred (fluorescence intensity reduction). Rate is 60% or more.)
  • the method of labeling the oligonucleotide with a fluorescent dye is the same as in the above invention. '
  • a preferred probe form is one in which the 3 'or 5' end is labeled with a fluorescent dye. And the base at the labeled terminal is G or C, or the base of the corresponding nucleic acid at the fluorescent dye labeling site is G. If the 5 'end is labeled and the 3' end is unlabeled, the OH group at the 3 'end of ribose or deoxyribose at the 3' end is a phosphate group, etc., and the 2 'carbon of the 3' end ribose is The OH group may be modified with a phosphate group or the like, and there is no limitation.
  • bases in the probe chain may be modified.
  • one nucleic acid probe has at least one type of fluorescent dye and at least one labeling site.
  • nucleic acid probes used in the nucleic acid measurement methods A and B of the present invention are oligodeoxyribonucleotides or oligonucleotides. It may be composed of goribonucleotides. Alternatively, chimeric oligonucleotides containing both of them may be used. The oligonucleotides may be chemically modified. Chemically modified oligonucleotides may be interposed in the chains of chimeric oligonucleotides.
  • Examples of the modification site of the oligonucleotide to be subjected to the chemical modification include a terminal hydroxyl group or a terminal phosphate group at the end of the oligonucleotide, a nucleoside phosphate site in the chain, a carbon at position 5 of the pyrimidine ring, and Mention may be made of sugar (repos or deoxyribose) sites on nucleosides.
  • a preferred example is a report or dexoxy report site.
  • the oligonucleotide of the nucleic acid probe of the present invention may be a common general oligonucleotide. It can be produced by a method for producing nucleotides. It is also preferable to use a commercially available nucleic acid synthesizer (for example, ABI394 (Perkin Elmer, USA)).
  • any of the conventionally known labeling methods can be used (Nature Biotechnology, vol. 14, p. 303-308, 1996; Applied and Environmental Microbiology, 63). Vol., 1143-1147, 1997; Nucleic acids Research, 24, 4532-4535, 1996).
  • a fluorescent dye molecule is bound to the 5 ′ end, first, for example,-(CH 2 ) -SH is introduced into the phosphate group at the 5 ′ end as a spacer according to a conventional method.
  • These transductants are commercially available and may be purchased commercially (Midland Certified Reagent Company), where n is 3-8, preferably It is 6.
  • the fluorescent dye-labeled oligonucleotide can be synthesized by binding a fluorescent dye having SH group reactivity or a derivative thereof to this spacer.
  • the oligonucleotide thus obtained can be purified by chromatography such as reverse phase or the like to obtain the nucleic acid probe of the present invention.
  • the 3 ′ terminal base of the oligonucleotide can be labeled.
  • n is from 3 to 8, preferably from 4 to 7.
  • bases in the oligonucleotide nucleotides can also be labeled.
  • the amino group or OH group of the base may be labeled with the dye of the present invention in the same manner as in the method for the 5 ′ or 3 ′ terminal (ANALYTICAL BIOCHEMI STRY 225, pp. 32-38 (1998)).
  • kit reagents for example, Unilink aminomodi fi ier (manufactured by CLONTECH, USA), Funole 'Lipo-kit (FluoReporter Kit) F-6082, F-6083, F_6084, F-10220 ( In each case, it is convenient to use Molecular Probes (Molecular Probes, USA)).
  • Molecular Probes Molecular Probes, USA
  • a fluorescent dye molecule can be bound to the oligoribonucleotide according to a conventional method.
  • the oligonucleotide synthesized in this manner can be purified by a method such as reverse phase chromatography or the like to obtain the nucleic acid probe of the present invention.
  • the internal standard probe of the present invention utilizes the form of the nucleic acid probe described above, and has the following characteristics:
  • the internal standard nucleic acid probe has a sequence that hybridizes only with the internal standard nucleic acid under certain conditions and does not hybridize with the target nucleic acid.
  • a fluorescent dye labeled on the target nucleic acid probe which is caused by a change or an amount of change in the fluorescence intensity of the labeled fluorescent dye due to hybridization with the internal standard nucleic acid, resulting from hybridization of the target nucleic acid probe with the target nucleic acid. Is clearly distinguishable from the change or the amount of change in the fluorescence intensity.
  • the base sequence of the internal standard nucleic acid is the same as the internal standard nucleic acid probe and the internal standard nucleic acid.
  • the Tm value of the nucleic acid complex is 3 ° C or more, preferably 6 ° C or more, more preferably 1 ° C or more, as compared with the Tm value of the probe nucleic acid complex between the internal standard nucleic acid probe and the target nucleic acid. It has a difference of 0 ° C or more.
  • the base sequence of the internal standard nucleic acid is such that the Tm value of the probe / nucleic acid complex is 3 ° C or more, preferably 6 ° C, as compared with the Tm value of the probe / nucleic acid complex between the target nucleic acid probe and the target nucleic acid. It has a difference of not less than C, more preferably not less than 6 ° C.
  • the target nucleic acid probe has a base sequence that specifically hybridizes to the target nucleic acid, and has a base sequence that does not specifically hybridize to the internal standard nucleic acid.
  • an internal standard nucleic acid probe has a base sequence that specifically hybridizes to an internal standard nucleic acid, and has a base sequence that does not specifically hybridize to a target nucleic acid.
  • At least one probe is used for one type of target nucleic acid or internal standard nucleic acid.
  • the internal standard nucleic acid, the internal standard nucleic acid probe, the target nucleic acid, and the target nucleic acid probe are as described above. The same applies to the nucleic acid measurement method using the nucleic acid amplification method described later. However, this is only an example, and the present invention is not limited to these examples.
  • the present invention relates to the use of at least one kind of target nucleic acid probe and at least one kind of internal standard nucleic acid probe as described above, together with at least one kind of internal standard nucleic acid of known concentration.
  • the change or the amount of change in the fluorescence intensity of the fluorescent dye labeled on the target nucleic acid probe and / or the internal standard nucleic acid probe of the re-digestion reaction system is measured at least at one wavelength, and the measured value and the internal standard nucleic acid nucleic acid probe are measured.
  • the target nucleic acid concentration is measured from the concentration.
  • the measurement system or the hybridization reaction system may be a solution system or a solid system.
  • Hybridization reaction may be performed under ordinary known conditions.
  • the temperature as shown in Example 1, it is preferable to conduct an experiment of the following procedure to obtain a suitable temperature condition:
  • the target nucleic acid and the target nucleic acid probe are hybridized, but the target nucleic acid and the internal standard nucleic acid probe are the temperature at which the nucleic acid probe complex dissociates, and the internal standard.
  • the buffer, metal ions and the like may be under ordinary known conditions.
  • the “change amount” is more specifically exemplified as follows. It refers to the difference in fluorescence intensity or the rate of change in fluorescence intensity at a specific measurement wavelength in a measurement system before and after hybridization between a target nucleic acid and a target nucleic acid probe or between an internal standard nucleic acid and an internal standard nucleic acid probe.
  • the measurement wavelength is at least one or more. This targets one nucleic acid probe.
  • the change rate of the fluorescence intensity is the amount of change in the fluorescence intensity with respect to the fluorescence intensity before the start of the reaction as a function of the time after the start of the hybridization reaction, the change rate, and before the reaction as a function of the number of cycles in PCR. Means the rate of change of the fluorescence intensity after the start of the reaction with respect to the fluorescence intensity value.
  • the target nucleic acid is measured from the change or the amount of change in the fluorescence intensity of the target nucleic acid and the amount of the internal standard nucleic acid added, '' for example, ⁇ the amount or concentration of the internal standard nucleic acid at a known concentration,
  • the relationship between the change or the amount of change in the fluorescence intensity of the internal standard nucleic acid probe upon hybridization and the amount of change can be visually visualized, or a mathematical relational expression can be used to determine the fluorescence of the target nucleic acid probe.
  • the procedure for determining the amount or concentration of the target nucleic acid from the graph or the relational expression is recorded on a computer-readable recording medium, and is derived from the target nucleic acid probe when the target nucleic acid and the target nucleic acid probe are hybridized.
  • reaction system that is deemed not to inhibit the hybridization reaction between nucleic acids and the nucleic acid amplification reaction (here, a reaction using a nucleic acid probe; the same applies hereinafter).
  • a hybridization reaction and a nucleic acid amplification reaction are performed using an unknown sample containing at least one type of target nucleic acid, a target nucleic acid probe, an internal standard nucleic acid of various known concentrations, and an internal standard nucleic acid probe. Then, a change amount and a change rate of the fluorescence intensity of the reaction system due to each fluorescent dye labeled on the target nucleic acid probe and the internal standard nucleic acid probe of the reaction system are measured and calculated.
  • the graph or formula obtained in 3) can be used as it is. If there is a difference, calculate the difference coefficient manually or by computer.
  • the concentration or copy of the target nucleic acid in the unknown sample, or before the amplification of the target nucleic acid Determine the density or copy number of
  • the method for determining the concentration of the target nucleic acid has various variations and is not limited to the above example.
  • a known amount of an internal standard nucleic acid is added to an unknown sample.
  • a hybridization reaction is performed using a target nucleic acid probe and an internal standard nucleic acid probe.
  • the amount of change in the fluorescence intensity of the fluorescent dye labeled on each probe is measured.
  • the relationship between the amount of change and the concentration of the internal standard nucleic acid for the internal standard nucleic acid is considered to be applicable to the target nucleic acid (note that this relationship is not applicable to a system in which no hybridization inhibitor or polymorphism is present). Make sure that it can be considered). Therefore, the relational expression between the amount of change and the concentration of the internal standard nucleic acid for the internal standard nucleic acid is determined in advance using the unknown sample. From the relational expression, the concentration of the target nucleic acid in the unknown sample can be estimated.
  • a feature of the present invention is that the measurement of the fluorescence intensity is performed at least at one or more wavelengths.
  • the measurement wavelength will be at least 4 wavelengths.
  • the measurement is not necessarily performed at the same time. May be performed for different measurement systems.
  • the measurement wavelength may be at least one. It is preferable that the measurement system contains the target nucleic acid or the internal standard nucleic acid even if the measurement is performed separately. Of course, the method of the present invention can be carried out even if these nucleic acids are not included.
  • the fact that at least one kind of probe may be present in one target nucleic acid means that a plurality of kinds of probes are present in one target nucleic acid.
  • the measurement wavelength increases by the type of probe.
  • the measurement conditions may be the known conditions described above, and may be changed as appropriate according to the method of measuring the target nucleic acid.
  • a measurement system or a nucleic acid amplification reaction system containing at least one target nucleic acid, wherein at least one kind of an internal standard nucleic acid having a known concentration, at least one kind of a target nucleic acid probe and / or at least one kind.
  • the target nucleic acid and Z or the internal standard nucleic acid are amplified by the nucleic acid amplification method with the addition or presence of the internal standard nucleic acid probe, and the nucleic acid amplification in each cycle of the fluorescence intensity of the fluorescent dye labeled on each nucleic acid probe
  • This method measures the change or the amount of change before and after the reaction in real time, and measures the concentration or copy of the target nucleic acid before amplification from the measured value and the concentration of the internal standard nucleic acid.
  • the nucleic acid amplification method referred to in the present invention refers to a method for amplifying a nucleic acid in vitro.
  • PCR method quantitative PCR method
  • LCR method ligase chain reaction
  • real time monitoring quantitative polymerase chain reaction assays TAS method
  • RT-PCR RNA -Methods
  • RNA -Methods such as -primed PCR
  • Stretch PCR reverse PCR
  • reverse PCR PCR using Alu sequence
  • multiplex PCR PCR using mixed primers
  • PNA Protein 'nucleic acid' enzyme: Vol. 35, No. 17, 1990 Year, Kyoritsu Shuppan Co., Ltd .; Experimental Medicine, Vol. 15, No.
  • the ASRA method, RCA method, TAMA method, UCAN method, etc. are all included.
  • quantitative means the quantitative measurement of the degree of detection in addition to the original quantitative measurement, as described above. It should also include the analysis of the melting curve or the method of analysis.
  • the PCR method will be described as an example.
  • the PCR method is divided into the following two cases depending on the method of using the following probe.
  • the method of Mergney et al. involves two nucleic acid probes hybridizing to an amplified nucleic acid. Then, the fluorescence intensity of the nucleic acid probe during the annealing reaction and the fluorescence intensity of the receptor dye released from the amplified nucleic acid due to the degradation of the nucleic acid probe by the DNA polymerase during the nucleic acid extension reaction are measured. I do. Real difference of this measurement value for each cycle This is a method of measuring time.
  • This case is also divided into the following three cases.
  • a donor fluorescent dye and an acceptor fluorescent dye are labeled on different sites of the oligonucleotide. Both dyes cause the FRET phenomenon based on the stereostructure of the oligonucleotide. When encountering the amplified nucleic acid, the three-dimensional structure becomes loose and hybridizes to the amplified nucleic acid. Due to the change in steric structure, the phenomenon of FRET between the dyes is eliminated. Nucleic acid probes that hybridize to the amplified nucleic acid have the same fate as above. Then, the difference between the fluorescence intensities is measured as described above.
  • a probe consisting of a single-stranded oligonucleotide, which is labeled with a fluorescent dye at a portion other than the 3 ′ end of the probe, preferably at the 5 ′ end side, more preferably at the 5 ′ end or 5 ′ end,
  • This probe keeps the 3,0H group of ribose or deribose at the 3 'end free. That is, this is a method in which the probe is used as a primer for PCR (also referred to as a pramer probe in the present invention).
  • the corresponding nucleic acid to be amplified is labeled with a fluorescent dye.
  • the change in the fluorescence intensity of the PCR measurement (reaction) system in a state in which the amplified nucleic acid is denatured and in a state in which the amplified nucleic acid is hybridized is monitored in real time. Then, in the same manner as described above, the concentration of the corresponding nucleic acid before amplification is determined from the power of the change rate.
  • the structure, operation, and measurement are the same as those described in the first invention and the above, and thus are omitted here.
  • Various nucleic acid amplification methods that can be suitably used in the second invention are as described above. Therefore, the method of amplifying a target nucleic acid and measuring the concentration or copy number of the target nucleic acid before amplification in the present invention is a method in which the principle of the present invention is applied to the above-described nucleic acid amplification method.
  • the measurement system contains at least one kind of target nucleic acid and at least one kind of a known amount of an internal standard nucleic acid, and contains a target nucleic acid probe or an internal standard nucleic acid probe, or A nucleic acid amplification reaction is performed in a measurement system containing at least two types of lobes and an internal standard nucleic acid probe in combination, and is generated by hybridization between the target nucleic acid and the target nucleic acid probe before and after the reaction.
  • the change or change in the fluorescence intensity of the fluorescent dye labeled on the target nucleic acid probe is measured, and the concentration or copy number of the target nucleic acid before amplification is determined from the measured value and the amount of the internal standard nucleic acid added. Is a method of measuring
  • the real-time quantitative PCR method of the present invention comprises the steps of: adding a target nucleic acid probe or / and an internal standard nucleic acid probe to a measurement system containing at least one target nucleic acid and a known concentration of an internal standard nucleic acid; In the amplification process, the change or the amount of change in the fluorescence intensity of the measurement system before and after the reaction of the fluorescent dye labeled on each probe is monitored (measured) in real time during the amplification process. It is characterized by the following.
  • any of the above-described nucleic acid probes can be suitably used as the target nucleic acid probe or the internal standard nucleic acid probe, regardless of whether they are known or those of the present invention. 5 to 50, preferably 10 to 25, and particularly preferably 15 to 20 as long as they hybridize with the target nucleic acid and its amplification product during the PCR cycle. JP03 / 05118
  • the probe may be designed as either a forward-type primer or a reverse-type primer even with a simple probe.
  • nucleic acid probe and the primer various nucleic acid probes used in the above-mentioned known methods and the nucleic acid probes described in the methods A and B of the present invention can be suitably used. More preferably, they are the nucleic acid probes described in the methods A and B of the present invention. Particularly preferred probes are those of the above-mentioned V) to ix) of the method B of the present invention.
  • nucleic acid probes of the method B of the present invention a nucleic acid probe in which the 3′-OH group of deoxyribose or ribose at the 3 ′ end is not modified can be used as a primer.
  • various types of nucleic acid probes used in a known method have a similar form.
  • the target nucleic acid probe and the internal standard nucleic acid probe designed so that the base at the 3 ′ or 5 ′ end is G or C are designed based on the base sequences of the target nucleic acid and the internal standard nucleic acid.
  • a target nucleic acid probe or an internal standard nucleic acid probe is used as a primer for PCR
  • a specific example of a method for measuring a target nucleic acid is described in Data analysis method obtained by real-time quantitative PCR (described later). Here, the description is omitted.
  • a nucleic acid probe having a modified 3 ′ OH group of 3 ′ terminal deoxyribose or ribose cannot be used as a primer, but the probe can be used in a PCR reaction system by using a reverse primer and a forward primer. And PCR can be performed.
  • the target nucleic acid probe or the internal standard nucleic acid probe hybridized to the target nucleic acid or the amplified target nucleic acid or the internal standard nucleic acid or the amplified internal standard nucleic acid is degraded by the polymerase, and Decomposed and removed from the lobe complex. That is, it is used as a mere probe.
  • the nucleotide sequence region that can hybridize to the target nucleic acid and the internal standard nucleic acid is between the regions where both primers can hybridize.
  • the change or the amount of change in the fluorescence intensity of the dye that has labeled the target nucleic acid probe is measured (for example, the fluorescence intensity of the reaction system is measured).
  • the fluorescence intensity (value) of the dye labeling the target nucleic acid probe (as an example)
  • the probe is used to target the target nucleic acid by an aering reaction and polymerase.
  • the reaction system during the nucleic acid extension reaction until it is removed from the probe complex, and the latter can be the fluorescence intensity value of the reaction system in which the nucleic acid denaturation reaction has been completed. ) Is measured.
  • the hybridization reaction is performed on the internal standard nucleic acid at various concentrations, and the change or the change in the fluorescence intensity is measured. This measurement is performed in real time for each cycle.
  • the relational expression of the concentration of the internal standard nucleic acid before amplification is determined from these changes (rates).
  • the calibration curve of the change (rate) as a function of the concentration of the internal standard nucleic acids before amplification is obtained.
  • the data analysis method is the same as when the target nucleic acid probe is used as a primer. Normally, the concentration of the internal standard nucleic acid and the amount of change are linearly proportional to a specific number of cycles. Therefore, the cycle can be found by performing measurement in real time.
  • the same amount of change (rate) in the cycle number as described above is determined.
  • This change (rate) is applied to the above calibration curve or relational expression.
  • the target nucleic acid can be measured.
  • a specific example is shown in the embodiment.
  • the Tm value of the nucleic acid complex is the same as the nucleic acid complex of the primer.
  • Tm of the body ⁇ 15. C, preferably ⁇ 5 ° C 05118
  • the base sequence of the target nucleic acid probe be designed.
  • each amplified nucleic acid is secondarily labeled with a fluorescent dye useful for carrying out the present invention. Therefore, the fluorescence intensity of the reaction system in which the nucleic acid denaturing reaction is completed is large or small, but in the reaction system in which the annealing reaction is completed or the nucleic acid extension reaction is performed, the fluorescence intensity of the reaction system is the former. Decrease or increase from the fluorescence intensity of
  • the PCR reaction can be performed under the same reaction conditions as in ordinary PCR methods.
  • nucleic acid amplification can be carried out in a reaction system having a low Mg ion concentration (1-2 mM).
  • the reaction can also be carried out in a reaction system in the presence of a high concentration (2 to 4 mM) of Mg ions used in conventionally known quantitative PCR.
  • the third invention of the present invention relates to various methods such as the above-described nucleic acid measurement method (first invention), nucleic acid amplification method (second invention), polymorphism measurement / analysis / analysis method (described later), and FISH.
  • the invention is an invention of a method for analyzing data obtained when an analysis method (described later) or the like is performed, or when various methods are performed using various devices (described later).
  • the real-time quantitative PCR method currently consists of a reaction device that performs PCR, a device that detects the emission of fluorescent dyes, a user interface, that is, a computer that programs each procedure of the data analysis method and records it. It is a device that consists of a readable recording medium (also called Sequence Detection Software System) and a computer that controls them and analyzes the data, and is measured in real time. So, the measurement of the present invention JP03 / 05118
  • the device used in the present invention may be any device as long as it can monitor PCR in real time.
  • an ABI PRI SM TM 7700 base sequence detection system (Sequence Detection System SDS 7700) (Pakkin. - applied Bio systems, Inc. (Perkin Elmer App l ied Biosytems, Inc., USA)
  • Rye Tosaikura one ⁇ ⁇ system (Roche ⁇ Daiagunosuti box Co., Ltd., Germany), and the like can be mentioned as a particularly suitable one.
  • the above-described PCR reaction apparatus is an apparatus that repeatedly performs a thermal denaturation reaction, an annealing reaction, and a nucleic acid extension reaction of a target nucleic acid.
  • the detection system consists of an argon laser for fluorescence excitation and a CCD camera for a spectrograph.
  • a computer-readable recording medium in which each procedure of the data analysis method is programmed and recorded is used by being installed in a computer, controlling the above system via the computer, and outputting from the detection system. It records a program that analyzes and processes the data obtained.
  • a data analysis program recorded on a computer-readable recording medium uses a process of measuring the fluorescence intensity for each cycle, and the measured fluorescence intensity is used as a function of the cycle, that is, a PCR amplification program.
  • the process of displaying on the computer display as t the process of calculating the PCR cycle number (threshold cycle number: Ct value) at which the fluorescence intensity starts to be detected, and the creation of a calibration curve that calculates the copy number of the sample nucleic acid from the Ct value It consists of a process, the process of printing the data of each process described above, and plot values.
  • the concentration or concentration of the target nucleic acid at the start of the PCR A linear relationship holds between the peak number (Log value) and the change (rate) of the fluorescence intensity or the Ct value. Therefore, a calibration curve is prepared in advance using known concentrations or copy numbers of the target nucleic acid and the internal standard nucleic acid, and the change in the fluorescence intensity of a sample containing the target nucleic acid of unknown concentration or copy number is determined.
  • the concentration or copy number of the target nucleic acid before nucleic acid amplification can be calculated by measuring the amount (rate) or Ct value of the target nucleic acid.
  • the first characteristic is that in the method for analyzing data obtained by the real-time quantitative PCR method, the nucleic acid to be analyzed in each cycle (in addition to the target nucleic acid, the internal standard nucleic acid is included here).
  • the fluorescence intensity of the fluorescent dye that labeled the probe when hybridized to a nucleic acid probe corresponding to (specifically hybridizes to) the nucleic acid is converted from the probe nucleic acid complex to the polymerase in each cycle.
  • an arithmetic processing step of correcting the fluorescence intensity value of the dye that is, a correction arithmetic processing step It is.
  • nucleic acid to be analyzed and a nucleic acid probe corresponding to (specifically hybridizing to) the nucleic acid include an internal standard nucleic acid and an internal standard nucleic acid probe, and a target nucleic acid and a target nucleic acid probe. (The same applies hereinafter).
  • the “fluorescence intensity value of the fluorescent dye that labeled the probe when the amplified nucleic acid to be analyzed corresponds to the nucleic acid (specifically hybridizes) to the nucleic acid probe”
  • annealing at 40 to 85 ° C, preferably 50 to 80 ° C at each PCR site is performed.
  • examples include the fluorescence intensity value of the fluorescent dye that has labeled the nucleic acid probe in the reaction system (more specifically, the fluorescence intensity value of the reaction system measured at a measurement wavelength specific to the dye) ( The same applies hereinafter.) And, it means the reaction system where the reaction is completed.
  • the probe is used as a primer, it is an annealing reaction system or a nucleic acid extension reaction system at 40 to 85 ° C, preferably 50 to 80 ° C. The actual temperature depends on the length of the amplified nucleic acid.
  • the fluorescence intensity value of the dye when the probe is decomposed by the polymerase and the fluorescent dye is released from the dissociation of the lobe nucleic acid complex, or when the complex is dissociated by the nucleic acid denaturation reaction A reaction system for heat denaturation of nucleic acid in each PCR cycle, specifically, a reaction system at a reaction temperature of 90 to 100 ° C, preferably 94 to 96 ° C, in which the reaction is completed The fluorescence intensity value of the reaction system when measured at the measurement wavelength relating to the dye of the target nucleic acid probe in Example 1 (hereinafter the same applies).
  • a reaction system in which the probe is decomposed by the polymerase from the probe's nucleic acid complex and the fluorescent dye is released may be used. Shall be included.
  • the correction calculation process in the correction calculation process may be any as long as it meets the object of the present invention. Specifically, the following [Formula 1] is used. Can be exemplified.
  • n th cycle fluorescence intensity of the reaction system when amplified analyte nucleic acid is a nucleic acid probe hybridization Dizu corresponding to the nucleic acid
  • the correction calculation processing value obtained by the above processing is displayed on a computer display and / or the value is similarly displayed in the form of a graph as a function of each cycle, and Z is similarly displayed. Or printing sub-steps.
  • the second feature is that, in each cycle, the value of the correction calculation processing by [Equation 1] or [Equation 2] is substituted into the following [Equation 3] or [Equation 4], and the change in fluorescence between samples (fluorescence change)
  • This is a data analysis method that calculates the rate of change or the rate of change in fluorescence and compares them.
  • Fluorescence change amount (fluorescence change rate or fluorescence change rate) calculated by [Equation 3] or [Equation 4] in the nth cycle
  • the calculated value obtained in the above process is displayed on a computer display and printed or printed, or the comparison value or the value is similarly displayed as a graph function as a function of the number of cycles.
  • Z or a printing sub-step but the above-described sub-step may or may not be applied to the correction operation processing value obtained by [Equation 1] or [Equation 2].
  • the third feature is
  • A, b arbitrary numerical values, preferably integer values, more preferably natural numbers.
  • F n Fluorescence change amount (fluorescence change rate or fluorescence change rate) in n cycles calculated by [Equation 3] or [Equation 4]],
  • the arithmetic processing value obtained in each processing is displayed on a computer display and / or the value is used as a function of the number of cycles, and is used as a function of each cycle. It may include the sub-steps of displaying and printing or printing in the same manner as described above. Since the processed value obtained in the process of (3.4) needs to be printed at least, the process includes a printing sub-step. The processing value obtained in the above (3.4) may be further displayed on a computer display.
  • the correction processing value obtained by [Equation 1] or [Equation 2] and the processing value calculated by [Equation 3] or [Equation 4] are displayed on a computer display in the form of a graph as a function of the number of cycles.
  • the display and / or printing may or may not be performed, and the display and / or printing sub-steps may be added as necessary.
  • reaction system for measuring the internal standard nucleic acid and the reaction system for measuring the target nucleic acid may be used together or separately.
  • the data analysis method is particularly effective when the real-time quantitative PCR method is used to measure the amount of decrease in the emission of a fluorescent dye.
  • a reaction system in which the substance that inhibits the hybridization reaction and / or the nucleic acid amplification reaction between the nucleic acid and the nucleic acid probe or the polymorphic nucleic acid is considered to be absent. All or any of the processes with features Implement up to.
  • nucleic acid probes for unknown samples (things containing target nucleic acids) in which the inhibitor or polymorphic nucleic acid is supposed to be present, nucleic acid probes, internal standard nucleic acids of various concentrations, internal standard nucleic acids Perform a nucleic acid amplification reaction using the probe. In this case, a calibration curve can be obtained for the internal standard nucleic acid, but not for the target nucleic acid.
  • the processed data of the internal standard nucleic acid (the data processed by the data analysis method described above; the same applies hereinafter) is the same or substantially the same, the inhibitor or polymorphism is contained in the sample. Not considered. Therefore, various graphs, relational expressions, and calibration curves for the target nucleic acid and the internal standard nucleic acid obtained in 1) above can be used for the unknown sample.
  • the various graphs, relational expressions, and calibration curves obtained in this way are graphs, relational expressions, and calibration curves for determining the concentration or copy of the target nucleic acid before the nucleic acid amplification of the target nucleic acid.
  • the method for determining the concentration or copy number of the target nucleic acid before amplification of the present invention includes various modifications, and any method can be adopted as long as the object of the present invention is achieved. For example, this is shown in Example 1. P03 05118
  • an internal standard nucleic acid is added to a sample in which the inhibitor is considered to be contained in the sample, and the target nucleic acid probe of the present invention and Z or the internal standard nucleic acid probe are used. Instead, amplify the target nucleic acid and internal standard nucleic acid in the sample using real-time monitoring quantitative PCR. For each amplified nucleic acid, a hybridization reaction is performed using the target nucleic acid probe and the internal standard nucleic acid probe of the present invention. The amount of change in the fluorescence intensity of the fluorescent dye labeled on each probe is measured. Of course, when obtaining this variation, it is preferable to use the data analysis method of the present invention.
  • the relationship between the amount of change and the concentration of the internal standard nucleic acid for the internal standard nucleic acid is considered to be applicable to the target nucleic acid. (Note that inhibitors or polymorphisms in the hybridization reaction and the nucleic acid amplification reaction may be considered.) Make sure that this can be done in a system that does not exist). Therefore, the relational expression between the amount of change and the concentration of the internal standard nucleic acid for the internal standard nucleic acid is obtained in advance using the known sample.
  • the concentration or copy number of the amplified target nucleic acid and internal standard nucleic acid can be determined. Since the concentration or copy number of the internal standard nucleic acid before amplification is known, the concentration or copy number of the amplified target nucleic acid before amplification can be estimated.
  • a fourth feature is that, in a real-time quantitative PCR analysis apparatus, measurement and / or analysis of real-time quantitative PCR having an arithmetic and storage means for executing the data analysis method for the real-time quantitative PCR method of the present invention.
  • Device for executing the data analysis method for the real-time quantitative PCR method of the present invention.
  • the measurement system includes at least one or more target nucleic acids, a measurement device capable of measuring at least one or more wavelengths is preferable. Further, any device that can excite a fluorescent dye at at least one wavelength is more preferable. 03 05118
  • a fifth feature is that each step of a data analysis method for analyzing PCR using a real-time quantitative PCR analyzer is programmed, and the program of the present invention is recorded on a computer-readable recording medium on which the program is recorded.
  • This is a computer-readable recording medium that stores a program that allows a computer to execute each procedure of the analysis method.
  • a fourth invention of the present invention is an invention in which the above various methods are applied to a method for analyzing or measuring a polymorphism (including SNP) and / or mutation of a target nucleic acid.
  • the nucleic acid to be analyzed is a nucleic acid probe corresponding thereto.
  • Process of correcting the fluorescence intensity value of the fluorescent dye that has labeled the probe when hybridized with the probe with the fluorescence intensity value of the fluorescent dye that has labeled the probe when the probe is not hybridized With this, the processed data will be highly reliable (applying data analysis methods).
  • a fourth invention is a measuring device for analyzing or measuring a polymorphism (polymorphism) or Z and a mutation (mutation) of a target nucleic acid, wherein the data obtained by the data analysis method is processed. It is a measuring device having means. In addition, a procedure for causing a computer to execute the above-described process for correcting data obtained by a method for analyzing or measuring a polymorphism and / or a mutation of a target nucleic acid is recorded as a program. Computer-readable recording medium.
  • the fifth invention of the present invention is an invention in which the novel nucleic acid measuring method of the present invention is applied to various nucleic acid measuring methods, for example, the FISH method, the LCR method, the SD method, the TAS method and the like.
  • the method of the present invention can suitably utilize, as a sample for nucleic acid measurement, a complex microbial system, a symbiotic microbial system, or a cell homogenate.
  • the complex microbial system or the symbiotic microbial system is a substance that inhibits the hybridization (and, of course, the hybridization of an internal standard nucleic acid and its internal standard nucleic acid probe) of the present invention, and a substance that inhibits the Z or nucleic acid amplification reaction. This is because the nucleic acid probe may contain a substance that inhibits the emission of a fluorescent dye.
  • the abundance of the specific strain in the system can be measured. It can. This is because the number of copies of gene 5NA of 5S rRNA, 16SrRNA or 23SrRNA is constant depending on the strain.
  • the sixth invention of the present invention relates to a reaction solution, a measurement kit, and a device (for example, a DNA chip described below) which can be conveniently used when the novel nucleic acid measurement method of the present invention is carried out.
  • the reaction solution or assay kit contains at least one kind of internal standard nucleic acid, at least one kind of target nucleic acid probe or target nucleic acid, and Z or at least one kind of internal standard nucleic acid probe or internal nucleic acid. It contains a primer probe of the standard nucleic acid. Preferably, it appropriately contains other components (buffer solution, trace metal ions, etc.). However, since these components can be added to the measurement system at the time of use, the reaction liquids or the measurement kits are not limited to these components.
  • the form may be either a dry state or a liquid state.
  • primers when no primer probe is used
  • polymerase etc. It is preferable to include reagents necessary for the nucleic acid amplification reaction of the present invention.
  • the devices may be any devices as long as they can carry out the method of the present invention, and examples thereof include the following DNA chips.
  • At least one kind of internal standard nucleic acid probe and / or at least one kind of target nucleic acid probe that can be used in the present invention are bound to the surface of the solid support, and the target nucleic acid probe contains the target nucleic acid and the internal standard.
  • the nucleic acid probe is hybridized with an internal standard nucleic acid, and the change or the amount of change (before and after hybridization) of the fluorescence intensity specific to the fluorescent dye of the nucleic acid probe derived from each probe 'nucleic acid complex is measured. It is a device capable of measuring the amount or concentration of at least one kind of target nucleic acid.
  • At least one target nucleic acid probe and z or at least one internal standard nucleic acid probe are arrayed on a solid support surface.
  • the devices are arranged and coupled in a matrix, and for each nucleic acid probe bound to the surface of the solid support, at least one temperature sensor and heater are installed on the opposite surface, and the nucleic acid probe binding region has the optimal temperature.
  • a device whose temperature can be adjusted to meet conditions.
  • the target nucleic acid probe and the internal standard nucleic acid probe of the present invention can be immobilized on the surface of a solid (support layer), for example, the surface of slide glass.
  • a DNA chip This format is now called a DNA chip.
  • Monitoring of gene expression (gene express! On), determination of base sequence, mutation analysis, polymorphism analysis such as 1 (single nucleotide polymorphism (S NP)) Etc. can be used. Of course, it can also be used as a nucleic acid measurement device (chip).
  • the fifth invention of the present invention is a method for achieving these items in addition to the measurement of the target nucleic acid.
  • target nucleic acid probes having different base sequences and / or internal standard nucleic acid probes are individually bound on the same solid surface to simultaneously measure many types of target nucleic acids. it can. Therefore, the target nucleic acid can be measured in exactly the same way as a DNA chip, so it is a new DNA chip. Under optimal reaction conditions, nucleic acids other than the target nucleic acid do not hybridize to the target nucleic acid probe, and thus do not change the amount of fluorescence emitted. Therefore, there is no need to perform an operation of washing nucleic acids that do not specifically hybridize to the target nucleic acid probe.
  • the basic operation of the novel nucleic acid measurement method using the device of the present invention is as follows: a solution containing a nucleic acid to be analyzed is placed on a solid surface to which a target nucleic acid probe corresponding to the nucleic acid to be analyzed is bound; It only hybridizes the corresponding target nucleic acid probe.
  • a change in the fluorescence intensity of the fluorescent dye labeled on the target nucleic acid probe occurs before and after hybridization according to the amount of the nucleic acid to be analyzed, and the nucleic acid to be analyzed can be measured from the change (rate) in the fluorescence intensity. It becomes possible.
  • the change in the fluorescence intensity (rate) of the fluorescent dye labeled with the internal standard nucleic acid probe and the internal standard nucleic acid Create a relational equation or calibration curve with the amount or concentration.
  • the target nucleic acid can be measured by applying the change (rate) of the fluorescence intensity related to the target nucleic acid to this. This operation is as described above.
  • the device of the present invention by controlling the temperature of each target nucleic acid probe with a micro heater, it is possible to control the reaction conditions to the optimum for each probe, so that accurate measurement of the concentration becomes possible.
  • the dissociation curve between the target nucleic acid probe of the present invention and the target nucleic acid can be analyzed by continuously changing the temperature with a micro heater and measuring the amount of fluorescence during that. From the difference in the dissociation curves, it is possible to determine the properties of the hybridized nucleic acid and detect SNP.
  • Conditions for the hybridization are, for example, that the salt concentration is 0 to 2 molar, preferably 0.1 to 1.0 molar, ⁇ is 6 to 8, preferably 6.5 to 7.5. is there.
  • the reaction temperature is determined by the target nucleic acid product, which is the product of the hybridization reaction. It is preferable that the Tm value of the composite bead is within the range of 10 ° C. By doing so, non-specific hybridization can be prevented. When Tm is lower than 10 ° C, non-specific hybridization occurs. When it exceeds Ttn + 10 ° C, hybridization does not occur.
  • the Tm value can be determined in the same manner as in the experiment necessary for designing a target nucleic acid probe.
  • the reaction time is 1 second to 180 minutes, preferably 5 seconds to 90 minutes. If it is shorter than 1 second, the hybridization is not completed sufficiently. There is no point in making the reaction time too long.
  • the reaction time is greatly affected by the nucleic acid species, that is, the length of the nucleic acid, or the base sequence.
  • the concentration of the nucleic acid to be analyzed in the reaction solution is preferably from 0.1 to 10 ⁇ ⁇ .
  • the concentration of the target nucleic acid probe corresponding to the analyte in the device of the present invention per spot is preferably 1.0 to 25. ⁇ .
  • the internal standard nucleic acid of the present invention is used in an amount of 0.4 to 0.4 with respect to the internal standard nucleic acid probe.
  • the devices of the present invention include reaction liquids or measurement kits that enable the method of the present invention to be performed using the devices.
  • the reaction solution or the measurement kit contains at least one kind of internal standard nucleic acid.
  • Other components are the same as those in the above-mentioned reaction liquids or measurement kits.
  • the seventh invention of the method of the present invention is a method for separating, recovering, and concentrating a target nucleic acid, which enables each of the above-described methods of the present invention to be carried out simply, quickly, accurately, and specifically.
  • the method includes at least one step that does not cleave the target nucleobase sequence region.
  • This is a target nucleic acid separation / recovery method in which all nucleic acids including a target nucleic acid are cleaved by more than one kind of restriction enzyme, and then only a nucleic acid fraction containing a target nucleic acid base sequence is separated and recovered.
  • a method comprising the following means should be adopted.
  • the method of the present invention is not limited by this example.
  • the restriction enzyme is not particularly limited as long as it does not cleave the target nucleotide sequence region. That is, it can be changed according to the purpose. Known ones can be suitably used. For example, Bfa I, Bsa JI. Bss KI, Ddel, Mse I, Bso FI, Hha I, Hph I, Mnl I, Rca I, Alu I, Msp I and the like can be mentioned. It is preferable to use these in an appropriate combination according to the purpose. However, these do not limit the present invention. Restriction enzyme treatment conditions may be in accordance with the description (protocol) attached to the kit of the restriction enzyme reagent.
  • the molecular fraction may be appropriately selected from those known at present according to the purpose.
  • a molecular fractionation method such as a filtration method using various filters and a gel filtration method (including the HPLC method and the like) using various fillers.
  • concentration method a usual method may be adopted according to the purpose.
  • a concentration method using a solvent such as ethanol, freeze-drying, and air-drying can be used.
  • the seventh invention of the method of the present invention is characterized in that it has a high base of 50 bp or more having an arbitrary nucleotide sequence. This is a simple method for preparing artificial genes of high purity (double-stranded DNA).
  • the preparation method comprises the following means.
  • a single-stranded oligonucleotide having 50 bp or more having an arbitrary base sequence is artificially synthesized using a DNA synthesizer.
  • any type can be used as long as the object of the present invention is achieved.
  • a DNA synthesizer (ABI394) (Perkin Elmer Japan Applied Co., Ltd.) may be used.
  • the gene amplification method may be any method as long as the object of the present invention is achieved.
  • the PCR method may be used.
  • the dilution ratio of this type III is not particularly limited. Also, by diluting the gene amplification product and performing the gene amplification again using the diluent as type II, the risk of contamination due to single-stranded oligonucleic acid other than the above-mentioned purpose can be eliminated. It is possible.
  • the number of times this gene amplification is repeated may be determined according to the purpose of the present invention, and is not particularly limited.
  • the first to eighth inventions of the present invention can be used in various fields such as medicine, forensic medicine, anthropology, ancient biology, biology, genetic engineering, molecular biology, agriculture, and plant breeding. Also known as complex microbial systems or symbiotic microbial systems, microorganisms of various types are mixed or at least one type of microorganism is mixed with cells derived from other animals or plants and cannot be isolated from each other. It can be suitably used for analysis and analysis of systems.
  • the term “microorganism” used herein refers to a general microorganism, and is not particularly limited. Example
  • nec1 gene from soil was quantified using the nec1 gene, which is thought to be the causative gene for potato scab.
  • oligodeoxysiliponnucleotides (hereinafter referred to as oligonucleotides) were synthesized using a DNA synthesizer (ABI394) (PerkinElmer Japan Applied Co., Ltd.). .
  • the synthetic oligonucleotide obtained above was dried to obtain a dried product. Which was dissolved in 0.5M NaHC0 3 ZNa 2 C0 3 buffer (p H 9. 0). The lysate The gel was filtered through a NAP-10 column (Pharmacia) to remove unreacted substances.
  • the gel filtrate was dried and dissolved in 150 // L of sterile water (oligonucleotide solution).
  • 1 mg of the fluorescent dye e.g., BODIPY FL
  • DM F 1 0 0 ⁇ L
  • the oligonucleotide solution 1M NaHC0 3 / Na 2 C0 3
  • the mixture was reacted at room temperature for 1 hour, and a fluorescent dye was bound to the linker 1- (CH 2 ) 6 -SH at the 5 ′ end.
  • the reaction product was subjected to gel filtration using NAP-25 (manufactured by Pharmacia) to remove unreacted substances.
  • SEP - PAC by reverse phase HPLC using a C18 column, the oligonucleotide of the linker one - (CH 2) 7 - ⁇ 2 fluorescent dye was partitioned the purpose things conjugated min. The fraction was subjected to gel filtration with NAP-10 (Pharmacia). Thus, an oligonucleotide having a fluorescent dye bound to the 5 ′ end was obtained.
  • the measurement was carried out by measuring the value of 260 mn with a spectrophotometer of an oligonucleotide having a fluorescent dye bound to the 5 ′ end of the present invention.
  • a spectrophotometer for 650 nti! Scanning at an absorbance of ⁇ 220nra confirmed that there was absorption of the fluorescent dye and DNA.
  • the purity of the purified product was determined using the same reverse-phase HPLC as described above, and it was confirmed that the purified product was a single peak.
  • oligonucleotide having the nucleotide sequence of Table 1 Haiburidizu where regions of necl gene t that shown (corresponding) either is 1
  • NECM- R nucleotide sequence in the table The nucleotide sequences at positions 11, 12, 13, and 15 (from the 5 'end) are different from the sequence of the target nucleic acid (gene) (see Table 2 below).
  • the nucleotide sequence of NECM-F is the one in which the 11th, 13th, 14th, and 15th bases (from the 5 'end) in the table are changed (see Table 2 below).
  • the operation procedure is as follows.
  • the genomic DNA of Streptomyces turgidiscabies IF016080 (purchased from here) was used as type III, primers a and d were used as one set, and primers b and c were used as one set. PCR was performed for each.
  • the genomic DNA was prepared as follows.
  • NECB-24 shown in Table 2 is the base sequence of the target nucleic acid probe. -24 is for the internal standard nucleic acid probe. In this example, the target nucleic acid probe is called NECB-24 and the internal standard nucleic acid probe is called NECMB-24.
  • NECB-24 was labeled at the 5 ′ end with BODIPY FL by the method described above, and NECMB-24 was labeled at the 5 ′ end with 6-TAMRA by the method described above. In both cases, the 3 'OH group at the 3' end was phosphorylated and used.
  • the 10th, 11th, 12th and 14th bases T, G and A of NECB-24 are mutated to A, G, C and T respectively in NECMB-24.
  • Type ⁇ nucleic acid (Template): mixture of PCR fragment of internal standard nucleic acid NECM1 and target nucleic acid NECB1 (PCR amplification product with a and b primer set: about 700 bp)
  • Smart Cycler (Takara Bio Inc.) (hereinafter referred to as Smart Cycler for convenience).
  • the target nucleic acid was extracted from the soil using the BiolOl kit (for soil), and further purified using the Wizard DNA Clean-Up system to obtain a soil sample (sample).
  • target nucleic acid probe NECB-24 and internal standard nucleic acid probe NECMB-24 Corresponding nucleic acid (target nucleic acid or internal standard nucleic acid) Fluorescence intensity change (decrease) rate and dissociation curve when hybridized. The same reaction buffer as that used in the PCR reaction was used.
  • the results are shown in FIGS.
  • the maximum fluorescence intensity change rate of both probes was about 70%, indicating a reasonable change rate.
  • the difference in Tm value between the target nucleic acid and the internal standard nucleic acid is slightly less than 20 ° C, and if it is detected around 62 ° C, only the target nucleic acid is detected without detecting the internal standard nucleic acid. It became clear that we could do it.
  • the difference between the Tm value of the internal standard nucleic acid and the target nucleic acid is slightly less than 20 ° C, and if detected at around 62 ° C, only the target nucleic acid is detected without detecting the target nucleic acid. It was found that can be detected. Therefore, detection of PCR amplification products was performed at 62 ° C. for both probes.
  • FIG. 5 shows the results of real-time monitoring when PCR of the internal standard nucleic acid was performed using the above c and d with NECMB-24 as the nucleic acid probe and primer.
  • High fluorescence intensity change rate of about 30% for both probes (Fluorescence quenching rate). In both probes, the obtained fluorescence intensity change rates varied depending on the mixing ratio of the target nucleic acid and the internal standard nucleic acid. From these results, it was considered that the target nucleic acid could be quantitatively quantified by this method.
  • the method for determining the concentration or copy number of the target nucleic acid in the unknown sample from each figure is described below.
  • an unknown sample containing a target nucleic acid is added with an internal standard nucleic acid whose copy number is known, a target nucleic acid probe and an internal standard nucleic acid probe, and PCR is performed.
  • the change rate of the fluorescence intensity of both nucleic acids is determined.
  • the amount of amplified internal standard nucleic acid (referred to as A) and the amount of target nucleic acid (referred to as B) when indicating the rate of change in fluorescence are determined.
  • A the copy number of the internal standard nucleic acid before the nucleic acid amplification
  • B the copy number of the target nucleic acid before the amplification
  • the values for each method in Table 3 are the average values obtained by performing the analysis five times.
  • the usefulness of the novel measurement method of the present invention in which the concentration or copy number of the target nucleic acid is determined from the change amount or change rate of the fluorescence intensity derived from the target nucleic acid and the internal standard nucleic acid by adding the internal standard nucleic acid, Became. Further, it was revealed that the standard deviation value of the method of the present invention was smaller than that of the conventional real-time quantitative PCR method, and the fluctuation of the quantitative value was small. From these results, it was proved that the present invention is superior to the conventional method in the accuracy in the presence of the PCR inhibitor, as well as in the absence thereof.
  • the addition ratio of the target nucleic acid to the internal standard nucleic acid was changed, and the amplification products of each PCR were monitored in real time for the change in the fluorescence intensity of the two types of probes. As a result, it was confirmed that the amount of change in fluorescence intensity was obtained according to the addition ratio.
  • Example 1 Using the probe of Mergney et al., The same examination as in Example 1 was performed.
  • the nucleotide sequence of the NECB-24 acceptor shown in Table 4 is the nucleotide sequence of the target nucleic acid probe described in Example 1, and the nucleotide sequence of the NECMB-24 acceptor is the internal standard nucleic acid described in Example 1 as described above. It is that of a probe.
  • the target nucleic acid probe is referred to as NECB-24 acceptor
  • the internal standard nucleic acid probe is referred to as NECMB-24 acceptor.
  • the NECB-24 acceptor has its 5 'end labeled with a fluorescent dye called LCRed640
  • the NECMB-24 acceptor has its 5' end labeled with a fluorescent dye called LCRed705.
  • Fluorescent dyes (LCRed705, LCRed640) modified with the above two types of probes function as receptor dyes for the FRET phenomenon.
  • the probe modified with the donor dye necessary to excite these dyes is Necdon (see Table 4 for the sequence).
  • the 3 'end of the probe is modified to FITC, and when the respective target genes are present, the two salts are placed so that the dye-labeled sites face each other. It is designed to hybridize at a base interval (see Fig. 9).
  • the base sequence of the probe is the same as that of NECMB-24 used in Example 1 in the NECMB-24 acceptor, and the base sequence of NECB-24 acceptoi is the same as that of NECB-24 used in Example 1. -Same as 24.
  • Table 4 Sequence of the probe of Mergney et al.
  • Measuring device Light cycler system (Kuchishu Co., Ltd.) (hereinafter referred to as light cycler for convenience).
  • the LCRed640 was measured in channel 2 and the fluorescence of LCRed705 was measured in channel 3 at the same time.
  • target nucleic acid probe set of Nec-donor and NECB-24 acceptor
  • internal standard nucleic acid probe set of Nec-donor and NECMB-24 acceptor
  • the produced probe was evaluated by preparing the change rate of the fluorescence of the receptor and the dissociation curve. The same reaction buffer as that used in the PCR reaction was used.
  • the results are shown in FIGS. 10 and 11.
  • the increase in the fluorescent intensity of the acceptor was about 40% for both probes, and the fluorescent intensity of the acceptor was remarkably increased.
  • the T m of a completely complementary nucleic acid a target nucleic acid and a target nucleic acid probe, or an internal standard nucleic acid and an internal standard nucleic acid probe
  • a mismatched nucleic acid The difference between the values is slightly lower than 20 ° C. If detected at around 62 ° C, the mismatched nucleic acid (target nucleic acid and internal standard nucleic acid probe, or internal standard nucleic acid and target nucleic acid probe) will not be detected. It was clarified that only a nucleic acid completely complementary to DNA could be detected. From the above results, as in Example 1, the detection of PCR amplification products for both probes was performed at 62 ° C.
  • target nucleic acid base sequence and the concentration to be added are known, it should be called a standard nucleic acid, but in the present invention, it is referred to as a target nucleic acid for convenience.
  • PCR was performed under the reaction conditions described in 7) of A) of Example 1). Then, the amplification product derived from the target nucleic acid and the amplification product derived from the internal nucleic acid were respectively monitored in real time by the probes of Mergney et al.
  • the fluorescence intensity increase rate derived from the amplification product of the target nucleic acid (the fluorescence intensity increase rate of the NECB-24 acceptor probe) and the fluorescence intensity increase rate derived from the amplification product of the internal standard nucleic acid (the fluorescence intensity of the NECMB-24 acceptor probe)
  • the ratio between the target nucleic acid and the internal standard nucleic acid before PCR was determined (see Figure 12).
  • the method for determining the concentration or copy number of the target nucleic acid in the unknown sample from Fig. 12 is described below.
  • an unknown sample containing a target nucleic acid is added with an internal standard nucleic acid having a known copy number, a target nucleic acid probe, and an internal standard nucleic acid probe, and PCR is performed.
  • the rate of increase in the fluorescence intensity derived from the amplification products of both nucleic acids is determined.
  • the fluorescence intensity increase rate derived from the amplification product of the target nucleic acid and the fluorescence intensity increase rate derived from the amplification product of the internal standard nucleic acid are determined.
  • the ratio (BZA) between the target nucleic acid (B) and the internal standard nucleic acid (A) is determined. Since the copy number ( ⁇ ') of the internal standard nucleic acid before nucleic acid amplification is known, the copy number ( ⁇ ') of the target nucleic acid before amplification can be calculated by the following formula:
  • a nucleic acid extraction sample actually extracted from a soil sample was added to a target gene sample with a known concentration (hereinafter referred to as a soil extraction nucleic acid extraction sample). Were mixed at different concentrations to determine whether accurate quantification could be performed.
  • the soil used was confirmed beforehand to be free of the Necl gene, which is the target gene.
  • the internal standard nucleic acid detection probe (NECMB-24 acceptor), the target nucleic acid probe (NECB-24 acceptor) and the Nec-donor were both added to the reaction tube, and the internal standard nucleic acid and target nucleic acid were simultaneously added, respectively. Detected.
  • the method of adding the internal standard nucleic acid of the present invention was performed using the probe of Mergney et al. And the copy number of the target nucleic acid before amplification was determined. Table 5 shows the differences in the measured values due to the differences in the methods. As a result, in the sample to which the nucleic acid sample extracted from soil was added, similar to the above-described conventional method (real-time quantitative PCR). A decrease in amplification efficiency (delay in amplification reaction) was observed, but amplification of the internal standard gene was observed. Efficiency also decreased, indicating that the measurements remained constant.
  • Table 5 Target nucleic acids due to differences in methods
  • the copy number of the target gene was measured using a known amount of an internal standard nucleic acid for a soil sample whose copy number was unknown.
  • the soil sample used was the one used in the measurement on the actual soil sample of Example 1 (67.5 copies per 11 soil extraction solution). The same as for the target gene (necl gene).
  • Example 1 As in Example 1, about 66.9 copies of the internal standard nucleic acid were added to 1 ⁇ l and 2 / i 1 of the nucleic acid sample extracted from soil, and the target nucleic acid (gene) (necl gene) was measured. Was performed by the method of the present invention. As a result, 83.2 copies were measured in the system to which 1 ⁇ l of the nucleic acid sample extracted from soil was added. The measured value was almost the same as the measured value of Example 1 (6.7.5 copies). The measured value of the system to which 2 ⁇ l of the nucleic acid sample extracted from soil was added was 152.7 copies.
  • the probe used was synthesized by Espec Origo Service Co., Ltd. (http: @ww. Busine ss-zone, cora / espec-oligo /).
  • NECB-24 beacon shown in Table 6 is the nucleotide sequence of the target nucleic acid probe, and the nucleotide sequence of NECM0-24 beacon is that of the internal standard nucleic acid probe.
  • NECB-24 beacon has four bases added to form a stem 'loop structure. The 5' end is a fluorescent dye called FAM, and the 3 'end is a quencher substance called DABCYL. Been I have.
  • NECMB-24 beacon also has 4 bases added to form a stem 'norepe structure, the 5' end is a fluorescent dye called 6-TAMRA, and the 3 'end is a quencher substance called DABCYL. It is labeled.
  • the probe sequence is as shown in Table 6.
  • Table 6 Molecular beacon distribution! 1
  • Smart Cycler Smart Cycler System (Takara Bayo Co., Ltd.) (hereinafter referred to as “Smart Cycler” for convenience).
  • Cyannone 1 (Ex, 450-495 nm; Em, 505-537 nm).
  • the fluorescence measurement of FAM labeled on NECB-24 beacon was performed on channel 1, and the fluorescence measurement of 6-TAMRA labeled on NECB-24 beacon was performed on channel 3 at the same time.
  • a fluorescence intensity increase rate and a dissociation curve were prepared when the target nucleic acid probe (NECB-24 beacon) and the internal standard nucleic acid probe (NE CMB-24 beacon) were hybridized with the corresponding nucleic acid (target nucleic acid or internal standard nucleic acid).
  • the same reaction buffer as that used in the PCR reaction was used as described above.
  • the relational expression between the increase rate of the fluorescence intensity derived from the target nucleic acid and the increase rate of the fluorescence intensity derived from the internal standard nucleic acid with respect to the concentration ratio of the target nucleic acid and the internal standard nucleic acid was determined in the same manner as in Example 2.
  • the method for determining the concentration or copy number of the target nucleic acid in the unknown sample is also the same as in Example 2.
  • the measurement was performed in the same manner as in Examples 1 and 2, except that the Molecular beacon probe was used. Under the same conditions as for the sample, the measurement results of the target nucleic acid by the conventional method using the calibration curve of the external standard gene and the measurement of the target nucleic acid by the method of the present invention. The results were compared with the results. As a result, a decrease in amplification efficiency (delay in the amplification reaction) was observed in the test sample to which the soil-extracted nucleic acid sample was added, as in Examples 1 and 2, but the added target nucleic acid (gene) was accurately measured. It was possible (see Table 7). From these results, it has been clarified that the novel measurement method of the present invention can be suitably performed even when molecular beacon is used as a probe. Table 7 Differences in quantitative values of target nucleic acids (genes) due to differences in methods
  • the nucleotide sequence was the same as that of NECB-24 described in Example 1 (see Table 2).
  • the fluorescent substance Texas Red (Texas Red) was labeled on the 5 'terminal cytidylic acid, and the quencher substance Dabcyl was labeled on the sixth thymine from the 5' terminal.
  • the nucleotide sequence was the same as that of NECMB-24 described in Example 1, and the fluorescent substance Alexa 594 was labeled on the 5'-terminal cytidylic acid, and the quencher substance Dabcyl was labeled on the sixth thymine from the 5'-terminal.
  • the preparation was commissioned in the same manner as the target nucleic acid probe.
  • the excitation wavelength and the measured fluorescence wavelength are as follows.
  • Target nucleic acid probe excitation wavelength: 590 nm (4 rim width); measured fluorescence wavelength: 610 nra (4 ⁇ ) D
  • Target Gene necl Gene
  • the target gene (necl gene) in the soil nucleic acid extraction sample was determined by the above-mentioned (1)-(1)-(i)-(iv) of Method B of the present invention.
  • a nucleic acid probe having the characteristic of 3 Using a nucleic acid probe having the characteristic of 3), a gene measurement method was performed by a PCR method in which an internal standard nucleic acid was added in the same manner as in Example 1 and measurement was performed.
  • the PCR conditions and the like are the same as in Example 1.
  • the target gene ( ⁇ eel gene) contained in 1 ⁇ L of the soil nucleic acid extract sample was 63.2 copies, and the target gene (necl gene) contained in the soil nucleic acid extract sample 2 / L was 14.8.
  • the nucleic acid probes having the characteristics (1) to (3) of i) to iv) of the method B of the present invention are used.
  • the novel measurement method of the present invention can be suitably implemented.
  • a common target gene (necl gene) was measured by a similar method (a method of adding an internal standard nucleic acid) using different types of nucleic acid probes. As a result, almost the same good results were obtained. It has become clear that any probe capable of real-time monitoring of the gene amplification process can be applied to the novel measurement method of the present invention regardless of the type of probe.
  • Nucleic acid amplification of target nucleic acid by performing real-time quantitative PCR using the hairpin probe described in V) to ix) as a primer (sunrise primer) when utilizing the FRET phenomenon of the known method This is an example in which the method of the present invention is applied to the method for determining the number of copies in the preceding step.
  • the 5 'end was labeled with the donor dye FAM, and the 12th base T from the 3' end was labeled with the quencher monodye DABCYL.
  • Nucleotide sequence agcttt, CTCCATGAAagcTtCCGCGACCAG (underline: added sequence, lowercase letter: site whose sequence is different from the target nucleic acid detection foreprimer. That is, site where the target nucleic acid differs from the internal standard nucleic acid sequence)
  • the 5 'terminal phosphorus group was labeled with the donor dye 6—TAMRA, and the 12th base T from the 3' terminal was labeled with the quencher monodye DABCYL in the same manner as described above.
  • the forward primer (forward primer for detecting a target nucleic acid and forward primer for detecting an internal standard nucleic acid) is designed to function as a sunrise primer, and is designed to function as a secondary primer in the primer by gene amplification. It is designed to emit fluorescence by eliminating the structure. Therefore, real-time monitoring of the amplification product is possible by measuring this fluorescence emission. Further, each forward primer is designed to recognize sites having different base sequences between the internal standard gene and the target gene, and to specifically bind and extend each of them. Therefore, each forward primer (forward primer for detecting a target nucleic acid and forward primer for detecting an internal standard nucleic acid) can specifically amplify the target nucleic acid or the internal standard nucleic acid.
  • the forma primer for detecting a target nucleic acid and the forma primer for detecting an internal standard nucleic acid are labeled with different fluorescent dyes, amplification products derived from the target nucleic acid and amplification products derived from the internal standard nucleic acid are used. Can be detected simultaneously in the same reaction system.
  • the primer was synthesized with ESPEC ORIGO SERVICE CO., LTD. (Http: //www.business-zone, com / espec-oligo /).
  • Type I nucleic acid A mixture of the internal standard nucleic acid NECM1 and the target nucleic acid NEC1 PCR fragment (PCR amplification product of a and b pramers: about 700 bp)
  • FAM labeled on the forma primer for detecting a target nucleic acid was measured in channel 1, and at the same time, fluorescence of 6-TAMRA labeled on a forma primer for detecting an internal standard nucleic acid was measured in channel 3.
  • PCR was performed under the reaction conditions described in Example 2-4) above, with the concentration ratio of the target nucleic acid and the internal standard nucleic acid varied as various types, and amplification was performed based on the target nucleic acid.
  • the product and the amplification product derived from the internal standard nucleic acid were each monitored in real time.
  • the results show that the rate of increase in fluorescence intensity from the amplification product of the target nucleic acid (NECB-24 acceptor probe) and the rate of increase in fluorescence intensity from the amplification product of the internal standard nucleic acid (NEMB-24 acceptor probe).
  • the ratio between the target nucleic acid and the internal standard nucleic acid before PCR was determined (see Figure 15).
  • a nucleic acid extract sample actually extracted from a soil sample was mixed with a target gene sample of known concentration at different concentrations, and it was examined whether accurate measurement could be performed. Both the primer for the internal standard nucleic acid and the primer for the target nucleic acid were added to the reaction tube, and the internal standard nucleic acid and the target nucleic acid were simultaneously detected, respectively.
  • a calibration curve was prepared using a known concentration of an external target gene (necl gene).
  • a sample obtained by adding 6,690,000 copies of the target gene (necl gene) to 3 ⁇ l of a sample containing nucleic acid extracted from soil was designated as type I.
  • the necl gene in this sample was measured as described above. This was performed using a calibration curve.
  • the necl gene was also measured for a sample to which the same number of necl genes had been added without adding the soil-extracted nucleic acid sample.
  • the addition of the soil-extracted nucleic acid sample shifts the graph to the right compared to the sample without the soil-extracted nucleic acid sample, that is, the amplification reaction.
  • the internal standard nucleic acid corresponding to the target nucleic acid was added to the reaction system, and the amount or rate of change in the fluorescence intensity derived from the target nucleic acid and the internal standard nucleic acid was determined using a sunrise primer.
  • the usefulness of the novel measurement method of the present invention for determining the copy number has been clarified.
  • Probes and primers were manufactured by Espec Oligo Service Co., Ltd. (htp: // www. Business-zone, com / espec-oligo /).
  • Example 8 was prepared by an artificial gene acquisition method described later.
  • Primers were designed using the primer design software for the LAMP method on the website of Eiken Chemical Co., Ltd. (http://www.eiken.co.jp/). This primer has a sequence completely complementary to the target nucleic acid and the internal standard nucleic acid, and is a primer capable of simultaneously amplifying the target nucleic acid and the internal standard nucleic acid. Table 9 Probe sequence for detecting LAMP amplification products
  • NECB-23 LAMP shown in Table 9 is a nucleotide sequence of a probe for detecting an amplification product derived from a target nucleic acid amplified by the LAMP method.
  • NEMB-23 LAMP is derived from an internal standard amplified by LAMP. This is a nucleic acid probe for detecting the amplification product.
  • the target nucleic acid probe is called NECB-24 and the internal standard nucleic acid probe is called NECMB-24.
  • NECB-24 is labeled at the 5 ′ end with BODIPY FL by the method described above, and NECMB-24 is labeled at the 5 ′ end with 6-TAMRA by the method described above. In both cases, the 3'OH group at the 3 'end was phosphorylated and used.
  • This probe is the type of nucleic acid probe used in Example 1 that reduces the fluorescence intensity by hybridizing with the corresponding nucleic acid.
  • the difference in Tm between the internal standard nucleic acid and the target nucleic acid is about 20 ° C slightly higher than that of the NECB-23 LAMP, and is within the range of 60 to 70 ° C. It has been clarified that the detection can detect only the target nucleic acid without detecting the target nucleic acid. Based on the above results, detection of PCR amplification products was performed at 65 ° C, the reaction temperature of the LAMP method, for both probes.
  • Amplification kit containing polymerase, dNTP, etc . Loopamp DNA amplification reagent kit (Eiken Chemical Co., Ltd.)
  • Smart Cycler Smart Cycler System (Takara Bio Inc.) (hereinafter referred to as “Smart Cycler” for convenience).
  • Cyanenne 1 (Ex, 450-495 nm; Em, 505-537 mn).
  • the LAMP reaction was carried out under the reaction conditions described in 2) above, with the concentration ratio of the target nucleic acid and the internal standard nucleic acid varied as various types, and the amplification product derived from the target nucleic acid and the internal
  • the amplification products derived from the standard nucleic acids were monitored in real time with the nucleic acid probes shown in Table 10 respectively.
  • the fluorescence intensity change ⁇ quenching (decrease) rate ⁇ (hereinafter simply referred to as the fluorescence quenching rate) derived from the amplification product of the target nucleic acid (NECB-23 LAMP fluorescence quenching rate) and the internal standard nucleic acid amplification product
  • the ratio with the fluorescence quenching rate of the origin (the fluorescence quenching rate of NECMB-23 LAMP) was determined, and the relationship between the ratio and the concentration ratio of the target nucleic acid and the internal standard nucleic acid before the LAMP reaction was determined.
  • the novel nucleic acid (gene) measurement method of the present invention which comprises adding an internal standard nucleic acid and detecting the target nucleic acid and the internal standard nucleic acid with a nucleic acid probe, includes a gene amplification method other than the PCR method.
  • the power is proven to be adaptable.
  • restriction enzymes used were Bfal, BsaJl, BssKl, Ddel, Msel, and Mspl (all purchased from New England BIOLABS Power). These are double-stranded D Because it is a restriction enzyme that recognizes and cuts a specific 4-base sequence of NA, double-stranded DNA is considered to be cut to a length of about 40 bases on a probability basis (arbitrary 4-base sequence). Since there are 256 sequences, the site that is cleaved by one type of restriction enzyme that recognizes four bases is thought to appear every 256 bases.
  • necl gene is treated with the above-mentioned six types of restriction enzymes, so that the necl gene has a length of 536 bases and exists as a relatively long double-stranded DNA. Therefore, the fraction containing the target gene can be easily collected using the length of the DNA as an index.
  • the necl gene during the redissolution was measured in the same manner as in Experimental Example 7) of Example 1. Also, in order to confirm the presence or absence of concentration, the necl gene of the nucleic acid solution before the restriction enzyme treatment was measured in the same manner as described above. The added amount of the nucleic acid solution was set to ⁇ . As a result, the number of necl genes in the nucleic acid solution subjected to the concentration treatment was 470 copies ⁇ 1, and the number of the genes in the nucleic acid solution without concentration was 63 copies 1. based on the above results, By this method, it was proved that the target nucleic acid (necl gene) can be easily concentrated.
  • Synthesis of a long-chain artificial gene having an arbitrary nucleotide sequence was performed by the following method. 1) Synthesis of single-stranded oligonucleotide DNA
  • the single-stranded oligonucleotide gene to be synthesized was an internal standard gene corresponding to the necl gene used in Example 6.
  • the sequence is shown below.
  • the number of bases is 274 bp, and the part shown in lowercase letters and underline is a part different in sequence from the nec1 gene which is the target nucleic acid.
  • the one-piece Origo Nuku Leotide DNA was commissioned to Espec Origo Service Co., Ltd. and synthesized.
  • the synthesized oligo DNA was subjected to electrophoresis, and it was confirmed whether a band derived from the desired single-stranded oligo DNA gene (274 bp) was obtained, but a clear band could be confirmed around 270 bp. Did not. In addition, the electrophoresis pattern was smeared as a whole, and no clear band was confirmed other than 270 bp.
  • the above results are thought to suggest that single-stranded oligo DNAs of various lengths have been synthesized, and that the ratio of the target single-stranded oligo DNA genes is extremely low. From the above results, it was strongly suggested that it is impossible to obtain a long-chain gene having an arbitrary sequence by a conventional technique for synthesizing oligo DNA.
  • PCR amplification was performed using the single-stranded oligonucleotide DNA gene described above as type III.
  • the sequences of the primers used are shown in Table 11.
  • the conditions of PCR are as shown below.
  • Taq polymerase Gene Taq (Nippon Gene Co., Ltd.)
  • the PCR product was purified using a Microspin S-400HR column (Amersham Fanolemasa).
  • the sequencing reaction was performed using a didoxy terminator / sequencing kit (manufactured by Applied Biosystems), and the obtained product was analyzed using an automatic base sequencer (AB I PRISM TM 377, Applied Biosystems, Inc.). The base sequence was determined using Biosystems). As a result, it was confirmed that the PCR product had the sequence of the target internal standard gene.
  • the type of dye to be labeled on the nucleic acid probe of the method B of the present invention was examined.
  • a deoxyribopolynucleotide having the following base sequence was used as a nucleic acid probe, and a deoxyribopolynucleotide having the following base sequence was used as a corresponding nucleic acid.
  • Each deoxyribopolynucleotide was prepared using the nucleic acid synthesizer described above.
  • Example applying the method of Morri son et al. (This is a method using two types of nucleic acid probes. Before the nucleic acid probes hybridize to the target nucleic acid, the probes are hybridized to each other. ).
  • the target nucleic acid probe consists of the following two oligonucleotides.
  • a fluorescent substance 6-TAMRA was labeled on the O H group of the phosphate group at the 5 ′ end.
  • the quencher dye Dabcyl was labeled at the 3'-position C O H group of adenosine deoxyribose at the 3 'end.
  • target nucleic acid Like the target nucleic acid, it is a probe used in the method of Morrison et al.
  • the following base sequence is composed of two oligonucleotides.
  • the excitation wavelength and the measured fluorescence wavelength are as follows.
  • the concentration of the target nucleic acid and the internal standard nucleic acid were variously changed, and the amount of change in the fluorescence intensity before and after hybridization was measured to prepare a calibration curve of the target nucleic acid and the internal standard nucleic acid.
  • Target nucleic acid probe concentration 500nM
  • a soil containing no target nucleic acid was prepared in the same manner as in Example 1. The absence of the target nucleic acid was confirmed by the method of Example 1.
  • Target nucleic acid recovery test using a measurement system containing soil samples (inhibitors of hybridization reaction) Measurement of target nucleic acids
  • the measurement result was 2.8 ⁇ 10 s copy Z 10 L, and the recovery rate of the target nucleic acid was 112%.
  • the novel nucleic acid measurement method of the present invention contains a substance that inhibits a hybridization reaction and / or a nucleic acid amplification reaction between a target nucleic acid and a target nucleic acid probe, or contains a polymorphic nucleic acid. Even in a sample, the target nucleic acid can be specifically measured in a very small amount, accurately, simply, and in a short time. In addition, a plurality of target nucleic acids can be measured simultaneously.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

A complex sample frequently contains a substance inhibiting PCR. A novel method of assaying a nucleic acid whereby a specific gene (hereinafter referred to as the target gene) in such a sample containing at least one target nucleic acid can be accurately and quickly detected and quantified by the real time quantitative PCR. This method comprises adding a nucleic acid (an internal standard nucleic acid) having a partial mutation in the base sequence of the target nucleic acid at a known concentration to an assay system, further adding a target nucleic acid probe specifically hybridizable with the target nucleic acid and an internal standard nucleic acid probe specifically hybridizable with the internal standard nucleic acid to the assay system, performing PCR, simultaneously assaying the target nucleic acid and the internal standard nucleic acid, and determining the concentration of the target nucleic acid from the concentration of the internal nucleic acid thus measured.

Description

明 細 書 核酸の新規測定方法 技術分野  Description New nucleic acid measurement method Technical field
本発明は、 蛍光色素で標識された核酸プローブを用いて、 標的核酸 を測定する方法に関する。  The present invention relates to a method for measuring a target nucleic acid using a nucleic acid probe labeled with a fluorescent dye.
詳しくは、 当該方法において、 核酸のハイブリダィゼーシヨ ン反応及 び Z又は核酸増幅反応を阻害する物質が、 存在する測定系若しくは反応 系に、 標的核酸に特異的にハイプリダイズする標的核酸プローブと標的 核酸に対応する内部標準核酸に特異的にハイブリダイズする内部標準 核酸プローブを添加し、 少なく とも一種の標的核酸を特異的かつ正確に 測定する方法である。  Specifically, in the method, a target nucleic acid probe that specifically hybridizes to a target nucleic acid in a measurement system or a reaction system in which a nucleic acid hybridization reaction and Z or a substance that inhibits a nucleic acid amplification reaction is present. This is a method for specifically and accurately measuring at least one type of target nucleic acid by adding an internal standard nucleic acid probe that specifically hybridizes to an internal standard nucleic acid corresponding to the target nucleic acid.
又、 標的核酸塩基配列領域を切断しないような少なく とも一種の制限 酵素によって標的核酸を含む全核酸を切断後、 標的核酸塩基配列を含む 核酸画分のみを分離 · 回収することを特徴とする標的核酸分離 ·回収濃 縮方法である。  In addition, the target is characterized in that after all nucleic acids including the target nucleic acid are cleaved by at least one restriction enzyme that does not cut the target nucleic acid base sequence region, only the nucleic acid fraction containing the target nucleic acid base sequence is separated and recovered. This is a nucleic acid separation and recovery / concentration method.
更に、 任意の配列を有する人工合成された 5 0 b p以上の一本鎖のォ リゴヌク レオチド核酸を铸型として遺伝子増幅を行い、 任意の配列を有 する 2本鎖 D N Aを取得することを特徴とする人工合成遺伝子の取得 方法である。 背景技術  Further, the present invention is characterized in that a gene is amplified using an artificially synthesized single-stranded oligonucleotide nucleic acid nucleic acid having an arbitrary sequence of 50 bp or more having a type I and a double-stranded DNA having an arbitrary sequence is obtained. This is a method for obtaining artificially synthesized genes. Background art
核酸プローブを用いて対応核酸を測定する方法は数多く知られてい る。 例えば、 There are many known methods for measuring a corresponding nucleic acid using a nucleic acid probe. You. For example,
( 1 ) FRET (fluorescence energy transfer) 現象を禾 lj用したプローブ を用レヽる方法(Morrison et al. , Anal. Biochem., vol.183, 23ト 244、 198 9; ergney et al. , Nucleic acid Res., vol.22、 920- 928, 1994 ; Tyagi et al. , ature Biotech. , vol.14, 303-308, 1996;特開平 1 0 - 2 6 2 7 0 0号; 特開平 1 0— 8 4 9 8 3号) 、  (1) Method using FRET (fluorescence energy transfer) phenomenon using a probe (Morrison et al., Anal. Biochem., Vol. 183, 23 g 244, 1989; ergney et al., Nucleic acid Res., Vol. 22, 920-928, 1994; Tyagi et al., Nature Biotech., Vol. 14, 303-308, 1996; JP-A-10-26270; JP-A-10- 8 4 9 8 3),
( 2) 蛍光色素が特定の核酸塩基と相互作用して蛍光発光量を減少させ る特性を利用したプローブを用いる方法、 リアルタイムモニタリング定 量的 P C R方法で、 核酸を増幅させ、 増幅前の対応核酸の濃度若しくは コピー数を測定する方法 (KURATA et al. , Nucleic acids Research, 20 01, vol.29, No.6 e34) 、  (2) Fluorescent dyes interact with specific nucleobases to reduce the amount of fluorescent light using probes. Method for measuring the concentration or copy number of DNA (KURATA et al., Nucleic acids Research, 2001, vol. 29, No. 6 e34),
など数多くの例を挙げることができる。 And many other examples.
いずれの方法においても、 一種類の対応核酸が存在する測定系 (測定 系に複数の核酸種が存在するが、対応核酸が一種存在するという意味。 ) に、 蛍光色素で標識されたプローブを一種又は二種 {この場合は、 ドナ 一プローブ (単に、 発光プローブ又は核酸プローブという場合もある。 ) とァクセプタープローブ (単にクェンチヤ一という場合もある。 ) } 添 加して、 ハイプリダイゼーショ ン反応及び/又は核酸増幅反応を行い、 測定系の蛍光強度を測定するものである。 特に核酸増幅反応を利用する 方法は、 核酸プローブ存在下で PCR法により対応核酸の増幅を行い、 PCR 産物をリアルタイムでモニタリ ングすることで、 増幅前の対応核酸を測 定する方法であり、 リ アルタイムモニタリ ング定量的 PCR法と して知ら れている。  In either method, a probe labeled with a fluorescent dye is used in a measurement system in which one kind of corresponding nucleic acid is present (meaning that there is more than one nucleic acid species in the measurement system, but one corresponding nucleic acid exists). Or two types {in this case, a donor probe (may be simply referred to as a luminescent probe or a nucleic acid probe) and an acceptor probe (sometimes simply referred to as a quencher probe)}. In this method, a fluorescence reaction and / or a nucleic acid amplification reaction is performed to measure the fluorescence intensity of the measurement system. In particular, a method using a nucleic acid amplification reaction is a method in which a corresponding nucleic acid is amplified by a PCR method in the presence of a nucleic acid probe, and the PCR product is monitored in real time to measure the corresponding nucleic acid before amplification. Known as real-time monitoring quantitative PCR.
又、 複雑な試料中にはハイプリダイゼーショ ン反応や核酸増幅反応の 阻害物質が含まれている場合が多い。 特にリ アルタイムモニタ リ ング定 量的 PCR方法では、 当該阻害物質を含まないという仮定に基づいて検量 線を作成しているため、 このような場合、 当該方法で複雑な試料中の標 的核酸若しくは核酸増幅反応前の標的核酸を正確に測定することは出 来ない。 リ アルタイムモニタリング定量的 P C R法は、 指数関数的検量 線を用いて増幅前の対応核酸の定量を行うため、 定量値のぶれが大きか つた。 In addition, complex samples often contain inhibitors of the hybridization reaction or nucleic acid amplification reaction. In particular, the real-time monitor ring setting In the quantitative PCR method, a calibration curve is created based on the assumption that the inhibitor is not contained.In such a case, the target nucleic acid in a complex sample or the target nucleic acid before the nucleic acid amplification reaction is used in such a case. Can not be measured accurately. In the real-time monitoring quantitative PCR method, the corresponding nucleic acids before amplification were quantified using an exponential calibration curve.
特定サンプル中に存在する トータルの遺伝子の種類は膨大であり、 又、 その量も一方に偏っている場合が多い。 そして、 そのようなサンプル中 には、 目的の標的遺伝子は僅かしか存在しないという場合が多い。 標的 遺伝子を検出 '測定するための測定系 (P C R方法、 リ アルタイム定量 的 P C R方法などのものを好適な例として挙げることができる。 ) へ添 加可能な遺伝子量は限界があるため、 当該限界量までこのような遺伝子 を添加しても、 添加した遺伝子の中に、 目的の標的遺伝子が僅かしか存 在しないか、 或いは検出不可能な量しか存在しない場合が出現する。 上 記の特徴を有するサンプル中の標的遺伝子の検出 '測定を行う場合、 よ く このようなことが起こり得る。 この場合、 正確かつ特異的に標的遺伝 子を検出 '測定は不可能或いは困難となる。 このため、 標的遺伝子を分 離 . 回収しておくことが好適である。 更に分離■ 回収したものを濃縮し ておく ことが特に望ましい。 しかしながら、 現在そのような適当な手段 がないのが現状である。  The total number of gene types present in a particular sample is enormous, and the amount is often biased toward one. In many cases, the target gene of interest is rarely present in such a sample. The amount of genes that can be added to a measurement system for detecting and measuring the target gene (PCR methods, real-time quantitative PCR methods, etc. can be mentioned as suitable examples) is limited. Even if such a gene is added to the limit amount, a case may occur in which only a small amount of the target gene of interest or an undetectable amount is present in the added gene. This is often the case when detecting and measuring a target gene in a sample having the above characteristics. In this case, it is impossible or difficult to accurately and specifically detect and measure the target gene. For this reason, it is preferable to isolate and collect the target gene. Further, it is particularly desirable to concentrate the separated and recovered material. However, at present there is no such means.
任意な配列を有する人工遺伝子を作製する際には、 一般的に市販され ている核酸合成装置を用いて、 任意の配列、 任意の長さの一本鎖のオリ ゴヌクレオチド (D N A ) を合成するケースが多い。 しかしながら、 1 塩基を合成する効率は 1 0 0 %ではないため、 オリゴヌク レオチドの塩 基長が長くなればなるほど、 途中で合成が停止し、 目的以外の配列を有 するオリゴヌク レオチドの割合が増加する。 このため、 オリゴヌク レオ チドの合成可能な限界は、 一般的に約 1 0 0塩基 (以下、 b pという。 ) までと云われている。 又、 約 5 0 b p以上の長さになると、 目的以外の 配列を有するオリゴヌク レオチドの割合が増加するため、 煩雑な分離操 作が必要となる。 又、 当該操作を施したとしても、 5 O b p以上の長い ォリゴ D N Aを合成する場合、 目的のオリゴヌクレオチドの取得割合は、 短いオリゴ D N Aの場合と比較して、 低下する場合が多い。 このため、 簡便に 5 0塩基以上の任意な配列を有する人工遺伝子を得る方法が求 められていた。 When producing an artificial gene having an arbitrary sequence, a single-stranded oligonucleotide (DNA) of an arbitrary sequence and an arbitrary length is synthesized using a commercially available nucleic acid synthesizer. There are many cases. However, since the efficiency of synthesizing a single base is not 100%, the longer the base length of the oligonucleotide, the more the synthesis stops, and the sequence other than the target sequence is not included. The proportion of oligonucleotides that increase is increased. For this reason, it is generally said that the limit at which oligonucleotides can be synthesized is up to about 100 bases (hereinafter referred to as bp). When the length is about 50 bp or more, the ratio of oligonucleotides having a sequence other than the target increases, so that a complicated separation operation is required. Even when the above operation is performed, when a long oligo DNA having a length of 5 O bp or more is synthesized, the acquisition ratio of the target oligonucleotide is often lower than that obtained with a short oligo DNA. Therefore, there has been a demand for a method for easily obtaining an artificial gene having an arbitrary sequence of 50 bases or more.
本発明は前記の問題を解決することを本発明の目的とする。  An object of the present invention is to solve the above problems.
本発明の課題は、 前記の目的から、 複雑な試料を含む測定系に少なく とも一種以上の標的核酸が存在する場合に、 それらの標的核酸を簡単な 方法で、 標的核酸を特異的に測定でき、 かつ微量で、 短時間、 簡便、 正 確に測定できる新規方法、 新規な核酸増幅方法並びにそれを用いる核酸 増幅前の標的核酸の濃度若しくはコピー数を求める方法、 これらの方法 で得られるデータを解析する方法、 及びこれらの方法を各種方法に適用 する方法、 を提供することである。 更に当該方法に用いる DNAチップ等 のデバイス類、 測定試薬キッ ト、 データ解析方法の過程をコンピュータ に実行させるための手順をプログラムと して記録したコンピュータ読 取可能な記録媒体、 本発明方法で標的核酸を測定するための測定装置、 コンピュータ読取可能な記録媒体を組み込んだ測定装置、 標的核酸の分 離 ' 回収濃縮方法、 任意な配列を有する人工遺伝子の合成方法などを提 供することである。  An object of the present invention is to provide a method for specifically measuring a target nucleic acid by a simple method when at least one or more target nucleic acids are present in a measurement system including a complicated sample. A new method that can measure accurately, in a short time, in a short time, easily and accurately, a novel nucleic acid amplification method, a method for determining the concentration or copy number of a target nucleic acid before nucleic acid amplification using it, and the data obtained by these methods. The purpose of the present invention is to provide a method for analyzing, and a method for applying these methods to various methods. Further, a device such as a DNA chip used in the method, a measuring reagent kit, a computer-readable recording medium in which a procedure for causing a computer to execute a process of a data analysis method is recorded as a program, and a target according to the method of the present invention. An object of the present invention is to provide a measuring device for measuring nucleic acids, a measuring device incorporating a computer-readable recording medium, a method for separating, collecting and concentrating a target nucleic acid, a method for synthesizing an artificial gene having an arbitrary sequence, and the like.
発明の開示 本発明者らは、 前記 2 ) の KURATA et a lの方法 (KURATA e t a l . , Nu c l e i c ac i ds Res earch, 2001 , vo l . 29 , No . 6 e34)を用いて、 鋭意検討した 結果、 標的核酸の塩基配列の一部を変異させた核酸 (以下、 内部標準核 酸という。 ) を測定系に既知濃度宛で添加し、 さらに、 標的核酸に特異 的にハイプリダイズする標的核酸プローブ (以下、 標的核酸プローブと いう。 ) と内部標準核酸に特異的にハイブリダィズする標的核酸プロ一 ブ (以下、 内部標準核酸プローブという。 ) を測定系に添加して、 ハイ ブリダイゼーション反応及び Z又は核酸増幅反応を行い、 標的核酸と内 部標準核酸を同時に測定するこ と、 又、 標的核酸塩基配列領域を切断し ないような少なく とも一種以上の制限酵素によって標的核酸を含む全 核酸を切断後、 標的核酸塩基配列を含む核酸画分のみを分離 ·回収する こと、 又、 任意の配列を有する人工合成された 5 0 b p以上の一本鎖ォ リ ゴ核酸を铸型と して遺伝子増幅を行うことにより前記課題が解決で きるということを知見した。 本発明はかかる知見に基づいて完成された ものである。 Disclosure of the invention The present inventors have conducted intensive studies using the method of 2) KURATA et al. (KURATA et al., Nucleic acid Reseach, 2001, vol. 29, No. 6 e34) and found that the target A nucleic acid in which a part of the base sequence of the nucleic acid is mutated (hereinafter, referred to as an internal standard nucleic acid) is added to a measurement system at a known concentration, and a target nucleic acid probe (hereinafter, referred to as a hybridizer) that specifically hybridizes to the target nucleic acid is added. A target nucleic acid probe that hybridizes specifically with the internal standard nucleic acid (hereinafter referred to as an internal standard nucleic acid probe) is added to the measurement system, and the hybridization reaction and the Z or nucleic acid amplification reaction are performed. The target nucleic acid and the internal standard nucleic acid are simultaneously measured, and the total nucleic acid containing the target nucleic acid is cleaved by at least one or more restriction enzymes so as not to cut the target nucleic acid base sequence region. By separating and recovering only the nucleic acid fraction containing the base sequence, and by performing gene amplification using an artificially synthesized single-stranded oligonucleic acid having an arbitrary sequence of 50 bp or more as type III. We have found that the above problems can be solved. The present invention has been completed based on such findings.
すなわち、 本発明は、  That is, the present invention
[請求項 1 ] 少なく とも一種の蛍光色素で標識された一種のオリゴヌ クレオチドからなる核酸プローブ(以下、単に「核酸プローブ」 という。) であって、 対応核酸 (標的核酸) にハイブリダィズすることにより、 標 識された蛍光色素の蛍光キャラクターが変化する、 少なく とも一種の核 酸プローブを用いて標的核酸を測定する方法 (以下、 単に 「核酸プロ一 ブを用いて核酸を測定する方法」 という。 ) において、 測定系に少なく とも一種の標的核酸と標的核酸に相応する既知量の内部標準核酸を少 なく とも一種含み、 かつ標的核酸に特異的な、 少なく とも一種の蛍光色 素で標識されたオリゴヌク レオチ ドからなる核酸プローブ (以下、 単に 「標的核酸プローブ」 という。 ) 若しくは内部標準核酸に特異的な、 少 なく とも一種の蛍光色素で標識されたオリ ゴヌク レオチ ドからなる核 酸プローブ (以下、 単に 「内部標準核酸プローブ」 という。 ) を少なく も一種含むか、 又は標的核酸プローブと内部標準核酸プローブを各々少 なく とも一種含む反応系で、 ハイブリダィゼーシヨ ン反応及び/又は核 酸増幅反応を行わせ、 標的核酸プローブと標的核酸とのハイプリダイゼ ーシヨンにより生じる標的核酸プローブの蛍光キャラクタ一の、 ハイブ リダイゼ——ンョン前後における変化又は変化量、 内部標準核酸プローブ と内部標準核酸とのハイプリダイゼーシヨ ンにより生じる内部標準核 酸プローブの蛍光キャラクターの、 ハイブリダィゼーシヨ ン前後におけ る変化又は変化量を少なく とも一種の測定波長で測定して、 得られる測 定値及び内部標準核酸の添加量から、 標的核酸及び Z又は核酸増幅反応 前の標的核酸を測定することを特徴とする核酸の新規測定方法。 [Claim 1] A nucleic acid probe comprising at least one kind of oligonucleotide labeled with at least one kind of fluorescent dye (hereinafter, simply referred to as “nucleic acid probe”), which is hybridized to a corresponding nucleic acid (target nucleic acid). A method for measuring a target nucleic acid using at least one kind of nucleic acid probe that changes the fluorescent character of the labeled fluorescent dye (hereinafter, simply referred to as “a method for measuring nucleic acid using a nucleic acid probe”). The target nucleic acid in the assay system contains at least one target nucleic acid and at least one known amount of an internal standard nucleic acid corresponding to the target nucleic acid, and is labeled with at least one fluorescent dye specific to the target nucleic acid. A nucleic acid probe consisting of a leotide (hereinafter simply referred to as It is called “target nucleic acid probe”. ) Or at least one nucleic acid probe (hereinafter simply referred to as "internal standard nucleic acid probe") consisting of an oligonucleotide labeled with at least one fluorescent dye specific to the internal standard nucleic acid. Alternatively, in a reaction system containing at least one target nucleic acid probe and at least one internal standard nucleic acid probe, a hybridization reaction and / or a nucleic acid amplification reaction is carried out, and the reaction is caused by the hybridization between the target nucleic acid probe and the target nucleic acid. The change or amount of change in the fluorescence character of the target nucleic acid probe before and after hybridization, and the hybridization of the fluorescent character of the internal standard nucleic acid probe caused by the hybridization between the internal standard nucleic acid probe and the internal standard nucleic acid. The change or amount of change before and after the A novel nucleic acid measurement method, comprising measuring a target nucleic acid and Z or a target nucleic acid before a nucleic acid amplification reaction based on a measured value obtained at a constant wavelength and the amount of the internal standard nucleic acid added.
[請求項 2 ] 前記内部標準核酸が、 下記の特質の少なく とも一つを有 するものである請求項 1に記載の核酸の新規測定方法。  [2] The novel nucleic acid measurement method according to [1], wherein the internal standard nucleic acid has at least one of the following characteristics.
1 ) 内部標準核酸が、 対応する核酸プローブとハイブリダィゼーシヨ ン して得られる蛍光キャラクターの変化又は変化量から標的核酸と識別 可能な塩基配列を有する。  1) The internal standard nucleic acid has a base sequence that can be distinguished from the target nucleic acid based on the change or the amount of change in the fluorescent character obtained by hybridization with the corresponding nucleic acid probe.
2 ) 内部標準核酸が、 一定条件下で内部標準核酸プローブとのみハイブ リダィズし、 標的核酸とハイブリダィズしない塩基配列を有する。  2) The internal standard nucleic acid has a base sequence that hybridizes only with the internal standard nucleic acid probe under certain conditions and does not hybridize with the target nucleic acid.
3 ) 内部標準核酸が、 標的核酸と一部配列が異なる塩基配列である。 3) The internal standard nucleic acid has a base sequence partially different from that of the target nucleic acid.
4 ) 内部標準核酸の塩基長が、 標的核酸のものと異なる。 4) The base length of the internal standard nucleic acid is different from that of the target nucleic acid.
5 ) 内部標準核酸は、 同一のプライマーを用いて標的核酸と同時に増幅 できる。  5) The internal standard nucleic acid can be amplified simultaneously with the target nucleic acid using the same primer.
[請求項 3 ] 前記内部標準核酸プローブが、 下記の特質の少なく とも 一つを有するものである請求項 1又は 2に記載の核酸の新規測定方法。[Claim 3] The internal standard nucleic acid probe has at least the following characteristics: 3. The novel method for measuring a nucleic acid according to claim 1, wherein the method has one.
1 ) 内部標準核酸プローブが、 対応する核酸とハイブリダィズすること ができる塩基配列を有する。 1) The internal standard nucleic acid probe has a base sequence capable of hybridizing with the corresponding nucleic acid.
2 ) 内部標準核酸プローブが、 一定条件下で内部標準核酸とのみハイブ リダィズし、 標的核酸とハイブリダィズしない塩基配列を有する。  2) The internal standard nucleic acid probe has a base sequence that hybridizes only with the internal standard nucleic acid under certain conditions and does not hybridize with the target nucleic acid.
3 ) 内部標準核酸プローブが内部標準核酸とハイプリダイズすることに より生ずる、 内部標準核酸プローブに標識された蛍光色素の蛍光キャラ クター変化若しくは変化量が、 標的核酸が標的核酸プローブにハイブリ ダイズすることにより生ずる、 標的核酸プローブに標識された蛍光色素 の蛍光キャラクター変化若しくは変化量とは明瞭に識別可能である。  3) The target nucleic acid hybridizes to the target nucleic acid probe due to the change in the fluorescent character or the amount of change of the fluorescent dye labeled on the internal standard nucleic acid probe caused by the hybridization of the internal standard nucleic acid probe with the internal standard nucleic acid. Thus, the change or the amount of change in the fluorescent character of the fluorescent dye labeled on the target nucleic acid probe can be clearly distinguished.
[請求項 4 ] 前記の標的核酸プローブ及び Z又は内部標準核酸プロ一 ブが、 各々、 対応核酸にハイブリダィズする一本鎖のオリ ゴヌクレオチ ドであり、 一種のド^ "一色素 (リポーター色素をも含む。 ) 及びノ又は 一種のァクセプター色素 (クェンチヤ一色素若しく はクェンチヤ一物質 をも含む。 ) を標識してなる少なく とも一種の核酸プローブであって、 当該核酸プローブが対応核酸にハイブリ ダィズしているときはハイブ リダイゼーショ ン反応系の蛍光キャラクターの変化又は変化量が増加 するように、 ドナー色素とァクセプター色素が当該オリ ゴヌク レオチド に標識されている標的核酸プローブ及び/又は内部標準核酸プローブ を用いる請求項 1〜 3の何れか 1項に記載の核酸の新規測定方法。  [Claim 4] Each of the target nucleic acid probe and the Z or internal standard nucleic acid probe is a single-stranded oligonucleotide that hybridizes to a corresponding nucleic acid, and is a kind of a single dye (including a reporter dye). ) And at least one nucleic acid probe obtained by labeling or a type of an acceptor dye (including a quencher dye or a quencher substance), wherein the nucleic acid probe hybridizes to a corresponding nucleic acid. Use a target nucleic acid probe and / or an internal standard nucleic acid probe with a donor dye and an acceptor dye labeled on the oligonucleotide so that the change or the amount of change in the fluorescent character of the hybridization reaction system increases. A novel method for measuring a nucleic acid according to any one of claims 1 to 3.
[請求項 5 ] 標的核酸プローブ及び/又は内部標準核酸プローブが、 下記の何れかの形態を有するものである請求項 4に記載の核酸の新規 測定方法。  [5] The novel nucleic acid measurement method according to [4], wherein the target nucleic acid probe and / or the internal standard nucleic acid probe has any one of the following forms.
1 ) ドナー色素とァクセプター色素で標識された一種のオリ ゴヌクレオ チドの形態で、 対応核酸とハイブリダィズすることにより、 ハイブリダ ィゼーション前後で、 ドナー色素の蛍光キャラクターの変化又は変化量 がプラスになるもの。 1) By hybridizing with the corresponding nucleic acid in the form of a kind of oligonucleotide labeled with a donor dye and an acceptor dye, The change or amount of change in the fluorescent character of the donor dye before and after the localization.
2 ) ドナー色素とァクセプター色素で標識された一種のオリゴヌク レオ チドの形態で、 対応核酸とハイブリダイズすることにより、 ハイプリダ ィゼーシヨ ン前後で、 ドナー色素及ぴァクセプター色素の蛍光キャラク ターの変化又は変化量がマイナスになるもの。  2) Hybridization with the corresponding nucleic acid in the form of a type of oligonucleotide labeled with a donor dye and an acceptor dye, thereby changing or changing the fluorescent character of the donor dye and the acceptor dye before and after hybridization. Is negative.
3 ) 一種のド^ "一色素一つで標識された一種のオリ ゴヌクレオチドから なる一種のドぅ "一プローブ、 及び一種のァクセプター色素一つで標識さ れた一種のオリ ゴヌク レオチドからなる一種のァクセプタープローブ の二種のプローブが対をなす形態であり、 ドナープローブ及び/又はァ クセプタープローブが対応核酸とハイブリダイズすることにより、 ハイ プリダイゼーション前後で、 ドナー色素及びァクセプター色素の蛍光キ ャラクタ一の変化又は変化量がマイナス若しくはプラスになるもの。  3) A kind of probe consisting of one kind of oligonucleotide labeled with one kind of dye and one kind of probe consisting of one kind of oligonucleotide and one kind of oligonucleotide labeled with one receptor dye Is a form in which two kinds of probes of the acceptor probe form a pair, and the donor probe and / or the acceptor probe hybridize with the corresponding nucleic acid, so that the donor dye and the acceptor dye before and after hybridization are formed. The change or amount of change in the fluorescent character is negative or positive.
[請求項 6 ] 標的核酸プローブ及び Z又は内部標準核酸が、 ドナー色 素とァクセプター色素で標識された一種のオリ ゴヌク レオチドの形態 で、 対応核酸とハイブリダィズすることにより、 ハイブリダィゼーショ ン前後で、 ドナー色素及びァクセプター色素の蛍光キャラクターの変化 又は変化量がマイナスになるものであって、 かつその末端部においてド ナー色素又はァクセプター色素で標識されており、 当該核酸プローブが 当該末端部において対応核酸にハイブリダィズしたとき、 当該プローブ にハイプリダイズした対応核酸の末端塩基から 1ないし 3塩基離れて、 対応核酸の塩基配列に G (グァニン) が少なく とも 1塩基存在するよう に、 当該ローブの塩基配列が設計されている標的核酸プローブ及び/又 は内部標準核酸プローブを用いる請求項 4に記載の核酸の新規測定方 法。 05118 [Claim 6] The target nucleic acid probe and Z or the internal standard nucleic acid are hybridized with the corresponding nucleic acid in the form of one kind of oligonucleotide labeled with a donor dye and an acceptor dye, so as to be before and after hybridization. The change or the amount of change in the fluorescent character of the donor dye and the acceptor dye is negative, and the terminal is labeled with a donor dye or an acceptor dye, and the nucleic acid probe is supported at the corresponding end. The base sequence of the lobe should be one to three bases away from the terminal base of the corresponding nucleic acid hybridized to the probe when hybridized to the nucleic acid, so that at least one base G (guanine) is present in the base sequence of the corresponding nucleic acid. Target nucleic acid probe and / or internal standard nucleic acid probe for which New measurements how the nucleic acid according to claim 4 for use. 05118
9  9
[請求項 7 ] 標的核酸プローブ及び 又は内部標準核酸が、 ドナー色 素とァクセプター色素で標識された一種のオリ ゴヌク レオチドの形態 で、 対応核酸とハイブリダィズすることにより、 ハイブリダィゼーショ ン前後で、 ドナー色素及びァクセプター色素の蛍光キャラクターの変化 又は変化量がマイナスになるものであって、 かつ対応核酸にハイブリダ ィゼーションしたとき、 ドナー又はァクセプター色素標識部においてプ ローブ一核酸ハイブリ ッ ドの複数塩基対が少なく とも一つの G (グァ二 ン) と C (シトシン) のペア一を形成するように、 当該プローブの塩基 配列が設計されている標的核酸プローブ及び 7又は内部標準核酸プロ ーブを用いる請求項 4に記載の核酸の新規測定方法。  [Claim 7] The target nucleic acid probe and / or the internal standard nucleic acid is hybridized with the corresponding nucleic acid in the form of one kind of oligonucleotide labeled with a donor dye and an acceptor dye, so that the nucleic acid before and after the hybridization is obtained. The change or the amount of change in the fluorescent character of the donor dye and the acceptor dye is negative, and when hybridized to the corresponding nucleic acid, the probe or nucleic acid hybrid at the donor or acceptor dye-labeled portion has multiple nucleotides Use a target nucleic acid probe and a 7 or internal standard nucleic acid probe whose base sequence is designed so that the pair forms at least one pair of G (guanine) and C (cytosine). A novel method for measuring a nucleic acid according to claim 4.
[請求項 8 ] 標的核酸プローブ及び 又は内部標準核酸プローブが、 少なく も一種の蛍光色素で標識された一本鎖のオリ ゴヌク レオチドか らなるもので、 以下の少なく とも一つの特質を有するように、 当該プロ ーブが設計されているものを用いる請求項 1〜 3 の何れか 1項に記載 の核酸の新規測定方法。  [Claim 8] The target nucleic acid probe and / or the internal standard nucleic acid probe is composed of a single-stranded oligonucleotide labeled with at least one kind of fluorescent dye, and has at least one of the following characteristics. The novel nucleic acid measurement method according to any one of claims 1 to 3, wherein a probe for which the probe is designed is used.
1 ) 前記反応系若しくは測定系で一種のプローブで機能を発揮できる。 1) A function can be exhibited with a kind of probe in the reaction system or the measurement system.
2 ) 標的核酸及び Ζ又は内部標準核酸にハイプリダイゼーションしたと きに、 前記蛍光色素が、 クェンチヤ一色素及び Ζ又はクェンチヤ一プロ 一ブの非存在下にその蛍光キヤラクターの変化又は変化量をマイナス に増大させる。 2) When hybridized to the target nucleic acid and Ζ or the internal standard nucleic acid, the fluorescent dye reduces the change or the amount of change of the fluorescent character in the absence of quencher dye and Ζ or quencher probe. To increase.
3 ) 当該プローブは、 その末端部において少なく とも蛍光色素で標識さ れている。  3) The probe is labeled at least with a fluorescent dye at its end.
4 ) 当該核酸プローブが標的核酸にハイプリダイゼーションしたとき、 当該プローブの色素標識された塩基から 1ないし 3塩基離れて (但し、 標識塩基を 1 と計数する。 ) 、 G (グァニン) が少なく とも 1塩基存在 する。 4) When the nucleic acid probe hybridizes to the target nucleic acid, it is 1 to 3 bases away from the dye-labeled base of the probe (the labeled base is counted as 1), and at least G (guanine) is present. 1 base present I do.
5 ) 当該核酸プローブが当該末端部において標的核酸にハイプリダイゼ ーションしたとき、 当該末端部分においてプローブ一核酸ハイプリ ッ ド の複数塩基対が少なく とも一つの G (グァニン) と C (シ トシン) のぺ ァーを形成する。  5) When the nucleic acid probe has hybridized to the target nucleic acid at the terminal portion, at least one G (guanine) and C (cytosine) primer in the terminal portion has a plurality of probe-nucleic acid hybrid base pairs. To form
[請求項 9 ] 請求項 8に記載の標的核酸プローブ及び/又は内部標準 核酸プローブが、 3 ' 末端のリボース若しくはデォキシリボースの 3 ' 炭素の水酸基、 又は 3 ' 末端のリボースの 3 ' 若しくは 2 ' 炭素の水酸 基がリ ン酸化されている標的核酸プローブ及び Z又は内部標準核酸プ ローブを用いる請求項 8に記載の核酸の新規測定方法。  [Claim 9] The target nucleic acid probe and / or the internal standard nucleic acid probe according to claim 8, wherein the 3′-terminal ribose or deoxyribose 3′-carbon hydroxyl group, or the 3′-terminal ribose 3 ′ or 2′-carbon 9. The novel nucleic acid measurement method according to claim 8, wherein a target nucleic acid probe having a phosphorylated hydroxyl group and Z or an internal standard nucleic acid probe are used.
[請求項 1 0 ] 請求項 8に記載の標的核酸プローブ及びノ又は内部標 準核酸プローブが、 3 ' 末端の O H基以外の部分で前記蛍光色素により 標識されており、 当該核酸プローブが、 前記対応核酸にハイブリダィゼ ーションしたとき、 当該修飾部分においてプローブ一核酸ハイブリ ッ ド の複数塩基対が少なく とも一つの G (グァニン) と C (シ トシン) のぺ ァーを形成する標的核酸プローブ及び Z又は内部標準核酸プローブを 用いる請求項 8に記載の核酸の新規測定方法。  [Claim 10] The target nucleic acid probe according to claim 8 and the internal standard nucleic acid probe are labeled with the fluorescent dye at a portion other than the OH group at the 3 ′ end, and the nucleic acid probe is When hybridized to the corresponding nucleic acid, the target nucleic acid probe and Z or the target nucleic acid probe, in which a plurality of base pairs of the probe-nucleic acid hybrid form at least one G (guanine) and C (cytosine) primer in the modified portion. 9. The novel nucleic acid measurement method according to claim 8, wherein an internal standard nucleic acid probe is used.
[請求項 1 1 ] 核酸増幅方法により標的核酸と既知の濃度若しくはコ ピー数の内部標準核酸を、 請求項 2〜 1 0の何れか 1項に記載の標的核 酸プローブ及び Z又は内部標準核酸プローブを用いるか用いないで、 増 幅させ、 更に、 当該増幅産物を、 請求項 2〜 1 0の何れか 1項に記載の 標的核酸プローブ及び/又は内部標準核酸プローブとハイブリダイゼ ーショ ンさせ、 ハイブリダイゼーション前後の反応系の蛍光キャラクタ 一の変化若しくは変化量を測定して、 当該測定値及び内部標準の濃度か ら、 増幅前の標的核酸の濃度若しくはコピー数を測定することを特徴と 18 [Claim 11] The target nucleic acid probe and Z or the internal standard nucleic acid according to any one of claims 2 to 10, wherein the target nucleic acid and the internal standard nucleic acid having a known concentration or a copy number are subjected to the nucleic acid amplification method. Amplification is performed with or without using a probe, and the amplification product is further hybridized with the target nucleic acid probe and / or the internal standard nucleic acid probe according to any one of claims 2 to 10. It is characterized in that the change or the amount of change in the fluorescence character of the reaction system before and after hybridization is measured, and the concentration or copy number of the target nucleic acid before amplification is measured from the measured value and the concentration of the internal standard. 18
11  11
する核酸の新規測定方法。 New method for measuring nucleic acids.
[請求項 1 2 ] 核酸増幅方法により、 請求項 2〜 1 0の何れか 1項に 記載の標的核酸プローブ及び 又は内部標準核酸プローブを用いて、 標 的核酸と既知の濃度若しくはコピー数の内部標準核酸の核酸増幅反応 を行い、 核酸伸長反応時当該プローブがポリメラーゼにより分解除去さ れている反応系又は核酸変性反応時若しく は核酸変性反応が完了して いる反応系の蛍光キャラクタ一若しくは蛍光色素の蛍光キャラクター、 及び標的核酸若しく は増幅標的核酸と標的核酸プローブ及び内部標準 核酸若しく は増幅内部標的核酸と内部標準核酸プローブがハイプリ ダ ィズしているときの反応系の蛍光キヤラタター若しくは蛍光色素の蛍 光キャラクタ一を測定し、 更に前者からの当該キャラクタ一の測定値の 減少率を算出して、 当該減少率と内部標準核酸の濃度若しくはコピー数 から、 標的核酸の増幅前の濃度若しくはコピー数を測定することを特徴 とする核酸の新規測定方法。  [Claim 12] By using the target nucleic acid probe and / or the internal standard nucleic acid probe according to any one of claims 2 to 10 by a nucleic acid amplification method, a target nucleic acid and an internal standard nucleic acid probe having a known concentration or copy number. Fluorescence character or fluorescence of a reaction system in which the probe is decomposed and removed by a polymerase during a nucleic acid extension reaction during a nucleic acid amplification reaction of a standard nucleic acid, or a reaction system during a nucleic acid denaturing reaction or a nucleic acid denaturing reaction is completed The fluorescent character of the dye and the fluorescent character of the reaction system when the target nucleic acid or the amplified target nucleic acid and the target nucleic acid probe and the internal standard nucleic acid or the amplified internal target nucleic acid and the internal standard nucleic acid probe are hybridized. The fluorescent character of the fluorescent dye is measured, and the reduction rate of the measurement value of the character from the former is calculated. New method for measuring a nucleic acid, characterized in that the concentration or copy number of the standard nucleic acid, measuring the number of concentration or copy prior to amplification of the target nucleic acid.
[請求項 1 3 ] 核酸増幅方法により、 請求項 2〜 1 0の何れか 1項に 記載の標的核酸プローブ及び Z又は内部標準核酸プローブをプライマ 一と して用いて、 標的核酸と既知の濃度若しくはコピー数の内部標準核 酸の核酸増幅反応を行い、 標的核酸若しくは増幅標的核酸と標的核酸プ ローブ及び内部標準核酸若しく は増幅内部標的核酸と内部標準核酸プ ローブがハイブリダィズしていないときの反応系の蛍光キャラクタ一 若しくは蛍光色素の蛍光キャラクター、 及び標的核酸若しくは増幅標的 核酸と標的核酸プローブ及び内部標準核酸若しく は増幅内部標的核酸 と内部標準核酸プローブがハイブリダイズしているときの反応系の蛍 光キャラクター若しくは蛍光色素の蛍光キャラクターを測定して、 更に 前者からの当該キャラクターの測定値の減少率を算出して、 当該減少率 と内部標準核酸の濃度若しくはコピー数から、 標的核酸の増幅前の濃度 若しくはコピー数を測定することを特徴とする核酸の新規測定方法。 [Claim 13] A target nucleic acid and a known concentration are determined by using the target nucleic acid probe according to any one of claims 2 to 10 and Z or an internal standard nucleic acid probe as a primer by a nucleic acid amplification method. Alternatively, a nucleic acid amplification reaction of a copy number of the internal standard nucleic acid is performed, and the target nucleic acid or the amplified target nucleic acid and the target nucleic acid probe and the internal standard nucleic acid or the amplified internal target nucleic acid and the internal standard nucleic acid probe are not hybridized. Reaction system fluorescent character or fluorescent dye fluorescent character, and reaction system when target nucleic acid or amplified target nucleic acid and target nucleic acid probe and internal standard nucleic acid or amplified internal target nucleic acid and internal standard nucleic acid probe are hybridized Measurement of the fluorescent character or fluorescent dye of the fluorescent dye, and measurement of the character from the former By calculating the rate of decrease, the decrease ratio A novel method for measuring nucleic acid, comprising measuring the concentration or copy number of a target nucleic acid before amplification from the concentration or copy number of an internal standard nucleic acid.
[請求項 1 4] 核酸を増幅させる方法が、 P C R方法、 I CAN方法、 LAMP方法、 NA S BA方法、 R CA方法、 TAMA方法、 L C R方 法の何れかの方法である請求項 1 1〜 1 3の何れか 1項に記載の核酸 の新規測定方法。  [Claim 14] The method for amplifying a nucleic acid according to any one of the PCR method, the ICAN method, the LAMP method, the NASBA method, the RCA method, the TAMA method, and the LCR method. 14. The novel method for measuring a nucleic acid according to any one of 13 to 13.
[請求項 1 5] P C R方法が定量的 P C R方法若しくはリアルタイム 定量的 P C R方法である請求項 1 4に記載の P C R方法の増幅核酸の 測定方法。  [Claim 15] The method for measuring an amplified nucleic acid by the PCR method according to claim 14, wherein the PCR method is a quantitative PCR method or a real-time quantitative PCR method.
[請求項 1 6 ] 請求項 1〜 1 5の何れか 1項に記載の核酸測定法で得 られたデータを解析する方法において、 標的核酸と標識核酸プローブ、 及び Z又は内部標準核酸と内部標準核酸プローブとがハイプリ ダイズ したときの反応系の蛍光キャラクターの測定値を、 ハイブリダイズした ものが解離したときの反応系の蛍光キャラクターの測定値によ り補正 することを特徴とする核酸測定方法のためのデータ解析方法。  [16] In a method for analyzing data obtained by the nucleic acid measurement method according to any one of [1] to [15], a target nucleic acid and a labeled nucleic acid probe, and Z or an internal standard nucleic acid and an internal standard A nucleic acid measurement method comprising: correcting a measured value of a fluorescent character of a reaction system when a nucleic acid probe is hybridized with a measured value of a fluorescent character of a reaction system when a hybridized product is dissociated; Data analysis method for.
[請求項 1 7 ] 請求項 1 5に記載のリアルタイム定量的 P C R方法で 得られたデータを解析する方法において、 各サイクルにおける増幅した 標的核酸と標的核酸プローブ、 及び Z又は増幅した内部標準核酸と内部 標準核酸プローブとが、 ハイプリダイズしたときの反応系の蛍光キャラ クタ一の測定値を、 各サイクルにおける前記のハイブリダィズしたもの が解離したときの反応系の蛍光キャラクターの測定値により補正する 演算処理過程 (以下、 「補正演算処理過程」 という。 ) を有することを 特徴とするリアルタイム定量的 P C R方法のためのデータ解析方法。  [Claim 17] In the method for analyzing data obtained by the real-time quantitative PCR method according to claim 15, wherein the amplified target nucleic acid and the target nucleic acid probe in each cycle, and Z or the amplified internal standard nucleic acid are used. Computes the measured value of the fluorescent character of the reaction system when hybridized with the internal standard nucleic acid probe by the measured value of the fluorescent character of the reaction system when the hybridized product is dissociated in each cycle A data analysis method for a real-time quantitative PCR method, characterized by having a process (hereinafter, referred to as a “correction calculation process”).
[請求項 1 8] 請求項 1〜 1 0の何れか 1項に記載の核酸を測定する 方法又は/及び請求項 1 1〜 1 5の何れか 1項に記載の核酸を増幅す 雇 118 [Claim 18] A method for measuring the nucleic acid according to any one of claims 1 to 10 or / and amplifying the nucleic acid according to any one of claims 11 to 15 Hire 118
13  13
る方法又は Z及び請求項 1 6並びに 1 7に記載のデータ解析方法を用 いて、 多型及び Z又は変異の解析、 分析、 又は定量することを特徴とす る多型及び/又は変異の解析、 分析、 又は定量する方法。 Analysis of polymorphisms and / or mutations characterized by analyzing, analyzing, or quantifying polymorphisms and Zs or mutations using the method for analyzing or Z and the data analysis method according to claims 16 and 17. , Analysis, or quantification methods.
[請求項 1 9 ] 請求項 1〜 1 0の何れか 1項に記載の核酸を測定する 方法又は/及び請求項 1 1〜 1 5の何れか 1項に記載の核酸を増幅す る方法又は Z及び請求項 1 6並びに 1 7に記載のデータ解析方法を用 いて、 核酸を測定及び Z又は得られるデータを解析することを特徴とす る F I S H方法、 L C R方法、 S D方法、 T A S方法の何れか一方法。  [Claim 19] A method for measuring the nucleic acid according to any one of claims 1 to 10 and / or a method for amplifying the nucleic acid according to any one of claims 11 to 15 or Any of the FISH method, LCR method, SD method, and TAS method, wherein nucleic acid is measured and Z or obtained data is analyzed using Z and the data analysis method according to claims 16 and 17. Or one way.
[請求項 2 0 ] 請求項 2に記載の内部標準核酸、 請求項 1、 3 ~ 1 0 の少なく とも何れか 1項に記載の標的核酸プローブ若しく は標的核酸 のプライマープローブ及び Z又は内部標準核酸プローブ若しくは内部 標準核酸のプライマープローブを含んでなり、 かつ当該標的核酸プロ一 ブ若しくは標的核酸のプライマープローブに標的核酸及び/又は内部 標準核酸プローブ若しく は内部標準核酸のプライマ一プローブに内部 標準核酸をハイプリ させて、 当該標的核酸プローブ及び/又は内部標準 核酸プローブに標識された蛍光色素の蛍光キャラクタ一の変化も しく は変化量を測定することにより、 請求項 1〜 1 5、 請求項 1 8又は 1 9 の何れか 1項に記載の方法を実施できるようにしたことを特徴する反 応液若しくは測定キッ ト類。 [請求項 2 1 ] 請求項 1、 3〜 1 0の少なく とも何れか 1項に記載の 標的核酸プローブ及び Z又は内部標準核酸プローブを、 複数個固体支持 体表面に結合させ、 当該標的核酸プローブに標的核酸及び/又は内部標 準核酸プローブに内部標準核酸をハイプリ させて、 当該標的核酸プロ一 ブ及び/又は内部標準核酸プローブに標識された蛍光色素の蛍光キヤ ラクターの変化もしくは変化量を測定することにより、 請求項 1〜 1 0、 請求項 1 8又は 1 9の何れか 1項に記載の方法を実施できるようにし たことを特徴するデバイス類。 [Claim 20] The internal standard nucleic acid according to claim 2, the target nucleic acid probe according to at least any one of claims 1 and 3 to 10, or a primer probe of the target nucleic acid and Z or an internal standard. A nucleic acid probe or a primer probe for an internal standard nucleic acid, and a target nucleic acid and / or a primer probe for a target nucleic acid in the target nucleic acid probe and / or an internal standard nucleic acid probe or an internal standard in a primer probe for an internal standard nucleic acid. Claims 1 to 15 and claim 1, wherein the nucleic acid is hybridized, and the change or the amount of change in the fluorescent character of the fluorescent dye labeled on the target nucleic acid probe and / or the internal standard nucleic acid probe is measured. A reaction liquid or a measurement kit characterized in that the method according to any one of 8 or 19 can be performed. [Claim 21] A plurality of the target nucleic acid probes and Z or internal standard nucleic acid probes according to at least any one of Claims 1 and 3 to 10 are bound to the surface of a solid support, and the target nucleic acid probe is provided. Then, the target nucleic acid and / or the internal standard nucleic acid probe is hybridized with the internal standard nucleic acid, and the change or the amount of the fluorescent character of the fluorescent dye labeled on the target nucleic acid probe and / or the internal standard nucleic acid probe is measured. By doing, Claims 1-10, 10. A device characterized in that the method according to claim 18 can be performed.
[請求項 2 2 ] 請求項 2に記載の内部標準核酸を含有してなり、 請求 項 2 1に記載のデバイスを用いて請求項 1〜 1 0、 請求項 1 8、 又は 1 9の何れか 1項に記載の方法を実施できるようにしたことを特徴する 反応液若しくは試薬キッ ト。  [Claim 22] Any of claims 1 to 10, claim 18, or 19, comprising the internal standard nucleic acid according to claim 2, using the device according to claim 21. A reaction solution or reagent kit characterized in that the method according to item 1 can be carried out.
[請求項 2 3 ] 前記に記載の核酸測定用デバイスにおいて、 標的核酸 プローブ及び Z又は内部標準プローブを固体支持体表面にアレー状に 配列、 結合させて単数種若しくは複数種の標的核酸をそれぞれ測定する できるようにしたデバイス (D N Aチップ) を用いる請求項 2 1に記載 のデバイス類。  [Claim 23] In the device for nucleic acid measurement according to the above, the target nucleic acid probe and Z or an internal standard probe are arrayed and bound to the surface of the solid support in an array form to measure one or more target nucleic acids, respectively. 22. The devices according to claim 21, wherein a device (DNA chip) is used.
[請求項 2 4 ] 固体支持体表面に結合させた標的核酸プに少なく とも 一つの温度センサーとヒーターが設置され、 核酸プローブ結合領域が最 適温度条件になるように温度調節され得るデバイス (D N Aチップ) で あるを請求項 2 1又は 2 3に記載のデバイス類。  [Claim 24] A device (DNA) in which at least one temperature sensor and a heater are provided on the target nucleic acid group bound to the surface of the solid support, and the temperature of the nucleic acid probe binding region can be adjusted to the optimal temperature condition (DNA The device according to claim 21, wherein the device is a chip.
[請求項 2 5 ] 請求項 1〜 1 9の何れか 1項に記載の方法を実施する ための測定装置。  [Claim 25] A measuring device for performing the method according to any one of claims 1 to 19.
[請求項 2 6 ] 温度を変化させながら蛍光測定可能な装置である請求 項 2 5に記載の測定装置。  [Claim 26] The measuring device according to claim 25, which is a device capable of measuring fluorescence while changing the temperature.
[請求項 2 7 ] 請求項 1 6〜 1 9に記載のデータ解析方法の過程を、 コンピュータに実行させるための手順をプログラムと して記録したこ とを特徴とするコンピュータ読取可能な記録媒体。  [Claim 27] A computer-readable recording medium characterized by recording, as a program, a procedure for causing a computer to execute the steps of the data analysis method according to claim 16 to 19.
[請求項 2 8 ] 請求項 2 7に記載のコンピュータ読取可能な記録媒体 を組み込んだ請求項 2 5又は 2 6に記載の測定装置。  [Claim 28] The measuring device according to claim 25 or 26, wherein the computer-readable recording medium according to claim 27 is incorporated.
[請求項 2 9 ] 標的核酸塩基配列領域を切断しないような少なく とも 一種の制限酵素によって標的核酸を含む全核酸を切断後、 標的核酸塩基 配列を含む核酸画分のみを分離■ 回収することを特徴とする標的核酸分 離 · 回収濃縮方法。 [Claim 29] At least such that the target nucleic acid base sequence region is not cleaved. A target nucleic acid separation / collection / concentration method, which comprises cleaving all nucleic acids including a target nucleic acid with a kind of restriction enzyme, and then separating and collecting only a nucleic acid fraction containing a target nucleic acid base sequence.
[請求項 3 0 ] 任意の配列を有する人工合成された 5 0 b p以上の一 本鎖のオリゴヌク レオチド核酸を錶型として遺伝子増幅を行い、 任意の 配列を有する 2本鎖 D N Aを取得することを特徴とする人工合成遺伝 子の取得方法。  [Claim 30] It is intended to obtain a double-stranded DNA having an arbitrary sequence by performing gene amplification using an artificially synthesized single-stranded oligonucleotide nucleic acid having an arbitrary sequence of 50 bp or more as a 錶 type. How to obtain the characteristic synthetic artificial gene.
すなわち、 本発明は、  That is, the present invention
1 ) 少なく とも一種の標的核酸を含む測定系に、 標的核酸に相応する内 部標準核酸、 標的核酸に特異的にハイブリダィズする核酸プローブ (以 下、 単に標的核酸プローブという。 ) 、 及び内部標準核酸に特異的にハ イブリダィズする核酸プローブ (以下、 単に内部標準核酸プローブとい う。 ) を添加若しくは存在させて、 標的核酸を測定する方法、 又、 1) An internal standard nucleic acid corresponding to the target nucleic acid, a nucleic acid probe specifically hybridizing to the target nucleic acid (hereinafter, simply referred to as a target nucleic acid probe), and an internal standard nucleic acid in a measurement system containing at least one target nucleic acid. A method for measuring a target nucleic acid by adding or allowing a nucleic acid probe (hereinafter simply referred to as an internal standard nucleic acid probe) that specifically hybridizes to a nucleic acid;
2 ) 前記の核酸の新規測定方法に好適に用いることのできる内部標準核 酸 (後記した。 ) 、 又、 2) An internal standard nucleic acid (described later) that can be suitably used in the above-described novel nucleic acid measurement method;
3 ) 前記前記の核酸の新規測定方法に好適に用いることのできる内部標 準核酸プローブ (後記した。 ) 、 又、  3) An internal standard nucleic acid probe (described later) that can be suitably used in the above-described novel nucleic acid measurement method, and
4 ) 前記の前記の核酸の新規測定方法に好適に用いることのできる標的 核酸プローブ及び/又は内部標準核酸プローブ (後記した。 ) 、 又、 5 ) 前記本発明の核酸の新規測定方法に好適に用いることのできる標的 核酸プローブ及び Z又は内部標準核酸プローブ (後記した。 ) を、 核酸 増幅方法の単なる核酸プローブ若しくは核酸増幅のプライマーと して 用いる新規な核酸増幅方法及び当該方法による標的核酸の核酸増幅前 の標的核酸の濃度若しくはコピー数を測定する新規方法 (好適な具体的 方法については後記した。 ) 、 又、 6 ) 本発明方法で得られたデータを解析する方法 (好適な具体的方法に ついては後記した。 ) 、 又、 4) a target nucleic acid probe and / or an internal standard nucleic acid probe (described later) that can be suitably used in the above-described novel nucleic acid measurement method; and 5) a preferably-used novel nucleic acid measurement method of the present invention. A novel nucleic acid amplification method using a target nucleic acid probe and Z or an internal standard nucleic acid probe (described later) that can be used as a mere nucleic acid probe or a nucleic acid amplification primer in a nucleic acid amplification method, and a nucleic acid of a target nucleic acid by the method A novel method for measuring the concentration or copy number of a target nucleic acid before amplification (preferred specific methods will be described later), and 6) A method of analyzing data obtained by the method of the present invention (preferred specific methods are described later), and
7 ) 本発明方法に用いることが出来る、 内部標準核酸、 標的核酸プロ一 ブ及び/"又は内部標準核酸プローブを含んでなる、 本発明の方法を実施 出来る反応液類若しくは測定キッ ト類、 又、  7) Reaction solutions or measurement kits that can be used in the method of the present invention and that can carry out the method of the present invention, comprising an internal standard nucleic acid, a target nucleic acid probe and / or an internal standard nucleic acid probe, and ,
8 ) 本発明方法に用いることの出来る標的核酸プローブ及び/又は内部 標準核酸プローブを、 複数個固体支持体表面に結合させ、 当該標的核酸 プローブに標的核酸及び/又は内部標準核酸プローブに内部標準核酸 をハイプリ させて、 当該標的核酸プローブ及び Z又は内部標準核酸プロ ーブに標識された蛍光色素の蛍光キャラクターの変化もしくは変化量 を測定することにより、 本発明の方法を実施できるようにしたデバィス 類、 及び内部標準核酸を含有してなり、 当該デバイス類を用いて前記本 発明方法を実施できるようにした反応液若しくは測定キッ ト、 又、 9 ) 本発明方法を実施するための測定装置、 又、  8) A plurality of target nucleic acid probes and / or internal standard nucleic acid probes that can be used in the method of the present invention are bound to the surface of the solid support, and the target nucleic acid probe and / or the internal standard nucleic acid probe are attached to the target nucleic acid probe and / or the internal standard nucleic acid probe. And measuring the change or the amount of change in the fluorescent character of the fluorescent dye labeled on the target nucleic acid probe and Z or the internal standard nucleic acid probe so that the method of the present invention can be carried out. , And a reaction solution or a measurement kit containing the internal standard nucleic acid and capable of performing the method of the present invention using the devices; and 9) a measuring apparatus for performing the method of the present invention; and ,
1 0 ) 前記のデータ解析方法の過程を、 コンピュータに実行させるため の手順をプログラムとして記録したコンピュータ読取可能な記録媒体、 又、  10) a computer-readable recording medium which records a procedure for causing a computer to execute the process of the data analysis method as a program; and
1 1 ) 標的核酸塩基配列領域を切断しないような少なく とも一種以上の 制限酵素によって標的核酸を含む全核酸を切断後、 標的核酸塩基配列を 含む核酸画分のみを分離 · 回収することを特徴とする標的核酸分離 · 回 収濃縮方法、 又、  11) Cleavage of all nucleic acids containing the target nucleic acid by at least one restriction enzyme that does not cleave the target nucleic acid base sequence region, and then separating and collecting only the nucleic acid fraction containing the target nucleic acid base sequence Target nucleic acid separation
1 2 ) 任意の配列を有する人工合成された 5 0 b p以上の一本鎖のオリ ゴヌクレオチド核酸を铸型として遺伝子増幅を行い、 任意の配列を有す る 2本鎖 D N Aを取得することを特徴とする人工合成遺伝子の取得方 法を提供する。 図面の簡単な説明 12) Gene amplification using an artificially synthesized single-stranded oligonucleotide nucleic acid having an arbitrary sequence of 50 bp or more as a 铸 type to obtain a double-stranded DNA having an arbitrary sequence. It provides a method for obtaining a characteristic artificially synthesized gene. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 遺伝子 (標的核酸) にハイブリダィズする各プライマーの 当該遺伝子における八ィプリダイゼーションの位置。  Figure 1 shows the position of each primer hybridizing to a gene (target nucleic acid) in the gene.
第 2図は、 標的核酸 (遺伝子 (wild type) ) 又は内部標準核酸 (nec 1変異型遺伝子 (mutated type) ) と標的核酸プローブ (NECB- 24) との ハイブリダィゼーシヨン物 (標的核酸プローブ複合体) の解離曲線。  Fig. 2 shows a hybridization product of a target nucleic acid (gene (wild type)) or an internal standard nucleic acid (nec1 mutated type) and a target nucleic acid probe (NECB-24) (target nucleic acid probe). Dissociation curve of the complex).
a : ブランク  a: Blank
b : 内部標準核酸 (necl変異型遺伝子 (mutated type) ) c : 標的核酸 (necl遺伝子 (wild type) )  b: Internal standard nucleic acid (necl mutated type) c: Target nucleic acid (necl gene (wild type))
プローブ : 標的核酸プローブ NECB-24  Probe: Target nucleic acid probe NECB-24
第 3図は、 標的核酸 (necl遺伝子 (wild type) ) 又は内部標準核酸 (necl変異型遺伝子 (mutated type) ) と内部標準核酸プローブ (NECM B-24) とのハイブリダィゼーシヨン物 (標的核酸プロ一ブ複合体) の解 離曲線。  FIG. 3 shows a hybridization product of a target nucleic acid (necl gene (wild type)) or an internal standard nucleic acid (necl mutated type) and an internal standard nucleic acid probe (NECM B-24). Dissociation curve of the nucleic acid probe complex).
a : ブランク  a: Blank
b : 内部標準核酸 (necl変異型遺伝子 (mutated type) ) c : 標的核酸 (necl遺伝子 (wild type) )  b: Internal standard nucleic acid (necl mutated type) c: Target nucleic acid (necl gene (wild type))
プローブ : 内部標準核酸プローブ^じ¾18-24  Probe: Internal standard nucleic acid probe ^ 18-24
第 4図は、 標的核酸プローブによる標的核酸と内部標準核酸との混 合物を铸型とする P C Rのリアルタイムモニタリング。  Fig. 4 shows real-time monitoring of PCR using a target nucleic acid probe as a type II mixture of target nucleic acid and internal standard nucleic acid.
→~ Blank: 铸型核酸 0  → ~ Blank: 铸 type nucleic acid 0
1 標的核酸 内部標準核酸の混合比が 1 4 標的核酸 内部標準核酸の混合比が 4 1  1 Target nucleic acid Mix ratio of internal standard nucleic acid is 14 4 Target nucleic acid Mix ratio of internal standard nucleic acid is 4 1
1 0 標的核酸 内部標準核酸の混合比が 1 0  10 Target nucleic acid Mix ratio of internal standard nucleic acid is 10
2 1 標的核酸 内部標準核酸の混合比が 2 1  2 1 Target nucleic acid Mix ratio of internal standard nucleic acid is 2 1
6 1 標的核酸 内部標準核酸の混合比が 6 1  6 1 Target nucleic acid Mix ratio of internal standard nucleic acid 6 1
8 標的核酸 内部標準核酸の混合比が 8 1  8 Target nucleic acid Mix ratio of internal standard nucleic acid 8 1
差替え用紙 第 5図は、 内部標準核酸プローブによる標的核酸と内部標準核酸との 混合物を铸型とする P C' Rのリアルタイムモニタリング。 Replacement paper Fig. 5 shows real-time monitoring of PC'R using a mixture of target nucleic acid and internal standard nucleic acid with an internal standard nucleic acid probe.
B l ank 铸型核酸 0  B l ank 核酸 type nucleic acid 0
1 標的核酸 内部標準核酸の混合比が 1  1 Target nucleic acid Mix ratio of internal standard nucleic acid is 1
2 1 標的核酸 内部標準核酸の混合比が 2 4 0 標的核酸 内部標準核酸の混合比が 4 0  2 1 Target nucleic acid Mix ratio of internal standard nucleic acid is 2 40 Target nucleic acid Mix ratio of internal standard nucleic acid is 40
0 1 標的核酸 内部標準核酸の混合比が 0 1  0 1 Target nucleic acid Mix ratio of internal standard nucleic acid 0 1
6 1 標的核酸 内部標準核酸の混合比が 6 1  6 1 Target nucleic acid Mix ratio of internal standard nucleic acid 6 1
8 1 標的核酸 内部標準核酸の混合比が 8 1 第 6図は、 D N A濃度と標的核酸プローブに標識された色素の蛍光強 度変化量 (率) の関係式を示す図。  8 1 Target nucleic acid The mixing ratio of the internal standard nucleic acid is 8 1 FIG. 6 is a diagram showing the relational expression between the DNA concentration and the change in the fluorescence intensity (rate) of the dye labeled on the target nucleic acid probe.
A : 標的核酸 '  A: Target nucleic acid ''
B 内部標準核酸 B Internal standard nucleic acid
第 7図は、  Figure 7 shows
A : 土壌試料が添加されていない測定系における各種 D N A濃度 における P C Rのリアルタイムモニタリグ。 B : Aに基づく検量線。 A: Real-time monitoring rig of PCR at various DNA concentrations in a measurement system to which no soil sample was added. B: calibration curve based on A.
第 8図は、 従来公知の定量的 P C R方法によるリアルタイムモニタリ ング。 FIG. 8 shows real-time monitoring by a conventionally known quantitative PCR method.
铸型核酸: nec l遺伝子の a及び bプローブをセッ 卜する P C R産 物 7 0 0万。 Type III nucleic acid: 700,000 PCR products that set the a and b probes of the necl gene.
第 9図は、 ハイプリダイゼーションした際のプローブの位置関係 第 1 0図は、 Nec - donorと NECB - 24 accep torのプローブセッ トの内部 標準遺伝子と nec l遺伝子に対する解離曲線。  Fig. 9 shows the positional relationship between the probes during hybridization. Fig. 10 shows the dissociation curves of the Nec-donor and NECB-24 accep tor probe sets for the internal standard gene and the necl gene.
第 1 1図は、 Nec - do norと NECMB-24 acceptorのプローブセッ トの内 部標準遺伝子と nec l遺伝子に対する解離曲線。  Fig. 11 shows the dissociation curves of the Nec-donor and NECMB-24 acceptor probe sets for the internal standard gene and the necl gene.
第 1 2図は、 増幅前の標的核酸と内部標準核酸の濃度比に対する、 標 的核酸の増幅産物由来の蛍光強度増加率と内部標準核酸の増幅産物由 来の蛍光強度増加率との関係式。  Fig. 12 shows the relationship between the ratio of the increase in the fluorescence intensity derived from the amplification product of the target nucleic acid and the ratio of the concentration of the target nucleic acid to the internal standard nucleic acid before amplification and the increase in the fluorescence intensity derived from the amplification product of the internal standard nucleic acid. .
第 1 3図は、 NECMB-24 beaconの内部標準遺伝子と nec l遺伝子に対す る解離曲線。  Fig. 13 shows the dissociation curves of the NECMB-24 beacon internal control gene and necl gene.
第 1 4図は、 NECMB- 24 beaconの内部標準遺伝子と nec l遺伝子に対す る解離曲線。  Fig. 14 shows the dissociation curves of the NECMB-24 beacon internal control gene and necl gene.
' 第 1 5図は、 増幅前の標的核酸と内部標準核酸の濃度比に対する、 標 的核酸の増幅産物由来の蛍光強度増加率と内部標準核酸の増幅産物由 来の蛍光強度増加率との関係式 (サンライズプライマーを使用した場 合) 。  '' Fig. 15 shows the relationship between the fluorescence intensity increase rate derived from the target nucleic acid amplification product and the fluorescence intensity increase rate derived from the internal standard nucleic acid amplification product with respect to the concentration ratio of the target nucleic acid and the internal standard nucleic acid before amplification. Formula (when using a sunrise primer).
第 1 6図は、 NECB- 23 LAMPの内部標準遺伝子と nec l遺伝子に対する解 離曲線。  Fig. 16 shows the dissociation curves of the NECB-23 LAMP internal control gene and necl gene.
第 1 7図は、 NECB- 23 LAMPの内部標準遺伝子と nec l遺伝子に対する解 離曲線。 発明を実施するための最良の形態  Fig. 17 shows the dissociation curves of the NECB-23 LAMP internal control gene and necl gene. BEST MODE FOR CARRYING OUT THE INVENTION
次に好ましい実施の形態を挙げて本発明を更に詳細に説明する。 本発明は、 少なく とも一種の蛍光色素で標識された核酸プローブ (単 に、 核酸プローブという。 ) であって、 対応核酸 {単にハイブリダィゼ ーシヨン可能な核酸 (必ずしも全塩基が相捕的でなく ともよい。 すなわ ち、 全塩基が水素結合の相応をしなく ともよい。 ) を意味する。 } にハ イブリダィズすることにより、 標識された蛍光色素の蛍光キャラクター が変化する少なく も一種の核酸プローブを用いて対応核酸を測定する 方法 (単に、 核酸プローブを用いる核酸測定方法) において、 少なく と も一種の標的核酸を含有する測定系に、 標的核酸に相応する少なく とも 一種の、 既知濃度宛の内部標準核酸 (詳しくは後記する。 ) と、 少なく とも一種の蛍光色素で標識された標的核酸プローブ及び/又は内部標 準核酸プローブを添加し、 ハイプリダイゼーション反応及び/又は核酸 増幅反応を行って、 標的核酸プローブと標的核酸とのハイプリダイゼー ショ ン反応及び Z又は内部標準核酸プローブと内部標準核酸とのハイ プリダイゼーショ ン反応により生じる各核酸プローブに標識された蛍 光色素若しくは測定系の蛍光キャラクタ一の、 ハイプリダイゼーシヨン 前後における変化若しくは変化量を少なく とも一種の波長で測定し、 得 られる測定値及び内部標準核酸の濃度から、 標的核酸の濃度及び/又は 核酸増幅反応前の標的核酸の濃度若しくはコピー数を特異的に測定す る新概念の測定方法である。 Next, the present invention will be described in more detail with reference to preferred embodiments. The present invention relates to a nucleic acid probe labeled with at least one kind of fluorescent dye (to be simply referred to as a nucleic acid probe), which comprises a corresponding nucleic acid {a nucleic acid that can be simply hybridized (all bases do not necessarily have to be complementary). That is, all the bases do not have to correspond to hydrogen bonds. The method for measuring the corresponding nucleic acid using at least one kind of nucleic acid probe, which changes the fluorescent character of the labeled fluorescent dye by hybridizing to a nucleic acid (simply a nucleic acid measurement method using a nucleic acid probe), is at least used for hybridization. A target nucleic acid probe labeled with at least one kind of internal standard nucleic acid corresponding to the target nucleic acid and addressed to a known concentration in a measurement system containing one kind of target nucleic acid (described later in detail), and at least one kind of fluorescent dye And / or by adding an internal standard nucleic acid probe, performing a hybridization reaction and / or a nucleic acid amplification reaction, and performing a hybridization reaction between the target nucleic acid probe and the target nucleic acid, and a Z or internal standard nucleic acid probe and an internal standard. Fluorescent dye labeled on each nucleic acid probe generated by the hybridization reaction with nucleic acid The change or amount of change in the fluorescence character of the measurement system before and after hybridization is measured at least at one wavelength, and the concentration of the target nucleic acid and / or nucleic acid amplification reaction is determined based on the measured value and the concentration of the internal standard nucleic acid. This is a new concept measurement method that specifically measures the concentration or copy number of the previous target nucleic acid.
又、 この方法を本発明の原理として、 各種の核酸プローブを用いて少 なく とも一種の標的核酸を、 好ましくは均一系で測定する際の各種の課 題の解決を計るものである。  This method is based on the principle of the present invention and aims to solve various problems when at least one kind of target nucleic acid is measured using various nucleic acid probes, preferably in a homogeneous system.
そして、 標的核酸塩基配列領域を切断しないような少なく とも一種以 上の制限酵素によって標的核酸を含む全核酸を切断し、 標的核酸塩基配 列を含む核酸画分のみを分離 · 回収、 又は/及び更に濃縮する標的核酸 濃縮方法である。 Then, all nucleic acids including the target nucleic acid are cleaved by at least one or more restriction enzymes so as not to cleave the target nucleobase sequence region, and only a nucleic acid fraction containing the target nucleobase sequence is separated / collected, and / or Target nucleic acids to be further concentrated This is a concentration method.
さらに、 任意の配列を有する 5 0 b p以上の一本鎖オリゴ核酸を人工 合成し、 これを錄型として遺伝子増幅を行うことで、 任意の配列を有す る 2本鎖 D N Aを取得する人工合成遺伝子の調製方法である。  Furthermore, artificial synthesis of a single-stranded oligonucleic acid of 50 bp or more having an arbitrary sequence is performed, and gene amplification is performed using this as a type II to obtain double-stranded DNA having an arbitrary sequence. This is a method for preparing a gene.
本発明に用いている用語は、 特別なことわりがない場合、 現在、 生物 学、 分子生物学、 遺伝学若しくは遺伝子工学、 微生物学若しくは微生物 工学等で一般的に使用されている用語と同じ意味である。  Unless otherwise specified, the terms used in the present invention have the same meanings as those generally used in biology, molecular biology, genetics or genetic engineering, microbiology or microbiological engineering, etc. is there.
本発明においては、 蛍光キャラクターとは、 蛍光強度、 蛍光寿命、 蛍光 偏光、 蛍光異方性等の蛍光特性等のこと云う (以下、 簡便化のために、 蛍光強度と略称する。 ) 。 In the present invention, the fluorescent character refers to fluorescent characteristics such as fluorescence intensity, fluorescence lifetime, fluorescence polarization, and fluorescence anisotropy (hereinafter, abbreviated as “fluorescence intensity” for simplicity).
又、 核酸プローブと対応核酸とのハイプリダイゼーションによるプロ ーブと核酸の複合体のことをハイブリ ッ ド (又はハイブリ ッ ト) 複合体、 又は単に、 核酸 · プローブ複合体又はプローブ ·核酸複合体という。 又、 核酸測定若しくは核酸濃度を測定するとは、 標的核酸の濃度を定 量することは勿論のこと、 定量的検出をすること、 又、 単なる検出をす ることを云つ。  In addition, a complex of a probe and a nucleic acid by hybridization of a nucleic acid probe and a corresponding nucleic acid is referred to as a hybrid (or a hybrid) complex, or simply a nucleic acid / probe complex or a probe / nucleic acid complex. That. Further, the measurement of the nucleic acid or the measurement of the nucleic acid concentration means not only the measurement of the concentration of the target nucleic acid, but also the quantitative detection, or the mere detection.
本発明でいう 「標的核酸プローブであって、 対応核酸にハイブリダィ ズすることにより、 標識された蛍光色素の蛍光強度が変化する少なく と も一種の標的核酸プローブを用いて標的核酸を測定する方法」 とは、 単 に、 核酸プローブを用いて、 核酸を測定する方法をいう。 それは、 公知、 未知を問わない。 例えば、 下記に述べる現在公知の方法と本発明方法を 挙げることができる。 「対応核酸」 とは、 前記の通りである。  "A method for measuring a target nucleic acid using at least one kind of a target nucleic acid probe, which is a target nucleic acid probe and changes the fluorescence intensity of a labeled fluorescent dye by hybridizing to a corresponding nucleic acid" The term simply refers to a method for measuring a nucleic acid using a nucleic acid probe. It may be known or unknown. For example, the presently known method described below and the method of the present invention can be mentioned. The “corresponding nucleic acid” is as described above.
本発明において、 標的核酸とは、 核酸測定を目的とする核酸もしくは 遺伝子のことをいう。 精製の有無を問わない。 又、 濃度の大小も問わな い。 各種の核酸が混在していてもよい。 例えば、 複合微生物系 (複数微 生物の R N Aもしくは遺伝子 D N Aの混在系、 例えば、 土壌中の核酸、 遺伝子などを挙げることができる。 ) 又は共生微生物系 (複数の動植物 及び 又は複数の微生物の R N Aもしくは遺伝子 D N Aの混在系) にお ける測定を目的とする特定核酸である。 上記の核酸の具体例として、 D N A、 R N A、 P N A、 オリ ゴデォキシリボヌクレオチド (ol igodeoxy ribonucl eot ides) 、 オリ ゴリホヌクレオテ卜 (ol i goribonucleot ides) 等、 又、 前記核酸の化学的修飾核酸を挙げることができる。 化学的修飾 核酸として 2 ' - O.-メチル(Me) RNA等を例示することができる。 In the present invention, the target nucleic acid refers to a nucleic acid or a gene for measuring a nucleic acid. With or without purification. Also, the size of the concentration does not matter. Various nucleic acids may be mixed. For example, complex microbial systems (multiple micro A mixed system of biological RNA or gene DNA, for example, nucleic acids and genes in soil can be mentioned. ) Or a symbiotic microbial system (mixed system of RNA or gene DNA of multiple animals and plants and / or multiple microorganisms). Specific examples of the above nucleic acid include DNA, RNA, PNA, oligodeoxyribonucleotides, oligoribonucleotides, and chemically modified nucleic acids of the nucleic acids. be able to. Chemically modified nucleic acids include 2′-O.-methyl (Me) RNA and the like.
本発明において、 内部標的核酸とは、 標的核酸と相応する核酸で、 好 適には下記の特質の少なく とも一つを有するものである :  In the present invention, an internal target nucleic acid is a nucleic acid corresponding to a target nucleic acid, preferably having at least one of the following characteristics:
1 ) 内部標準核酸は、 当該核酸が、 内部標準核酸プローブとハイプリ ダイズさせることで生じる当該プローブに標識された蛍光色素の蛍光 強度の変化若しくは変化量から標的核酸と識別可能な塩基配列を有す る。 この具体例は、 実施例 1の図 2及び 3に示されている。 即ち、 内部 標準核酸と内部標準核酸プローブ、 及び標的核酸と標的核酸プローブの プローブ ·核酸複合体又は反応系の各プローブに標識された蛍光色素の 蛍光強度の変化若しくは変化量の相違に基づいて、 標的核酸と内部標的 核酸の塩基配列の相違を識別できる。  1) The internal standard nucleic acid has a base sequence that can be distinguished from the target nucleic acid based on the change or the amount of change in the fluorescence intensity of the fluorescent dye labeled on the probe caused by the nucleic acid being hybridized with the internal standard nucleic acid probe. You. This embodiment is shown in FIGS. 2 and 3 of the first embodiment. That is, based on the change in the fluorescence intensity or the amount of change in the fluorescent intensity of the internal standard nucleic acid and the internal standard nucleic acid probe, and the fluorescent dye labeled on the probe nucleic acid complex of the target nucleic acid and the target nucleic acid probe or each probe of the reaction system, The difference in base sequence between the target nucleic acid and the internal target nucleic acid can be identified.
2 ) 内部標準核酸が、 一定条件下 (好適な条件の求め方は後記した。 ) で、 内部標準核酸と特異的にハイブリダィズする内部標準核酸プローブ とのみハイプリダイズし、 標的核酸プローブとハイプリダイズしない塩 基配列を有する。  2) The internal standard nucleic acid hybridizes only with the internal standard nucleic acid probe that specifically hybridizes with the internal standard nucleic acid under certain conditions (the method for obtaining suitable conditions is described later), and does not hybridize with the target nucleic acid probe. It has a base sequence.
3 ) 内部標準核酸の塩基配列は、 標的核酸のものと一部配列が異なる ものである。 一部配列とは、 塩基数にして、 1 ~ 3 0、 好ましくは 1 ~ 1 0、 特に好ましくは 1〜 6位である。 そして連続又は非連続の塩基配 列である。 3) The nucleotide sequence of the internal standard nucleic acid is partially different from that of the target nucleic acid. The partial sequence is 1 to 30, preferably 1 to 10, and particularly preferably 1 to 6, the number of bases. And a continuous or discontinuous base arrangement Column.
4 ) 内部標準核酸の塩基長が、 標的核酸のものと異なっていてもよい。 4) The base length of the internal standard nucleic acid may be different from that of the target nucleic acid.
5 ) 内部標準核酸が、 同一のプライマーを用いて標的核酸と同時に増 幅可能である。 5) The internal standard nucleic acid can be amplified simultaneously with the target nucleic acid using the same primer.
6 ) 内部標準核酸とは、 具体的な一例を挙げるならば、 標的核酸の塩 基配列の一部が他の塩基で置換もしくは欠失した塩基配列で、 変異型核 酸若しくは一種の多型核酸と云われるものである。 そして、 次の効果を もたらす塩基配列が好適である :標的核酸と標的核酸プローブのハイブ リダイゼーションの効果が、 内部標準核酸と内部標準核酸プローブのハ イブリダィゼーシヨ ンの効果と、 同様若しくは近似している (全く同じ である必要はない。 ) 。  6) An internal standard nucleic acid is, for example, a nucleotide sequence in which a part of the base sequence of a target nucleic acid is substituted or deleted with another base, and is a mutant nucleic acid or a kind of polymorphic nucleic acid. It is said that. Nucleotide sequences that produce the following effects are preferred: the effect of hybridization of the target nucleic acid and the target nucleic acid probe is the same as or less than the effect of hybridization of the internal standard nucleic acid and the internal standard nucleic acid probe. They are similar (they need not be exactly the same).
同様に、 標的核酸の核酸増幅を阻害する物質の、 阻害箇所、 若しくは その阻害効果が、 内部標準核酸の核酸増幅を阻害する物質のものと、 同 様若しくは近似している (全く同じである必要はない。 ) 阻害箇所、 若 しくはその阻害効果をもたらす塩基配列を有することが好適である。 なお、 上記の内部標準核酸は、 後記の実施例 1、 実施例 7、 又核酸プ ローブに記した方法により調製若しくは合成できる。  Similarly, the site of inhibition or the inhibitory effect of the substance that inhibits nucleic acid amplification of the target nucleic acid is similar or similar to that of the substance that inhibits nucleic acid amplification of the internal standard nucleic acid (need to be exactly the same). It is preferable to have a site of inhibition or a base sequence that produces the inhibitory effect. The above-mentioned internal standard nucleic acid can be prepared or synthesized by the methods described in Examples 1 and 7 and the nucleic acid probe described later.
本発明において、 前記の 「少なく とも一種以上の標的核酸が存在する 測定系」 とは、 単数種又は複数種の標的核酸が測定系に存在するという 意味である。  In the present invention, the “measurement system in which at least one or more target nucleic acids are present” means that one or more target nucleic acids are present in the measurement system.
測定系に単数種の標的核酸が存在する場合に、 測定系に存在させる標 的核酸プローブ及び Z又は内部標準核酸プローブの種は単数種でも複 数種でもよい。 この 「複数でもよい」 とは、 一種の標的核酸に塩基配列 の異なった複数の部位があり、 当該部位にハイブリダイズする複数の種 の標的核酸プローブを使用してもよいという意味である。 内部標準核酸 についても同様なことが云える。 When a single type of target nucleic acid is present in the measurement system, the type of the target nucleic acid probe and Z or the internal standard nucleic acid probe to be present in the measurement system may be one or more. The expression “there may be more than one” means that a kind of target nucleic acid has a plurality of sites having different base sequences, and a plurality of kinds of target nucleic acid probes that hybridize to the site may be used. Internal standard nucleic acid The same can be said for.
本発明において、 測定系及び Z又は反応系に複数種の標的核酸が存在 する場合は、 複数種の標的核酸プローブ及び/又は内部標準核酸及び/ 又は内部標準核酸プローブを存在させることを特徴と している。 そして、 標的核酸と標的核酸プローブは、 その種類の数において、 少なく とも同 数である。 内部標準核酸と内部標準核酸プローブについても同様なこと が云える。 そして、 この 「少なく とも同数」 とは、 一種の標的核酸に、 複数種の核酸プローブがハイプリダイズする塩基配列部位を設定して、 一種の標的核酸に対して複数種の核酸プローブを測定系に存在させて もよいという意味である。  In the present invention, when a plurality of types of target nucleic acids are present in the measurement system and Z or the reaction system, a plurality of types of target nucleic acid probes and / or internal standard nucleic acids and / or internal standard nucleic acid probes are present. ing. The target nucleic acid and the target nucleic acid probe are at least the same in the number of types. The same can be said for the internal standard nucleic acid and the internal standard nucleic acid probe. The “at least the same number” means that a base sequence site where multiple types of nucleic acid probes hybridize is set in one type of target nucleic acid, and multiple types of nucleic acid probes are set in the measurement system for one type of target nucleic acid. This means that it may exist.
更に、 前記単数種及び複数種の標的核酸が測定系に存在する場合にお ける 「複数種の標的核酸プローブ及び/又は内部標準核酸及び Z又は内 部標準核酸プローブ」 における 「複数種の標的核酸プローブ、 複数種の 内部標準核酸プローブ」 とは、 次のような意味である。 すなわち、 ( a ) 本発明の核酸プローブにおいて、 種類の異なった複数のプローブである。 例えば、 プローブの形態若しくは構造は同じであるが、 互いに標識する 色素が単に異なったプローブを例に挙げることができる。 (b ) プロ一 ブの形態若しくは構造が異なった核酸プローブの組合せであるが、 互い に標識色素が異なった複数種の核酸プローブである。 すなわち、 後記す る形態の異なった核酸プローブの組合せでもよいという意味である。  Further, when the single and multiple target nucleic acids are present in the measurement system, the “plurality of target nucleic acids and / or internal standard nucleic acid and Z or internal standard nucleic acid probe” “Probe, plural kinds of internal standard nucleic acid probes” have the following meanings. That is, (a) a plurality of different types of probes in the nucleic acid probe of the present invention. For example, probes having the same form or structure but different dyes for labeling each other can be exemplified. (B) A combination of nucleic acid probes having different probe forms or structures, but different types of labeling dyes. That is, it means that a combination of nucleic acid probes having different forms described later may be used.
「ハイブリダイゼーション前後における核酸プローブの蛍光強度の変 化又は変化量を測定する」 とは、 一例を挙げると、 ハイブリダィゼーシ ヨ ン前後における核酸プローブの蛍光強度の測定値の差、 又、 ハイプリ ダイゼ一ショ ン反応系の時間を関数とする蛍光強度の変化率などをい う。 又、 核酸増幅反応においては、 反応サイクルに関する蛍光強度の変 化若しくは変化率などをいう。 "Measurement of the change or the amount of change in the fluorescence intensity of the nucleic acid probe before and after the hybridization" is, for example, a difference between the measured value of the fluorescence intensity of the nucleic acid probe before and after the hybridization, and It refers to the rate of change in fluorescence intensity as a function of the time of the hybridization reaction system. In the nucleic acid amplification reaction, the change in the fluorescence intensity with respect to the reaction cycle Or rate of change.
本願の発明は、 第 1〜第 8の発明からなる。  The invention of the present application comprises the first to eighth inventions.
第 1発明は、 核酸増幅反応を行わないで、 核酸測定を行う方法に関す る。  The first invention relates to a method for measuring a nucleic acid without performing a nucleic acid amplification reaction.
すなわち、 第 1発明は、 前記した通りであるが、 核酸プローブを用い て核酸を測定する方法 (公知、 未公知を問わない。 ) において、 少なく とも一種以上の標的核酸を含む測定系若しくは反応系 (以下、 単に測定 系と略称する。 ) に、 標的核酸に対応する、 既知量の内部標準核酸を少 なく とも一種、 かつ標的核酸に特異的な少なく とも一種の蛍光色素で標 識された一種のオリ ゴヌク レオチドからなる標的核酸プローブ若しく は内部標準核酸に特異的な、 少なく とも一種の蛍光色素で標識された一 種のオリ ゴヌク レオチドからなる内部標準核酸プローブを少なく と も 一種を含むか又は当該標的核酸プローブと当該内部標準核酸プローブ とを合わせて少なく とも二種以上含む測定系において、 ハイプリダイゼ ーシヨ ン反応を行わせて、 標的核酸プローブと標的核酸とのハイブリダ ィゼーショ ンにより生じる標的核酸プローブに修飾した蛍光色素の蛍 光強度の変化又は変化量、 内部標準核酸プローブと内部標準核酸とのハ イブリダイゼーシヨ ンにより生じる内部標準核酸プローブに修飾した 蛍光色素の蛍光強度の変化又は変化量を、 核酸プローブ種の数 (標的核 酸プローブ種の数及び内部標準核酸プローブ種の数の和) と少なく とも 同数種の波長で測定する。 当該測定値及び内部標準核酸の量から、 標的 核酸を測定する核酸の新規測定方法である。  That is, the first invention is as described above, but in a method for measuring a nucleic acid using a nucleic acid probe (whether known or unknown), a measurement system or a reaction system containing at least one or more target nucleic acids. (Hereinafter simply referred to as a measurement system), a known amount of an internal standard nucleic acid corresponding to a target nucleic acid and at least one fluorescent dye specific to the target nucleic acid. Contains at least one internal nucleic acid probe consisting of at least one oligonucleotide labeled with a target nucleic acid probe or at least one fluorescent dye specific to an internal nucleic acid or an internal standard nucleic acid Alternatively, in a measurement system containing at least two types of the target nucleic acid probe and the internal standard nucleic acid probe in total, the hybridization reaction The change in the fluorescence intensity of the fluorescent dye modified on the target nucleic acid probe caused by the hybridization of the target nucleic acid probe and the target nucleic acid, and the hybridization between the internal standard nucleic acid probe and the internal standard nucleic acid. The change or the amount of change in the fluorescence intensity of the fluorescent dye modified to the internal standard nucleic acid probe caused by the zeosion is reduced to the number of nucleic acid probe types (sum of the number of target nucleic acid probe types and the number of internal standard nucleic acid probe types). Both are measured at the same number of wavelengths. This is a novel nucleic acid measurement method for measuring a target nucleic acid from the measured value and the amount of the internal standard nucleic acid.
そして、 本発明において、 当該方法に好適に使用される標的核酸プロ ーブ及び 又は内部標準核酸プローブは、 以下の形態をとるものである。 1 ) 標的核酸プローブ及びノ又は内部標準核酸プローブが、 各々、 対応 核酸にハイブリダイズする一本鎖のオリ ゴヌクレオチドであり、 一種の ドナー色素 (リポーター色素をも含む。 ) 及び z又は一種のァクセプタ 一色素 (タエンチヤー色素若しくはクェンチヤ一物質をも含む。 ) を標 識してなる少なく とも一種の核酸プローブであって、 当該核酸プローブ が対応核酸にハイブリ ダィズしているときはハイブリダィゼーシヨ ン 反応系の蛍光キャラクタ一の変化又は変化量が増加するように、 ドナー 色素とァクセプター色素が当該オリ ゴヌク レオチドに標識されている。 2 ) 前記 1 ) の標的核酸プロ一ブ及び Z又は内部標準核酸プローブが、 下記の何れかの形態を有するものである : In the present invention, the target nucleic acid probe and / or the internal standard nucleic acid probe suitably used in the method take the following forms. 1) Target nucleic acid probe and internal or standard nucleic acid probe A single-stranded oligonucleotide that hybridizes to a nucleic acid, and identifies one kind of donor dye (including a reporter dye) and z or one type of acceptor dye (including a Taentia dye or a quencher substance). At least one kind of nucleic acid probe, and when the nucleic acid probe is hybridized to the corresponding nucleic acid, the change or the amount of change in the fluorescent character of the hybridization reaction system is increased. A donor dye and an acceptor dye are labeled on the oligonucleotide. 2) The target nucleic acid probe and Z or the internal standard nucleic acid probe according to 1) have any of the following forms:
( 1 ) ドナー色素とァクセプター色素で標識された一種のオリ ゴヌク レ ォチドの形態で、 対応核酸とハイブリダィズすることにより、 ハイプリ ダイゼーショ ン前後で、 ドナー色素の蛍光キャラクターの変化又は変化 量がプラスになるもの、  (1) By hybridizing with the corresponding nucleic acid in the form of a type of oligonucleotide labeled with a donor dye and an acceptor dye, the change or amount of change in the fluorescent character of the donor dye before and after hybridization is positive thing,
( 2 ) ドナー色素とァクセプター色素で標識された一種のオリ ゴヌク レ ォチドの形態で、 対応核酸とハイブリダィズすることにより、 ハイプリ ダイゼーショ ン前後で、 ド "一色素及びァクセプター色素の蛍光キャラ クターの変化又は変化量がマイナスになるもの、  (2) By hybridizing with the corresponding nucleic acid in the form of a type of oligonucleotide labeled with a donor dye and an acceptor dye, it is possible to change the fluorescence characteristics of the de-monochrome and the acceptor dye before and after hybridization. The amount of change is negative,
( 3 ) 一種のドナー色素一つで標識された一種のオリ ゴヌクレオチドか らなる一種のドナープローブ、 及び一種のァクセプター色素一つで標識 された一種のオリ ゴヌク レオチドからなる一種のァクセプタープロ一 ブの二種のプローブが対をなす形態であり、 ドナープローブ及び/又は ァクセプタープローブが対応核酸とハイブリダイズすることにより、 ハ イブリダイゼーション前後で、 ドナー色素及びァクセプター色素の蛍光 キャラクターの変化又は変化量がマイナス若しくはプラスになるもの。 3 ) 前記 1 ) の標的核酸プロ一ブ及び/又は内部標準核酸が、 ドナ一色 素とァクセプター色素で標識された一種のオリ ゴヌク レオチドの形態 で、 対応核酸とハイブリダィズすることにより、 ハイブリダィゼーショ ン前後で、 ドナー色素及びァクセプター色素の蛍光キャラクターの変化 又は変化量がマイナスになるものであって、 かつその末端部において ド ナー色素或いはァクセプター色素で標識されてお'り、 当該核酸プローブ が当該末端部において対応核酸にハイプリダイズしたとき、 当該プロ一 ブにハイブリダイズした対応核酸の末端塩基から 1ないし 3塩基離れ て、 対応核酸の塩基配列に G (グァニン) が少なく とも 1塩基存在する ように、 当該プローブの塩基配列が設計されている。 (3) One kind of donor probe consisting of one kind of oligonucleotide labeled with one kind of donor dye, and one kind of receptor probe consisting of one kind of oligonucleotide labeled with one kind of receptor dye The two types of probes form a pair, and the change or amount of change in the fluorescent character of the donor dye and the acceptor dye before and after hybridization due to the hybridization of the donor probe and / or the acceptor probe with the corresponding nucleic acid. Is minus or plus. 3) The target nucleic acid probe and / or the internal standard nucleic acid of 1) is By hybridizing with the corresponding nucleic acid in the form of a type of oligonucleotide labeled with an element and an acceptor dye, the change or the amount of change in the fluorescent character of the donor dye and the acceptor dye before and after hybridization is reduced. When the nucleic acid probe has been labeled with a donor dye or an acceptor dye at its terminal and the nucleic acid probe has hybridized to the corresponding nucleic acid at the terminal, the corresponding probe hybridized to the probe. The base sequence of the probe is designed so that at least one base is G (guanine) in the base sequence of the corresponding nucleic acid at a distance of one to three bases from the terminal base of the nucleic acid.
4 ) 前記 1 ) の標的核酸プローブ及び Z又は内部標準核酸が、 ドナー色 素とァクセプター色素で標識された一種のオリ ゴヌク レオチドの形態 で、 対応核酸とハイブリダイズすることにより、 ハイブリダィゼーショ ン前後で、 ドナー色素及びァクセプタ一色素の蛍光キャラクタ一の変化 又は変化量がマイナスになるものであって、 かつ対応核酸にハイプリダ ィゼーシヨ ンしたとき、 ドナー色素或いはァクセプター色素標識部にお いてプローブ一核酸ハイブリ ッ ドの複数塩基対が少なく とも一つの G (グァユン) と C (シ トシン) のペア一を形成するように、 当該プロ一 ブの塩基配列が設計されている。 4) Hybridization by hybridizing the target nucleic acid probe and Z or the internal standard nucleic acid of the above 1) in the form of a kind of oligonucleotide labeled with a donor dye and an acceptor dye with a corresponding nucleic acid. The change or the amount of change in the fluorescent character of the donor dye and the acceptor dye before and after the reaction is negative, and when the corresponding nucleic acid is hybridized, the probe is not detected in the labeled portion of the donor dye or the acceptor dye. The nucleotide sequence of the probe is designed so that a plurality of base pairs of the nucleic acid hybrid form at least one pair of G (guayun) and C (cytosine).
5 ) 標的核酸プローブ及び Z又は内部標準核酸プローブが、 少なく も一 種の蛍光色素で標識された一本鎖のオリ ゴヌク レオチドからなるもの で、 以下の少なく とも一つの特質を有するように、 当該プローブが設計 されている :  5) The target nucleic acid probe and the Z or internal standard nucleic acid probe are each composed of a single-stranded oligonucleotide labeled with at least one kind of fluorescent dye, and have at least one of the following characteristics. The probe is designed for:
( 1 ) 前記反応系若しくは測定系で一種の核酸プローブで機能を発揮で きる、  (1) In the reaction system or the measurement system, a function can be exhibited with a kind of nucleic acid probe,
( 2 ) 標的核酸及び/又は内部標準核酸にハイブリダィゼーシヨンした ときに、 前記蛍光色素が、 クェンチヤ一色素及び/又はクェンチヤープ ローブの非存在下にその蛍光キャラクタ一の変化又は変化量をマイナ スに増大させる、 (2) hybridization to target nucleic acid and / or internal standard nucleic acid Sometimes, the fluorescent dye negatively increases the change or amount of change of the fluorescent character in the absence of the quencher dye and / or the quencher probe,
( 3 ) 当該プローブは、 その末端部において少なく とも蛍光色素で標識 されている、  (3) The probe is labeled at least with a fluorescent dye at its end,
( 4 ) 当該核酸プローブが標的核酸にハイプリダイゼーションしたとき、 当該プローブにハイブリ ダイゼーショ ンした標的核酸の標識塩基から (4) When the nucleic acid probe is hybridized to the target nucleic acid, the nucleic acid probe
1ないし 3塩基離れて (但し、 標識塩基を 1 と計数する。 ) 、 標的核酸 の塩基配列に G (グァニン) が少なく とも 1塩基存在する、 One to three bases apart (however, the number of labeled bases is counted as 1), and at least one G (guanine) is present in the base sequence of the target nucleic acid.
( 5 ) 当該核酸プローブが当該末端部において標的核酸にハイプリダイ ゼーションしたとき、 当該末端部分においてプロ一ブー核酸ハイプリ ッ ドの複数塩基対が少なく とも一つの G (グァニン) とじ (シトシン) の ペア一を形成する。  (5) When the nucleic acid probe hybridizes to the target nucleic acid at the end, at least one base pair of the probe nucleic acid hybrid at the end has at least one G (guanine) binding (cytosine) pair. To form
6 ) 前記 5 ) の標的核酸プローブ及び Z又は内部標準核酸プローブが、 3 ' 末端のリボース若しくはデォキシリボースの 3 ' 炭素の水酸基、 又 は 3 ' 末端のリボースの 3 ' 若しくは 2 ' 炭素の水酸基がリン酸化され ている。  6) The target nucleic acid probe and Z or the internal standard nucleic acid probe of the above 5), wherein the 3′-carbon hydroxyl group of 3′-terminal ribose or deoxyribose or the 3′- or 2′-carbon hydroxyl group of 3′-terminal ribose is phosphorous. Oxidized.
7 ) 前記 5 ) の標的核酸プローブ及びノ又は内部標準核酸プローブが、 3 ' 末端の O H基以外の部分で前記蛍光色素にて標識されており、 当該 核酸プローブが、 前記対応核酸にハイブリダィゼーシヨンしたとき、 当 該修飾部分においてプローブ一核酸ハイプリ ッ ドの複数塩基対が少な く とも一つの G (グァニン) とじ (シトシン) のペア一を形成する標的 核酸プローブ及びノ又は内部標準核酸プローブを用いる。  7) The target nucleic acid probe and the internal or standard nucleic acid probe of the above 5) are labeled with the fluorescent dye at a portion other than the OH group at the 3 ′ end, and the nucleic acid probe is hybridized to the corresponding nucleic acid. A target nucleic acid probe and a non-standard or internal standard nucleic acid probe in which, when subjected to quenching, a plurality of probe-nucleic acid hybrids form at least one G (guanine) -binding (cytosine) pair in the modified portion. Is used.
尚、 前記の標的核酸プローブを標識している蛍光色素の発蛍光色と前 記の内部標準核酸プローブを標識している蛍光色素の発蛍光色が、 互い に異なるように、 標的核酸プローブと内部標準核酸プローブを設計する ことが好適である。 具体的には、 標的核酸プローブを標識している蛍光 色素の種類と内部標準核酸プローブを標識している蛍光色素が異なる ことが好ましい。 The fluorescent color of the fluorescent dye labeling the target nucleic acid probe and the fluorescent color of the fluorescent dye labeling the internal standard nucleic acid probe are mutually different. Therefore, it is preferable to design a target nucleic acid probe and an internal standard nucleic acid probe. Specifically, it is preferable that the type of the fluorescent dye labeling the target nucleic acid probe and the fluorescent dye labeling the internal standard nucleic acid probe be different.
下記に具体的に上記の核酸プローブを使用した核酸測定方法を例示 する。  Specific examples of the nucleic acid measurement method using the above-described nucleic acid probe are described below.
I . 公知方法の例  I. Examples of known methods
現在公知の方法とは、 現在知られている全ての方法をいうが、 例示す るならば、 下記のごとくである。 なお、 本例示でもって本発明は限定さ れるものではない。  The currently known methods refer to all currently known methods, for example, as follows. It should be noted that the present invention is not limited by these examples.
A ) FRET現象を利用する場合:  A) When using the FRET phenomenon:
( 1 ) Morri sonらの方法 (Morr i son et al . , Anal . Bi ochem. , 183: 31-24 4, 1989) で代表される方法  (1) A method represented by the method of Morri son et al. (Morr son et al., Anal. Biochem., 183: 31-24, 1989).
二本鎖 D N Αを対応核酸とするもので、 二種の核酸プローブを用いる 方法である。 二種のうち一方はリーデング鎖、 他方はコーデング鎖にハ イブリダィズするものである。 又、 プローブの一方は 5 ' 末端部位が一 つの蛍光色素で標識されている場合、 他方は 3, 末端部位が一つの蛍光 色素で標識されている。 さらにプローブの一方の色素は消光作用を有す る ドナー (donor) 色素 (リポーター (reporter) 色素とも呼称される。 ) で、 他方のものはァクセプター ( acceptor) (タエンチヤー(quencher) 色素とも呼称される。 ) 色素である。 二種のプローブは互いにハイブリ ダイズすることができるように塩基配列が設計されている。 二種のプロ ーブがハイブリ ッ ド複合体を形成しているときは、 F R E T現象が作用 して測定系の蛍光強度は低く抑制されている。  The method uses double-stranded DNA as the corresponding nucleic acid and uses two types of nucleic acid probes. One of the two types hybridizes to a leading chain, and the other hybridizes to a coding chain. In addition, one of the probes is labeled with one fluorescent dye at the 5 'end, and the other is labeled with one fluorescent dye at the other end. One of the dyes of the probe is a donor dye having a quenching effect (also called a reporter dye), and the other dye is also called an acceptor (quencher) dye. ) It is a pigment. The nucleotide sequences of the two probes are designed so that they can hybridize with each other. When the two types of probes form a hybrid complex, the FRET phenomenon acts to suppress the fluorescence intensity of the measurement system to a low level.
測定系に、 ハイブリ ッ ド複合体を形成している二種のプローブと二重 鎖を形成している対応核酸を存在させる。 そうすると、 プローブと対応 核酸が自己のハイプリ ッ ド複合体を解離させて、 競合的にプローブと対 応核酸がハイプリ ッ ド複合体を形成する。 プローブと対応核酸がハイブ リ ッ ド複合体を形成すると、 色素間の F R E T現象が解消して測定系の 蛍光強度変化値若しくは時間を関数とする変化率が増加する。 測定系の 蛍光強度変化値及び変化率の増加が対応核酸の濃度に比例するので、 対 応核酸の濃度を測定できる。 In the measurement system, two types of probes forming a hybrid complex The corresponding nucleic acid forming the strand is present. Then, the probe and the corresponding nucleic acid dissociate their own hybrid complex, and the probe and the corresponding nucleic acid competitively form a hybrid complex. When the probe and the corresponding nucleic acid form a hybrid complex, the FRET phenomenon between the dyes is eliminated, and the change rate of the fluorescence intensity or time of the measurement system as a function of time increases. Since the increase in the fluorescence intensity change value and the change rate of the measurement system is proportional to the concentration of the corresponding nucleic acid, the concentration of the corresponding nucleic acid can be measured.
この場合、 測定系に、 まず二種のプローブを添加して、 蛍光強度を測 定し、 次に対応核酸を含有するサンプルを添加して前後の蛍光変化値若 しくは変化率を測定する場合と、 対応核酸を含有する測定系に二種のプ ローブを添加し、 時間を関数とする蛍光強度の変化率を測定する場合が ある。 このよう して、 対応核酸の濃度を測定できる。 それは蛍光強度の 変化値若しくは変化率の大小が対応核酸の濃度に比例するからである。  In this case, first add two types of probes to the measurement system, measure the fluorescence intensity, and then add a sample containing the corresponding nucleic acid to measure the fluorescence change value or change rate before and after In some cases, two types of probes are added to a measurement system containing the corresponding nucleic acid, and the rate of change in fluorescence intensity as a function of time is measured. In this way, the concentration of the corresponding nucleic acid can be measured. This is because the magnitude or rate of change of the fluorescence intensity is proportional to the concentration of the corresponding nucleic acid.
( 2 ) Mergneyらの方法 (Mergney et al . , Nuc l e i c ac i d Res.,22 : 920 - 928, 1994) で代表される方法  (2) A method represented by the method of Mergney et al. (Mergney et al., Nucl e acid Res., 22: 920-928, 1994)
一本鎖の対応核酸に二種の核酸プローブをハイブリダィズさせるこ とを特徴とする。 二種のプローブの一方は一つのドナー色素で標識され ている場合、 他方は一つのァクセプター色素で標識されている。 又、 プ ローブの一方は 5 ' 末端部位が蛍光色素で標識されている場合、 他方は 3 ' 末端部位が標識されている。 ドナー色素はァクセプタ一色素に作用 してァクセプター色素の特定波長の蛍光発光を増加させることができ る。 ドナー色素は、 リポーター色素とも称され、 ァクセプタ一色素に作 用したときは、 自分の蛍光発光を弱める。 ァクセプター色素はタエンチ ヤー色素とも称される。 二種のプローブが対応核酸にハイブリダイズし たとき、 一方のプローブの色素標識末端部位と他方のプローブの色素標 識末端部位が互いに向き合うように設計されている。 両プローブの色素 標識塩基間距離が 1〜 9塩基離れて両プローブが対応核酸にハイプリ ダイズするように塩基配列が設計されている。 It is characterized in that two kinds of nucleic acid probes are hybridized to a single-stranded corresponding nucleic acid. If one of the two probes is labeled with one donor dye, the other is labeled with one receptor dye. In addition, one of the probes is labeled at the 5 'terminal site with a fluorescent dye, and the other is labeled at the 3' terminal site. The donor dye can act on the receptor dye to increase the fluorescence emission of the receptor dye at a specific wavelength. Donor dyes, also called reporter dyes, weaken their own fluorescence when applied to an acceptor dye. Acceptor dyes are also referred to as dyes. When the two types of probes hybridize to the corresponding nucleic acid, the dye-labeled terminal site of one probe and the dye The terminals are designed so that they face each other. The nucleotide sequences are designed so that the distance between the dye-labeled bases of both probes is 1 to 9 bases apart and both probes hybridize to the corresponding nucleic acid.
実際の測定手順は前記 Morrisonの方法と同様である。  The actual measurement procedure is the same as the Morrison method.
( 3 ) 分子ビーコン (molecular beacon) 方法 (Tyagi et al. , Nature Biotech., 14:303 - 308, 1996;Schofield et al. , Applied and Environ. Microbiol., 63:1143 - 1147, 1997) ; へヤーピンプローブ (サンライズ プローブ) (Nazarenko, I. A. , Bhatnagar, S. K. and Hohraan, R. J. (1997) A closed tube format for araplir ication and detect ion of DNA bas ed on energy transfer. Nucleic Acids Res. , 25, 2ol6-2521) ;スコ一 ピオンプローブ (Theaker, J. , Guy, S. P. , Brown, T. and Little, S. (1999) Detection of PCR products using self-probing amp丄 icons and flu orescence. Nature Biotechnol., 17, 804-807. )  (3) Molecular beacon method (Tyagi et al., Nature Biotech., 14: 303-308, 1996; Schofield et al., Applied and Environ. Microbiol., 63: 1143-1147, 1997) Yerpin probe (Sunrise probe) (Nazarenko, IA, Bhatnagar, SK and Hohraan, RJ (1997) A closed tube format for araplir ication and detect ion of DNA based on energy transfer.Nucleic Acids Res., 25, 2ol6-2521 ); Scorpion probe (Theaker, J., Guy, SP, Brown, T. and Little, S. (1999) Detection of PCR products using self-probing amp 丄 icons and flu orescence. Nature Biotechnol., 17, 804 -807.)
上記のプローブは、 その末端が一つの蛍光色素で、 その他の領域に一 つの自 らは蛍光を発しないクェンチヤ一物質が一般的に標識されてい る。 そして、 対応核酸にハイプリダイズしていないときは、 プローブ分 子内の塩基配列の相同性から、 ステム · ループ構造を形成する。 当該構 造の形成により、 蛍光色素とクェンチヤ一物質が互いに近い位置に配置 される。 当該配置により FRET現象がおこり、 ドナー色素の蛍光発光が抑 制される。 しかしながら、 プローブが対応核酸とハイブリダィズすると、 プローブの立体構造が変化し、 ステム ' ループ構造が壌れる。 そうする と FRET現象が解消し、 蛍光色素の蛍光発光が増大する。 対応核酸の濃度 は、 測定系の蛍光色素の蛍光強度の増加量に比例する。 実際の測定手順 は前記 Morrisonの方法と同様である。  The above probe is generally labeled with a fluorescent dye at one end and a quencher substance which does not emit fluorescence in the other region. Then, when not hybridized to the corresponding nucleic acid, a stem-loop structure is formed from the homology of the base sequence in the probe molecule. Due to the formation of the structure, the fluorescent dye and the quencher substance are arranged at positions close to each other. The FRET phenomenon occurs due to this arrangement, and the fluorescence emission of the donor dye is suppressed. However, when the probe hybridizes to the corresponding nucleic acid, the conformation of the probe changes, and the stem 'loop structure becomes loose. This will eliminate the FRET phenomenon and increase the fluorescence emission of the fluorescent dye. The concentration of the corresponding nucleic acid is proportional to the increase in the fluorescence intensity of the fluorescent dye in the measurement system. The actual measurement procedure is the same as the Morrison method.
( 4 ) Livakらの方法 (US patent No.5, 538, 848) で代表される方法 一本鎖のオリ ゴヌクレオチドの末端部の異なった位置に一つのクェ ンチヤー色素と一つのリポーター色素が標識されたプローブである。 そ して蛍光物質が標識されている個所とクェンチヤ一物質が標識されて いる個所の塩基鎮間でステムループ構造を形成することがない。 当該プ ローブが対応核酸にハイプリダイズしていないときは、 リポーター色素 はクニンチヤ一色素の作用を受けて蛍光発色が抑制されているが、 対応 核酸にハイブリダイズするとその抑制が解除されて、 リポーター色素の 蛍光発色が増加するように設計されている。 (4) A method represented by the method of Livak et al. (US patent No. 5, 538, 848) A probe in which one quench dye and one reporter dye are labeled at different positions at the end of a single-stranded oligonucleotide. Further, no stem loop structure is formed between the base where the fluorescent substance is labeled and the base where the quencher substance is labeled. When the probe is not hybridized to the corresponding nucleic acid, the reporter dye is inhibited by the action of the kininichia dye to suppress fluorescence, but when hybridized to the corresponding nucleic acid, the suppression is released and the reporter dye is released. Are designed to increase fluorescence.
実際の測定手順は、 Morr i sonらの方法と大体同様である。  The actual measurement procedure is almost the same as the method of Morri son et al.
B) 蛍光色素が特定の核酸塩基と相互作用して蛍光発光量を減少させる 特性を利用したプローブを用いる方法 B) A method using a probe that utilizes the property that a fluorescent dye interacts with a specific nucleobase to reduce the amount of fluorescence emission
( 1 ) 通 ATAらの方法 (KURATA et al., Nucleic acids Research, 2001, vol.29, No.6 e34;EP 1 046 717 A9;特開 200ト 286300 (P200ト 286300A) ) で代表される方法 (T.Horn, et al. , Nucleic acid Research, 1997, 25, 4842 - 4849, 1997 ;US Patent Application Publication No. US2001/0009 760A1, Pub. Date: Jul.26, 2001 ;US Patent No.6, 140, 054)  (1) typified by the method of ATA et al. (KURATA et al., Nucleic acids Research, 2001, vol. 29, No. 6 e34; EP 1 046 717 A9; JP 200 286300 (P200 286300A)) Method (T. Horn, et al., Nucleic acid Research, 1997, 25, 4842-4849, 1997; US Patent Application Publication No.US2001 / 0009 760A1, Pub.Date: Jul. 26, 2001; US Patent No. 6 , 140, 054)
一本鎖のオリ ゴヌクレオチドを一つの蛍光色素で標識した核酸プロ ーブであるが、 蛍光色素で標識した部位が対応核酸とハイプリダイズし たとき、 当該標識した部位の塩基に対応する対応核酸の塩基若しくはそ の近傍に少なく とも一つの Gが存在するか、 又当該標識部位若しくはそ の近傍のプローブ核酸複合体に G Cペア一が存在するよ うに設計され た核酸プローブである。 当該プロ一ブを対応核酸にハイプリダイズさせ るとハイブリ ッ ド複合体の蛍光発光の強度がハイブリダイゼーショ ン 前に比較して顕著に減少する。 測定系の蛍光強度の減少量が対応核酸の 濃度に比例するので、 対応核酸が測定できる。 実際の測定手順は、 蛍光強度の減少値若しくは減少率を測定すること 以外は、 Morrisonらの方法と大体同様である。 なお、 この測定方法には ハイブリダイゼーショ ン反応前にハイブリ ダイゼーショ ン反応系にハ イブリ ダイゼーショ ン反応を効率よく行わせるためのへルパープロー ブを添加して測定してもよい。 A nucleic acid probe in which single-stranded oligonucleotides are labeled with a single fluorescent dye.When a site labeled with a fluorescent dye hybridizes with a corresponding nucleic acid, the corresponding nucleic acid corresponding to the base at the labeled site A nucleic acid probe designed so that at least one G exists at or near the base thereof, and that a GC pair exists in the probe nucleic acid complex at or near the labeling site. When the probe is hybridized to the corresponding nucleic acid, the intensity of the fluorescence emission of the hybrid complex is significantly reduced as compared to that before the hybridization. Since the amount of decrease in the fluorescence intensity of the measurement system is proportional to the concentration of the corresponding nucleic acid, the corresponding nucleic acid can be measured. The actual measurement procedure is almost the same as the method of Morrison et al. Except that the decrease value or the decrease rate of the fluorescence intensity is measured. In addition, in this measurement method, before the hybridization reaction, the measurement may be performed by adding a helper probe for allowing the hybridization reaction system to efficiently perform the hybridization reaction.
C) その他の方法 C) Other methods
1 ) Davisらの方法 (Davis et al. , Nucleic acids Res., 24: 702-706, 1 996) で代表される方法  1) The method represented by the method of Davis et al. (Davis et al., Nucleic acids Res., 24: 702-706, 1996)
オリ ゴヌクレオチドの 3 ' 末端に蛍光色素を、 炭素原子 1 8個を有す るスぺーサーを介して結合したプローブを用いて対応核酸を測定する ものである。 当該プローブを対応核酸にハイブリダィズさせると、 当該 色素を直接に 3 ' 末端に結合させたプローブを使用した場合より、 1 0 倍の蛍光強度になる。  The corresponding nucleic acid is measured using a probe in which a fluorescent dye is attached to the 3 ′ end of the oligonucleotide via a spacer having 18 carbon atoms. When the probe is hybridized to the corresponding nucleic acid, the fluorescence intensity becomes 10 times higher than when a probe having the dye directly bonded to the 3 ′ end is used.
2 ) HORNらの方法 (US Patent Application Publication No. US2001/0 009760A1, Pub. Date: Jul.26, 2001) で代表される方法  2) The method represented by the method of HORN et al. (US Patent Application Publication No. US2001 / 0 009760A1, Pub.Date: Jul.26, 2001)
一本鎖のオリ ゴヌクレオチドからなるプローブであるが、 一端に B0DI PY色素で標識されているものでる。 両端部の一部の塩基配列が相互にハ イブリダィズするように設計されている。 測定系において、 対応核酸が 存在していないときは、 両端部がハイプリダイズして、 一つのループを 形成している。 そして、 蛍光色素の発光は抑制されている。 ところが、 対応核酸が存在すると、 このプローブは対応核酸にハイプリダイズする ために前記ループ形状が壊れてしまう。 そして、 蛍光色素が発光するの で、 その蛍光強度を測定することにより、 対応核酸の濃度と決めること ができる。  A probe consisting of a single-stranded oligonucleotide, but labeled at one end with a BODIPY dye. The base sequences at both ends are designed to hybridize with each other. In the measurement system, when the corresponding nucleic acid is not present, both ends are hybridized to form one loop. The emission of the fluorescent dye is suppressed. However, when the corresponding nucleic acid is present, the loop shape is broken because the probe hybridizes to the corresponding nucleic acid. Then, since the fluorescent dye emits light, the concentration of the corresponding nucleic acid can be determined by measuring the fluorescence intensity.
II. 本発明の核酸プローブとそれを用いる方法の例 以下に要約する。 II. Examples of nucleic acid probes of the present invention and methods using the same These are summarized below.
1 ) 本願発明方法 A  1) Method A of the present invention
i ) 蛍光色素で標識された核酸プローブを用いて対応核酸を測定する方 法において、 少なく とも一種以上の対応核酸が存在する測定系に、 当該 対応核酸にハイブリダィズし、 かつ発光蛍光色の異 る核酸プローブを、 対応核酸の数と少なく とも同数、 存在させ、 ハイプリダイゼ一シヨ ン反 応及び Z又は核酸増幅反応を行い、 核酸プローブ種の数と少なく とも同 数の波長種で、 ハイブリダイゼーショ ン前後における核酸プローブの蛍 光強度の変化又はブラスの変化量の増加を測定し、 対応核酸の濃度又は 増幅前の核酸濃度若しく はコピー数を測定する核酸の新規測定方法で ある。  i) In a method of measuring a corresponding nucleic acid using a nucleic acid probe labeled with a fluorescent dye, in a measurement system in which at least one kind of the corresponding nucleic acid is present, the corresponding nucleic acid hybridizes to the corresponding nucleic acid and emits a different fluorescent color. At least the same number of nucleic acid probes as the number of the corresponding nucleic acids are present, and the hybridization reaction and the Z or nucleic acid amplification reaction are performed.At least as many wavelength species as the number of the nucleic acid probe species before and after hybridization. This is a novel method for measuring nucleic acid by measuring the change in the fluorescence intensity of the nucleic acid probe or the increase in the amount of change in brass, and measuring the concentration of the corresponding nucleic acid or the nucleic acid concentration or copy number before amplification.
i i ) 核酸プローブが、 対応核酸にハイブリダィズする一本鎖のオリ ゴ ヌクレオチドに蛍光色素 (ドナー色素) 及びクェンチヤ一色素を標識し てなる核酸プロ一ブであって、 当該核酸プローブが対応核酸にハイブリ ダイズしているときはハイブリ ダイゼーショ ン反応系の蛍光強度が增 加するように、 蛍光色素 (ドナー色素) とクェンチヤ一色素が当該オリ ゴヌク レオチドに標識され、 かつ蛍光色素 (ドナー色素) が標識されて いる個所とクェンチヤ一色素が標識されている個所の塩基鎖間でステ ム · ループ構造を形成することがないオリ ゴヌクレオチドから構成され ている核酸プローブを用いる前記 i ) に記載の核酸の新規測定方法。 i i i ) 前記 i i ) に記載の核酸プローブが更に次の少なく とも何れか ii) The nucleic acid probe is a nucleic acid probe comprising a single-stranded oligonucleotide that hybridizes to the corresponding nucleic acid and a fluorescent dye (donor dye) and a quencher dye labeled, and the nucleic acid probe hybridizes to the corresponding nucleic acid. When soybean is used, the fluorescent dye (donor dye) and quencher dye are labeled on the oligonucleotide, and the fluorescent dye (donor dye) is labeled so that the fluorescence intensity of the hybridization reaction system increases. Using a nucleic acid probe comprising an oligonucleotide that does not form a stem-loop structure between the base chain where the quencher dye is labeled and the base where the quencher dye is labeled. Measuring method. iii) The nucleic acid probe according to i) above further comprises at least one of the following:
1項に記載の特質を有するものである。 It has the characteristics described in item 1.
( 1 ) 蛍光色素 (ドナー色素) 及びクェンチヤ一色素が一本鎖のオリ ゴ ヌクレオチドの同一塩基の個所に標識されている。  (1) A fluorescent dye (donor dye) and a quencher dye are labeled at the same base of a single-stranded oligonucleotide.
( 2 ) 蛍光色素 (ドナー色素) 及びクェンチヤ一色素が標識されている 一本鎖のオリゴヌク レオチドの塩基の個所が 3 ' 末端又は 5 ' 末端であ る。 (2) Fluorescent dye (donor dye) and quencher dye are labeled The base position of the single-stranded oligonucleotide is the 3 'end or the 5' end.
( 3 ) 蛍光色素 (ドナー色素) が標識されている個所の塩基とクェンチ ヤー色素が標識されている個所の塩基の距離が、 塩基数にて、 1〜 2 0、 又は、 { ( 3から 8の任意の整数) + 1 0 n } (ただし、 nは 0を含む 整数) である。  (3) The distance between the base where the fluorescent dye (donor dye) is labeled and the base where the quencher dye is labeled is 1 to 20 or {(3 to 8 + 1 0 n} (where n is an integer including 0).
(4 ) 蛍光色素 (ドナー色素) 又はクェンチヤ一色素が、 オリ ゴヌク レ ォチドの 5 ' 末端又は 3 ' 末端に標識され、 対応するクェンチヤ一色素 又は蛍光色素が鎖中に標識されている。  (4) Fluorescent dye (donor dye) or quencher dye is labeled at the 5 ′ end or 3 ′ end of the oligonucleotide, and the corresponding quencher dye or fluorescent dye is labeled in the chain.
( 5 ) 蛍光色素 (ドナー色素) 又はクェンチヤ一色素がオリ ゴヌク レオ チドの 5 ' 末端に標識され、 かつ対応するクェンチヤ一色素又は蛍光色 素が 5 ' 末端から 6〜 8番目の塩基に標識されている。  (5) A fluorescent dye (donor dye) or quencher dye is labeled at the 5 'end of the oligonucleotide, and a corresponding quencher dye or fluorescent dye is labeled at the 6th to 8th base from the 5' end. ing.
( 6 ) 一本鎖のオリ ゴヌクレオチドが、 対応核酸と同鎖長である。  (6) The single-stranded oligonucleotide has the same length as the corresponding nucleic acid.
( 7 ) 核酸プローブの 5 ' 末端又は 及び 3 ' 末端のリ ン酸基が蛍光色 素 (ドナー色素) で標識されている。  (7) The phosphoric acid groups at the 5 'end and 3' end of the nucleic acid probe are labeled with a fluorescent dye (donor dye).
( 8 ) 核酸プローブを標識している蛍光色素 (ドナー色素) 力 テキサ スレツ K Texas red) 、 EDANS (5— (2,一aminoethy丄 atninonaphthalene— 1— sulfonic acid) 、 テ トラメチゾレロータ、、ミン (tetramethylrhodomine) もしくはその誘導体、 FITC若しくはその誘導体、 ボデピー (BODIPY) Fし、 ボデピー (BODIPY) R6G、 ボデピー (BODIPY) TMR、 ボデピー (BODIPY) TR、 又は 6— T AMU R Aの少なく とも何れかである。  (8) Fluorescent dye (donor dye) that labels nucleic acid probes: TexaSet K Texas red), EDANS (5- (2,1-aminoethy 丄 atninonaphthalene-1—sulfonic acid), Tetramethizolerota, Mine (tetramethylrhodomine) or a derivative thereof, FITC or a derivative thereof, bodypi (BODIPY) F, bodypi (BODIPY) R6G, bodypi (BODIPY) TMR, bodypi (BODIPY) TR, or at least one of 6-TAMU RA is there.
( 9 ) 核酸プローブを標識しているクェンチヤ一色素が、 Dabcyl (4 -(4 (9) The quencher dye that labels the nucleic acid probe is Dabcyl (4-(4
' -dime thy 1 ami nophenylazo) benzoic acid) 、 Ferrocene又はその 専体、 methyl viologen、 N, N' - dimethyl- 2, 9- diazopyreniutnの少なく とも何れ かでる。 尚、 上記の核酸測定方法に用いられる核酸プローブにおいて、 一種の 核酸プローブに標識されている蛍光色素 (ドナー色素) 及びクェンチヤ 一色素は、 各々一種づつであり、 オリ ゴヌク レオチ ドの標識箇所は各々 少なく とも一箇所である。 '-dime thy 1 ami nophenylazo) benzoic acid), Ferrocene or its own, methyl viologen, N, N'-dimethyl-2, 9-diazopyreniutn. In the nucleic acid probe used in the above-described nucleic acid measurement method, the fluorescent dye (donor dye) and the quencher dye labeled on one kind of nucleic acid probe are each one kind, and the labeled portions of the oligonucleotides are respectively At least one location.
2 ) 本願発明方法 B 2) Method B of the present invention
i ) 核酸測定方法が、 少なく とも一種以上の対応核酸が存在する測定系 において、 当該対応核酸にハイブリダィズし、 かつ発光蛍光色の異なる 核酸プローブを対応核酸種の数と少なく とも同数存在させ、 当該核酸プ ローブと対応核酸をハイプリダイズさせた後、 核酸プローブ種の数と少 なく とも同数の波長で、 ハイブリダィゼーシヨ ン前後における核酸プロ ーブの蛍光強度の変化又はマイナスの変化量の増大を測定することを 特徴とする核酸の新規測定方法。  i) In a measurement system in which at least one or more corresponding nucleic acids are present, the nucleic acid measurement method hybridizes to the corresponding nucleic acid and causes at least the same number of nucleic acid probes having different fluorescent colors to be present as the number of the corresponding nucleic acid species. After hybridizing the nucleic acid probe and the corresponding nucleic acid, the change in the fluorescence intensity of the nucleic acid probe before and after the hybridization or the change in the negative change at least at the same number of wavelengths as the number of the nucleic acid probe species is observed. A novel method for measuring nucleic acids, characterized by measuring an increase.
i i ) 核酸プローブが、 FRET現象を引き起こす蛍光色素ペア一すなわち ドナー色素になり得る蛍光色素 ( ドナー色素) とァクセプター色素にな り得る蛍光色素 (ァクセプター色素) のペア一を少なく とも 1ペアを形 成するように複数種の蛍光色素で標識された一本鎖のオリ ゴヌク レオ チドからなる核酸プローブにおいて、 当該プローブが対応核酸にハイブ リダイズしたときに、 クェンチヤ一プローブの非存在下にァクセプター 色素のハイブリ ダイゼーショ ン前後における蛍光強度の変化又は変化 量がマイナスに増大するように塩基配列が設計され、 かつ前記色素が標 識されているものである前記 i ) に記載の核酸の新規測定方法。  ii) The nucleic acid probe forms at least one pair of a fluorescent dye pair that causes the FRET phenomenon, that is, a pair of a fluorescent dye (donor dye) that can be a donor dye and a fluorescent dye (acceptor dye) that can be an acceptor dye. In the case of a nucleic acid probe consisting of a single-stranded oligonucleotide labeled with a plurality of types of fluorescent dyes as described above, when the probe hybridizes to the corresponding nucleic acid, hybridization of the axceptor dye is performed in the absence of the quencher probe. The novel nucleic acid measurement method according to i), wherein the nucleotide sequence is designed so that the change or the amount of change in the fluorescence intensity before and after the hybridization is negatively increased and the dye is labeled.
i i i ) 核酸プローブが対応核酸にハイブリダィズしたときに、 クェン チヤ一核酸プローブの非存在下において、 ドナー色素及びァクセプター 色素の蛍光強度の変化又は変化量がマイナスに増大する核酸プローブ である前記 (2 ) に記載の核酸プローブを用いる前記 i ) 又は前記 i i ) に記載の核酸の新規測定方法。 iii) a nucleic acid probe wherein the change or the amount of change in the fluorescence intensity of the donor dye and the acceptor dye increases in the absence of the quenching nucleic acid probe when the nucleic acid probe hybridizes to the corresponding nucleic acid; I) or ii) using the nucleic acid probe described in A novel method for measuring a nucleic acid according to the above.
i V ) 前記 i i ) 又は i i i ) に記載の核酸プローブが更に次の少なく とも何れか 1項に記載の特質を有する核酸プローブを用いる前記 i ) に 記載の核酸の新規測定方法。 。  i V) The novel nucleic acid measurement method according to i) above, wherein the nucleic acid probe according to i i) or i i i) uses a nucleic acid probe having at least any one of the following characteristics. .
( 1 ) 核酸プローブを標識している色素がドナー色素となり得る蛍光色 素で BODIPY F BODIPY 493/503、 5 - FAM、 Tetramethylrhodamine, 又は 6-TAMRAの少なく とも一種である。  (1) Fluorescent dye in which the dye labeling the nucleic acid probe can be a donor dye, and is at least one kind of BODIPY F BODIPY 493/503, 5-FAM, Tetramethylrhodamine, or 6-TAMRA.
( 2 ) 核酸プローブがドナー色素とァクセプター色素の一対の色素ペア 一で標識されている。  (2) The nucleic acid probe is labeled with one dye pair of a donor dye and an acceptor dye.
( 3) 核酸プローブが、 その末端部においてドナー色素或いはァクセプ ター色素で標識されており、 当該核酸プローブが対応核酸にハイプリダ ィズしたとき、 当該プローブ内のドナー色素或いはァクセプター色素で 標識された塩基から 1ないし 3塩基離れて (この場合、 末端塩基を 1塩 基と計数するものとする。 以下の発明においても同様である。 ) 、 対応 核酸の塩基配列に G (グァニン) が少なく とも 1塩基存在するように、 当該ローブの塩基配列が設計されている。  (3) The nucleic acid probe is labeled at its end with a donor dye or an acceptor dye, and when the nucleic acid probe is hybridized to a corresponding nucleic acid, the base labeled with the donor dye or the acceptor dye in the probe is used. 1 to 3 bases away from the base (in this case, the terminal base is counted as one base. The same applies to the following invention), and at least one base G (guanine) is contained in the base sequence of the corresponding nucleic acid. The base sequence of the lobe is designed to be present.
(4) 核酸プローブが、 対応核酸にハイブリダィゼーシヨンしたとき、 ドナー色素標識部においてプローブ一核酸ハイプリ ッ ドの複数塩基対 が少なく とも一つの G (グァニン) と C (シトシン) のペア一を形成す るように、 当該プローブの塩基配列が設計されている。  (4) When the nucleic acid probe is hybridized to the corresponding nucleic acid, at least one G (guanine) and C (cytosine) pair of one or more base pairs of the probe-nucleic acid hybrid at the donor dye labeling site The base sequence of the probe is designed so as to form
( 5) ドナー色素が核酸プローブの 5 '· 末端部 ( 5 ' 末端を含む。 ) を 標識している。  (5) The donor dye labels the 5 'end (including the 5' end) of the nucleic acid probe.
(6) ドナー色素が核酸プローブの 3 ' 末端部 ( 3 ' 末端を含む。 ) を 標識している。  (6) The donor dye labels the 3 'end (including the 3' end) of the nucleic acid probe.
( 7 ) 核酸プローブの 5 ' 末端塩基が G又は Cで、 かつ 5 ' 末端がドナ 一色素で標識されている。 (7) The 5 'terminal base of the nucleic acid probe is G or C and the 5' terminal is Labeled with one dye.
( 8 ) 核酸プローブの 3 ' 末端塩基が G又は Cで、 かつ 3 ' 末端がドナ 一色素で標識されている。  (8) The nucleotide at the 3 ′ end of the nucleic acid probe is G or C, and the 3 ′ end is labeled with a donor dye.
( 9 ) ァクセプター色素が核酸プローブの 5 '末端部( 5 '末端を含む。) を標識している。  (9) The acceptor dye labels the 5 'end (including the 5' end) of the nucleic acid probe.
( 1 0) ァクセプター色素が核酸プローブの 3 ' 末端部 ( 3 ' 末端を含 む。 ) を標識している。  (10) An acceptor dye labels the 3 'end of the nucleic acid probe (including the 3' end).
( 1 1 ) 核酸プローブの 5 ' 末端塩基が G又は Cで、 かつ 5 ' 末端がァ クセプター色素で標識されている。  (11) The 5 ′ terminal base of the nucleic acid probe is labeled with G or C, and the 5 ′ terminal is labeled with an acceptor dye.
( 1 2) 核酸プローブの 3 ' 末端塩基が G又は Cで、 かつ 3, 末端がァ クセプター色素で標識されている。  (12) The 3 'terminal base of the nucleic acid probe is labeled with G or C, and the 3' terminal is labeled with an acceptor dye.
( 1 3 ) 核酸プローブの塩基配列が、 当該プローブが対応核酸と結合し た際に、 プローブ内のドナー色素あるいはァクセプター色素で標識され た塩基から、 1ないし 3塩基離れて、 対応核酸の塩基配列に G (グァ二 ン) が少なく とも 1塩基存在するように設計されている。  (13) When the nucleotide sequence of the nucleic acid probe is one to three bases away from the base labeled with the donor dye or the acceptor dye in the probe when the probe binds to the corresponding nucleic acid, the base sequence of the corresponding nucleic acid Is designed so that G (guan) is present in at least one base.
V ) 蛍光色素で標識された一本鎖のオリ ゴヌク レオチドからなる核酸プ ローブであって、 当該核酸プローブが対応核酸にハイブリダイゼーショ ンしたときに、 前記蛍光色素が、 クェンチヤ一プローブ若しくはクェン チヤ一色素の非存在下にその蛍光強度の変化又は変化量がマイナスに 増大し、 かつ、 当該プローブは、 その末端部において前記蛍光色素で標 識されており、 当該核酸プローブが当該末端部において対応核酸にハイ ブリダイゼーショ ンしたとき、 当該プローブにハイブリダイゼーショ ン した対応核酸の末端塩基から 1ないし 3塩基離れて、 対応核酸の塩基配 列に G (グァニン) が少なく とも 1塩基存在するように、 当該プローブ の塩基配列が設計されている核酸プローブを用いる前記 i ) に記載の核 酸の新規測定方法。 V) A nucleic acid probe comprising a single-stranded oligonucleotide labeled with a fluorescent dye, wherein when the nucleic acid probe hybridizes to a corresponding nucleic acid, the fluorescent dye is replaced with a quenching probe or a quenching probe. In the absence of the dye, the change in the fluorescence intensity or the amount of change is negatively increased, and the probe is labeled with the fluorescent dye at its end, and the nucleic acid probe is labeled with the corresponding nucleic acid at the end. When hybridized to the probe, the probe should be 1 to 3 bases away from the terminal base of the corresponding nucleic acid hybridized to the probe, and at least one G (guanine) should be present in the base sequence of the corresponding nucleic acid. The nucleus according to the above i), wherein the nucleic acid probe whose nucleotide sequence is designed is used. A new method for measuring acids.
V i ) 前記 V ) に記載の核酸プローブが次項の少なく とも何れか 1項に 記載の特質を有する核酸プローブを用いる前記 i ) に記載の核酸の新規 測定方法。  V i) The novel nucleic acid measurement method according to i), wherein the nucleic acid probe according to V) uses a nucleic acid probe having at least one of the following characteristics.
( 1 ) 核酸プローブが 3 ' 末端において蛍光色素で標識されている。 ( 2 ) 核酸プローブが 5 ' 末端において蛍光色素で標識されている。  (1) The nucleic acid probe is labeled at the 3 'end with a fluorescent dye. (2) The nucleic acid probe is labeled at the 5 'end with a fluorescent dye.
V i i ) 蛍光色素で標識された一本鎖のオリ ゴヌク レオチドからなる核 酸プローブであって、 当該核酸プローブが対応核酸にハイブリダィゼー シヨンしたときに、 上記蛍光色素が、 クェンチヤ一プローブの非存在下 に蛍光強度の変化又は変化量がマイナスに増大する核酸プローブであ り、 かつ、 当該プローブは、 その末端部において前記蛍光色素で標識さ れており、 当該核酸プローブが、 前記対応核酸にハイブリダィゼーショ ンしたとき、 当該末端部分においてプローブ一核酸ハイプリ ッ ドの複数 塩基対が少なく とも一つの G (グァニン) とじ (シ トシン) のペア一を 形成するように、 当該プローブの塩基配列が設計されている核酸プロ一 ブを用いる前記 i ) に記載の核酸の新規測定方法。  V ii) a nucleic acid probe consisting of a single-stranded oligonucleotide labeled with a fluorescent dye, wherein when the nucleic acid probe is hybridized to the corresponding nucleic acid, the fluorescent dye is in the absence of the quencher probe A nucleic acid probe whose change or amount of change in fluorescence intensity increases negatively, and the probe is labeled with the fluorescent dye at the end thereof, and the nucleic acid probe is hybridized to the corresponding nucleic acid. When the probe is subjected to hybridization, the nucleotide sequence of the probe is determined so that a plurality of base pairs of the probe-nucleic acid hybrid form at least one G (guanine) binding (cytosine) pair at the terminal portion. The novel method for measuring a nucleic acid according to the item i), wherein the designed nucleic acid probe is used.
V i i i ) 前記 v i i ) に記載の核酸プローブが次項の少なく とも何れ か 1項に記載の特質を有する核酸プローブを用いる前記 i ) に記載の核 酸の新規測定方法。  Viii) The novel method for measuring nucleic acid according to i), wherein the nucleic acid probe according to vii) uses a nucleic acid probe having at least one of the following characteristics.
( 1 ) 核酸プローブの 3 ' '末端塩基が G又は Cで、 かつ 3 ' 末端が蛍光 色素で標識されている。  (1) The 3′-terminal base of the nucleic acid probe is G or C, and the 3′-terminal is labeled with a fluorescent dye.
( 2 ) 核酸プローブの 5 末端塩基が G又は Cで、 かつ 5 ' 末端が蛍光 色素で標識されている。  (2) The nucleic acid probe is labeled with a G or C at the 5'-terminal base and labeled with a fluorescent dye at the 5'-terminal.
( 3 ) 核酸プローブの 5 末端塩基が G又は Cで、 かつ 5 ' 末端が蛍光 色素で標識されている核酸プローブが、 3 ' 末端のリボース若しくはデ ォキシリボースの 3 ' 炭素の水酸基、 又は 3 ' 末端のリボースの 2 ' 炭 素の水酸基がリ ン酸化されている。 (3) A nucleic acid probe whose G-terminal is G or C and whose 5′-terminal is labeled with a fluorescent dye is a 3′-terminal ribose or The hydroxyl group of 3 'carbon of oxyribose or the 2' carbon of ribose at the 3 'end is phosphorylated.
( 4 ) 核酸プローブの 5 ' 末端又は/及び 3 ' 末端のリン酸基が蛍光色 素で標識されている。  (4) The phosphate group at the 5 'end and / or 3' end of the nucleic acid probe is labeled with a fluorescent dye.
i x ) 蛍光色素で標識された一本鎖のオリ ゴヌク レオチ ドからなる核酸 プローブであって、 対応核酸にハイブリダィゼーシヨンしたときに、 上 記蛍光色素が、 クェンチヤ一核酸プローブの非存在下に蛍光強度の変化 又は変化量がマイナスに増大す.る核酸プローブであり、 かつ、 当該プロ ーブは、 5 ' 末端のリン酸基あるいは 3 ' 末端の O H基以外の部分で前 記蛍光色素にて標識されており、 当該核酸プローブが、 前記対応核酸に ハイプリダイゼーションしたとき、 当該標識部分においてプローブ一核 酸複合体の複数塩基対が少なく とも一つの G (グァニン) とじ (シ トシ ン) のペア一を形成するように、 当該プローブの塩基配列が設計されて いる核酸プローブを用いる前記 i ) に記載の核酸の新規測定方法。  ix) A nucleic acid probe consisting of a single-stranded oligonucleotide labeled with a fluorescent dye, and when hybridized to the corresponding nucleic acid, the fluorescent dye is used in the absence of the quencher-nucleic acid probe. The probe is a nucleic acid probe whose fluorescence intensity changes or the amount of change increases negatively, and the probe has a fluorescent dye at a portion other than the phosphate group at the 5 ′ end or the OH group at the 3 ′ end. When the nucleic acid probe is hybridized to the corresponding nucleic acid, at least a plurality of base pairs of the probe mononucleotide complex in the labeled portion is bound to at least one G (guanine). The novel method for measuring a nucleic acid according to i), wherein a nucleic acid probe whose nucleotide sequence is designed to form a pair is used.
本発明においては、 前記の公知の各種の方法、 本願発明方法 A及び B の方法を本発明の核酸の新規測定方法に適用するために、 前記の核酸プ ローブを、 少なく とも一種の蛍光色素 (ドナー色素、 ァクセプタ一色素 をも含めて、 本発明に利用できる蛍光色素。 ) で標識された一種の標的 核酸プローブ及び/又は内部標準核酸プローブにする必要がある。 又、 測定系に添加する核酸プローブは、 即ち標的核酸プローブ、 内部標準核 酸プローブは各々少なく とも一種である。  In the present invention, in order to apply the above-mentioned various known methods, and the methods A and B of the present invention to the novel method for measuring a nucleic acid of the present invention, the nucleic acid probe must be at least one kind of fluorescent dye ( It is necessary to use a kind of target nucleic acid probe and / or an internal standard nucleic acid probe labeled with a fluorescent dye which can be used in the present invention, including a donor dye and an acceptor dye. The nucleic acid probe to be added to the measurement system, that is, the target nucleic acid probe and the internal standard nucleic acid probe are at least one each.
なお、 本発明において、 「ハイブリダィゼーシヨン前後における核酸 プローブの蛍光強度の変化又はマイナスの変化量の増加を測定する」 と は、 一例を挙げると、 ハイブリダィゼーシヨ ン前後における核酸プロ一 ブの蛍光強度の測定値のマイナスの差、 又、 ハイブリダィゼーシヨ ン反 応系の時間を関数とする蛍光強度のマイナスの変化率などをいう。 又、In the present invention, “measurement of a change in the fluorescence intensity of the nucleic acid probe before and after hybridization or an increase in a negative change” is, for example, a nucleic acid probe before and after hybridization. Minus the difference in the measured fluorescence intensity of It refers to a negative change rate of the fluorescence intensity as a function of the reaction time. or,
P C Rにおいては、 反応サイクルを関数とする蛍光強度の変化若しくは 変化率などをいう。 「蛍光強度の変化又はマイナスの変化量が増大する」 とは、 この場合の最も簡単な例は、 測定系の蛍光強度の減少量が増大す る場合を挙げることができる。 In PCR, it refers to the change or rate of change of the fluorescence intensity as a function of the reaction cycle. "The change in the fluorescence intensity or the amount of the negative change increases" means that the simplest case in this case is that the decrease in the fluorescence intensity of the measurement system increases.
例 ば、 Wl gdMorri son ¾ (Morri son e t a l . , Anal . B iochem. , 18 For example, Wl gdMorri son ¾ (Morri son et al., Anal. Biochem., 18
3 : 231-244 ( 1989) ) におけるクェンチヤ一プローブような核酸プローブ を使用しないで、 核酸プローブの発光に由来する測定系の、 ハイブリダ ィゼーシヨ ン後における蛍光強度の変化 (例えば、 減少) の測定値、 又 ハイブリ ダイゼーショ ン反応中の時間を関数とする蛍光強度の減少率 を測定するという意味である。 又 P C Rにおいては反応サイクルを関数 とする蛍光強度の変化率 (例えば、 減少率) を測定するという意味であ る。 又、 クェンチヤ一プローブ、 クェンチヤ一核酸プローブなる用語の 意味は核酸プローブに作用して核酸プローブの発光を抑制する核酸プ ローブのことであり、 前記 M o r r i s o n らの方法におけるクェンチ ヤープローブのような核酸プローブのことをいう。 3: 231-244 (1989)), without using a nucleic acid probe such as the quencher probe, the measured value of the change (eg, decrease) in the fluorescence intensity after hybridization of a measurement system derived from the luminescence of the nucleic acid probe. This means that the decrease rate of the fluorescence intensity as a function of the time during the hybridization reaction is measured. In PCR, it means that the rate of change (for example, the rate of decrease) of the fluorescence intensity as a function of the reaction cycle is measured. The terms quencher probe and quencher nucleic acid probe mean a nucleic acid probe that acts on the nucleic acid probe and suppresses the luminescence of the nucleic acid probe. Refers to a probe.
1 ) 本発明方法 Aに用いられる核酸プローブについて、 以下詳しく述べ る。  1) The nucleic acid probe used in the method A of the present invention is described in detail below.
本プローブの特徴は、 対応核酸にハイブリダイズしていないときは、 蛍光色素の発光が、 クェンチヤ一色素により、 阻害されているが、 ハイ ブリダィズしているときは、 その阻害が解除され、 蛍光強度が変化 (例、 増加) するプローブである。  The feature of this probe is that when it does not hybridize to the corresponding nucleic acid, the emission of the fluorescent dye is inhibited by quencher dye, but when it hybridizes, the inhibition is released and the fluorescence intensity is released. Is a probe that changes (eg, increases).
本発明において蛍光物質とは、 一般に核酸プローブに標識して、 核酸 の測定 · 検出に用いられている蛍光色素の類である。 例えば、 フルォレ セイ ン (f luores ce in) 又はその誘導体類 {例えば、 フルォレセインィ ソチオシァネ1 ~ 卜 ( f luoresce i n i sothiocyanate) (FITC) 若しくはそ の誘導体等、 Alexa 488、 Alexa 532、 cy3、 cy5、 6_joe、 EDANS、 ローダ ミン (rhodamine) 6G ( R6G) 又はその誘導体 (例えば、 テ トラメチルロ ーダミ ン (t eramethy lrhodami ne) (TMR) 、 ァ ト フ; >■>テルロータ ン ソチオシァネー 卜 ( tetramethy lrhodaraine i sothiocyanate) (T RITC) 、 x —ローグ ミ ン x— rhodamine) 、 テキサスレッ ド ( Texas red) 、 、テ ピー (BODIPY) FL (ボデピー (BODIPY) は商標名、 F Lは商品名 ; モレ キュラー . プローブ (Molecular Probes) 社製、 米国 ;以下同様) 、 ボ デビー (BODIPY) FL/C3、 ボデピー (BODIPY) FL/C6、 ボデピー (BODIPY) 5-FAM、 ポデピー (BODIPY) TMR、 又はその誘導体 (例えば、 ボデピー (B ODIPY) TR) 、 ポデピー (BODIPY) R6G、 ポデピー (BODIPY) 564、 ボデ ピー (BODIPY) 581、6 - TAMURA等を挙げることができる。 これらの中でも、 FITC、 EDANS、 テキサスレツ ド、 6 - joe、 TMR、 Al exa 488、 Alexa 532、 ボデピー (BODIPY) FL/C3、 ボデピー (BODIPY) R6G、 ボデピー (BODIPY) FL、 Alexa532、 ボデピー (BOD IPY) FL/C6、 ボデピー (BODIPY) TMR、 5- FAM、 ボデピー (BODIPY) 493/503、 ボデピー (BODIPY) 564、 ボデピー (BODIPY) 581、 6 - TAMURA、 Cy3、 Cy5、 Texas red, x - Rhodami ne等を好 適なものとして挙げることができる。 In the present invention, the fluorescent substance is a kind of fluorescent dye which is generally used for measuring and detecting nucleic acid by labeling a nucleic acid probe. For example, fluorescein or derivatives thereof (eg, fluorescein Sochioshiane 1 Bok (f luoresce ini sothiocyanate) (FITC ) or its derivatives such as, Alexa 488, Alexa 532, cy3 , cy5, 6_joe, EDANS, rhodamine (rhodamine) 6G (R6G) or derivatives thereof (e.g., Te Toramechiruro Teramethy lrhodamine (TMR), artof;>■> tetramethy lrhodaraine i sothiocyanate (T RITC), x —rogue min x—rhodamine, Texas red BODIPY FL (BODIPY is a trade name, FL is a trade name; Molecular Probes, USA; the same applies hereafter), BODIPY FL / C3, BODIPY ( BODIPY) FL / C6, BODIPY 5-FAM, BODIPY TMR, or a derivative thereof (eg, BODIPY (BODIPY) TR), BODIPY (BODIPY) R6G, BODIPY (BODIPY) 564, BODIPY (BODIPY) ) 581, 6-TA MURA and the like can be mentioned. Among these, FITC, EDANS, Texas Red, 6-joe, TMR, Alexa 488, Alexa 532, BODIPY FL / C3, BODIPY R6G, BODIPY (BODIPY) FL, Alexa532, BODIPY (BODIPY) ) FL / C6, BODIPY (TMR), TMR, 5-FAM, BODIPY (BODIPY) 493/503, BODIPY (BODIPY) 564, BODIPY (BODIPY) 581, 6-TAMURA, Cy3, Cy5, Texas red, x-Rhodami ne And the like can be cited as preferable ones.
クェンチヤ一物質とは、 前記蛍光物質に作用して、 その発光を抑制も しくは消光する物質である。 例えば、 Dabcyl、 QSY7 (モルキュラー ' プ ローブ) 、 QSY33 (モノレキユラ一 ' プローブ) 、 Ferrocene又はその誘導 体、 methyl viologen、 N, N'— dimethyl_2, 9— diazopyreniumなと、 好適に は Dabcylなどを挙げることができる。  A quencher substance is a substance that acts on the fluorescent substance to suppress or extinguish its emission. For example, Dabcyl, QSY7 (Molecular 'probe), QSY33 (Monolecular' probe), Ferrocene or its derivative, methyl viologen, N, N'-dimethyl_2,9-diazopyrenium, preferably Dabcyl, etc. Can be.
前記のような、 蛍光物質及びクェンチヤ一物質を、 オリゴヌク レオチ ドの特定の位置に標識することにより、 蛍光物質の発光は、 クェンチヤ JP03/05118 By labeling a fluorescent substance and a quencher substance at a specific position on the oligonucleotide as described above, the luminescence of the fluorescent substance JP03 / 05118
43  43
一物質によりクェンチング効果を受ける。 A quenching effect is caused by one substance.
本発明において、 本発明の核酸プローブを形成し、 蛍光物質が標識さ れている個所とクェンチヤ一物質が標識されている個所の塩基鎖間で ステム ' ループ構造を形成することのない一本鎖のオリ ゴヌクレオチド とは、 蛍光物質が標識されている個所とクェンチヤ一物質が標識されて いる個所の塩基鎖間で、 少なく とも 2か所以上の個所の塩基配列の相補 性から、 自己鎖中において 2重鎖を形成し、 ステム · ループ構造を形成 することのないォリ ゴヌクレオチドのことを云う。  In the present invention, a single-stranded strand that forms the nucleic acid probe of the present invention and does not form a stem 'loop structure between the base strand where the fluorescent substance is labeled and the base strand where the quencher substance is labeled Oligonucleotides in the self-chain due to the complementarity of at least two or more base sequences between the base where the fluorescent substance is labeled and the base where the quencher is labeled In the above, the term refers to an oligonucleotide which forms a double chain and does not form a stem-loop structure.
本発明の核酸プローブが対応核酸にハイブリダイズしているときは、 ハイプリダイゼーシヨン反応系の蛍光強度が変化 (例、 増加) するよう に、 蛍光物質とクェンチヤ一物質を、 本発明のオリ ゴヌクレオチドに標 識するには、 以下のように行えばよい。 蛍光物質が標識されている個所 の塩基とクェンチヤ一物質が標識されている個所の塩基の距離は、 塩基 数にしてゼロすなわち蛍光物質及びクェンチヤ一物質が一本鎖のオリ ゴヌクレオチドの同一のヌクレオチドの個所に標識する力 、 又は、 塩基 数にて 1〜 2 0、 又は、 { ( 3力、ら 8の任意の整数) + 1 0 n } (ただ し、 nは 0を含む整数) である。 好ましくは、 一本鎖のオリ ゴヌクレオ チドの同一のヌクレオチドの個所、 又は、 3〜 8若しくはそれらの中の 任意の数に 1 0を加算したものである。 より好ましくは一本鎖のオリ ゴ ヌクレオチドの同一のヌクレチドの個所、 又は、 3〜 8である。 このよ うに、 各物質をオリ ゴヌクレオチドに標識するのがよい。 しかしながら、 塩基の間隔は、 プローブの塩基配列、 標識に用いる蛍光物質とタエンチ ヤー物質、 それらをオリ ゴヌク レオチドに結合させるリ ンカーの長さな どに強く依存する。 それで、 塩基間隔を完全に特定するのはむずかしく、 前記の塩基間隔はあくまでも一般的例であり、 例外的なものが多い。 標識する個所は、 一本鎖のオリ ゴヌクレオチドの同一ヌクレオチドの 個所に標識する場合、 一方を塩基に、 他方を塩基以外の部分、 すなわち リン酸部、 又はリボース部もしくはデォキシリボース部に標識するのが 好適である。 なお、 この場合、 3 ' 末端部又は 5 ' 末端部に標識するの が好適である。 When the nucleic acid probe of the present invention is hybridized to the corresponding nucleic acid, the fluorescent substance and the quencher substance are combined with the oligonucleotide of the present invention so that the fluorescence intensity of the hybridization reaction system changes (eg, increases). In order to label nucleotides, the following may be performed. The distance between the base where the fluorescent substance is labeled and the base where the quencher substance is labeled is zero in terms of the number of bases, i.e., the same nucleotide of the single-stranded oligonucleotide with the fluorescent substance and the quencher substance. Or the number of bases is 1 to 20 or the number of bases, or {(3 forces, any integer of 8) + 10n} (where n is an integer including 0) . Preferably, 10 is added to the position of the same nucleotide in the single-stranded oligonucleotide, or 3 to 8 or any number thereof. More preferably, it is at the same nucleotide position of a single-stranded oligonucleotide, or 3 to 8. Thus, it is preferable to label each substance on the oligonucleotide. However, the distance between bases strongly depends on the nucleotide sequence of the probe, the fluorescent substance and the labeling substance used for labeling, and the length of the linker that binds them to the oligonucleotide. Therefore, it is difficult to completely specify the base interval, and the above base interval is a general example to the last, and there are many exceptions. When labeling a single-stranded oligonucleotide at the same nucleotide, it is preferable to label one on the base and the other on the non-base, that is, the phosphate, ribose or deoxyribose moiety. It is suitable. In this case, it is preferable to label the 3 'end or the 5' end.
又は、 蛍光物質とクェンチヤ一物質を標識する塩基の距離を前記のよ うにした場合、 各物質をオリ ゴヌクレオチドの鎖中に標識してもよく、 又、 一方をオリ ゴヌク レオチ ドの 5 ' 末端又は 3 ' 末端に標識し、 対応 する他の物質を鎖中に標識してもよい。 好ましくは蛍光物質又はクェン チヤ一物質をオリ ゴヌクレオチドの 5 ' 末端又は 3 ' 末端に、 対応する クェンチヤ一物質又は蛍光物質をそれらの末端から、 上記の塩基数の間 隔をおいて標識するのがよい。 この場合、 3 ' 末端部、 又は 5 ' 末端部 に標識するとき、 塩基、 リン酸部、 又はリボース部もしくはデォキシリ ボース部に、 好ましくはリ ン酸部、 リボース部もしくはデォキシリボー ス部に、 より好ましくはリン酸部に標識するのがよい。 又鎖中に標識す る場合は、 鎖中の塩基に標識するのが好適である。  Alternatively, when the distance between the fluorescent substance and the base that labels the quencher substance is set as described above, each substance may be labeled in the oligonucleotide chain, and one of the substances may be labeled at the 5 ′ end of the oligonucleotide. Alternatively, it may be labeled at the 3 ′ end, and another corresponding substance may be labeled in the chain. Preferably, a fluorescent substance or a quencher is labeled at the 5 ′ end or 3 ′ end of the oligonucleotide, and a corresponding quencher or fluorescent substance is labeled from the terminal at the above-mentioned base number interval. Is good. In this case, when labeling at the 3′-end or the 5′-end, a base, a phosphate, or a ribose or deoxyribose moiety, preferably a phosphoric acid, ribose or deoxyribose moiety, more preferably Is preferably labeled on the phosphate moiety. In the case of labeling in a chain, it is preferable to label a base in the chain.
2 ) 本願発明方法 Bの i ) ~ i i i ) の核酸測定方法に用いられる核酸 プローブについて以下詳しく述べる。  2) The nucleic acid probe used in the nucleic acid measurement methods i) to iii) of the method B of the present invention will be described in detail below.
本発明においてドナー色素となり得る ドナー色素とは、 少なく とも、 a . 特定波長で励起され、 特定波長で発光する、 b . 発光エネルギーを 特定の色素 (ァクセプター色素になり得る色素) に転移することができ る、 c . 核酸プローブが対応核酸とハイブリダィズしたときに生ずる G C塩基対の複合体 (G C塩基対の水素結合体) (以下簡便のため、 G C 水素結合体という場合もある。 ) 力 ドナー色素の近旁に存在するとき は当該塩基対の方へエネルギーを転移することができる、 などの条件を 充たすものと定義される。 すなわち、 この条件を充たす色素であればど のようなものでもよい。 一般に、 FRET現象においてドナー色素となり得 る色素で、 それ自体を単独で標識した核酸プローブが対応核酸にハイブ リダィズしたときにプローブの蛍光強度が変化 (例、 減少) するものが 好適に用いられる (Nucle ic Acid、 29卷、 No. 6 e34、2001年) 。 The donor dye that can be a donor dye in the present invention is at least a. That is excited at a specific wavelength and emits light at a specific wavelength, and b. Transfers luminescence energy to a specific dye (a dye that can be an acceptor dye). Yes, c. A complex of GC base pairs generated when a nucleic acid probe hybridizes with the corresponding nucleic acid (GC base pair hydrogen bond) (hereinafter sometimes referred to as GC hydrogen bond for the sake of simplicity) Force donor dye , The energy can be transferred to the base pair. Defined to be satisfied. That is, any dye that satisfies this condition may be used. In general, dyes that can be donor dyes in the FRET phenomenon and that change (eg, decrease) the fluorescence intensity of a probe when a nucleic acid probe that is itself labeled alone hybridizes to a corresponding nucleic acid are preferably used ( Nucleic Acid, Vol. 29 , No. 6 e 34 , 2001).
用いられる色素は、 具体的には、 前記本発明 Aに用いられる色素と同 様であるが、 その中でも好適なドナー色素として、 BODIPY FL、 BODIPY FL系の前記色素、 BODIPY 493/503) 、 5- FAM、 ボデピー (BODIPY) 5-FAM、 Tetramethylrhodamine 6 - TAMRAなどを、 より好適なものと して、 B0DIP Y Fレ BODIPY 493/503、 5 - FAM、 Tetramethylrhodamine, 6 - TAMRAなどを 挙げることができる。 しかしながら、 本発明において、 これらの例示に 限定されるものではない。  The dyes used are specifically the same as the dyes used in the present invention A. Among them, BODIPY FL, BODIPY FL-based dyes described above, and BODIPY 493/503), -FAM, bodypy (BODIPY) 5-FAM, Tetramethylrhodamine 6-TAMRA, and the like are more preferable, and B0DIP YF BODIPY 493/503, 5-FAM, Tetramethylrhodamine, 6-TAMRA and the like can be mentioned. However, the present invention is not limited to these examples.
又、 ァクセプター色素は一般に FRET現象において、 ドナー色素との対 において、 ァクセプター色素となり得る色素、 すなわち、 ドナー色素か らエネルギー転移を受け得る (言葉を換えると ドナー色素に対してタエ ンチング (消光作用) 作用をする) 色素であればどのようなものでもよ レ、。 そして、 対を形成するドナー色素の種類に依存する。 強いて例示す るならば、 BODIPY FL、 BODIPY FL系の前記色素、 BODIPY 493/503、 5-FA M、 ボデピー (BODIPY) 5 - FAM、 Tetramethylrhodami ne, 6 - TAMRAなどを ドナー色素とするならば、 ローダミン (rhodamine) X、 BODIPY 581/59 1などをァクセプター色素とすることができる。 しかしながら、 本発明 において、 これらの例示に限定されるものではない。  In general, an acceptor dye can undergo energy transfer from an acceptor dye, ie, a donor dye, in a FRET phenomenon in a pair with a donor dye. (In other words, the donor dye has a quenching effect on the donor dye.) It works) Any pigment can be used. And it depends on the kind of the donor dye forming the pair. For example, if BODIPY FL, the above-mentioned dye of BODIPY FL system, BODIPY 493/503, 5-FAM, bodepy (BODIPY) 5-FAM, Tetramethylrhodamine, 6-TAMRA, etc. are used as donor dyes, Rhodamine X, BODIPY 581/591, etc. can be used as the acceptor dye. However, the present invention is not limited to these examples.
好ましい核酸プローブの構造は、 その末端部においてドナー色素で標 識されており、 当該核酸プローブが当該末端部において対応核酸にハイ プリダイズしたとき、 当該プローブにハイプリダイズした対応核酸の末 T JP03/05118 A preferred nucleic acid probe structure is labeled with a donor dye at its end, and when the nucleic acid probe hybridizes to the corresponding nucleic acid at the end, the end of the corresponding nucleic acid hybridized to the probe is obtained. T JP03 / 05118
46  46
端塩基から 1ないし 3塩基離れ— 、 ¾Ί心 酸の塩基配列に C (シトシン) 又は G (グァニン) が少なく とも 1塩基存在するように、 当該プローブ の塩基配列が設計されていることである。 The base sequence of the probe is designed so that at least one to three bases apart from the terminal base are present in the base sequence of the amino acid with C (cytosine) or G (guanine).
より好ましくは、 核酸プローブが、 対応核酸にハイブリダィゼーショ ンしたとき、 ドナー色素標識部においてプローブ一核酸ハイブリ ッ ドの 複数塩基対が少なく とも一つの G (グァニン) とじ (シ トシン) のペア 一を形成するように、 当該プローブの塩基配列が設計されていることで あ >。  More preferably, when the nucleic acid probe is hybridized to the corresponding nucleic acid, at least one base pair of the probe-nucleic acid hybrid in the donor dye-labeled portion has at least one G (guanine) bond (cytosine). The base sequence of the probe is designed to form a pair>.
特に好適には、 ドナー色素標識部位は G (グァニン) 又は C (シトシ ン) 塩基か、 又はその塩基を有するヌクレオチドのリン酸基、 又はリボ ースの O H基である。  Particularly preferably, the donor dye labeling site is a G (guanine) or C (cytosine) base, or a phosphate group of a nucleotide having the base, or an OH group of ribose.
ドナー色素及びァクセプター色素の標識部位は、 ドナー色素又はァク セプター色素が核酸プローブの 5 ' 末端部において、 塩基、 リン酸部又 はデォキシリボース部、 又はリボース部を標識しているときに、 ァクセ プター色素又はドナー色素が核酸プローブの鎖中もしく は 3 ' 末端部 ( 3, 末端塩基を含む。 ) である。 又、 ドナ一色素が核酸プローブの 3 ' 末端部において、 塩基、 リ ン酸部又はデォキシリボース部、 又はリボー ス部を標識しているときに、 ドナー色素又はァクセプター色素が核酸プ ローブの鎖中もしくは 5 ' 末端部 ( 5 ' 末端塩基を含む。 ) である。 末 端部を標識する場合には、 両者の色素で、 標識してもよい。 すなわち、 例えば、 両者の一方で、 リン酸部を標識し、 他方でデォキシリボース部 又はリポース部、 又は塩基部を標識してもよい (例えばドナー色素とァ クセプター色素の標識部塩基間距離が 0の場合 (下記に記述した。 ) ) 。 又、 側鎖を有するスーぺサーを用いて、 一本のスーぺサ一に両者を結合 させてもよい。 本発明においてはドナー色素、 ァクセプター色素共に鎖 中を標識しておいても前記の条件さえ充たせばよいことは勿論である。 前記各部位における蛍光色素の結合位置は、 O H基、 又はアミノ基に スぺサ一を介して結合させるのが好適である。 . ドナー色素とァクセプター色素の標識部塩基間距離は、 本質的にはド ナー色素とァクセプター色素の色素ペア一の種類に依存するが、 一般的 には 0〜 5 0塩基、 好ましくは 0〜4 0塩基、 より好ましくは 0〜 3 5 塩基、 特に好ましくは 0〜 1 5塩基である。 5 0塩基を越えると、 FRET 現象が不安定になる。 1 5〜5 0塩基では、 ァクセプター色素の蛍光強 度は変化 (例、 減少) するが、 ドナー色素の蛍光強度も変化 (例、 増加) する場合がある。 すなわち、 核酸プローブが対応核酸にハイブリダィズ したとき、 核酸プローブの立体構造が変化する場合がある。 そしてその 変化により核酸プローブの色素間の FRET現象が解消する場合が出てく る。 ドナー色素に対するァクセプター色素のクェンチング作用 (消光作 用) と ドナー色素に対する G Cの水素結合体のクェンチング (quenchin g) 作用の大小に依存して、 ドナー色素の蛍光強度がハイブリダィゼー シヨン前より増加したり、 減少したりする。 G Cの水素結合体のクェン チング作用の方が大きいときは減少するが、 小さいときは増加する場合 がある。 The labeling site of the donor dye or the acceptor dye is determined when the donor dye or the acceptor dye labels the base, phosphate, deoxyribose, or ribose at the 5 ′ end of the nucleic acid probe. The dye or donor dye is in the nucleic acid probe strand or at the 3 'end (including the 3, terminal base). When the donor dye labels a base, a phosphate, a deoxyribose, or a ribose at the 3 ′ end of the nucleic acid probe, the donor dye or the acceptor dye may be in the nucleic acid probe strand or It is the 5 'terminal (including the 5' terminal base). When labeling the terminal end, both ends may be labeled. That is, for example, one of the two may be labeled with a phosphate moiety, and the other may be labeled with a deoxyribose moiety, a reporter moiety, or a base moiety (for example, when the distance between the labeled moiety of the donor dye and the acceptor dye is 0). Case (described below.)) Alternatively, both may be bonded to one spacer using a spacer having a side chain. In the present invention, both the donor dye and the acceptor dye have chains. It goes without saying that even if the inside is marked, the above conditions only need to be satisfied. It is preferable that the binding position of the fluorescent dye at each of the above-mentioned sites is bonded to an OH group or an amino group via a spacer. The distance between the labeled dye bases of the donor dye and the acceptor dye depends essentially on the kind of the dye pair of the donor dye and the acceptor dye, but generally ranges from 0 to 50 bases, preferably from 0 to 4 bases. It has 0 bases, more preferably 0 to 35 bases, and particularly preferably 0 to 15 bases. Beyond 50 bases, the FRET phenomenon becomes unstable. At 15 to 50 bases, the fluorescent intensity of the acceptor dye changes (eg, decreases), but the fluorescent intensity of the donor dye may also change (eg, increases). That is, when a nucleic acid probe hybridizes to a corresponding nucleic acid, the three-dimensional structure of the nucleic acid probe may change. The change may eliminate the FRET phenomenon between the dyes of the nucleic acid probe. Depending on the magnitude of the quenching effect of the acceptor dye on the donor dye (quenching effect) and the quenching effect of the hydrogen bond of the GC on the donor dye (quenching), the fluorescence intensity of the donor dye may increase from before the hybridization, Or decrease. The quenching effect of the hydrogen bond of the GC decreases when it is larger, but may increase when it is smaller.
それで、 本発明のプローブの好ましい形態は、 ドナー色素とァクセプ ター色素の標識部が塩基間距離を有し、 ドナー色素が BODIPY FL、 B0DIP Y 493/503、 5 - FAM、 Tetramethylrhodatni ne, 又は 6- TAMRAで、 又ァクセ プター色素が 6- TAMRA、 BODIPY 581/591、 X—ローダミンで、 5 ' 末端 塩基が G又はじで、 かつ 5 ' 末端がドナー色素或いはァクセプター色素 で標識されているものか、 又は、 核酸プローブの 3 ' 末端塩基が G又は Cで、 かつ 3 ' 末端がドナー色素或いはァクセプター色素で標識されて いるものである。 特に好ましい形態は、 色素標識部位に対応する対応核 酸の塩基が Gであるものである。 この場合、 色素標識部位の塩基が必ず しも Cである必要はない。 Therefore, in a preferred form of the probe of the present invention, the labeled part of the donor dye and the receptor dye has a distance between bases, and the donor dye is BODIPY FL, B0DIP Y 493/503, 5-FAM, Tetramethylrhodatine, or 6-. Whether the TAMRA, the receptor dye is 6-TAMRA, BODIPY 581/591, X-rhodamine, the 5 'terminal base is G or J, and the 5' terminal is labeled with a donor dye or receptor dye, Or, the 3 'terminal base of the nucleic acid probe is labeled with G or C, and the 3' terminal is labeled with a donor dye or an acceptor dye. Is what it is. In a particularly preferred embodiment, the base of the corresponding nucleic acid corresponding to the dye labeling site is G. In this case, the base at the dye labeling site does not necessarily need to be C.
本発明の核酸測定用の新規な核酸プローブの構造は上記の通りであ る。 このような構造になっていると、 励起されたドナー色素のエネルギ 一は対応核酸にハイプリダイズしていないときは、 ァクセプター色素に 転移するので、 ァクセプター色素が発光して、 強い蛍光強度を有してい る。 それで、 ドナー色素は発光が抑制されているので、 蛍光強度は低い レベルに保たれている。 ところが、 核酸プローブが対応核酸にハイプリ ダイズすると、 ド^ "一色素或いはァクセプター色素のエネルギーはプロ 一ブー核酸ハイブリ ッ ド複合体により生ずる G Cの水素結合体若しく は対応核酸の Gの方に転移する。  The structure of the novel nucleic acid probe for nucleic acid measurement of the present invention is as described above. With such a structure, the energy of the excited donor dye is transferred to the acceptor dye when it is not hybridized to the corresponding nucleic acid, so that the acceptor dye emits light and has a strong fluorescence intensity. ing. Therefore, the fluorescence intensity is kept at a low level because the emission of the donor dye is suppressed. However, when the nucleic acid probe hybridizes to the corresponding nucleic acid, the energy of the dye or the acceptor dye is transferred to the GC hydrogen bond formed by the probe nucleic acid hybrid complex or to the G of the corresponding nucleic acid. I do.
なお、 本発明の核酸プローブは、 対応核酸にハイブリダィズしたとき に、 核酸プローブの発光の蛍光強度が、 ハイブリダィゼーシヨン前に較 ベて著しく減少する。 又、 本発明において一種類のドナー色素に複数の ァクセプター色素の組み合わせができるので、 その組み合わせの数の核 酸プローブができる。 しかも前記性質を有している。  In the nucleic acid probe of the present invention, when hybridized to the corresponding nucleic acid, the fluorescence intensity of the emitted light of the nucleic acid probe is significantly reduced as compared to before the hybridization. Further, in the present invention, since a plurality of receptor dyes can be combined with one kind of donor dye, a number of nucleic acid probes corresponding to the combination can be obtained. Moreover, it has the above-mentioned properties.
実際の核酸測定においては、 ァクセプター色素の蛍光強度の減少を測 定することになるので、 一つの励起波長で多種類の核酸プローブを同時 に使用できることになる。 そのことは、 同一測定系内に多種類の対応核 酸が存在する場合に、 このような核酸プローブを同時に添加すれば、 一 つの励起波長で多種類の核酸を同時に測定できることになる。 すなわち、 単純な装置でで多種類の核酸を同時に測定できることになる。  In actual nucleic acid measurement, the decrease in the fluorescence intensity of the acceptor dye is measured, so that one nucleic acid probe can be used simultaneously at one excitation wavelength. This means that when there are many kinds of corresponding nucleic acids in the same measurement system, if such nucleic acid probes are simultaneously added, many kinds of nucleic acids can be measured at the same excitation wavelength. That is, many kinds of nucleic acids can be measured simultaneously with a simple device.
なお、 上記 i ) 〜 i i i ) に記載の核酸測定方法に用いられる核酸プ ロープにおいて、 一つの核酸プローブに標識されている蛍光色素及びク ェンチヤ一色素は各々一種づっであり、 オリ ゴヌク レオチドの標識箇所 は各々少なく とも一箇所である。 In the nucleic acid probe used in the nucleic acid measurement methods described in i) to iii) above, a fluorescent dye and a fluorescent dye labeled on one nucleic acid probe may be used. Each of the enchia dyes is unique, and the number of labeled oligonucleotides is at least one each.
3 ) 本願発明方法 Bの V ) 〜 i X ) の核酸測定方法に用いられる核酸プ ローブについて以下詳しく述べる。  3) The nucleic acid probe used in the nucleic acid measurement methods V) to iX) of the method B of the present invention will be described in detail below.
前記の KURATAらの方法で代表される方法で用いられる核酸プローブ である。  This is a nucleic acid probe used in a method represented by the method of KURATA et al.
本核酸プローブの特徴は、 少なく とも一種の蛍光色素で標識された一 本鎖のオリ ゴヌク レオチドからなるものであり、 対応核酸にハイブリダ ィズさせると、 クェンチヤ一プローブ若しくはクェンチヤー色素の非存 在下 (測定系に当該クェンチヤ一プローブを存在させないで) において も、 すなわちクェンチヤ一色素との相互作用なしに、 核酸プローブの蛍 光強度が変化 (例、 減少) する性質を有する。  This nucleic acid probe is characterized by being composed of a single-stranded oligonucleotide labeled with at least one kind of fluorescent dye. When hybridized to the corresponding nucleic acid, the presence of the quencher probe or quencher dye ( In other words, the fluorescence intensity of the nucleic acid probe changes (eg, decreases) without interaction with the quencher dye (ie, without the presence of the quencher probe in the measurement system).
原理的には、 核酸プローブの発光エネルギーがプローブと対応核酸の G Cペア (水素結合複合体) 、 特に対応核酸の Gに移行して、 発光が抑 制される現象に基づく ものである。  In principle, it is based on the phenomenon that the luminescence energy of a nucleic acid probe is transferred to the GC pair (hydrogen bond complex) of the probe and the corresponding nucleic acid, particularly G of the corresponding nucleic acid, and the luminescence is suppressed.
本発明のプローブの塩基数は前記発明と同様である。 そのプローブの 塩基配列は、 対応核酸に特異的にハイプリダイズするものであればよく、 特に限定されない。 好ましくは、 核酸プローブが蛍光色素で標識されて おり、 かつ対応核酸にハイブリダィズしたとき、  The number of bases of the probe of the present invention is the same as in the above invention. The base sequence of the probe is not particularly limited as long as it specifically hybridizes to the corresponding nucleic acid. Preferably, when the nucleic acid probe is labeled with a fluorescent dye and hybridized to the corresponding nucleic acid,
( 1 ) 蛍光標識した塩基から 1ないし 3塩基離れて、 対応核酸の塩基配 列に G (グァニン) が少なく とも 1塩基存在するように、 当該プローブ の塩基配列が設計されている塩基配列、  (1) a base sequence for which the base sequence of the probe is designed such that G (guanine) is present in the base sequence of the corresponding nucleic acid at least one base at a distance of one to three bases from the fluorescently labeled base;
( 2 ) 当該プローブにハイプリダイズした対応核酸の末端塩基部から 1 ないし 3塩基離れて、 対応核酸の塩基配列に G (グァニン) がすくなと も 1塩基以上存在するように、 当該プローブの塩基配列が設計されいる 塩基配列、 (2) The base sequence of the probe so that G (guanine) is present in the base sequence of the corresponding nucleic acid at least one or three bases apart from the terminal base of the corresponding nucleic acid hybridized to the probe. Is designed Base sequence,
( 3 ) 当該プローブの末端部分において核酸ハイプリ ッ ド複合体の複数 の塩基対が少なく とも 1対の G (グァニン) とじ (シトシン) のペア一 を形成するように、 又は蛍光色素標識部位の対応核酸の塩基が Gである ように当該プローブの塩基配列が設計されている塩基配列、  (3) At the terminal portion of the probe, a plurality of base pairs of the nucleic acid hybrid complex form at least one pair of G (guanine) and (cytosine) pairs, or correspond to a fluorescent dye labeling site. A nucleotide sequence in which the nucleotide sequence of the probe is designed so that the nucleotide of the nucleic acid is G;
( 4 ) 5 ' 末端リン酸基、 3 ' 末端 0 H基以外の部分において蛍光色素 で標識されたプローブにおいては、 蛍光色素で標識された部分の塩基対 が少なく とも 1対の G (グァニン) と C (シトシン) のペア一を形成す るように、 又は蛍光色素標識部位の対応核酸の塩基が Gであるように当 該プローブの塩基配列が設計されている塩基配列、 が好ましい。  (4) In a probe labeled with a fluorescent dye at a portion other than the 5 ′ terminal phosphate group and the 3 ′ terminal 0H group, at least one pair of G (guanine) base pairs in the portion labeled with the fluorescent dye It is preferable that the base sequence of the probe is designed so that a pair of C and cytosine is formed, or the base of the nucleic acid corresponding to the fluorescent dye labeling site is G.
オリゴヌクレオチドに標識する蛍光色素は前記同様である。 前記記载 の中でも、 FITC、 EDANS、 テキサスレツ ド (Texas red) 、 6- joe、 TMR、 x-rhodaraine, Cy3、 Cy5、 A 1 e x a 488、 Alexa 532、 5 - FAM、 ボデピ 一 (BODIPY) FL、 ポデピー (BODIPY) 493/503, ボデピー (BODIPY) R6G, ボデピー (BODIPY) 564、 ポデピー (BODIPY) 581、 ボデピー (BODIPY) FL/C3N ポデピー (BODIPY) FL/C6、 ポデピー (BODIPY) TMR、 6 - TAMURA 等を好適なものとして、 その中でも、 特に、 5- FAM、 ボデピー (BODIPY) 493/503、 ボデピー (BODIPY) Fレ 6 - joe、 TMR、 6- TAMURAなどをより好適 なもの (蛍光強度減少率が 6 0 %以上を有する。 ) として挙げることが できる。 The fluorescent dye to be labeled on the oligonucleotide is the same as described above. Among the above, FITC, EDANS, Texas Red (Texas red), 6-joe, TMR, x-rhodaraine, Cy3, Cy5, A1 exa 488, Alexa 532, 5-FAM, Bodepi (BODIPY) FL, BODIPY (BODIPY) 493/503, BODIPY (BODIPY) R6G, BODIPY (BODIPY) 564, BODIPY (BODIPY) 581, BODIPY (BODIPY) FL / C3 N PODEPY (BODIPY) FL / C6, PODIPYE (BODIPY) TMR, 6- TAMURA etc. are preferred, and among them, 5-FAM, BODIPY 493/503, BODIPY Fle 6-joe, TMR, 6-TAMURA etc. are more preferred (fluorescence intensity reduction). Rate is 60% or more.)
オリゴヌク レオチドに蛍光色素を標識する方法は、 前記発明と同様で ある。 '  The method of labeling the oligonucleotide with a fluorescent dye is the same as in the above invention. '
又、 プローブ核酸の鎖内に蛍光色素分子を導入することも可能である (ANALYTICAL BIOCHEMISTRY 225, 32-38頁(1998年)) 。  It is also possible to introduce a fluorescent dye molecule into the probe nucleic acid chain (ANALYTICAL BIOCHEMISTRY 225, pp. 32-38 (1998)).
好ましいプローブの形態は、 3 ' 又は 5 ' 末端が蛍光色素で標識され たものであり、 その標識されている末端の塩基が G又は Cであるもの、 又は蛍光色素標識部位の対応核酸の塩基が Gであるものである。 5 ' 末 端が標識され、 3 ' 末端が標識されていない場合、 3 ' 末端のリボース 又はデォキシリボースの 3 ' 位炭素の O H基をリン酸基等、 又 3 ' 末端 のリボースの 2 ' 位炭素の O H基をリン酸基等で修飾してもよく何ら制 限されない。 A preferred probe form is one in which the 3 'or 5' end is labeled with a fluorescent dye. And the base at the labeled terminal is G or C, or the base of the corresponding nucleic acid at the fluorescent dye labeling site is G. If the 5 'end is labeled and the 3' end is unlabeled, the OH group at the 3 'end of ribose or deoxyribose at the 3' end is a phosphate group, etc., and the 2 'carbon of the 3' end ribose is The OH group may be modified with a phosphate group or the like, and there is no limitation.
又、 プローブ鎖内の塩基、 特に C、 又は Gを修飾しても良い。  Further, bases in the probe chain, particularly C or G, may be modified.
なお、 上記 V ) 〜 i x ) に記載の核酸測定方法に用いられる核酸プロ —ブにおいて、 一つの核酸プローブに標識されている蛍光色素は少なく とも一種であり、 標識箇所は少なく とも一箇所である。  In the nucleic acid probes used in the nucleic acid measurement methods described in V) to ix), one nucleic acid probe has at least one type of fluorescent dye and at least one labeling site. .
本発明の核酸測定方法 A及び Bに使用される核酸プローブ (以下、 簡 便化のためは、 各々を核酸プローブ A又は核酸プローブ Bという場合が ある。 ) はオリゴデォキシリボヌクレオチド又は、 オリ ゴリボヌクレオ チドで構成されていてもよい。 又、 それらの両方を含むキメ リ ックオリ ゴヌクレオチド (chimeric ol igonucl eodite) でもよい。 それらのオリ ゴヌクレオチドは化学的修飾を受けたものでもよい。 化学的修飾を受け たォリ ゴヌク レオチドをキメ リ ックオリ ゴヌク レオチドの鎖中に介在 させてもよレ、。  The nucleic acid probes used in the nucleic acid measurement methods A and B of the present invention (hereinafter, for the sake of simplicity, may be referred to as nucleic acid probes A or B, respectively) are oligodeoxyribonucleotides or oligonucleotides. It may be composed of goribonucleotides. Alternatively, chimeric oligonucleotides containing both of them may be used. The oligonucleotides may be chemically modified. Chemically modified oligonucleotides may be interposed in the chains of chimeric oligonucleotides.
前記の化学的修飾を受けるオリ ゴヌクレオチドの修飾部位と して、 ォ リゴヌクレオチド末端部の末端水酸基もしくは末端リン酸基、 又は鎖中 のヌク レオシドリン酸部位、 ピリ ミジン環の 5位の炭素、 及びヌクレオ シ ドの糖 (リポースもしくはデォキシリボース) 部位を挙げることがで きる。 好適にはリポースもしくはデォキシリポース部位を挙げることが できる。  Examples of the modification site of the oligonucleotide to be subjected to the chemical modification include a terminal hydroxyl group or a terminal phosphate group at the end of the oligonucleotide, a nucleoside phosphate site in the chain, a carbon at position 5 of the pyrimidine ring, and Mention may be made of sugar (repos or deoxyribose) sites on nucleosides. A preferred example is a report or dexoxy report site.
本発明の核酸プローブのオリ ゴヌク レオチドは、 通常の一般的オリ ゴ ヌク レオチドの製造方法で製造できる。 又市販されている核酸合成機を 使用して合成するのが好適である (例えば、 ABI394 (Perkin Elmer社製、 USA) ) 。 The oligonucleotide of the nucleic acid probe of the present invention may be a common general oligonucleotide. It can be produced by a method for producing nucleotides. It is also preferable to use a commercially available nucleic acid synthesizer (for example, ABI394 (Perkin Elmer, USA)).
オリ ゴヌクレオチドに蛍光色素を標識するには、 従来公知の標識法の うちの所望のものを利用することができる (Nature Biotechnology, 14 卷、 303~308頁、 1996年; Applied and Environmental Microbiology, 63 卷、 1143〜1147頁、 1997年; Nucleic acids Research、 24巻、 4532~ 4535頁、 1996年) 。 例えば、 5 ' 末端に蛍光色素分子を結合させる場合は、 先ず、 常法に従って 5 ' 末端のリン酸基にスぺーサ一と して、 例えば、 -(CH2) „- SHを導入する。 これらの導入体は市販されているので市販品を購入し てもよい (メ ドランド 'サーティフアイ ド ' レージント 'カンパニー (M idland Certified Reagent Company) ) 。 この場合、 nは 3〜 8、 好ま しくは 6である。 このスぺーサ一に S H基反応性を有する蛍光色素又は その誘導体を結合させることにより蛍光色素で標識したオリ ゴヌク レ ォチドを合成できる。 このようにして合成された蛍光色素で標識された オリ ゴヌクレオチドは、 逆相等のクロマトグラフィ一等で精製して本発 明の核酸プローブとすることができる。 In order to label the oligonucleotide with a fluorescent dye, any of the conventionally known labeling methods can be used (Nature Biotechnology, vol. 14, p. 303-308, 1996; Applied and Environmental Microbiology, 63). Vol., 1143-1147, 1997; Nucleic acids Research, 24, 4532-4535, 1996). For example, when a fluorescent dye molecule is bound to the 5 ′ end, first, for example,-(CH 2 ) -SH is introduced into the phosphate group at the 5 ′ end as a spacer according to a conventional method. These transductants are commercially available and may be purchased commercially (Midland Certified Reagent Company), where n is 3-8, preferably It is 6. The fluorescent dye-labeled oligonucleotide can be synthesized by binding a fluorescent dye having SH group reactivity or a derivative thereof to this spacer. The oligonucleotide thus obtained can be purified by chromatography such as reverse phase or the like to obtain the nucleic acid probe of the present invention.
又、 オリ ゴヌクレオチドの 3 ' 末端塩基も標識できる。  Also, the 3 ′ terminal base of the oligonucleotide can be labeled.
この場合は、 リボース又はデォキシリボースの 3 ' 位 Cの OH基にス ぺーサ一として、 例えば、 -(CH2)„- NH2を導入する。 これらの導入体も 前記と同様にして市販されているので市販品を購入してもよい。 又、 リ ン酸基を導入して、 リン酸基の OH基にスぺサ一と して、 例えば、 -(CH 2) SHを導入する。 これらの場合、 nは 3〜 8、 好ましくは 4〜 7であ る。 このスぺーサ一にアミノ基、 S H基に反応性を有する蛍光色素又は その誘導体を結合させることにより蛍光色素で標識したオリ ゴヌタ レ ォチドを合成できる。 , In this case, for example,-(CH 2 ) „-NH 2 is introduced into the OH group at the 3′-position C of ribose or deoxyribose as a spacer. In addition, a phosphoric acid group is introduced, and for example,-(CH 2 ) SH is introduced as a spacer to the OH group of the phosphoric acid group. In the above case, n is from 3 to 8, preferably from 4 to 7. An orifice labeled with a fluorescent dye by binding a fluorescent dye or a derivative thereof reactive to an amino group or SH group to this spacer. Gonutale Can be synthesized. ,
又、 オリ ゴヌク レオチ ドの鎖中塩基も標識できる。  In addition, bases in the oligonucleotide nucleotides can also be labeled.
塩基のアミノ基又は O H基を 5 ' 又は 3 ' 末端の方法と同様にして本 発明の色素で標識すればよい (ANALYT ICAL BIOCHEMI STRY 225、32- 38頁 ( 1998年)) 。  The amino group or OH group of the base may be labeled with the dye of the present invention in the same manner as in the method for the 5 ′ or 3 ′ terminal (ANALYTICAL BIOCHEMI STRY 225, pp. 32-38 (1998)).
ァミノ基に導入する場合、 キッ ト試薬 (例えば、 Uni- l ink aminomodi f ier (CLONTECH社製、 米国) 、 フノレオ ' リポターキッ ト (FluoReporter Kit) F-6082、 F - 6083、 F_6084、 F - 10220 (いずれもモレクキユラ一 プロ一べ (Molecular Probes) 社製、 米国) ) を用いるのが便利である。 そして、 常法に従って当該オリ ゴリボヌクレオチドに蛍光色素分子を結 合させることができる。  When introduced into an amino group, kit reagents (for example, Unilink aminomodi fi ier (manufactured by CLONTECH, USA), Funole 'Lipo-kit (FluoReporter Kit) F-6082, F-6083, F_6084, F-10220 ( In each case, it is convenient to use Molecular Probes (Molecular Probes, USA)). Then, a fluorescent dye molecule can be bound to the oligoribonucleotide according to a conventional method.
このよ うにして合成されたオリ ゴヌク レオチドは、 逆相等のク口マト グラフィ一等で精製して本発明の核酸プローブとすることができる。 本発明の内部標準プローブとは、 前記の核酸プローブの形態のものを 利用しているもので、 以下のような特質を有するものである :  The oligonucleotide synthesized in this manner can be purified by a method such as reverse phase chromatography or the like to obtain the nucleic acid probe of the present invention. The internal standard probe of the present invention utilizes the form of the nucleic acid probe described above, and has the following characteristics:
1 ) 少なく とも一種以上の蛍光色素で標識されている。  1) Labeled with at least one fluorescent dye.
2 ) 内部標準核酸プローブが、 一定条件下で内部標準核酸とのみハイブ リダイズし、 標的核酸とハイプリダイズしない配列を有する。  2) The internal standard nucleic acid probe has a sequence that hybridizes only with the internal standard nucleic acid under certain conditions and does not hybridize with the target nucleic acid.
3 ) 内部標準核酸とハイブリダィズすることによる、 標識された蛍光色 素の蛍光強度が変化若しくは変化量が、 標的核酸プローブが標的核酸と ハイプリダイズすることにより生ずる、 標的核酸プローブに標識された 蛍光色素の蛍光強度の変化若しくは変化量とは明瞭に識別可能である。 3) A fluorescent dye labeled on the target nucleic acid probe, which is caused by a change or an amount of change in the fluorescence intensity of the labeled fluorescent dye due to hybridization with the internal standard nucleic acid, resulting from hybridization of the target nucleic acid probe with the target nucleic acid. Is clearly distinguishable from the change or the amount of change in the fluorescence intensity.
4 ) ( 1 ) 内部標準核酸プローブが、 標的核酸とプローブ ·核酸複合体 を形成する場合: 4) (1) When the internal standard nucleic acid probe forms a probe-nucleic acid complex with the target nucleic acid:
内部標準核酸の塩基配列が、 内部標準核酸プローブと内部標準核酸と P 漏雇 18 The base sequence of the internal standard nucleic acid is the same as the internal standard nucleic acid probe and the internal standard nucleic acid. P Employee 18
54  54
のプローブ .核酸複合体の T m値が、 内部標準核酸プローブと標的核酸 とのプローブ '核酸複合体の T m値に比較し、 3 °C以上、好ましくは 6 °C 以上、 より好ましくは 1 0 °C以上の差を有するものである。 The Tm value of the nucleic acid complex is 3 ° C or more, preferably 6 ° C or more, more preferably 1 ° C or more, as compared with the Tm value of the probe nucleic acid complex between the internal standard nucleic acid probe and the target nucleic acid. It has a difference of 0 ° C or more.
( 2 ) 標的核酸プローブが、 内部標準核酸とプローブ '核酸複合体を形 成する場合:  (2) When the target nucleic acid probe forms a probe 'nucleic acid complex with the internal standard nucleic acid:
内部標準核酸の塩基配列が、 当該プローブ ·核酸複合体の T m値が、 標的核酸プローブと標的核酸とのプローブ ·核酸複合体の T m値に比較 し、 3 °C以上、 好ましくは 6 °C以上、 より好ましくは 6 °C以上の差を有 するものである。  The base sequence of the internal standard nucleic acid is such that the Tm value of the probe / nucleic acid complex is 3 ° C or more, preferably 6 ° C, as compared with the Tm value of the probe / nucleic acid complex between the target nucleic acid probe and the target nucleic acid. It has a difference of not less than C, more preferably not less than 6 ° C.
又、 標的核酸プローブとは、 標的核酸に特異的にハイブリダィズする 塩基配列を有するもので、 内部標準核酸には特異的にハイプリダイズし ない塩基配列を有するものである。  The target nucleic acid probe has a base sequence that specifically hybridizes to the target nucleic acid, and has a base sequence that does not specifically hybridize to the internal standard nucleic acid.
同様に、 内部標準核酸プローブとは、 内部標準核酸に特異的にハイブ リダイズする塩基配列を有するもので、 標的核酸には特異的にハイプリ ダイズしない塩基配列を有するものである。  Similarly, an internal standard nucleic acid probe has a base sequence that specifically hybridizes to an internal standard nucleic acid, and has a base sequence that does not specifically hybridize to a target nucleic acid.
本発明においては、 上記のプローブが、 一種の標的核酸若しくは内部 標準核酸に対して少なく とも一種用いられる。  In the present invention, at least one probe is used for one type of target nucleic acid or internal standard nucleic acid.
内部標準核酸、 内部標準核酸プローブ、 標的核酸、 標的核酸プローブ は前記のようなものである。 これらのことは、 後記の核酸増幅方法を用 いる核酸の測定方法においても、 同様である。 しかしながら、 これは一 例であり、 本発明はこれらの例示に限定されるものではない。  The internal standard nucleic acid, the internal standard nucleic acid probe, the target nucleic acid, and the target nucleic acid probe are as described above. The same applies to the nucleic acid measurement method using the nucleic acid amplification method described later. However, this is only an example, and the present invention is not limited to these examples.
本発明は前記のような、 少なく とも一種の標的核酸プローブ及び Z又 は少なく とも一種の内部標準核酸プローブを、 少なく とも一種の、 既知 濃度の内部標準核酸と伴に、 少なく とも一種の標的核酸を含む測定系に 添加し、 ハイブリダィゼーシヨ ン反応を行わせ、 測定系若しくはハイブ リダイゼーショ ン反応系の標的核酸プローブ及び/又は内部標準核酸 プローブに標識された蛍光色素の蛍光強度の変化若しくは変化量を、 少 なく とも一種の波長で測定して、 当該測定値及び内部標準核酸の濃度か ら、 標的核酸濃度を測定するものである。 The present invention relates to the use of at least one kind of target nucleic acid probe and at least one kind of internal standard nucleic acid probe as described above, together with at least one kind of internal standard nucleic acid of known concentration. To the measurement system containing, and allow the hybridization reaction to proceed. The change or the amount of change in the fluorescence intensity of the fluorescent dye labeled on the target nucleic acid probe and / or the internal standard nucleic acid probe of the re-digestion reaction system is measured at least at one wavelength, and the measured value and the internal standard nucleic acid nucleic acid probe are measured. The target nucleic acid concentration is measured from the concentration.
本発明ににおいて、 測定系若しくはハイブリダィゼーシヨン反応系は、 溶液系、 固体系を問わない。  In the present invention, the measurement system or the hybridization reaction system may be a solution system or a solid system.
ハイブリダイゼーション反応の条件は、 通常の公知の条件で行っても よい。 特に温度については、 好適には実施例 1に示されているように、 次の手順の実験を行って、 好適な温度条件を求めるのがよい :  Hybridization reaction may be performed under ordinary known conditions. In particular, for the temperature, as shown in Example 1, it is preferable to conduct an experiment of the following procedure to obtain a suitable temperature condition:
( 1 ) 標的核酸と標的核酸プローブ若しくは内部標準核酸プローブの解 離曲線を求める。  (1) Determine the dissociation curve of the target nucleic acid and the target nucleic acid probe or internal standard nucleic acid probe.
( 2 ) 内部標準核酸と内部標準核酸プローブ若しくは標的核酸プローブ の解離曲線を求める。  (2) Determine the dissociation curve between the internal standard nucleic acid and the internal standard nucleic acid probe or target nucleic acid probe.
( 3 ) 上記の解離曲線から、 標的核酸と標的核酸プローブがハイブリダ ィズしているが、 標的核酸と内部標準核酸プローブのプローブ '核酸プ ローブ複合体が解離している温度、 及ぴ内部標準核酸と内部標準核酸プ ローブがハイブリダイズしているが、 内部標準核酸と標的核酸のプロ一 ブ ·核酸プローブ複合体が解離している温度を求める。 そして、 両者の 共通の温度がハイブリダイゼーションの温度である。  (3) From the above dissociation curve, the target nucleic acid and the target nucleic acid probe are hybridized, but the target nucleic acid and the internal standard nucleic acid probe are the temperature at which the nucleic acid probe complex dissociates, and the internal standard. Determine the temperature at which the nucleic acid and the internal standard nucleic acid probe are hybridized, but the probe-nucleic acid probe complex of the internal standard nucleic acid and the target nucleic acid is dissociated. The temperature common to both is the hybridization temperature.
緩衝液、 金属イオン等は通常の公知の条件でよい。  The buffer, metal ions and the like may be under ordinary known conditions.
前記の 「変化量」 とは、 より具体的に例示すると以下のようである。 標的核酸と標的核酸プローブ若しくは内部標準核酸と内部標準核酸プ ローブとのハイブリ ダィゼーシヨン前後の測定系におけるある特定の 測定波長での蛍光強度の差又は蛍光強度の変化率をいう。 この場合の測 定波長は、 少なく とも一種以上である。 これは一つの核酸プローブを標 03 05118 The “change amount” is more specifically exemplified as follows. It refers to the difference in fluorescence intensity or the rate of change in fluorescence intensity at a specific measurement wavelength in a measurement system before and after hybridization between a target nucleic acid and a target nucleic acid probe or between an internal standard nucleic acid and an internal standard nucleic acid probe. In this case, the measurement wavelength is at least one or more. This targets one nucleic acid probe. 03 05118
56  56
識している一つの蛍光色素について、 7少、なく とも一種以上の波長で測定 するという手順から来ている。 It comes from the procedure of measuring one known fluorescent dye at at least seven or more wavelengths.
蛍光強度の変化率とは、 ハイプリダイゼ一ショ ン反応開始後の時間を 関数とする反応開始前の蛍光強度に対する蛍光強度の変化量、 変化率、 又、 PCRにおけるサイクル数を関数とする反応開始前の蛍光強度値に対 する反応開始後の蛍光強度の変化率のことをいう。  The change rate of the fluorescence intensity is the amount of change in the fluorescence intensity with respect to the fluorescence intensity before the start of the reaction as a function of the time after the start of the hybridization reaction, the change rate, and before the reaction as a function of the number of cycles in PCR. Means the rate of change of the fluorescence intensity after the start of the reaction with respect to the fluorescence intensity value.
「標的核酸プローブと標的核酸とのハイプリダイゼ一ショ ンにより生 じる標的核酸プローブの蛍光キャラクタ一の変化又は変化量、 内部標準 核酸プローブと内部標準核酸とのハイブリ ダイゼーシヨ ンにより生じ る内部標準核酸プローブの蛍光強度の変化又は変化量及び内部標準核 酸の添加量から、 標的核酸を測定する」 とは、 例えば、 既知濃度の内部 標準核酸の量又は濃度と、 内部標準核酸プローブが内部標準核酸とハイ ブリ ダイゼーシヨ ンしたときの内部標準核酸プローブの蛍光強度の変 化若しくは変化量との関係を、 目視可能なようにグラフ化しておく力 、 又は数学的関係式にしておき、 標的核酸プローブの蛍光強度変化若しく は変化量をダラフ又は関係式に挿入して標的核酸の量又は濃度を決め ることを言う。 又は前記グラフ又は関係式から標的核酸の量又は濃度を 決める手順を、 コンピュータ読み取り可能な記録媒体に記録しておいて、 標的核酸と標的核酸プローブがハイプリ ダイズしたときの標的核酸プ ローブに由来する蛍光強度の変化若しく は変化量をコンピュータにィ ンプッ トして標的核酸の量又は濃度を決めることを言う。  `` Change or amount of change in the fluorescence character of the target nucleic acid probe caused by hybridization between the target nucleic acid probe and the target nucleic acid, internal standard nucleic acid probe generated by hybridization between the internal standard nucleic acid probe and the internal standard nucleic acid The target nucleic acid is measured from the change or the amount of change in the fluorescence intensity of the target nucleic acid and the amount of the internal standard nucleic acid added, '' for example, `` the amount or concentration of the internal standard nucleic acid at a known concentration, The relationship between the change or the amount of change in the fluorescence intensity of the internal standard nucleic acid probe upon hybridization and the amount of change can be visually visualized, or a mathematical relational expression can be used to determine the fluorescence of the target nucleic acid probe. This refers to determining the amount or concentration of the target nucleic acid by inserting the intensity change or the amount of change into a rough or relational expression. Alternatively, the procedure for determining the amount or concentration of the target nucleic acid from the graph or the relational expression is recorded on a computer-readable recording medium, and is derived from the target nucleic acid probe when the target nucleic acid and the target nucleic acid probe are hybridized. This refers to determining the amount or concentration of the target nucleic acid by inputting the change or the change in the fluorescence intensity into a computer.
具体的には、  In particular,
1 ) 先ず、 核酸間のハイブリダィゼーシヨ ン反応、 核酸増幅反応 (こ こでは核酸プローブを用いた反応である。 以下、 同様) を阻害しないと 見做される反応系 (測定系) で、 既知濃度の標的核酸、 内部標的核酸と 5118 1) First, a reaction system (measurement system) that is deemed not to inhibit the hybridization reaction between nucleic acids and the nucleic acid amplification reaction (here, a reaction using a nucleic acid probe; the same applies hereinafter). , Known concentration of target nucleic acid, internal target nucleic acid 5118
57 相応するプローブを添加し、 各反応を行う。  57 Add the appropriate probe and perform each reaction.
2 )ハイブリダイゼーション反応、核酸増幅反応に由来する反応系(測 定系) の蛍光強度の変化量若しくは変化率を測定する。  2) Measure the amount or rate of change in the fluorescence intensity of the reaction system (measurement system) derived from the hybridization reaction and nucleic acid amplification reaction.
3 ) 各核酸濃度と当該蛍光強度の変化量若しくは変化率の関係をグラ フ化若しくは数式化する。  3) Graph or formulate the relationship between each nucleic acid concentration and the amount or rate of change of the fluorescence intensity.
4 ) 少なく とも一種の標的核酸を含む未知試料、 標的核酸プローブ、 既知の各種濃度の内部標準核酸、 内部標準核酸プローブを用いて、 ハイ ブリダィゼーシヨン反応、 核酸増幅反応を行う。 そして、 反応系の標的 核酸プローブ、 内部標準核酸プローブに標識されている各蛍光色素に由 来する、 反応系の蛍光強度の変化量、 変化率を測定、 算出する。  4) A hybridization reaction and a nucleic acid amplification reaction are performed using an unknown sample containing at least one type of target nucleic acid, a target nucleic acid probe, an internal standard nucleic acid of various known concentrations, and an internal standard nucleic acid probe. Then, a change amount and a change rate of the fluorescence intensity of the reaction system due to each fluorescent dye labeled on the target nucleic acid probe and the internal standard nucleic acid probe of the reaction system are measured and calculated.
5 ) 前記 4 ) における内部標準核酸プローブの蛍光色素に由来する反 応系の蛍光強度の変化量、 変化率と内部標準核酸の濃度又は内部標準核 酸の増幅前の濃度との関係をグラフ化若しくは数式化する。  5) Graph the relationship between the change amount and the change rate of the fluorescence intensity of the reaction system derived from the fluorescent dye of the internal standard nucleic acid probe and the concentration of the internal standard nucleic acid or the concentration of the internal standard nucleic acid before amplification in 4) above. Or, formulate it.
6 ) 前記 3 ) で得られた内部標準核酸についてのグラフ、 若しくは数 式を、 前記 5 ) で得られたものと比較 · 検討する。 差がない場合は前記 6) The graph or formula for the internal standard nucleic acid obtained in the above 3) is compared and examined with that obtained in the above 5). If there is no difference
3 ) で得られたグラフ若しくは数式がそのまま使用できる。 差がある場 合は、 手動若しくはコンピュータにより、 差の係数を算出する。 The graph or formula obtained in 3) can be used as it is. If there is a difference, calculate the difference coefficient manually or by computer.
7 ) 当該係数を用いて前記 3 ) の標的核酸についてのグラフ若しくは 数式を補正する。  7) Correct the graph or formula for the target nucleic acid of 3) using the coefficient.
8 ) 当該捕正したグラフ若しくは数式に前記 4 ) で得られた標的核酸 についての蛍光強度の変化量若しくは変化量を当てはめて、 未知試料中 の標的核酸の濃度若しくはコピー、 又は標的核酸の増幅前の濃度若しく はコピー数を求める。  8) By applying the change or the change in the fluorescence intensity of the target nucleic acid obtained in 4) to the collected graph or mathematical formula, the concentration or copy of the target nucleic acid in the unknown sample, or before the amplification of the target nucleic acid Determine the density or copy number of
なお、 上記の標的核酸の濃度を求める方法には各種のバリェションが あり、 上記の例に限定されるものではない。 例えば、 未知試料に内部標準核酸の既知量を添加する。 標的核酸プロ ーブ及び内部標準核酸プローブを用いて、 ハイプリダイゼーショ ン反応 を行う。 各プローブに標識された蛍光色素の蛍光強度の変化量を測定す る。 内部標準核酸についてのこの変化量と内部標準核酸濃度の関係が、 標的核酸にも適用できると見做す (なお、 ハイブリダィゼーシヨ ン阻害 物若しく は多型が存在しない系で当該見做しが出来ることを確認して おく) 。 それで、 前以て内部標準核酸についてのこの変化量と内部標準 核酸濃度の関係式を当該未知試料を使用して求めておく。 当該関係式か ら未知試料中の標的核酸の濃度を推定できる。 The method for determining the concentration of the target nucleic acid has various variations and is not limited to the above example. For example, a known amount of an internal standard nucleic acid is added to an unknown sample. A hybridization reaction is performed using a target nucleic acid probe and an internal standard nucleic acid probe. The amount of change in the fluorescence intensity of the fluorescent dye labeled on each probe is measured. The relationship between the amount of change and the concentration of the internal standard nucleic acid for the internal standard nucleic acid is considered to be applicable to the target nucleic acid (note that this relationship is not applicable to a system in which no hybridization inhibitor or polymorphism is present). Make sure that it can be considered). Therefore, the relational expression between the amount of change and the concentration of the internal standard nucleic acid for the internal standard nucleic acid is determined in advance using the unknown sample. From the relational expression, the concentration of the target nucleic acid in the unknown sample can be estimated.
本発明の特徴は、 蛍光強度の測定には少なく とも一種以上の波長で行 うことである。 例えば、 一つの測定系に標的核酸が一種存在する場合は、 標的核酸とそれにハイブリダイズする標的核酸プローブの測定と内部 標準核酸とそれにハイブリダイズする内部標準核酸プローブの測定を 同時に行うため少なく とも二種の波長が必要になる。 標的核酸が二種あ る場合は、 測定波長は少なく とも 4波長になる。  A feature of the present invention is that the measurement of the fluorescence intensity is performed at least at one or more wavelengths. For example, when one type of target nucleic acid is present in one measurement system, at least two target nucleic acids are measured simultaneously with the measurement of the target nucleic acid and the target nucleic acid probe hybridizing thereto and the internal standard nucleic acid and the internal standard nucleic acid probe hybridizing thereto. Some kind of wavelength is needed. If there are two types of target nucleic acids, the measurement wavelength will be at least 4 wavelengths.
しかしながら、 本発明においては、 前記測定を必ずしも同時に行う必 要はない。 すなわち、 内部標準核酸と内部標準核酸プローブ、 又標的核 酸と標的核酸プローブのハイブリダィゼーシヨ ン時における各プロ一 ブの蛍光強度の変化若しくは変化量を測定する場合に、 必ずしも同時に 行わずに別々の測定系について行ってもよい。 この場合は測定波長は少 なく とも一種でよい。 その測定が別々でも測定系には、 標的核酸若しく は内部標準核酸が含まれているのが好ましい。 勿論それらの核酸が含ま れていなく とも本発明方法は実施できる。  However, in the present invention, it is not always necessary to perform the measurements at the same time. That is, when measuring the change or the amount of change in the fluorescence intensity of each probe at the time of hybridization between the internal standard nucleic acid and the internal standard nucleic acid probe, or between the target nucleic acid and the target nucleic acid probe, the measurement is not necessarily performed at the same time. May be performed for different measurement systems. In this case, the measurement wavelength may be at least one. It is preferable that the measurement system contains the target nucleic acid or the internal standard nucleic acid even if the measurement is performed separately. Of course, the method of the present invention can be carried out even if these nucleic acids are not included.
又、 本発明において、 一つの標的核酸に少なく とも一種のプローブを 存在させてもよいということは、 一つの標的核酸に複数種のプローブが 5118 In the present invention, the fact that at least one kind of probe may be present in one target nucleic acid means that a plurality of kinds of probes are present in one target nucleic acid. 5118
59  59
ハイブリダイズする塩基配列がそのハイブリダイズする領域が重複す ることなく、 複数あってもよいということである。 この場合は、 プロ一 ブの種類だけ測定波長が増加することになる。 This means that there may be a plurality of hybridizing base sequences without overlapping the hybridizing regions. In this case, the measurement wavelength increases by the type of probe.
本発明において、 測定条件は、 前記の公知の条件でよく、 標的核酸を 測定する方法に応じてそれに適したように変化させればよい。  In the present invention, the measurement conditions may be the known conditions described above, and may be changed as appropriate according to the method of measuring the target nucleic acid.
次に本発明の第 2発明を以下に述べる。  Next, the second invention of the present invention will be described below.
第 2の発明は、 少なく とも一種の標的核酸を含む測定系若しくは核酸 増幅反応系に、 前記した少なく とも一種の、 既知濃度の内部標準核酸、 少なく とも一種の標的核酸プローブ及び/又は少なく とも一種の内部 標準核酸プローブを添加若しくは存在させて、 核酸増幅方法により、 標 的核酸及び Z又は内部標準核酸を増幅し、 各核酸プローブに標識さてい る蛍光色素の蛍光強度の、 各サイクルの核酸増幅反応前後の変化若しく は変化量をリアルタイムで測定して、 当該測定値及び内部標準核酸の濃 度から、 標的核酸の増幅前の濃度若しくはコピーを測定する方法である。 本発明でいう核酸増幅方法とは、 インビトロ (in vitro) で核酸を増 幅する方法のことをいう。  According to a second aspect of the present invention, there is provided a measurement system or a nucleic acid amplification reaction system containing at least one target nucleic acid, wherein at least one kind of an internal standard nucleic acid having a known concentration, at least one kind of a target nucleic acid probe and / or at least one kind. The target nucleic acid and Z or the internal standard nucleic acid are amplified by the nucleic acid amplification method with the addition or presence of the internal standard nucleic acid probe, and the nucleic acid amplification in each cycle of the fluorescence intensity of the fluorescent dye labeled on each nucleic acid probe This method measures the change or the amount of change before and after the reaction in real time, and measures the concentration or copy of the target nucleic acid before amplification from the measured value and the concentration of the internal standard nucleic acid. The nucleic acid amplification method referred to in the present invention refers to a method for amplifying a nucleic acid in vitro.
例えば、 公知、 未公知を問わない。 例えば、 PCR方法、 定量的 PCR方法、 LCR方法 (ligase chain reaction) 、 リ アルタイムモニタ リ ング定量的 PCR力'法 (real time monitoring quantitative polymerase chain rea ction assays) 、 TAS方法、 RT- PCR、 RNA-primed PCR、 Stretch PCR, 逆 PCR、 Alu配列を利用した PCR、 多重 PCR、 混合プライマーを用いた PCR、 P NAを用いた PCRなどの方法 (蛋白質 '核酸'酵素: 35卷、 17号、 1990年、共立 出版株式会社;実験医学、 15卷、 7号、 1997年、羊土社; PCR法利用の手引き、 矢崎義雄編、 1998年、中外医学社) 、 ICAN (Isothermal and Chimeric pr iraer - initiated Amplification of Nucleic acids) 方法、 LAMP万法、 N TJP03/05118 For example, it may be known or unknown. For example, PCR method, quantitative PCR method, LCR method (ligase chain reaction), real time monitoring quantitative polymerase chain reaction assays, TAS method, RT-PCR, RNA -Methods such as -primed PCR, Stretch PCR, reverse PCR, PCR using Alu sequence, multiplex PCR, PCR using mixed primers, and PCR using PNA (Protein 'nucleic acid' enzyme: Vol. 35, No. 17, 1990 Year, Kyoritsu Shuppan Co., Ltd .; Experimental Medicine, Vol. 15, No. 7, 1997, Yodosha; Guide to Using PCR, Yoshio Yazaki, 1998, Chugai Medical Co., Ltd., ICAN (Isothermal and Chimeric pr iraer-initiated) Amplification of Nucleic acids) Method, LAMP Manpo, N TJP03 / 05118
60  60
ASRA方法、 RCA方法、 TAMA方法、 UCAN方法等を全て含めるものとする。 又、 定量的とは、 本来の定量測定の他に、 検出程度の定量測定をも意味 するのは前記同様である。 尚、 融解曲線の解析もしくは分析する方法等 をも含むとする。  The ASRA method, RCA method, TAMA method, UCAN method, etc. are all included. In addition, the term “quantitative” means the quantitative measurement of the degree of detection in addition to the original quantitative measurement, as described above. It should also include the analysis of the melting curve or the method of analysis.
I ) 公知方法  I) Known method
一例と して、 PCR方法について説明する。  The PCR method will be described as an example.
PCR方法には次のプローブの利用の仕方で以下の二つの場合に分けら れる。  The PCR method is divided into the following two cases depending on the method of using the following probe.
A) 核酸プローブを PCRによる増幅産物に単にハイブリ ダイズさせて、 蛍光強度の変化を単にシグナルと して利用する場合 (Witwer et al. , US Patent No.6, 174, 670 Bl Livak et al. , US Patent No.5, 538, 848 ;KU RATA et al. , Nucleic acids Research, 2001, vol.29, No.6 e34;EP 1 0 46 717 A9;特開 200ト 286300 (P200ト 286300A)) ; US Patent No. 6, 495, 326)  A) When a nucleic acid probe is simply hybridized to an amplification product by PCR and a change in fluorescence intensity is simply used as a signal (Witwer et al., US Patent No. 6, 174, 670 Bl Livak et al., US Patent No. 5, 538, 848; KU RATA et al., Nucleic acids Research, 2001, vol. 29, No. 6 e34; EP 1 0 46 717 A9; JP 200-286286 (P200-286300A)); (US Patent No. 6, 495, 326)
この場合、 核酸プローブの用い方で、 二つの場合に分けられる。  In this case, there are two cases depending on how the nucleic acid probe is used.
a ) 2本の核酸プローブを用いる方法  a) Method using two nucleic acid probes
記 Morrisonらの方法 (Morrison et al. , Anal. Biochera. , 183: 231- 24 4, 1989)、 及び Mergneyらの方法 (Mergney et al. , Nucleic acid Res. , 22:920-928, 1994) で代表される方法である。 即ち、 ドナー核酸プロ一 ブとァクセプター核酸プローブを用いる方法である。  The method of Morrison et al. (Morrison et al., Anal. Biochera., 183: 231-244, 1989), and the method of Mergney et al. (Mergney et al., Nucleic acid Res., 22: 920-928, 1994) This is a typical method. That is, a method using a donor nucleic acid probe and an acceptor nucleic acid probe.
( a ) Mergneyらの方法は、 2本の核酸プローブが増幅核酸にハイブリ ダイズするものである。 そして、 アニーリ ング反応時の核酸プローブの ァクセプタープローブの蛍光強度、 と核酸伸長反応時に DN Aポリ メラ ーゼにより核酸プローブが分解されて、 増幅核酸から遊離したァクセプ ター色素の蛍光強度を測定する。 各サイクルのこの測定値の差をリ アル タイムで測定する方法である。 (a) The method of Mergney et al. involves two nucleic acid probes hybridizing to an amplified nucleic acid. Then, the fluorescence intensity of the nucleic acid probe during the annealing reaction and the fluorescence intensity of the receptor dye released from the amplified nucleic acid due to the degradation of the nucleic acid probe by the DNA polymerase during the nucleic acid extension reaction are measured. I do. Real difference of this measurement value for each cycle This is a method of measuring time.
( b ) Morrisonらの方法 :  (b) Morrison et al .:
構造、 作用、 測定は第 1発明及び前記に記載した通りである。 The structure, operation, and measurement are as described in the first invention and above.
b ) 一本の核酸プローブを用いる場合 b) When using one nucleic acid probe
この場合も以下の 3つの場合に分けられる。  This case is also divided into the following three cases.
( a ) 分子ビーコン (molecular beacon) 方法 (Tyagi et al. , Nature Biotech. , 14:303-308, 1996; Schof ield et al. , Applied and Environ. Microbiol. , 63: 1143-1147, 1997) ; へヤーピンプローブ (サンライズ プローブ) 、商品名 : Amplifluor haipin primers :Ampl if luor haipm primers ;Nazarenko, I. A. , Bhatnagar, S. K. and Hohman, R. J. (1997) A c losed tube format for amplification and detection of DNA based on energy transfer. Nucleic Acids Res. , 25, 2516-2521. ) ;スコーヒ オンプローブ ( (Whitcorabe, D. , Theaker, J. , Guy, S. P. , Brown, T. and Litt le, S. (1999) Detection of PCR products using self-probing araplico ns and fluorescence. Nature Biotechnol ., 17, 804- 807. )で代表され o プローブを使用する方法。  (a) Molecular beacon method (Tyagi et al., Nature Biotech., 14: 303-308, 1996; Schofield et al., Applied and Environ. Microbiol., 63: 1143-1147, 1997); Hairpin probe (Sunrise probe), trade name: Amplifluor haipin primers: Ampl if luor haipm primers; Nazarenko, IA, Bhatnagar, SK and Hohman, RJ (1997) Ac loss tube format for amplification and detection of DNA based on energy transfer.Nucleic Acids Res., 25, 2516-2521.); Scorch on probe ((Whitcorabe, D., Theaker, J., Guy, SP, Brown, T. and Little, S. (1999) Detection of PCR products using self-probing araplicons and fluorescence. Nature Biotechnol., 17, 804-807.) o A method using a probe.
—種のオリ ゴヌクレオチドに、 ドナー蛍光色素とァクセプター蛍光色 素が、 当該オリ ゴヌク レオチドの異なった部位に標識されている。 当該 オリ ゴヌク レオチドの立体構造に基づいて双方の色素は F R E T現象 を引き起こしている。 増幅核酸'と遭遇すると、 立体構造が壌れて増幅核 酸にハイプリダイズする。 立体構造変化により、 色素間の F R E Tて現 象が解消する。 増幅核酸にハイプリダイズしている核酸プローブは前記 同様の運命になる。 そして前記同様に蛍光強度の差が測定される。  — A donor fluorescent dye and an acceptor fluorescent dye are labeled on different sites of the oligonucleotide. Both dyes cause the FRET phenomenon based on the stereostructure of the oligonucleotide. When encountering the amplified nucleic acid, the three-dimensional structure becomes loose and hybridizes to the amplified nucleic acid. Due to the change in steric structure, the phenomenon of FRET between the dyes is eliminated. Nucleic acid probes that hybridize to the amplified nucleic acid have the same fate as above. Then, the difference between the fluorescence intensities is measured as described above.
( b ) Livakらの方法 (US patent No.5, 538, 848)で代表される方法 構造、 作用、 測定は第 1発明及び前記に記載した通りである。 ( c ) KURATAらの方法 (KURATA et al. , Nucleic acids Research, 2001, vol.29, No.6 e34;EP 1 046 717 A9;特開 200ト 286300 (P200ト 286300A) ) で代表される方法 (T. Horn, et al. , Nucleic acid Research, 1997, 25, 4842-4849, 1997;US Patent Application Publication No. US2001/0009 760A1, Pub. Date: Jul.26, 2001; US Patent No.6, 140, 054)で代表される 方法である。 (b) Method represented by the method of Livak et al. (US Patent No. 5, 538, 848) The structure, operation, and measurement are as described in the first invention and described above. (c) A method represented by the method of KURATA et al. (KURATA et al., Nucleic acids Research, 2001, vol. 29, No. 6 e34; EP 1 046 717 A9; JP 200 286300 (P200 286300A)) (T. Horn, et al., Nucleic acid Research, 1997, 25, 4842-4849, 1997; US Patent Application Publication No. US2001 / 0009 760A1, Pub.Date: Jul. 26, 2001; US Patent No. 6, 140, 054).
構造、 作用、 測定は第 1発明及び前記に記載した通りである。  The structure, operation, and measurement are as described in the first invention and above.
B) 前記の特定核酸プローブを P CRのプライマーと して利用する場合B) When the above-mentioned specific nucleic acid probe is used as a PCR primer
KURATAらの方法 (KURATA et al. , Nucleic acids Research, 2001, vo 1.29, No.6 e34;EP 1 046 717 A9;特開 20(U- 286300 (P200ト 286300A) )に よる方法である。 This is a method according to the method of KURATA et al. (KURATA et al., Nucleic acids Research, 2001, vo 1.29, No. 6 e34; EP 1 046 717 A9);
一本鎖のオリ ゴヌクレオチドからなるプローブで、 プローブの 3 ' 末 端以外の部分、 好適には 5 ' 末端側部、 より好適には 5 ' 末端若しくは 5 ' 末端部を蛍光色素で標識し、 3 ' 末端のリボース又はデォキリボー スの 3, 0H基をフ リーにしておくプローブである。 即ち当該プローブを P C Rのプライマー (本発明においては、 プラマープローブと呼称する 場合もある。 ) として利用する方法である。 増幅される対応核酸は蛍光 色素で標識される。 増幅核酸が変性された状態とプローブとハイプリダ ィズした状態の P C R測定 (反応) 系の蛍光強度の変化をリアルタイム でモニタリングする方法である。 そして、 前記と同様に、 変化率の力一 プから増幅前の対応核酸の濃度を決める方法である。  A probe consisting of a single-stranded oligonucleotide, which is labeled with a fluorescent dye at a portion other than the 3 ′ end of the probe, preferably at the 5 ′ end side, more preferably at the 5 ′ end or 5 ′ end, This probe keeps the 3,0H group of ribose or deribose at the 3 'end free. That is, this is a method in which the probe is used as a primer for PCR (also referred to as a pramer probe in the present invention). The corresponding nucleic acid to be amplified is labeled with a fluorescent dye. In this method, the change in the fluorescence intensity of the PCR measurement (reaction) system in a state in which the amplified nucleic acid is denatured and in a state in which the amplified nucleic acid is hybridized is monitored in real time. Then, in the same manner as described above, the concentration of the corresponding nucleic acid before amplification is determined from the power of the change rate.
I I ) 本発明方法  I I) The method of the present invention
本発明の方法 A及び Bに記載した核酸プローブを用いる方法である。 構造、 作用、 測定は第一発明及び前記に記載した通りであるので、 こ こでは省略する。 第 2発明に用いることが、 好適に出来る各種の核酸増幅方法は前記の 通りである。 そこで、 本発明でいう標的核酸を増幅し、 増幅前の標的核 酸の濃度、 若しくはコピー数を測定する方法とは、 前記の核酸増幅方法 に本発明の原理を適用する方法である。 This is a method using the nucleic acid probe described in Methods A and B of the present invention. The structure, operation, and measurement are the same as those described in the first invention and the above, and thus are omitted here. Various nucleic acid amplification methods that can be suitably used in the second invention are as described above. Therefore, the method of amplifying a target nucleic acid and measuring the concentration or copy number of the target nucleic acid before amplification in the present invention is a method in which the principle of the present invention is applied to the above-described nucleic acid amplification method.
即ち、 前記の核酸増幅において、 測定系に少なく とも一種の標的核酸 と既知量の内部標準核酸を少なく とも少なく とも一種を含み、 且つ標的 核酸プローブ若しくは内部標準核酸プローブを含むか、 又は標的核酸プ ローブと内部標準核酸プローブとを合わせて少なく とも 2種を含む測 定系で、 核酸増幅反応を行わせ、 反応前後で、 標的核酸と標的核酸プロ ーブとのハイブリダィゼーシヨ ンにより生じる標的核酸プローブに標 識されている蛍光色素の蛍光強度の変化若しくは変化量を測定して、 当 該測定値及び内部標準核酸の添加量から、 増幅前の標的核酸の濃度若し くはコピー数を測定する方法である。  That is, in the nucleic acid amplification, the measurement system contains at least one kind of target nucleic acid and at least one kind of a known amount of an internal standard nucleic acid, and contains a target nucleic acid probe or an internal standard nucleic acid probe, or A nucleic acid amplification reaction is performed in a measurement system containing at least two types of lobes and an internal standard nucleic acid probe in combination, and is generated by hybridization between the target nucleic acid and the target nucleic acid probe before and after the reaction. The change or change in the fluorescence intensity of the fluorescent dye labeled on the target nucleic acid probe is measured, and the concentration or copy number of the target nucleic acid before amplification is determined from the measured value and the amount of the internal standard nucleic acid added. Is a method of measuring
以下に、 リアルタイム定量的 PCR方法に適用する場合を例示する。  The following is an example of application to a real-time quantitative PCR method.
本発明のリ アルタイム定量的 PCR方法は、 少なく とも一種の標的核酸 及び既知濃度の内部標準核酸を含む測定系に、 標的核酸プローブ又は/ 及び内部標準核酸プローブを添加して、 標的核酸又は Z及び内部標準核 酸を増幅させ、 増幅過程において、 各プローブに標識されている蛍光色 素の反応前後の測定系の蛍光強度の変化若しく は変化量をリ アルタイ ムでモニタリ ング (測定) することを特徴とするものである。 本発明の リアルタイム定量的 P C Rにおいて、 標的核酸プローブ若しくは内部標 準核酸プローブと して、 前記した核酸プローブは、 公知、 本発明のもの を問わず、 どれでも好適に利用できるが、 その塩基数は 5 ~ 5 0であり、 好ましくは 1 0〜 2 5、 特に好ましくは 1 5〜 2 0で、 P C Rサイクル 中に標的核酸及びその増幅産物とハイブリダィズするものであれば、 ど JP03/05118 The real-time quantitative PCR method of the present invention comprises the steps of: adding a target nucleic acid probe or / and an internal standard nucleic acid probe to a measurement system containing at least one target nucleic acid and a known concentration of an internal standard nucleic acid; In the amplification process, the change or the amount of change in the fluorescence intensity of the measurement system before and after the reaction of the fluorescent dye labeled on each probe is monitored (measured) in real time during the amplification process. It is characterized by the following. In the real-time quantitative PCR of the present invention, any of the above-described nucleic acid probes can be suitably used as the target nucleic acid probe or the internal standard nucleic acid probe, regardless of whether they are known or those of the present invention. 5 to 50, preferably 10 to 25, and particularly preferably 15 to 20 as long as they hybridize with the target nucleic acid and its amplification product during the PCR cycle. JP03 / 05118
64  64
のようなものでもよい。 即ち、 単なるプローブしてでも、 フォワード (f orward) 型プライマー、 リバース (reverse) 型プライマーのどちらに 設計してもよい。 It may be something like That is, the probe may be designed as either a forward-type primer or a reverse-type primer even with a simple probe.
そして、 単なる核酸プローブ、 又プライマーと しては、 前記の公知の 方法にもちられている各種の核酸プローブ、 及び本発明の方法 A及び B に記載した核酸プローブを好適に用いることが出来る。 より好適には本 発明の方法 A及び Bに記載した核酸プローブである。 特にこのましいプ ローブは、 本発明方法 Bの前記 V ) 〜 i x ) のものである。  As the simple nucleic acid probe and the primer, various nucleic acid probes used in the above-mentioned known methods and the nucleic acid probes described in the methods A and B of the present invention can be suitably used. More preferably, they are the nucleic acid probes described in the methods A and B of the present invention. Particularly preferred probes are those of the above-mentioned V) to ix) of the method B of the present invention.
なお、 プライマーと して利用するときは、 必ずしも、 フォワードブラ マーと リバースプライマーを共に蛍光色素で標識する必要はない。 本発 明が達成できるので、 どちらか一方でよい。  When used as a primer, it is not always necessary to label both the forward primer and the reverse primer with a fluorescent dye. Either one is acceptable as the present invention can be achieved.
前記本発明方法 Bの核酸プローブのうち、 3 ' 末端部のデォキシリボ ース又はリボースの 3 ' O H基が修飾されていない核酸プローブはプラ イマ一と して利用できるようにしてあるものである。 この場合、 公知の 方法に用いる各種の核酸プローブにおいても、 同様な形態の核酸プロ一 ブになる。  Among the nucleic acid probes of the method B of the present invention, a nucleic acid probe in which the 3′-OH group of deoxyribose or ribose at the 3 ′ end is not modified can be used as a primer. In this case, various types of nucleic acid probes used in a known method have a similar form.
このプライマ一として利用するとき、 標的核酸、 内部標準核酸の塩基 配列から、 どう しても標的核酸プローブ、 内部標準核酸プローブの 3 ' もしくは 5 ' 末端を G又は Cに設計できない場合は、 プローブのオリ ゴ ヌク レオチドの 5 ' 末端に、 5 ' —グァニル酸もしくはグアノシン又は 5 ' 一シチジル酸もしくはシチジンを付加しても、 又、 3 ' 末端に 5 ' ーグァニル酸又は 5 ' —シチジル酸を付加しても、 本発明の目的は好適 に達成できる。 よって、 本発明において、 3 ' 、 又は 5 ' 末端の塩基が G又は Cになるように設計した標的核酸プローブ、 内部標準核酸プロ一 ブとは、 標的核酸、 内部標準核酸の塩基配列から設計したプローブの他 05118 When used as a primer, if the 3 'or 5' end of the target nucleic acid probe or internal standard nucleic acid probe cannot be designed to G or C from the base sequence of the target nucleic acid or internal standard nucleic acid, Addition of 5'-guanylic acid or guanosine or 5'-monocytidylic acid or cytidine to the 5'-end of the oligonucleotide, or addition of 5'-guanylic acid or 5'-cytidylic acid to the 3'-end Even so, the object of the present invention can be suitably achieved. Therefore, in the present invention, the target nucleic acid probe and the internal standard nucleic acid probe designed so that the base at the 3 ′ or 5 ′ end is G or C are designed based on the base sequences of the target nucleic acid and the internal standard nucleic acid. Other probe 05118
65  65
に、 当該のプローブの 5 ' 末端に 5 ' —グァニル酸もしくはグアノシン 又は 5 ' —シチジル酸もしくはシチジンを付加してなるプローブ、 なら びに 5 ' 末端に 5 ' —グァニル酸又は 5 ' —シチジル酸を付加してなる プローブを含むものと定義する。 5'-Guanylic acid or guanosine or 5'-cytidylic acid or cytidine at the 5 'end of the probe, and 5'-guanylic acid or 5'-cytidylic acid at the 5' end Defined to include the added probe.
標的核酸プローブ、 内部標準核酸プローブを P C Rのプライマーと し て利用する場合、 標的核酸を測定する方法の具体例はリアルタイム定量 的 P C Rで得られるデータ解析方法 (後述される。 ) に記載さているの で、 ここでは省略する。  When a target nucleic acid probe or an internal standard nucleic acid probe is used as a primer for PCR, a specific example of a method for measuring a target nucleic acid is described in Data analysis method obtained by real-time quantitative PCR (described later). Here, the description is omitted.
前記核酸プローブのうち、 3 ' 末端部のデォキシリボース又はリボー スの 3 ' O H基が修飾されている核酸プローブはプライマーとして利用 できないが、 PCRの反応系に当該プローブをリバース型プライマ一及び フォワード型プライマーと共に添加し、 PCRを行う ことができる。 この 場合、 核酸伸長反応時、 標的核酸もしくは増幅標的核酸又は内部標準核 酸若しく は増幅内部標準核酸にハイブリダイズしていた標的核酸プロ ーブ又は内部標準核酸プローブがポリメラーゼにより分解され、 核酸プ ローブ複合体から分解除去される。 即ち、 単なるプローブと して利用さ れる。 但し、 当該プローブは、 標的核酸、 内部標準核酸にハイブリダィ ズできる塩基配列領域は両プラマーがハイブリ ダイズできる領域の間 である。  Among the nucleic acid probes, a nucleic acid probe having a modified 3 ′ OH group of 3 ′ terminal deoxyribose or ribose cannot be used as a primer, but the probe can be used in a PCR reaction system by using a reverse primer and a forward primer. And PCR can be performed. In this case, at the time of the nucleic acid extension reaction, the target nucleic acid probe or the internal standard nucleic acid probe hybridized to the target nucleic acid or the amplified target nucleic acid or the internal standard nucleic acid or the amplified internal standard nucleic acid is degraded by the polymerase, and Decomposed and removed from the lobe complex. That is, it is used as a mere probe. However, in the probe, the nucleotide sequence region that can hybridize to the target nucleic acid and the internal standard nucleic acid is between the regions where both primers can hybridize.
このとき、 標的核酸プローブを標識していた色素の蛍光強度の変化若 しくは変化量を測定する (一例と して、反応系の蛍光強度を測定する。 )。 又、 標的核酸もしくは増幅した標的核酸又は内部標準核酸若しくは増幅 した内部標準核酸が各当該プローブとハイブリ ダイズしているときの 標的核酸プローブを標識している色素の蛍光強度 (値) (一例と して、 前者はァエーリング反応、 ポリ メラ一ゼにより当該プローブが標的核酸 プローブ複合体から除かれるまでの核酸伸長反応時の反応系、 後者は核 酸変性反応が完了している反応系の蛍光強度値を挙げることができ る。 ) を測定する。 At this time, the change or the amount of change in the fluorescence intensity of the dye that has labeled the target nucleic acid probe is measured (for example, the fluorescence intensity of the reaction system is measured). In addition, when the target nucleic acid or amplified target nucleic acid or the internal standard nucleic acid or the amplified internal standard nucleic acid is hybridized with each probe, the fluorescence intensity (value) of the dye labeling the target nucleic acid probe (as an example) In the former, the probe is used to target the target nucleic acid by an aering reaction and polymerase. The reaction system during the nucleic acid extension reaction until it is removed from the probe complex, and the latter can be the fluorescence intensity value of the reaction system in which the nucleic acid denaturation reaction has been completed. ) Is measured.
内部標準核酸プローブについて、 蛍光強度の変化若しくは変化量を測 定する場合、 各種濃度の内部標準核酸について、 前記ハイブリダィゼー シヨン反応を行い、 前記蛍光強度の変化若しくは変化量を測定する。 こ の測定は、 サイクル毎にリアルタイムで行う。  When measuring the change or change in the fluorescence intensity of the internal standard nucleic acid probe, the hybridization reaction is performed on the internal standard nucleic acid at various concentrations, and the change or the change in the fluorescence intensity is measured. This measurement is performed in real time for each cycle.
各濃度の内部標準核酸について、 内部標準核酸プローブに標識されて いる蛍光色素について、 サイクル毎に蛍光強度 (値) の変化量 (率) を 算出する。  For each concentration of the internal standard nucleic acid, calculate the change (rate) in the fluorescence intensity (value) for each cycle for the fluorescent dye labeled on the internal standard nucleic acid probe.
次にこれらの変化量 (率) から内部標準核酸の増幅前の濃度の関係式 を求める (一例と して、 内部標準核酸の増幅前の濃度を関数とする変化 量 (率) の検量線を作製する。 又、 標的核酸プローブをプライマーと し て用いる場合のデータ解析方法と同様にする。 ) 。 なお、 通常は内部標 準核酸濃度と前記変化量が直線的に比例するのは特定のサイクル数に おいてであるので、 リアルタイムで測定を行うことにより当該サイクル を見つけることが出来る。  Next, the relational expression of the concentration of the internal standard nucleic acid before amplification is determined from these changes (rates). (As an example, the calibration curve of the change (rate) as a function of the concentration of the internal standard nucleic acids before amplification is obtained. In addition, the data analysis method is the same as when the target nucleic acid probe is used as a primer. Normally, the concentration of the internal standard nucleic acid and the amount of change are linearly proportional to a specific number of cycles. Therefore, the cycle can be found by performing measurement in real time.
次いで、 標的核酸について、 前記サイクル数における前記同様の変化 量 (率) を求める。 この変化量 (率) を前記検量線若しくは関係式に当 てはめる。 かく して標的核酸を測定することができる。 具体的な一例は、 実施例に示されている。  Next, for the target nucleic acid, the same amount of change (rate) in the cycle number as described above is determined. This change (rate) is applied to the above calibration curve or relational expression. Thus, the target nucleic acid can be measured. A specific example is shown in the embodiment.
核酸プローブがプライマーとして利用される場合、 標的核酸プローブ が標的核酸と、 又は内部標準核酸プローブが内部標準核酸とハイプリダ ィズしたときのそのプローブ '核酸複合体の Tm値が、 プライマ一の核酸 複合体の Tm値の ± 1 5。C、 好ましくは ± 5 °Cの範囲になるように、 各標 05118 When a nucleic acid probe is used as a primer, when the target nucleic acid probe hybridizes with the target nucleic acid, or when the internal standard nucleic acid probe hybridizes with the internal standard nucleic acid, the Tm value of the nucleic acid complex is the same as the nucleic acid complex of the primer. Tm of the body ± 15. C, preferably ± 5 ° C 05118
67  67
的核酸プローブの塩基配列が設計されることが望ましい。 It is desirable that the base sequence of the target nucleic acid probe be designed.
そして、 本発明の PCRの反応が進むに従い、 増幅された各核酸は本発 明の実施に有用な蛍光色素で 2次標識される。 それで、 核酸変性反応が 完了している反応系の蛍光強度値は大きいか又は小さいが、 ァニーリ ン グ反応が完了しているかもしくは核酸伸長反応時の反応系においては、 反応系の蛍光強度は前者の蛍光強度より減少するか増大する。  Then, as the PCR reaction of the present invention proceeds, each amplified nucleic acid is secondarily labeled with a fluorescent dye useful for carrying out the present invention. Therefore, the fluorescence intensity of the reaction system in which the nucleic acid denaturing reaction is completed is large or small, but in the reaction system in which the annealing reaction is completed or the nucleic acid extension reaction is performed, the fluorescence intensity of the reaction system is the former. Decrease or increase from the fluorescence intensity of
PCRの反応は通常の PCR方法と同様の反応条件で行うことができる。 特 に本発明の核酸ブローブ A及び Bにおいては、 M gイオン濃度が低濃度 ( 1 - 2 mM) である反応系で核酸の増幅を行うことができる。 勿論、 従来公知の定量的 PCRにおいて使用されている高濃度 ( 2 ~ 4 m M ) の M gイオン存在下の反応系でも実施できる。  The PCR reaction can be performed under the same reaction conditions as in ordinary PCR methods. In particular, in the nucleic acid probes A and B of the present invention, nucleic acid amplification can be carried out in a reaction system having a low Mg ion concentration (1-2 mM). Of course, the reaction can also be carried out in a reaction system in the presence of a high concentration (2 to 4 mM) of Mg ions used in conventionally known quantitative PCR.
本発明の第 3の発明は、 前記の核酸測定方法 (第 1発明) 、 核酸増幅 方法 (第 2発明) 、 多型測定 · 分析 ·解析方法 (後記した。 ) 、 F I S H等の各種の測定 . 分析 .解析方法 (後記した。 ) 等を実施した場合に、 又、 各種のデバイスを用いて各種の方法を実施した場合 (後記した。 ) に、 得られるデータを解析する方法の発明である。  The third invention of the present invention relates to various methods such as the above-described nucleic acid measurement method (first invention), nucleic acid amplification method (second invention), polymorphism measurement / analysis / analysis method (described later), and FISH. The invention is an invention of a method for analyzing data obtained when an analysis method (described later) or the like is performed, or when various methods are performed using various devices (described later).
以下、 簡便化のために、 核酸増幅方法の中でも特にリアルタイム定量 的 P C R方法について説明するが、 他の方法についてもこれに準じてデ ータを解析すればよい。  Hereinafter, for the sake of simplicity, among the nucleic acid amplification methods, the real-time quantitative PCR method will be particularly described, but data may be analyzed according to the other methods.
リ アルタイム定量的 PCR方法は、 現在、 PCRを行わせる反応装置、 蛍光 色素の発光を検出する装置、 ユーザーイ ンターフェース、 即ち、 データ 解析方法の各手順をプログラム化して、 それを記録したコンピュータ読 み取り可能な記録媒体 (別称: Sequence Detect ion Software System) 、 及びそれらを制御し、 データ解析するコンピュータから構成される装置 で、 リ アルタイムで測定されている。 それで、 本発明の測定もこのよう JP03/05118 The real-time quantitative PCR method currently consists of a reaction device that performs PCR, a device that detects the emission of fluorescent dyes, a user interface, that is, a computer that programs each procedure of the data analysis method and records it. It is a device that consists of a readable recording medium (also called Sequence Detection Software System) and a computer that controls them and analyzes the data, and is measured in real time. So, the measurement of the present invention JP03 / 05118
68  68
な装置で行われる。 It is performed with a simple device.
以下に、 先ず、 リ アルタイム定量的 PCRの解析装置から説明する。 本 発明において用いる装置は、 PCRをリアルタイムでモニタ リングできる 装置であればどのような装置でもよいが、 例えば、 ABI PRI SM™ 7700 塩基配列検出システム (Sequence Detection System SDS 7700) (パ 一キン . ェノレマー · アプライ ド · バイオシステム社 (Perkin Elmer App l ied Biosytems社、 USA) ) 、 ライ トサイクラ一 τ Μ システム (ロシュ ■ ダイァグノスティ ックス株式会社、 ドイツ) 等を特に好適なものと して 挙げることができる。 First, an analysis apparatus for real-time quantitative PCR will be described below. The device used in the present invention may be any device as long as it can monitor PCR in real time. For example, an ABI PRI SM ™ 7700 base sequence detection system (Sequence Detection System SDS 7700) (Pakkin. - applied Bio systems, Inc. (Perkin Elmer App l ied Biosytems, Inc., USA)), Rye Tosaikura one τ Μ system (Roche ■ Daiagunosuti box Co., Ltd., Germany), and the like can be mentioned as a particularly suitable one.
尚、 前記の PCR反応装置は、 標的核酸の熱変性反応、 アニーリ ング反 応、 核酸の伸長反応を繰り返し行う装置である。 又、 検出システムは、 蛍光励起用アルゴンレーザー、 スぺク トログラフならぴに CCD力メラ力 らなっている。 更に、 データ解析方法の各手順をプログラム化して、 そ れを記録したコンピュータ読み取り可能な記録媒体は、 コンピュータに インス トールされて使用され、 コンピュータを介して上記のシステムを 制御し、 検出システムから出力されたデータを解析処理するプログラム を記録したものである。  The above-described PCR reaction apparatus is an apparatus that repeatedly performs a thermal denaturation reaction, an annealing reaction, and a nucleic acid extension reaction of a target nucleic acid. The detection system consists of an argon laser for fluorescence excitation and a CCD camera for a spectrograph. Further, a computer-readable recording medium in which each procedure of the data analysis method is programmed and recorded is used by being installed in a computer, controlling the above system via the computer, and outputting from the detection system. It records a program that analyzes and processes the data obtained.
コ ンピュータ読み取り可能な記録媒体に記録されているデータ解析 用プログラムは、 サイクルごとの蛍光強度を測定する過程、 測定された 蛍光強度を、 サイクルの関数と して、 すなわち PCRの ampl ificat ion p lo tと してコンピュータのデスプレー上に表示する過程、 蛍光強度が検出 され始める PCRサイクル数 (threshold cycle number : Ct値) を算出する 過程、 Ct値から試料核酸のコピー数を求める検量線を作成する過程、 前 記各過程のデータ、 プロ ッ ト値を印字する過程、 からなつている。 PCR が指数的に進行している場合、 PCR開始時の標的核酸の濃度若しくはコ ピー数 (Log値) と、 蛍光強度の変化量 (率) 若しくは Ct値との間には 直線関係が成り立つ。 従って標的核酸及び内部標準核酸の既知量の濃度 若しくはコピー数を用いて検量線を前以て作成しておき、 未知の濃度若 しくはコピー数の標的核酸を含有するサンプルについて、 蛍光強度の変 化量 (率) 若しくは Ct値を測定することにより、 標的核酸の核酸増幅前 の濃度若しくはコピー数を計算できる。 A data analysis program recorded on a computer-readable recording medium uses a process of measuring the fluorescence intensity for each cycle, and the measured fluorescence intensity is used as a function of the cycle, that is, a PCR amplification program. The process of displaying on the computer display as t, the process of calculating the PCR cycle number (threshold cycle number: Ct value) at which the fluorescence intensity starts to be detected, and the creation of a calibration curve that calculates the copy number of the sample nucleic acid from the Ct value It consists of a process, the process of printing the data of each process described above, and plot values. If the PCR is progressing exponentially, the concentration or concentration of the target nucleic acid at the start of the PCR A linear relationship holds between the peak number (Log value) and the change (rate) of the fluorescence intensity or the Ct value. Therefore, a calibration curve is prepared in advance using known concentrations or copy numbers of the target nucleic acid and the internal standard nucleic acid, and the change in the fluorescence intensity of a sample containing the target nucleic acid of unknown concentration or copy number is determined. The concentration or copy number of the target nucleic acid before nucleic acid amplification can be calculated by measuring the amount (rate) or Ct value of the target nucleic acid.
前記のようなリアルタイム定量的 PCR方法で得られたデータを解析す る方法の特徴について以下に記す。  The features of the method for analyzing the data obtained by the real-time quantitative PCR method as described above are described below.
第一の特徴は、 リアルタイム定量的 PCR方法で得られたデータを解析 する方法において、 各サイクルにおける増幅した分析対象の核酸 (標的 核酸の他に、 ここでは、 内部標準核酸も含めるものとする。 ) が当該核 酸に対応する (特異的にハイブリダィズする) 核酸プローブにハイプリ ダイズしたときの当該プローブを標識していた蛍光色素の蛍光強度値 を、 各サイクルにおけるプローブ '核酸複合体から、 ポリメラーゼによ りプローブが分解されて、 蛍光色素が遊離したとき、 又は核酸変性反応 により該複合体が解離したときの前記色素の蛍光強度値によ り補正す る演算処理過程、 すなわち、 補正演算処理過程である。 前記の 「分析対 象の核酸及び当該核酸に対応する (特異的にハイブリダィズする) 核酸 プローブ」 とは、 本発明においては内部標準核酸と内部標準核酸プロ一 ブ、 及び標的核酸と標的核酸プローブである (以下、 同様である) 。  The first characteristic is that in the method for analyzing data obtained by the real-time quantitative PCR method, the nucleic acid to be analyzed in each cycle (in addition to the target nucleic acid, the internal standard nucleic acid is included here). The fluorescence intensity of the fluorescent dye that labeled the probe when hybridized to a nucleic acid probe corresponding to (specifically hybridizes to) the nucleic acid is converted from the probe nucleic acid complex to the polymerase in each cycle. When the probe is further decomposed and the fluorescent dye is released, or when the complex is dissociated by the nucleic acid denaturation reaction, an arithmetic processing step of correcting the fluorescence intensity value of the dye, that is, a correction arithmetic processing step It is. In the present invention, the above-mentioned “nucleic acid to be analyzed and a nucleic acid probe corresponding to (specifically hybridizing to) the nucleic acid” include an internal standard nucleic acid and an internal standard nucleic acid probe, and a target nucleic acid and a target nucleic acid probe. (The same applies hereinafter).
「増幅した分析対象の核酸が当該核酸に対応する (特異的にハイプリ ダイズする) 核酸プローブにハイプリダイズしたときの当該プロ一ブを 標識していた蛍光色素の蛍光強度値」 とは、 具体的に例示すると、 当該 プローブが単に核酸プローブと して利用されている場合は、 PCRの各サ イタルにおける 4 0〜 8 5 °C、 好ましくは 5 0〜 8 0 °Cのアニーリ ング 反応系における核酸プローブを標識していた蛍光色素の蛍光強度値 (よ り具体的には当該色素に特異的な測定波長で測定した、 当該反応系の蛍 光強度値) を挙げることができる (以下、 同様である) 。 そして、 反応 が完了した反応系を意味する。 当該プローブがプライマ一と して利用さ れている場合は、 4 0〜 8 5 °C、 好ましくは 5 0〜 8 0 °Cのァニーリ ン グ反応系、 核酸伸長反応系のものである。 実際の温度は増幅した核酸の 長さに依存する。 The “fluorescence intensity value of the fluorescent dye that labeled the probe when the amplified nucleic acid to be analyzed corresponds to the nucleic acid (specifically hybridizes) to the nucleic acid probe” For example, when the probe is used simply as a nucleic acid probe, annealing at 40 to 85 ° C, preferably 50 to 80 ° C at each PCR site is performed. Examples include the fluorescence intensity value of the fluorescent dye that has labeled the nucleic acid probe in the reaction system (more specifically, the fluorescence intensity value of the reaction system measured at a measurement wavelength specific to the dye) ( The same applies hereinafter.) And, it means the reaction system where the reaction is completed. When the probe is used as a primer, it is an annealing reaction system or a nucleic acid extension reaction system at 40 to 85 ° C, preferably 50 to 80 ° C. The actual temperature depends on the length of the amplified nucleic acid.
又、 「ローブ '核酸複合体が解離から、 ポリメラーゼによりプローブ が分解されて、 蛍光色素が遊離したとき、 又は核酸変性反応により該複 合体が解離したときの前記色素の蛍光強度値」 とは、 PCRの各サイクル における核酸の熱変性の反応系、 具体的には、 反応温度 9 0〜 1 0 0 °C、 好ましくは 9 4〜 9 6 °Cのときのもので、 反応が完了した反応系におけ る標的核酸プローブの色素に関わる測定波長で測定した場合の反応系 の蛍光強度値を例示できる (以下、 同様である) 。 この場合、 当該プロ ーブが、 単に核酸プローブとして利用されている場合は、 プロ一ブ ' 核 酸複合体から、 ポリ メラーゼによりプローブが分解されて、 蛍光色素が 遊離している反応系ものも含めるものとする。  Further, "the fluorescence intensity value of the dye when the probe is decomposed by the polymerase and the fluorescent dye is released from the dissociation of the lobe nucleic acid complex, or when the complex is dissociated by the nucleic acid denaturation reaction" A reaction system for heat denaturation of nucleic acid in each PCR cycle, specifically, a reaction system at a reaction temperature of 90 to 100 ° C, preferably 94 to 96 ° C, in which the reaction is completed The fluorescence intensity value of the reaction system when measured at the measurement wavelength relating to the dye of the target nucleic acid probe in Example 1 (hereinafter the same applies). In this case, if the probe is simply used as a nucleic acid probe, a reaction system in which the probe is decomposed by the polymerase from the probe's nucleic acid complex and the fluorescent dye is released may be used. Shall be included.
補正演算処理過程の補正演算処理と しては本発明の目的に合致する ものであればどのようなものでもよいが、 具体的には、 次の 〔数式 1〕 あるレ、は 〔数式 2〕 による処理過程を含むものを例示することができる。  The correction calculation process in the correction calculation process may be any as long as it meets the object of the present invention. Specifically, the following [Formula 1] is used. Can be exemplified.
f „ = f h y b . Π Ζ f n 〔数式 1〕 f „= f hyb . Π Ζ f n (Equation 1)
f „= f , = f 〔数式 2〕  f „= f, = f (Equation 2)
〔式中、  (In the formula,
f „ : 〔数式 1〕 あるいは 〔数式 2〕 により算出された n次サイクルに おける補正演算処理値、 JP03/05118 f :: Correction calculation processing value in the nth cycle calculated by [Equation 1] or [Equation 2], JP03 / 05118
71  71
f h y b . n : n次サイクルにおける、 増幅した分析対象の核酸が当該核酸 に対応する核酸プローブとハイブリ ダィズしているときの反応系の蛍 光強度値、 . f hyb n: the n th cycle, fluorescence intensity of the reaction system when amplified analyte nucleic acid is a nucleic acid probe hybridization Dizu corresponding to the nucleic acid,
f n : n次サイクルにおける、 前記のプローブ ·核酸複合体からポ リ メラーゼによりプローブが、 分解されて蛍光色素が遊離しているとき、 又は核酸変性反応によプローブ ·核酸複合体が解離したときの前記色素 の蛍光強度値〕 f n : In the nth cycle, when the probe is decomposed by the polymerase from the probe-nucleic acid complex to release the fluorescent dye, or when the probe-nucleic acid complex is dissociated by the nucleic acid denaturation reaction Fluorescence intensity value of the above dye)
尚、 本過程においては、 上記の処理で得られた補正演算処理値をコン ピュータのデスプレー上に表示及び/又は当該値を各サイクル数の関 数と してグラフの形で同様に表示及び Z又は印字するサブステップを 含むものである。  In this process, the correction calculation processing value obtained by the above processing is displayed on a computer display and / or the value is similarly displayed in the form of a graph as a function of each cycle, and Z is similarly displayed. Or printing sub-steps.
第 2の特徴は、 各サイクルにおける 〔数式 1〕 あるいは 〔数式 2〕 に よる捕正演算処理値を次の 〔数式 3〕 あるいは 〔数式 4〕 に代入し、 各 サンプル間の蛍光変化量 (蛍光変化割合あるいは蛍光変化率) を算出し、 それらを比較するデータ解析方法である。  The second feature is that, in each cycle, the value of the correction calculation processing by [Equation 1] or [Equation 2] is substituted into the following [Equation 3] or [Equation 4], and the change in fluorescence between samples (fluorescence change) This is a data analysis method that calculates the rate of change or the rate of change in fluorescence and compares them.
F n = f n Z f , 〔数式 3〕 F n = f n Z f, (Equation 3)
F„= f , / f n 〔数式 4〕 F „= f, / f n (Equation 4)
〔式中、  (In the formula,
F„ : n次サイクルにおける、 〔数式 3〕 あるいは 〔数式 4〕 によ り算 出された蛍光変化量 (蛍光変化割合あるいは蛍光変化率) 、  F „: Fluorescence change amount (fluorescence change rate or fluorescence change rate) calculated by [Equation 3] or [Equation 4] in the nth cycle,
f n : n次サイクルにおける 〔数式 1〕 あるいは 〔数式 2〕 による捕正 演算処理値 f n : The value of the correction operation by [Equation 1] or [Equation 2] in the nth cycle
f . : 〔数式 1〕 あるいは 〔数式 2〕 による補正演算処理値で、 f nの変 化が観察される以前の任意のサイクル数のものであるが、 通常は、 例え ば、 1 0〜 4 0サイクノレのもの、 好適には 1 5〜 3 0サイクルのもの、 より好適には 2 0〜 3 0サイクルのものが採用される。 〕 f:. In the correction processing value by [Equation 1] or [Equation 2], but those numbers any previous cycle changes in f n is observed, usually, For example, 1 0-4 0 cycles, preferably 15 to 30 cycles, More preferably, 20 to 30 cycles are employed. ]
尚、 本過程においては、 上記処理で得られた算出値をコンピュータの デスプレー上に表示及び Z又は印字する、 又は比較値もしくは当該値を 各サイクル数の関数と してグラフの形で同様に表示及び Z又は印字す るサブステップを含むものであるが、 〔数式 1〕 あるいは 〔数式 2〕 に よる補正演算処理値については、 上記サブステップを適用しても、 しな く ともよい。  In this process, the calculated value obtained in the above process is displayed on a computer display and printed or printed, or the comparison value or the value is similarly displayed as a graph function as a function of the number of cycles. And Z or a printing sub-step, but the above-described sub-step may or may not be applied to the correction operation processing value obtained by [Equation 1] or [Equation 2].
第 3の特徴は、  The third feature is
( 3. 1 ) 〔数式 3〕 あるいは 〔数式 4〕 により算出された蛍光変化量 (蛍光変化割合あるいは蛍光変化率) のデータを用いて、 〔数式 5〕 、 〔数式 6〕 あるいは 〔数式 7〕 による演算処理する過程、  (3.1) Using the data of the fluorescence change amount (fluorescence change rate or fluorescence change rate) calculated by [Equation 3] or [Equation 4], [Equation 5], [Equation 6] or [Equation 7] The process of computing by
1 o g b ( F J 、 I n ( F J 〔数式 5〕 1 og b (FJ, In (FJ (Equation 5)
1 o g b { ( 1 - F J X A } 、 I n { ( 1一 F„) X A} 〔数式 6〕 l o g , { ( F n - 1 ) X A } 、 I n { (F„ - 1 ) X A} 〔数式 7〕 〔式中、 1 og b {(1-FJXA}, In {(1-F „) XA} [Equation 6] log, {(F n -1) XA}, In {(F„-1) XA} [Equation 6 7]
A、 b :任意の数値、 好ましくは整数値、 より好ましくは自然数である。 そして、 A = 1 0 0、 b = 1 0のときは、 { ( F„ - 1 ) X A } は百分 率 (%) で表わされる。  A, b: arbitrary numerical values, preferably integer values, more preferably natural numbers. When A = 100 and b = 10, {(F „-1) XA} is expressed as a percentage (%).
F n : 〔数式 3〕 あるいは 〔数式 4〕 により算出された nサイクルにお ける蛍光変化量 (蛍光変化割合あるいは蛍光変化率) 〕 、 F n : Fluorescence change amount (fluorescence change rate or fluorescence change rate) in n cycles calculated by [Equation 3] or [Equation 4]],
( 3. 2 ) 前記 (3. 1 ) の演算処理値が一定値に達したサイクル数を 求める演算処理過程、  (3.2) An arithmetic processing step of calculating the number of cycles in which the arithmetic processing value of (3.1) above has reached a certain value,
( 3 . 3 ) 既知濃度の標的核酸及び Z又は内部標準核酸を含む試料にお けるサイクル数と反応開始時の標的核酸及び内部標準核酸の核酸増幅 前の濃度若しくはコピー数の関係式を計算する演算処理過程、 ( 3. 4) 標的核酸を含む試料における核酸増幅前の標的核酸の濃度若 しくはコピー数を求める演算処理過程、 (3.3) Calculate the relationship between the number of cycles in a sample containing known concentrations of target nucleic acid and Z or internal standard nucleic acid and the concentration or copy number of the target nucleic acid and internal standard nucleic acid at the start of the reaction before nucleic acid amplification. Arithmetic processing process, (3.4) a process for calculating the concentration or copy number of the target nucleic acid before amplification of the nucleic acid in the sample containing the target nucleic acid,
を有するデータ解析方法である。 そして、 ( 3. 1 ) → ( 3. 2) → ( 3. 3 ) → ( 3. 4 ) の順からなる過程が好適である。 This is a data analysis method having the following. A process consisting of (3.1) → (3.2) → (3.3) → (3.4) is preferred.
前記 ( 3. 1 ) 〜 ( 3. 3) の各過程は、 それぞれの処理で得られた 演算処理値をコンピュータのデスプレー上に表示及び/又は当該値を 各サイクル数の関数と してダラフの形で前記同様に表示及びノ又は印 字するサブステップを含むものであってもよい。 前記 ( 3. 4) の過程 で得られた演算処理値は、 少なく とも印字される必要があるので、 当該 過程は印字するサブステップを含む。 前記 ( 3. 4 ) で得られた演算処 理値を更にコンピュータのデスプレイ上に表示してもよい。  In each of the above-mentioned steps (3.1) to (3.3), the arithmetic processing value obtained in each processing is displayed on a computer display and / or the value is used as a function of the number of cycles, and is used as a function of each cycle. It may include the sub-steps of displaying and printing or printing in the same manner as described above. Since the processed value obtained in the process of (3.4) needs to be printed at least, the process includes a printing sub-step. The processing value obtained in the above (3.4) may be further displayed on a computer display.
尚、 〔数式 1〕 あるいは 〔数式 2〕 による補正演算処理値、 〔数式 3〕 あるいは 〔数式 4] による算出処理値を、 各サイクル数の関数と してに グラフの形でコンピュータのデスプレー上に表示及び/又は印字して も、 しなくてもよいので、 それらの表示及び 又は印字のサブステップ は必要に応じて追加すればよい。  The correction processing value obtained by [Equation 1] or [Equation 2] and the processing value calculated by [Equation 3] or [Equation 4] are displayed on a computer display in the form of a graph as a function of the number of cycles. The display and / or printing may or may not be performed, and the display and / or printing sub-steps may be added as necessary.
なお、 前記方法において、 内部標準核酸を測定する反応系と標的核酸 を測定する反応系を一緒にしてもよく、 又別々にしてもよい。  In the above method, the reaction system for measuring the internal standard nucleic acid and the reaction system for measuring the target nucleic acid may be used together or separately.
又、 前記データ解析方法は、 リアルタイム定量的 PCR方法が蛍光色素 の発光の減少量を測定するものである場合に特に有効である。  The data analysis method is particularly effective when the real-time quantitative PCR method is used to measure the amount of decrease in the emission of a fluorescent dye.
本発明のデータ解析方法は上記の特徴を有するものであるが、 実際の 解析にあっては、 次の手順で行うのが好適である。  Although the data analysis method of the present invention has the above characteristics, it is preferable to perform the following analysis in actual analysis.
1 ) 核酸と核酸プローブのハイプリダイゼーション反応及び/又は核 酸増幅反応を阻害する物質、 又は多型核酸が存在しないと見做される反 応系で、 先ず本発明の第一〜第 3の特徴を有する処理の全て、 又は何れ かまでを実施する。 1) A reaction system in which the substance that inhibits the hybridization reaction and / or the nucleic acid amplification reaction between the nucleic acid and the nucleic acid probe or the polymorphic nucleic acid is considered to be absent. All or any of the processes with features Implement up to.
2 ) 次に、 前記阻害物質、 若しくは多型核酸が存在すると想定される 未知試料 (標的核酸が含まれると想定されるもの。 ) について、 核酸プ ローブ、 各種濃度の内部標準核酸、 内部標準核酸プローブを用いて核酸 増幅反応を行う。 この場合、 内部標準核酸については検量線は得られる 力 標的核酸については得られない。  2) Next, for unknown samples (things containing target nucleic acids) in which the inhibitor or polymorphic nucleic acid is supposed to be present, nucleic acid probes, internal standard nucleic acids of various concentrations, internal standard nucleic acids Perform a nucleic acid amplification reaction using the probe. In this case, a calibration curve can be obtained for the internal standard nucleic acid, but not for the target nucleic acid.
3 ) 前記 1 ) 及び 2 ) で得られた、 標的核酸、 内部標準核酸について の処理されたデータを比較検討する。  3) Compare and examine the processed data for the target nucleic acid and the internal standard nucleic acid obtained in the above 1) and 2).
( 1 ) 内部標準核酸についての処理されたデータ (前記のデータ解析 方法により処理されたデータ。 以下同様) が同一若しくは略同一である 場合は、 前記阻害物質若しくは多型が試料中に含まれていないと見做さ れる。 それで、 前記 1 ) で得られた標的核酸、 内部標準核酸についての、 各種のグラフ、 関係式、 検量線が、 当該未知試料についても利用出来る。  (1) If the processed data of the internal standard nucleic acid (the data processed by the data analysis method described above; the same applies hereinafter) is the same or substantially the same, the inhibitor or polymorphism is contained in the sample. Not considered. Therefore, various graphs, relational expressions, and calibration curves for the target nucleic acid and the internal standard nucleic acid obtained in 1) above can be used for the unknown sample.
( 2 ) 内部標準核酸についての処理されたデータが同一若しくは略同 一でない場合は、 前記阻害物質若しくは多型が試料中に含まれていると 見做される。 1 ) と 2 ) で得られた内部の標準核酸についての各種のグ ラフ、 関係式、 検量線の変化率すなわち変化係数を算出する。  (2) If the processed data for the internal standard nucleic acid is not the same or substantially the same, it is considered that the inhibitor or polymorphism is contained in the sample. Calculate the rate of change of the various graphs, relational expressions, and calibration curves for the internal standard nucleic acid obtained in 1) and 2), that is, the change coefficient.
( 3 ) 当該変化係数を 1 ) で得られた標的核酸に.ついての各種のダラ フ、 関係式、 検量線に当てはめる。  (3) Apply the coefficient of change to the target nucleic acid obtained in 1) to various darafts, relational expressions, and calibration curves.
かく して得られた各種のグラフ、 関係式、 検量線が標的核酸について の核酸増幅前の標的核酸の濃度若しくはコピーを求めるグラフ、 関係式、 検量線である。  The various graphs, relational expressions, and calibration curves obtained in this way are graphs, relational expressions, and calibration curves for determining the concentration or copy of the target nucleic acid before the nucleic acid amplification of the target nucleic acid.
本発明の標的核酸の増幅前の濃度若しくはコピー数を求める方法に は、 各種の変法があり、 本発明の目的を達成するものであれば、 如何な る方法でも採用できる。 例えば、 実施例 1に示した。 P03 05118 The method for determining the concentration or copy number of the target nucleic acid before amplification of the present invention includes various modifications, and any method can be adopted as long as the object of the present invention is achieved. For example, this is shown in Example 1. P03 05118
75  75
又、 簡便方法と しては、 前記阻害物質が試料中に含まれていると見做 される試料に内部標準核酸を添加し、 本発明の標的核酸プローブ及び Z 又は内部標準核酸プローブを用いるか用いずして、 リアルタイムモニタ リング定量的 P C R方法で、 試料中の標的核酸と内部標準核酸を増幅す る。 各増幅核酸について、 本発明の標的核酸プローブ及び内部標準核酸 プローブを用いて、 ハイブリダィゼーシヨン反応を行う。 各プローブに 標識された蛍光色素の蛍光強度の変化量を測定する。 勿論、 この変化量 を求める場合は、 本発明のデータ解析方法を用いるのが好適である。 内 部標準核酸についてのこの変化量と内部標準核酸濃度の関係が、 標的核 酸にも適用できると見做す (なお、 ハイプリダイゼーシヨン反応及びノ 又は核酸増幅反応の阻害物若しくは多型が存在しない系で当該見做し が出来ることを確認しておく) 。 それで、 前以て内部標準核酸について のこの変化量と内部標準核酸濃度の関係式を当該既知試料を使用して 求めておく。  As a simple method, an internal standard nucleic acid is added to a sample in which the inhibitor is considered to be contained in the sample, and the target nucleic acid probe of the present invention and Z or the internal standard nucleic acid probe are used. Instead, amplify the target nucleic acid and internal standard nucleic acid in the sample using real-time monitoring quantitative PCR. For each amplified nucleic acid, a hybridization reaction is performed using the target nucleic acid probe and the internal standard nucleic acid probe of the present invention. The amount of change in the fluorescence intensity of the fluorescent dye labeled on each probe is measured. Of course, when obtaining this variation, it is preferable to use the data analysis method of the present invention. The relationship between the amount of change and the concentration of the internal standard nucleic acid for the internal standard nucleic acid is considered to be applicable to the target nucleic acid. (Note that inhibitors or polymorphisms in the hybridization reaction and the nucleic acid amplification reaction may be considered.) Make sure that this can be done in a system that does not exist). Therefore, the relational expression between the amount of change and the concentration of the internal standard nucleic acid for the internal standard nucleic acid is obtained in advance using the known sample.
当該関係式から増幅された標的核酸と内部標準核酸の濃度若しく は コピー数を求めることが出来る。 内部標準核酸の増幅前の濃度若しくは コピー数が分かっているので、 増幅された標的核酸の増幅前の濃度若し くはコピー数が推定できる。  From the relational expression, the concentration or copy number of the amplified target nucleic acid and internal standard nucleic acid can be determined. Since the concentration or copy number of the internal standard nucleic acid before amplification is known, the concentration or copy number of the amplified target nucleic acid before amplification can be estimated.
第 4の特徴は、 リアルタイム定量的 PCRの解析装置において、 前記本 発明のリアルタイム定量的 PCR方法のためのデータ解析方法を実行する 演算及び記憶手段を有するリアルタイム定量的 PCRの測定及び/又は解 析装置である。  A fourth feature is that, in a real-time quantitative PCR analysis apparatus, measurement and / or analysis of real-time quantitative PCR having an arithmetic and storage means for executing the data analysis method for the real-time quantitative PCR method of the present invention. Device.
この場合、 測定系には少なく とも一種以上の標的核酸を含むので、 少 なく とも一種以上の波長で測定できる測定装置が好ましい。 又、 少なく とも一種以上の波長で蛍光色素を励起できる装置であればよ り好ま し 03 05118 In this case, since the measurement system includes at least one or more target nucleic acids, a measurement device capable of measuring at least one or more wavelengths is preferable. Further, any device that can excite a fluorescent dye at at least one wavelength is more preferable. 03 05118
76  76
レ、 Les,
第 5の特徴は、 リアルタイム定量的 PCRの解析装置を用いて PCRを解析 するデータ解析方法の各手順をプログラム化して、 そのプログラムを記 録したコンピュータ読取可能な記録媒体において、 前記本発明のデータ 解析方法の各手順をコンピュータに実行させることができるようにし たプログラムを記録したコンピュータ読取可能な記録媒体である。  A fifth feature is that each step of a data analysis method for analyzing PCR using a real-time quantitative PCR analyzer is programmed, and the program of the present invention is recorded on a computer-readable recording medium on which the program is recorded. This is a computer-readable recording medium that stores a program that allows a computer to execute each procedure of the analysis method.
本発明の第 4発明は、 標的核酸の多型 (S N Pを含むものとする。 ) 又は/及び変異を解析もしくは測定する方法に、 前記の各種方法を適用 する発明である。  A fourth invention of the present invention is an invention in which the above various methods are applied to a method for analyzing or measuring a polymorphism (including SNP) and / or mutation of a target nucleic acid.
又、 その測定キッ ト、 その測定のためのデータ解析方法、 その測定装 置、 及びデータ解析過程をコンピュータに実行させるための手順をプロ グラムとして記録したコンピュータ読取可能な記録媒体でもある。  It is also a computer-readable recording medium in which the measurement kit, the data analysis method for the measurement, the measurement device, and the procedure for causing a computer to execute the data analysis process are recorded as a program.
又、 本発明の標的核酸の多型 (po lymorphi sm) 又は/及び変異 (tnuta t ion) を解析もしくは測定する方法により得られるデータを解析する場 合に、 分析対象核酸がそれに対応する核酸プローブとハイブリダィズし たときの当該プローブを標識していた蛍光色素の蛍光強度値を、 前記の ものがハイブリダイズしていないときの当該プローブを標識していた 蛍光色素の蛍光強度値により補正する処理過程を設けると、 処理された データは信頼性の高いものになる (データ解析方法の適用) 。  When analyzing data obtained by a method for analyzing or measuring polymorphism (polymorphism) and / or mutation (tnutation) of a target nucleic acid of the present invention, the nucleic acid to be analyzed is a nucleic acid probe corresponding thereto. Process of correcting the fluorescence intensity value of the fluorescent dye that has labeled the probe when hybridized with the probe with the fluorescence intensity value of the fluorescent dye that has labeled the probe when the probe is not hybridized With this, the processed data will be highly reliable (applying data analysis methods).
又、 第 4発明は、 標的核酸の多型 (po l ymorph i sm) 又は Z及び変異 (m utat i on) を解析もしくは測定する測定装置において、 前記データ解析 方法により、 得られるデータを処理する手段を有する測定装置である。 又、 標的核酸の多型 (po lymorphi sm) 又は/及び変異 (mutat ion) を 解析もしくは測定する方法により得られるデータを補正する前記処理 過程をコンピュータに実行させるための手順をプログラムと して記録 したコンピュータ読取可能な記録媒体である。 A fourth invention is a measuring device for analyzing or measuring a polymorphism (polymorphism) or Z and a mutation (mutation) of a target nucleic acid, wherein the data obtained by the data analysis method is processed. It is a measuring device having means. In addition, a procedure for causing a computer to execute the above-described process for correcting data obtained by a method for analyzing or measuring a polymorphism and / or a mutation of a target nucleic acid is recorded as a program. Computer-readable recording medium.
本発明の第 5発明は、 本発明の核酸の新規測定方法を各種の核酸測定 方法、 例えば、 F I S H方法、 L C R方法、 S D方法、 TAS方法など に適用する発明である。  The fifth invention of the present invention is an invention in which the novel nucleic acid measuring method of the present invention is applied to various nucleic acid measuring methods, for example, the FISH method, the LCR method, the SD method, the TAS method and the like.
以下にその例を記す。  An example is described below.
F I S H方法に適用する場合  When applying to the F I SH method
すなわち、 本発明方法は、 核酸測定のための試料として、 複合微生物 系、 共生微生物系の細胞内もしくは細胞のホモジネート等を好適に利用 できる。 それは、 複合微生物系又は共生微生物系は本発明のハイブリダ ィゼーシヨン (勿論、 内部標準核酸とその内部標準核酸プローブのハイ ブリダィゼーシヨ ンをも含む。 ) 反応及び Z又は核酸増幅反応を阻害す る物質、 又、 核酸プローブの蛍光色素の発光を阻害をする物質を含む場 合があるからである。  That is, the method of the present invention can suitably utilize, as a sample for nucleic acid measurement, a complex microbial system, a symbiotic microbial system, or a cell homogenate. The complex microbial system or the symbiotic microbial system is a substance that inhibits the hybridization (and, of course, the hybridization of an internal standard nucleic acid and its internal standard nucleic acid probe) of the present invention, and a substance that inhibits the Z or nucleic acid amplification reaction. This is because the nucleic acid probe may contain a substance that inhibits the emission of a fluorescent dye.
本発明の前記の、 核酸の新規測定方法、 核酸増幅方法、  A novel nucleic acid measurement method, a nucleic acid amplification method,
データ解析方法、 それらの測定装置 (コンピュータ読み取り可能な記録 媒体を組み込んだものをも含む。 ) 及び各種デバイス類 (後記した。 ) の一つ又はそれ以上を用いて、 複合微生物系又は共生微生物系における 特定菌株の 5 S r RNA、 1 6 S r RNAもしくは 2 3 S r RNA又は それらの遺伝子 DN Aのコピー数を定量することにより、 当該系におけ る特定菌株の存在量を測定することができる。 それは、 5 S r RNA、 1 6 S r RNAも しく は 2 3 S r R N Aの遺伝子 D N Aのコ ピー数は 菌株よって一定であるからである。 Using one or more of data analysis methods, their measuring devices (including those incorporating a computer-readable recording medium) and various devices (described below), complex or symbiotic microbial systems By determining the copy number of the 5 S r RNA, 16 S r RNA, or 23 S r RNA of the specific strain or the DNA of the gene DNA, the abundance of the specific strain in the system can be measured. it can. This is because the number of copies of gene 5NA of 5S rRNA, 16SrRNA or 23SrRNA is constant depending on the strain.
本発明の第 6発明は、 本発明の核酸の新規測定方法を実施する際、 便 利に使用できる、 反応液類若しくは測定キッ ト類、 デバイス類 (例えば、 下記の DN Aチップなどを挙げることができる。 ) である。 反応液類若しくは測定キッ ト類は、 少なく とも一種の内部標準核酸、 少なく と も一種の標的核酸プローブ若しく は標的核酸のプライマープ ローブ及び Z又は少なく とも一種の内部標準核酸プローブ若しく は内 部標準核酸のプライマープローブを含むものである。 好ましくは、 その 他の成分 (緩衝液、 微量金属イオン等) を適宜含むものである。 しかし、 これらの成分は使用時に測定系に添加して使用できるので、 反応液類若 しくは測定キッ ト類は、 これらの成分に限定さるものではない。 形態は、 乾燥状態、 液状のどちらでもよい。 なお、 本発明の第 2発明 (核酸増幅 反応を用いる核酸測定方法) における反応液類若しくは測定キッ ト類お いては、 その他の成分に、 プライマー (プライマープローブを使用しな い場合) 、 ポリメラーゼ等の核酸増幅反応に必要な試薬類を含めるのが 好適である。 The sixth invention of the present invention relates to a reaction solution, a measurement kit, and a device (for example, a DNA chip described below) which can be conveniently used when the novel nucleic acid measurement method of the present invention is carried out. Is possible.) The reaction solution or assay kit contains at least one kind of internal standard nucleic acid, at least one kind of target nucleic acid probe or target nucleic acid, and Z or at least one kind of internal standard nucleic acid probe or internal nucleic acid. It contains a primer probe of the standard nucleic acid. Preferably, it appropriately contains other components (buffer solution, trace metal ions, etc.). However, since these components can be added to the measurement system at the time of use, the reaction liquids or the measurement kits are not limited to these components. The form may be either a dry state or a liquid state. In the second invention (a nucleic acid measurement method using a nucleic acid amplification reaction) of the present invention, primers (when no primer probe is used), polymerase, etc. It is preferable to include reagents necessary for the nucleic acid amplification reaction of the present invention.
デバイス類は、 本発明方法を実施できるものであれば、 どのようなも のでもよいのであるが、 例えば、 下記の D N Aチップなどを挙げること ができる。  The devices may be any devices as long as they can carry out the method of the present invention, and examples thereof include the following DNA chips.
即ち、 本発明における使用できる少なく とも一種の内部標準核酸プロ ーブ及び 又は少なく と も一種の標的核酸プローブを複数個固体支持 体表面に結合させて、 標的核酸プローブには標的核酸、 又内部標準核酸 プローブには内部標準核酸をハイプリダイズさせて、 各プローブ ' 核酸 複合体に由来する核酸プローブの蛍光色素に特異的な蛍光強度の変化 若しくは変化量 (ハイプリダイゼーシヨン前後における) を測定して、 少なく とも一種の標的核酸の量若しく は濃度を測定することができる ようにしたデバイスである。  That is, at least one kind of internal standard nucleic acid probe and / or at least one kind of target nucleic acid probe that can be used in the present invention are bound to the surface of the solid support, and the target nucleic acid probe contains the target nucleic acid and the internal standard. The nucleic acid probe is hybridized with an internal standard nucleic acid, and the change or the amount of change (before and after hybridization) of the fluorescence intensity specific to the fluorescent dye of the nucleic acid probe derived from each probe 'nucleic acid complex is measured. It is a device capable of measuring the amount or concentration of at least one kind of target nucleic acid.
そのデバイスにおいて、 少なく とも一種の標的核酸プローブ及び z又 は少なく とも一種の内部標準核酸プローブが固体支持体表面にァレー 状に配列、 結合したデバイスであり、 又、 固体支持体表面に結合した核 酸プローブ毎に、 反対側の表面に少なく とも一つの温度センサーとヒー ターが設置され、 核酸プローブ結合領域が最適温度条件になるように温 度調節され得るデバイスである。 In the device, at least one target nucleic acid probe and z or at least one internal standard nucleic acid probe are arrayed on a solid support surface. The devices are arranged and coupled in a matrix, and for each nucleic acid probe bound to the surface of the solid support, at least one temperature sensor and heater are installed on the opposite surface, and the nucleic acid probe binding region has the optimal temperature. A device whose temperature can be adjusted to meet conditions.
すなわち、 本発明の標的核酸プローブ及び内部標準核酸プローブは固 体 (支持層) 表面、 例えばスライ ドガラスの表面に固定することができ る。 この形式は現在 DNAチップと言われる。 遺伝子発現 (gene express! on) のモニタ リング、 塩基配列 (base sequence) の決定、 変異解析 (m utation analysis) 、 1 (single nucleotide po丄 ymorphism (S NP)) などの多型解析 (polymorphism analysis) 等に使用できる。 勿論、 核酸測定用デバイス (チップ) と して使用することもできる。  That is, the target nucleic acid probe and the internal standard nucleic acid probe of the present invention can be immobilized on the surface of a solid (support layer), for example, the surface of slide glass. This format is now called a DNA chip. Monitoring of gene expression (gene express! On), determination of base sequence, mutation analysis, polymorphism analysis such as 1 (single nucleotide polymorphism (S NP)) Etc. can be used. Of course, it can also be used as a nucleic acid measurement device (chip).
それで、 本発明の第 5発明は、 標的核酸の測定の他、 これらの事項を 達成する方法でもある。  Therefore, the fifth invention of the present invention is a method for achieving these items in addition to the measurement of the target nucleic acid.
本発明において、 塩基配列の異なる多くの標的核酸プローブ及び/又 は内部標準核酸プローブを、 個別に同一固体表面上に結合しているデバ イスをつく ることにより、 同時に多種類の標的核酸を測定できる。 それ で、 DNAチップの場合と全く同じ方法で標的核酸を測定できるので新規 の DNAチップでもある。 最適の反応条件では標的核酸以外の核酸は標的 核酸プローブにはハイブリ ダイズしないので蛍光の発光量を変化させ ない。 そのために、 標的核酸プローブに特異的にハイブリダィズしない 核酸を洗浄する操作は必要がない。  In the present invention, many target nucleic acid probes having different base sequences and / or internal standard nucleic acid probes are individually bound on the same solid surface to simultaneously measure many types of target nucleic acids. it can. Therefore, the target nucleic acid can be measured in exactly the same way as a DNA chip, so it is a new DNA chip. Under optimal reaction conditions, nucleic acids other than the target nucleic acid do not hybridize to the target nucleic acid probe, and thus do not change the amount of fluorescence emitted. Therefore, there is no need to perform an operation of washing nucleic acids that do not specifically hybridize to the target nucleic acid probe.
本発明のデバイスを用いる核酸の新規測定方法の基本的操作は、 分析 対象の核酸に対応する標的核酸プローブを結合した固体表面上に分析 対象の核酸を含む溶液をのせ、 分析対象の核酸とそれに対応する標的核 酸プローブをハイプリダイズさせるだけである。 これにより、 分析対象の核酸量に応じて標的核酸プローブを標識した 蛍光色素の蛍光強度の変化がハイプリダイゼーション前後でおこり、 そ の蛍光強度の変化量 (率) から分析対象の核酸の測定が可能となる。 The basic operation of the novel nucleic acid measurement method using the device of the present invention is as follows: a solution containing a nucleic acid to be analyzed is placed on a solid surface to which a target nucleic acid probe corresponding to the nucleic acid to be analyzed is bound; It only hybridizes the corresponding target nucleic acid probe. As a result, a change in the fluorescence intensity of the fluorescent dye labeled on the target nucleic acid probe occurs before and after hybridization according to the amount of the nucleic acid to be analyzed, and the nucleic acid to be analyzed can be measured from the change (rate) in the fluorescence intensity. It becomes possible.
実際の測定においては、 先ず、 内部標準核酸とそれに対応する内部標 準核酸プローブを使用して、 前記の内部標準核酸プローブを標識した蛍 光色素の蛍光強度変化量 (率) と内部標準核酸の量若しくは濃度との関 係式若しくは検量線を作成する。 これに標的核酸に関わる蛍光強度変化 量 (率) を当てはめることにより標的核酸の測定ができる。 この操作は 前記したとおりである。  In the actual measurement, first, using the internal standard nucleic acid and the corresponding internal standard nucleic acid probe, the change in the fluorescence intensity (rate) of the fluorescent dye labeled with the internal standard nucleic acid probe and the internal standard nucleic acid Create a relational equation or calibration curve with the amount or concentration. The target nucleic acid can be measured by applying the change (rate) of the fluorescence intensity related to the target nucleic acid to this. This operation is as described above.
更に、 本発明のデバイスにおいては、 微小ヒーターにて標的核酸プロ ーブ毎に温度コントロールすることにより、 当該プローブ毎に最適反応 条件にコントロールできるために正確な濃度の測定が可能となる。 又、 微小ヒーターにて温度を連続的に変化させ、 その間、 蛍光量を測定する ことにより、 本発明の標的核酸プローブと標的核酸との解離曲線を解析 することができる。 その解離曲線の違いからハイブリダィズした核酸の 性質の判定や、 SNPの検出ができる。  Further, in the device of the present invention, by controlling the temperature of each target nucleic acid probe with a micro heater, it is possible to control the reaction conditions to the optimum for each probe, so that accurate measurement of the concentration becomes possible. In addition, the dissociation curve between the target nucleic acid probe of the present invention and the target nucleic acid can be analyzed by continuously changing the temperature with a micro heater and measuring the amount of fluorescence during that. From the difference in the dissociation curves, it is possible to determine the properties of the hybridized nucleic acid and detect SNP.
以下に測定の具体的条件を述べる。  The specific conditions for the measurement are described below.
それらの方法は、 通常の既知方法で行なうことができる (Analytical Biochemistry, 183卷、 231〜 244頁、 1989年; Nature Biotechnology、 14巻、 303〜308頁、 1996年; Applied and Environmental Microbiology, 63 , 1 143 - 1147頁、 1997年) 。  These methods can be carried out by usual known methods (Analytical Biochemistry, Vol. 183, pp. 231-244, 1989; Nature Biotechnology, Vol. 14, pp. 303-308, 1996; Applied and Environmental Microbiology, 63, 1 143-1147, 1997).
ハイブリダィゼーシヨ ンの条件は、 例えば、 塩濃度が 0〜 2モル濃度、 好ましくは 0. 1〜 1. 0モル濃度、 ρ Ηは 6〜 8、 好ましくは 6. 5 〜 7. 5である。  Conditions for the hybridization are, for example, that the salt concentration is 0 to 2 molar, preferably 0.1 to 1.0 molar, ρρ is 6 to 8, preferably 6.5 to 7.5. is there.
反応温度は、 ハイプリダイゼーシヨ ン反応の産物である標的核酸プロ ーブ複合体の Tm値土 1 0 °Cの範囲内であるのが好ましい。 このようにす ることにより非特異的なハイブリダイゼーションを防止することがで きる。 Tm— 1 0 °C未満のときは、 非特異的ハイプリダイゼーシヨンが起 こり、 Ttn+ 1 0 °Cを越えるときは、 ハイプリダイゼーションが起こらな レ、。 尚、 Tm値は標的核酸プローブを設計するのに必要な実験と同様にし て求めることができる。 The reaction temperature is determined by the target nucleic acid product, which is the product of the hybridization reaction. It is preferable that the Tm value of the composite bead is within the range of 10 ° C. By doing so, non-specific hybridization can be prevented. When Tm is lower than 10 ° C, non-specific hybridization occurs. When it exceeds Ttn + 10 ° C, hybridization does not occur. The Tm value can be determined in the same manner as in the experiment necessary for designing a target nucleic acid probe.
反応時間は 1秒間〜 1 8 0分間、 好ましくは 5秒間〜 9 0分間である。 1秒間未満のときは、 ハイブリダィゼーシヨンが十分に完成しない。 又、 反応時間を余り長く しても特に意味がない。 なお、 反応時間は核酸種、 すなわち、 核酸の長さ、 あるいは塩基配列によって大きく影響を受ける。 反応液中の分析対象の核酸の濃度は 0 . 1〜1 0 . Ο η Μであるのが 好ましい。 本発明のデバイスにおける分析対象に対応する標的核酸プロ 一ブのースポッ ト当たりの濃度は 1 . 0〜2 5 . Ο η Μであるのが好適 である。  The reaction time is 1 second to 180 minutes, preferably 5 seconds to 90 minutes. If it is shorter than 1 second, the hybridization is not completed sufficiently. There is no point in making the reaction time too long. The reaction time is greatly affected by the nucleic acid species, that is, the length of the nucleic acid, or the base sequence. The concentration of the nucleic acid to be analyzed in the reaction solution is preferably from 0.1 to 10〜 {η}. The concentration of the target nucleic acid probe corresponding to the analyte in the device of the present invention per spot is preferably 1.0 to 25. {η}.
前記内部標準核酸についての検量線若しくは関係式を作成する場合 は、 内部標準核酸プローブに対して、 本発明の内部標準核酸を 0 . 4〜 When preparing a calibration curve or a relational expression for the internal standard nucleic acid, the internal standard nucleic acid of the present invention is used in an amount of 0.4 to 0.4 with respect to the internal standard nucleic acid probe.
1 . 0の比率で用いるのが望ましい。 It is desirable to use a ratio of 1.0.
なお、 本発明のデバイス類は、 当該デバイス類を使用して、 本発明方 法を実施できるようにした反応液類若しくは測定キッ ト類を含むもの である。 当該反応液類若しくは測定キッ ト類は、 少なく とも一種の内部 標準核酸を含むものである。 その他の成分は、 前記の反応液類若しくは 測定キッ ト類と同様である。  It should be noted that the devices of the present invention include reaction liquids or measurement kits that enable the method of the present invention to be performed using the devices. The reaction solution or the measurement kit contains at least one kind of internal standard nucleic acid. Other components are the same as those in the above-mentioned reaction liquids or measurement kits.
本発明方法の第 7発明は、 前記の各発明方法を簡便、 迅速、 正確、 特 異的に実施できるようにした、 標的核酸の分離 · 回収 ·濃縮方法である。 当該方法は、 標的核酸塩基配列領域を切断しないような少なく とも一 種以上の制限酵素によつて標的核酸を含む全核酸を切断後、 標的核酸塩 基配列を含む核酸画分のみを分離 ·回収する標的核酸分離 ·回収濃縮方 法である。 例えば、 好適には、 次の手段からなる方法を採用すればよレ、。 しかし、 本例をもって本発明方法は限定されるものではない。 The seventh invention of the method of the present invention is a method for separating, recovering, and concentrating a target nucleic acid, which enables each of the above-described methods of the present invention to be carried out simply, quickly, accurately, and specifically. The method includes at least one step that does not cleave the target nucleobase sequence region. This is a target nucleic acid separation / recovery method in which all nucleic acids including a target nucleic acid are cleaved by more than one kind of restriction enzyme, and then only a nucleic acid fraction containing a target nucleic acid base sequence is separated and recovered. For example, preferably, a method comprising the following means should be adopted. However, the method of the present invention is not limited by this example.
( 1 ) 標的核酸塩基配列領域を含むゲノム等の核酸を少なく とも一種の 制限酵素で処理する。  (1) Treat nucleic acids such as genomes containing the target nucleic acid base sequence region with at least one type of restriction enzyme.
( 2 ) 前記処理物について、 分子分画を施す。  (2) The treated product is subjected to molecular fractionation.
更に、 次の手段を追加するのが好適である。 In addition, it is preferable to add the following means.
( 3 ) 分子分画画分を濃縮する。  (3) Concentrate the molecular fraction.
前記の制限酵素は、 目的塩基配列領域を切断しないものであれば、 ど のようなものでもよく、 特に制限されない。 すなわち目的に応じて変え ればよい。 公知のものが好適に利用できる。 例えば、 Bfa I、Bsa JI . Bss KI、Dde l、Mse I、Bso FI、Hha I、Hph I、Mnl I、Rca I、Alu I、Msp Iなど を挙げることができる。 これらを目的に応じて適当に組み合せて使用す るのが好適である。 しかしながら、 これらを以て本発明は制限されなレ、。 制限酵素処理条件は、 制限酵素試薬のキッ トに添付されている説明書 の記載 (プロ トコール) に従えばよい。  The restriction enzyme is not particularly limited as long as it does not cleave the target nucleotide sequence region. That is, it can be changed according to the purpose. Known ones can be suitably used. For example, Bfa I, Bsa JI. Bss KI, Ddel, Mse I, Bso FI, Hha I, Hph I, Mnl I, Rca I, Alu I, Msp I and the like can be mentioned. It is preferable to use these in an appropriate combination according to the purpose. However, these do not limit the present invention. Restriction enzyme treatment conditions may be in accordance with the description (protocol) attached to the kit of the restriction enzyme reagent.
前記分子分画は、 現在公知の方法を目的に合わせて適当なものを採用 すればよい。 例えば、 各種のフィルターを用いた濾過方法、 各種の充填 剤を用いたゲル濾過方法 (H P L C方法等を含む。 ) などの分子分画方 法を挙げることが出来る。  The molecular fraction may be appropriately selected from those known at present according to the purpose. For example, there can be mentioned a molecular fractionation method such as a filtration method using various filters and a gel filtration method (including the HPLC method and the like) using various fillers.
前記濃縮方法は、 目的に合わせて通常の方法を採用すればよい。 例え ば、 エタノール等の溶剤による濃縮方法、 凍結乾燥、 風乾などを挙げる ことができる。  As the concentration method, a usual method may be adopted according to the purpose. For example, a concentration method using a solvent such as ethanol, freeze-drying, and air-drying can be used.
本発明方法の第 7発明は、 任意の塩基配列を有する 5 0 b p以上の高 純度の人工遺伝子 (2本鎖の D N A ) の簡便な調製方法である。 The seventh invention of the method of the present invention is characterized in that it has a high base of 50 bp or more having an arbitrary nucleotide sequence. This is a simple method for preparing artificial genes of high purity (double-stranded DNA).
当該調製方法は、 次の手段からなる。  The preparation method comprises the following means.
1 ) 任意の塩基配列を有する 5 0 b p以上の一本鎖オリゴヌク レオチド を、 D N A合成機を使用して人工合成する。 1) A single-stranded oligonucleotide having 50 bp or more having an arbitrary base sequence is artificially synthesized using a DNA synthesizer.
2 ) 合成された 5 0 b p以上の一本鎖オリゴヌク レオチ ドを铸型として、 各種の遺伝子増幅方法で核酸増幅反応を行う。 2) Using the synthesized single-stranded oligonucleotides of 50 bp or more as type I, perform nucleic acid amplification reactions by various gene amplification methods.
D N A合成機は、 本発明の目的を達成するものであれば、 どのような ものを使用してもよい。 好適には、 D N A合成機 (A B I 3 9 4 ) (株 式会社パーキンエルマ一ジャパンアプライ ド) を使用すればよい。 又、 遺伝子増幅方法も本発明の目的を達成するものであれば、 どのようなも のでもよい。 好適には、 P C R方法を用いればよい。  As the DNA synthesizer, any type can be used as long as the object of the present invention is achieved. Preferably, a DNA synthesizer (ABI394) (Perkin Elmer Japan Applied Co., Ltd.) may be used. The gene amplification method may be any method as long as the object of the present invention is achieved. Preferably, the PCR method may be used.
目的以外の一本鎖ォリゴヌクレオチドが、 遺伝子増幅産物に混入する 危険性を防止するため、 铸型は、 十分希釈して使用することが望ましい。 この铸型の希釈率は、 特に限定されない。 又、 遺伝子増幅産物を希釈し、 再度、 希釈液を鐯型として遺伝子増幅を行うことでも、 上記した目的以 外の一本鎖ォリ ゴ核酸によるコンタミネーショ ンの危険性を排除する ことが可能である。 この遺伝子増幅を繰り返す回数は、 本発明の目的に 合わせで決めればよく、 特に限定されない。  In order to prevent the risk of single-stranded oligonucleotides other than the target being mixed into the gene amplification product, it is desirable to use sufficiently diluted type III. The dilution ratio of this type III is not particularly limited. Also, by diluting the gene amplification product and performing the gene amplification again using the diluent as type II, the risk of contamination due to single-stranded oligonucleic acid other than the above-mentioned purpose can be eliminated. It is possible. The number of times this gene amplification is repeated may be determined according to the purpose of the present invention, and is not particularly limited.
本発明の前記の第 1〜8発明は、 医学、 法医学、 人類学、 古代生物学、 生物学、 遺伝子工学、 分子生物学、 農学、 植物育種学等の各種の分野で 利用できる。 又、 複合微生物系、 共生微生物系と云われ、 色々の種類の 微生物が混在するかもしくは少なく とも一種類の微生物が他の動物、 植 物由来の細胞と共に混在していて相互に単離できない微生物系等の解 析■分析に好適に利用できる。 ここで云う微生物とは一般的に云う微生 物のことで、 特に限定されるものではない。 実施例 The first to eighth inventions of the present invention can be used in various fields such as medicine, forensic medicine, anthropology, ancient biology, biology, genetic engineering, molecular biology, agriculture, and plant breeding. Also known as complex microbial systems or symbiotic microbial systems, microorganisms of various types are mixed or at least one type of microorganism is mixed with cells derived from other animals or plants and cannot be isolated from each other. It can be suitably used for analysis and analysis of systems. The term “microorganism” used herein refers to a general microorganism, and is not particularly limited. Example
次に実施例を挙げて本発明を更に具体的に説明する。  Next, the present invention will be described more specifically with reference to examples.
実施例 1 Example 1
標的核酸 (遺伝子) と して、 じやがいものそうか病の原因遺伝子と考 えられている n e c 1遺伝子を用い、 土壌からの n e c 1遺伝子の定量 を行った。  As a target nucleic acid (gene), the nec1 gene from soil was quantified using the nec1 gene, which is thought to be the causative gene for potato scab.
A) 各種方法 A) Various methods
1 ) オリ ゴデォキシリボヌク レオチド (核酸) の合成方法 :  1) Synthesis method of oligogodoxyribonucleotide (nucleic acid):
特別の記載がある場合を除いて、 DNA合成機 (AB I 3 94) (株 式会社パーキンエルマ一ジャパンアプライ ド) を用いて、 オリゴデォキ シリポヌクレオチド (以下、 オリ ゴヌクレオチドという。 ) を合成した。 Unless otherwise specified, oligodeoxysiliponnucleotides (hereinafter referred to as oligonucleotides) were synthesized using a DNA synthesizer (ABI394) (PerkinElmer Japan Applied Co., Ltd.). .
2) 蛍光色素によるオリ ゴヌク レオチドの標識 2) Labeling of oligonucleotides with fluorescent dyes
( 1 ) オリ ゴヌク レオチ ドのリ ンカ一による修飾  (1) Modification of oligonucleotide by linker
5' Amino- Modifier C6キッ 卜(Glen Research社、 米国) を用レヽて 5 ' ' 末端のヌクレオチドの 5 ' —リ ン酸基をリンカ一-(CH2) SHで修飾した。 この修飾ヌク レオチドを用い、 DNA合成機 (AB I 3 9 4 ) を使用し て、 5 ' 末端のリ ン酸基が前記リンカ一で修飾されたオリ ゴヌクレオチ ドを合成した。 なお、 DNAの合成は /3—シァノエチルフォスフォアミ ダイ 卜( ]3 - cy塞 ethylphosphoramidite)方法で、 力 つ 5, 末端 T r ON 法で行った。 合成した後、 保護基の脱離は 2 8 °/。アンモニア水で 5 5 °C、 5時間で行った。 5 '5 terminal nucleotide''Amino- Modifier C6 Kit Bok (Glen Research Corp., USA) 5 Te use Rere a' - modified by (CH 2) SH - re phospho groups linker scratch. Using this modified nucleotide, an oligonucleotide in which the phosphoric acid group at the 5 ′ end was modified with the linker was synthesized using a DNA synthesizer (ABI394). The DNA was synthesized by the 3-terminal-cyanoethylphosphoramidite (] 3-cy-blocked ethylphosphoramidite) method, using the 5-terminal TrON method. After synthesis, the elimination of the protecting group is 28 ° /. The reaction was performed at 55 ° C for 5 hours with aqueous ammonia.
( 2) 合成物の精製:  (2) Purification of compound:
前記で得られた合成ォリ ゴヌクレオチドを乾固し乾固物を得た。 それ を 0.5M NaHC03ZNa2C03緩衝液 (p H 9. 0 ) に溶解した。 当該溶解物 を NAP— 1 0カラム (フアルマシア社製) でゲル濾過を行い、 未反応 物を除去した。 The synthetic oligonucleotide obtained above was dried to obtain a dried product. Which was dissolved in 0.5M NaHC0 3 ZNa 2 C0 3 buffer (p H 9. 0). The lysate The gel was filtered through a NAP-10 column (Pharmacia) to remove unreacted substances.
(3) 色素の標識 :  (3) Dye labeling:
前記ゲル濾過物を乾固し、 1 5 0 // Lの滅菌水に溶解した (オリ ゴヌ クレオチド溶液) 。 1 m gの蛍光色素 (例えば、 BODIPY FL) -Chloride (M olecular Probes社、 USA) を 1 0 0 μ Lの DM Fに溶角军し、 前記オリ ゴ ヌクレオチド溶液、 1M NaHC03/Na2C03バファー 1 5 0 Lを加え、 撹 拌後、 室温で 1晚反応させ、 5 ' 末端のリ ンカ一-(CH2) 6- SHに蛍光色素 を結合させた。 The gel filtrate was dried and dissolved in 150 // L of sterile water (oligonucleotide solution). 1 mg of the fluorescent dye (e.g., BODIPY FL) -Chloride (M olecular Probes Inc., USA) was溶角army to DM F of 1 0 0 μ L, the oligonucleotide solution, 1M NaHC0 3 / Na 2 C0 3 After adding 150 L of buffer and stirring, the mixture was reacted at room temperature for 1 hour, and a fluorescent dye was bound to the linker 1- (CH 2 ) 6 -SH at the 5 ′ end.
(4) 合成物の精製:  (4) Purification of compound:
前記反応物を NAP- 25 (フアルマシア社製) でゲルろ過を行い、 未反応 物を除去した。 SEP - PAC C18カラムを用いる逆相 H P L Cを行い、 前記 オリ ゴヌクレオチドのリ ンカ一-(CH2)7-丽2に蛍光色素を結合させた目 的物を分画した。 分画物を NAP-10 (フアルマシア社製) でゲル濾過した。 かく して、 5 ' 末端に蛍光色素を結合させたオリ ゴヌクレオチドを得た。The reaction product was subjected to gel filtration using NAP-25 (manufactured by Pharmacia) to remove unreacted substances. SEP - PAC by reverse phase HPLC using a C18 column, the oligonucleotide of the linker one - (CH 2) 7 -丽2 fluorescent dye was partitioned the purpose things conjugated min. The fraction was subjected to gel filtration with NAP-10 (Pharmacia). Thus, an oligonucleotide having a fluorescent dye bound to the 5 ′ end was obtained.
(5) 本発明の 5 ' 末端に蛍光色素を結合させたオリ ゴヌク レオチドの 分光光度計で 260mnの値を測定することにより行った。 又、 当該プロ ーブについて、 分光光度計を用いて 650nti!〜 220nraの吸光度のスカンニグ を行った結果、 蛍光色素、 DN Aの吸収があることを確認した。 さらに、 前記同様の逆相 H P L Cで精製物の純度検定を行った結果、 シングルピ ークであることを確認した。 (5) The measurement was carried out by measuring the value of 260 mn with a spectrophotometer of an oligonucleotide having a fluorescent dye bound to the 5 ′ end of the present invention. For the probe, use a spectrophotometer for 650 nti! Scanning at an absorbance of ~ 220nra confirmed that there was absorption of the fluorescent dye and DNA. Further, the purity of the purified product was determined using the same reverse-phase HPLC as described above, and it was confirmed that the purified product was a single peak.
( 6 ) 逆相クロマトグラフィー  (6) Reversed phase chromatography
なお、 上記の逆相クロマトグラフィ一の条件は次の通りである。  The conditions for the above reverse phase chromatography are as follows.
■溶出ソルベン ト A : 0.05N TEAA 5%CH3CN '溶出ソルベン ト B (グラジェン ト (gradient) 用) : 0.05N TEAA 40% CH3CN ■ Eluted Solvent A: 0.05N TEAA 5% CH 3 CN 'Eluent Solvent B (for gradient): 0.05N TEAA 40% CH 3 CN
' カラム : SEP— PAK C18;6X250mm  '' Column: SEP— PAK C18; 6X250mm
•溶出速度 : 1. Oral/rain  • Elution rate: 1. Oral / rain
· 温度 : 40°C  · Temperature: 40 ° C
•検出 : 254nm  • Detection: 254nm
3) 3, 末端の 3, 位の OH基のリン酸化方法  3) Method of phosphorylation of OH group at 3, terminal 3 position
オリ ゴヌク レオチドの合成の過程で、 脱保護反応で 3 ' リン酸基を生 じさせた (Glen Research カタ口グ番号 2 0— 2 9 1 3) 。  During the synthesis of the oligonucleotide, a 3 'phosphate group was generated by a deprotection reaction (Glen Research Cat No. 20-29 13).
4) ァガロース電気泳動方法 4) Agarose electrophoresis method
通常の方法で行った。 すなわち、  Performed in the usual way. That is,
• ァガロース濃度 : 0. 5 %  • Agarose concentration: 0.5%
-緩衝液 : TBE buffer, pH9.3  -Buffer: TBE buffer, pH9.3
• 温度 : 室温  • Temperature: room temperature
5) 内部標準核酸 (DNA遺伝子) の作製  5) Preparation of internal standard nucleic acid (DNA gene)
表 1 に示した塩基配列を有するオリ ゴヌク レオチドからなるプライ マー NEC- F及び NEC_R、 NECM- F及び NECM- Rを作製した。 これらのプライマ 一を用いて overlap extention PCR方法 (P C R法利用の手引き、 ぺー ジ 2 9〜 3 7、 中外医学社、 1 9 9 8年) により、 標的核酸に変異導入 を行った。 なお、 Fはフォーワードプライマー、 Rはリバースプライマ 一の意味である。 表 1 Primers NEC-F and NEC_R, NECM-F and NECM-R, which consist of oligonucleotides having the nucleotide sequences shown in Table 1, were prepared. Using these primers, mutations were introduced into the target nucleic acid by the overlap extention PCR method (Guide to PCR method, pages 29-37, Chugai Medical Co., Ltd., 1998). F means forward primer and R means reverse primer. table 1
Figure imgf000088_0001
なお、 表 1の各塩基配列を有するオリ ゴヌクレオチドは、 necl遺伝子 のどこの領域にハイブリダィズ (対応) するかを示したのが図 1である t 又、 NECM- Rの塩基配列は、 表中の塩基配列 1 1、 1 2、 1 3、 及び 1 5番目 ( 5 ' 末端から) の塩基が標的核酸 (遺伝子) の配列に対して変 異したものである (下記の表 2参照) 。 同様に N E CM— Fの塩基配列 は、 表中の 1 1、 1 3、 1 4及び 1 5番目 ( 5 ' 末端から) の塩基が変 異したものである (下記の表 2参照) 。
Figure imgf000088_0001
Incidentally, oligonucleotide having the nucleotide sequence of Table 1, Haiburidizu where regions of necl gene t that shown (corresponding) either is 1 Further, NECM- R nucleotide sequence in the table The nucleotide sequences at positions 11, 12, 13, and 15 (from the 5 'end) are different from the sequence of the target nucleic acid (gene) (see Table 2 below). Similarly, the nucleotide sequence of NECM-F is the one in which the 11th, 13th, 14th, and 15th bases (from the 5 'end) in the table are changed (see Table 2 below).
表 2 標的核酸プローブの塩基配列 Table 2 Base sequence of target nucleic acid probe
Figure imgf000089_0001
操作手順は以下の通りである。
Figure imgf000089_0001
The operation procedure is as follows.
( 1 ) Streptomyces turgidiscabies IF016080のゲノム DNA ( より 購入) を鐯型と して、 a と dのプライマーを一つのセッ トと して、 及び b と cのプライマーを一つのセッ トと して用い、 それぞれについて P C Rを行った。 なお、 ゲノム DN Aは下記のようにして調製した。  (1) The genomic DNA of Streptomyces turgidiscabies IF016080 (purchased from here) was used as type III, primers a and d were used as one set, and primers b and c were used as one set. PCR was performed for each. The genomic DNA was prepared as follows.
(2) その産物について、 ァガロースゲル電気泳動を行った。 そして増 幅核酸に相当するバンドをそれぞれ切り出し、 増幅核酸を抽出した。  (2) The product was subjected to agarose gel electrophoresis. Then, bands corresponding to amplified nucleic acids were cut out, and amplified nucleic acids were extracted.
( 3) 各抽出物を混合し、 新たなプライマーを添加せずに、 P C Rを行 つた。  (3) Each extract was mixed and PCR was performed without adding new primers.
(4) その産物について、 前記 2) と同様にして電気泳動を行った。 A から Bまでの長さの産物に相当するバンドのみを切り出し、 増幅産物を 抽出した。  (4) The product was subjected to electrophoresis in the same manner as in 2) above. Only the band corresponding to the product from A to B in length was cut out, and the amplification product was extracted.
( 5) 抽出物を铸型と して、 a と bのプライマーをセッ トとして用い、 P C Rを行った。  (5) Using the extract as type III, PCR was performed using the primers a and b as a set.
(6 ) その産物について、 前記 2) と同様にして電気泳動を行った。 A から Bまでの長さに相当するバンドのみを再び切り出した。  (6) The product was subjected to electrophoresis in the same manner as in 2) above. Only the band corresponding to the length from A to B was cut out again.
( 7) シーケンサ一にて変異挿入を確認した。 又、 DNA量を定量した c 6) 標的核酸プローブ及び内部標準核酸プローブの作製 (7) Mutation insertion was confirmed by the sequencer. Further, c 6 DNA was quantified amount) Preparation of target nucleic acid probe and internal standard nucleic acid probe
表 2に示される NECB- 24は標的核酸プローブの塩基配列であり、 NECMB - 24は、 内部標準核酸プローブのものである。 本実施例においては、 標 的核酸プローブを NECB-24と、 内部標準核酸プローブを NECMB - 24と呼称 する。 NECB-24 shown in Table 2 is the base sequence of the target nucleic acid probe. -24 is for the internal standard nucleic acid probe. In this example, the target nucleic acid probe is called NECB-24 and the internal standard nucleic acid probe is called NECMB-24.
NECB- 24は、 前記に記載する方法にて 5 ' 末端を BODIPY FLで標識し、 NECMB- 24は、 前記に記載する方法にて 5 ' 末端を 6- TAMRAで標識した。 双方とも 3 ' 末端の 3 ' O H基をリン酸化して用いた。  NECB-24 was labeled at the 5 ′ end with BODIPY FL by the method described above, and NECMB-24 was labeled at the 5 ′ end with 6-TAMRA by the method described above. In both cases, the 3 'OH group at the 3' end was phosphorylated and used.
表中、 NECB- 24の 1 0、 1 1、 1 2及び 1 4番目の塩基 T、 G及び Aが、 NECMB- 24においては、 おのおの A、G、C及び Tに変異したものである。  In the table, the 10th, 11th, 12th and 14th bases T, G and A of NECB-24 are mutated to A, G, C and T respectively in NECMB-24.
7 ) P C Rは次の条件で行った。 7) PCR was performed under the following conditions.
·変性反応 : 95°C、 15sec  · Denaturation reaction: 95 ° C, 15sec
• ァニーリ ング及び検出 : 62°C、18sec  • Annealing and detection: 62 ° C, 18sec
-伸長 ( extention) : 72°C、14sec  -Extension: 72 ° C, 14sec
■ Taqポリメラーゼ : Gene Taq (日本ジーン株式会社)  ■ Taq polymerase: Gene Taq (Nippon Gene Co., Ltd.)
' プライマー添加濃度 : 500nM、 前記 e及び ί (図 1及び表 1参照) ' プローブ添加濃度 : 50ηΜ  'Primer addition concentration: 500 nM, e and 前 記 above (see Fig. 1 and Table 1)' Probe addition concentration: 50ηΜ
•铸型核酸 (Template) : 内部標準核酸 NECM1及び標的核酸 NECB 1の PCR 断片 ( a及び bプラマーをセッ トにして PCR増幅産物 :約 700bp) の混合 液  • Type 核酸 nucleic acid (Template): mixture of PCR fragment of internal standard nucleic acid NECM1 and target nucleic acid NECB1 (PCR amplification product with a and b primer set: about 700 bp)
• 測定装置:スマートサイクラ一システム (タカラバイオ株式会社) (以 下、 便宜上、 スマートサイクラ一とレヽう。 ) 。  • Measuring device: Smart Cycler System (Takara Bio Inc.) (hereinafter referred to as Smart Cycler for convenience).
•使用チャンネル :  • Use channel:
チヤンネル 1 (Ex、450〜495nm ; Em、505〜537nm)。  Channel 1 (Ex, 450-495 nm; Em, 505-537 nm).
チヤンネル 3 (Ex、527〜555nm ; Em、565〜605nm)。  Channel 3 (Ex, 527-555 nm; Em, 565-605 nm).
チャンネル 1で BOD IPY FLの蛍光強度測定を行い、 同時にチャンネル 3で 6- TAMRAの蛍光強度測定を行った。 8 ) 土壌からの DNAの抽出 The fluorescence intensity of BOD IPY FL was measured in channel 1 and the fluorescence intensity of 6-TAMRA was measured in channel 3 at the same time. 8) Extraction of DNA from soil
BiolOlキッ ト (土壌用) を用いて土壌から標的核酸を抽出して、 更に Wizard DNA Clean- Up systemを用いて精製したものを土壌サンプル (試料) と した。  The target nucleic acid was extracted from the soil using the BiolOl kit (for soil), and further purified using the Wizard DNA Clean-Up system to obtain a soil sample (sample).
B) 実験例 B) Experimental example
1 ) 作製プローブの評価  1) Evaluation of fabricated probe
標的核酸プローブ NECB-24及び内部標準核酸プローブ NECMB-24の対応 核酸 (標的核酸又は内部標準核酸) とハイブリダィズしたときの蛍光強 度変化 (減少) 率と解離曲線を作成した。 反応用バッファ一は P C R反 応で用いるものと同じものを使用した。  Correspondence of target nucleic acid probe NECB-24 and internal standard nucleic acid probe NECMB-24 Corresponding nucleic acid (target nucleic acid or internal standard nucleic acid) Fluorescence intensity change (decrease) rate and dissociation curve when hybridized. The same reaction buffer as that used in the PCR reaction was used.
その結果を図 2及び 3に示した。 両プローブとも最大蛍光強度変化率 は約 7 0 %であり、 まずまずの変化率を示した。 NECB-24は標的核酸と 内部標準核酸との Tm値の差は、 2 0°C弱であり、 6 2 °C付近で検出す れば、 内部標準核酸を検出せずに標的核酸のみを検出できることが明ら かとなつた。 又、 同様に NECMB-24は内部標準核酸と標的核酸との Tm値 の差は、 2 0°C弱であり、 6 2 °C付近で検出すれば、 標的核酸を検出せ ずに標的核酸のみを検出できることが明らかとなった。 それで、 両プロ ーブとも P C Rの増幅産物の検出は、 6 2 °Cで行なうことにした。  The results are shown in FIGS. The maximum fluorescence intensity change rate of both probes was about 70%, indicating a reasonable change rate. In NECB-24, the difference in Tm value between the target nucleic acid and the internal standard nucleic acid is slightly less than 20 ° C, and if it is detected around 62 ° C, only the target nucleic acid is detected without detecting the internal standard nucleic acid. It became clear that we could do it. Similarly, in the case of NECMB-24, the difference between the Tm value of the internal standard nucleic acid and the target nucleic acid is slightly less than 20 ° C, and if detected at around 62 ° C, only the target nucleic acid is detected without detecting the target nucleic acid. It was found that can be detected. Therefore, detection of PCR amplification products was performed at 62 ° C. for both probes.
2) プローブの特異性  2) Specificity of probe
前記 A) の 7 ) に記載の P C R反応条件にて、 NECB-24を核酸プロ一 ブ、 プライマーと して前記 a、 bを使用して、 標的核酸の P C Rを行な つた際のリアルタイムモニタリ ングした結果を図 4に示した。 又、 同様 に NECMB- 24を核酸プローブ、 プライマーと して、 前記 c、 dを使用して、 内部標準核酸の P C Rを行なった際のリ アルタイムモニタ リ ングした 結果を図 5に示した。 両プローブとも約 3 0 %との高い蛍光強度変化率 (蛍光消光率) を示すことが分かった。 又、 両プローブともに、 標的核 酸と内部標準核酸の混合比に応じ、 得られる蛍光強度変化率が変化した。 この結果より、 本方法により、 定量的に標的核酸の定量が行えるものと 考えられた。 Under the PCR reaction conditions described in 7) of A) above, real-time monitoring of PCR of the target nucleic acid using NECB-24 as the nucleic acid probe and primers a and b above The results are shown in FIG. Similarly, FIG. 5 shows the results of real-time monitoring when PCR of the internal standard nucleic acid was performed using the above c and d with NECMB-24 as the nucleic acid probe and primer. High fluorescence intensity change rate of about 30% for both probes (Fluorescence quenching rate). In both probes, the obtained fluorescence intensity change rates varied depending on the mixing ratio of the target nucleic acid and the internal standard nucleic acid. From these results, it was considered that the target nucleic acid could be quantitatively quantified by this method.
3 ) D N A濃度と蛍光強度変化率の関係式の作成 3) Formulation of relational expression between DNA concentration and fluorescence intensity change rate
種々の D N A濃度における蛍光強度変化率を前記両プローブで測定 した。 その結果を図 6 A及び 6 Bに示した (この図の作製に当たり、 前 記の本発明のデータ解析方法の記載の処理を行い蛍光強度変化率を求 めた。 ) 。  The rate of change in fluorescence intensity at various DNA concentrations was measured with both probes. The results are shown in FIGS. 6A and 6B (in preparing this figure, the processing described in the data analysis method of the present invention described above was performed to determine the fluorescence intensity change rate.).
各図から、 未知試料中の標的核酸の濃度若しくはコピー数を求める方 法について以下に記す。 先ず、 標的核酸を含む未知試料にコピー数の判 明している内部標準核酸、 及び標的核酸プローブ並びに内部標準核酸プ ローブを添加して、 P C Rを行う。 双方の核酸の増幅が反応系の蛍光強 度変化から目視可能となったとき、 双方の核酸の蛍光強度変化率を求め る。 当該蛍光強度変化率を図 6 A及び 6 Bに当てはめて、 当該蛍光変化 率を示すときの増幅された内部標準核酸量 (Aとする。 ) 及び標的核酸 量 (Bとする。 ) を求める。 内部標準核酸量の核酸増幅前のコピー数を A ' とすると、 標的核酸の増幅前のコピー数 B ' とする。 B ' は次式で 求めることが出来る :  The method for determining the concentration or copy number of the target nucleic acid in the unknown sample from each figure is described below. First, an unknown sample containing a target nucleic acid is added with an internal standard nucleic acid whose copy number is known, a target nucleic acid probe and an internal standard nucleic acid probe, and PCR is performed. When the amplification of both nucleic acids becomes visible from the change in the fluorescence intensity of the reaction system, the change rate of the fluorescence intensity of both nucleic acids is determined. By applying the rate of change in fluorescence intensity to FIGS. 6A and 6B, the amount of amplified internal standard nucleic acid (referred to as A) and the amount of target nucleic acid (referred to as B) when indicating the rate of change in fluorescence are determined. Assuming that the copy number of the internal standard nucleic acid before the nucleic acid amplification is A ', the copy number of the target nucleic acid before the amplification is B'. B 'can be obtained by the following equation:
B ' = ( B / A ) A '  B '= (B / A) A'
4 ) 従来の検量線を用いたスマートサイクラーによる標的核酸の定量 既知濃度の標的遺伝子サンプルに、 実際に土壌試料から抽出した核酸 抽出試料を、 濃度を変えて混合し、 正確に定量を行なえるかどうか検討 した。 、 内部標準核酸プローブと標的核酸プローブは、 双方とも、 反応 チューブに添加し、 それぞれ内部標準核酸と標的核酸を同時に検出した。 先ず、 既知濃度の外部標準遺伝子 (necl遺伝子) により検量線を作成 した (図 7 A、 7 B) 。 土壌から抽出した核酸を含む試料 0 μ 1 、 1 μ 1 、 2 μ 1 、 3 1 に、 6, 6 9 0 , 0 0 0コピーの標的遺伝子 (necl 遺伝子) を添加したものを铸型と し、 本サンプル中の necl遺伝子の定量 を、 前記の検量線を用いて行なった。 その結果、 入れる土壌試料の量が 多くなるに応じて、 グラフが右にシフ トすること、 つまり増幅が遅れて 起こることが明らかになった (図 8 ) 。 この遅れによりに C t値が上昇 し、 その結果、 定量値は実際に添加した標的遺伝子 (necl遺伝子) より も低く算出される事が分かった (表一 3参照) 。 以上の結果より、 従来 の外部標準遺伝子による検量線を用いた既存法 (リアルタイム定量的 P C R法) では、 P C R阻害物質を含むサンプルについて、 標的遺伝子の 定量を正確に行えないことが明らかとなつた。 表 3 方法の相違による標的核酸のコピー数の相違 4) Quantification of target nucleic acid by a smart cycler using a conventional calibration curve Can a nucleic acid extract sample actually extracted from a soil sample be mixed with a known concentration of a target gene sample at different concentrations to accurately quantify it? I considered. The internal standard nucleic acid probe and the target nucleic acid probe were both added to a reaction tube, and the internal standard nucleic acid and the target nucleic acid were simultaneously detected, respectively. First, a calibration curve was prepared using known concentrations of the external standard gene (necl gene) (Figs. 7A and 7B). Samples containing nucleic acids extracted from soil 0 μl, 1 μl, 2 μl, 31 plus 6,690,000 copies of the target gene (necl gene) were added as type II. The quantification of the necl gene in this sample was performed using the above calibration curve. As a result, it became clear that the graph shifted to the right as the amount of soil sample to be added increased, that is, amplification occurred later (Fig. 8). This delay increased the Ct value, and as a result, the quantitative value was found to be calculated lower than the actually added target gene (necl gene) (see Table 13). From the above results, it was clarified that the existing method (real-time quantitative PCR) using a calibration curve based on an external standard gene could not accurately quantify the target gene in samples containing PCR inhibitors. . Table 3 Difference in copy number of target nucleic acid due to difference in method
(カツコ内は標準偏差値)  (The standard deviation is shown in Katsuko)
Figure imgf000093_0001
Figure imgf000093_0001
なお、 表 3の各方法の数値は、 分析回数を 5回づっ行って得た数値の平 均値である。  The values for each method in Table 3 are the average values obtained by performing the analysis five times.
5 ) 本発明方法を用いたスマートサイクラ一による標的核酸の定量 本発明の内部標準核酸を添加した方法により、 標的核酸の増幅前のコ ピー数を求めた。 表 3に方法の相違による定量値の相違を示した。 その 結果、 入れる土壌試料の量が多くなるに応じてグラフが右にシフ トする のは前記と同様であるが、 本発明では、 増幅効率の低下 (増幅の遅れ) が観察されたが、 内部標準遺伝子の増幅も同様に低下したため、 添加し た標的遺伝子量と本発明方法による定量値とがほぼ一致することが明 らかになつた。 5) Quantification of target nucleic acid by smart cycler using the method of the present invention The number of copies of the target nucleic acid before amplification was determined by the method of adding the internal standard nucleic acid of the present invention. Table 3 shows the differences in the quantitative values due to the differences in the methods. As a result, the graph shifts to the right as more soil sample is added. In the present invention, a decrease in amplification efficiency (delay in amplification) was observed, but the amplification of the internal standard gene was similarly reduced. It became clear that the quantitative values were almost the same.
以上の結果より、 内部標準核酸を添加し、 標的核酸及び内部標準核酸 由来の蛍光強度の変化量若しくは変化率から、 標的核酸の濃度若しくは コピー数を求める本発明の新規測定方法の有用性が明らかになった。 又、 本発明の方法の標準偏差値は、 従来のリアルタイム定量的 P C R法のそ れより小さく、 定量値のぶれが小さいことが明らかとなった。 これらの 結果から、 P C R阻害物質が存在する場合は勿論のこと、 存在しない場 合においても、 その正確性において従来法に対する本発明の優位性が証 明された。  From the above results, the usefulness of the novel measurement method of the present invention, in which the concentration or copy number of the target nucleic acid is determined from the change amount or change rate of the fluorescence intensity derived from the target nucleic acid and the internal standard nucleic acid by adding the internal standard nucleic acid, Became. Further, it was revealed that the standard deviation value of the method of the present invention was smaller than that of the conventional real-time quantitative PCR method, and the fluctuation of the quantitative value was small. From these results, it was proved that the present invention is superior to the conventional method in the accuracy in the presence of the PCR inhibitor, as well as in the absence thereof.
6 ) モデル系で本発明方法の実施  6) Implementation of the method of the present invention in a model system
前記実験例を踏まえて、 標的核酸と内部標準核酸の添加比を変化させ、 それぞれの P C Rの増幅産物を前記二種のプローブの蛍光強度変化量 をリアルタイムモニタ リ ングした。 その結果、 添加比に応じて蛍光強度 変化量が得られることを確認した。  Based on the experimental examples, the addition ratio of the target nucleic acid to the internal standard nucleic acid was changed, and the amplification products of each PCR were monitored in real time for the change in the fluorescence intensity of the two types of probes. As a result, it was confirmed that the amount of change in fluorescence intensity was obtained according to the addition ratio.
7 ) 実際の土壌試料についての定量  7) Quantification of actual soil samples
前記実験例を踏まえて、 標的遺伝子 (nec l遺伝子) のコピー数が未知 である土壌試料 (標的核酸を含む。 ) について、 既知量の内部標準核酸 を用いて定量した。  Based on the above experimental example, a soil sample (including a target nucleic acid) whose copy number of the target gene (necl gene) is unknown was quantified using a known amount of an internal standard nucleic acid.
土壌抽出核酸試料 1 μ 1及び 2 μ 1 に、 内部標準核酸を 6 6 . 9コピ 一ほど測定系に添加し、 標的遺伝子 (nec l遺伝子) の定量を本発明の方 法にて行った。 その結果、 土壌抽出核酸試料を 1 μ 1添加した系では、 6 7 . 5 コピーと定量された。 又、 土壌抽出核酸試料を 2 μ 1添加した 系の定量値は 1 4 2. 5コピーであった。 本定量値は、 土壌抽出核酸試 料を 1 μ 1添加した系の約 2倍であることから、 ほぼ正確に土壌抽出核 酸試料中の標的遺伝子 (necl遺伝子) を定量出来ているものと判断され る。 To 1 μl and 2 μl of the nucleic acid sample extracted from soil, about 66.9 copies of an internal standard nucleic acid was added to the measurement system, and the target gene (necl gene) was quantified by the method of the present invention. As a result, in the system to which 1 μl of the nucleic acid sample extracted from soil was added, the amount was determined to be 67.5 copies. In addition, 2 μl of the nucleic acid sample extracted from soil was added. The quantitative value of the system was 142.5 copies. Since this quantitative value is about twice that of the system containing 1 μl of the soil extract nucleic acid sample, it is judged that the target gene (necl gene) in the soil extract nucleic acid sample was almost accurately quantified. Is performed.
実施例 2 Example 2
Mergneyらのプローブを用いて、 実施例 1 と同様の検討を行った。  Using the probe of Mergney et al., The same examination as in Example 1 was performed.
1 ) プローブの合成 1) Probe synthesis
プローブの合成は、 (株) 日本遺伝子研究所 (http:〃冊 ngrl. co. j p/) によって合成されたものを使用した。  For the synthesis of the probe, a probe synthesized by Japan Genetic Research Institute (http: ngrl. Co. Jp /) was used.
2 ) 内部標準核酸 (DNA遺伝子) 2) Internal standard nucleic acid (DNA gene)
実施例 1 と同様である。 This is the same as in the first embodiment.
3 ) 標的核酸プローブ及び内部標準核酸プローブの作製  3) Preparation of target nucleic acid probe and internal standard nucleic acid probe
表 4に示される NECB- 24 acceptorの塩基配列は実施例 1に記載の標 的核酸プローブの塩基配列であり、 NECMB-24 acceptorの塩基配列は、 前記同様に実施例 1に記載の内部標準核酸プローブのものである。 本実 施例においては、 標的核酸プローブを NECB- 24 acceptorと、 内部標準核 酸プローブを NECMB - 24 acceptorと呼称する。 NECB-24 acceptorは、 5 ' 末端を LCRed640と呼ばれる蛍光色素で標識したもの、 NECMB-24 accepto rは、 5 ' 末端を LCRed705と呼ばれる蛍光色素で標識したものである。 双方とも 3 ' 末端の 3 ' OH基をリン酸化した。 上記の 2種のプローブ に修飾した蛍光色素 (LCRed705、LCRed640) は、 F R E T現象のァクセ プター色素と して機能する。 これら色素を励起するために必要なドナー 色素を修飾したプローブが、 Nec-dono rである (配列は表 4参照) 。 当 該プローブの 3 ' 末端は F I T Cにして修飾されており、 それぞれの標 的遺伝子が存在した場合、 色素標識部位が互いに向き合うように、 2塩 基間隔を置いてハイブリダィズするように設計されている (図 9参照) 。 この様(こ、 Nec— donorと NECB—24 acceptorあるレヽ fま、 Nec— donorと NECMB— 24 acceptorが隣接してハイブリダィズした場合、 F R E T現象が発生 し、 蛍光キャラクターが大きく変化する。 この変化量から、 それぞれの プローブセッ トの対応核酸を検出することが出来る。 The nucleotide sequence of the NECB-24 acceptor shown in Table 4 is the nucleotide sequence of the target nucleic acid probe described in Example 1, and the nucleotide sequence of the NECMB-24 acceptor is the internal standard nucleic acid described in Example 1 as described above. It is that of a probe. In this embodiment, the target nucleic acid probe is referred to as NECB-24 acceptor, and the internal standard nucleic acid probe is referred to as NECMB-24 acceptor. The NECB-24 acceptor has its 5 'end labeled with a fluorescent dye called LCRed640, and the NECMB-24 acceptor has its 5' end labeled with a fluorescent dye called LCRed705. Both phosphorylated the 3 'OH group at the 3' end. Fluorescent dyes (LCRed705, LCRed640) modified with the above two types of probes function as receptor dyes for the FRET phenomenon. The probe modified with the donor dye necessary to excite these dyes is Necdon (see Table 4 for the sequence). The 3 'end of the probe is modified to FITC, and when the respective target genes are present, the two salts are placed so that the dye-labeled sites face each other. It is designed to hybridize at a base interval (see Fig. 9). In this way, if the Nec-donor and NECB-24 acceptor are adjacent to each other and the Nec-donor and NECMB-24 acceptor are hybridized adjacent to each other, the FRET phenomenon occurs and the fluorescent character changes significantly. Thus, the corresponding nucleic acid of each probe set can be detected.
又、 当該プローブの塩基配列は、 NECMB- 24 acceptorにおいては、 実 施例 1で用レヽた NECMB— 24と同様であり、 NECB— 24 acceptoi こおレヽて fま、 実施例 1で用いた NECB- 24と同様である。 表 4 Mergneyらのプロ一ブの配列  The base sequence of the probe is the same as that of NECMB-24 used in Example 1 in the NECMB-24 acceptor, and the base sequence of NECB-24 acceptoi is the same as that of NECB-24 used in Example 1. -Same as 24. Table 4 Sequence of the probe of Mergney et al.
Figure imgf000096_0001
4 ) P C Rは、 以下に記述した以外の条件は、 実施例 1 と同様の条件で 行った。 '各プローブ (NECB- 24 acceptor, NECBM - 24 acceptor, ec-don or) 添加濃度 : 200nM
Figure imgf000096_0001
4) PCR was performed under the same conditions as in Example 1 except for the conditions described below. 'Additional concentration of each probe (NECB-24 acceptor, NECBM-24 acceptor, ec-don or): 200nM
• 測定装置 : ライ トサイクラ一システム (口ッシュ株式会社) (以下、 便宜上、 ライ トサイクラ一という。 ) 。  • Measuring device: Light cycler system (Kuchishu Co., Ltd.) (hereinafter referred to as light cycler for convenience).
'使用した蛍光測定用チャンネル  '' Fluorescence measurement channel used
チャンネノレ 2 (Ex、470〜490nm;Em、 640nra) 。  Channel 2 (Ex, 470-490 nm; Em, 640nra).
チャンネノレ 3 (Ex、470〜490nm;Em、 710nm)。  Channel 3 (Ex, 470-490 nm; Em, 710 nm).
チャンネ /レ 2で LCRed640の測定を行い、 同時にチヤンネル 3で LCRed7 05の蛍光測定を行った。  The LCRed640 was measured in channel 2 and the fluorescence of LCRed705 was measured in channel 3 at the same time.
5 ) 土壌からの D NAの抽出 実施例 1 と同様の方法で実施した。 5) Extraction of DNA from soil This was carried out in the same manner as in Example 1.
B ) 実験例 B) Experimental example
1 ) 作製プローブの評価  1) Evaluation of fabricated probe
標的核酸プローブ (Nec- donorと NECB- 24 acceptorのセッ ト) 及び内 部標準核酸プローブ (Nec- donorと NECMB-24 acceptorのセッ ト) の対応 核酸 (標的核酸又は内部標準核酸) とハイブリダィズしたときのァクセ プター蛍光変化率と解離曲線を作成することによ り作製プローブの評 価を行った。 反応用バッファーは P C R反応で用いるものと同じものを 使用した。  Correspondence of target nucleic acid probe (set of Nec-donor and NECB-24 acceptor) and internal standard nucleic acid probe (set of Nec-donor and NECMB-24 acceptor) When hybridized with nucleic acid (target nucleic acid or internal standard nucleic acid) The produced probe was evaluated by preparing the change rate of the fluorescence of the receptor and the dissociation curve. The same reaction buffer as that used in the PCR reaction was used.
その結果を図 1 0及び 1 1に示した。 両プローブともァクセプター蛍 光強度増加化率は約 4 0 %であり、 顕著にァクセプターの蛍光強度が増 加した。 実施例 1で使用した NECB- 24及び NECMB - 24と同様、 完全相補的 な核酸 (標的核酸と標的核酸プローブ、 又、 内部標準核酸と内部標準核 酸プローブ) とミスマッチを有する核酸との T m値の差は、 2 0 °C弱で あり、 6 2 °C付近で検出すれば、 ミスマッチを有する核酸 (標的核酸と 内部標準核酸プローブ、 又、 内部標準核酸と標的核酸プローブ) を検出 せずに完全相補的な核酸のみを検出できることが明らかとなった。 以上 の結果より、 実施例 1 と同様、 両プローブとも P C Rの増幅産物の検出 は、 6 2 °Cで行なうことにした。  The results are shown in FIGS. 10 and 11. The increase in the fluorescent intensity of the acceptor was about 40% for both probes, and the fluorescent intensity of the acceptor was remarkably increased. As in the case of NECB-24 and NECMB-24 used in Example 1, the T m of a completely complementary nucleic acid (a target nucleic acid and a target nucleic acid probe, or an internal standard nucleic acid and an internal standard nucleic acid probe) and a mismatched nucleic acid The difference between the values is slightly lower than 20 ° C. If detected at around 62 ° C, the mismatched nucleic acid (target nucleic acid and internal standard nucleic acid probe, or internal standard nucleic acid and target nucleic acid probe) will not be detected. It was clarified that only a nucleic acid completely complementary to DNA could be detected. From the above results, as in Example 1, the detection of PCR amplification products for both probes was performed at 62 ° C.
2 ) 標的核酸と内部標準核酸の濃度比に対する標的核酸由来の蛍光強度 増加率と内部標準核酸由来の蛍光強度増加率との関係式の作成 2) Formulating the relational expression between the increase rate of the fluorescence intensity derived from the target nucleic acid and the increase rate of the fluorescence intensity derived from the internal standard nucleic acid with respect to the concentration ratio of the target nucleic acid and the internal standard nucleic acid
標的核酸 (塩基配列と添加する濃度が判明しているので、 標準核酸と いうべきであるが、 本発明においては、 便宜上、 標的核酸と称すること にした。 ) と内部標準核酸 (濃度比を様々に変化させたもの) を铸型と して、 前記実施例 1の A ) の 7 ) に記載の反応条件にて、 P C Rを実施 し、 標的核酸由来の増幅産物と内部襟準核酸由来の増幅産物とを、 それ ぞれ Mergneyらのプローブにてリアルタイムモニタ リ ングした。 その結 果から、 標的核酸の増幅産物由来の蛍光強度増加率 (NECB-24 acceptor プローブの蛍光強度増加率) と内部標準核酸の増幅産物由来の蛍光強度 増加率 (NECMB- 24 acceptorプローブの蛍光強度増加率) との比を求め、 それを P C R前の標的核酸と内部標準核酸の濃度比との関係を求めた (図 1 2参照) 。 その結果、 P C R前の標的核酸と内部標準核酸の濃度 比と、 標的核酸の増幅産物由来の蛍光強度増加率と内部標準核酸の増幅 産物由来の蛍光強度増加率との比との間に高い相関があることが明ら かとなつた。 従って、 本関係式から P C R前の標的核酸と内部標準核酸 の濃度比を知ることが出来ることが示された。 尚、 この図の作製に当た り、 前記の本発明のデータ解析方法の記載の処理を行い、 蛍光強度変化 率を求めた。 Since the target nucleic acid (base sequence and the concentration to be added are known, it should be called a standard nucleic acid, but in the present invention, it is referred to as a target nucleic acid for convenience.) PCR was performed under the reaction conditions described in 7) of A) of Example 1). Then, the amplification product derived from the target nucleic acid and the amplification product derived from the internal nucleic acid were respectively monitored in real time by the probes of Mergney et al. From the results, the fluorescence intensity increase rate derived from the amplification product of the target nucleic acid (the fluorescence intensity increase rate of the NECB-24 acceptor probe) and the fluorescence intensity increase rate derived from the amplification product of the internal standard nucleic acid (the fluorescence intensity of the NECMB-24 acceptor probe) The ratio between the target nucleic acid and the internal standard nucleic acid before PCR was determined (see Figure 12). As a result, there is a high correlation between the concentration ratio of the target nucleic acid before PCR and the internal standard nucleic acid, and the ratio between the increase rate of the fluorescence intensity derived from the amplification product of the target nucleic acid and the fluorescence intensity derived from the amplification product of the internal standard nucleic acid. It became clear that there was. Therefore, it was shown from this relational equation that the concentration ratio between the target nucleic acid and the internal standard nucleic acid before PCR can be known. In preparing this figure, the processing described in the data analysis method of the present invention described above was performed, and the rate of change in fluorescence intensity was determined.
図 1 2から、 未知試料中の標的核酸の濃度若しくはコピー数を求める 方法について以下に記す。 先ず、 標的核酸を含む未知試料にコピー数の 判明している内部標準核酸、 及び標的核酸プローブ並びに内部標準核酸 プローブを添加して、 P C Rを行う。 双方の核酸の増幅が反応系の蛍光 強度変化から目視可能となったとき、 双方の核酸の増幅産物由来の蛍光 強度増加率を求める。 当該蛍光強度増加率から、 標的核酸の増幅産物由 来の蛍光強度増加率と内部標準核酸の増幅産物由来の蛍光強度増加率 を求める。 この比を図 1 2に当てはめて、 標的核酸 (B ) と内部標準核 酸 (A ) の比 (B Z A ) を求める。 内部標準核酸量の核酸増幅前のコピ —数 (Α ' ) は既知であるので、 標的核酸の増幅前のコピー数 (Β ' ) は次式で求めることが出来る :  The method for determining the concentration or copy number of the target nucleic acid in the unknown sample from Fig. 12 is described below. First, an unknown sample containing a target nucleic acid is added with an internal standard nucleic acid having a known copy number, a target nucleic acid probe, and an internal standard nucleic acid probe, and PCR is performed. When the amplification of both nucleic acids becomes visible from the change in the fluorescence intensity of the reaction system, the rate of increase in the fluorescence intensity derived from the amplification products of both nucleic acids is determined. From the fluorescence intensity increase rate, the fluorescence intensity increase rate derived from the amplification product of the target nucleic acid and the fluorescence intensity increase rate derived from the amplification product of the internal standard nucleic acid are determined. By applying this ratio to FIG. 12, the ratio (BZA) between the target nucleic acid (B) and the internal standard nucleic acid (A) is determined. Since the copy number (Α ') of the internal standard nucleic acid before nucleic acid amplification is known, the copy number (Β') of the target nucleic acid before amplification can be calculated by the following formula:
Β ' = ( B / A ) A ' 3 ) 従来方法による外部標的 (標準) 核酸 (遺伝子) の検量線を用いた ライ トサイクラ一による標的核酸の定量 Β '= (B / A) A' 3) Quantification of target nucleic acid by light cycler using calibration curve of external target (standard) nucleic acid (gene) by conventional method
Mergneyらのプローブを用いた以外、 実施例 1 と同様のサンプル、 同 様の条件にて、 既知濃度の標的遺伝子サンプルに、 実際に土壌試料から 抽出した核酸抽出試料 (以下、 土壌抽出核酸抽試料という場合がある。 ) を、 濃度を変えて混合し、 正確に定量を行なえるかどうか検討した。 な お、 使用する土壌は、 標的遺伝子である Nec l遺伝子を含まないことを予 め確認して用いた。 又、 内部標準核酸の検出用プローブ (NECMB- 24 ac ceptor) と標的核酸プローブ (NECB-24 acceptor) 及び Nec - donorは、 双方とも、 反応チューブに添加し、 それぞれ内部標準核酸と標的核酸を 同時に検出した。  Except for using the probe of Mergney et al., Under the same conditions and under the same conditions as in Example 1, a nucleic acid extraction sample actually extracted from a soil sample was added to a target gene sample with a known concentration (hereinafter referred to as a soil extraction nucleic acid extraction sample). Were mixed at different concentrations to determine whether accurate quantification could be performed. The soil used was confirmed beforehand to be free of the Necl gene, which is the target gene. Also, the internal standard nucleic acid detection probe (NECMB-24 acceptor), the target nucleic acid probe (NECB-24 acceptor) and the Nec-donor were both added to the reaction tube, and the internal standard nucleic acid and target nucleic acid were simultaneously added, respectively. Detected.
先ず、 土壌から抽出した核酸を含む試料 3 μ 1 に 6. 690, 000コピーの Ν ee l遺伝子を添加し、 nec l遺伝子の定量を行なった。 又、 土壌抽出核酸 試料を添加せず、 同数の nec l遺伝子を添加したサンプルについても、 ne c l遺伝子の定量を行った。 その結果、 実施例 1 と同様、 土壌抽出核酸試 料を添加したものは、 土壌抽出核酸試料を添加しなかったサンプルに比 ベて、 増幅が遅れて起こることが明らかとなった。 この結果より、 土壌 抽出核酸試料には、 増幅効率を低下させる P C R阻害物質が含まれてい ることが示唆された。 この遅れによりに、 C t値が大きくなり、 その結 果、 定量値は低く算出される事が分かった (表 5参照) 。 以上の結果よ り、 外部標的核酸 (遺伝子) の検量線を用いた従来方法 (リアルタイム 定量的 P C R方法) では、 P C R阻害物質を含むサンプルについては正 確に標的遺伝子の定量を行えないことが明らかとなった。  First, 6.690,000 copies of the eel gene were added to 3 μl of a sample containing nucleic acid extracted from soil, and the necl gene was quantified. The necl gene was also quantified for a sample to which the same number of necl genes had been added without adding the soil-extracted nucleic acid sample. As a result, as in Example 1, it was clarified that the amplification with the addition of the nucleic acid sample extracted from the soil occurred later than the sample without the nucleic acid sample added with the soil. This result suggests that the nucleic acid sample extracted from soil contains a PCR inhibitor that reduces amplification efficiency. This delay caused the Ct value to increase, and as a result, the quantitative value was calculated to be low (see Table 5). From the above results, it is clear that the conventional method (real-time quantitative PCR method) using the calibration curve of the external target nucleic acid (gene) cannot accurately quantify the target gene for samples containing PCR inhibitors. It became.
4 ) 本発明方法を用いたライ トサイクラ一による標的核酸の定量  4) Quantification of target nucleic acid by light cycler using the method of the present invention
本発明の内部標準核酸を添加した方法を、 Mergne yらのプローブを用 いて実施し、 標的核酸の増幅前のコピー数を求めた。 表 5に方法の相違 による測定値の相違を示した。 その結果、 土壌抽出核酸試料を添加した サンプルでは、 前記の従来方法 (リ アルタイム定量的 P C R法) と同様. 増幅効率の低下 (増幅反応の遅れ) が観察されたが、 内部標準遺伝子の 増幅効率も同様に低下したため、 測定値が一定となることが明らかにな つた。 この結果より、 内部標準核酸を添加し、 標的核酸及び内部標準核 酸由来の蛍光強度の変化量若しくは変化率から、 標的核酸の濃度若しく はコピー数を求める本発明の新規測定方法が、 Mergneyらのプローブを 用いても有効であることが明らかになった。 The method of adding the internal standard nucleic acid of the present invention was performed using the probe of Mergney et al. And the copy number of the target nucleic acid before amplification was determined. Table 5 shows the differences in the measured values due to the differences in the methods. As a result, in the sample to which the nucleic acid sample extracted from soil was added, similar to the above-described conventional method (real-time quantitative PCR). A decrease in amplification efficiency (delay in amplification reaction) was observed, but amplification of the internal standard gene was observed. Efficiency also decreased, indicating that the measurements remained constant. From these results, the novel measurement method of the present invention for adding the internal standard nucleic acid and determining the concentration or the copy number of the target nucleic acid from the change amount or the change rate of the fluorescence intensity derived from the target nucleic acid and the internal standard nucleic acid is described by Mergney It was found that using these probes was effective.
なお、 表 5の各方法の数値は、 分析回数を 5回ずつ行って得た数値の 平均値である。 表 5 方法の相違による標的核酸 (遺 測定値の相違  The values for each method in Table 5 are the average values obtained by performing the analysis five times. Table 5 Target nucleic acids due to differences in methods
(使用プローブ: Mergneyらのプローブ)  (Probe used: Mergney et al. Probe)
Figure imgf000100_0001
Figure imgf000100_0001
5 ) 実際の土壌試料についての測定 5) Measurement on actual soil samples
前記実験例を踏まえて、 標的遺伝子 (necl遺伝子) のコピー数が未知 である土壌試料について、 既知量の内部標準核酸を用いて当該コピー数 を測定した。 使用した土壌サンプルは、 実施例 1の実際の土壌試料につ いての測定で用いたもの (土壌抽出溶液 1 1 当たり 6 7 . 5コピーの 標的遺伝子 (necl遺伝子) が存在すると測定されたサンプル) と同様で め 。 Based on the above experimental example, the copy number of the target gene (necl gene) was measured using a known amount of an internal standard nucleic acid for a soil sample whose copy number was unknown. The soil sample used was the one used in the measurement on the actual soil sample of Example 1 (67.5 copies per 11 soil extraction solution). The same as for the target gene (necl gene).
実施例 1 と同様、 土壌抽出核酸試料 1 μ 1及び 2 /i 1 に、 内部標準核 酸を 6 6. 9コピーほど測定系に添加し、 標的核酸 (遺伝子) (necl遺 伝子) の測定を本発明の方法にて行った。 その結果、 土壌抽出核酸試料 を 1 μ 1添加した系では、 8 3. 2コピーと測定された。 当該測定値は、 実施例 1の測定値 ( 6 7. 5コピー) とほぼ同様の測定値を示した。 又、 土壌抽出核酸試料を 2 μ 1添加した系の測定値は 1 5 2. 7コピーであ つた。 当該測定値は、 土壌抽出核酸試料を 1 // 1添加した系の約 2倍で あることから、 ほぼ正確に土壌抽出核酸試料中の標的遺伝子 (necl遺伝 子) を測定出来ているものと判断される。 以上の結果より、 Mergneyら のプローブを用いても、 土壌中の標的遺伝子を正確に測定できることが 強く示唆された。  As in Example 1, about 66.9 copies of the internal standard nucleic acid were added to 1 μl and 2 / i 1 of the nucleic acid sample extracted from soil, and the target nucleic acid (gene) (necl gene) was measured. Was performed by the method of the present invention. As a result, 83.2 copies were measured in the system to which 1 μl of the nucleic acid sample extracted from soil was added. The measured value was almost the same as the measured value of Example 1 (6.7.5 copies). The measured value of the system to which 2 μl of the nucleic acid sample extracted from soil was added was 152.7 copies. Since the measured value was about twice that of the system to which the soil-extracted nucleic acid sample was added in 1 // 1, it was judged that the target gene (necl gene) in the soil-extracted nucleic acid sample could be measured almost accurately. Is done. These results strongly suggest that the target gene in soil can be measured accurately even using the probe of Mergney et al.
実施例 3 Example 3
分子ビーコン (Molecular beacon)プローブ (前記の公知発明方法の ( 3 ) に記載) を用いて、 実施例 1、 2と同様の検討を行った。  The same study as in Examples 1 and 2 was performed using a molecular beacon probe (described in (3) of the above-mentioned known invention method).
1 ) プローブの合成 1) Probe synthesis
プローブは、 エスペックオリ ゴサービス株式会社(http:〃ww. busine ss - zone, cora/espec-ol igo/)によつて合成されたものを使用した。  The probe used was synthesized by Espec Origo Service Co., Ltd. (http: @ww. Busine ss-zone, cora / espec-oligo /).
2 ) 標的核酸プローブ及び内部標準核酸プローブ 2) Target nucleic acid probe and internal standard nucleic acid probe
表 6に示される NECB- 24 beaconの塩基配列は標的核酸プローブの塩 基配列であり、 NECM0- 24 beaconの塩基配列は、 内部標準核酸プローブ のものである。 NECB- 24 beaconは、 ステム 'ループ構造をとるよう 4塩 基ずつ塩基が付加されており、 5 ' 末端は、 FAMと呼ばれる蛍光色素で、 3 ' 末端は DABCYLと呼ばれるクェンチヤ一物質で、 それぞれ標識されて いる。 NECMB- 24 beaconも、 ステム ' ノレープ構造をとるよう 4塩基ずつ 塩基が付加されており、 5 ' 末端は、 6 — TAMRAと呼ばれる蛍光色素で、 3 ' 末端は DABCYLと呼ばれるクェンチヤ一物質で、 それぞれ標識されて いる。 The nucleotide sequence of NECB-24 beacon shown in Table 6 is the nucleotide sequence of the target nucleic acid probe, and the nucleotide sequence of NECM0-24 beacon is that of the internal standard nucleic acid probe. NECB-24 beacon has four bases added to form a stem 'loop structure.The 5' end is a fluorescent dye called FAM, and the 3 'end is a quencher substance called DABCYL. Been I have. NECMB-24 beacon also has 4 bases added to form a stem 'norepe structure, the 5' end is a fluorescent dye called 6-TAMRA, and the 3 'end is a quencher substance called DABCYL. It is labeled.
プローブ配列は表 6に示したとおりである。 表 6 Molecular beaconの配歹! 1  The probe sequence is as shown in Table 6. Table 6 Molecular beacon distribution! 1
(ァンダ一ラインを付した塩基配列が人工的に付加した塩基配列)  (Base sequence with artificial addition of base sequence with a line)
Figure imgf000102_0001
Figure imgf000102_0001
3 ) P C Rは、 以下に記述した以外の条件は、 実施例 2と同様の条件で 行った。 '各プローブ添加濃度: 200nM 3) PCR was performed under the same conditions as in Example 2, except for the conditions described below. 'Each probe addition concentration: 200nM
•測定装置:スマートサイクラ一システム (タカラバイォ株式会社) (以 下、 便宜上、 スマートサイクラ一という。 ) 。  • Measuring device: Smart Cycler System (Takara Bayo Co., Ltd.) (hereinafter referred to as “Smart Cycler” for convenience).
•使用チャンネル:  • Channel used:
チヤンネノレ 1 (Ex、450〜495nm;Em、505〜537nm)。  Cyannone 1 (Ex, 450-495 nm; Em, 505-537 nm).
チャンネノレ 3 (Ex、527〜555nm;Em、565〜605nm) 。  Channenore 3 (Ex, 527-555 nm; Em, 565-605 nm).
チャンネル 1で NECB- 24 beaconに標識した FAMの蛍光測定を行い、 同 時にチヤンネル 3で NECB- 24 beaconに標識した 6- TAMRAの蛍光測定を行 つた。  The fluorescence measurement of FAM labeled on NECB-24 beacon was performed on channel 1, and the fluorescence measurement of 6-TAMRA labeled on NECB-24 beacon was performed on channel 3 at the same time.
4) 土壌からの DNAの抽出  4) Extraction of DNA from soil
実施例 1 と同様の方法で実施した。  This was carried out in the same manner as in Example 1.
B) 実験例 1 ) 作製プローブの評価 B) Experimental example 1) Evaluation of fabricated probe
標的核酸プローブ (NECB- 24 beacon) 及び内部標準核酸プローブ (NE CMB-24 beacon)の対応核酸 (標的核酸又は内部標準核酸) とハイブリダ ィズしたときの蛍光強度増加率と解離曲線を作成した。 反応用バッファ 一は前記同様に P C R反応で用いるものと同じものを使用した。  A fluorescence intensity increase rate and a dissociation curve were prepared when the target nucleic acid probe (NECB-24 beacon) and the internal standard nucleic acid probe (NE CMB-24 beacon) were hybridized with the corresponding nucleic acid (target nucleic acid or internal standard nucleic acid). The same reaction buffer as that used in the PCR reaction was used as described above.
その結果を図 1 3及び 1 4に示した。 完全相補的な核酸を添加した場 合、 両プローブとも蛍光強度が約 2, 0 0 0 %増加した。 又、 ミスマツ チを有する核酸を添加した場合、 両プローブとも、 ほとんど蛍光強度の 増加が見られなかった。 この結果より、 両プローブともミスマッチを有 する核酸とはほどんどハイブリダィズしない (標的核酸と内部標準核酸 プローブとが、 また内部標準核酸と標的核酸プローブとがハイプリダイ ズしない) と判断された。 以上の結果より、 実施例 1と同様、 両プロー ブとも P C Rの増幅産物の検出は、 6 2 °Cで行なうことにした。  The results are shown in FIGS. 13 and 14. When perfectly complementary nucleic acid was added, the fluorescence intensity of both probes increased by about 2000%. When a nucleic acid having a mismatch was added, almost no increase in fluorescence intensity was observed for both probes. From these results, it was determined that both probes hardly hybridized with the mismatched nucleic acid (the target nucleic acid and the internal standard nucleic acid probe did not hybridize, and the internal standard nucleic acid and the target nucleic acid probe did not hybridize). Based on the above results, as in Example 1, detection of PCR amplification products was performed at 62 ° C. for both probes.
2 ) 標的核酸と内部標準核酸の濃度比に対する標的核酸由来の蛍光強度 増加率と内部標準核酸由来の蛍光強度増加率との関係式の作成 2) Formulating the relational expression between the increase rate of the fluorescence intensity derived from the target nucleic acid and the increase rate of the fluorescence intensity derived from the internal standard nucleic acid with respect to the concentration ratio of the target nucleic acid and the internal standard nucleic acid
標的核酸と内部標準核酸の濃度比に対する標的核酸由来の蛍光強度増 加率と内部標準核酸由来の蛍光強度増加率との関係式を実施例 2 と同 様の方法で求めた。 未知試料中の標的核酸の濃度若しくはコピー数を求 める方法も、 実施例 2と同様である。 The relational expression between the increase rate of the fluorescence intensity derived from the target nucleic acid and the increase rate of the fluorescence intensity derived from the internal standard nucleic acid with respect to the concentration ratio of the target nucleic acid and the internal standard nucleic acid was determined in the same manner as in Example 2. The method for determining the concentration or copy number of the target nucleic acid in the unknown sample is also the same as in Example 2.
3 ) Mo l ecular beaconをプローブとして用いた際の、 外部標準遺伝子の 検量線を用いた従来方法による標的核酸の測定結果と、 本発明の方法に よる標的核酸の測定結果との比較 3) Comparison of the target nucleic acid measurement result by the conventional method using the calibration curve of the external standard gene and the target nucleic acid measurement result by the method of the present invention when Molecular beacon is used as a probe
Mo l ecu lar beaconプローブを用いる以外、 実施例 1、 2と同様に測定 した。 サンプル、 同様の条件にて、 外部標準遺伝子の検量線を用いた従 来方法による標的核酸の測定結果と、 本発明の方法による標的核酸の測 定結果との比較を行った。 その結果、 土壌抽出核酸試料を添加した供試 サンプルでは、 実施例 1、 2 と同様、 増幅効率の低下 (増幅反応の遅れ) が観察されたが、 添加した標的核酸 (遺伝子) を正確に測定可能であつ た (表 7参照) 。 この結果より、 molecular beaconをプローブと して用 いても、 本発明の新規測定方法を、 好適に実施可能であることが明らか になつた。 表 7方法の相違による標的核酸 (遺伝子) 定量値の相違 The measurement was performed in the same manner as in Examples 1 and 2, except that the Molecular beacon probe was used. Under the same conditions as for the sample, the measurement results of the target nucleic acid by the conventional method using the calibration curve of the external standard gene and the measurement of the target nucleic acid by the method of the present invention. The results were compared with the results. As a result, a decrease in amplification efficiency (delay in the amplification reaction) was observed in the test sample to which the soil-extracted nucleic acid sample was added, as in Examples 1 and 2, but the added target nucleic acid (gene) was accurately measured. It was possible (see Table 7). From these results, it has been clarified that the novel measurement method of the present invention can be suitably performed even when molecular beacon is used as a probe. Table 7 Differences in quantitative values of target nucleic acids (genes) due to differences in methods
(使用プローブ: molecular beacon)  (Used probe: molecular beacon)
Figure imgf000104_0001
実施例 4
Figure imgf000104_0001
Example 4
前記の本願発明方法 Bの i ) 〜 i v ) の ( 1 ) 〜 ( 3 ) の特質を有す る核酸プローブを利用する方法を適用する実施例である。  This is an example in which the method using the nucleic acid probe having the characteristics (1) to (3) of i) to iv) of the method B of the present invention is applied.
1 ) 標的核酸及び内部標準核酸  1) Target nucleic acid and internal standard nucleic acid
実施例 1 と同様にした。  It was the same as in Example 1.
2 ) 標的核酸プローブの合成  2) Synthesis of target nucleic acid probe
前記実施例 1に記載の NECB - 24と同じ塩基配列と した (表 2参照) 。 そして、 5 ' 末端シチジル酸に蛍光物質テキサスレッ ド (Texas Red) を、 5 ' 末端から 6番目のチミンにクェンチヤ一物質 Dabcylを鎖中標識 した。  The nucleotide sequence was the same as that of NECB-24 described in Example 1 (see Table 2). The fluorescent substance Texas Red (Texas Red) was labeled on the 5 'terminal cytidylic acid, and the quencher substance Dabcyl was labeled on the sixth thymine from the 5' terminal.
当該核酸プローブの合成はエスぺックオリ ゴサービス社に委託した。 3 ) 内部標準核酸プローブの合成 The synthesis of the nucleic acid probe was outsourced to SK Oligo Service. 3) Synthesis of internal standard nucleic acid probe
前記実施例 1に記載の NECMB- 24と同じ塩基配列とし、 5 ' 末端シチジ ル酸に蛍光物質 Alexa 594を、 5 ' 末端から 6番目のチミンにクェンチ ヤー物質 Dabcylを鎖中標識した。 調製は標的核酸プローブと同様に委託 合成した。  The nucleotide sequence was the same as that of NECMB-24 described in Example 1, and the fluorescent substance Alexa 594 was labeled on the 5'-terminal cytidylic acid, and the quencher substance Dabcyl was labeled on the sixth thymine from the 5'-terminal. The preparation was commissioned in the same manner as the target nucleic acid probe.
4) 標的核酸と標的核酸プローブ、 及び内部標準核酸と内部標準核酸プ ローブのハイブリダイゼーシ 3ン条件:  4) Hybridization of target nucleic acid and target nucleic acid probe, and internal standard nucleic acid and internal standard nucleic acid probe
実施例 1 と同様にした。  It was the same as in Example 1.
5 ) 測定条件  5) Measurement conditions
励起波長及び測定蛍光波長は以下の通りである。  The excitation wavelength and the measured fluorescence wavelength are as follows.
•標的核酸プローブ:励起波長 : 590nm(4rim幅) ;測定蛍光波長: 610nra (4ηπιΦΙ) D • Target nucleic acid probe: excitation wavelength: 590 nm (4 rim width); measured fluorescence wavelength: 610 nra (4ηπιΦΙ) D
• 内部標準核酸プローブ:励起波長: 560nm(4nra幅) ;測定蛍光波長: 5 80nm(4nm幅) 。  • Internal standard nucleic acid probe: excitation wavelength: 560 nm (4 nra width); measured fluorescence wavelength: 580 nm (4 nm width).
6 ) 実際の土壌核酸抽出試料中の標的遺伝子 (necl遺伝子) の測定 土壌核酸抽出試料中の標的遺伝子 (necl遺伝子) を、 前記の本願発明 方法 Bの i ) 〜 i v ) の ( 1 ) 〜 ( 3 ) の特質を有する核酸プローブを 利用して、 実施例 1と同様の内部標準核酸を添加する P C R法を介した 遺伝子測定方法を実施して、 測定した。 P C R条件等は実施例 1 と同様 である。 その結果、 土壌核酸抽出試料 1 μ L中に含まれる標的遺伝子 (η eel遺伝子) は 6 3. 2コピー、 土壌核酸抽出試料 2 / L中に含まれる 標的遺伝子 (necl遺伝子) は 1 4 8. 1 コピーであった。 この測定値は、 実施例 1〜 3で得られた結果とほぼ同等であることから、 本願発明方法 Bの i ) 〜 i v ) の ( 1 ) 〜 ( 3 ) の特質を有する核酸プローブを用い ても、 本発明の新規測定方法を、 好適に実施可能であることが示された。 前記したように実施例 1〜4において、 種類の異なる核酸プローブを 用いて、 共通の標的遺伝子 (nec l遺伝子) を、 同様の方法 (内部標準核 酸を添加する手法) で測定した。 その結果、 ほぼ同様の良好な結果を得 ることができた。 遺伝子増幅過程をリアルタイムモニタリ ング出来るプ ローブであれば、 プローブの種類に関わらず、 本発明の新規測定方法に 適応可能であることが明らかとなった。 6) Measurement of Target Gene (necl Gene) in Actual Soil Nucleic Acid Extraction Sample The target gene (necl gene) in the soil nucleic acid extraction sample was determined by the above-mentioned (1)-(1)-(i)-(iv) of Method B of the present invention. Using a nucleic acid probe having the characteristic of 3), a gene measurement method was performed by a PCR method in which an internal standard nucleic acid was added in the same manner as in Example 1 and measurement was performed. The PCR conditions and the like are the same as in Example 1. As a result, the target gene (η eel gene) contained in 1 μL of the soil nucleic acid extract sample was 63.2 copies, and the target gene (necl gene) contained in the soil nucleic acid extract sample 2 / L was 14.8. One copy. Since these measured values are almost equivalent to the results obtained in Examples 1 to 3, the nucleic acid probes having the characteristics (1) to (3) of i) to iv) of the method B of the present invention are used. It was also shown that the novel measurement method of the present invention can be suitably implemented. As described above, in Examples 1 to 4, a common target gene (necl gene) was measured by a similar method (a method of adding an internal standard nucleic acid) using different types of nucleic acid probes. As a result, almost the same good results were obtained. It has become clear that any probe capable of real-time monitoring of the gene amplification process can be applied to the novel measurement method of the present invention regardless of the type of probe.
実施例 5 Example 5
前記公知方法の F R E T現象を利用する場合のの V ) 〜 i x ) に記載 のへヤーピンプローブをプライマ— (サンライズプライマー) と して用 い、 リアルタイム定量的 P C Rを行って、 標的核酸の核酸増幅前のコピ 一数を求める方法に本発明方法を適用する実施例である。  Nucleic acid amplification of target nucleic acid by performing real-time quantitative PCR using the hairpin probe described in V) to ix) as a primer (sunrise primer) when utilizing the FRET phenomenon of the known method This is an example in which the method of the present invention is applied to the method for determining the number of copies in the preceding step.
1 ) 標的核酸の塩基配列  1) Base sequence of target nucleic acid
実施例 1〜 3で使用した Nec l遺伝子 Necl gene used in Examples 1-3
2 ) 内部標準核酸塩基配列  2) Internal standard nucleic acid base sequence
実施例 1〜 3で使用した Nec l遺伝子に対応する内部標準遺伝子 Internal standard gene corresponding to the Necl gene used in Examples 1-3
3 ) プライマー  3) Primer
( 1 ) 標的核酸検出用フォーワードプライマー  (1) Forward primer for target nucleic acid detection
•塩基配列 : CTCCATGAACTGTACCGCGACCAG (アンダーライン : 付 加した配列)  • Nucleotide sequence: CTCCATGAACTGTACCGCGACCAG (underline: added sequence)
· 5 ' 末端をドナー色素 FAMで標識し、 3 ' 末端から 1 2塩基目の Tを クェンチヤ一色素 DABCYLで標識した。  · The 5 'end was labeled with the donor dye FAM, and the 12th base T from the 3' end was labeled with the quencher monodye DABCYL.
( 2 ) 内部標準核酸検出用フォーワードプライマー  (2) Forward primer for internal standard nucleic acid detection
•塩基配列: agcttt, CTCCATGAAagcTtCCGCGACCAG (アンダーライン : 付加した配列、 小文字 : 標的核酸検出用フォーヮードプライマ一と配列 が異なる部位。 つまり、 標的核酸と内部標準核酸の配列が異なる部位) - 5 ' 末端のリ ン基をドナー色素 6 —TAMRAで標識し、 3 ' 末端か ら 1 2塩基目の Tを前記同様にクェンチヤ一色素 DABCYLで標識した。 ( 3 ) リバースプライマー • Nucleotide sequence: agcttt, CTCCATGAAagcTtCCGCGACCAG (underline: added sequence, lowercase letter: site whose sequence is different from the target nucleic acid detection foreprimer. That is, site where the target nucleic acid differs from the internal standard nucleic acid sequence) -The 5 'terminal phosphorus group was labeled with the donor dye 6—TAMRA, and the 12th base T from the 3' terminal was labeled with the quencher monodye DABCYL in the same manner as described above. (3) Reverse primer
• 塩基配列 : 前記の表 1の f (NECS-R)  • Nucleotide sequence: f (NECS-R) in Table 1 above
前記のフォワードプライマー (標的核酸検出用フォーワードプライマ 一及び内部標準核酸検出用フォーワードプライマー) は、 サンライズプ ライマーと して機能するよう設計されており、 遺伝子増幅によりプライ マー内の分子内 2次構造が解消されることで、 蛍光発光するように設計 されている。 従って、 本蛍光発光を測定することで、 増幅産物をリアル タイムモニタリングすることが可能となる。 又、 各フォワードプライマ 一は、 内部標準遺伝子と標的遺伝子の塩基配列の異なる部位を認識し、 それぞれ特異的に結合し、 伸長するように設計されている。 このため、 各フォーワードプライマー (標的核酸検出用フォーヮードプライマ一及 び内部標準核酸検出用フォーワードプライマー) によって、 標的核酸あ るいは内部標準核酸を特異的に増幅することが出来る。 又、 標的核酸検 出用フォーヮードプライマ一及び内部標準核酸検出用フォーヮー ドプ ライマーは、 それぞれ異なる蛍光色素で標識されているため、 標的核酸 由来の増幅増幅産物と内部標準核酸由来の増幅産物を、 同一反応系内で 同時に検出することが出来る。  The forward primer (forward primer for detecting a target nucleic acid and forward primer for detecting an internal standard nucleic acid) is designed to function as a sunrise primer, and is designed to function as a secondary primer in the primer by gene amplification. It is designed to emit fluorescence by eliminating the structure. Therefore, real-time monitoring of the amplification product is possible by measuring this fluorescence emission. Further, each forward primer is designed to recognize sites having different base sequences between the internal standard gene and the target gene, and to specifically bind and extend each of them. Therefore, each forward primer (forward primer for detecting a target nucleic acid and forward primer for detecting an internal standard nucleic acid) can specifically amplify the target nucleic acid or the internal standard nucleic acid. In addition, since the forma primer for detecting a target nucleic acid and the forma primer for detecting an internal standard nucleic acid are labeled with different fluorescent dyes, amplification products derived from the target nucleic acid and amplification products derived from the internal standard nucleic acid are used. Can be detected simultaneously in the same reaction system.
前記プライマーは、 エスペックオリ ゴサービス株式会社(http://www. business-zone, com/espec - oligo/)に ¾=§七し、 合成した。  The primer was synthesized with ESPEC ORIGO SERVICE CO., LTD. (Http: //www.business-zone, com / espec-oligo /).
4 ) P C Rは次の条件で行った。 4) PCR was performed under the following conditions.
- 変性反応 : 95°C、15sec  -Denaturation reaction: 95 ° C, 15sec
• ァニーリング及び検出 : 55°C、5seC • Annealing and detection: 55 ° C, 5se C
" 伸長 (extention) :72°C, lOsec ■ Taqポリメラーゼ : Gene Taq (日本ジーン株式会社) "Extension: 72 ° C, lOsec ■ Taq polymerase: Gene Taq (Nippon Gene Co., Ltd.)
- プライマ一添加濃度 : ΙΟΟηΜ  -Primer addition concentration: {η}
• 錄型核酸 (Template) : 内部標準核酸 NECM1及ぴ標的核酸 NEC 1の P C R 断片 ( a及び bプラマーをセッ トにして P C R増幅産物:約 7 0 0 b p ) の混合液  • Type I nucleic acid (Template): A mixture of the internal standard nucleic acid NECM1 and the target nucleic acid NEC1 PCR fragment (PCR amplification product of a and b pramers: about 700 bp)
- 測定装置 : スマートサイクラ一システム (タカラバイォ株式会社) •使用チャンネル :  -Measuring device: Smart cycler system (Takara Bayo Co., Ltd.) • Channel used:
チヤンネル 1 (Ex、450〜495nm ; Em、505〜537nm)。  Channel 1 (Ex, 450-495 nm; Em, 505-537 nm).
チャンネノレ 3 (Ex、527〜555nm ; Em、565〜605nm)。  Channel 3 (Ex, 527-555 nm; Em, 565-605 nm).
チャンネル 1で標的核酸検出用フォーヮー ドプライマ一に標識した F AMの測定を行い、 同時にチャンネル 3で内部標準核酸検出用フォーヮー ドプライマ一に標識した 6- TAMRAの蛍光測定を行った。  FAM labeled on the forma primer for detecting a target nucleic acid was measured in channel 1, and at the same time, fluorescence of 6-TAMRA labeled on a forma primer for detecting an internal standard nucleic acid was measured in channel 3.
5 ) 標的核酸と内部標準核酸の濃度比に対する標的核酸由来の蛍光強度 増加率と内部標準核酸由来の蛍光強度増加率との関係式の作成 5) Formulating the relational expression between the increase rate of the fluorescence intensity derived from the target nucleic acid and the increase rate of the fluorescence intensity derived from the internal standard nucleic acid with respect to the concentration ratio of the target nucleic acid and the internal standard nucleic acid
標的核酸と内部標準核酸の濃度比を、 様々に変化させたものを鍩型と して、 前記実施例 2の 4 ) に記載の反応条件にて、 P C Rを実施し、 標 的核酸由来の増幅産物と内部標準核酸由来の増幅産物とを、 それぞれリ アルタイムモニタリ ングした。 その結果から、 標的核酸の増幅産物由来 の蛍光強度増加率 (NECB- 24 acceptorプローブの蛍光強度増加率) と内 部標準核酸の増幅産物由来の蛍光強度増加率 (NECMB- 24 acceptorプロ ーブの蛍光強度増加率) との比を求め、 それを P C R前の標的核酸と内 部標準核酸の濃度比との関係を求めた (図 1 5参照) 。 その結果、 P C R前の標的核酸と内部標準核酸の濃度比と、 標的核酸の増幅産物由来の 蛍光強度増加率と内部標準核酸の増幅産物由来の蛍光強度増加率との 比との間に高い相関があることが明らかとなった。 従って、 当該関係式 から P C R前の標的核酸と内部標的核酸の濃度比を知ることが出来る ことが示された。 以上の結果から、 サンライズプライマーを用いた方法 に於いても、 実施例 2 , 3の場合と同様に、 標的核酸の増幅産物由来の 蛍光強度増加率と内部標準核酸の増幅産物由来の蛍光強度増加率との 比から、 P C R前の標的核酸と内部標準核酸の濃度比を求めることが可 能であることが明らかとなった。 PCR was performed under the reaction conditions described in Example 2-4) above, with the concentration ratio of the target nucleic acid and the internal standard nucleic acid varied as various types, and amplification was performed based on the target nucleic acid. The product and the amplification product derived from the internal standard nucleic acid were each monitored in real time. The results show that the rate of increase in fluorescence intensity from the amplification product of the target nucleic acid (NECB-24 acceptor probe) and the rate of increase in fluorescence intensity from the amplification product of the internal standard nucleic acid (NEMB-24 acceptor probe). The ratio between the target nucleic acid and the internal standard nucleic acid before PCR was determined (see Figure 15). As a result, there is a high correlation between the concentration ratio of the target nucleic acid and the internal standard nucleic acid before PCR, and the ratio between the increase rate of the fluorescence intensity derived from the amplification product of the target nucleic acid and the fluorescence intensity derived from the amplification product of the internal standard nucleic acid. It became clear that there was. Therefore, the relational expression From this, it was shown that the concentration ratio between the target nucleic acid before PCR and the internal target nucleic acid can be known. From the above results, in the method using the sunrise primer, as in Examples 2 and 3, the rate of increase in the fluorescence intensity derived from the amplification product of the target nucleic acid and the increase in the fluorescence intensity derived from the amplification product of the internal standard nucleic acid were obtained. From the ratio with the ratio, it became clear that the concentration ratio between the target nucleic acid before PCR and the internal standard nucleic acid can be determined.
4 ) 従来方法の検量線を用いたスマートサイクラ一による標的核酸の測 定  4) Measurement of target nucleic acid by smart cycler using calibration curve of conventional method
既知濃度の標的遺伝子サンプルに、 実際に土壌試料から抽出した核酸 抽出試料を、 濃度を変えて混合し、 正確に測定を行なえるかどうか検討 した。 内部標準核酸用プライマーと標的核酸用プライマーは、 双方とも、 反応チューブに添加し、 それぞれ内部標準核酸と標的核酸を同時に検出 した。  A nucleic acid extract sample actually extracted from a soil sample was mixed with a target gene sample of known concentration at different concentrations, and it was examined whether accurate measurement could be performed. Both the primer for the internal standard nucleic acid and the primer for the target nucleic acid were added to the reaction tube, and the internal standard nucleic acid and the target nucleic acid were simultaneously detected, respectively.
先ず、 既知濃度の外部標的遺伝子 (nec l遺伝子) による検量線を作成 した。 土壌から抽出した核酸を含む試料 3 μ 1 に、 6, 690, 000コピーの 標的遺伝子 (nec l遺伝子) を添加したものを铸型と し、 本サンプル中の nec l遺伝子の測定を、 前記の検量線を用いて行なった。 又、 土壌抽出核 酸試料を添加せず、 同数の nec l遺伝子を添加したサンプルについても、 nec l遺伝子の測定を行った。 その結果、 実施例 1 〜 3の場合と同様、 土 壌抽出核酸試料を添加することで、 土壌抽出核酸試料を添加しなかった サンプルに比べて、 グラフが右にシフ トすること、 つまり増幅反応が遅 れて起こることが明らかになった。 この遅れによりに C t値が大きくな り、 その結果、 測定値は実際に添加した標的核酸 (遺伝子) (nec l遺伝 子) より も低く算出される事が分かった (表 8参照) 。 以上の結果より、 外部標的核酸 (遺伝子) による検量線を用いた従来方法 (リアルタイム 定量的 P C R法) では、 サンライズプライマーを用いた場合に於いても、 P C R阻害物質を含むサンプル中の標的遺伝子の測定を、 正確に実施で きないことが明らかとなった。 表 8 方法の相違による標的核酸 (遣伝子) 測定値の相違 First, a calibration curve was prepared using a known concentration of an external target gene (necl gene). A sample obtained by adding 6,690,000 copies of the target gene (necl gene) to 3 μl of a sample containing nucleic acid extracted from soil was designated as type I. The necl gene in this sample was measured as described above. This was performed using a calibration curve. The necl gene was also measured for a sample to which the same number of necl genes had been added without adding the soil-extracted nucleic acid sample. As a result, as in the case of Examples 1 to 3, the addition of the soil-extracted nucleic acid sample shifts the graph to the right compared to the sample without the soil-extracted nucleic acid sample, that is, the amplification reaction. Was found to occur late. This delay increased the Ct value, and as a result, the measured value was found to be calculated lower than the actually added target nucleic acid (gene) (necl gene) (see Table 8). Based on the above results, the conventional method using a calibration curve with an external target nucleic acid (gene) (real-time The quantitative PCR method) revealed that even when sunrise primers were used, it was not possible to accurately measure target genes in samples containing PCR inhibitors. Table 8 Differences in measured values of target nucleic acids (genes) due to differences in methods
(使用プライマー :サンライズプライマ一) (Used primer: Sunrise primer)
Figure imgf000110_0001
Figure imgf000110_0001
5 ) 本発明方法を用いたスマートサイクラ一による標的核酸の測定 本発明の内部標準核酸を添加した方法により、 標的核酸の増幅前のコ ピー数を求めた (表 8参照) 。 その結果、 添加する土壌試料の量が多く なるに応じてグラフが右にシフ トするのは前記と同様であるが、 本発明 では、 増幅効率の低下 (増幅反応の遅れ) が観察されたが、 内部標準遺 伝子の増幅も同様に低下したため、 添加した標的遺伝子量と本発明方法 による測定値とがほぼ一致することが明らかになつた。 5) Measurement of target nucleic acid by smart cycler using the method of the present invention The number of copies of the target nucleic acid before amplification was determined by the method of adding the internal standard nucleic acid of the present invention (see Table 8). As a result, the graph shifts to the right as the amount of soil sample to be added increases, as described above. However, in the present invention, a decrease in amplification efficiency (a delay in amplification reaction) was observed. However, since the amplification of the internal standard gene was similarly reduced, it became clear that the amount of the added target gene almost coincided with the value measured by the method of the present invention.
以上の結果より、 反応系に標的核酸に対応する内部標準核酸を添加し, 標的核酸及び内部標準核酸由来の蛍光強度の変化量若しくは変化率を、 サンライズプライマーを用いて求め、 標的核酸の濃度若しくはコピー数 を求める本発明の新規測定方法の有用性が明らかになった。  Based on the above results, the internal standard nucleic acid corresponding to the target nucleic acid was added to the reaction system, and the amount or rate of change in the fluorescence intensity derived from the target nucleic acid and the internal standard nucleic acid was determined using a sunrise primer. The usefulness of the novel measurement method of the present invention for determining the copy number has been clarified.
又、 前記 (実施例) と同様の検討を、 前記本発明方法 Bの i X ) に標 記したハイブリダイゼーションにより蛍光が減少する核酸プローブを、 プライマーとして用いた場合にも、 上記と全く同様の傾向を示す結果が 得られた (data not shown)。 この結果より、 遺伝子増幅過程をリ アル タイムモニタ リ ング出来るプライマーであれば、 プライマーの種類に関 わらず、 本発明の新規測定方法に適応可能であることが明らかとなった。 実施例 6 In addition, the same examination as in the above (Example) was carried out, and when a nucleic acid probe whose fluorescence was reduced by hybridization as described in the method (iX) of the present invention was used as a primer, the same as above was used. The result showing the trend Obtained (data not shown). These results revealed that any primer capable of real-time monitoring of the gene amplification process can be applied to the novel measurement method of the present invention regardless of the type of primer. Example 6
遺伝子増幅法を P C R方法力 ら LAMP(Loop - Mediated Isothermal Amp lification)方法 (一つの核酸増幅方法) に替えて、 実施例 1〜 4まで と同様の検討を行った。  The same examinations as in Examples 1 to 4 were performed by changing the gene amplification method from the PCR method to the LAMP (Loop-Mediated Isothermal Amplification) method (one nucleic acid amplification method).
1 ) 標的遺伝子  1) Target gene
実施例 1〜 5までと同様、 necl遺伝子とした。  As in Examples 1 to 5, the necl gene was used.
2 ) 土壌からの DNAの抽出 2) Extraction of DNA from soil
実施例 1 と同様の方法で実施した。  This was carried out in the same manner as in Example 1.
3 ) プローブの合成  3) Probe synthesis
プローブ及びプライマーは、 エスペックオリゴサービス株式会社(htt p: //www. business-zone, com/ espec-oligo/) こ ¾= 6製造し 7こ。  Probes and primers were manufactured by Espec Oligo Service Co., Ltd. (htp: // www. Business-zone, com / espec-oligo /).
4 ) 内部標準核酸 (DNA遺伝子) の作製 4) Preparation of internal standard nucleic acid (DNA gene)
実施例 8 として後述する人工遺伝子の取得法にて作製した。  Example 8 was prepared by an artificial gene acquisition method described later.
5 ) LAMP用プライマーの設計と配列  5) LAMP primer design and sequence
プライマーの設計は、 栄研化学株式会社(http:〃 www. eiken. co. jp/) のホームページ上の、 LAMP法用のプライマー設計ソフ トにて行った。 本プライマーは、 標的核酸と内部標準核酸に完全に相補的な配列を有 しており、 標的核酸と内部標準核酸を同時に増幅可能なプライマーとな つている。 表 9 L AM P増幅産物検出用プロ—ブ配列 Primers were designed using the primer design software for the LAMP method on the website of Eiken Chemical Co., Ltd. (http://www.eiken.co.jp/). This primer has a sequence completely complementary to the target nucleic acid and the internal standard nucleic acid, and is a primer capable of simultaneously amplifying the target nucleic acid and the internal standard nucleic acid. Table 9 Probe sequence for detecting LAMP amplification products
Figure imgf000112_0001
Figure imgf000112_0001
6 ) 標的核酸プローブ及び内部標準核酸プローブ 6) Target nucleic acid probe and internal standard nucleic acid probe
表 9に示される NECB-23 LAMPは、 LAMP法で増幅される標的核酸由来 の増幅産物を検出するためのプローブの塩基配列であり、 NECMB-23 LAM Pは、 LAMPで増幅される内部標準由来の増幅産物を検出するための核酸 プローブである。 本実施例においては、 標的核酸プローブを NECB- 24と、 内部標準核酸プローブを NECMB-24と呼称する。  NECB-23 LAMP shown in Table 9 is a nucleotide sequence of a probe for detecting an amplification product derived from a target nucleic acid amplified by the LAMP method.NEMB-23 LAMP is derived from an internal standard amplified by LAMP. This is a nucleic acid probe for detecting the amplification product. In this example, the target nucleic acid probe is called NECB-24 and the internal standard nucleic acid probe is called NECMB-24.
NECB-24は、 前記に記載する方法にて 5 ' 末端を BODIPY FLで標識し、 NECMB- 24は、 前記に記載する方法にて 5 ' 末端を 6- TAMRAで標識してあ る。 双方とも 3 ' 末端の 3 ' O H基をリ ン酸化して用いた。  NECB-24 is labeled at the 5 ′ end with BODIPY FL by the method described above, and NECMB-24 is labeled at the 5 ′ end with 6-TAMRA by the method described above. In both cases, the 3'OH group at the 3 'end was phosphorylated and used.
本プローブは、 実施例 1で用いた、 対応核酸とハイブリダィズすること で蛍光強度が減少するタイプの核酸プローブである。 This probe is the type of nucleic acid probe used in Example 1 that reduces the fluorescence intensity by hybridizing with the corresponding nucleic acid.
表中、 NECB- 23 LAMPの 9、 1 0、 1 1、 1 2及び 1 4番目の塩基 t、 a、 c及び tが、 NECMB- 23 LAMPにおいては、 おのおの A、 T、 G及び Aに変化した ものである。  In the table, the 9th, 10th, 11th, 12th and 14th bases t, a, c and t of NECB-23 LAMP are changed to A, T, G and A respectively in NECMB-23 LAMP. It is a thing.
B ) 実験例 B) Experimental example
1 ) 作製プローブの評価  1) Evaluation of fabricated probe
標的核酸プローブ (NECB- 23 LAMP) 及び内部標準核酸プローブ (NECM B-23 LAMP) の対応核酸 (標的核酸又は内部標準核酸) とハイブリダィ ズしたときの蛍光強度変化率 (消光 (減少率) 率 } と解離曲線を作成し た。 反応用バッファ一は LAMP法で用いるものと同じものを使用した。 その結果を図 1 6及び 1 7に示した。 NECB-23 LAMPは標的核酸と内部 標準核酸との T m値の差は、 約 2 0 °C強であり、 6 0〜7 0 °Cの範囲で 検出すれば、 内部標準核酸を検出せずに標的核酸のみを良好に検出でき ることが明らかとなった。 又、 同様に NECMB- 23 LAMPは内部標準核酸と 標的核酸との T m値の差も、 NECB-23 LAMPと同様、 約 2 0 °C強であり、 6 0〜 7 0 °Cの範囲で検出すれば、 標的核酸を検出せずに標的核酸のみ を良好に検出できることが明らかとなった。 以上の結果より、 P C Rの 増幅産物の検出は両プローブとも、 LAMP法の反応温度である 6 5 °Cで行 なうことと した。 Fluorescence intensity change rate (quenching (decrease rate) rate) when the target nucleic acid probe (NECB-23 LAMP) and internal standard nucleic acid probe (NECM B-23 LAMP) are hybridized with the corresponding nucleic acid (target nucleic acid or internal standard nucleic acid) And create a dissociation curve Was. The same reaction buffer as that used in the LAMP method was used. The results are shown in FIGS. 16 and 17. For NECB-23 LAMP, the difference in Tm value between the target nucleic acid and the internal standard nucleic acid is about 20 ° C or more, and if it is detected in the range of 60 to 70 ° C, the internal standard nucleic acid will not be detected. It was clarified that only the target nucleic acid was successfully detected. Similarly, in the case of NECMB-23 LAMP, the difference in Tm between the internal standard nucleic acid and the target nucleic acid is about 20 ° C slightly higher than that of the NECB-23 LAMP, and is within the range of 60 to 70 ° C. It has been clarified that the detection can detect only the target nucleic acid without detecting the target nucleic acid. Based on the above results, detection of PCR amplification products was performed at 65 ° C, the reaction temperature of the LAMP method, for both probes.
2 ) LAMP法による遺伝子増幅は次の条件で行った。  2) Gene amplification by the LAMP method was performed under the following conditions.
■反応温度 : 65°C、60min  ■ Reaction temperature: 65 ° C, 60min
. ポリ メラーゼ, dNTP等を含む増幅キッ ト : Loopamp DNA増幅試薬キッ ト (栄研化学株式会社)  Amplification kit containing polymerase, dNTP, etc .: Loopamp DNA amplification reagent kit (Eiken Chemical Co., Ltd.)
· プライマー添加濃度 : 800nM (NEC FIP、 NEC BIP)、 200nM (NEC F3、NEC B3) (表 10参照)  · Primer addition concentration: 800 nM (NEC FIP, NEC BIP), 200 nM (NEC F3, NEC B3) (See Table 10)
■ プローブ添加濃度 : 各 200nM  ■ Probe addition concentration: 200nM each
-铸型核酸 (Template) : 内部標準核酸 NECM1及び標的核酸 NEC1の P C R断片 (表 1の a及び bプラマーをセッ トにして P C R増幅産物 : 約 7 0 0 b p ) の混合液  -铸 nucleic acid (Template): mixture of internal standard nucleic acid NECM1 and target nucleic acid NEC1 PCR fragment (PCR amplification product: about 700 bp with a and b primers in Table 1)
■ 測定装置:スマートサイクラ一システム (タカラバイオ株式会社) (以 下、 便宜上、 スマー トサイクラ一とレ、う。 ) 。  ■ Measuring device: Smart Cycler System (Takara Bio Inc.) (hereinafter referred to as “Smart Cycler” for convenience).
•使用チャンネル :  • Use channel:
チヤンネノレ 1 (Ex、450〜495nm ; Em、505〜537mn)。  Cyanenne 1 (Ex, 450-495 nm; Em, 505-537 mn).
チャンネル 3 (Ex、527〜555nm ; Em、565〜605nm)。 チャンネル 1で BODIPY FLの測定を行い、 同時にチャンネル 3で 6- TAM RAの蛍光測定を行った。 表 1 0 L AM P 増幅産物検出用プライマー配列 Channel 3 (Ex, 527-555 nm; Em, 565-605 nm). The measurement of BODIPY FL was performed on channel 1 and the fluorescence measurement of 6-TAMRA was performed on channel 3 at the same time. Table 10 Primer sequences for detection of 10 L AMP amplification products
プロ- -ブ 塩基配列 (5' - 3,)  Probe sequence (5'-3,)
NEC F3 CTGCTGTGGGGTATTGCG NEC F3 CTGCTGTGGGGTATTGCG
NEC FIP CGGCCCGTCATCGAAATTCACTACACGAATTACCAGTGTGCG NEC FIP CGGCCCGTCATCGAAATTCACTACACGAATTACCAGTGTGCG
NEC B3 GTTTCATTCGGGTGATTGGC NEC B3 GTTTCATTCGGGTGATTGGC
NEC BIP TGACCTCCATGAACTGTACCGCCTCCCGAGAATGCGAAAGG NEC BIP TGACCTCCATGAACTGTACCGCCTCCCGAGAATGCGAAAGG
3 ) 標的核酸と内部標準核酸の濃度比に対する標的核酸由来の蛍光強度 増加率と内部標準核酸由来の蛍光強度増加率との関係式の作成 3) Formulating the relational expression between the increase rate of the fluorescence intensity derived from the target nucleic acid and the increase rate of the fluorescence intensity derived from the internal nucleic acid with respect to the concentration ratio of the target nucleic acid and the internal standard nucleic acid
標的核酸と内部標準核酸の濃度比を、 様々に変化させたものを铸型と して、 前記 2 ) に記載の反応条件にて、 L A M P反応を実施し、 標的核 酸由来の増幅産物と内部標準核酸由来の増幅産物とを、 それぞれ表 1 0 に示した核酸プローブにてリアルタイムモニタリングした。 その結果か ら、 標的核酸の増幅産物由来の蛍光強度変化 {消光 (減少) 率 } (以下、 単に蛍光消光率という。 ) (NECB-23 LAMPの蛍光消光率) と内部標準核 酸の増幅産物由来の蛍光消光率 (NECMB- 23 LAMPの蛍光消光率) との比 を求め、 それを L A M P反応前の標的核酸と内部標準核酸の濃度比との 関係を求めた。 その結果、 実施例 2〜 4で示した P C Rの場合と同様、 増幅前の標的核酸と内部標準核酸の濃度比と、 標的核酸の増幅産物由来 の蛍光消光率と内部標準核酸の増幅産物由来の蛍光消光率との比との 間に高い相関が見られた(data not shown)。 従って、 P C R方法の場合 と同じように、 本関係式から遺伝子増幅前の標的核酸と内部標準核酸の 濃度比を知ることが出来ることが示された。 The LAMP reaction was carried out under the reaction conditions described in 2) above, with the concentration ratio of the target nucleic acid and the internal standard nucleic acid varied as various types, and the amplification product derived from the target nucleic acid and the internal The amplification products derived from the standard nucleic acids were monitored in real time with the nucleic acid probes shown in Table 10 respectively. Based on the results, the fluorescence intensity change {quenching (decrease) rate} (hereinafter simply referred to as the fluorescence quenching rate) derived from the amplification product of the target nucleic acid (NECB-23 LAMP fluorescence quenching rate) and the internal standard nucleic acid amplification product The ratio with the fluorescence quenching rate of the origin (the fluorescence quenching rate of NECMB-23 LAMP) was determined, and the relationship between the ratio and the concentration ratio of the target nucleic acid and the internal standard nucleic acid before the LAMP reaction was determined. As a result, similar to the PCR shown in Examples 2 to 4, the concentration ratio between the target nucleic acid and the internal standard nucleic acid before amplification, the fluorescence quenching rate derived from the amplification product of the target nucleic acid, and the amplification ratio derived from the amplification product of the internal standard nucleic acid A high correlation was observed between the ratio to the fluorescence quenching rate (data not shown). Therefore, in the case of the PCR method Similarly to this, it was shown from this relational equation that the concentration ratio between the target nucleic acid before gene amplification and the internal standard nucleic acid can be known.
4 ) LAMP法介した土壌中の標的遺伝子 (necl遺伝子) の測定  4) Measurement of target gene (necl gene) in soil by LAMP method
前記実験例を踏まえて、 内部標準核酸を用い、 かつ LAMP法介した本発 明の新規遺伝子測定手法にて、 標的遺伝子 (necl遺伝子) のコピー数が 未知である土壌抽出核酸試料 (標的核酸を含む。 ) 中に存在する標的核 酸量を測定した。  Based on the experimental examples described above, a soil-extracted nucleic acid sample whose target gene (necl gene) copy number is unknown using the internal standard nucleic acid and the novel gene measurement method of the present invention via the LAMP method. The amount of target nucleic acid present in the sample was measured.
実験は、 実施例 1〜 5の P C Rを介した手法と同様、 土壌抽出核酸試 料 Ι μ ΐ及び 2 μ 1に、 内部標準核酸を 6 6. 9コピーほど測定系に添 加し、 標的遺伝子 (necl遺伝子) の測定を、 LAMP法介した遺伝子測定方 法にて行った。 土壌抽出核酸試料は実施例 1〜 5と同様のものを用いた。 その結果、 土壌抽出核酸試料を 1 1添加した系では、 7 9. 6コピー と測定された。 又、 土壌抽出核酸試料を 2 μ 1添加した系の測定値は 1 3 9. 2コピーであった。 本測定値は、 実施例 1〜 5で得られた結果と ほぼ同等であることから、 正確に土壌抽出核酸試料中の標的遺伝子 (ne cl遺伝子) を測定出来ているものと判断される。  In the experiment, similar to the PCR-based method in Examples 1 to 5, about 66.9 copies of the internal standard nucleic acid were added to the soil extraction nucleic acid samples (μμΐ and 2μ1) and the target gene (Necl gene) was measured by a gene measurement method via the LAMP method. The same nucleic acid sample as in Examples 1 to 5 was used as the nucleic acid sample for soil extraction. As a result, it was measured as 79.6 copies in the system to which 11 nucleic acid samples were added. The measured value of the system to which 2 μl of the nucleic acid sample extracted from soil was added was 13.9.2 copies. Since the measured values are almost the same as the results obtained in Examples 1 to 5, it is judged that the target gene (necl gene) in the nucleic acid sample extracted from soil can be accurately measured.
以上の結果より、 内部標準核酸を添加し、 標的核酸及び内部標準核酸 を核酸プローブにて検出することを特徴とする本発明の新規核酸 (遺伝 子) 測定方法に、 P C R方法以外の遺伝子増幅法を適応可能であること 力 証明された。  Based on the above results, the novel nucleic acid (gene) measurement method of the present invention, which comprises adding an internal standard nucleic acid and detecting the target nucleic acid and the internal standard nucleic acid with a nucleic acid probe, includes a gene amplification method other than the PCR method. The power is proven to be adaptable.
実施例 7 Example 7
Streotorayces turgidiscabies,のケノム D N A力 ら、 necl遺伝ナの分 離 ·濃縮を行うことが必要な場合は、 以下の方法で分離 ·濃縮した。 使用する制限酵素は、 Bfal、BsaJl、BssKl、Ddel、Msel、Msplを使用した (全て、 New England BI0LABS力 ら購入した。 ) 。 これらは、 2本鎖 D N Aの特定の 4塩基の配列を認識して、 切断する制限酵素であるため、 確率論上、 2本鎖 D N Aは約 4 0塩基の長さに切断されると考えられる (任意の 4塩基の配列は、 2 5 6通りあるため、 1種の 4塩基認識の制 限酵素で切断される部位は、 2 5 6塩基毎に出現すると考えられる。 今 回は 6種の制限酵素で切断するため、 2 5 6 ÷ 6 = 4 2. 6となり、 平 均して約 4 0塩基毎に切断されると考えられる。 ) 。 しかしながら、 ne cl遺伝子は、 上記 6種の制限酵素を用いて処理することにより、 necl 遺伝子は 5 3 6塩基の長さとなり、 比較的長い 2本鎖 D N Aとして存在 する。 このため、 D NAの長さを指標として簡便に標的遺伝子を含む画 分を回収可能となる。 If it was necessary to separate and concentrate necl gene from the kenom DNA power of Streotorayces turgidiscabies, it was separated and concentrated by the following methods. The restriction enzymes used were Bfal, BsaJl, BssKl, Ddel, Msel, and Mspl (all purchased from New England BIOLABS Power). These are double-stranded D Because it is a restriction enzyme that recognizes and cuts a specific 4-base sequence of NA, double-stranded DNA is considered to be cut to a length of about 40 bases on a probability basis (arbitrary 4-base sequence). Since there are 256 sequences, the site that is cleaved by one type of restriction enzyme that recognizes four bases is thought to appear every 256 bases. , 256 = 62.6, which is considered to be cleaved on average about every 40 bases.) However, the necl gene is treated with the above-mentioned six types of restriction enzymes, so that the necl gene has a length of 536 bases and exists as a relatively long double-stranded DNA. Therefore, the fraction containing the target gene can be easily collected using the length of the DNA as an index.
上記 6種の制限酵素を各 1 μ 1、 Mselに付属の xlO bufferを 1 0 1、 ジャガイモそうか病が発生した土壌から前記実施例 1 と同様にして抽 出した核酸溶液 ( 8 0 μ 1 ) を混合し、 3 7 °Cで 8時間反応させた後、 更に 6 0 °Cで 8時間反応させた。 neclこの断片を含む画分を、 フィルタ 一 {マイクロコン一 1 0 0 (分割分子量 = 1 0 0, 0 0 0 ) 、 ミ リポア } に通した。 1 0 0 b p以下の D N Aのみが本フィルターを通過するため、 5 3 6塩基の necl遺伝子は、 フィルター上に残留する。 neclフィルター 上に残留した necl遺伝子を含む画分を回収し、 乾燥後、 1 /2 1のミ リポ ァ純水に再溶解した。  1 μl of each of the above six restriction enzymes, 101 of xlO buffer attached to Msel, and a nucleic acid solution (80 μl) extracted from soil in which potato scab had developed in the same manner as in Example 1 above. ) Were mixed and reacted at 37 ° C. for 8 hours, and further reacted at 60 ° C. for 8 hours. necl The fraction containing this fragment was passed through a filter {microcon 100 (divided molecular weight = 100,000), Millipore}. Since only DNA less than 100 bp passes through this filter, the 536 base necl gene remains on the filter. The fraction containing the necl gene remaining on the necl filter was collected, dried, and then redissolved in 1/21 pure Millipore water.
当該再溶解中の necl遺伝子を実施例 1の実験例 7 ) と同様の手順にて 測定した。 又、 濃縮の有無を確認するために制限酵素処理前の核酸溶液 についても前記同様の方法で necl遺伝子を測定した。 核酸溶液の添加量 は、 それぞれ Ι Ο μ Ι とした。 その結果、 濃縮処理を実施した核酸溶液 中の necl遺伝子数は 4 7 9 0コピー Ζμ 1、 濃縮を実施しない場合の核 酸溶液中の当該遺伝子数は 6 3コピー 1であった。 以上の結果より、 本方法により、 簡便に標的核酸 (nec l遺伝子) の濃縮が可能であること が証明された。 The necl gene during the redissolution was measured in the same manner as in Experimental Example 7) of Example 1. Also, in order to confirm the presence or absence of concentration, the necl gene of the nucleic acid solution before the restriction enzyme treatment was measured in the same manner as described above. The added amount of the nucleic acid solution was set to {ΙμΙ}. As a result, the number of necl genes in the nucleic acid solution subjected to the concentration treatment was 470 copies Ζμ1, and the number of the genes in the nucleic acid solution without concentration was 63 copies 1. based on the above results, By this method, it was proved that the target nucleic acid (necl gene) can be easily concentrated.
実施例 8 Example 8
任意の塩基配列を有する長鎖の人工遺伝子の合成は、 '以下の方法で実 施した。 1 ) 一本鎖オリ ゴヌク レオチド D N Aの合成  Synthesis of a long-chain artificial gene having an arbitrary nucleotide sequence was performed by the following method. 1) Synthesis of single-stranded oligonucleotide DNA
合成する一本鎖ォリ ゴヌクレオチド遺伝子は、 実施例 6で用いた nec l 遺伝子に対応する内部標準遺伝子と した。 その配列を以下に示す。 塩基 数は 2 7 4 b pであり、 小文字とアンダーラインで示した部分が、 標的 核酸である n e c 1遺伝子と配列の異なる部分である。 当該一本鎮オリ ゴヌク レオチ ド D N Aは、 エスペックオリ ゴサービス株式会社に委託し、 合成した。  The single-stranded oligonucleotide gene to be synthesized was an internal standard gene corresponding to the necl gene used in Example 6. The sequence is shown below. The number of bases is 274 bp, and the part shown in lowercase letters and underline is a part different in sequence from the nec1 gene which is the target nucleic acid. The one-piece Origo Nuku Leotide DNA was commissioned to Espec Origo Service Co., Ltd. and synthesized.
合成されたオリ ゴ D N Aは電気泳動にかけ、 目的の一本鎖オリ ゴ D N A遺伝子 ( 2 7 4 b p ) 由来のバンドが得られたかを確認したが、 2 7 0 b p付近に明瞭なバンドは確認できなかった。 又、 全体に電気泳動パ ターンはスメァであり、 2 7 0 b p以外についても、 明瞭なバン ドは確 認されなかった。 以上の結果は、 様々な長さの一本鎖オリ ゴ D N Aが合 成されており、 目的の一本鎖オリ ゴ D N A遺伝子の割合は、 非常に低い ということを示唆していると考えられる。 以上の結果より、 通常のオリ ゴ D N Aを合成する手法では、 任意の配列を有する長鎖の遺伝子は得る ことは不可能であることが強く示唆された。  The synthesized oligo DNA was subjected to electrophoresis, and it was confirmed whether a band derived from the desired single-stranded oligo DNA gene (274 bp) was obtained, but a clear band could be confirmed around 270 bp. Did not. In addition, the electrophoresis pattern was smeared as a whole, and no clear band was confirmed other than 270 bp. The above results are thought to suggest that single-stranded oligo DNAs of various lengths have been synthesized, and that the ratio of the target single-stranded oligo DNA genes is extremely low. From the above results, it was strongly suggested that it is impossible to obtain a long-chain gene having an arbitrary sequence by a conventional technique for synthesizing oligo DNA.
nec l mutant for LAMP : nec l mutant for LAMP:
5 ' TTCACTGCTG TGGGGTATTG CGACACGAAT  5 'TTCACTGCTG TGGGGTATTG CGACACGAAT
TACCAGTGTG CGGGAGGTAG TGGCTCGtca  TACCAGTGTG CGGGAGGTAG TGGCTCGtca
tTGCAGATGG TCAGTGAATT TCGATGACGG  tTGCAGATGG TCAGTGAATT TCGATGACGG
GCCGACGGTA TCGACAATTG ACCTCCATGA ACTGTACCGC GACCAGAGCG ACACCATGTC GCCGACGGTA TCGACAATTG ACCTCCATGA ACTGTACCGC GACCAGAGCG ACACCATGTC
CTCCTTTCGC ATTCTCGGGA GTGTGATGTC GCGCGCCAAT CACCCGAATG AAACAGTCAC GATTCATCAG CAATTTTATC GAGACAATGG CGGGCAGGTG CCGCTCGGAG AGTACGAAAC ACGGT 3 '  CTCCTTTCGC ATTCTCGGGA GTGTGATGTC GCGCGCCAAT CACCCGAATG AAACAGTCAC GATTCATCAG CAATTTTATC GAGACAATGG CGGGCAGGTG CCGCTCGGAG AGTACGAAAC ACGGT 3 '
2 ) —本鎖オリ ゴヌク レオチド DN Aを铸型と した P C R反応  2) —PCR reaction using the main chain oligonucleotide DNA as 铸 type
目的の DNAを得るため、 上記の一本鎖オリ ゴヌクレオチド DNA遺 伝子を铸型として、 P C R増幅を行った。 使用したプライマーの配列を 表 1 1に示した。 P C Rの条件は、 以下に示した通りである。  In order to obtain the target DNA, PCR amplification was performed using the single-stranded oligonucleotide DNA gene described above as type III. The sequences of the primers used are shown in Table 11. The conditions of PCR are as shown below.
■ 変性反応: 95°C、60sec  ■ Denaturation reaction: 95 ° C, 60sec
' ァニーリング及び検出 : 62°C、60sec  '' Annealing and detection: 62 ° C, 60sec
•伸長 (extention) :72。C、60sec  • extension: 72. C, 60sec
- サイクル数: 40サイクル  -Number of cycles: 40 cycles
• Taqポリメラーゼ : Gene Taq (日本ジーン株式会社)  • Taq polymerase: Gene Taq (Nippon Gene Co., Ltd.)
- プライマー添加濃度 : 各 500nM  -Primer addition concentration: 500nM each
• P C R装置 : i Cycler (バイオラッ ド社製) 表 11 プライマー配列  • PCR device: i Cycler (BioRad) Table 11 Primer sequences
Figure imgf000118_0001
Figure imgf000118_0001
P C R反応終了後、 電気泳動を行った。 しかしながら、 2 7 0 b p付 近に明瞭なバンドは確認されなかった。 そこで、 得られた P C R産物を 1 0 0倍に希釈し、 これを铸型と して再度、 同条件で P C Rを実施し、 電気泳動で産物を確認した。 その結果、 僅かに 2 7 0 b p付近にバン ド が確認できた。 しかしながら、 泳動パターンが明瞭でなく全体にスメァ であったため、 再度、 P C R産物を 1 0 0倍に希釈したものを铸型と し て P C Rを実施し、 電気泳動で産物を確認したところ、 2 7 0 b p付近 に明瞭なバンドが確認された。 実際に、 目的の産物が得られた事を確認 するため、 P C R産物の塩基配列を決定した。 以下にその工程を示す。 After completion of the PCR reaction, electrophoresis was performed. However, no clear band was observed around 270 bp. Therefore, the obtained PCR product was diluted 100-fold, this was used as type 铸, and PCR was performed again under the same conditions. The product was confirmed by electrophoresis. As a result, a band was confirmed at around 270 bp. However, since the electrophoresis pattern was not clear and the whole was smeared, PCR was again performed using the PCR product diluted 100-fold as type I, and the product was confirmed by electrophoresis. A clear band was observed around 0 bp. In order to confirm that the desired product was actually obtained, the base sequence of the PCR product was determined. The steps are described below.
P C R産物は、 マイクロスピン S-400HRカラム (アマシャムファノレマ シァ社製) を用いて精製した。 シークェンシング反応は、 ダイデォキシ ターミネータ一 · シークェンシングキッ ト (アプライ ドバイオシステム ズ社製) を用いて実施し、 得られた産物は、 自動塩基配列決定装置 (AB I PRISM TM 377、 アプライ ドバイオシステムズ社製) を用いて、 塩基配 列を決定した。 その結果、 前記の P C R産物は、 目的の内部標準遺伝子 の配列を有していることが確認できた。  The PCR product was purified using a Microspin S-400HR column (Amersham Fanolemasa). The sequencing reaction was performed using a didoxy terminator / sequencing kit (manufactured by Applied Biosystems), and the obtained product was analyzed using an automatic base sequencer (AB I PRISM ™ 377, Applied Biosystems, Inc.). The base sequence was determined using Biosystems). As a result, it was confirmed that the PCR product had the sequence of the target internal standard gene.
以上の結果より、 本発明方法により任意の配列を有する長鎖の人工遺 伝子を、 簡便に合成可能であることが証明された。  From the above results, it was proved that a long-chain artificial gene having an arbitrary sequence can be easily synthesized by the method of the present invention.
実施例 9 Example 9
前記本願発明方法 Bの核酸プローブに標識する色素の種類について 調べた。 下記の塩基配列を有するデォキシリボポリヌクレオチドを核酸 プローブと して、 下記の塩基配列を有するデォキシリボポリヌクレオチ ドを、 それに対応する核酸とした。 なお、 各デォキシリボポリヌク レオ チドは前記の核酸合成機を用いて調製した。  The type of dye to be labeled on the nucleic acid probe of the method B of the present invention was examined. A deoxyribopolynucleotide having the following base sequence was used as a nucleic acid probe, and a deoxyribopolynucleotide having the following base sequence was used as a corresponding nucleic acid. Each deoxyribopolynucleotide was prepared using the nucleic acid synthesizer described above.
•標的核酸プローブ用 : 5' CCCCCCCCCTTTTTT3'  • For target nucleic acid probe: 5 'CCCCCCCCCTTTTTT3'
•標的核酸用 : 5' AAAAAAGGGGGGGGGGGG3'  • For target nucleic acid: 5 'AAAAAAGGGGGGGGGGGG3'
標的核酸プローブ用のデォキシリボポリヌク レオチドに色素を標識 するには、 前記実施例 1 と同様な方法を用いて行った。 蛍光測定は下記の条件で行った。 In order to label the dye on the deoxyribopolynucleotide for the target nucleic acid probe, the same method as in Example 1 was used. The fluorescence measurement was performed under the following conditions.
( 1 ) ハイブリダイゼーショ ン溶液のコンポーネン ト  (1) Components of the hybridization solution
合成 D N A 320nM (終濃度)  Synthetic DNA 320 nM (final concentration)
核酸プローブ 80nM (終濃度)  Nucleic acid probe 80 nM (final concentration)
N a C 1 50mM (終濃度)  NaC 1 50 mM (final concentration)
M g C 1 2 ImM (終濃度) M g C 1 2 ImM (final concentration)
トリスー塩酸緩衝液 (pH= 7. 2) lOOraM (終濃度)  Tris-HCl buffer (pH = 7.2) lOOraM (final concentration)
ミ リ Q純水 1. 6992ml  Milli Q pure water 1.6992ml
2. 0000ml  2. 0000ml
( 2 ) ハイブリダィゼーシヨンの温度 : 51°C  (2) Temperature of hybridization: 51 ° C
( 3 ) 測定条件 :  (3) Measurement conditions:
励起光 : 表 9に記載  Excitation light: listed in Table 9
測定蛍光色 : 表 9に記載  Fluorescent color measured: listed in Table 9
その結果を、 表 9に示した。 表から分かるように、 本発明の蛍光色素 の蛍光強度を減少させるために用いる蛍光色素と して、 前記記載の中で も好適なものは、 蛍光強度の減少率が 1 5 %以上のものなどを挙げるこ とができる。  The results are shown in Table 9. As can be seen from the table, as the fluorescent dye used for reducing the fluorescent intensity of the fluorescent dye of the present invention, those which are also preferable in the above description include those having a reduction rate of the fluorescent intensity of 15% or more. Can be mentioned.
実施例 1 0 Example 10
前記 Morri sonらの方法を適用する実施例 (二種の核酸プローブを用い る方法である。 そして、 当該核酸プローブが標的核酸にハイブリダィズ する前は、 当該プローブは互いにハイブリダィズしているものである。 ) である。  Example applying the method of Morri son et al. (This is a method using two types of nucleic acid probes. Before the nucleic acid probes hybridize to the target nucleic acid, the probes are hybridized to each other. ).
1 ) 標的核酸及び内部標準核酸  1) Target nucleic acid and internal standard nucleic acid
実施例 1 と同様にした。  It was the same as in Example 1.
2 ) 標的核酸プローブの合成 標的核酸プローブは次の二本のオリ ゴヌク レオチ ドからなるもので ある。 2) Synthesis of target nucleic acid probe The target nucleic acid probe consists of the following two oligonucleotides.
a ) 5' -TCCATGAACT GTACCGCGAC-CAG-3' (実施例 1の標的核酸プローブ NECB- 24の 5 ' 末端のシチジル酸を削除した塩基配列) a) 5'-TCCATGAACT GTACCGCGAC-CAG-3 '(base sequence of the target nucleic acid probe NECB-24 of Example 1 with the cytidylic acid at the 5' end removed)
b ) 5'—TCGCGGTACA GTTCATGGA一 3 ' (前記 a ) tこノヽイブリタ、-ィズ塩基酉己 列) b) 5'-TCGCGGTACA GTTCATGGA 1 3 '(above a) t
a ) は、 5 ' 末端のリン酸基の O H基に蛍光物質 6- TAMRAを標識した。 b ) は、 3 ' 末端のアデノシンのデォキシリボースの 3 ' 位 Cの O H 基にクェンチヤ一色素 Dabcylを標識した。  In a), a fluorescent substance 6-TAMRA was labeled on the O H group of the phosphate group at the 5 ′ end. In b), the quencher dye Dabcyl was labeled at the 3'-position C O H group of adenosine deoxyribose at the 3 'end.
3 ) 内部標準核酸プローブ 3) Internal standard nucleic acid probe
標的核酸と同様に、 前記 Morri sonらの方法に用いられているプローブ である。  Like the target nucleic acid, it is a probe used in the method of Morrison et al.
次の塩基配列を二本のオリ ゴヌクレオチドからなるものである。  The following base sequence is composed of two oligonucleotides.
a ) 5' -TCCATGAAAGCTTCCGCGACCAG-3 ' (実施例 1 の標的核酸プローブ NE CMB-24の 5 ' 末端を塩基削除したもの)  a) 5'-TCCATGAAAGCTTCCGCGACCAG-3 '(Target nucleic acid probe NE CMB-24 of Example 1 with the 5' end removed at the base)
b ) 5, -TCGAA GTTCATGGA一 3' (前記 a ) 【こ/ヽィブリタ、、ィズ塩基酉己歹 (J ) a ) は、 5 ' 末端のリン酸基の O H基に蛍光物質 FAMを標識した。 b ) は、 3 ' 末端のアデノシンのデォキシリボースの 3 ' 位 Cの O H 基にクェンチヤ一色素 Dabcylを標識した。  b) 5, -TCGAA GTTCATGGA-1 '(above-mentioned a) [This / dibrita, is a base of the base (J) a) is labeled with a fluorescent substance FAM at the OH group of the phosphate group at the 5' end. did. In b), the quencher dye Dabcyl was labeled at the 3'-position C O H group of adenosine deoxyribose at the 3 'end.
4 ) 標的核酸プローブ、 内部標的核酸プローブの調製方法  4) Preparation method of target nucleic acid probe and internal target nucleic acid probe
実施例 4と同様に行った。  Performed in the same manner as in Example 4.
5 ) 標的核酸と標的核酸プローブ、 及び内部標準核酸と内部標準核酸プ ローブのハイブリダイゼーション条件 :  5) Hybridization conditions for target nucleic acid and target nucleic acid probe, and internal standard nucleic acid and internal standard nucleic acid probe:
実施例 4 と同様にした。  The procedure was the same as in Example 4.
6 ) 測定条件 励起波長及び測定蛍光波長は以下の通りである。 6) Measurement conditions The excitation wavelength and the measured fluorescence wavelength are as follows.
-標的核酸プローブ: 励起波長 : 527〜555nm ; 測定蛍光波長 : 565〜605 nm0 -Target nucleic acid probe: excitation wavelength: 527-555 nm; measured fluorescence wavelength: 565-605 nm 0
• 内部標準核酸プローブ : 励起波長 : 450〜495nm; 測定蛍光波長 : 505 〜537ntn。  • Internal standard nucleic acid probe: excitation wavelength: 450 to 495 nm; measured fluorescence wavelength: 505 to 537 ntn.
7 ) 土壌サンプル (ハイブリダィゼーシヨ ン反応の阻害物質) を含ない 測定系でのハイブリダイゼーション反応の蛍光強度測定  7) Fluorescence intensity measurement of the hybridization reaction in a measurement system that does not contain a soil sample (inhibitor of the hybridization reaction)
標的核酸及び内部標準核酸の濃度を種々替えて、 ハイプリダイゼーシ ョン前後の蛍光強度変化量を測定し、 標的核酸及び内部標準核酸の検量 線を作成した。  The concentration of the target nucleic acid and the internal standard nucleic acid were variously changed, and the amount of change in the fluorescence intensity before and after hybridization was measured to prepare a calibration curve of the target nucleic acid and the internal standard nucleic acid.
標的核酸プローブの濃度 : 500nM  Target nucleic acid probe concentration: 500nM
内部標準核酸プローブの濃度 : 500nM  Internal standard nucleic acid probe concentration: 500 nM
8 ) 土壌サンプル  8) Soil sample
標的核酸を含まない土壌について実施例 1 と同様に調製した。 なお、 標的核酸を含まないことを、 実施例 1の方法にて確認した。  A soil containing no target nucleic acid was prepared in the same manner as in Example 1. The absence of the target nucleic acid was confirmed by the method of Example 1.
9 ) 土壌サンプル (ハイブリダィゼーシヨ ン反応の阻害物質) を含む測 定系での標的核酸の回収試験標的核酸の測定  9) Target nucleic acid recovery test using a measurement system containing soil samples (inhibitors of hybridization reaction) Measurement of target nucleic acids
( 1 ) 土壌サンプルを測定系 1 0 0 i Lに 1 0 0 μ L宛を添加して、 測 定系を複雑系にした。 更に標的核酸を 2 . 5 X 1 0 8コピー/ / 1 0 Lに なるように添加した。 内部標準核酸の濃度を種々変えて、 蛍光強度を測 定してた。 その結果、 内部標準核酸についての検量線が得られた。 内部 標準核酸の検量線についての変化率を計算し、 標的核酸にあてはめた。 その結果、 複雑系における標的核酸の検量線を得た (実際は、 簡便化法 によって行った。 内部標準核酸についての二つの検量線の勾配 (傾き) を求め、 同一濃度での二つの検量線の差を求めた。 そして、 内部標準核 酸についての複雑系の検量線の勾配と、 同一濃度での二つの検量線の差 をそのまま、 標的核酸について当てはめた。 ) 。 (1) 100 μL of a soil sample was added to 100 iL of the measuring system to make the measuring system complicated. Further, a target nucleic acid was added so as to be 2.5 × 10 8 copies // 10 L. The fluorescence intensity was measured at various concentrations of the internal standard nucleic acid. As a result, a calibration curve for the internal standard nucleic acid was obtained. The rate of change for the calibration curve of the internal standard nucleic acid was calculated and applied to the target nucleic acid. As a result, a calibration curve for the target nucleic acid in a complex system was obtained (actually, the simplification method was used. The slope (slope) of the two calibration curves for the internal standard nucleic acid was determined, and the two calibration curves at the same concentration were determined. The difference was found and the internal standard core The slope of the calibration curve for the complex system for the acid and the difference between the two calibration curves at the same concentration were directly applied to the target nucleic acid. ).
( 2 ) 土壌サンプル中の標的核酸のコピー数。  (2) Copy number of target nucleic acid in soil sample.
測定結果は、 2 . 8 X 1 0 sコピー Z 1 0 L、 標的核酸の回収率は 1 1 2 %であった。 産業上の利用可能性 The measurement result was 2.8 × 10 s copy Z 10 L, and the recovery rate of the target nucleic acid was 112%. Industrial applicability
本発明の核酸の新規測定方法は前記のように構成されているので、 標 的核酸と標的核酸プローブのハイプリダイゼーション反応及び/又は 核酸増幅反応を阻害する物質、 又は多型核酸が含まれている試料におい ても、 標的核酸を微量で、 しかも正確かつ簡便、 短時間に特異的に測定 できる。 しかも複数の標的核酸を同時に測定できる。  Since the novel nucleic acid measurement method of the present invention is configured as described above, it contains a substance that inhibits a hybridization reaction and / or a nucleic acid amplification reaction between a target nucleic acid and a target nucleic acid probe, or contains a polymorphic nucleic acid. Even in a sample, the target nucleic acid can be specifically measured in a very small amount, accurately, simply, and in a short time. In addition, a plurality of target nucleic acids can be measured simultaneously.

Claims

請 求 の 範 囲 The scope of the claims
: \ ι, I 少なく とも一種の蛍光色素で標識された一種のオリ ゴヌ クレオチドからなる核酸プローブ(以下、単に「核酸プローブ」 という。) であって、 対応核酸 (標的核酸) にハイブリダィズすることにより、 標 識された蛍光色素の蛍光キャラクターが変化する、 少なく とも一種の核 酸プローブを用いて標的核酸を測定する方法 (以下、 単に 「核酸プロ一 ブを用いて核酸を測定する方法」 という。 ) において、 測定系に少なく とも一種の標的核酸と標的核酸に相応する既知量の内部標準核酸を少 なく とも一種含み、 かつ標的核酸に特異的な、 少なく とも一種の蛍光色 素で標識されたオリ ゴヌクレオチドからなる核酸プローブ (以下、 単に : \ Ι, I A nucleic acid probe consisting of at least one kind of oligonucleotide labeled with at least one kind of fluorescent dye (hereinafter simply referred to as “nucleic acid probe”) that hybridizes to the corresponding nucleic acid (target nucleic acid). Changes the fluorescent character of the identified fluorescent dye, and measures the target nucleic acid using at least one kind of nucleic acid probe (hereinafter simply referred to as “method of measuring nucleic acid using nucleic acid probe”). )), The assay system contains at least one target nucleic acid and at least one known amount of an internal standard nucleic acid corresponding to the target nucleic acid, and is labeled with at least one fluorescent dye specific to the target nucleic acid. Nucleic acid probes consisting of oligonucleotides (hereinafter simply referred to as
「標的核酸プローブ」 という。 ) 若しくは内部標準核酸に特異的な、 少 なく と も一種の蛍光色素で標識されたオリ ゴヌク レオチドからなる核 酸プローブ (以下、 単に 「内部標準核酸プローブ」 という。 ) を少なく も一種含むか、 又は標的核酸プローブと内部標準核酸プローブを各々少 なく とも一種含む反応系で、 ハイプリダイゼーシヨ ン反応及び Ζ又は核 酸増幅反応を行わせ、 標的核酸プローブと標的核酸とのハイプリダイゼ ーシヨンにより生じる標的核酸プローブの蛍光キャラクターの、 ハイブ リダイゼーショ ン前後における変化又は変化量、 内部標準核酸プローブ と内部標準核酸とのハイブリ ダイゼーシヨ ンにより生じる内部標準核 酸プローブの蛍光キャラクターの、 ハイブリダィゼーシヨ ン前後におけ る変化又は変化量を少なく とも一種の測定波長で測定して、 得られる測 定値及び内部標準核酸の添加量から、 標的核酸及び Ζ又は核酸増幅反応 前の標的核酸を測定することを特徴とする核酸の新規測定方法。 It is called “target nucleic acid probe”. Or at least one nucleic acid probe (hereinafter simply referred to as "internal standard nucleic acid probe") consisting of an oligonucleotide labeled with at least one fluorescent dye specific to the internal standard nucleic acid. Alternatively, in a reaction system containing at least one target nucleic acid probe and at least one internal standard nucleic acid probe, a hybridization reaction and a Ζ or nucleic acid amplification reaction are carried out, and the target generated by the hybridization between the target nucleic acid probe and the target nucleic acid. The change or amount of change in the fluorescent character of the nucleic acid probe before and after hybridization, and the change in the fluorescent character of the internal standard nucleic acid probe caused by hybridization between the internal standard nucleic acid probe and the internal standard nucleic acid before and after hybridization. At least one type of change or change Measured at a constant wavelength, the amount of measured values and internal standard nucleic acid obtained, a new method of measuring nucleic acid and measuring the target nucleic acid and Ζ or nucleic acid amplification reaction prior to the target nucleic acid.
\2 \'ΐ 前記内部標準核酸が、 下記の特質の少なく とも一つを有 するものである請求項 1に記載の核酸の新規測定方法。 1 ) 内部標準核酸が、 対応する核酸プローブとハイプリダイゼーシヨ ン して得られる蛍光キャラクターの変化又は変化量から標的核酸と識別 可能な塩基配列を有する。 2. The novel nucleic acid measurement method according to claim 1, wherein the internal standard nucleic acid has at least one of the following characteristics. 1) The internal standard nucleic acid has a nucleotide sequence that can be distinguished from the target nucleic acid based on the change or the amount of change in the fluorescent character obtained by hybridization with the corresponding nucleic acid probe.
2 ) 内部標準核酸が、 一定条件下で内部標準核酸プローブとのみハイブ リダイズし、 標的核酸とハイプリダイズしない塩基配列を有する。  2) The internal standard nucleic acid has a base sequence that hybridizes only with the internal standard nucleic acid probe under certain conditions and does not hybridize with the target nucleic acid.
3 ) 内部標準核酸が、 標的核酸と一部配列が異なる塩基配列である。  3) The internal standard nucleic acid has a base sequence partially different from that of the target nucleic acid.
4 ) 内部標準核酸の塩基長が、 標的核酸のものと異なる。  4) The base length of the internal standard nucleic acid is different from that of the target nucleic acid.
5 ) 内部標準核酸は、 同一のプライマーを用いて標的核酸と同時に増幅 できる。  5) The internal standard nucleic acid can be amplified simultaneously with the target nucleic acid using the same primer.
:' 3, 前記内部標準核酸プローブが、 下記の特質の少なく とも 一つを有するものである請求項 1又は 2に記載の核酸の新規測定方法。  : '3, The novel nucleic acid measurement method according to claim 1 or 2, wherein the internal standard nucleic acid probe has at least one of the following characteristics.
1 ) 内部標準核酸プローブが、 対応する核酸とハイブリダィズすること ができる塩基配列を有する。  1) The internal standard nucleic acid probe has a base sequence capable of hybridizing with the corresponding nucleic acid.
2 ) 内部標準核酸プローブが、 一定条件下で内部標準核酸とのみハイブ リダイズし、 標的核酸とハイプリダイズしない塩基配列を有する。  2) The internal standard nucleic acid probe has a base sequence that hybridizes only with the internal standard nucleic acid under certain conditions and does not hybridize with the target nucleic acid.
3 ) 内部標準核酸プローブが内部標準核酸とハイプリダイズすることに より生ずる、 内部標準核酸プローブに標識された蛍光色素の蛍光キャラ クタ一変化若しくは変化量が、 標的核酸が標的核酸プローブにハイプリ ダイズすることにより生ずる、 標的核酸プローブに標識された蛍光色素 の蛍光キャラクター変化若しく は変化量とは明瞭に識別可能である。 i | 4 .'; 前記の標的核酸プローブ及び 又は内部標準核酸プロ一 ブが、 各々、 対応核酸にハイブリダィズする一本鎖のオリ ゴヌク レオチ ドであり、 一種のドナー色素 (リポーター色素をも含む。 ) 及びノ又は 一種のァクセプター色素 (クェンチヤ一色素若しくはクェンチヤ一物質 をも含む。 ) を標識してなる少なく とも一種の核酸プローブであって、 当該核酸プローブが対応核酸にハイブリダイズしているときはハイブ リダイゼーショ ン反応系の蛍光キャラクターの変化又は変化量が増加 するように、 ドナー色素とァクセプター色素が当該ォリ ゴヌク レオチド に標識されている標的核酸プローブ及び/又は内部標準核酸プローブ を用いる請求項 1〜 3の何れか 1項に記載の核酸の新規測定方法。 3) The change or amount of change in the fluorescent character of the fluorescent dye labeled on the internal standard nucleic acid probe caused by the hybridization of the internal standard nucleic acid probe with the internal standard nucleic acid causes the target nucleic acid to hybridize to the target nucleic acid probe. Thus, the change or the amount of change in the fluorescent character of the fluorescent dye labeled on the target nucleic acid probe can be clearly distinguished. i | 4. '; each of the target nucleic acid probe and / or the internal standard nucleic acid probe is a single-stranded oligonucleotide that hybridizes to a corresponding nucleic acid, and is a kind of donor dye (including a reporter dye). ) And at least one nucleic acid probe which is labeled with one or one of the acceptor dyes (including quencher dyes or quencher substances). When the nucleic acid probe is hybridized to the corresponding nucleic acid, the target in which the donor dye and the acceptor dye are labeled on the oligonucleotide so that the change or the amount of change in the fluorescent character of the hybridization reaction system increases. The novel nucleic acid measurement method according to any one of claims 1 to 3, wherein the nucleic acid probe and / or the internal standard nucleic acid probe is used.
^_ 5 i j 標的核酸プローブ及び Z又は内部標準核酸プローブが、 下記の何れかの形態を有するものである請求項 4に記載の核酸の新規 測定方法。  The novel nucleic acid measuring method according to claim 4, wherein the ^ _5ij target nucleic acid probe and Z or the internal standard nucleic acid probe have any one of the following forms.
1 ) ドナー色素とァクセプター色素で標識された一種のオリ ゴヌク レオ チドの形態で、 対応核酸とハイブリダィズすることにより、 ハイブリダ ィゼーション前後で、 ドナー色素の蛍光キャラクターの変化又は変化量 がプラスになるもの。  1) In the form of a type of oligonucleotide labeled with a donor dye and an acceptor dye, by hybridization with the corresponding nucleic acid, the change or the amount of change in the fluorescent character of the donor dye before and after hybridization is positive. .
2 ) ドナー色素とァクセプター色素で標識された一種のオリ ゴヌクレオ チドの形態で、 対応核酸とハイプリダイズすることにより、 ハイブリダ ィゼーシヨン前後で、 ドナー色素及びァクセプタ一色素の蛍光キャラク ターの変化又は変化量がマイナスになるもの。  2) By hybridizing with the corresponding nucleic acid in the form of a type of oligonucleotide labeled with a donor dye and an acceptor dye, the change or the amount of change in the fluorescent character of the donor dye and the acceptor dye before and after hybridization is observed. Things that will be negative.
3 ) —種のドナー色素一つで標識された一種のオリ ゴヌク レオチドから なる一種のドナープローブ、 及ぴ一種のァクセプター色素一つで標識さ れた一種のオリ ゴヌク レオチドからなる一種のァクセプタープローブ の二種のプローブが対をなす形態であり、 ドナープローブ及び/又はァ クセプタープローブが対応核酸とハイブリダイズすることにより、 ハイ ブリダイゼーション前後で、 ドナー色素及びァクセプター色素の蛍光キ ャラクタ一の変化又は変化量がマイナス若しくはプラスになるもの。 Γ ( 6. 標的核酸プローブ及び Z又は内部標準核酸が、 ドナー色 素とァクセプター色素で標識された一種のオリ ゴヌク レオチドの形態 で、 対応核酸とハイブリダィズすることにより、 ハイブリダィゼーショ ン前後で、 ドナー色素及びァクセプター色素の蛍光キャラクタ一の変化 又は変化量がマイナスになるものであって、 かつその末端部においてド ナー色素又はァクセプタ一色素で標識されており、 当該核酸プローブが 当該末端部において対応核酸にハイプリダイズしたとき、 当該プローブ にハイプリダイズした対応核酸の末端塩基から 1ないし 3塩基離れて、 対応核酸の塩基配列に G (グァニン) が少なく とも 1塩基存在するよう に、 当該ローブの塩基配列が設計されている標的核酸プローブ及び 又 は内部標準核酸プローブを用いる請求項 4に記載の核酸の新規測定方 法。 3) — A kind of donor probe consisting of one kind of oligonucleotide labeled with one kind of donor dye, and a kind of receptor consisting of one kind of oligonucleotide labeled with one kind of receptor dye The probe is a paired form of a probe, and the donor probe and / or the acceptor probe hybridize with the corresponding nucleic acid to change the fluorescent character of the donor dye and the acceptor dye before and after hybridization. Or, the amount of change is minus or plus. Γ (6. A form of an oligonucleotide in which the target nucleic acid probe and Z or the internal standard nucleic acid are labeled with a donor dye and an acceptor dye. By hybridizing with the corresponding nucleic acid, the change or the amount of change in the fluorescent character of the donor dye and the acceptor dye becomes negative before and after the hybridization, and at the end of the donor dye. Or, when the nucleic acid probe is hybridized to the corresponding nucleic acid at the end portion, the nucleotide sequence of the corresponding nucleic acid is separated by 1 to 3 bases from the terminal base of the corresponding nucleic acid hybridized to the probe. 5. The novel nucleic acid measurement method according to claim 4, wherein a target nucleic acid probe and / or an internal standard nucleic acid probe whose base sequence is designed such that at least one base of G (guanine) is present in the lobe.
に — : . 1 7; I 標的核酸プローブ及び/又は内部標準核酸が、 ドナー色 素とァクセプター色素で標識された一種のオリ ゴヌク レオチドの形態 で、 対応核酸とハイプリダイズすることにより、 ハイブリダィゼーショ ン前後で、 ドナー色素及びァクセプター色素の蛍光キャラクタ一の変化 又は変化量がマイナスになるものであって、 かつ対応核酸にハイブリダ ィゼーションしたとき、 ドナー又はァクセプタ一色素標識部においてプ 口一ブー核酸ハイブリ ッ ドの複数塩基対が少なく とも一つの G (グァ二 ン) と C (シトシン) のペア一を形成するように、 当該プローブの塩基 配列が設計されている標的核酸プローブ及び/又は内部標準核酸プロ ーブを用いる請求項 4に記載の核酸の新規測定方法。 17: I The target nucleic acid probe and / or internal standard nucleic acid is hybridized with the corresponding nucleic acid in the form of a kind of oligonucleotide labeled with a donor dye and an acceptor dye, thereby hybridizing. The change or the amount of change in the fluorescent character of the donor dye and the acceptor dye before and after the hybridization is negative, and when hybridization is performed with the corresponding nucleic acid, the change in the fluorescent label of the donor dye or the acceptor dye is caused by a change in the fluorescent dye. A target nucleic acid probe and / or a target nucleic acid probe whose base sequence is designed so that a plurality of base pairs of a boo nucleic acid hybrid form at least one pair of G (guanine) and C (cytosine). 5. The novel nucleic acid measurement method according to claim 4, wherein an internal standard nucleic acid probe is used.
? 8: ; 標的核酸プローブ及び/又は内部標準核酸プローブが、 少なく も一種の蛍光色素で標識された一本鎖のオリ ゴヌク レオチドか らなるもので、 以下の少なく とも一つの特質を有するように、 当該プロ ーブが設計されているものを用いる請求項 1〜 3の何れか 1項に記載 の核酸の新規測定方法。 1 ) 前記反応系若しくは測定系で一種のプローブで機能を発揮できる。8: The target nucleic acid probe and / or the internal standard nucleic acid probe is composed of a single-stranded oligonucleotide labeled with at least one kind of fluorescent dye, and has at least one of the following characteristics. The novel method for measuring a nucleic acid according to any one of claims 1 to 3, wherein a probe for which the probe is designed is used. 1) A function can be exhibited with a kind of probe in the reaction system or the measurement system.
2 ) 標的核酸及び/又は内部標準核酸にハイプリダイゼ一ションしたと きに、 前記蛍光色素が、 クェンチヤ一色素及び Z又はクェンチヤ一プロ 一ブの非存在下にその蛍光キヤラクターの変化又は変化量をマイナス に増大させる。 2) When hybridized to a target nucleic acid and / or an internal standard nucleic acid, the fluorescent dye reduces the change or the amount of change of the fluorescent character in the absence of quencher dye and Z or quencher probe. To increase.
3 ) 当該プローブは、 その末端部において少なく とも蛍光色素で標識さ れている。  3) The probe is labeled at least with a fluorescent dye at its end.
4 ) 当該核酸プローブが標的核酸にハイプリダイゼーショ ンしたとき、 当該プローブの色素標識された塩基から 1ないし 3塩基離れて (伹し、 標識塩基を 1 と計数する。 ) 、 G (グァニン) が少なく とも 1塩基存在 する。  4) When the nucleic acid probe is hybridized to the target nucleic acid, G (guanine) is separated from the dye-labeled base of the probe by one to three bases (the labeled base is counted as 1). There is at least one base.
5 ) 当該核酸プローブが当該末端部において標的核酸にハイプリダイゼ ーションしたとき、 当該末端部分においてプローブ一核酸ハイプリ ッ ド の複数塩基対が少なく とも一つの G (グァニン) と C (シトシン) のぺ ァーを形成する。  5) When the nucleic acid probe hybridizes to the target nucleic acid at the end, at least one base pair of the probe-nucleic acid hybrid at the end is a G (guanine) and C (cytosine) primer. To form
! ::」9;. I 請求項 8に記載の標的核酸プローブ及び/又は内部標準 核酸プローブが、 3 '末端のリポース若しくはデォキシリポースの 3 '炭素 の水酸基、 又は 3,末端のリボースの 3 '若しくは 2,炭素の水酸基がリ ン 酸化されている標的核酸プローブ及び/又は内部標準核酸プローブを 用いる請求項 8に記載の核酸の新規測定方法。  ! :: "9 ;. I The target nucleic acid probe and / or the internal standard nucleic acid probe according to claim 8 is a 3'-terminal hydroxyl group of a 3'-terminal report or deoxylipose, or a 3'- or 2'-terminal ribose. 9. The novel method for measuring a nucleic acid according to claim 8, wherein a target nucleic acid probe and / or an internal standard nucleic acid probe in which a hydroxyl group of carbon is phosphorylated is used.
し— 1 0 ί 請求項 8に記載の標的核酸プローブ及び/又は内部標 準核酸プローブが、 3 '末端の Ο Η基以外の部分で前記蛍光色素により標 , 識されており、 当該核酸プローブが、 前記対応核酸にハイブリダィゼー シヨンしたとき、 当該修飾部分においてプローブ一核酸ハイプリ ッ ドの 複数塩基対が少なく とも一つの G (グァニン) とじ (シ トシン) のペア 一を形成する標的核酸プローブ及び/又は内部標準核酸プローブを用 いる請求項 8に記載の核酸の新規測定方法。 The target nucleic acid probe and / or the internal standard nucleic acid probe according to claim 8, which is labeled and recognized by the fluorescent dye at a portion other than the 3′-terminal nucleotide, and wherein the nucleic acid probe is When the corresponding nucleic acid is hybridized, at least one base pair of the probe-nucleic acid hybrid in the modified portion is at least one G (guanine) and a pair of cytosine. 9. The novel method for measuring a nucleic acid according to claim 8, wherein a target nucleic acid probe and / or an internal standard nucleic acid probe forming one is used.
Γ —― 1 1, ! 核酸増幅方法により標的核酸と既知の濃度若しくはコ ピー数の内部標準核酸を、 請求項 2〜 1 0の何れか 1項に記載の標的核 酸プローブ及び Z又は内部標準核酸プローブを用いるか用いないで、 増 幅させ、 更に、 当該増幅産物を、 請求項 2〜 1 0の何れか 1項に記載の 標的核酸プローブ及び/又は内部標準核酸プローブとハイブリダイゼ ーションさせ、 ハイプリダイゼーション前後の反応系の蛍光キャラクタ 一の変化若しくは変化量を測定して、 当該測定値及び内部標準の濃度か ら、 増幅前の標的核酸の濃度若しくはコピー数を測定することを特徴と する核酸の新規測定方法。  Γ —— 1 1,! An internal standard nucleic acid having a known concentration or a copy number with a target nucleic acid by a nucleic acid amplification method is used, or the target nucleic acid probe and Z or the internal standard nucleic acid probe according to any one of claims 2 to 10 are used or not used. The amplification product is further hybridized with the target nucleic acid probe and / or the internal standard nucleic acid probe according to any one of claims 2 to 10, and the reaction system before and after hybridization is amplified. A novel nucleic acid measurement method characterized by measuring a change or a change amount of a fluorescent character and measuring a concentration or a copy number of a target nucleic acid before amplification from the measured value and the concentration of an internal standard.
ί' 1 2 J 核酸増幅方法により、 請求項 2〜 1 0の何れか 1項に 記載の標的核酸プローブ及び/又は内部標準核酸プローブを用いて、 標 的核酸と既知の濃度若しくはコピー数の内部標準核酸の核酸増幅反応 を行い、 核酸伸長反応時当該プローブがポリメラーゼにより分解除去さ れている反応系又は核酸変性反応時若しく は核酸変性反応が完了して いる反応系の蛍光キャラクタ一若しくは蛍光色素の蛍光キャラクタ一、 及び標的核酸若しくは増幅標的核酸と標的核酸プローブ及び内部標準 核酸若しくは増幅内部標的核酸と内部標準核酸プローブがハイプリ ダ ィズしているときの反応系の蛍光キヤラクタ一若しく は蛍光色素の蛍 光キャラクターを測定し、 更に前者からの当該キャラクタ一の測定値の 減少率を算出して、 当該減少率と内部標準核酸の濃度若しくはコピー数 から、 標的核酸の増幅前の濃度若しくはコピー数を測定することを特徴 とする核酸の新規測定方法。  The target nucleic acid and the internal standard nucleic acid probe having a known concentration or copy number can be obtained by using the target nucleic acid probe and / or the internal standard nucleic acid probe according to any one of claims 2 to 10 according to the ί ′ 12 J nucleic acid amplification method. Fluorescence character or fluorescence of a reaction system in which the probe is decomposed and removed by a polymerase during a nucleic acid extension reaction during a nucleic acid amplification reaction of a standard nucleic acid, or a reaction system during a nucleic acid denaturing reaction or a nucleic acid denaturing reaction is completed The fluorescent character of the dye and the fluorescent character or the reaction character of the reaction system when the target nucleic acid or amplified target nucleic acid and the target nucleic acid probe and the internal standard nucleic acid or the amplified internal target nucleic acid and the internal standard nucleic acid probe are hybridized. The fluorescent character of the fluorescent dye is measured, and the reduction rate of the measurement value of the character from the former is calculated, and the reduction rate and the internal standard are calculated. A novel nucleic acid measurement method, comprising measuring the concentration or copy number of a target nucleic acid before amplification from the nucleic acid concentration or copy number.
—— - 3 . I 核酸増幅方法により、 請求項 2〜 1 0の何れか 1項に 記載の標的核酸プローブ及び z又は内部標準核酸プローブをプライマ 一と して用いて、 標的核酸と既知の濃度若しくはコピー数の内部標準核 酸の核酸増幅反応を行い、 標的核酸若しくは増幅標的核酸と標的核酸プ ローブ及び内部標準核酸若しく は増幅内部標的核酸と内部標準核酸プ ローブがハイブリ ダイズしていないときの反応系の蛍光キヤラクター 若しくは蛍光色素の蛍光キャラクター、 及び標的核酸若しくは増幅標的 核酸と標的核酸プローブ及び内部標準核酸若しく は増幅内部標的核酸 と内部標準核酸プローブがハイブリダィズしているときの反応系の蛍 光キャラクター若しくは蛍光色素の蛍光キャラクターを測定して、 更に 前者からの当該キャラクターの測定値の減少率を算出して、 当該減少率 と内部標準核酸の濃度若しくはコピー数から、 標的核酸の増幅前の濃度 若しくはコピー数を測定することを特徴とする核酸の新規測定方法。——-3. According to any one of claims 2 to 10, depending on the method of amplifying nucleic acid. Using the described target nucleic acid probe and z or the internal standard nucleic acid probe as a primer, a nucleic acid amplification reaction of the target nucleic acid with a known concentration or copy number of the internal standard nucleic acid is performed, and the target nucleic acid or the amplified target nucleic acid and the target nucleic acid are amplified. Nucleic acid probe and internal standard nucleic acid or amplified internal target nucleic acid and fluorescent character of fluorescent dye or fluorescent dye of reaction system when internal standard nucleic acid probe is not hybridized, and target nucleic acid or amplified target nucleic acid and target nucleic acid The fluorescent character of the reaction system or the fluorescent character of the fluorescent dye is measured when the probe and the internal standard nucleic acid or the amplified internal target nucleic acid and the internal standard nucleic acid probe are hybridized, and the measured value of the character from the former is measured. And the concentration of the internal standard nucleic acid. New method for measuring nucleic acids from the copy number, and measuring the number of concentration or copy prior to amplification of the target nucleic acid.
: :1 4l I 核酸を増幅させる方法が、 P C R方法、 I CAN方法、:: 14l I The method of amplifying nucleic acid is PCR method, ICAN method,
LAMP方法、 NA S BA方法、 R CA方法、 TAMA方法、 L C R方 法の何れかの方法である請求項 1 1〜 1 3の何れか 1項に記載の核酸 の新規測定方法。 The novel method for measuring a nucleic acid according to any one of claims 11 to 13, which is any one of a LAMP method, a NASBA method, an RCA method, a TAMA method, and an LCR method.
;: 1 5:. ! P CR方法が定量的 P C R方法若しくはリアルタイム 定量的 P C R方法である請求項 1 4に記載の P C R方法の増幅核酸の 測定方法。  ;: 15:.! 15. The method according to claim 14, wherein the PCR method is a quantitative PCR method or a real-time quantitative PCR method.
,1 6 '. ί 請求項 1〜 1 5の何れか 1項に記載の核酸測定法で得 られたデータを解析する方法において、 標的核酸と標識核酸プローブ、 及び 又は内部標準核酸と内部標準核酸プローブとがハイブリ ダイズ したときの反応系の蛍光キャラクタ一の測定値を、 ハイブリダイズした ものが解離したときの反応系の蛍光キャラクターの測定値によ り補正 することを特徴とする核酸測定方法のためのデータ解析方法。 ΐ 1 7. 請求項 1 5に記載のリ アルタイム定量的 P C R方法で 得られたデータを解析する方法において、 各サイクルにおける増幅した 標的核酸と標的核酸プローブ、 及び Z又は増幅した内部標準核酸と内部 標準核酸プローブとが、 ハイプリダイズしたときの反応系の蛍光キャラ クタ一の測定値を、 各サイクルにおける前記のハイブリダィズしたもの が解離したときの反応系の蛍光キャラクターの測定値により補正する 演算処理過程 (以下、 「補正演算処理過程」 という。 ) を有することを 特徴とするリアルタイム定量的 P C R方法のためのデータ解析方法。 116 ′. に お い て A method for analyzing data obtained by the nucleic acid measurement method according to any one of claims 1 to 15, wherein the target nucleic acid and the labeled nucleic acid probe, and / or the internal standard nucleic acid and the internal standard nucleic acid are used. A nucleic acid measurement method characterized in that the measured value of the fluorescent character of the reaction system when hybridized with the probe is corrected by the measured value of the fluorescent character of the reaction system when the hybridized product dissociates. Data analysis method for. ΐ1 7. The method for analyzing data obtained by the real-time quantitative PCR method according to claim 15, wherein the amplified target nucleic acid and the target nucleic acid probe, and Z or the amplified internal standard nucleic acid in each cycle are used. Computes the measured value of the fluorescent character of the reaction system when hybridized with the internal standard nucleic acid probe by the measured value of the fluorescent character of the reaction system when the hybridized product is dissociated in each cycle A data analysis method for a real-time quantitative PCR method, characterized by having a process (hereinafter, referred to as a “correction calculation process”).
U I 請求項 1 〜 1 0の何れか 1項に記載の核酸を測定する 方法又はノ及び請求項 1 1 〜 1 5の何れか 1項に記載の核酸を増幅す る方法又はノ及び請求項 1 6並びに 1 7に記載のデータ解析方法を用 いて、 多型及び/又は変異の解析、 分析、 又は定量することを特徴とす る多型及び Z又は変異の解析、 分析、 又は定量する方法。  UI The method or method for measuring nucleic acids according to any one of claims 1 to 10 and the method or the method for amplifying nucleic acids according to any one of claims 11 to 15 and claim 1 A method for analyzing, analyzing, or quantifying polymorphisms and / or mutations, characterized by analyzing, analyzing, or quantifying polymorphisms and / or mutations using the data analysis method described in 6 and 17.
― ! 1 9:. 請求項 1 〜 1 0の何れか 1項に記載の核酸を測定する 方法又は 及び請求項 1 1 〜 1 5の何れか 1項に記載の核酸を増幅す る方法又は Z及び請求項 1 6並びに 1 7に記載のデータ解析方法を用 いて、 核酸を測定及び Z又は得られるデータを解析することを特徴とす る F I S H方法、 L C R方法、 S D方法、 T A S方法の何れか一方法。  -! 19: A method for measuring the nucleic acid according to any one of claims 1 to 10 or a method for amplifying the nucleic acid according to any one of claims 11 to 15 or Z And any of a FISH method, an LCR method, an SD method, and a TAS method, wherein nucleic acid is measured and Z or obtained data is analyzed using the data analysis method according to claims 16 and 17. One way.
\ 2 0 .! 請求項 2に記載の内部標準核酸、 請求項 1 、 3〜 1 0 の少なく とも何れか 1項に記載の標的核酸プローブ若しくは標的核酸 のプライマープローブ及びノ又は内部標準核酸プローブ若しくは内部 標準核酸のプライマープローブを含んでなり、 かつ当該標的核酸プロ一 ブ若しくは標的核酸のプライマープローブに標的核酸及び 又は内部 標準核酸プローブ若しくは内部標準核酸のプライマープローブに内部 標準核酸をハイプリさせて、 当該標的核酸プローブ及び Z又は内部標準 核酸プローブに標識された蛍光色素の蛍光キャラクターの変化もしく は変化量を測定することにより、 請求項 1〜 1 5、 請求項 1 8又は 1 9 の何れか 1項に記載の方法を実施できるようにしたことを特徴する反 応液若しくは測定キッ ト類。 \ 20! The internal standard nucleic acid according to claim 2, the target nucleic acid probe or the target nucleic acid primer according to at least one of claims 1 and 3 to 10, and the internal standard nucleic acid probe or the internal standard nucleic acid primer The target nucleic acid probe or the primer probe of the target nucleic acid is hybridized with the target nucleic acid and / or the internal standard nucleic acid probe or the primer probe of the internal standard nucleic acid. Or internal standard The method according to any one of claims 1 to 15, claim 18, or 19 can be performed by measuring the change or the amount of change in the fluorescent character of the fluorescent dye labeled on the nucleic acid probe. A reaction liquid or a measurement kit characterized in that:
! 2 1; . I 請求項 1、 3〜: L 0の少なく とも何れか 1項に記載の 標的核酸プローブ及び Z又は内部標準核^プローブを、 複数個固体支持 体表面に結合させ、 当該標的核酸プローブに標的核酸及び/又は内部標 準核酸プローブに内部標準核酸をハイプリさせて、 当該標的核酸プロ一 ブ及びノ又は内部標準核酸プローブに標識された蛍光色素の蛍光キヤ ラクターの変化もしくは変化量を測定することにより、 請求項 1 ~ 1 0、 請求項 1 8又は 1 9の何れか 1項に記載の方法を実施できるようにし たことを特徴するデバイス類。  ! 2 1;. Claims 1 and 3 to: A plurality of the target nucleic acid probes and Z or internal standard nuclear probes according to at least one of L 0 are bound to the surface of a solid support, and the target The target nucleic acid and / or the internal standard nucleic acid probe is hybridized with the internal standard nucleic acid by the nucleic acid probe, and the change or the amount of change in the fluorescent character of the fluorescent dye labeled on the target nucleic acid probe and the internal standard nucleic acid probe. 10. A device characterized in that the method according to any one of claims 1 to 10 and any one of claims 18 or 19 can be performed by measuring the device.
;2 2;.] 請求項 2に記載の内部標準核酸を含有してなり、 請求 項 2 1に記載のデバイスを用いて請求項 1〜 1 0、 請求項 1 8、 又は 1 9の何れか 1項に記載の方法を実施できるようにしたことを特徴する 反応液若しくは試薬キッ ト。  ; 22;.] Comprising the internal standard nucleic acid according to claim 2; and using the device according to claim 21 to any of claims 1 to 10, claim 18, or 19 A reaction solution or a reagent kit, wherein the method according to item 1 can be performed.
: ― ";2 3;. 前記に記載の核酸測定用デバイスにおいて、 標的核酸 プローブ及び 又は内部標準プローブを固体支持体表面にアレー状に 配列、 結合させて単数種若しくは複数種の標的核酸をそれぞれ測定する できるようにしたデバィス ( D N Aチップ) を用いる請求項 2 1に記載 のデバイス類。: - "; in 2 3 ;. nucleic measuring device according to the target nucleic acid probes and or arranged in an array of internal standard probe to a solid support surface, the singular species bound or plural kinds of target nucleic acids, respectively 22. The devices according to claim 21, wherein a device (a DNA chip) that can be measured is used.
2 4;; I 固体支持体表面に結合させた標的核酸プに少なく とも 一つの温度センサーとヒーターが設置され、 核酸プローブ結合領域が最 適温度条件になるように温度調節され得るデバイス (D N Aチップ) で あるを請求項 2 1又は 2 3に記載のデバイス類。 一 ― ' 2 5;._ ] 請求項 1〜 1 9の何れか 1項に記載の方法を実施する ための測定装置。 24 At least one temperature sensor and heater are installed on the target nucleic acid probe bound to the surface of the solid support, and a device (DNA chip) capable of controlling the temperature so that the nucleic acid probe binding region is at the optimal temperature condition. The devices according to claim 21 or 23, wherein A measurement apparatus for performing the method according to any one of claims 1 to 19.
― 2 6;. 温度を変化させながら蛍光測定可能な装置である請求 項 2 5に記載の測定装置。  26. The measuring device according to claim 25, wherein the measuring device is capable of measuring fluorescence while changing the temperature.
' 2 7,7 請求項 1 6〜 1 9に記載のデータ解析方法の過程を、 コンピュータに実行させるための手順をプログラムと して記録したこ とを特徴とするコンピュータ読取可能な記録媒体。  '27,7 A computer-readable recording medium, wherein a procedure for causing a computer to execute the data analysis method according to any one of claims 16 to 19 is recorded as a program.
__J2 8:. ί 請求項 2 7に記載のコンピュータ読取可能な記録媒体 を組み込んだ請求項 2 5又は 2 6に記載の測定装置。  __J28: The measurement device according to claim 25 or 26, wherein the computer-readable recording medium according to claim 27 is incorporated.
し 二 /2 9' 標的核酸塩基配列領域を切断しないような少なく とも 一種の制限酵素によって標的核酸を含む全核酸を切断後、 標的核酸塩基 配列を含む核酸画分のみを分離 · 回収することを特徴とする標的核酸分 離 · 回収濃縮方法。 2/2 9 'Separate and collect only the nucleic acid fraction containing the target nucleobase sequence after cleaving all nucleic acids including the target nucleic acid with at least one restriction enzyme so as not to cleave the target nucleobase sequence region. Characteristic target nucleic acid separation and recovery / concentration methods.
/3 0, . / 任意の配列を有する人工合成された 5 0 b p以上の一 本鎖のオリゴヌク レオチド核酸を铸型として遺伝子増幅を行い、 任意の 配列を有する 2本鎖 D N Aを取得することを特徴とする人工合成遺伝 子の取得方法。  / 30, ./ Gene amplification using an artificially synthesized single-stranded oligonucleotide nucleic acid of 50 bp or more having an arbitrary sequence as a type A to obtain a double-stranded DNA having an arbitrary sequence. How to obtain the characteristic artificially synthesized gene.
PCT/JP2003/005118 2002-04-22 2003-04-22 Novel method of assaying nucleic acid WO2003089669A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-119903 2002-04-22
JP2002119903 2002-04-22

Publications (1)

Publication Number Publication Date
WO2003089669A1 true WO2003089669A1 (en) 2003-10-30

Family

ID=29243565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005118 WO2003089669A1 (en) 2002-04-22 2003-04-22 Novel method of assaying nucleic acid

Country Status (2)

Country Link
JP (1) JP2009077736A (en)
WO (1) WO2003089669A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005059548A1 (en) * 2003-12-19 2005-06-30 Kankyo Engineering Co., Ltd. Novel mixtures for assaying nucleic acid, novel method of assaying nucleic acid with the use of the same and nucleic acid probe to be used therefor
WO2009051214A1 (en) * 2007-10-19 2009-04-23 Eiken Kagaku Kabushiki Kaisha Nucleic acid amplification method, and reagent and reagent kit for use in the method
US8346485B2 (en) 2008-11-25 2013-01-01 Quest Diagnostics Investments Incorporated Methods and apparatuses for estimating initial target nucleic acid concentration in a sample by modeling background signal and cycle-dependent amplification efficiency of a polymerase chain reaction
US8640555B2 (en) 2009-02-09 2014-02-04 Bioaccel Performance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6460626B2 (en) * 2013-11-11 2019-01-30 学校法人慶應義塾 Probe preparation method, probe set, and phenotyping gene detection method

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
HAN D. ET AL.: "Quantitative polymerase chain reaction assessment of chimerism in non-human primates after sex-mismatched islet and bone marrow transplantation", TRANSPLANTATION, vol. 69, no. 8, 27 April 2000 (2000-04-27), pages 1717 - 1721, XP002971335 *
INNIS M.A. ET AL.: "Original Title: 'PCR Protocols a Guide to Methods and Applications', Academic Press, Inc.", 1991, HBJ SHUPPAN KYOKU, article GILLILAND G. ET AL.: "Quantity determination of mRNA by competitive PCR method", pages: 53 - 60, XP002971341 *
INNIS M.A. ET AL.: "Original Title: 'PCR Protocols a Guide to Methods and Applications', Academic Press, Inc.", 1991, HBJ SHUPPAN KYOKU, article SAIKI R.K.: "Amplification of genome DNA", pages: 11 - 16, XP002971340 *
JIN C.F. ET AL.: "Rapid construction of deleted DNA fragments for use as internal standards in competitive PCR", PCR METHODS AND APPLICATIONS, vol. 3, no. 4, 1994, pages 252 - 255, XP002971338 *
KOLIOLIOU M. ET AL.: "Development of a quantitative luminometric hybridization assay for the determination of telomerase activity", CLINICAL BIOCHEMISTRY, vol. 34, no. 4, June 2001 (2001-06-01), pages 277 - 284, XP002971339 *
KURATA S. ET AL.: "Fluorescent quenching-based quantitative detection of specific DNA/RNA using a BODIPY(R) FL-labeled probe or primer", NUCLEIC ACIDS RESEARCH, vol. 29, no. 6, 2001, pages E34, XP002953169 *
LOITSCH S.M. ET AL.: "Reverse transcription-competitive multiplex PCR improves quantification of mRNA in clinical samples--application to the low abundance CFTR mRNA", CLINICAL CHEMISTRY, vol. 45, no. 5, May 1999 (1999-05-01), pages 619 - 624, XP002971337 *
WEX T. ET AL.: "Quantification of aminopeptidase N mRNA in T cells by competitive PCR", FEBS LETTERS, vol. 374, no. 3, 6 November 1995 (1995-11-06), pages 341 - 344, XP002971336 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005059548A1 (en) * 2003-12-19 2005-06-30 Kankyo Engineering Co., Ltd. Novel mixtures for assaying nucleic acid, novel method of assaying nucleic acid with the use of the same and nucleic acid probe to be used therefor
US7951604B2 (en) 2003-12-19 2011-05-31 Kankyo Engineering Co., Ltd. Mixtures for assaying nucleic acid, novel method of assaying nucleic acid with the use of the same and nucleic acid probe to be used therefor
US9587271B2 (en) 2003-12-19 2017-03-07 Nippon Steel & Sumikin Eco-Tech Corporation Mixtures for assaying nucleic acid, novel method of assaying nucleic acid with the use of the same and nucleic acid probe to be used therefor
WO2009051214A1 (en) * 2007-10-19 2009-04-23 Eiken Kagaku Kabushiki Kaisha Nucleic acid amplification method, and reagent and reagent kit for use in the method
JP5313157B2 (en) * 2007-10-19 2013-10-09 栄研化学株式会社 Nucleic acid amplification method, reagent and reagent kit used therefor
US8557523B2 (en) 2007-10-19 2013-10-15 Eiken Kagaku Kabushiki Kaisha Method of nucleic acid amplification and measuring reagent and reagent kit therefor
US8346485B2 (en) 2008-11-25 2013-01-01 Quest Diagnostics Investments Incorporated Methods and apparatuses for estimating initial target nucleic acid concentration in a sample by modeling background signal and cycle-dependent amplification efficiency of a polymerase chain reaction
US8640555B2 (en) 2009-02-09 2014-02-04 Bioaccel Performance

Also Published As

Publication number Publication date
JP2009077736A (en) 2009-04-16

Similar Documents

Publication Publication Date Title
JP5354216B2 (en) Nucleic acid probe for nucleic acid measurement, nucleic acid probe set, and target nucleic acid measurement method using them
JP5860484B2 (en) Primers, probes and methods for nucleic acid amplification
US7208278B2 (en) Concatameric ligation products: compositions, methods and kits for same
US20060057595A1 (en) Compositions, methods, and kits for identifying and quantitating small RNA molecules
EP2722388B1 (en) Nucleic acid probe for assaying nucleic acids
US20140186830A1 (en) Methods for Analyzing Short Tandem Repeats and Single Nucleotide Polymorphisms
JP4460228B2 (en) New method for measuring nucleic acids
US20050048485A1 (en) Novel nucleic acid probe and novel method of assaying nucleic acid using the same
JP2009077736A (en) Novel method for assaying nucleic acid
Barbisin et al. Assessment of DNA extracted from forensic samples prior to genotyping
WO2006112939A2 (en) Compositions, methods, and kits for analyzing dna methylation
EP3633049A1 (en) Novel fluorescence quenching probe for measuring nucleic acid
JP2002355084A (en) New nucleic acid probe and new method for assaying nucleic acid using the same
EP1550717B1 (en) Novel method of assyaing nucleic acid using labeled nucleotide
US20140147845A1 (en) Concatameric ligation products: compositions methods and kits for same
KR102678676B1 (en) Method for detecting target nucleic acids using artificial nucleic acid
US20160273036A1 (en) Photoinduced electron transfer (pet) primer for nucleic acid amplification
US20100261186A1 (en) Polymorphism identification method
JP2024515187A (en) Optimized oligonucleotide TX probes for multiplexed analysis and methods of nucleic acids
EP3339447A1 (en) Method for analyzing template nucleic acid, method for analyzing target material, kit for analyzing template nucleic acid or target material, and device for analyzing template nucleic acid or target material
JP2004081214A (en) New method for obtaining nucleic acid or gene
WO2004003199A1 (en) Novel method of acquiring nucleic acid or gene

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase