WO2003089640A2 - Biofertilizer for plants based on rhizobium bacteria having an improved nitrogen fixing capacity - Google Patents

Biofertilizer for plants based on rhizobium bacteria having an improved nitrogen fixing capacity Download PDF

Info

Publication number
WO2003089640A2
WO2003089640A2 PCT/MX2003/000033 MX0300033W WO03089640A2 WO 2003089640 A2 WO2003089640 A2 WO 2003089640A2 MX 0300033 W MX0300033 W MX 0300033W WO 03089640 A2 WO03089640 A2 WO 03089640A2
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
bacteria
rhizobium
vector
nitrogenase
Prior art date
Application number
PCT/MX2003/000033
Other languages
Spanish (es)
French (fr)
Other versions
WO2003089640A3 (en
Inventor
Humberto Peralta Diaz
Jaime Mora Celis
Original Assignee
Universidad Nacional Autonoma De Mexico
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Nacional Autonoma De Mexico filed Critical Universidad Nacional Autonoma De Mexico
Priority to AU2003218828A priority Critical patent/AU2003218828A1/en
Publication of WO2003089640A2 publication Critical patent/WO2003089640A2/en
Publication of WO2003089640A3 publication Critical patent/WO2003089640A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0095Oxidoreductases (1.) acting on iron-sulfur proteins as donor (1.18)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/743Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Agrobacterium; Rhizobium; Bradyrhizobium

Definitions

  • Biofertilizer for plants based on Rhizobium bacteria with improved nitrogen fixation capacity are provided.
  • the object of the present invention is the nitrogen biofertilization of plant crops, especially legumes, by improving the ability of biological nitrogen fixation by microorganisms.
  • the improvement of this capacity is due to the overexpression of the bacterial nitrogenase enzyme complex, which is responsible for the catalysis of nitrogen fixation.
  • Agricultural crops should usually be fertilized with nitrogen, phosphorus and potassium, but in the soil the main shortage is nitrogen.
  • Nitrogen fertilization implies high economic costs for the farmer, but the most serious effects of mass fertilization in the world are environmental: the deterioration of soils, environmental pollution from the manufacture of fertilizers and the contamination with mtrogenated products of surface aquatic mantles and underground.
  • the abundance of nitrogen compounds in water produces the phenomenon called eutrophication, which is the abnormal growth of bacteria that use these rich sources. This depletes the dissolved oxygen in the water and causes the mass death of organisms such as fish.
  • the consumption of water with a high content of mtrogenated compounds such as nitrates and nitrites causes severe damage to human health.
  • biofertilizers that is, the use of organisms and / or their living and / or dead products to improve the qualities of soils that allow increasing crops or The quality of products.
  • Some of the practices include: adding dried seaweed to the soil, leaving the stubble from the previous crop for degradation, adding guano to the soil, inoculating bacteria or fungi.
  • biofertilizers are inoculants based on nitrogen fixing bacteria such as Rhizobium, Azospirillum and Azotobacter.
  • Rhizobium and its related genera ⁇ Bradyrhizobium, Mesorhizobium, Azorhizobium, Allorhizobium
  • its beneficial effect as a biofertilizer occurs in leguminous plants (peas, beans, lentils, beans, alfalfa, clover, among others) and non-legumes (such as betabels) wheat, sorghum and corn).
  • leguminous plants peas, beans, lentils, beans, alfalfa, clover, among others
  • non-legumes such as betabels wheat, sorghum and corn.
  • the cultivation of legumes has very important advantages since that its seed contains a high proportion of proteins and amino acids that can constitute the greatest protein contribution as it happens in the population of Mexico and the rest of Latin America, Africa, Asia and part of Europe.
  • Nitrogen fixation is the assimilation of nitrogen present very abundantly in the air (N 2 , 79% by volume) transforming it into ammonium, which can now be taken by any other organism such as plants or even other bacteria.
  • fixing bacteria there are those that fix nitrogen for growth such as Klebsiella or Azotobacter (which are normally found in soil and especially near the roots of plants) and those that fix nitrogen symbiotically such as Rhizobium, Sinorhizobium and Bradyrhizobium, that is, in a closer relationship with plants such as legumes in which they inhabit a root structure called the nodule and the ammonium produced is transported to the stem and leaves and subsequently to the seed.
  • ammonium that is supplied by the microorganism can constitute all or most of the nitrogen that the crop requires.
  • the use of nitrogen fixing bacteria in crops is called biofertilization or inoculation and is used with some success worldwide, but the main problem is the low efficiency of the inoculants, so its use in the field has not been extensive.
  • the production of a biofertilizer in industry represents a much lower cost than producing a fertilizer. For example, for one hectare of beans, about 500 pesos are required to fertilize and to inoculate that same surface with bacteria, without reducing the yield, approximately 10 pesos.
  • an economically and ecologically more suitable alternative to achieve the objective mentioned in the field is the improvement of the fixation of atmospheric nitrogen that occurs in the cultivation of plants, especially in legumes in association with soil bacteria such as Rhizobium.
  • soil bacteria such as Rhizobium.
  • beans are the most important legumes in the country by quantity of consumption and nutritional quality of the seed.
  • Dr. Bascones' group in Generation of new hydrogen-recycling Rhizobiaceae strains by introduction of a novel hup minitransposon, Applied and Environmental Microbiology 664292-9, 2000 expressed the region of hydrogen intake, one of the operons that make it up is that of hydrogenase, with this function it is intended to recover part of the energy that escapes in the fixation catalysis in the form of hydrogen.
  • CIFN-UNAM 1999 obtained and tested recombinant symbiotic plasmids to combine the best nodulation and fixation properties that each of them granted separately.
  • R. etli in Rhizobium etli chromosome mutants with derepressed expression of cytochrome oxidases and enchanced symbiotic nitrogen accumulation, Applied Microbiology and Biotechnology 45 182-8, 1996) modified the expression of the genes that code for symbiotic cytochrome oxidase ⁇ cbb ) to increase the respiratory capacity of the bacteria inside the nodule.
  • Rhizobium The bacteria of the Rhizobium genus are associated with the family of leguminous plants, which are all those whose seeds are given in pods and is the most widespread in the planet with about 20 thousand species, among them are some such as beans, peas, beans, lentils, alfalfa, clover and others that are used as human food or as fodder for cattle. But recently, works have been published in which Rhizobium is also associated with grassy plants such as wheat, corn and barley, so that these plants receive benefits such as increased growth and production, although it is not clearly known by what mechanism.
  • Fischer's work summarizes the knowledge available about the genetic regulation of symbiotic nitrogen fixation in Rhizobium.
  • the catalytic activity of nitrogen fixation is carried out by the nitrogenase enzyme complex composed of nitrogenase reductase, nitrogenase component alpha and nitrogenase component beta, which is encoded by the nifH, nifD and nifK genes (SEQ ID NO: 2, 3 and 4), respectively, with the additional participation of more than 20 proteins.
  • Valderrama in Regulatory proteins and cis-acting elements involved in the transcriptional control of Rhizobium etli reiterated nifH genes, Journal of Bacteriology 178 3119-3126, 1996.
  • the analysis of genetic expression showed that the operon c in the free-life and nodule assay is transcribed 4 to 10 times more than the operons a and b.
  • the transcription of the nitrogenase enzyme complex operon made up of the nifHDK genes, depends on a promoter recognized by the sigma 54 factor and the NifA nitrogen fixation activator.
  • the mechanism of transcription initiation is as follows: the RNA polymerase complex is located on the promoter forming a closed transcriptional complex, the NifA protein is coupled to DNA sequences located above the promoter, an additional protein causes an acute fold of the DNA strands between the NifA coupling site and the promoter, NifA comes into contact with the RNA polymerase and hydrolyzes ATP and the energy released by the ATP hydrolysis achieves the opening of the closed complex for the start of transcription.
  • UAS the difference in their transcriptional activation lies in the distance that exists from the promoter to the NifA coupling sequence
  • the distance is sufficient for the double helix of the DNA to cover from 7.8 to 8.3 complete helical turns, depending on the degree of winding, which produces a suitable activating complex between the binding regulatory protein
  • a nitrogen nitrogen operon (SEQ ID NO: 2, 3 and 4) that is transcriptionally controlled by the promoter region of nifHc (copy c, SEQ ID NO: 1) was constructed in the laboratory using conventional techniques of molecular genetics. it was replaced by double recombination by an operon resident in the Rhizobium genome and its expression caused greater activity of the nitrogenase enzymatic ecomplex that was reflected at the end of the crop in greater production and nitrogen content in the seed.
  • Rhizobium etli bacteria associated with bean plants was expressed in Rhizobium etli bacteria associated with bean plants and the results of the greenhouse and field experiments are shown below. It is very important to highlight that the strains obtained with increased nitrogen fixing capacity, unlike those described in Background, do not contain exogenous genetic material such as antibiotic resistance genes or foreign plasmid vector genes, for this reason they were authorized for controlled environmental release for field experiments by the National Biosafety Commission since they do not present any environmental risk and can be used massively in the field.
  • c nifHDK presents the sacRB genes that favor the obtaining of double recombinants by means of a 10% sucrose growth that smooths the cells that contain the suicide plasmid still incorporated as a simple recombinant as mentioned by Gay and others (in Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria, Journal of Bacteriology 164 918-921, 1988). Thus, only bacteria that have suffered double recombination grow after sucrose treatment.
  • Rhizobium strains analyzed The expression of the construction in the Rhizobium strains analyzed is characterized by increasing the expression levels of the nitrogenase enzyme complex in bacteria of the Rhizobium genus by presenting a promoter region with high transcription coupled to the complete nifHDK operon (SEQ ID NO: 2, 3 and 4). It is important to mention that there is currently no report or strain, except those addressed in this application, that are capable of increasing Rhizobium's fixing capacity. Therefore, the main characteristic of Rhizobium strains that contain this genetic construction in association with a legume such as beans is that they reach increased levels of seed production and nutritive content of the same since by fixing more nitrogen, it is incorporated to proteins and amino acids in the seed in greater quantity.
  • the construction effect was determined in greenhouse and field tests.
  • the expression of the genetic construction produced on average, with respect to inoculation with the wild strain in greenhouse, an increased nitrogenase activity of 40% (determined as ethylene micromoles / h mi g dry nodule weight), a higher content of nitrogen in the plant of 20%, a higher yield of up to 49% (in mg of seed / plant) and higher content of nitrogen in the bean seed of 35% to 65% (in mg N / plant), which had an impact in a protein content 50% higher in the seed.
  • Rhizobium bean symbiotes such as CIAT652 and AM652 produced an average of 20% more nitrogen in the plant, 40% more yield and 50% higher nitrogen content in seed compared to inoculation of wild strains.
  • the increase in nitrogen in seed has a direct impact on its nutritional quality and therefore, the seed produced using this bacterium as a crop biofertilizer is up to 50% more nutritious.
  • several trials were carried out in experimental plots as shown in the following tables, with modalities of rolled irrigation, drip irrigation, rhizorriego and rain. It was inoculated as is normally done with other types of crops such as alfalfa and soy, for which it was used as a vermiculite support (inert synthetic material).
  • strain HP310 showed significantly different increases at p ⁇ 0.05 in nitrogen yield up to 25% with respect to the strain from which it originates (CFN42) and from 10 to 70% compared to non-inoculated plots.
  • c nifHDK showed increases of up to 145% with respect to the wild strain CIAT652 and up to 185% with respect to non-inoculated control plots.
  • Strain HP652 which is derived from strain AM652 and has the construction pr.
  • c nifHDK showed increases of up to 20% compared to CIAT652 strain and 34 to 78% compared to non-inoculated plots.
  • no significant increases in production were achieved by biofertilization, nor were they observed with nitrogen chemical fertilization. This is because it has been observed that in very productive bean genotypes it is difficult to increase yield.
  • a fundamental parameter is that of the nitrogen content in seed, since it represents the nutritive quality of the seed.
  • This invention relates directly to the use of bacteria as a biofertilizer for plant cultivation. It can be used in the cultivation of legumes, due to its ability to interact commonly with this type of plants, but there are reports that its use is very favorable for other types of crops such as cereals (wheat) and tubers (beet). In the case of legumes, the bacteria have an improved capacity nitrogen fixation which can perfectly supply nitrogen fertilizers without diminishing yield.
  • the Rhizobium bacteria present in strains of the Rhizobium bacteria, in the application as a biofertilizer, the bean culture was specifically tested by the following procedure. Greenhouse tests were performed for which Rhizobium bacteria with the genetic construction of nitrogenase overexpression was grown in liquid and the cells collected and washed with sterile water.
  • the bacterium was also grown and prepared for biofertilization, mixing in this case with sterile vermiculite as a solid support.
  • the bean seed was inoculated at an approximate density of 10 x 6 cells per seed and was sown manually in plots of 6 meters with five rows each, in four to five random replicas in experimental fields of the central region of the country.
  • the seed was collected, the yield was quantified and the nitrogen present in them was analyzed as indicated above.
  • the following tables show the results obtained in the field.
  • the inoculation with the wild and modified strains has a variable impact on the yield, obtaining the best productions with the modified strains with overexpression of nitrogenase HP789 and HP652 of 54 and 43% respectively on the uninoculated treatment. Additionally and as very important characteristics, there is the increase in nitrogen content and nitrogen yield in seed. In the treatment without inoculating the nitrogen content in seed is 26 mgN / g dry weight and the yield of N is 107 Kg N / Ha total and very similar to the fertilized treatment (25.6 and 118 respectively). But the seed obtained with inoculation of the modified strains HP789 and HP652 is 47.1 and 41.7 mgN / g p.s. and in nitrogen yield it is 306 and 251 Kg N / Ha respectively, increasing this parameter by 185 and 134% respectively.
  • HP310 strain obtained a 5% increase in nitrogen yield compared to the strain from which it comes, CFN42.
  • CFN42 wild strain HP310 derived from CFN42 with nitrogenase overexpression, wild CIAT652, HP789 derived from CIAT652 with nitrogenase overexpression, HP652 derived from the AM652 phb mutant with nitrogenase overexpression.
  • Table 6 Summary of field experiments with genetically modified strains of Rhizobium that overexpress in nitrogenase enzyme complex. It is compared with respect to nitrogen fertilization.
  • CFN42 wild strain HP310 derived from CFN42 with nitrogenase overexpression, wild CIAT652, HP789 derived from CIAT652 with nitrogenase overexpression, HP652 derived from the AM652 phb mutant with nitrogenase overexpression.
  • Table 6 summarizes the field experiments carried out with the application of nitrogenase overexpression in Rhizobium etli microorganisms in beans. The irrigation regime is indicated. In underlining it can be noted that almost for all Experiments the modified strains achieved the best nitrogen yields in the inoculation. 100% is indicated by chemically fertilized treatment.
  • Figure 1 shows the diagram of the constructed plasmid. As can be seen in Figures 2 to 10, the expression of the genetic construct called pr.
  • c nifHDK (SEQ BD NO: 1, 2, 3 and 4) produced on average, with respect to inoculation with the wild strain in greenhouse, an increased nitrogenase activity of 40% (determined as ethylene micromoles / h mi g dry weight of nodule), a higher nitrogen content in the plant of 20%, a higher yield of up to 49% (in mg of seed / plant) and a higher nitrogen content in the bean seed of 35% to 65% (in mg N / plant), which resulted in a 50% higher protein content in the seed.
  • Rhizobium CIAT652 and AM652 strains (strain derived from CIAT652 that presents a mutation for phb), used as a biofertilizer in common bean plants ⁇ Phaseolus vulgaris L.) produced an average of 20% more nitrogen in the plant, 40% higher yield and 50% higher seed nitrogen content, compared with the use of wild strains.
  • the increase in nitrogen in seed has a direct impact on its nutritional quality and therefore, the seed produced using this bacterium as a crop biofertilizer is up to 50% more nutritious.
  • several trials were carried out in experimental plots with modalities of rolled irrigation, drip irrigation, rhizorriego and rain.
  • strain HP310 showed significantly different increases ap ⁇ 0.05 in nitrogen yield up to 25% with respect to the strain from which it comes (CFN42) and from 10 to 70% compared to the plots not inoculated.
  • the HP789 strain showed increases of up to 145% compared to the wild strain CIAT652 and up to
  • Rhizobium organisms as biofertilizers for containing the genetic construct with which nitrogenase is overexpressed (pr. C nifHDK) is supported by field experiments. Although the tests were performed on the bean crop, this is only an example of how to carry out the application of the invention. Additionally it can be applied in other legumes such as peanuts, soybeans, alfalfa, clover, lentil, beans, peas, etc. and even in other crops such as beets, wheat, corn and sorghum.
  • Fig. 1 It is a scheme of plasmid pHP789 with the genetic construct pr. c nifHDK
  • SEQ ID NO: 1, 2, 3 and 4 which shows the site called EcoRI for cutting with the restriction enzyme EcoRI and the BglII site for cutting with the restriction enzyme BglII. Both were used to obtain genetic construction.
  • Fig. 2 It is a graph about the activity of nifrogenase produced by the genetically modified strain HP310 (with pr. C nifHDK SEQ ID NO: 1, 2, 3 and 4) and the wild strain CFN42, in black bean greenhouse plants jamapa at 18, 25 and 32 days post inoculation (dpi), where * denotes significant differences at the 95% confidence level (p ⁇ 0.05).
  • Fig. 3 It is a graph about the seed yield that produces the inoculation of jamapa black bean plants with the genetically modified strain HP310, when compared with the strain from which CFN42 comes, in jamapa black bean greenhouse plants.
  • Fig. 4 It is a graph about the nitrogen content of seed that produces the inoculation of jamapa black bean plants with the genetically modified strain HP310, when compared to the strain from which CFN42 comes, in jamapa black bean greenhouse plants.
  • Fig. 5 It is a graph about the nitrogenase activity produced by the genetically modified strain HP789 (with pr. C nifHDK SEQ ID NO: 1, 2, 3 and 4) and the wild strain
  • Fig. 6 It is a graph about the seed yield that produces the inoculation of jamapa black bean plants with the genetically modified strain HP789, when compared with the strain from which CIAT652 comes, in jamapa black bean greenhouse plants.
  • Fig. 7 It is a graph about the seed nitrogen content produced by the inoculation of jamapa black bean plants with the genetically modified strain HP789, when compared with the strain from which CIAT652 comes, in jamapa black bean greenhouse plants .
  • Fig. 8 It is a graph about the nitrogenase activity produced by the genetically modified strain HP652 (with pr. C nifHDK SEQ ID NO: 1, 2, 3 and 4) and the mutant strain phb AM652, in bean greenhouse plants Jamapa black at 18, 25 and 32 dpi.
  • Fig. 9 It is a graph on seed yield that produces the inoculation of jamapa black bean plants with the genetically modified strain HP652, when compared with the strain from which AM652 (phb mutant) comes from, in black bean greenhouse plants jamapa
  • Fig. 10 It is a graph about the seed nitrogen content produced by the inoculation of jamapa black bean plants with the genetically modified strain HP652, when compared with the strain from which AM652 (phb mutant) comes from, in greenhouse plants of black jamapa beans.
  • Escherichia coli was grown in LB medium (5% peptone, 2% casein and 5% NaCl) at 37 degrees.
  • R. etli was grown in PY medium (2% peptone, 0.5% casein) at 30 degrees.
  • Antibiotics were added as required (tettacycline 10 mg / ml, nalidixic acid 20 mg / ml.
  • the pellet was washed with 1 ml of 70% ethanol and dried in a Savant vacuum dryer. It was resuspended in 50 ⁇ l of 10 mM Tris-HC1 / 1 mM EDTA pH 8.0. Plasmid DNA was obtained from E. coli grown in LB. It was centrifuged and the collected cells were resuspended in 200 ⁇ l of 50 mM Tris-HCl buffer 20 mM EDTA / 5 mg / ml RNAse at pH 8.0. 200 ⁇ l of 0.4N NaOH / 1% SDS was added. 170 ⁇ l of 5M ammonium acetate was added to pH4.5 and stirred and centrifuged.
  • DNA digestion was done with 5 ⁇ l of total or plasmid DNA, 2 ⁇ l of REact buffer solution, 1 ⁇ ml of the enzyme and 12 of ultrapure water. It was digested 4 or 16 hours at 37 ° C depending on whether it is plasmid or total DNA.
  • the digested DNA was run on 0.8% agarose gels stained with ethidium bromide (0.5 mg / ml).
  • the ligaments were made with 5 ⁇ l of digested insert DNA and 2 ⁇ l of digested vector, 2 ⁇ l of ligation buffer solution, 1 ⁇ l of T4 DNA ligase and 10 of ultrapure water. They were incubated at 12 ° C for 16 hours.
  • Plasmids were introduced by heat shock. The DNA was added to 100 ⁇ l of E. coli cells and incubated for 5 minutes on ice, 2.5 minutes at 42 ° C and 5 minutes on ice. 1 ml of LB was added and incubated at 37 ° C for 1 hour. It was plated in LB boxes with antibiotics for selection of the incoming vector. It was incubated for a day at 37 ° C.
  • E. coli strain HB101 containing plasmid pHP789 is grown for 16 hours at 37 ° C in LB.
  • R. etli is grown at 30 ° C in PY. They are mixed and centrifuged at 6,000 x g for two minutes. They are resuspended and placed in a PY box without antibiotics incubating for a day at 30 ° C. Roasts were taken to stretch PY with antibiotic. It was incubated at 30 ° C for two days.
  • the pots were watered with water and salt solution without nitrogen. At 18, 25 and 32 days post inoculation (dpi) they were collected for acetylene reduction assay. 20 plants of each strain were allowed to mature to obtain seed at 80 dpi. For the acetylene reduction test, the roots were taken and placed in hermetically sealable bottles. They were injected with acetylene and a sample of 0.4 ml was analyzed in gas chromatograph Varies 3700 to determine the conversion into ethylene. The calculation of the activity implies a molecular extinction factor for ethylene, bottle capacity, elapsed time, injected volume and dry nodule weight.
  • Inoculations were prepared with lxlO 9 cells per gram of vermiculite, added to bean seed and planted in 5 replicate plots of 5 rows of 6 meters each. Plots were planted without inoculation and plots for chemical nitrogen fertilization with 75 kg N / Ha.
  • Nitrogen analysis in seed and plant The samples were milled and the nitrogen content was determined by flame spectrophotometry with an Antek 7000 apparatus. Albumin was included to perform calibration curves.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Pretreatment Of Seeds And Plants (AREA)

Abstract

The invention relates to a biofertilizer which is applied to plants in order to increase the nitrogen uptake capacity thereof. Generally, soils are fertilized with nitrogen, phosphorous and potassium with nitrogen being the most scarce. The aforementioned biofertilizer can be based on Rhizobium bacteria having an improved nitrogen fixing capacity, together with the plants, specifically pulses, i.e. those with seeds that grow in pods. According to the invention, said biofertilizer improves the fixing capacity of the plants by overexpressing the nitrogenase genes in the bacteria. Nitrogenase is the enzyme responsible for the nitrogen fixing catalysis. The use of the inventive biofertilizer is intended to replace completely chemical nitrogenous fertilizers which are applied to crops on a large scale. Inoculation with genus Rhizobium bacteria is a cheap and environmentally harmless process which can be applied to any type of pulse.

Description

Biofertilizante para plantas basado en bacterias de Rhizobium con capacidad mejorada de fijación de nitrógeno. Biofertilizer for plants based on Rhizobium bacteria with improved nitrogen fixation capacity.
Objeto del inventoObject of the invention
El objeto de la presente invención es la biofertilización nitrogenada de cultivos de plantas, especialmente leguminosas, mediante el mejoramiento de la capacidad de fijación biológica de nitrógeno por microorganismos. El mejoramiento de esta capacidad es debido a la sobreexpresión del complejo enzimático de la nitrogenasa bacteriana, que es la responsable de la catálisis de la fijación de nitrógeno.The object of the present invention is the nitrogen biofertilization of plant crops, especially legumes, by improving the ability of biological nitrogen fixation by microorganisms. The improvement of this capacity is due to the overexpression of the bacterial nitrogenase enzyme complex, which is responsible for the catalysis of nitrogen fixation.
Antecedentes de la invención.Background of the invention.
Los cultivos agrícolas deben ser fertilizados usualmente con nitrógeno, fósforo y potasio, pero en los suelos la escasez principal es de nitrógeno. La fertilización nitrogenada implica altos costos económicos para el agricultor, pero los efectos más serios de la fertilización masiva en el mundo son ambientales: el deterioro de los suelos, la contaminación ambiental por la fabricación de fertilizantes y la contaminación con productos mtrogenados de mantos acuíferos superficiales y subterráneos. La abundancia de compuestos nitrogenados en el agua produce el fenómeno denominado eutroficación que es el crecimiento anormal de bacterias que utilizan estas ricas fuentes. Con ello agotan el oxígeno disuelto en el agua y producen la muerte masiva de organismos como los peces. Asimismo, el consumo de agua con alto contenido de compuestos mtrogenados como nitratos y nitritos produce severos daños a la salud humana. Por lo anterior, uno de los retos más importantes para la agricultura es eliminar el empleo de fertilizantes nitrogenados y reducir el costo económico pero sin afectar la productividad del cultivo. Actualmente varios cultivos de importancia alimenticia para el hombre se han visto beneficiados con el uso de los biofertilizantes, es decir, el uso de organismos y/o sus productos vivos y/o muertos para mejorar las cualidades de los suelos que permitan incrementar las cosechas o la calidad de los productos. Algunas de las prácticas incluyen: adicionar algas secas al suelo, dejar el rastrojo del cultivo anterior para su degradación, adicionar guano a los suelos, inocular bacterias u hongos. Entre los biofertilizantes más usados se encuentran los inoculantes en base a bacterias fijadoras de nitrógeno como Rhizobium, Azospirillum y Azotobacter. En cuanto a Rhizobium y sus géneros relacionados {Bradyrhizobium, Mesorhizobium, Azorhizobium, Allorhizobium) su efecto benéfico como biofertilizante se da en plantas leguminosas (chícharo, haba, lenteja, frijol, alfalfa, trébol, entre otras) y no leguminosas (como betabel, trigo, sorgo y maíz). A este respecto, el cultivo de leguminosas presenta ventajas muy importantes ya que su semilla contiene una alta proporción de proteínas y aminoácidos que pueden constituir el mayor aporte proteico como sucede en la población de México y el resto de América Latina, frica, Asia y parte de Europa. La fijación de nitrógeno es la asimilación del nitrógeno presente muy abundante en el aire (N2, 79% en volumen) transformándolo en amonio, el cual puede ser ahora tomado por cualquier otro organismo como plantas o incluso otras bacterias. Entre las bacterias fijadoras existen aquellas que fijan nitrógeno para su crecimiento como Klebsiella o Azotobacter (que se encuentran normalmente en suelo y especialmente cerca de las raíces de las plantas) y las que fijan nitrógeno simbióticamente como Rhizobium, Sinorhizobium y Bradyrhizobium, es decir, en una relación más estrecha con las plantas como las leguminosas en que habitan una estructura de la raíz denominada nodulo y el amonio producido es transportado al tallo y a las hojas y posteriormente a la semilla. Es importante mencionar que el amonio que es suplido por el microorganismo puede constituir la totalidad o la mayor parte del nitrógeno que el cultivo requiere. La utilización de bacterias fijadoras de nitrógeno en los cultivos se denomina biofertilización o inoculación y se emplea con cierto éxito a nivel mundial, pero el problema principal es la baja eficiencia de los inoculantes, por lo que su empleo en el campo no ha sido extensivo. La producción de un biofertilizante en la industria representa un costo mucho menor al de producir un fertilizante. Por ejemplo, para una hectárea de frijol se requieren cerca de 500 pesos para fertilizar y para inocular esa misma superficie con bacterias, sin reducir el rendimiento, aproximadamente 10 pesos. Entonces, una alternativa económica y ecológicamente más adecuada para lograr el objetivo mencionado en el campo es el mejoramiento de la fijación del nitrógeno atmosférico que sucede en el cultivo de plantas, especialmente en leguminosas en asociación con bacterias del suelo como Rhizobium. En México, el frijol es la leguminosa de mayor importancia en el país por cantidad de consumo y calidad nutritiva de la semilla.Agricultural crops should usually be fertilized with nitrogen, phosphorus and potassium, but in the soil the main shortage is nitrogen. Nitrogen fertilization implies high economic costs for the farmer, but the most serious effects of mass fertilization in the world are environmental: the deterioration of soils, environmental pollution from the manufacture of fertilizers and the contamination with mtrogenated products of surface aquatic mantles and underground. The abundance of nitrogen compounds in water produces the phenomenon called eutrophication, which is the abnormal growth of bacteria that use these rich sources. This depletes the dissolved oxygen in the water and causes the mass death of organisms such as fish. Also, the consumption of water with a high content of mtrogenated compounds such as nitrates and nitrites causes severe damage to human health. Therefore, one of the most important challenges for agriculture is to eliminate the use of nitrogen fertilizers and reduce the economic cost but without affecting crop productivity. Currently, several crops of nutritional importance for man have benefited from the use of biofertilizers, that is, the use of organisms and / or their living and / or dead products to improve the qualities of soils that allow increasing crops or The quality of products. Some of the practices include: adding dried seaweed to the soil, leaving the stubble from the previous crop for degradation, adding guano to the soil, inoculating bacteria or fungi. Among the most used biofertilizers are inoculants based on nitrogen fixing bacteria such as Rhizobium, Azospirillum and Azotobacter. As for Rhizobium and its related genera {Bradyrhizobium, Mesorhizobium, Azorhizobium, Allorhizobium), its beneficial effect as a biofertilizer occurs in leguminous plants (peas, beans, lentils, beans, alfalfa, clover, among others) and non-legumes (such as betabels) wheat, sorghum and corn). In this regard, the cultivation of legumes has very important advantages since that its seed contains a high proportion of proteins and amino acids that can constitute the greatest protein contribution as it happens in the population of Mexico and the rest of Latin America, Africa, Asia and part of Europe. Nitrogen fixation is the assimilation of nitrogen present very abundantly in the air (N 2 , 79% by volume) transforming it into ammonium, which can now be taken by any other organism such as plants or even other bacteria. Among the fixing bacteria there are those that fix nitrogen for growth such as Klebsiella or Azotobacter (which are normally found in soil and especially near the roots of plants) and those that fix nitrogen symbiotically such as Rhizobium, Sinorhizobium and Bradyrhizobium, that is, in a closer relationship with plants such as legumes in which they inhabit a root structure called the nodule and the ammonium produced is transported to the stem and leaves and subsequently to the seed. It is important to mention that the ammonium that is supplied by the microorganism can constitute all or most of the nitrogen that the crop requires. The use of nitrogen fixing bacteria in crops is called biofertilization or inoculation and is used with some success worldwide, but the main problem is the low efficiency of the inoculants, so its use in the field has not been extensive. The production of a biofertilizer in industry represents a much lower cost than producing a fertilizer. For example, for one hectare of beans, about 500 pesos are required to fertilize and to inoculate that same surface with bacteria, without reducing the yield, approximately 10 pesos. Then, an economically and ecologically more suitable alternative to achieve the objective mentioned in the field is the improvement of the fixation of atmospheric nitrogen that occurs in the cultivation of plants, especially in legumes in association with soil bacteria such as Rhizobium. In Mexico, beans are the most important legumes in the country by quantity of consumption and nutritional quality of the seed.
Producir un biofertilizante para plantas con eficiencia mejorada en fijación de nitrógeno ha sido el objetivo de varios grupos de investigación por varios años ya que representa beneficios económicos, agrícolas y ambientales muy importantes. El mejoramiento del proceso de fijación de nitrógeno pudiera ser obtenido mediante el uso de organismos como la bacteria Rhizobium modificada genéticamente. Sin embargo, a pesar de las variadas estrategias que se han llevado a cabo, los investigadores han reportado éxitos muy limitados en su intento de mejorar la fijación simbiótica de mtrógeno. Entre estos intentos se encuentran los siguientes.Producing a biofertilizer for plants with improved nitrogen fixation efficiency has been the objective of several research groups for several years as it represents very important economic, agricultural and environmental benefits. The improvement of the nitrogen fixation process could be obtained through the use of organisms such as genetically modified Rhizobium bacteria. However, despite the varied strategies that have been carried out, researchers have reported very limited successes in their attempt to improve the symbiotic fixation of estrogen. Among these attempts are the following.
En R. leguminosarum, simbionte del chícharo y haba, y otras especies de rhizobium el grupo del Dr. Bascones (en Generation of new hydrogen-recycling Rhizobiaceae strains by introduction of a novel hup minitransposon, Applied and Environmental Microbiology 664292-9, 2000) expresó el reguión de la toma de hidrógeno, uno de los operones que lo conforman es el de la hidrogenasa, con esta función se pretende recuperar parte de la energía que se escapa en la catálisis de la fijación en forma de hidrógeno. En Sinorhizobium meliloti, simbionte de la alfalfa, Spaink (en Symbiotic properties of rhizobia cantaining a flavonoid-independent hybrid nodD product, Journal of Bacteriology 169 1423-32, 1989) construyó y expresó un gene híbrido nodD que no responde a flavonoides con la intención de incrementar la capacidad de nodulación y por ende de la fijación. También en S. meliloti, Bosworth (en Alfalfa yield response to inoculation with recombinant strains of Rhizobium meliloti with extra copy of dctABD and/or modified nifA expression, Applied and Environmental Microbiology 60 3815-32,In R. leguminosarum, pea and bean symbiote, and other rhizobium species Dr. Bascones' group (in Generation of new hydrogen-recycling Rhizobiaceae strains by introduction of a novel hup minitransposon, Applied and Environmental Microbiology 664292-9, 2000) expressed the region of hydrogen intake, one of the operons that make it up is that of hydrogenase, with this function it is intended to recover part of the energy that escapes in the fixation catalysis in the form of hydrogen. In Sinorhizobium meliloti, alfalfa symbiote, Spaink (in Symbiotic properties of rhizobia cantaining a flavonoid-independent hybrid nodD product, Journal of Bacteriology 169 1423-32, 1989) constructed and expressed a nodD hybrid gene that does not respond to flavonoids with the intention to increase the nodulation capacity and therefore the fixation. Also in S. meliloti, Bosworth (in Alfalfa yield response to inoculation with recombinant strains of Rhizobium meliloti with extra copy of dctABD and / or modified nifA expression, Applied and Environmental Microbiology 60 3815-32,
1994) incrementó el número de copias de los genes responsables del transporte de ácidos dicarboxílicos C4, denominados dct y la expresión del gene regulador de la fijación nifA con la intención de incrementar el flujo de entrada y el metabolismo de ácidos orgánicos como succínico y así aumentar la eficiencia fijadora. En R. etli, simbionte del frijol, Castillo (Tesis de Maestría en Investigación Biomédica Básica,1994) increased the number of copies of the genes responsible for the transport of C4 dicarboxylic acids, called dct and the expression of the nifA binding regulatory gene with the intention of increasing the inflow and metabolism of organic acids such as succinic and thus increase fixing efficiency In R. etli, bean symbiote, Castillo (Master's Thesis in Basic Biomedical Research,
CIFN-UNAM, 1999) obtuvo y probó plásmidos simbióticos recombinantes para lograr conjuntar las mejores propiedades de nodulación y fijación que otorgaban cada uno de ellos por separado. También en R. etli Miranda (en Rhizobium etli chromosome mutants with derepressed expression of cytochrome oxidases and enchanced symbiotic nitrogen accumulation, Applied Microbiology and Biotechnology 45 182-8, 1996) modificó la expresión de los genes que codifican para la citocromo oxidasa simbiótica {cbb ) para incrementar la capacidad respiratoria de la bacteria dentro del nodulo. Ninguno de los experimentos anteriores alcanzaron en invernadero un beneficio simbiótico (determinado ya sea por la actividad de nitrogenasa, el contenido de nitrógeno en semilla y plantas o en rendimiento) mayor al 22% respecto a la utilización de las cepas padres. Recientemente, Olah (en Mutation in the ntrR gene, a member of the vap gene family, increases the symbiotic efficiency of Sinorhizobium meliloti, Molecular Plant-Microbe Interactiones 14 887-94, 2001) realizó la mutación del gene ntrR en S. meliloti que provocó un incremento del 24% en el nitrógeno en planta en ensayos de invernadero. Hay que destacar que solamente uno de los experimentos anterioresCIFN-UNAM, 1999) obtained and tested recombinant symbiotic plasmids to combine the best nodulation and fixation properties that each of them granted separately. Also in R. etli Miranda (in Rhizobium etli chromosome mutants with derepressed expression of cytochrome oxidases and enchanced symbiotic nitrogen accumulation, Applied Microbiology and Biotechnology 45 182-8, 1996) modified the expression of the genes that code for symbiotic cytochrome oxidase {cbb ) to increase the respiratory capacity of the bacteria inside the nodule. None of the previous experiments achieved a symbiotic benefit in the greenhouse (determined either by nitrogenase activity, nitrogen content in seed and plants or in yield) greater than 22% with respect to the use of parent strains. Recently, Olah (in Mutation in the ntrR gene, a member of the vap gene family, increases the symbiotic efficiency of Sinorhizobium meliloti, Molecular Plant-Microbe Interactions 14 887-94, 2001) performed the mutation of the ntrR gene in S. meliloti that caused a 24% increase in plant nitrogen in greenhouse tests. It should be noted that only one of the previous experiments
(Bosworth, 1994), se realizó en campo en condiciones controladas, y el resto de las cepas mencionadas no cumplen con los requisitos de bioseguridad para la liberación y prueba en campo de microrganismos modificados genéticamente, debido a contener material exógeno como marcadores de resistencia a antibóticos, genes provenientes de otros organismos o secuencias de vectores que no son permitidos para liberación ni como biofertilizantes.(Bosworth, 1994), was carried out in the field under controlled conditions, and the rest of the mentioned strains do not meet the biosafety requirements for the release and field testing of genetically modified microorganisms, due to containing exogenous material as markers of resistance to antibiotics, genes from other organisms or vector sequences that are not allowed for release or as biofertilizers.
Las bacterias del género Rhizobium se asocian con la familia de plantas leguminosas, que son todas aquellas cuyas semillas se dan en vainas y es la más extendida en el planeta con cerca de 20 mil especies, entre éstas destacan algunas como frijol, chícharo, haba, lenteja, alfalfa, trébol y otras que se usan como alimento humano o como forraje por el ganado. Pero recientemente se han publicado trabajos en que Rhizobium también se asocia a plantas gramíneas como trigo, maíz y cebada con lo que éstas plantas reciben beneficios tales como mayor crecimiento y producción, aunque no se conoce claramente por qué mecanismo. En el trabajo de Fischer (en Genetic regulation of nitrogen fixation in Rhizobia, Microbiological Reviews 58 352-386, 1994) se resumen los conocimientos con que se cuenta sobre la regulación genética de la fijación simbiótica de nitrógeno en Rhizobium. La actividad catalítica de fijación de nitrógeno es llevada a cabo por el complejo enzimático de la nitrogenasa compuesta por la nitrogenasa reductasa, la nitrogenasa componente alfa y la nitrogenasa componente beta, que es codificado por los genes nifH, nifD y nifK (SEQ ID NO: 2, 3 y 4), respectivamente, con la participación adicional de más de 20 proteínas. R. etli, simbionte del frijol, presenta dos reiteraciones de los operones completos nifHDK (copias a y b) y una tercera reiteración denominada nifííc o copia c, acoplada a un gene nifD truncado como se explica en el trabajo deThe bacteria of the Rhizobium genus are associated with the family of leguminous plants, which are all those whose seeds are given in pods and is the most widespread in the planet with about 20 thousand species, among them are some such as beans, peas, beans, lentils, alfalfa, clover and others that are used as human food or as fodder for cattle. But recently, works have been published in which Rhizobium is also associated with grassy plants such as wheat, corn and barley, so that these plants receive benefits such as increased growth and production, although it is not clearly known by what mechanism. Fischer's work (in Genetic regulation of nitrogen fixation in Rhizobia, Microbiological Reviews 58 352-386, 1994) summarizes the knowledge available about the genetic regulation of symbiotic nitrogen fixation in Rhizobium. The catalytic activity of nitrogen fixation is carried out by the nitrogenase enzyme complex composed of nitrogenase reductase, nitrogenase component alpha and nitrogenase component beta, which is encoded by the nifH, nifD and nifK genes (SEQ ID NO: 2, 3 and 4), respectively, with the additional participation of more than 20 proteins. R. etli, bean symbiote, presents two reiterations of the complete nifHDK operons (copies a and b) and a third repetition called nitric or copy c, coupled to a truncated nifD gene as explained in the work of
Valderrama (en Regulatory proteins and cis-acting elements involved in the transcriptional control of Rhizobium etli reiterated nifH genes, Journal of Bacteriology 178 3119-3126, 1996). En este mismo trabajo, el análisis de expresión genética demostró que el operón c en ensayo de vida libre y de nodulo se transcribe de 4 a 10 veces más que los operones a y b. La transcripción del operón del complejo enzimático de la nitrogenasa, conformado por los genes nifHDK, depende de un promotor reconocido por el factor sigma 54 y del activador de la fijación de nitrógeno NifA. El mecanismo de inicio de transcripción es el siguiente: el complejo de la ARN polimerasa se localiza sobre el promotor formando un complejo transcripcional cerrado, la proteína NifA se acopla a secuencias de ADN localizadas arriba del promotor, una proteína adicional provoca una doblez aguda de las cadenas de ADN entre el sitio de acoplamiento de NifA y el promotor, NifA entra en contacto con la ARN polimerasa e hidroliza ATP y la energía liberada por la hidrólisis de ATP logra la apertura del complejo cerrrado para el inicio de la transcripción. Aunque en la regulación de los operones descritos a, b y c participan los mismos elementos, la diferencia de su activación transcripcional radica en la distancia que existe del promotor a la secuencia de acoplamiento de NifA (llamada UAS).Valderrama (in Regulatory proteins and cis-acting elements involved in the transcriptional control of Rhizobium etli reiterated nifH genes, Journal of Bacteriology 178 3119-3126, 1996). In this same work, the analysis of genetic expression showed that the operon c in the free-life and nodule assay is transcribed 4 to 10 times more than the operons a and b. The transcription of the nitrogenase enzyme complex operon, made up of the nifHDK genes, depends on a promoter recognized by the sigma 54 factor and the NifA nitrogen fixation activator. The mechanism of transcription initiation is as follows: the RNA polymerase complex is located on the promoter forming a closed transcriptional complex, the NifA protein is coupled to DNA sequences located above the promoter, an additional protein causes an acute fold of the DNA strands between the NifA coupling site and the promoter, NifA comes into contact with the RNA polymerase and hydrolyzes ATP and the energy released by the ATP hydrolysis achieves the opening of the closed complex for the start of transcription. Although the same elements participate in the regulation of the operons described a, b and c, the difference in their transcriptional activation lies in the distance that exists from the promoter to the NifA coupling sequence (called UAS).
En el operón c la distancia es suficiente para que la doble hélice del ADN cubra de 7.8 a 8.3 vueltas helicoidales completas, dependiendo del grado de enrollamiento, con lo que se produce un complejo activador adecuado entre la proteína reguladora de la fijaciónIn the operon c the distance is sufficient for the double helix of the DNA to cover from 7.8 to 8.3 complete helical turns, depending on the degree of winding, which produces a suitable activating complex between the binding regulatory protein
NifA y el complejo transcripcional colocado en el promotor polimerasa de ARN-factor sigma 54 (SEQ ID NO: 1), mientras que en los operones a y b la distancia es de 8.3 a 8.7 vueltas helicoidales que producen complejos muy desfavorecidos para ser transcritos. Naturalmente en este organismo la eficiencia simbiótica en asociación con el frijol está dada por el complejo de la nitrogenasa producido a partir de la transcripción de los operones a y b, mientras que los productos proteicos del operón c no tienen aporte significativo en la catálisis, como se explica en el trabajo de Romero (en Effect of naturally occurring nif reiterations on symbiotic effectiveness in Rhizobium phaseoli.NifA and the transcriptional complex placed in the sigma-54 RNA-factor polymerase promoter (SEQ ID NO: 1), while in operons a and b the distance is 8.3 to 8.7 helical turns that produce very disadvantaged complexes to be transcribed Naturally, in this organism the symbiotic efficiency in association with the bean is given by the nitrogenase complex produced from the transcription of operons a and b, while the protein products of operon c have no significant contribution in catalysis, as explained in Romero's work (in Effect of naturally occurring nif reiterations on symbiotic effectiveness in Rhizobium phaseoli.
Appl. Environ. Microbiol. 54:848-850, 1988) quien demostró que una mutación en cualquiera de los operones completos a o b disminuye al 50% la capacidad fijadora de la cepa, así como la mutación en el gene nifHc no presenta efecto alguno.Appl. Environ. Microbiol 54: 848-850, 1988) who demonstrated that a mutation in any of the complete operons a or b decreases the fixative capacity of the strain by 50%, just as the mutation in the nifHc gene has no effect.
Descripción de la invención.Description of the invention
Para producir un biofertilizante para plantas con capacidad mejorada de fijación de nitrógeno, especialmente de la asociación de la bacteria Rhizobium con plantas leguminosas que sea potencialmente usado en el campo con seguridad y sin riesgo ambiental alguno, se hizo lo siguiente. Se construyó en el laboratorio, usando técnicas convencionales de genética molecular, un operón de la nitrogenasa (SEQ ID NO: 2, 3 y 4) que es controlado transcripcionalmente por la región promotora de nifHc (copia c, SEQ ID NO: 1), se sustituyó por doble recombinación por un operón residente en el genoma de Rhizobium y su expresión provocó mayor actividad del ecomplejo enzimático de la nitrogenasa que se reflejó al final del cultivo en mayor producción y contenido de nitrógeno en la semilla. Específicamente se expresó en la bacteria Rhizobium etli asociado a plantas de frijol y los resultados de los experimentos de invernadero y campo se muestran más adelante. Es muy importante destacar que las cepas obtenidas con capacidad fijadora de nitrógeno incrementada, a diferencia de las descritas en Antecedentes, no contienen material genético exógeno como genes de resistencia a antibióticos o genes de vectores plasmídicos extraños, por tal motivo fueron autorizadas para liberación ambiental controlada para los experimentos de campo por la Comisión Nacional de Bioseguridad ya que no presentan ningún riesgo ambiental y pueden ser usadas masivamente en el campo.To produce a biofertilizer for plants with improved nitrogen fixation capacity, especially the association of Rhizobium bacteria with leguminous plants that is potentially used in the field safely and without any environmental risk, the following was done. A nitrogen nitrogen operon (SEQ ID NO: 2, 3 and 4) that is transcriptionally controlled by the promoter region of nifHc (copy c, SEQ ID NO: 1) was constructed in the laboratory using conventional techniques of molecular genetics. it was replaced by double recombination by an operon resident in the Rhizobium genome and its expression caused greater activity of the nitrogenase enzymatic ecomplex that was reflected at the end of the crop in greater production and nitrogen content in the seed. Specifically, it was expressed in Rhizobium etli bacteria associated with bean plants and the results of the greenhouse and field experiments are shown below. It is very important to highlight that the strains obtained with increased nitrogen fixing capacity, unlike those described in Background, do not contain exogenous genetic material such as antibiotic resistance genes or foreign plasmid vector genes, for this reason they were authorized for controlled environmental release for field experiments by the National Biosafety Commission since they do not present any environmental risk and can be used massively in the field.
Procedimiento para llevar a cabo la invención.Procedure for carrying out the invention.
El procedimiento técnico se explica a continuación. La construcción genética mencionada en esta solicitud pr. c nifHDK (SEQ ID NO: 1, 2, 3 y 4) no existe como tal en la naturaleza aunque el material con el cual se realizó se encuentra presente en el genoma de la bacteria Rhizobium etli. y fue obtenida utilizando técnicas convencionales de ingeniería genética en laboratorio. Uno de los operones de la nitrogenasa de R. etli está clonado en el plásmido pCQ12 el cual se digirió con las enzimas EcoRI y BglII y el segmento de ADN correspondiente se separó y purificó. La región promotora de nifHc se obtuvo del plásmido pCQ23 con digestión de Bgiπ y el segmento correspondiente se separó y purificó. Ambos fragmentos fueron ligados y se obtuvo el plásmido pHP40. Posteriormente, el segmento de ADN conteniendo la región promotora de nifHc y el operón de la nitrogenasa nifHDK se separaron del plásmido anterior mediante digestión con EcoRI, se clonaron en el vector pWS233 y se obtuvo el plásmido pHP789 (figura 1). Con la construcción en este vector fue posible obtener mediante conjugación bacteriana cepas doble recombinantes que han incorporado esta construcción a su genoma ya que el plásmido vector usado en la construcción del operón quimérico, denominado pr. c nifHDK, presenta los genes sacRB que propician la obtención de dobles recombinantes mediante un crecimiento en sacarosa al 10% que lisa las células que contienen el plásmido suicida todavía incorporado como recombinante sencilla como lo menciona el trabajo de Gay y otros (en Positive selection procedure for entrapment of inserción sequence elements in gram-negative bacteria, Journal of Bacteriology 164 918- 921, 1988). Así, únicamente crecen después del tratamiento con sacarosa, las bacterias que han sobrellevado doble recombinación.The technical procedure is explained below. The genetic construction mentioned in this application pr. c nifHDK (SEQ ID NO: 1, 2, 3 and 4) does not exist as such in nature although the material with which it was made is present in the genome of the bacterium Rhizobium etli. and was obtained using conventional genetic engineering techniques in the laboratory. One of the R. etli nitrogenase operons is cloned into plasmid pCQ12 which was digested with the enzymes EcoRI and BglII and the Corresponding DNA segment was separated and purified. The nifHc promoter region was obtained from plasmid pCQ23 with Bgiπ digestion and the corresponding segment was separated and purified. Both fragments were ligated and plasmid pHP40 was obtained. Subsequently, the DNA segment containing the nifHc promoter region and the nifHDK nitrogenase operon were separated from the previous plasmid by EcoRI digestion, cloned into the vector pWS233 and the plasmid pHP789 was obtained (Figure 1). With the construction in this vector it was possible to obtain recombinant double strains by bacterial conjugation that have incorporated this construction into their genome since the vector plasmid used in the construction of the chimeric operon, called pr. c nifHDK, presents the sacRB genes that favor the obtaining of double recombinants by means of a 10% sucrose growth that smooths the cells that contain the suicide plasmid still incorporated as a simple recombinant as mentioned by Gay and others (in Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria, Journal of Bacteriology 164 918-921, 1988). Thus, only bacteria that have suffered double recombination grow after sucrose treatment.
Después de obtener las dobles recombinantes a una frecuencia aproximada de lxl O"7 se aislaron y se crecieron en medio PY con ácido nalidíxico. Para confirmar el intercambio se usó hibridización de southern y PCR. El efecto de la construcción se determinó en pruebas de invernadero y campo.After obtaining the double recombinants at an approximate frequency of lxl O "7, they were isolated and grown in PY medium with nalidixic acid. To confirm the exchange, southern hybridization and PCR were used. The construction effect was determined in greenhouse tests. and field.
La expresión de la construcción en las cepas de Rhizobium analizadas se caracteriza por incrementar los niveles de expresión del complejo enzimático de la nitrogenasa en bacterias del género Rhizobium al presentar una región promotora con alta transcripción acoplada al operón completo nifHDK (SEQ ID NO: 2, 3 y 4). Es importante mencionar que actualmente no existe ningún reporte o cepa, excepto de las que trata esta solicitud, que sean capaces de incrementar la capacidad fijadora de Rhizobium. Por lo tanto, la característica principal de las cepas de Rhizobium que contienen esta construcción genética en asociación con una leguminosa como frijol es que alcanzan niveles incrementados de producción de semilla y de contenido nutritivo de la misma ya que al fijar más nitrógeno, éste es incorporado a proteínas y aminoácidos en la semilla en mayor cantidad.The expression of the construction in the Rhizobium strains analyzed is characterized by increasing the expression levels of the nitrogenase enzyme complex in bacteria of the Rhizobium genus by presenting a promoter region with high transcription coupled to the complete nifHDK operon (SEQ ID NO: 2, 3 and 4). It is important to mention that there is currently no report or strain, except those addressed in this application, that are capable of increasing Rhizobium's fixing capacity. Therefore, the main characteristic of Rhizobium strains that contain this genetic construction in association with a legume such as beans is that they reach increased levels of seed production and nutritive content of the same since by fixing more nitrogen, it is incorporated to proteins and amino acids in the seed in greater quantity.
El efecto de la construcción se determinó en pruebas de invernadero y campo. En resumen, la expresión de la construcción genética produjo en promedio, respecto a la inoculación con la cepa silvestre en invernadero una actividad de nitrogenasa incrementada de 40% (determinada como micromoles de etileno/h mi g peso seco de nodulo), un mayor contenido de nitrógeno en planta de 20%, un mayor rendimiento de hasta 49% (en mg de semilla/planta) y mayor contenido de nitrógeno en la semilla del frijol de 35% a 65% (en mg N/planta), lo que repercutió en un contenido de proteínas 50% mayor en la semilla. La expresión de la construcción genética pr. c nijHDK&a otras cepas de Rhizobium simbiontes de frijol como CIAT652 y AM652 produjo en promedio 20% más nitrógeno en planta, 40% más rendimiento y 50% mayor contenido de nitrógeno en semilla comparando con inoculación de la cepas silvestre. El incremento de nitrógeno en semilla repercute directamente en su calidad nutritiva y por ende, la semilla producida usando esta bacteria como biofertilizante del cultivo es hasta 50% más nutritiva. En campo se realizaron varios ensayos en parcelas experimentales como se muestra en las tablas siguientes, con modalidades de riego rodado, riego por goteo, rhizorriego y lluvia. Se inoculó como se hace normalmente con otros tipos de cultivo como alfalfa y soya, para lo que se utilizó como soporte vermiculita (material sintético inerte).The construction effect was determined in greenhouse and field tests. In summary, the expression of the genetic construction produced on average, with respect to inoculation with the wild strain in greenhouse, an increased nitrogenase activity of 40% (determined as ethylene micromoles / h mi g dry nodule weight), a higher content of nitrogen in the plant of 20%, a higher yield of up to 49% (in mg of seed / plant) and higher content of nitrogen in the bean seed of 35% to 65% (in mg N / plant), which had an impact in a protein content 50% higher in the seed. The expression of genetic construction pr. c nijHDK & other strains of Rhizobium bean symbiotes such as CIAT652 and AM652 produced an average of 20% more nitrogen in the plant, 40% more yield and 50% higher nitrogen content in seed compared to inoculation of wild strains. The increase in nitrogen in seed has a direct impact on its nutritional quality and therefore, the seed produced using this bacterium as a crop biofertilizer is up to 50% more nutritious. In the field, several trials were carried out in experimental plots as shown in the following tables, with modalities of rolled irrigation, drip irrigation, rhizorriego and rain. It was inoculated as is normally done with other types of crops such as alfalfa and soy, for which it was used as a vermiculite support (inert synthetic material).
En resumen, la cepa derivada de R. etli presentando la construcción genética pr. c nifHDK denominada cepa HP310 presentó incrementos significativamente diferentes a p<0.05 en rendimiento de nitrógeno hasta de 25% respecto a la cepa de la cual proviene (CFN42) y de 10 a 70% en comparación a las parcelas no inoculadas. La cepa HP789 que deriva de la cepa silvestre CIAT652 y presenta la construcción pr. c nifHDK presentó incrementos de hasta 145% respecto a la cepa silvestre CIAT652 y de hasta 185% respecto a parcelas control no inoculadas. La cepa HP652, que deriva de la cepa AM652 y presenta la construcción pr. c nifHDK presentó incrementos hasta de 20% en comparación a la cepa CIAT652 y de 34 a 78% respecto a las parcelas no inoculadas. En varios de los experimentos no se lograron incrementos en producción significativos por la biofertilización, como tampoco se observaron con la fertilización química nitrogenada. Lo anterior debido a que se ha observado que en genotipos de frijol muy productivos es difícil incrementar el rendimiento. Sin embargo, un parámetro fundamental es el del contenido de nitrógeno en semilla, ya que representa la calidad nutritiva de la semilla.In summary, the strain derived from R. etli presenting the genetic construction pr. c nifHDK called strain HP310 showed significantly different increases at p <0.05 in nitrogen yield up to 25% with respect to the strain from which it originates (CFN42) and from 10 to 70% compared to non-inoculated plots. The strain HP789 derived from the wild strain CIAT652 and presents the construction pr. c nifHDK showed increases of up to 145% with respect to the wild strain CIAT652 and up to 185% with respect to non-inoculated control plots. Strain HP652, which is derived from strain AM652 and has the construction pr. c nifHDK showed increases of up to 20% compared to CIAT652 strain and 34 to 78% compared to non-inoculated plots. In several of the experiments no significant increases in production were achieved by biofertilization, nor were they observed with nitrogen chemical fertilization. This is because it has been observed that in very productive bean genotypes it is difficult to increase yield. However, a fundamental parameter is that of the nitrogen content in seed, since it represents the nutritive quality of the seed.
Con la biofertilización con las cepas que presentan la construcción genética pr. c nifHDK se lograron incrementos muy importantes. Con ello, se comprueba que existe aplicación práctica de la construcción genética para hacer más eficiente el uso de estas cepas como biofertilizantes de cultivos. Se depositó la cepa de Rhizobium etli con la construcción pr. c nifHDK con el registro NRRL B-30606 el 12 de julio de 2002 en la Culture Collection,With biofertilization with the strains that present the genetic construction pr. c nifHDK very important increases were achieved. With this, it is proven that there is practical application of genetic construction to make more efficient the use of these strains as crop biofertilizers. The Rhizobium etli strain was deposited with the pr. c nifHDK with registration NRRL B-30606 on July 12, 2002 in the Culture Collection,
Agriculture Research Service, United States Department of Agriculture (Peoría, DI.).Agriculture Research Service, United States Department of Agriculture (Peoría, DI.).
Ejemplos prácticos.Practical examples.
Esta invención se relaciona de forma directa con el uso de bacterias como biofertilizante para cultivo de plantas. Puede usarse en el cultivo de leguminosas, por su capacidad de interaccionar comúnmente con este tipo de plantas, pero hay reportes de que su uso es muy favorable para otro tipos de cultivos como los cereales (trigo) y tubérculos (betabel). Para el caso de leguminosas, las bacterias presentan una capacidad mejorada de fijación de nitrógeno con lo cual pueden suplir perfectamente a los fertilizantes químicos nitrogenados sin disminuir el rendimiento. Para la utilización de la invención, presente en cepas de la bacteria Rhizobium, en la aplicación como biofertilizante se ensayó específicamente el cultivo de frijol mediante el siguiente procedimiento. Se hicieron ensayos de invernadero para lo cual la bacteria Rhizobium con la construcción genética de sobreexpresión de nitrogenasa fue crecida en líquido y las células colectadas y lavadas con agua estéril. Se usaron para inocular plántulas de frijol a una densidad promedio de lxlO7 bacterias por planta y se analizó la actividad de nitrogenasa en ensayo de reducción de acetileno y detección por cromatografía de gases en las fechas 18, 25 y 32 días después de la inoculación (dpi). Al término del ensayo, se colectó la semilla, se cuantificó el rendimiento; el nitrógeno contenido en la semilla se analizó por espectrofotometría de pirólisis (figuras 2 a 10).This invention relates directly to the use of bacteria as a biofertilizer for plant cultivation. It can be used in the cultivation of legumes, due to its ability to interact commonly with this type of plants, but there are reports that its use is very favorable for other types of crops such as cereals (wheat) and tubers (beet). In the case of legumes, the bacteria have an improved capacity nitrogen fixation which can perfectly supply nitrogen fertilizers without diminishing yield. For the use of the invention, present in strains of the Rhizobium bacteria, in the application as a biofertilizer, the bean culture was specifically tested by the following procedure. Greenhouse tests were performed for which Rhizobium bacteria with the genetic construction of nitrogenase overexpression was grown in liquid and the cells collected and washed with sterile water. They were used to inoculate bean seedlings at an average density of lxlO 7 bacteria per plant and the nitrogenase activity was analyzed in an acetylene reduction test and detection by gas chromatography on the dates 18, 25 and 32 days after inoculation ( dpi) At the end of the test, the seed was collected, the yield was quantified; The nitrogen contained in the seed was analyzed by pyrolysis spectrophotometry (Figures 2 to 10).
Para los experimentos de campo, se creció y preparó igualmente la bacteria para biofertilizar, mezclándose en este caso con vermiculita estéril como soporte sólido. Se inoculó la semilla de frijol a una densidad aproximada de lxlO6 células por semilla y se sembró manualmente en parcelas de 6 metros con cinco surcos cada una, en cuatro a cinco réplicas al azar en campos experimentales de la región centro del país. Al término del ensayo se colectó la semilla, se cuantificó el rendimiento y se analizó el nitrógeno presente en éstas como se indicó arriba. En las tablas siguientes se muestran los resultados obtenidos en campo.For field experiments, the bacterium was also grown and prepared for biofertilization, mixing in this case with sterile vermiculite as a solid support. The bean seed was inoculated at an approximate density of 10 x 6 cells per seed and was sown manually in plots of 6 meters with five rows each, in four to five random replicas in experimental fields of the central region of the country. At the end of the test the seed was collected, the yield was quantified and the nitrogen present in them was analyzed as indicated above. The following tables show the results obtained in the field.
Tabla 1. Datos de rendimiento, contenido de nitrógeno y rendimiento de nitrógeno en semillas de plantas de campo. Zacatepec, diciembre de 1999. Riego rodado. Variedad Flor de mayo M38.Table 1. Performance data, nitrogen content and nitrogen yield in seeds of field plants. Zacatepec, December 1999. Rolled irrigation. May flower variety M38.
N en semillaN in seed
Producción Incr Rendimiento N Incr.Production Incr Performance N Incr.
Cepa (mgN/ g peso (Ton/Ha) (%)• (Kg N/Ha) % seco)Strain (mgN / g weight (Ton / Ha) (%) • (Kg N / Ha)% dry)
CFN42 0.544 29 33.9 (2.9) 184* 72CFN42 0.544 29 33.9 (2.9) 184 * 72
HP310 0.456 8 38.7 (7.2) 176* 64HP310 0.456 8 38.7 (7.2) 176 * 64
CIAT652 0.435 3 34.6 (4.7) 150* 40CIAT652 0.435 3 34.6 (4.7) 150 * 40
HP789 0.649 54 47.1 (8.6) 306* 185HP789 0.649 54 47.1 (8.6) 306 * 185
AM652 0.469 11 34.8 (8.7) 163* 52AM652 0.469 11 34.8 (8.7) 163 * 52
HP652 0.602 43 41.7 (4.2) 251* 134HP652 0.602 43 41.7 (4.2) 251 * 134
S/I 0.420 . 25.6 (5.5) 107 . + N 0.465 10 25.5 (8.3) 118 10S / I 0.420. 25.6 (5.5) 107. + N 0.465 10 25.5 (8.3) 118 10
Producción de cuatro parcelas en arreglo al azar. %, respecto a parcelas sin inocular. Entre paréntesis, desviación estándar. * significativamente diferentes con p<0.05 respecto a tratamiento sin inocular (S/I). CFN42 cepa silvestre, HP310 derivada de CFN42 con sobreexpresión de nitrogenasa, CIAT652 silvestre, HP789 derivada de CIAT652 con sobreexpresión de nitrogenasa, AM652 mutante phb, HP652 derivada de AM652 con sobreexpresión de nitrogenasa.Production of four plots in random arrangement. %, regarding plots without inoculation. In parentheses, standard deviation. * significantly different with p <0.05 compared to treatment without inoculation (S / I). CFN42 wild strain, HP310 derived from CFN42 with nitrogenase overexpression, CIAT652 wild, HP789 derived from CIAT652 with nitrogenase overexpression, AM652 phb mutant, HP652 derived from AM652 with nitrogenase overexpression.
En este experimento la inoculación con las cepas silvestres y modificadas impactan de manera variable sobre el rendimiento, obteniéndose las mejores producciones con las cepas modificadas con sobreexpresión de nitrogenasa HP789 y HP652 de 54 y 43% respectivamente sobre el tratamiento sin inocular. Adicionalmente y como características muy importantes, están el incremento en contenido de nitrógeno y rendimiento de nitrógeno en semilla. En el tratamiento sin inocular el contenido de nitrógeno en semilla es de 26 mgN/g peso seco y el rendimiento de N es 107 Kg N/Ha total y muy similar al tratamiento fertilizado (25.6 y 118 respectivamente). Pero la semilla obtenida con inoculación de las cepas modificadas HP789 y HP652 es 47.1 y 41.7 mgN/g p.s. y en rendimiento de nitrógeno es 306 y 251 Kg N/Ha respectivamente, incrementándose este parámetro en 185 y 134% respectivamente.In this experiment, the inoculation with the wild and modified strains has a variable impact on the yield, obtaining the best productions with the modified strains with overexpression of nitrogenase HP789 and HP652 of 54 and 43% respectively on the uninoculated treatment. Additionally and as very important characteristics, there is the increase in nitrogen content and nitrogen yield in seed. In the treatment without inoculating the nitrogen content in seed is 26 mgN / g dry weight and the yield of N is 107 Kg N / Ha total and very similar to the fertilized treatment (25.6 and 118 respectively). But the seed obtained with inoculation of the modified strains HP789 and HP652 is 47.1 and 41.7 mgN / g p.s. and in nitrogen yield it is 306 and 251 Kg N / Ha respectively, increasing this parameter by 185 and 134% respectively.
Tabla 2. Datos de Rendimiento, contenido de nitrógeno y rendimiento de nitrógeno en semillas de plantas de campo. Celaya, marzo 2000. Riego por goteo y rhizorriego. Variedad Flor de mayo M38.Table 2. Performance, nitrogen content and nitrogen yield data in field plant seeds. Celaya, March 2000. Drip irrigation and rhizorriego. May flower variety M38.
Producción Incr N en semilla Rendimiento N Incr.Production Incr N in seed Yield N Incr.
Cepa (Ton/Ha) (%) (mgN/ g peso seco (Kg N/Ha) %Strain (Ton / Ha) (%) (mgN / g dry weight (Kg N / Ha)%
CFN42 4.24 0 46.7 (8.0) 198* 30CFN42 4.24 0 46.7 (8.0) 198 * 30
HP310 4.29 0 38.6 (2.4) 166* 10HP310 4.29 0 38.6 (2.4) 166 * 10
CIAT652 4.22 0 56.5 (3.8) 238* 57CIAT652 4.22 0 56.5 (3.8) 238 * 57
HP789 4.08 0 50.9 (1.4) 208* 37HP789 4.08 0 50.9 (1.4) 208 * 37
HP652 4.34 0 53.6 (3.5) 233* 53HP652 4.34 0 53.6 (3.5) 233 * 53
S/I 4.38 - 34.6 (2.0) 153S / I 4.38 - 34.6 (2.0) 153
+ N 4.48 2 71.3 (6.0) 319* 110 Producción de cinco parcelas en arreglo al azar. %, respecto a parcelas sin inocular. Entre paréntesis, desviación estándar. * significativamente diferentes con p<0.05 respecto a tratamiento sin inocular (Sil). CFN42 cepa silvestre, HP310 derivada de CFN42 con sobreexpresión de nitrogenasa, CIAT652 silvestre, HP789 derivada de CIAT652 con sobreexpresión de nitrogenasa, HP652 derivada de la mutante phb AM652 con sobreexpresión de nitrogenasa.+ N 4.48 2 71.3 (6.0) 319 * 110 Production of five plots in random arrangement. %, regarding plots without inoculation. In parentheses, standard deviation. * significantly different with p <0.05 compared to treatment without inoculation (Sil). CFN42 wild strain, HP310 derived from CFN42 with nitrogenase overexpression, CIAT652 wild, HP789 derived from CIAT652 with nitrogenase overexpression, HP652 derived from the AM652 phb mutant with nitrogenase overexpression.
En el experimento de la tabla 2 la inoculación con las cepas silvestres y modificadas no se obtuvo incremento en producción así como el tratamiento fertilizado sólo fue 10% mayor al no inoculado. Como en el anterior, los dos parámetros que indican la calidad nutritiva de la semilla (contenido de nitrógeno y rendimiento de nitrógeno en semilla) fueron evaluados. En el tratamiento sin inocular el contenido de nitrógeno en semilla es de 34 mgN/g peso seco y el rendimiento de N es 153 Kg N/Ha total, mientras que en el fertilizado fue de 71.3 y 319, respectivamente. En esta ocasión, la cepa silvestre CIAT652 produjo incrementos notables (56.5 y 238, respectivamente). La cepa HP652 obtuvo un desempeño muy similar (53.6 y 233, respectivamente). Puede notarse también el gran incremento en producción en general para todo el experimento debido principalmente al régimen de riego por goteo. El rizorriego se refiere a la incorporación del inoculante en el sistema de riego.In the experiment in Table 2, inoculation with wild and modified strains no increase in production was obtained as well as the fertilized treatment was only 10% greater than the non-inoculated. As in the previous one, the two parameters that indicate the nutritional quality of the seed (nitrogen content and nitrogen yield in seed) were evaluated. In the treatment without inoculating the nitrogen content in seed is 34 mgN / g dry weight and the yield of N is 153 Kg N / Ha total, while in the fertilized it was 71.3 and 319, respectively. On this occasion, the wild strain CIAT652 produced notable increases (56.5 and 238, respectively). The HP652 strain obtained a very similar performance (53.6 and 233, respectively). It can also be noted the large increase in production in general for the entire experiment due mainly to the drip irrigation regime. Rizorriego refers to the incorporation of the inoculant in the irrigation system.
Tabla 3. Datos de rendimiento, contenido de nitrógeno y rendimiento de mtrógeno en semillas de plantas de campo. Celaya, junio 2000. Riego rodado. Variedad flor de mayo M38.Table 3. Performance data, nitrogen content and estrogen yield in field plant seeds. Celaya, June 2000. Rolled irrigation. May flower variety M38.
Producción Incr. N en semilla Rendimiento I> IncrIncr Production N in seed Yield I> Incr
CepaStrain
(Ton/Ha) (%) (mgN/ g peso seco (Kg N/Ha) %(Ton / Ha) (%) (mgN / g dry weight (Kg N / Ha)%
CFN42 2.09 0 45.7 (2) 95 0CFN42 2.09 0 45.7 (2) 95 0
HP310 2.15 0 55.6 (2) 119 23*HP310 2.15 0 55.6 (2) 119 23 *
CIAT652 2.10 0 62.5 (2) 131 35*CIAT652 2.10 0 62.5 (2) 131 35 *
HP789 2.03 0 61.7 (2) 125 29*HP789 2.03 0 61.7 (2) 125 29 *
HP652 2.23 0 66.3 (2) 148 52*HP652 2.23 0 66.3 (2) 148 52 *
S/I 2.23 - 43.4 (2) 97 -S / I 2.23 - 43.4 (2) 97 -
+ N 2.57 15 72.6 (1) 187 93*+ N 2.57 15 72.6 (1) 187 93 *
Producción de cinco parcelas en arreglo al azar. %, respecto a parcelas sin inocular. Entre paréntesis, desviación estándar. * significativamente diferentes con p<0.05 respecto a tratamiento sin inocular (SΛ). CFN42 cepa silvestre, HP310 derivada de CFN42 con sobreexpresión de nitrogenasa, CIAT652 silvestre, HP789 derivada de CIAT652 con sobreexpresión de nitrogenasa, HP652 derivada de la mutante phb AM652 con sobreexpresión de nitrogenasa.Production of five plots in random arrangement. %, regarding plots without inoculation. In parentheses, standard deviation. * significantly different with p <0.05 compared to treatment without inoculation (SΛ). CFN42 wild strain, HP310 derived from CFN42 with nitrogenase overexpression, CIAT652 wild, HP789 derived from CIAT652 with nitrogenase overexpression, HP652 derived from the AM652 phb mutant with nitrogenase overexpression.
En el experimento de la tabla 3 la inoculación las cepas silvestres y modificadas no impactaron sobre la producción de semilla. Sólo el tratamiento fertilizado fue 15% mayor al no inoculado. En cuanto a los dos parámetros que indican la calidad nutritiva de la semilla (contenido de nitrógeno y rendimiento de nitrógeno en semilla) en el tratamiento sin inocular el contenido de nitrógeno en semilla fue 43.4 mgN/g peso seco y el rendimiento de N 97 Kg N/Ha total, mientras que en el fertilizado fue de 72.6 y 187, respectivamente. La cepa modificada HP310 obtuvo 23% de incremento en rendimiento de N y las cepas modificadas HP789 y HP652 29 y 52% respecto al tratamiento sin inocular. El régimen de riego fue riego rodado o por gravedad.In the experiment in Table 3, the inoculation of wild and modified strains did not impact seed production. Only the fertilized treatment was 15% higher than the uninoculated. Regarding the two parameters that indicate the nutritional quality of the seed (nitrogen content and nitrogen yield in seed) in the treatment without inoculating the nitrogen content in seed was 43.4 mgN / g dry weight and the yield of N 97 Kg Total N / Ha, while the fertilized was 72.6 and 187, respectively. The modified strain HP310 obtained a 23% increase in N yield and the modified strains HP789 and HP652 29 and 52% compared to the treatment without inoculation. The irrigation regime was rolled or gravity irrigation.
Tabla 4. Datos de rendimiento, contenido de mtrógeno y rendimiento de nitrógeno en semillas de plantas de campo. Texcoco, junio 2000. Riego rodado. Variedad Negro M8025.Table 4. Performance data, estrogen content and nitrogen yield in field plant seeds. Texcoco, June 2000. Rolled irrigation. Black variety M8025.
N en semillaN in seed
•reducción Incr. Rendimiento N Incr.• Incr reduction. Performance N Incr.
Cepa (mgN/ g peso (Ton/Ha) (%) (Kg N/Ha) % seco)Strain (mgN / g weight (Ton / Ha) (%) (Kg N / Ha)% dry)
CFN42 3.43 8 46.1 (3) 158 65*CFN42 3.43 8 46.1 (3) 158 65 *
HP310 3.40 7 47.5 (1) 163 70*HP310 3.40 7 47.5 (1) 163 70 *
CIAT652 3.45 8 57.1 (2) 197 107*CIAT652 3.45 8 57.1 (2) 197 107 *
HP789 3.33 5 49.3 (3) 164 72*HP789 3.33 5 49.3 (3) 164 72 *
HP652 3.13 0 54.3 (1) 170 78*HP652 3.13 0 54.3 (1) 170 78 *
S/I 3.18 - 29.9 (2) 95.42 -S / I 3.18 - 29.9 (2) 95.42 -
+ N 2.83 0 66.3 (1) 188.0 97*+ N 2.83 0 66.3 (1) 188.0 97 *
Producción de cinco parcelas en arreglo al azar. %, respecto a parcelas sin inocular. Entre paréntesis, desviación estándar. * significativamente diferentes con p<0.05 respecto a tratamiento sin inocular (S/I). CFN42 cepa silvestre, HP310 derivada de CFN42 con sobreexpresión de nitrogenasa, CIAT652 silvestre, HP789 derivada de CIAT652 con sobreexpresión de nitrogenasa, HP652 derivada de la mutante phb AM652 con sobreexpresión de nitrogenasa. En este campo el riego fue por riego rodado y se nota en general una respuesta muy favorable en producción. Solamente la inoculación con las cepas silvestres y modificadas produjeron incrementos en rendimientos de semilla de entre 6 y 8% (excepto HP652). En la determinación de contenido de nitrógeno y rendimiento de nitrógeno en semilla los incrementos más altos fueron con la fertilización química (66.3 mgN/g peso seco y 188Production of five plots in random arrangement. %, regarding plots without inoculation. In parentheses, standard deviation. * significantly different with p <0.05 compared to treatment without inoculation (S / I). CFN42 wild strain, HP310 derived from CFN42 with nitrogenase overexpression, CIAT652 wild, HP789 derived from CIAT652 with nitrogenase overexpression, HP652 derived from the AM652 phb mutant with nitrogenase overexpression. In this field the irrigation was by rolled irrigation and in general a very favorable response in production is noted. Only inoculation with wild and modified strains produced increases in seed yields between 6 and 8% (except HP652). In the determination of nitrogen content and nitrogen yield in seed, the highest increases were with chemical fertilization (66.3 mgN / g dry weight and 188
Kg N Ha), seguida de la inoculación con HP652, 54.3 y 170, respectivamente) y la cepa silvestre CIAT652 (57.1 y 197, respectivamente). La cepa HP310 obtuvo un incremento de 5% en rendimiento de nitrógeno respecto a la cepa de la cual proviene, CFN42.Kg N Ha), followed by inoculation with HP652, 54.3 and 170, respectively) and the wild strain CIAT652 (57.1 and 197, respectively). The HP310 strain obtained a 5% increase in nitrogen yield compared to the strain from which it comes, CFN42.
Tabla 5. Datos de rendimiento, contenido de nitrógeno y rendimiento de nitrógeno en semillas de plantas de campo. Juchitepec, junio 2000. Lluvia . Variedad Negro M8025.Table 5. Performance data, nitrogen content and nitrogen yield in seeds of field plants. Juchitepec, June 2000. Rain. Black variety M8025.
„ Producción Incr. . -τ, Rendimiento P Incr.„Incr Production . - τ , Performance P Incr.
Cepa (Ton/Ha) (%) ^ ^9"* (Kg N/Ha) % Strain (Ton / Ha) (%) ^ ^ 9 "* (Kg N / Ha)%
CFN42 1.44 0 47.2 (2) 68 34*CFN42 1.44 0 47.2 (2) 68 34 *
HP310 1.38 0 52.5 (2) 72 44*HP310 1.38 0 52.5 (2) 72 44 *
CIAT652 1.29 0 62.9 (2) 82 62*CIAT652 1.29 0 62.9 (2) 82 62 *
HP789 1.41 0 57.0 (2) 81 60 *HP789 1.41 0 57.0 (2) 81 60 *
HP652 1.47 0 58.9 (1) 86 71 *HP652 1.47 0 58.9 (1) 86 71 *
S/I 1.56 - 32.1 (1) 50 -S / I 1.56 - 32.1 (1) 50 -
+ N 1.44 0 70.2 (1) 101 101+ N 1.44 0 70.2 (1) 101 101
Producción de cinco parcelas en arreglo al azar. %, respecto a parcelas sin inocular. Entre paréntesis, desviación estándar. * significativamente diferentes con p<0.05 respecto a tratamiento sin inocular (S/I).Production of five plots in random arrangement. %, regarding plots without inoculation. In parentheses, standard deviation. * significantly different with p <0.05 compared to treatment without inoculation (S / I).
CFN42 cepa silvestre, HP310 derivada de CFN42 con sobreexpresión de nitrogenasa, CIAT652 silvestre, HP789 derivada de CIAT652 con sobreexpresión de nitrogenasa, HP652 derivada de la mutante phb AM652 con sobreexpresión de nitrogenasa.CFN42 wild strain, HP310 derived from CFN42 with nitrogenase overexpression, wild CIAT652, HP789 derived from CIAT652 with nitrogenase overexpression, HP652 derived from the AM652 phb mutant with nitrogenase overexpression.
En el experimento de la tabla 5 ni las cepas inoculadas ni la fertilización produjeron incrementos en producción. Lo anterior puede indicar la abundancia de nitrógeno en ese tipo de suelo. Sin embargo, el rendimiento de nitrógeno total fue favorablemente impactado por la inoculación de las cepas silvestres (34 y 62%, CFN42 y CIAT652, respectivamente), las cepas modificadas (44, 60 y 71%, cepas HP310, HP789 y HP652, respectivamente) y la fertilización (101%) sobre el obtenido en las parcelas sin inocular. El régimen de riego fue por lluvia en la temporada de verano y la producción fue reducida en general.In the experiment in Table 5, neither the inoculated strains nor the fertilization produced increases in production. The above may indicate the abundance of nitrogen in that type of soil. However, the total nitrogen yield was favorably impacted by the inoculation of the wild strains (34 and 62%, CFN42 and CIAT652, respectively), the modified strains (44, 60 and 71%, strains HP310, HP789 and HP652, respectively ) and fertilization (101%) over that obtained in the plots without inoculation. The irrigation regime was due to rain in the summer season and production was reduced overall.
Tabla 6. Resumen de experimentos de campo con cepas modificadas genéticamente de Rhizobium que sobreexpresan en complejo enzimático de la nitrogenasa. Se compara respecto a la fertilización nitrogenada.Table 6. Summary of field experiments with genetically modified strains of Rhizobium that overexpress in nitrogenase enzyme complex. It is compared with respect to nitrogen fertilization.
% de incremento en rendimiento de N (Kg N/Ha) respecto al control fertilizado% increase in N yield (Kg N / Ha) compared to fertilized control
Estado Morelos Guanajuato Estado de MéxicoState Morelos Guanajuato State of Mexico
Localidad Zacatepec Celaya Celaya Texcoco Juchitepec riegoLocation Zacatepec Celaya Celaya Texcoco Juchitepec irrigation
Tipo de riego riego y riego lluvia riego por gote< rhizorriegcType of irrigation irrigation and irrigation rain drip irrigation <rhizorriegc
CepaStrain
CFN42 72 62 49 84 66CFN42 72 62 49 84 66
HP310 64 52 64 86 11HP310 64 52 64 86 11
CIAT652 40 74 70 105 80CIAT652 40 74 70 105 80
HP789 185 65 66 87 79HP789 185 65 66 87 79
HP652 134 73 79 90 85HP652 134 73 79 90 85
ControlesControls
No inoculado 91 47 52 51 49Not inoculated 91 47 52 51 49
(S/I)(YES)
FertilizadoFertilized
100 100 100 100 100100 100 100 100 100
(+N)(+ N)
Subrayados, datos en los que la cepa modificada genéticamente dio mejor resultado que su cepa silvestre.Underlined, data in which the genetically modified strain gave better results than its wild strain.
CFN42 cepa silvestre, HP310 derivada de CFN42 con sobreexpresión de nitrogenasa, CIAT652 silvestre, HP789 derivada de CIAT652 con sobreexpresión de nitrogenasa, HP652 derivada de la mutante phb AM652 con sobreexpresión de nitrogenasa.CFN42 wild strain, HP310 derived from CFN42 with nitrogenase overexpression, wild CIAT652, HP789 derived from CIAT652 with nitrogenase overexpression, HP652 derived from the AM652 phb mutant with nitrogenase overexpression.
En la tabla 6 se resumen los experimentos de campo llevados a cabo con la aplicación de la sobreexpresión de nitrogenasa en microorganismos de Rhizobium etli en frijol. Se señala el régimen de riego. En subrayado puede notarse que casi para todos los experimentos las cepas modificadas lograron los mejores rendimientos de nitrógeno en la inoculación. El 100% está indicado por el tratamiento fertilizado químicamente. En la figura 1 se encuentra el diagrama del plásmido construido. Como puede notarse en las figuras 2 a 10, la expresión de la construcción genética denominada pr. c nifHDK (SEQ BD NO: 1, 2, 3 y 4) produjo en promedio, respecto a la inoculación con la cepa silvestre en invernadero una actividad de nitrogenasa incrementada de 40% (determinada como micromoles de etileno/h mi g peso seco de nodulo), un mayor contenido de nitrógeno en planta de 20%, un mayor rendimiento de hasta 49% (en mg de semilla/planta) y mayor contemdo de nitrógeno en la semilla del frijol de 35% a 65% (en mg N/planta), lo que repercutió en un contenido de proteínas 50% mayor en la semilla. La expresión de la construcción genética en las cepas de Rhizobium CIAT652 y AM652 (cepa derivada de CIAT652 que presenta mutación para phb), usadas como biofertilizante en plantas de frijol común {Phaseolus vulgaris L.) produjo en promedio 20% más nitrógeno en planta, 40% más rendimiento y 50% mayor contemdo de nitrógeno en semilla, comparando con el uso de la cepas silvestres. El incremento de nitrógeno en semilla repercute directamente en su calidad nutritiva y por ende, la semilla producida usando esta bacteria como biofertilizante del cultivo, es hasta 50% más nutritiva. En campo se realizaron varios ensayos en parcelas experimentales con modalidades de riego rodado, riego por goteo, rhizorriego y lluvia. Se inoculó como se hace normalmente con otros tipos de cultivo como alfalfa y soya, para lo que se utilizó como soporte vermiculita (material sintético inerte). Como pudo observarse en las tablas anteriores en general, la cepa HP310 presentó incrementos significativamente diferentes a p<0.05 en rendimiento de nitrógeno hasta de 25% respecto a la cepa de la cual proviene (CFN42) y de 10 a 70% en comparación a las parcelas no inoculadas. La cepa HP789 presentó incrementos de hasta 145% respecto a la cepa silvestre CIAT652 y de hastaTable 6 summarizes the field experiments carried out with the application of nitrogenase overexpression in Rhizobium etli microorganisms in beans. The irrigation regime is indicated. In underlining it can be noted that almost for all Experiments the modified strains achieved the best nitrogen yields in the inoculation. 100% is indicated by chemically fertilized treatment. Figure 1 shows the diagram of the constructed plasmid. As can be seen in Figures 2 to 10, the expression of the genetic construct called pr. c nifHDK (SEQ BD NO: 1, 2, 3 and 4) produced on average, with respect to inoculation with the wild strain in greenhouse, an increased nitrogenase activity of 40% (determined as ethylene micromoles / h mi g dry weight of nodule), a higher nitrogen content in the plant of 20%, a higher yield of up to 49% (in mg of seed / plant) and a higher nitrogen content in the bean seed of 35% to 65% (in mg N / plant), which resulted in a 50% higher protein content in the seed. The expression of the genetic construct in Rhizobium CIAT652 and AM652 strains (strain derived from CIAT652 that presents a mutation for phb), used as a biofertilizer in common bean plants {Phaseolus vulgaris L.) produced an average of 20% more nitrogen in the plant, 40% higher yield and 50% higher seed nitrogen content, compared with the use of wild strains. The increase in nitrogen in seed has a direct impact on its nutritional quality and therefore, the seed produced using this bacterium as a crop biofertilizer is up to 50% more nutritious. In the field, several trials were carried out in experimental plots with modalities of rolled irrigation, drip irrigation, rhizorriego and rain. It was inoculated as is normally done with other types of crops such as alfalfa and soy, for which it was used as a vermiculite support (inert synthetic material). As could be seen in the previous tables in general, strain HP310 showed significantly different increases ap <0.05 in nitrogen yield up to 25% with respect to the strain from which it comes (CFN42) and from 10 to 70% compared to the plots not inoculated. The HP789 strain showed increases of up to 145% compared to the wild strain CIAT652 and up to
185% respecto a parcelas control no inoculadas. La cepa HP652 presentó incrementos hasta de 20% en comparación a la cepa CIAT652 y de 34 a 78% respecto a las parcelas no inoculadas. En varios de los experimentos no se lograron incrementos en producción signifcativos por la biofertilización, como tampoco se observaron para la fertilización nitrogenada. Lo anterior debido a que se ha observado que en genotipos de frijol muy productivos es difícil incrementar el rendimiento. Sin embargo, un parámetro fundamental es el del contenido de nitrógeno en semilla, ya que representa la calidad nutritiva en forma de proteínas y aminoácidos libres que contiene ésta. A ese respecto, con la biofertilización en general y en particular con las cepas con la cosntrucción genética para sobreexpresar la nitrogenasa, se lograron incrementos muy importantes.185% compared to non-inoculated control plots. The HP652 strain showed increases of up to 20% compared to the CIAT652 strain and from 34 to 78% compared to the non-inoculated plots. In several of the experiments, no significant increases in production were achieved due to biofertilization, nor were they observed for nitrogen fertilization. This is because it has been observed that in very productive bean genotypes it is difficult to increase yield. However, a fundamental parameter is that of the seed nitrogen content, since it represents the nutritional quality in the form of proteins and free amino acids that it contains. In that regard, with biofertilization in general and in particular with strains with genetic construction to overexpress nitrogenase, very significant increases were achieved.
Con lo anterior, se comprueba que existe aplicación práctica de la construcción genética pr. c nifHDK (SEQ JD NO: 1, 2, 3 y 4), motivo de esta solicitud. El uso potencial de organismos de Rhizobium como biofertilizantes por contener la construcción genética con la que se sobreexpresa la nitrogenasa (pr. c nifHDK) se respalda en experimentos de campo. Aunque las pruebas fueron realizadas en el cultivo de frijol, éste es solamente un ejemplo de cómo llevar a cabo la aplicación de la invención. Adicionalmente puede aplicarse en otras leguminosas como cacahuate, soya, alfalfa, trébol, lenteja, haba, chícharo, etc. e inclusive en otros cultivos como por ejemplo betabel, trigo, maíz y sorgo. En la construcción de las cepas siempre se consideró su posible uso en el campo mexicano y por ello cumplen con todos los requisitos para la autorización de liberación de organismos modificados genéticamente que marca la Comisión Nacional de Bioseguridad, autoridad competente en la materia. El uso de este biofertilizante en el campo es completamente inocuo en base a décadas de investigación y aplicación como biofertilizantes y no daña el ambiente como lo hacen los fertilizantes nitrogenados que se aplican usualmente. La preparación de las bacterias para su uso como biofertilizante y la aplicación en la siembra es sencilla y de muy bajo costo, por lo que la sustitución del fertilizante químico nitrogenado representa un importante beneficio económico para el productor agrícola. Adicionalmente, la semilla producida presenta mejores características nutritivas para el consumidor en general.With the above, it is verified that there is practical application of genetic construction pr. c nifHDK (SEQ JD NO: 1, 2, 3 and 4), reason for this request. The potential use of Rhizobium organisms as biofertilizers for containing the genetic construct with which nitrogenase is overexpressed (pr. C nifHDK) is supported by field experiments. Although the tests were performed on the bean crop, this is only an example of how to carry out the application of the invention. Additionally it can be applied in other legumes such as peanuts, soybeans, alfalfa, clover, lentil, beans, peas, etc. and even in other crops such as beets, wheat, corn and sorghum. In the construction of the strains, their possible use in the Mexican field was always considered and therefore they comply with all the requirements for the authorization of the release of genetically modified organisms established by the National Biosafety Commission, the competent authority in the field. The use of this biofertilizer in the field is completely harmless based on decades of research and application as biofertilizers and does not harm the environment as do the nitrogen fertilizers that are usually applied. The preparation of the bacteria for use as a biofertilizer and the application in planting is simple and very low cost, so the replacement of the nitrogen chemical fertilizer represents an important economic benefit for the agricultural producer. Additionally, the seed produced has better nutritional characteristics for the consumer in general.
Descripción de las figuras. Fig. 1. Es un esquema del plásmido pHP789 con la construcción genética pr. c nifHDKDescription of the figures. Fig. 1. It is a scheme of plasmid pHP789 with the genetic construct pr. c nifHDK
(SEQ ID NO: 1, 2, 3 y 4), en la que se muestra el sitio denominado EcoRI para corte con la enzima de restricción EcoRI y el sitio BglII para corte con la enzima de restricción BglII. Ambos fueron usados para obtener la construcción genética.(SEQ ID NO: 1, 2, 3 and 4), which shows the site called EcoRI for cutting with the restriction enzyme EcoRI and the BglII site for cutting with the restriction enzyme BglII. Both were used to obtain genetic construction.
Fig. 2. Es una gráfica sobre la actividad de nifrogenasa que produce la cepa modificada genéticamente HP310 (con pr. c nifHDK SEQ ID NO: 1, 2, 3 y 4) y la cepa silvestre CFN42, en plantas de invernadero de frijol negro jamapa a 18, 25 y 32 días post inoculación (dpi), donde * denota diferencias significativas al nivel de confianza del 95% (p<0.05).Fig. 2. It is a graph about the activity of nifrogenase produced by the genetically modified strain HP310 (with pr. C nifHDK SEQ ID NO: 1, 2, 3 and 4) and the wild strain CFN42, in black bean greenhouse plants jamapa at 18, 25 and 32 days post inoculation (dpi), where * denotes significant differences at the 95% confidence level (p <0.05).
Fig. 3 Es una gráfica sobre el rendimiento de semilla que produce la inoculación de plantas de fríjol negro jamapa con la cepa modificada genéticamente HP310, cuando se compara con la cepa de la que proviene CFN42, en plantas de invernadero de fríjol negro jamapa.Fig. 3 It is a graph about the seed yield that produces the inoculation of jamapa black bean plants with the genetically modified strain HP310, when compared with the strain from which CFN42 comes, in jamapa black bean greenhouse plants.
Fig. 4 Es una gráfica sobre el contenido de nitrógeno de semilla que produce la inoculación de plantas de fríjol negro jamapa con la cepa modificada genéticamente HP310, cuando se compara con la cepa de la que proviene CFN42, en plantas de invernadero de frijol negro jamapa.Fig. 4 It is a graph about the nitrogen content of seed that produces the inoculation of jamapa black bean plants with the genetically modified strain HP310, when compared to the strain from which CFN42 comes, in jamapa black bean greenhouse plants.
Fig. 5. Es una gráfica sobre la actividad de nitrogenasa que produce la cepa modificada genéticamente HP789 (con pr. c nifHDK SEQ ID NO: 1, 2, 3 y 4) y la cepa silvestreFig. 5. It is a graph about the nitrogenase activity produced by the genetically modified strain HP789 (with pr. C nifHDK SEQ ID NO: 1, 2, 3 and 4) and the wild strain
CIAT652, en plantas de invernadero de frijol negro jamapa a 18, 25 y 32 dpi.CIAT652, in jamapa black bean greenhouse plants at 18, 25 and 32 dpi.
Fig. 6 Es una gráfica sobre el rendimiento de semilla que produce la inoculación de plantas de frijol negro jamapa con la cepa modificada genéticamente HP789, cuando se compara con la cepa de la que proviene CIAT652, en plantas de invernadero de frijol negro jamapa.Fig. 6 It is a graph about the seed yield that produces the inoculation of jamapa black bean plants with the genetically modified strain HP789, when compared with the strain from which CIAT652 comes, in jamapa black bean greenhouse plants.
Fig. 7 Es una gráfica sobre el contenido de nitrógeno de semilla que produce la inoculación de plantas de fríjol negro jamapa con la cepa modificada genéticamente HP789, cuando se compara con la cepa de la que proviene CIAT652, en plantas de invernadero de frijol negro jamapa.Fig. 7 It is a graph about the seed nitrogen content produced by the inoculation of jamapa black bean plants with the genetically modified strain HP789, when compared with the strain from which CIAT652 comes, in jamapa black bean greenhouse plants .
Fig. 8. Es una gráfica sobre la actividad de nitrogenasa que produce la cepa modificada genéticamente HP652 (con pr. c nifHDK SEQ ID NO: 1, 2, 3 y 4) y la cepa mutante phb AM652, en plantas de invernadero de frijol negro jamapa a 18, 25 y 32 dpi.Fig. 8. It is a graph about the nitrogenase activity produced by the genetically modified strain HP652 (with pr. C nifHDK SEQ ID NO: 1, 2, 3 and 4) and the mutant strain phb AM652, in bean greenhouse plants Jamapa black at 18, 25 and 32 dpi.
Fig. 9 Es una gráfica sobre rendimiento de semilla que produce la inoculación de plantas de frijol negro jamapa con la cepa modificada genéticamente HP652, cuando se compara con la cepa de la que proviene AM652 (mutante phb), en plantas de invernadero de fríjol negro jamapa.Fig. 9 It is a graph on seed yield that produces the inoculation of jamapa black bean plants with the genetically modified strain HP652, when compared with the strain from which AM652 (phb mutant) comes from, in black bean greenhouse plants jamapa
Fig. 10 Es una gráfica sobre el contenido de nitrógeno de semilla que produce la inoculación de plantas de frijol negro jamapa con la cepa modificada genéticamente HP652, cuando se compara con la cepa de la que proviene AM652 (mutante phb), en plantas de invernadero de frijol negro jamapa.Fig. 10 It is a graph about the seed nitrogen content produced by the inoculation of jamapa black bean plants with the genetically modified strain HP652, when compared with the strain from which AM652 (phb mutant) comes from, in greenhouse plants of black jamapa beans.
Métodos utilizados.Methods used
Cultivo de cepas. Escherichia coli se cultivó en medio LB (peptona 5%, caseína 2% y NaCl 5%) a 37 grados. R. etli se cultivó en medio PY (peptona 2%, caseína 0.5%) a 30 grados. Se agregaron antibióticos según se requiriera (tettaciclina 10 mg/ml, ácido nalidíxico 20 mg/ml.Cultivation of strains. Escherichia coli was grown in LB medium (5% peptone, 2% casein and 5% NaCl) at 37 degrees. R. etli was grown in PY medium (2% peptone, 0.5% casein) at 30 degrees. Antibiotics were added as required (tettacycline 10 mg / ml, nalidixic acid 20 mg / ml.
Aislamiento y digestión de ADN total y plasmídico. El ADN total se extrajo de cultivos de R. etli crecidos en PY. Se centrifugó y las células colectadas se resuspendieron en 470 μl de solución amortiguadora de Tris-HCl 50 mM/EDTA 20 mM a pH 7.0. Se Usaron con 20 μl de proteinasa K 10 mg/ml y 10 de SDS 10% por 1 hora a 37 grados. Se trató con fenol/cloroformo/alcohol isoamílico 24:24:1 y cloroformo/alcohol isoamñico 24:1. Se agregaron 2/3 de volumen de isopropanol, se centrifugó y desecho el líquido. El pellet se lavó con 1 mi de etanol al 70% y se secó en secadora al vacío Savant. Se resuspendió en 50 μl de Tris- HC1 10 mM/EDTA 1 mM pH 8.0. El ADN plasmídico se obtuvo de E. coli crecida en LB. Se centrifugó y las células colectadas se resuspendieron en 200 μl de solución amortiguadora de Tris-HCl 50 mM EDTA 20 mM/RNAsa 5 mg/ml a pH 8.0. Se agregó 200μl de NaOH 0.4N/SDS 1%. Se agregó 170 μl de acetato de amonio 5M a pH4.5 y se agitó y centrifugó. Al lisado se agregó 1 mi de etanol helado. Se centrifugó y desechó el sobrenadante. El pellet de ADN se lavó con 1 mi de alcohol etílico al 70% y se secó en secadora al vacío Savant. Se resuspendió en 20 μl de Tris- HC1 10 mM/EDTA 1 mM pH 8.0. La digestión de ADN se hizo con 5 μl de ADN total o plasmídico, 2 μl de solución amortiguadora REact, 1 μml de la enzima y 12 de agua ultrapura. Se digirió 4 o 16 horas a 37 °C según sea ADN plasmídico o total. El ADN digerido se corrió en geles de agarosa al 0.8% teñidos con bromuro de etidio (0.5 mg/ml). Las ligaciones se realizaron con 5 μl de ADN inserto digerido y 2 μl de vector digerido, 2 μl de solución amortiguadora de ligación, 1 μl de ligasa de ADN T4 y 10 de agua ultrapura. Se incubaron a 12 °C por 16 horas.Isolation and digestion of total and plasmid DNA. Total DNA was extracted from cultures of R. etli grown in PY. It was centrifuged and the collected cells were resuspended in 470 μl of 50 mM Tris-HCl buffer solution / 20 mM EDTA at pH 7.0. They were used with 20 μl of proteinase K 10 mg / ml and 10 SDS 10% for 1 hour at 37 degrees. It was treated with phenol / chloroform / isoamyl alcohol 24: 24: 1 and chloroform / isoamyl alcohol 24: 1. 2/3 volume of isopropanol was added, the liquid was centrifuged and discarded. The pellet was washed with 1 ml of 70% ethanol and dried in a Savant vacuum dryer. It was resuspended in 50 μl of 10 mM Tris-HC1 / 1 mM EDTA pH 8.0. Plasmid DNA was obtained from E. coli grown in LB. It was centrifuged and the collected cells were resuspended in 200 µl of 50 mM Tris-HCl buffer 20 mM EDTA / 5 mg / ml RNAse at pH 8.0. 200μl of 0.4N NaOH / 1% SDS was added. 170 µl of 5M ammonium acetate was added to pH4.5 and stirred and centrifuged. To the lysate was added 1 ml of frozen ethanol. The supernatant was centrifuged and discarded. The DNA pellet was washed with 1 ml of 70% ethyl alcohol and dried in a Savant vacuum dryer. It was resuspended in 20 μl of 10 mM Tris-HC1 / 1 mM EDTA pH 8.0. DNA digestion was done with 5 μl of total or plasmid DNA, 2 μl of REact buffer solution, 1 μml of the enzyme and 12 of ultrapure water. It was digested 4 or 16 hours at 37 ° C depending on whether it is plasmid or total DNA. The digested DNA was run on 0.8% agarose gels stained with ethidium bromide (0.5 mg / ml). The ligaments were made with 5 μl of digested insert DNA and 2 μl of digested vector, 2 μl of ligation buffer solution, 1 μl of T4 DNA ligase and 10 of ultrapure water. They were incubated at 12 ° C for 16 hours.
Transformación. Los plásmidos se introdujeron por choque de calor. El ADN se adicionó a 100 μl de células de E. coli y se incubó por 5 minutos en hielo, 2.5 minutos a 42 °C y 5 minutos en hielo. Se adicionó 1 mi de LB y se incubó a 37 °C 1 hora. Se plateó en cajas de LB con antibióticos de selección del vector entrante. Se incubó por un díaa37°C.Transformation. Plasmids were introduced by heat shock. The DNA was added to 100 µl of E. coli cells and incubated for 5 minutes on ice, 2.5 minutes at 42 ° C and 5 minutes on ice. 1 ml of LB was added and incubated at 37 ° C for 1 hour. It was plated in LB boxes with antibiotics for selection of the incoming vector. It was incubated for a day at 37 ° C.
Cruzas recombinantes. La cepa HB101 de E. coli conteniendo el plásmido pHP789 se crece por 16 horas a 37°C en LB. R. etli se cultiva a 30°C en PY. Se mezclan y se centrifugan a 6 000 x g por dos minutos. Se resuspenden y se colocan en caja PY sin antibióticos incubando por un día a 30°C. Se tomaron asadas para estriar PY con antibiótico. Se incubó a 30 °C por dos días.Recombinant crosses. E. coli strain HB101 containing plasmid pHP789 is grown for 16 hours at 37 ° C in LB. R. etli is grown at 30 ° C in PY. They are mixed and centrifuged at 6,000 x g for two minutes. They are resuspended and placed in a PY box without antibiotics incubating for a day at 30 ° C. Roasts were taken to stretch PY with antibiotic. It was incubated at 30 ° C for two days.
Hibridización de Southern. El ADN problema se digirió y corrió en gel. Se trató con NaOH 1M NaCl 0.5M por 30 minutos y con Tris base 0.5 M pH7.5 NaCl 1.5M por 45 minutos. Se transfirió el ADN a una membrana de nylon por capilaridad. La solución amortiguadora y de transferencia es SSC6x (SSC 20x: citrato de sodio 88.2g, cloruro de sodio 175.3 g por litro). El ADN se fijó con luz ultravioleta. Se hibridizó por 16 horas aSouthern hybridization. The problem DNA was digested and ran in gel. It was treated with 1M NaOH 0.5M NaCl for 30 minutes and with 0.5M Tris base pH7.5 1.5M NaCl for 45 minutes. The DNA was transferred to a nylon membrane by capillarity. The buffer and transfer solution is SSC6x (SSC 20x: sodium citrate 88.2g, sodium chloride 175.3 g per liter). The DNA was fixed with ultraviolet light. He hybridized for 16 hours at
65 grados con ADN probador marcado radiactivamernte con 32P. Se lavó con SSC O.lx SDS 1% 30 minutos, SSC O.lx SDS 1% 30 minutos a 37°C y SSC O.lx SDS 0.1% a 65. Se colocó en cásete para exposición de placa radiográfica.65 degrees with radioactively labeled DNA tester with 32P. Washed with SSC O.lx 1% SDS 30 minutes, SSC O.lx SDS 1% 30 minutes at 37 ° C and SSC O.lx SDS 0.1% at 65. It was placed in a cassette for exposure of radiographic plaque.
Ensayos de plantas. Las semillas de fríjol negro jamapa se trataron con hipoclorito de sodio 1% por 5 minutos y se lavaron con agua estéril. Se germinaron y se plantaron en macetas con vermiculita esterilizada. Se inoculó con lxlO6 células de R. etli lavadas conPlant trials The jamapa black bean seeds were treated with 1% sodium hypochlorite for 5 minutes and washed with sterile water. They were germinated and planted in pots with sterilized vermiculite. 6 R. etli cells washed with lxlO were inoculated with
NaCl 0.85%. Las macetas se regaron con agua y con solución de sales sin nitrógeno. A 18, 25 y 32 días post inoculación (dpi) se colectaron para ensayo de reducción de acetileno. 20 plantas de cada cepa se dejaron madurar para obtener semilla a los 80 dpi. Para el ensayo de reducción de acetileno, se tomaron las raíces y se colocaron en botellas sellables herméticamente. Se inyectaron con acetileno y una muestra de 0.4 mi se analizó en cromatografo de gases Varían 3700 para determinar la conversión en etileno. El cálculo de la actividad implica un factor de extinción molecular para el etileno, capacidad del frasco, tiempo transcurrido, volumen inyectado y peso seco de nodulos. Para el ensayo en campo se prepararon inóculos con lxlO9 células por gramo de vermiculita, se agregaron a semilla de fríjol y se sembró en 5 parcelas réplicas de 5 surcos de 6 metros cada uno. Se sembraron parcelas sin inocular y parcelas para fertilización nitrogenada química con 75 kg N/Ha.0.85% NaCl. The pots were watered with water and salt solution without nitrogen. At 18, 25 and 32 days post inoculation (dpi) they were collected for acetylene reduction assay. 20 plants of each strain were allowed to mature to obtain seed at 80 dpi. For the acetylene reduction test, the roots were taken and placed in hermetically sealable bottles. They were injected with acetylene and a sample of 0.4 ml was analyzed in gas chromatograph Varies 3700 to determine the conversion into ethylene. The calculation of the activity implies a molecular extinction factor for ethylene, bottle capacity, elapsed time, injected volume and dry nodule weight. Inoculations were prepared with lxlO 9 cells per gram of vermiculite, added to bean seed and planted in 5 replicate plots of 5 rows of 6 meters each. Plots were planted without inoculation and plots for chemical nitrogen fertilization with 75 kg N / Ha.
Análisis de nitrógeno en semilla y planta. Se molieron las muestras y por espectrofotometría de flama con un aparato Antek 7000 se determinó el contenido de nitrógeno. Se incluyó albúmina para realizar curvas de calibración.Nitrogen analysis in seed and plant. The samples were milled and the nitrogen content was determined by flame spectrophotometry with an Antek 7000 apparatus. Albumin was included to perform calibration curves.
Análisis estadístico. A los datos de la actividad de nitrogenasa, contenido de nitrógeno en semilla y plantas y rendimiento de invernadero y campo se les aplicó la prueba de t para determinar diferencias significativas La cepa de Rhizobium etli que presenta la construcción genética mencionada en lasStatistic analysis. The t-test was applied to the nitrogenase activity, nitrogen content in seed and plants and greenhouse and field yield data to determine significant differences. The Rhizobium etli strain that presents the genetic construction mentioned in the
Reivindicaciones 1 a 16 fue depositada en la Culture Collection, Agriculture ResearchClaims 1 to 16 was deposited in the Culture Collection, Agriculture Research
Service, United States Department of Agriculture (Peoría, 111.) el 12 de julio de 2002 con el número de registro NRRL B-30606.Service, United States Department of Agriculture (Peoría, 111.) on July 12, 2002 with registration number NRRL B-30606.
Habiendo descrito los antecedentes sobre la fijación de nitrógeno y las estrategias llevadas a cabo para mejorarla, tomando en cuenta que la construcción genética motivo de esta solicitud no existe como tal en la naturaleza, reclamamos como novedoso lo contenido en las siguientes: Having described the background on nitrogen fixation and the strategies carried out to improve it, taking into account that the genetic construction that is the reason for this request does not exist as such in nature, we claim as novel what is contained in the following:

Claims

Reivindicaciones Claims
1. Construcción genética que contiene la secuencia identificada con las SEQ ID NO: 1,1. Genetic construction that contains the sequence identified with SEQ ID NO: 1,
2. 3 y 4. 2. Vector que contiene la construcción genética de la Reivindicación 1.2. 3 and 4. 2. Vector containing the genetic construction of Claim 1.
3. Vector de acuerdo a la Reivindicación 2 donde el vector puede ser un cósmido.3. Vector according to Claim 2 wherein the vector can be a cosmid.
4. Vector de acuerdo a la Reivindicación 2 donde el vector puede ser un plásmido.4. Vector according to Claim 2 wherein the vector may be a plasmid.
5. Cepa de Escherichia coli denominada HB101/pHP789 que contiene el plásmido vector con la construcción genética mencionada en la Reivindicación 1. 5. Escherichia coli strain named HB101 / pHP789 containing the vector plasmid with the genetic construct mentioned in Claim 1.
6. Cepa de Rhizobium que contiene la construcción genética mencionada en la6. Rhizobium strain containing the genetic construct mentioned in the
Reivindicación 1.Claim 1.
7. Proceso de construcción del vector mencionado en la Reivindicación 2 el cual consta de obtener el operón de la nitrogenasa nifHDK de Rhizobium cortando con EcoRI y BglU, ligarlo a la región promotora de alta tasa transcripcional de nifHc, clonar este fragmento a un plásmido vector y con el plásmido obtenido realizar dobles recombinantes en bacterias.7. Vector construction process mentioned in Claim 2 which consists of obtaining the Rhizobium nifHDK nitrogenase operon by cutting with EcoRI and BglU, linking it to the promoter region of high transcriptional rate of nifHc, cloning this fragment to a vector plasmid and with the plasmid obtained perform double recombinants in bacteria.
8. Proceso para la preparación de un vector de expresión en base a la Reivindicación 7 que consta de: expresar un operón completo de la nitrogenasa nifHDK bajo el control regulatorio de la región promotora de nifHc.8. Process for the preparation of an expression vector based on Claim 7, consisting of: expressing a complete nifHDK nitrogenase operon under the regulatory control of the nifHc promoter region.
9. Proceso de acuerdo a las Reivindicaciones 7 y 8 en donde se expresa un operón completo de la nitrogenasa bajo el control regulatorio de una región promotora de alta capacidad transcripcional {nifHc) en bacterias.9. Process according to claims 7 and 8 wherein a complete nitrogenase operon is expressed under the regulatory control of a promoter region of high transcriptional capacity {nifHc) in bacteria.
10. Proceso de acuerdo a las Reivindicaciones 7, 8 y 9 en donde la construcción genética es expresada preferentemente en microorganismos del género Rhizobium como10. Process according to claims 7, 8 and 9 wherein the genetic construction is preferably expressed in microorganisms of the Rhizobium genus as
Rhizobium leguminosarum (simbionte de chícharo, haba y lenteja), Rhizobium trifolii (simbionte del trébol), Sinorhizobium meliloti (simbionte de alfalfa), Bradyrhizobium japonicum (simbionte de soya y cacahuate) y los demás géneros y especies de rhizobiaceas susceptibles de mejoría simbiótica mediante la expresión de esta construcción genética.Rhizobium leguminosarum (pea, bean and lentil symbiote), Rhizobium trifolii (clover symbiont), Sinorhizobium meliloti (alfalfa symbiont), Bradyrhizobium japonicum (soybean and peanut symbiont) and the other species of genus and best animals The expression of this genetic construction.
11. Proceso de acuerdo a la Reivindicación 7 donde el material genético extraño proveniente del vector no se incorpora al genoma de la bacteria Rhizobium permitiendo su uso como biofertilizantes.11. Process according to Claim 7 wherein the foreign genetic material from the vector is not incorporated into the genome of the Rhizobium bacteria allowing its use as biofertilizers.
12. El uso de la construcción genética de la Reivindicación 1 presente en bacterias para usarse como biofertilizantes.12. The use of the genetic construct of Claim 1 present in bacteria for use as biofertilizers.
13. El uso de los vectores de las Reivindicaciones 2 a 4 en bacterias como biofertilizantes.13. The use of the vectors of Claims 2 to 4 in bacteria as biofertilizers.
14. El uso de la cepa de la Reivindicación 6 como biofertilizante. 14. The use of the strain of Claim 6 as a biofertilizer.
15. El uso de las bacterias obtenidas en base a las Reivindicaciones 9 a 12 en leguminosas.15. The use of the bacteria obtained based on Claims 9 to 12 in legumes.
16. El uso de acuerdo a la Reivindicación 15 donde la leguminosa puede ser fríjol. 16. The use according to Claim 15 wherein the legume can be bean.
PCT/MX2003/000033 2002-04-19 2003-04-11 Biofertilizer for plants based on rhizobium bacteria having an improved nitrogen fixing capacity WO2003089640A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003218828A AU2003218828A1 (en) 2002-04-19 2003-04-11 Biofertilizer for plants based on less thanigreater thanrhizobiumless than/igreater than bacteria having an improved nitrogen fixing capacity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXPA/A/2002/003920 2002-04-19
MXPA02003920 MXPA02003920A (en) 2002-04-19 2002-04-19 Biofertilizer for plants based on rhizobium bacteria with improved capacity of nitrogen affixation.

Publications (2)

Publication Number Publication Date
WO2003089640A2 true WO2003089640A2 (en) 2003-10-30
WO2003089640A3 WO2003089640A3 (en) 2004-01-08

Family

ID=33476051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2003/000033 WO2003089640A2 (en) 2002-04-19 2003-04-11 Biofertilizer for plants based on rhizobium bacteria having an improved nitrogen fixing capacity

Country Status (3)

Country Link
AU (1) AU2003218828A1 (en)
MX (1) MXPA02003920A (en)
WO (1) WO2003089640A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102690808A (en) * 2011-03-23 2012-09-26 北京大学 Construction of prokaryotic gene expression island for purpose of eukaryotic expression
CN108828088A (en) * 2018-04-27 2018-11-16 山东农业大学 A method of detection microbial manure nitrogen fixation effect
EP3424328A1 (en) 2017-07-04 2019-01-09 Newpek S.A. De C.V. A bacterial inoculating formulation based on a microorganism consortium of genus calothrix sp. to increase yield and quality of vegetable crops, the method for manufacturing the formulation and uses thereof
US10856551B2 (en) 2014-07-31 2020-12-08 Universidad De Granada Use of Bacillus methylotrophicus as a stimulant of plant growth and biological control means, and isolates of said species

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0164245A2 (en) * 1984-06-08 1985-12-11 Lubrizol Genetics Inc. Nif promoter of rhizobium japonicum
EP0205071A2 (en) * 1985-06-03 1986-12-17 The John Hopkins University Genes involved with hydrogenase and nitrogenase activities in rhizobium japonicum and cosmids
EP0211661A1 (en) * 1985-08-07 1987-02-25 Lubrizol Genetics Inc. Nif Promoter of fast-growing rhizobium japonicum

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0164245A2 (en) * 1984-06-08 1985-12-11 Lubrizol Genetics Inc. Nif promoter of rhizobium japonicum
EP0205071A2 (en) * 1985-06-03 1986-12-17 The John Hopkins University Genes involved with hydrogenase and nitrogenase activities in rhizobium japonicum and cosmids
EP0211661A1 (en) * 1985-08-07 1987-02-25 Lubrizol Genetics Inc. Nif Promoter of fast-growing rhizobium japonicum

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE BIOSIS [Online] BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; 1982 QUINTO C ET AL: "REITERATION OF NITROGEN FIXATION GENE SEQUENCES IN RHIZOBIUM-PHASEOLI" Database accession no. PREV198324070946 XP002249799 -& NATURE (LONDON), vol. 299, num. 5885, 1982, páginas 724-726, XP002967466 ISSN: 0028-0836 *
DATABASE BIOSIS [Online] BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; 1985 QUINTO C ET AL: "NITROGENASE REDUCTASE A FUNCTIONAL MULTIGENE FAMILY IN RHIZOBIUM-PHASEOLI" Database accession no. PREV198580003285 XP002249797 -& PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 82, num. 4, Febrero 1985 (1985-02), páginas 1170-1174, XP002967464 ISSN: 0027-8424 *
DATABASE BIOSIS [Online] BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; 1988 MORETT E ET AL: "TRANSCRIPTION ANALYSIS OF THE THREE NIF-H GENES OF RHIZOBIUM-PHASEOLI WITH GENE FUSION" Database accession no. PREV198886102172 XP002249798 -& MOLECULAR & GENERAL GENETICS, vol. 213, num. 2-3, 1988, páginas 499-504, XP002967465 ISSN: 0026-8925 *
DATABASE BIOSIS [Online] BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; 1996 VALDERRAMA BRENDA ET AL: "Regulatory proteins and cis-acting elements involved in the transcriptional control of Rhizobium etli reiterated nifH genes." Database accession no. PREV199699054328 XP002249796 -& JOURNAL OF BACTERIOLOGY, vol. 178, num. 11, 1996, páginas 3119-3126, XP002967463 ISSN: 0021-9193 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102690808A (en) * 2011-03-23 2012-09-26 北京大学 Construction of prokaryotic gene expression island for purpose of eukaryotic expression
WO2012126367A1 (en) * 2011-03-23 2012-09-27 北京大学 Nitrogen fixation gene island suitable for expressing in prokaryotic and eukaryotic systems
US9290769B2 (en) 2011-03-23 2016-03-22 Peking University Nitrogen fixation gene island suitable for expressing in prokaryotic and eukaryotic systems
CN102690808B (en) * 2011-03-23 2017-04-19 北京大学 Construction of prokaryotic gene expression island for purpose of eukaryotic expression
US10856551B2 (en) 2014-07-31 2020-12-08 Universidad De Granada Use of Bacillus methylotrophicus as a stimulant of plant growth and biological control means, and isolates of said species
EP3424328A1 (en) 2017-07-04 2019-01-09 Newpek S.A. De C.V. A bacterial inoculating formulation based on a microorganism consortium of genus calothrix sp. to increase yield and quality of vegetable crops, the method for manufacturing the formulation and uses thereof
CN108828088A (en) * 2018-04-27 2018-11-16 山东农业大学 A method of detection microbial manure nitrogen fixation effect

Also Published As

Publication number Publication date
WO2003089640A3 (en) 2004-01-08
AU2003218828A1 (en) 2003-11-03
MXPA02003920A (en) 2003-10-22
AU2003218828A8 (en) 2003-11-03

Similar Documents

Publication Publication Date Title
Pedraza Recent advances in nitrogen-fixing acetic acid bacteria
Baker Trzchoderma SPP. as plant-growth stimulants
US9580363B2 (en) Nitrogen-fixing bacterial inoculant for improvement of crop productivity and reduction of nitrous oxide emission
Fallik et al. Growth response of maize roots to Azospirillum inoculation: effect of soil organic matter content, number of rhizosphere bacteria and timing of inoculation
Isawa et al. Azospirillum sp. strain B510 enhances rice growth and yield
Remans et al. Effects of plant growth-promoting rhizobacteria on nodulation of Phaseolus vulgaris L. are dependent on plant P nutrition
US6194193B1 (en) Nutrient plant formulation with microbial strains
US7393678B2 (en) Klebsiella pneumoniae inoculants for enhancing plant growth
EA009126B1 (en) Micro-organisms for the treatment of soil and process for obtaining them
AU2002227228A1 (en) Bacterial inoculants for enhancing plant growth
BG112709A (en) The bacterial strain bacillus amyloliquefaciens subsp. plantarum bs89 as a means of increasing plant productivity and their protection against diseases
KR20150071011A (en) Process for producing gougerotin employing streptomyces microflavus strains
Ohyama et al. Nitrogen fixation in sugarcane
Kaushik et al. Selection of Tn5:: lacZ mutants isogenic to wild type Azospirillum brasilense strains capable of growing at sub-optimal temperature
CN111205998B (en) Bacillus amyloliquefaciens CGMCC No.17841 and application thereof
Mazhabi et al. How may Trichoderma application affect vegetative and qualitative traits in tulip" Darwin hybride" cultivar
WO2003089640A2 (en) Biofertilizer for plants based on rhizobium bacteria having an improved nitrogen fixing capacity
JP2000191421A (en) Plant growth promoter
Garipova et al. Intermicrobial relationships of the pea nodule symbiont Serratia sp. Ent16 and its colonization of the host endorhizosphere
Nakano et al. Nodulation of Rj-soybean varieties with Rhizobium fredii USDA 193 under limited supply of nutrients
ES2534626B1 (en) Microorganism with the capacity to produce compounds that induce systemic response in plants and their applications as a plant growth promoter
Nemec Longevity of microbial biocontrol agents in a planting mix amended with Glomus intraradices
Emerich et al. Nitrogen fixation in crop production
Uozumi Associative Nitrogen-Fixing Bacteria in the Rhizosphere of Rice
Rai Developing a Rhizobial Inoculum for Phaseolus vulgaris to increase biological nitrogen fixation using adaptive evolution

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase in:

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP