WO2003087907A1 - Optical fiber array - Google Patents

Optical fiber array Download PDF

Info

Publication number
WO2003087907A1
WO2003087907A1 PCT/JP2003/004646 JP0304646W WO03087907A1 WO 2003087907 A1 WO2003087907 A1 WO 2003087907A1 JP 0304646 W JP0304646 W JP 0304646W WO 03087907 A1 WO03087907 A1 WO 03087907A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
substrate
fiber array
optical
diameter
Prior art date
Application number
PCT/JP2003/004646
Other languages
French (fr)
Japanese (ja)
Inventor
Kiyoshi Hayama
Hiroshi Hori
Original Assignee
Toto Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd. filed Critical Toto Ltd.
Priority to AU2003236113A priority Critical patent/AU2003236113A1/en
Priority to JP2003584791A priority patent/JPWO2003087907A1/en
Publication of WO2003087907A1 publication Critical patent/WO2003087907A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/36642D cross sectional arrangements of the fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3834Means for centering or aligning the light guide within the ferrule
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3632Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means
    • G02B6/3644Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means the coupling means being through-holes or wall apertures

Definitions

  • the present invention relates to an optical fiber array in which optical fibers incorporated in an optical switch, an optical cross-connect, an optical add / drop module, a protection switch, and the like are two-dimensionally arranged with high precision.
  • the original method of opening multiple holes in the board did not involve the technology for drilling fine, deep holes with high precision, and was switched to a method of stacking an array with V-grooves on the board. I made it.
  • Japanese Patent Laid-Open Publication No. Hei 6-2657336 describes an optical fiber array in which optical fibers are two-dimensionally arranged on the end face with high precision using V-grooves.
  • the optical fiber is set two-dimensionally by setting the optical fiber in V-grooves provided on the substrate surface at a predetermined interval, and stacking the units in which the fiber is fixed with the holding plate from above in multiple stages in the vertical direction.
  • Japanese Patent Application Laid-Open No. 2002-3656465 discloses that a substrate has a narrow section slightly larger in diameter than the cladding layer of the optical fiber, and a guide for guiding the optical fiber to the narrow section.
  • a wide section with a core shape is formed, the buffer layer at one end of the optical fiber is peeled off to expose a clad layer having a core layer at the center, and this clad layer is inserted into the narrow section, and is inserted into the wide section.
  • an epoxy resin or the like is filled to fix an optical fiber at a predetermined position.
  • the hole core pitch is required to be 250 to 1300 m, and the pitch accuracy is required to be 2 x m.
  • the material of ceramic products such as micro cavities is made of zirconia.
  • Zirconia also has a problem that dimensional errors occur due to large shrinkage during firing.
  • an optical fiber array in which optical fibers are aligned and fixed in a plurality of through holes formed at predetermined intervals in a substrate, wherein the through holes are optical fibers. And a holding part having a larger diameter than the positioning part.
  • the optical fiber By configuring the through hole into which the optical fiber is inserted with the optical fiber positioning unit that is processed with high precision and the holding unit that supports the optical fiber, the optical fiber can be positioned with high precision. .
  • the length of the positioning portion in the thickness direction of the substrate is at least 0.3 mm
  • the diameter of the positioning portion is larger than the diameter of the optical fiber by 0.2 m to 1.4 m
  • the holding portion is By increasing the diameter of the optical fiber by 1 / m to 30 with respect to the diameter of the optical fiber, it is possible to process the positioning part, which requires precision, with high precision, and to hold the optical fiber securely.
  • a silicon single crystal having a thickness of 0.3 mm to 1.5 mm can be selected. In this way, using photolithography technology, a core pitch of 1 m or more can be easily obtained, and large quantities can be processed at once, which is advantageous in terms of cost.
  • the substrate may be a polycrystalline ceramic having a thickness of 0.3 mm to 1.5 mm. Can be selected. By doing so, the hardness, bending strength, and toughness are high, and there is corrosion resistance, and long-term high reliability can be obtained.
  • a second invention is an optical fiber array in which a plurality of optical fibers are positioned and fixed at predetermined intervals by positioning the axes of the optical fibers in parallel with each other, and the optical fiber array has an end face that is finished.
  • the clearance between the through-hole formed in the end substrate and the optical fiber is set to 0.2 to 1.4 m, and the clearance between the through-hole formed in the support substrate and the optical fiber is set. Is from 0.2 m to S m, preferably from 0.2 m to 2 m.
  • the optical fiber can be smoothly inserted when the optical fiber is inserted, the positioning can be accurately performed at the end where precision is required, and the distance is maintained by the spacer so that the optical fiber can be inserted.
  • the parallelism of one axis can be reliably maintained.
  • the material of the spacer preferably has a thermal expansion coefficient similar to that of the substrate.
  • the end substrate and the supporting substrate are made of polycrystalline ceramic having a thickness of 0.15 mm to l mm, so that hardness, bending strength, toughness, corrosion resistance, and long-term high reliability can be obtained. .
  • the end substrate and the support substrate are made of a silicon single crystal having a thickness of 0.15 mm to 1 mm, so that the core pitch within ⁇ 1111 can be easily formed using photolithography technology.
  • the parallelism is extremely improved, and large quantities can be processed at once. It is cheap because it can be done.
  • the through hole is not limited to a circle, but may be a square hole having a predetermined clearance on the opposite side.
  • 1 (a) and 1 (b) are front views showing an optical fiber array.
  • FIG. 2 is a sectional view of a through hole according to the present invention.
  • 3 (a) to 3 (d) are diagrams illustrating an example of a method for manufacturing a positioning section and a holding section.
  • FIG. 4 is a cross-sectional view of an optical fiber array including an end substrate, a spacer, and a support substrate according to the present invention.
  • FIG. 5 is an enlarged sectional view of a main part of the optical fiber array shown in FIG.
  • FIG. 6 is a perspective view of a spacer.
  • FIGS. 7 (a) to (e) are diagrams showing another embodiment of the spacer.
  • FIG. 8 is a sectional view of an optical fiber array according to another embodiment.
  • FIG. 9 is a diagram showing a method for assembling an optical fiber array according to the present invention.
  • FIG. 10 is a diagram in which the end substrate according to the present invention is provided with a peeling.
  • FIG. 1 is a front view showing an optical fiber array 1.
  • FIG. 1 (a) a total of 32 through holes, 12 of 4 x 8 in Fig. 1 (a), are formed on a substrate 11 of 10 mm in height, 10 mm in width, and 1 mm in thickness, and Fig. 1 (b) In this example, a total of 144 through-holes 12 of 12 ⁇ 12 are formed.
  • the number of through holes is not limited to these, and can be set arbitrarily.
  • FIG. 2 is a sectional view of the through hole 12.
  • High precision fiber position within 1 mm thickness The hole of the fixed part 121 is 00.125mm + 1.4m to 10.2m to 0.3mm depth, and the remaining 0.7mm is the hole of the fiber holding part 122 as ⁇ 0.125mm + 30m Processed to ⁇ 11 zm.
  • a 0.1 mm radius is applied to the insertion opening of the fiber holder to insert the fiber.
  • Single mode optical fibers 1 are inserted into the 32 through holes 12 of the substrate 11 of the optical fiber array 1, respectively, and after bonding, the fiber end face and the substrate are polished together.
  • the depth of the positioning portion 121 is preferably 0.2 mm to 0.4 mm, and more preferably 0.25 mm to 0.35 mm. If it becomes deeper than 0.4 mm, the hole will bend or the diameter will be out of +0.2 mm to +1.4 m per fiber diameter.
  • the anti-reflection thin film is coated, and a 32-core optical fiber array is completed.
  • high-precision fiber positioning holes can be formed by drilling a hole in a polycrystalline ceramic by micro-hole electrical discharge machining or laser machining, followed by wire-cut electrical discharge machining, laser machining (YAG / Femtosecond), It can be formed with high precision by one or more processes such as tapered wire wrap.
  • micro hole drilling by ultrasonic processing or grinding can be considered, but it is necessary to consider the wear of the grinding wheel.
  • Fig. 3 (a) to (d) are diagrams illustrating an example of a method of manufacturing the positioning part and the holding part.
  • An Altic (electric discharge machining ceramic) having an electrical resistance of 0.003 ⁇ ⁇ cm is used as a substrate. did.
  • the substrate is fixed to the XY stage (work table) of the electric discharge machine, and the XY stage is moved to a predetermined arrangement position where the maximum diameter is 0.1 ⁇ as shown in (a).
  • the hole was machined. Electrode diameter ⁇
  • the processing conditions used were those that were suitable for the required diameter.
  • electrical discharge machining was performed with an electrode of 0.1 ⁇ to the length of the holding portion to form a 0.14 ⁇ holding portion as shown in (c).
  • the substrate is set on a high-precision wire-cut work table, a 0.08- ⁇ wire is passed through each hole, moved in a circular shape, and subjected to electrical discharge machining around the wire, and the positioning unit is positioned.
  • a 10 x 10 x 1 mm board is machined in 4 rows x 8 steps (32 holes) at a pitch of 0.25 x 0.25 mm, with a pitch accuracy of ⁇ 2 m and a positioning unit of 0.12 mm. Accuracy of 5 ⁇ ⁇ 0.1265 ⁇ , holding part 0.14 ⁇ ⁇ 0.15 ⁇ was obtained.
  • the processing of a single substrate is used.However, if it is desired to obtain a positioning portion having a similar upper and lower shape, the individual EDM substrates are overlapped when setting them in a wire cut, and two sheets are simultaneously cut by one wire. do it.
  • silicon single crystal can be processed by masking and etching by photolithography.
  • the through hole may be processed at the same time as the positioning portion and the holding portion, or may be separately processed.
  • the hole serving as the holding part that is, the hole 1 m to 30 m, preferably about 10 m to 20 m larger than the diameter of the fiber, is about 0.7 mm deep.
  • the R and C chamfering on the fiber insertion side can be performed by machining with a diamond blade, brush polishing, or ultrasonic processing using loose abrasive grains.
  • the displacement of the core of one of the 32 fibers could be assembled within 2.
  • the diameter of the holding part is 1 to 30 m larger than the diameter of one fiber, an optical fiber array that does not have any problems with fiber falling or adhesive strength is obtained. Holes larger than 3 O wm can cause fiber collapse problems. (Example of array)
  • the array is composed of an end substrate 111 having a thickness of 0.4 mm, a support substrate 111 having a thickness of 0.4 mm, and a space provided between the end substrate 111 and the support substrate 112. 13
  • the end substrate 1 1 1 and the supporting substrate 1 12 are provided with fiber inlets 1 1 1 1 a and 1 12 a, and the insertion port 1 1 1 a is a fiber holding section to a depth of 0.2 mm from the top.
  • the diameter of the fiber is ⁇ 0.125 mm + 30 m to 10 m and the lower part 0.2 mm.
  • the diameter of one positioning part is ⁇ 0.125 mm + 1.4 ⁇ m to 10 0.2 m, and the upper end is 0.1 mm.
  • the diameter of the inlet 1 12a is ⁇ 0.125mm + 2xm ⁇ + 0.2m, and the upper end has a radius of about 0.05mm.
  • the spacer 13 has a comb-like shape in which four slits 13a opened in the vertical direction and on one side are formed.
  • the width of the slit 13a is 0.2 to 0.3 mm, which serves as a guide for inserting a fiber, and the spacer 13 covers almost the entire area of the substrate. It has the function of backing up the substrate during post-processing such as polishing the tip of the optical fiber attached to 111.
  • the slit 13a is opened on the side surface after the end substrate 111 and the support substrate 112 are assembled.
  • the adhesive can be filled in the slit 13a to fix the optical fiber.
  • FIG. 7 (a) to 7 (e) are views showing another embodiment of the spacer 13; the spacer 13 shown in FIG. 7 (a) has an insertion hole having a diameter sufficiently larger than the diameter of the fiber. Is formed.
  • the spacer 13 shown in (b) has a shape in which one side is seated.
  • the spacer 13 shown in (e) has a ring shape, a U-shape, and a ⁇ shape in which a portion of a bundle of fibers is removed.
  • FIG. 8 is a cross-sectional view of another embodiment of the array.
  • the front side of the hole of the end board 111 having a thickness of 0.3 mm is ⁇ .125 mm + 1.4 ⁇ m to 10 / 0.2 / m, and the inner part of the hole is filled with fiber. It is only necessary to secure a diameter that does not cause any obstacles. A radius of about 0.05 mm is applied to the fiber insertion port to make it easier to insert the fiber.
  • the hole of the support substrate 112 with a thickness of 3:11] 11 is set to (
  • FIG. 9 is a drawing explaining an example of the method for assembling an array of the present invention.
  • Adhesion between the support substrate 112, the spacer 13 and the end substrate 111 uses a low-viscosity adhesive.
  • a spacer 13 is placed on the support substrate 112 and is cured.
  • the end substrate 1 11 is brought into contact with the other surface of the spacer 13.
  • the support substrate 112 is placed on the spacer 13, but either one may be on the top.
  • the single mode optical fibers 15 are respectively inserted into the through holes, and the optical fibers 15 are bonded to the rear end substrate 111 and the support substrate 112.
  • the adhesive used at this time was low in viscosity and low in shrinkage (such as XL193 manufactured by Mele Technology Co., Ltd.).
  • the optical fiber used was a clad resin-reinforced one (such as S-Ty 1 us, manufactured by Showa Denki Denki Co., Ltd.) to prevent damage and breakage by the substrate during assembly.
  • a clad resin-reinforced one such as S-Ty 1 us, manufactured by Showa Denki Denki Co., Ltd.
  • the end face of the fiber 15 and the end substrate 111 are polished together.
  • the end substrate 111 is cut by grinding, leaving only the surface holding the optical fiber 115. It is preferable to polish after making the towel 17 (see Fig. 6).
  • the surface surrounded by a line 1 mm away from the outermost side of the optical fiber 15 is removed with a # 320 diamond grindstone on a 70-m-deep step. After processing, it was polished. In this polishing, it is cut to a maximum of 0.05 mm (50 im). Therefore, the thickness of the end substrate 111 is preferably 0.2 mm to 1.05 mm, and more preferably 0.25 mm to 0.4 mm.
  • the strength required for post-processing can be obtained by increasing the thickness of the adhesive 14.
  • the spacer be closed except for the opening of the adhesive inlet. Adhesive leakage can be prevented.
  • a pre-drilled hole is made by micro-hole electric discharge machining or laser machining, and then wire cut electric discharge machining, laser machining (YAG * femto) Second), and high accuracy can be achieved by one or more processes such as tape wrapping.
  • micro hole drilling by ultrasonic processing or grinding can be considered. Attrition must be considered.
  • silicon single crystal can be processed by masking and etching by photolithography.
  • the through holes of the end substrate 111 and the support substrate 112 may be processed at the same time, or may be processed separately.
  • both substrates are overlapped and processed at the same time, or processed by photolithography using the same mask.
  • the relative position of the center of the through hole overlaps with extremely high precision, ensuring the parallelism of the fiber 15 and the clearance of the end substrate 11 to 0.2 to 1.4 m, so that the position of the fiber tip Can be determined with high accuracy, and by increasing the size of the support substrate 112 by several microns, it is possible to actually assemble a large number of fibers.
  • the R or C chamfer of 30 m to 100 m is applied to the entrance of the through holes of both substrates 1 1 and 1 1 and the exit of the support substrate fiber, it is easy to actually insert and assemble the fiber. It may be good.
  • the R and C chamfering of the substrate can be done by machining with a diamond blade, brush polishing, ultrasonic processing using loose abrasives, photolitho etching or coating after drilling the substrate.
  • the displacement of the core of one of the 32 fibers is calculated as the average value of the core displacement of 0.8 mm, the standard deviation of 0.6 m, and the maximum displacement of 2.4 zm at a distance of 250 m between the cores.
  • I was able to assemble. The measurement was performed by injecting visible light into the cores of all the fibers in the completed fiber array, photographing the end face with a high-precision camera, processing the images, and calculating the center coordinates of the core.
  • the present invention it is possible to easily insert and bond an optical fiber, and to provide an optical fiber array in which fibers can be arranged two-dimensionally with high precision. Further, it is possible to provide an optical fiber array having excellent parallelism between optical fibers in one axis.

Abstract

An optical fiber array for arraying / fixing optical fibers, having through holes made in a substrate, spaced with predetermined intervals, and each having an optical fiber positioning portion and a holding portion having a diameter larger than that of the optical fiber positioning portion. An optical fiber array for arraying/fixing optical fibers at predetermined intervals with the axes of the optical fibers positioned parallel to each other, comprising an end substrate having through holes and an end face finished after the optical fibers are passed through the through holes and arrayed, a support substrate supporting the optical fibers, and a spacer for so spacing the end substrate and the support substrate with a predetermined spacing that they are opposed to each other.

Description

明 細 書 光ファイバ一アレイ 技術分野  Description Optical fiber array Technical field
本発明は光伝送用途で、 光スィッチ、 光クロスコネクト、 光アドドロップモジ ユール、 プロテクションスィツチ等に組み込まれる光ファイバ一が高精度に 2次 元配置された光ファイバ一アレイに関する。 背景技術  The present invention relates to an optical fiber array in which optical fibers incorporated in an optical switch, an optical cross-connect, an optical add / drop module, a protection switch, and the like are two-dimensionally arranged with high precision. Background art
光通信においては、 ファイバーの複数本数の配線要求から、 2次元配列のファ ィバ一アレイを用いるようになった。 当初は、 基板に複数個の微細な穴を開口し フアイバーを接着固定するアレイが用いられていた。  In optical communications, a two-dimensional array of fibers has come to be used due to the requirement for wiring a plurality of fibers. Initially, an array was used in which multiple fine holes were opened in the substrate and the fibers were bonded and fixed.
さらに、 高密度 ·高精度な光配線要求 (これらの光ファイバ一アレイに形成す る光ファイバ一固定用の貫通穴の径は 1 2 5〜 1 3 0 m、 ピッチ精度は、 土数 mが要求される) から、 当初の基板に複数の穴を開口する方法では、 微細な深 穴を高精度に空ける技術が伴わなかったため、 基板に V溝を加工したアレイを積 み重ねる方式に切り替わつてきた。  In addition, high-density and high-precision optical wiring requirements (the diameter of the through hole for fixing the optical fiber formed in these optical fiber arrays is 125 to 130 m, and the pitch accuracy is Required), the original method of opening multiple holes in the board did not involve the technology for drilling fine, deep holes with high precision, and was switched to a method of stacking an array with V-grooves on the board. I made it.
特開平 6— 2 6 5 7 3 6号公報には、 V溝を用いて、 端面において光ファイバ 一が高精度に 2次元配列された光ファイバ一アレイが記載されている。 ここでは、 所定の間隔で基板表面に設けられた V溝に光ファイバ一をセッ卜し、 上から押え 板でファイバーを固定したュニットを上下方向に多段に積み上げることにより 2 次元状に光ファイバ一を配列する光ファイバ一アレイが提案されている。  Japanese Patent Laid-Open Publication No. Hei 6-2657336 describes an optical fiber array in which optical fibers are two-dimensionally arranged on the end face with high precision using V-grooves. Here, the optical fiber is set two-dimensionally by setting the optical fiber in V-grooves provided on the substrate surface at a predetermined interval, and stacking the units in which the fiber is fixed with the holding plate from above in multiple stages in the vertical direction. Have been proposed.
また、 1 9 9 3年に開催された電子情報学会春季大会の論文 (高密度 2次元フ アイバーアレイの試作) では、 マイクロキヤピラリー内に光ファイバーを揷通し、 このマイクロキヤピラリーを多数本束ねて金属板などで周囲を固定することで、 2次元状に光ファイバ一を配列した光ファイバ一アレイとする提案が成されてい る。 また、 特表 2 0 0 2— 5 0 6 5 3 5号公報には、 光ファイバ一の先端を円錐ま たは角錐に研磨し、 精密に穴位置を加工した治具に挿入突き当てることによりフ アイバー中心の位置精度を確保する方法が提案されている。 Also, in a paper (prototype of a high-density two-dimensional fiber array) at the IEICE Spring Conference held in 1993, an optical fiber was passed through a microcapillary and many of these microcapillaries were bundled. A proposal has been made to make an optical fiber array in which optical fibers are arranged two-dimensionally by fixing the periphery with a metal plate or the like. In addition, Japanese Patent Application Laid-Open Publication No. 2000-5006535 discloses that the end of an optical fiber is polished into a cone or a pyramid, and is inserted into a jig whose hole position is precisely machined. A method has been proposed to ensure the positional accuracy of the fiber center.
更に、 特開 2 0 0 2— 3 6 5 4 6 5号公報には、 基板に光ファイバ一のクラッ ド層よりも若干大径の狭いセクションと、 この狭いセクションに光ファイバ一を 導くテ一パ状の広いセクションを形成し、 光ファイバ一先端のバッファ層を剥離 して中心にコア層を有するクラッド層を剥き出しにし、 このクラッド層を前記狭 いセクションに挿入するとともに、 前記広いセクション内にはエポキシ樹脂等を 充填し、 光ファイバ一を所定位置に固定する方法が提案されている。  Further, Japanese Patent Application Laid-Open No. 2002-3656465 discloses that a substrate has a narrow section slightly larger in diameter than the cladding layer of the optical fiber, and a guide for guiding the optical fiber to the narrow section. A wide section with a core shape is formed, the buffer layer at one end of the optical fiber is peeled off to expose a clad layer having a core layer at the center, and this clad layer is inserted into the narrow section, and is inserted into the wide section. There is proposed a method in which an epoxy resin or the like is filled to fix an optical fiber at a predetermined position.
最近では、 光伝送の更なる高速化 ·高集積化が要求され、 これに合わせて光フ アイバーアレイも 6 4本あるいは 1 0 0本以上の光ファイバ一を 2次元状に配列 した多チャンネル化したものが求められるようになってきている。  In recent years, there has been a demand for higher speed and higher integration of optical transmission, and in response to this, an optical fiber array has been made multi-channel by arranging 64 or 100 or more optical fibers two-dimensionally. What is done is being demanded.
しかも小型化からの要求から、 穴芯ピッチは 2 5 0 から 1 3 0 0 m、 ピ ツチ精度は、 土 2 x mが要求される。  In addition, from the demand for miniaturization, the hole core pitch is required to be 250 to 1300 m, and the pitch accuracy is required to be 2 x m.
また、 ファイバ一から発せられた光線は距離をおいたレンズアレイなどへ正確 に届く必要が出てきており、 光ファイバ一中心の位置のみならず、 ファイバ一軸 の平行性も必要となっている。  In addition, it is necessary for the light rays emitted from the fiber to accurately reach a lens array or the like at a distance, so that not only the center of the optical fiber but also the parallelism of one axis of the fiber is required.
このような仕様に対して、 特開平 6— 2 6 5 7 3 6号公報に開示されるような、 シリコン基板に機械加工で V溝形成するのは、 精度上極めて困難である。 しかも 基板を上下方向に積層した場合には、 積層による左右方向のズレも生じてしまう。 特に、 ピッチが 2 5 0 / mから 1 3 0 0 mのように高密度構成を得るのは困難 である。  For such a specification, it is extremely difficult to form a V-groove in a silicon substrate by machining, as disclosed in Japanese Patent Application Laid-Open No. 6-265736. In addition, when the substrates are stacked in the vertical direction, a shift in the horizontal direction due to the stacking occurs. In particular, it is difficult to obtain a high-density configuration with a pitch of 250 / m to 1300 m.
また、 マイクロキヤピラリー内に光ファイバ一を揷通して束ねる方法にあって は、 マイクロキヤビラリ一の肉厚を均一にしないと光ファイバ一の芯間隔がずれ てしまう。 芯ズレを起こさないような均一な肉厚のマイクロキヤビラリ一を製造 するのは極めて困難であり、 またマイクロキヤピラリー内に光ファイバ一を揷通 する作業も面倒で、 接着剤等による高精度の位置決めも非常に難しい。  Also, in the method of passing optical fibers through a microcapillary and bundling them, unless the thickness of the microcapillaries is made uniform, the core spacing of the optical fibers will shift. It is extremely difficult to manufacture a micro-capillary with a uniform thickness that does not cause misalignment, and the work of passing an optical fiber through the micro-capillary is troublesome, and the use of an adhesive or the like makes it difficult. Precision positioning is also very difficult.
更に、 マイクロキヤビラリ一等のセラミック製品の材料は、 ジルコニァを用い る場合が多く、 ジルコニァは焼成時の収縮が大きく寸法誤差が生じるという問題 もある。 Furthermore, the material of ceramic products such as micro cavities is made of zirconia. Zirconia also has a problem that dimensional errors occur due to large shrinkage during firing.
また、 特表 2002- 506535号公報のように、 光ファイバ一を円錐また は角錐の加工し治具に突き当てる方法では、 光ファイバ一の加工コスト高、 およ び治具背面にクリアランスがあることが予想され、 先端ファイバーの中心位置は 確保できても光ファイバ一の軸の互いの平行度は確保できない。  In addition, in the method of processing an optical fiber into a conical or pyramid shape and hitting the jig as described in JP-T-2002-506535, there is a high processing cost for the optical fiber, and there is clearance on the back of the jig. It is expected that even if the center position of the tip fiber can be secured, the parallelism of the axes of the optical fiber cannot be secured.
同様の問題が特開 2002 -365465号公報に開示される方法にも言える c 本発明は、 光ファイバ一を高精度に配置し光ファイバ一の軸の平行性に優れた光 ファイバ一アレイを提供することを目的とする。 発明の開示 Similar problems c present invention also say the method disclosed in JP 2002 -365465 can provide excellent optical fibers one array parallelism of the optical fiber one place an optical fiber one high precision axis The purpose is to do. Disclosure of the invention
上記課題を解決するために第 1発明は、 基板に所定の間隔で形成した複数の貫 通孔に、 光ファイバ一を整列固定してなる光ファイバ一アレイにおいて、 前記貫 通孔は光ファイバ一の位置決め部とこの位置決め部よりも大径の保持部とからな る構成とした。  According to a first aspect of the present invention, there is provided an optical fiber array in which optical fibers are aligned and fixed in a plurality of through holes formed at predetermined intervals in a substrate, wherein the through holes are optical fibers. And a holding part having a larger diameter than the positioning part.
光ファイバ一が挿入される貫通孔を、 高精度に加工された光ファイバ一位置決 め部と、 光ファイバ一を支える保持部とで構成することにより、 光ファイバ一の 配置が高精度に行える。  By configuring the through hole into which the optical fiber is inserted with the optical fiber positioning unit that is processed with high precision and the holding unit that supports the optical fiber, the optical fiber can be positioned with high precision. .
前記位置決め部の基板厚み方向の長さを少なくとも 0. 3 mmとし、 この位置 決め部の径を光ファイバ一の直径に対して 0. 2 m〜l. 4 m大きくし、 ま た前記保持部の径を光ファイバ一の直径に対して 1 /m〜 30 大きくするこ とで、 精度が必要とされる位置決め部を高精度に加工でき、 しかも光ファイバ一 を確実に保持することができる。  The length of the positioning portion in the thickness direction of the substrate is at least 0.3 mm, the diameter of the positioning portion is larger than the diameter of the optical fiber by 0.2 m to 1.4 m, and the holding portion is By increasing the diameter of the optical fiber by 1 / m to 30 with respect to the diameter of the optical fiber, it is possible to process the positioning part, which requires precision, with high precision, and to hold the optical fiber securely.
前記基板として、 厚さが 0. 3mmから 1. 5 mmのシリコン単結晶を選定す ることができる。 このようにすることで、 フォトリソグラフィ技術を利用して、 土 1 m以上の芯ピッチを容易に出せ、 一度に大量に処理できコスト的に有利に なる。  As the substrate, a silicon single crystal having a thickness of 0.3 mm to 1.5 mm can be selected. In this way, using photolithography technology, a core pitch of 1 m or more can be easily obtained, and large quantities can be processed at once, which is advantageous in terms of cost.
また前記基板として、 厚さが 0. 3mmから 1. 5 mmの多結晶セラミックス を選定することができる。 このようにすることで、 硬度 ·曲げ強度 ·靭性が大き く、 耐食性もあり、 長期の高信頼性が得られる。 The substrate may be a polycrystalline ceramic having a thickness of 0.3 mm to 1.5 mm. Can be selected. By doing so, the hardness, bending strength, and toughness are high, and there is corrosion resistance, and long-term high reliability can be obtained.
また、 第 2発明は、 複数の光ファイバーを該光ファイバ一の軸を互いに平行に 位置決めして所定間隔に整列固定する光ファイバ一アレイにおいて、 この光ファ ィバ一アレイは、 端面が仕上げ加工された光ファイバ一の端部を支持する端部基 板と、 光ファイバ一の端部から離れた箇所を支持する支持基板と、 前記端部基板 と前記支持基板に所定の間隔を持たせ対向させるスぺーサとからなる構成とした。 このように、 端部基板と支持基板をスぺーサにより一定の距離を持って構成す ることにより、 光ファイバ一の配置及び光ファイバ一軸の平行度が高精度になる。 上記第 2発明において、 端部基板に形成した貫通孔と前記光ファイバ一とのク リアランスを 0 . 2 mから 1 . 4 とし、 前記支持基板に形成した貫通孔と 前記光ファイバ一とのクリアランスを 0 . 2 mから S m、 好ましくは 0 . 2 mから 2 mとすることが好ましい。  Further, a second invention is an optical fiber array in which a plurality of optical fibers are positioned and fixed at predetermined intervals by positioning the axes of the optical fibers in parallel with each other, and the optical fiber array has an end face that is finished. An end substrate for supporting the end of the optical fiber, a support substrate for supporting a portion distant from the end of the optical fiber, and facing the end substrate and the support substrate at a predetermined interval. It was made up of a spacer. In this way, by arranging the end substrate and the support substrate with a fixed distance by the spacer, the arrangement of the optical fibers and the parallelism of the optical fibers can be highly accurate. In the second invention, the clearance between the through-hole formed in the end substrate and the optical fiber is set to 0.2 to 1.4 m, and the clearance between the through-hole formed in the support substrate and the optical fiber is set. Is from 0.2 m to S m, preferably from 0.2 m to 2 m.
斯かる構成とすることで光ファイバ一を挿入する際にスムーズに挿入可能で、 精度を必要とされる端部では精度よく位置決めができ、 しかもスぺーサにより距 離が保たれるので光ファイバ一の軸の平行性を確実に保持することができる。 ス ぺーサの材質は熱膨張係が前記基板に近似したものが好ましい。  By adopting such a configuration, the optical fiber can be smoothly inserted when the optical fiber is inserted, the positioning can be accurately performed at the end where precision is required, and the distance is maintained by the spacer so that the optical fiber can be inserted. The parallelism of one axis can be reliably maintained. The material of the spacer preferably has a thermal expansion coefficient similar to that of the substrate.
前記端部基板および前記支持基板を、 厚みが 0 . 1 5 mmから l mmの多結晶 セラミックとすることで、 硬度 ·曲げ強度 ·靭性が大きく、 耐食性もあり、 長期 の高信頼性が得られる。  The end substrate and the supporting substrate are made of polycrystalline ceramic having a thickness of 0.15 mm to l mm, so that hardness, bending strength, toughness, corrosion resistance, and long-term high reliability can be obtained. .
また、 前記端部基板および前記支持基板を、 厚みが 0 . 1 5 mmから l mmの シリコン単結晶とすることで、 フォトリソグラフィ技術を利用して、 ± 1 111以 内の芯ピッチを容易に出せ、 同じ穴位置で画描後穴位置のみ端部用 ·支持用 2種 類の穴寸法でマスクを製作した基板を対で使用することにより、 平行性は極めて 向上し、 一度に大量に処理できるため安価となる。 この場合、 貫通穴は円形に限 らず、 対辺寸法を所定クリアランスとした角穴でもかまわない。  Further, the end substrate and the support substrate are made of a silicon single crystal having a thickness of 0.15 mm to 1 mm, so that the core pitch within ± 1111 can be easily formed using photolithography technology. By drawing a mask at the same hole position and drawing only at the hole position for the end and supporting.Using a pair of substrates with masks manufactured with two types of hole dimensions, the parallelism is extremely improved, and large quantities can be processed at once. It is cheap because it can be done. In this case, the through hole is not limited to a circle, but may be a square hole having a predetermined clearance on the opposite side.
また、 基板は同じフォトリソマスクを径のみ変更した物で製作することがもつ とも光ファイバ一の軸の平行性を確保するのに有効である。 また、 前記スぺーザが光ファイバ一を接着する接着剤の流入口を除いて閉塞し ている構成とすることができる。 スぺーサ内には接着剤が入れられるので、 接着 剤が漏れないように閉塞させておくのが望ましい。 In addition, it is effective to secure the parallelism of the axis of the optical fiber even though the substrate may be manufactured by using the same photolithographic mask with only the diameter changed. Further, it is possible to adopt a configuration in which the soother is closed except for an inflow port of an adhesive for bonding the optical fiber. Since the adhesive is put in the spacer, it is desirable to close the spacer so that the adhesive does not leak.
また、 上記の光ファイバ一アレイの貫通孔に光ファイバ一を挿入し、 少なくと も前記端部基板および前記支持基板に該光ファイバ一を接着固定することによつ て、 光ファイバ一が高精度に位置決めされた光コネクタが得られる。 図面の簡単な説明  Further, by inserting the optical fiber into the through hole of the optical fiber array and bonding and fixing the optical fiber to at least the end substrate and the support substrate, the optical fiber is raised. An optical connector accurately positioned is obtained. BRIEF DESCRIPTION OF THE FIGURES
第 1図 (a ) 及び (b ) は、 光ファイバ一アレイを示す正面図である。  1 (a) and 1 (b) are front views showing an optical fiber array.
第 2図は、 本発明にかかる貫通孔の断面図である。  FIG. 2 is a sectional view of a through hole according to the present invention.
第 3図 (a ) 〜 (d ) は、 位置決め部、 保持部の製作方法の一例を説明した図 である。  3 (a) to 3 (d) are diagrams illustrating an example of a method for manufacturing a positioning section and a holding section.
第 4図は、 本発明にかかる端部基板、 スぺ一サ、 支持基板からなる光ファイバ 一アレイの断面図である。  FIG. 4 is a cross-sectional view of an optical fiber array including an end substrate, a spacer, and a support substrate according to the present invention.
第 5図は、 第 4図に示した光ファイバ一アレイの要部拡大断面図である。  FIG. 5 is an enlarged sectional view of a main part of the optical fiber array shown in FIG.
第 6図は、 スぺーサの斜視図である。  FIG. 6 is a perspective view of a spacer.
第 7図 (a ) 〜 (e ) は、 スぺ一サの別実施例を示す図である。  FIGS. 7 (a) to (e) are diagrams showing another embodiment of the spacer.
第 8図は、 別実施例に係る光ファイバ一アレイの断面図である。  FIG. 8 is a sectional view of an optical fiber array according to another embodiment.
第 9図は、 本発明の光ファイバ一アレイの組み立て方法を示す図である。  FIG. 9 is a diagram showing a method for assembling an optical fiber array according to the present invention.
第 1 0図は、 本発明にかかる端部基板ににがしを設けた図である。 発明を実施するための最良の形態  FIG. 10 is a diagram in which the end substrate according to the present invention is provided with a peeling. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明の実施の形態を第 1図から第 1 0図を用いて説明する。  Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 10.
第 1図は光ファイバ一アレイ 1を示す正面図である。 縦 1 0 mm、 横 1 0 mm、 厚さ 1 mmの基板 1 1に第 1図 (a ) では 4 X 8の合計 3 2個の貫通孔 1 2が形 成され、 第 1図 (b ) では 1 2 X 1 2の合計 1 4 4個の貫通孔 1 2が形成されて いる。 貫通孔の数はこれらに限定されるものではなく任意に設定できる。 FIG. 1 is a front view showing an optical fiber array 1. FIG. In Fig. 1 (a), a total of 32 through holes, 12 of 4 x 8 in Fig. 1 (a), are formed on a substrate 11 of 10 mm in height, 10 mm in width, and 1 mm in thickness, and Fig. 1 (b) In this example, a total of 144 through-holes 12 of 12 × 12 are formed. The number of through holes is not limited to these, and can be set arbitrarily.
第 2図は貫通孔 1 2の断面図である。 1 mm厚の内、 高精度のファイバー位置 決め部 121の穴を Φ 0. 1 25mm+ 1. 4 m〜十 0. 2 mで 0. 3 mm 深さまで確保し、 残り 0. 7mmはファイバー保持部 122の穴として φ 0. 1 25mm+ 30 m〜十 1 zmに加工している。 FIG. 2 is a sectional view of the through hole 12. High precision fiber position within 1 mm thickness The hole of the fixed part 121 is 00.125mm + 1.4m to 10.2m to 0.3mm depth, and the remaining 0.7mm is the hole of the fiber holding part 122 as φ0.125mm + 30m Processed to ~ 11 zm.
ファイバ一保持部の挿入口には、 0. 1mm程度の Rを施しファイバ一を挿入 しゃすくしている。  A 0.1 mm radius is applied to the insertion opening of the fiber holder to insert the fiber.
光ファイバ一アレイ 1の基板 1 1の 32個の貫通孔 12に、 シングルモードの 光ファイバ一をそれぞれ挿入し、 接着後、 ファイバ一端面及び基板をともに研磨 する。  Single mode optical fibers 1 are inserted into the 32 through holes 12 of the substrate 11 of the optical fiber array 1, respectively, and after bonding, the fiber end face and the substrate are polished together.
この研磨では最大 0. 05mm程度削る。 したがって、 位置決め部 1 2 1の深 さとしては 0. 2mm〜0. 4mm、 好ましくは 0. 25mm〜0. 35mm程 度の深さがよい。 0. 4mmより深くなると孔が曲ったり、 径の精度としてファ ィバ一径に対して +0. 2 ΠΙ〜+ 1. 4 mから外れるようになる。  In this polishing, a maximum of about 0.05 mm is cut. Therefore, the depth of the positioning portion 121 is preferably 0.2 mm to 0.4 mm, and more preferably 0.25 mm to 0.35 mm. If it becomes deeper than 0.4 mm, the hole will bend or the diameter will be out of +0.2 mm to +1.4 m per fiber diameter.
しかる後に反射防止薄膜をコ一ティングし、 32芯光ファイバ一アレイができ あがる。  After that, the anti-reflection thin film is coated, and a 32-core optical fiber array is completed.
そのため高精度のファイバー位置決め部の穴を形成する方法としては、 多結晶 セラミックスでは、 マイクロ穴放電加工またはレーザ加工により下穴をあけ、 次 いでワイヤーカツト放電加工、 レーザ加工 (YAG · フエムト秒) 、 テーパーヮ ィヤーラップ等のうちの 1つもしくは複数の工程により高精度に形成できる。 ま た、 超音波加工や研削でマイクロ穴加工をする方法も考えられるが、 砥石の消耗 を考慮する必要がある。 多結晶セラミックスとしては、 A l T i C、 Z r B2、 ジルコニァ、 アルミナ、 炭化珪素、 窒化珪素、 マシナブルセラミックス、 シリコ ン含浸炭化珪素等などが適用できる。 For this reason, high-precision fiber positioning holes can be formed by drilling a hole in a polycrystalline ceramic by micro-hole electrical discharge machining or laser machining, followed by wire-cut electrical discharge machining, laser machining (YAG / Femtosecond), It can be formed with high precision by one or more processes such as tapered wire wrap. In addition, micro hole drilling by ultrasonic processing or grinding can be considered, but it is necessary to consider the wear of the grinding wheel. The polycrystalline ceramic, A l T i C, Z r B 2, Jirukonia, alumina, silicon carbide, silicon nitride, machinable ceramics, and silicon down impregnated silicon carbide applied.
第 3図 (a) 〜 (d) は位置決め部、 保持部の製作方法の一例を説明した図で あり、 基板としては電気抵抗 0. 003 Ω · cmのアルチック (放電加工可能な セラミック) を使用した。  Fig. 3 (a) to (d) are diagrams illustrating an example of a method of manufacturing the positioning part and the holding part. An Altic (electric discharge machining ceramic) having an electrical resistance of 0.003 Ω · cm is used as a substrate. did.
先ず、 放電加工機の XYステージ (ワーク台) に前記基板を固定し、 XYステ ージを移動させて、 所定の配列位置に (a) に示すように最大径が 0. 1 ^の貫 通穴を加工した。 電極径 ·加工条件は求める径にあったものを用いた。 その後、 (b) に示すように保持部の長さまで 0. 1 Φの電極で放電加工し、 (c) に示すように 0. 14φの保持部を形成した。 First, the substrate is fixed to the XY stage (work table) of the electric discharge machine, and the XY stage is moved to a predetermined arrangement position where the maximum diameter is 0.1 ^ as shown in (a). The hole was machined. Electrode diameter · The processing conditions used were those that were suitable for the required diameter. Thereafter, as shown in (b), electrical discharge machining was performed with an electrode of 0.1 Φ to the length of the holding portion to form a 0.14 Φ holding portion as shown in (c).
この後、 基板を高精度のワイヤ一カットのワーク台にセットし、 各穴に 0. 0 8 φのワイヤーを通し、 円状に移動させてワイヤ一外周で放電加工して、 位置決 め部とした。  After that, the substrate is set on a high-precision wire-cut work table, a 0.08-φ wire is passed through each hole, moved in a circular shape, and subjected to electrical discharge machining around the wire, and the positioning unit is positioned. And
実施例は、 10 X 10 X 1 mmの基板に 0. 25 X 0. 25 mmのピッチで 4 列 X 8段 (32穴) の加工を実施し、 ピッチ精度 ± 2 m、 位置決め部 0. 12 5 φ〜0. 1265 ^、 保持部0. 14 φ〜0. 15 φの精度が得られた。  In this embodiment, a 10 x 10 x 1 mm board is machined in 4 rows x 8 steps (32 holes) at a pitch of 0.25 x 0.25 mm, with a pitch accuracy of ± 2 m and a positioning unit of 0.12 mm. Accuracy of 5φ ~ 0.1265 ^, holding part 0.14φ ~ 0.15φ was obtained.
実施例は基板単体の加工であるが、 上下の形状が相似形の位置決め部を得たい 場合には、 個々に放電加工した基板をワイヤーカットにセットする際に重ね合わ せ、 2枚同時にワイヤ一カットすればよい。  In this embodiment, the processing of a single substrate is used.However, if it is desired to obtain a positioning portion having a similar upper and lower shape, the individual EDM substrates are overlapped when setting them in a wire cut, and two sheets are simultaneously cut by one wire. do it.
また、 シリコン単結晶ではフォトリソグラフィによるマスキング及びエツチン グにより加工可能である。  In addition, silicon single crystal can be processed by masking and etching by photolithography.
また、 貫通孔は位置決め部と保持部とを同時に加工してもよいが、 別々に加工 してもよい。  Further, the through hole may be processed at the same time as the positioning portion and the holding portion, or may be separately processed.
位置決め部と保持部とを別々に加工する場合は、 保持部となる穴、 すなわちフ アイバ一径より 1 m〜 30 m、 好ましくは 10 m〜20 m程度大きい穴 を 0. 7 mm程度の深さで先に穿設し、 次いで位置決め部を上述の方法で加工す ると位置精度および孔の径の精度が高精度に加工することができる。  When the positioning part and the holding part are processed separately, the hole serving as the holding part, that is, the hole 1 m to 30 m, preferably about 10 m to 20 m larger than the diameter of the fiber, is about 0.7 mm deep. By drilling first and then processing the positioning portion by the above-described method, the positioning accuracy and the hole diameter accuracy can be processed with high accuracy.
また、 保持部の穴入り口へは 30 m〜300 _imの Rまたは C面取りを施す と実際にファイバ一の挿入組み立てが容易となる。  Also, if the R or C chamfer of 30 m to 300 _im is applied to the hole entrance of the holding part, the insertion and assembling of the fiber becomes easier.
フアイバー挿入側の R、 C面取りはダイヤモンド刃物による機械加工やブラシ 研磨、 遊離砥粒を用いる超音波加工で可能である。  The R and C chamfering on the fiber insertion side can be performed by machining with a diamond blade, brush polishing, or ultrasonic processing using loose abrasive grains.
本実施例では、 32個のファイバ一のコアの位置ずれを 2. 以内で組み 立てる事ができた。  In this embodiment, the displacement of the core of one of the 32 fibers could be assembled within 2.
また、 保持部の径をファイバ一径より 1〜30 m大きい孔としたのでフアイ バーの倒れや接着強度にも問題のない光ファイバ一アレイとなった。 3 O wmよ り大きい穴とするとファイバーの倒れの問題が生じる可能性がある。 (アレイの実施例) In addition, since the diameter of the holding part is 1 to 30 m larger than the diameter of one fiber, an optical fiber array that does not have any problems with fiber falling or adhesive strength is obtained. Holes larger than 3 O wm can cause fiber collapse problems. (Example of array)
次に組み立てたァレイの一例の断面図を第 4図に示す。  Next, a cross-sectional view of an example of the assembled array is shown in FIG.
アレイは厚さ 0. 4mmの端部基板 1 1 1と、 厚さ 0. 4mmの支持基板 1 1 2と、 これら端部基板 1 1 1と支持基板 1 1 2との間に設けられるスぺーサ 13 から構成される。  The array is composed of an end substrate 111 having a thickness of 0.4 mm, a support substrate 111 having a thickness of 0.4 mm, and a space provided between the end substrate 111 and the support substrate 112. 13
端部基板 1 1 1及び支持基板 1 12にはファイバ一の揷入口 1 1 1 a、 1 12 aが形成され、 挿入口 1 1 1 aは上から 0. 2 mmの深さまでのファイバー保持 部の径を Φ 0. 125mm+ 30 m〜十 1 m、 下部分 0. 2mmのファイバ 一位置決め部の径を Φ 0. 125mm+ 1. 4^m〜十 0. 2 mとされ、 上端 には 0. 05mm程度の Rが施され、 また揷入口 1 12 aの径は φ 0. 125m m+ 2 xm〜+ 0. 2 mとされ、 上端には 0. 05 mm程度の Rが施されてい る。  The end substrate 1 1 1 and the supporting substrate 1 12 are provided with fiber inlets 1 1 1 a and 1 12 a, and the insertion port 1 1 1 a is a fiber holding section to a depth of 0.2 mm from the top. The diameter of the fiber is Φ 0.125 mm + 30 m to 10 m and the lower part 0.2 mm.The diameter of one positioning part is Φ 0.125 mm + 1.4 ^ m to 10 0.2 m, and the upper end is 0.1 mm. The diameter of the inlet 1 12a is φ0.125mm + 2xm ~ + 0.2m, and the upper end has a radius of about 0.05mm.
前記スぺーサ 13は第 6図に示すように、 上下方向および一側に開放されるス リット 1 3 aが 4本形成された櫛歯状をなしている。 このスリット 13 aの幅は 0. 2〜0. 3mmとされ、 ファイバーを挿入する際のガイ ドとなるとともに、 スぺーサ 13は基板の略全域をカバ一しているので、 例えば端部基板 1 1 1に装 着した光ファイバ一の先端部を研磨するなどの後加工の際に基板をバックアップ する機能を有する。  As shown in FIG. 6, the spacer 13 has a comb-like shape in which four slits 13a opened in the vertical direction and on one side are formed. The width of the slit 13a is 0.2 to 0.3 mm, which serves as a guide for inserting a fiber, and the spacer 13 covers almost the entire area of the substrate. It has the function of backing up the substrate during post-processing such as polishing the tip of the optical fiber attached to 111.
特に、 スぺーサ 1 3を櫛歯状にした場合には、 端部基板 1 1 1及び支持基板 1 1 2を組付けた後に、 側面にスリツト 1 3 aが開口しているので、 この開口から 接着剤をスリット 13 a内に充填して光ファイバ一を固定することができる。 また、 挿入口 1 1 1 aの上端部の径よりもスリット 1 3 aの下端部の幅を小さ くし、 スリット 13 aの上端部の幅よりも揷入口 1 1 2 aの下端部の径を小さく することで、 上方から光ファイバ一 1 5を挿入する際に、 光ファイバ一の先端が 段差部に当たって折れるなどの不具合が生じない。  In particular, when the spacer 13 is formed in a comb shape, the slit 13a is opened on the side surface after the end substrate 111 and the support substrate 112 are assembled. The adhesive can be filled in the slit 13a to fix the optical fiber. Also, make the width of the lower end of the slit 13a smaller than the diameter of the upper end of the insertion port 1 1 1a, and make the diameter of the lower end of the inlet 1 12a smaller than the width of the upper end of the slit 13a. By making the size smaller, when inserting the optical fiber 15 from above, there is no problem such that the tip of the optical fiber 1 hits the step and breaks.
第 7図 (a) 〜 (e) はスぺーサ 1 3の別実施例を示す図であり、 (a) に示 したスぺ一サ 1 3はファイバ一径に対し十分大きな径の挿入孔を形成している。 (b) に示したスぺーサ 1 3は片方が座ぐられた形状をしている。 (c) 〜 (e) に示したスぺーサ 13はそれぞれファイバ一束の部分を抜いたリング状 . コ字状 ·拼形状としている。 7 (a) to 7 (e) are views showing another embodiment of the spacer 13; the spacer 13 shown in FIG. 7 (a) has an insertion hole having a diameter sufficiently larger than the diameter of the fiber. Is formed. The spacer 13 shown in (b) has a shape in which one side is seated. (C) ~ The spacer 13 shown in (e) has a ring shape, a U-shape, and a 拼 shape in which a portion of a bundle of fibers is removed.
また、 アレイの別実施例の断面図を第 8図に示す。  FIG. 8 is a cross-sectional view of another embodiment of the array.
この別実施例は、 厚み 0. 3mmの端部基板 1 1 1の穴の前面側を φ θ. 12 5mm+ 1. 4 ^m〜十 0. 2 / mとし、 穴奥部はファイバー揷入に障害のない 径を確保してあればよい。 ファイバーの挿入口には 0. 05mm程度の Rを施し ファイバ一の挿入をしやすくしている。  In this alternative embodiment, the front side of the hole of the end board 111 having a thickness of 0.3 mm is φθ.125 mm + 1.4 ^ m to 10 / 0.2 / m, and the inner part of the hole is filled with fiber. It is only necessary to secure a diameter that does not cause any obstacles. A radius of about 0.05 mm is applied to the fiber insertion port to make it easier to insert the fiber.
同様に 3:11]11厚みの支持基板1 12の穴を(|) 0. 125mm+2 m〜0. 2 mとし裏表に同様に R加工を施しファイバー挿入ガイドおよび組み立て時の ファイバ一を折れにくくしている。  Similarly, the hole of the support substrate 112 with a thickness of 3:11] 11 is set to (|) 0.125 mm + 2 m to 0.2 m, and the same process is performed on the front and back, and the fiber insertion guide and the fiber at the time of assembly are broken. It is difficult.
スぺ一サ 13を 3mm厚みとし端部基板と支持基板の貫通孔の位置をあわせた 場合ファイバ一を挿入組み立てた軸の最大倒れ 0は、 ファイバーの外形寸法を Φ 0. 1 245mm, 支持基板の貫通孔を Φ 0. 127mmとした場合、 tan0 = 0. 0025/ (0. 3 x 2 + 3) で 0. 04度を確保できる。 同様にスぺ一サ 13を 5mm厚みとすると 0. 03度を確保できる。  When the spacer 13 is 3 mm thick and the positions of the through holes in the end substrate and the support substrate are aligned, the maximum tilt of the shaft into which the fiber 1 is inserted and assembled 0 is the outer diameter of the fiber Φ 0.1245 mm, the support substrate If the through-hole of Φ is 0.127 mm, 0.04 degree can be secured by tan0 = 0.0025 / (0.3 x 2 + 3). Similarly, if the spacer 13 has a thickness of 5 mm, 0.03 degrees can be secured.
第 9図は本発明のアレイの組み立て方法の例を説明する図面である。  FIG. 9 is a drawing explaining an example of the method for assembling an array of the present invention.
支持基板 1 1 2とスぺーサ 1 3及び端部基板 1 1 1の接着は粘性の低い接着剤 を用いる。  Adhesion between the support substrate 112, the spacer 13 and the end substrate 111 uses a low-viscosity adhesive.
先ず支持基板 1 1 2の上にスぺーサ 1 3を載せ接着硬化させる。 スぺーサ 1 3 のもう一方の面に端部基板 1 1 1を当接させる。 尚、 図ではスぺ一サ 1 3の上に 支持基板 1 12を載せているがどちらを上にしてもよい。  First, a spacer 13 is placed on the support substrate 112 and is cured. The end substrate 1 11 is brought into contact with the other surface of the spacer 13. In the drawing, the support substrate 112 is placed on the spacer 13, but either one may be on the top.
しかる後に両基板の 32個の貫通孔のうち 2次元配置で 4隅の穴に 125. 0 //mの鋼製ピンゲージ 16を挿入し、 両基板の貫通孔の位置を仮合わせし、 この 状態で光ファイバ一 1 5を複数本両基板に貫通させ、 その後ピンゲージを抜き取 る。 実際の組立現場ではピンゲージに磨耗や曲がりがある場合が想定され、 これ に起因する両基板のずれを防止するためである。 この状態でスぺーサ 13と端部 基板 1 1 1合わせ面に接着剤を流入し接着硬化させる。  After that, insert a steel pin gauge 16 of 125.0 // m into the four corner holes in a two-dimensional arrangement of the 32 through holes of both boards, temporarily align the positions of the through holes of both boards, and in this state Then, a plurality of optical fibers 15 are passed through both substrates, and then the pin gauge is removed. At the actual assembly site, it is assumed that the pin gauges are worn or bent, and this is to prevent the displacement of both boards due to this. In this state, an adhesive flows into the mating surface of the spacer 13 and the end substrate 111, and the adhesive is cured.
硬化終了後ピンゲージを抜き取る。 硬化前にピンゲージを抜き取ると基板がず れる可能性があり、 硬化後の抜き取りが好ましい。 After curing, remove the pin gauge. If you remove the pin gauge before curing, the board will not Removal after curing is preferred.
ピンゲージ 16を抜き取った後、 シングルモードの光ファイバ一 15をそれぞ れ貫通孔に揷入し、 光ファイバ一 15を接着後端部基板 1 1 1と支持基板 1 12 とに接着する。 この際に使用する接着剤は粘性が低く収縮率の少ないもの (メレ テクノロジ一社製 XL 193など) を使用した。  After removing the pin gauge 16, the single mode optical fibers 15 are respectively inserted into the through holes, and the optical fibers 15 are bonded to the rear end substrate 111 and the support substrate 112. The adhesive used at this time was low in viscosity and low in shrinkage (such as XL193 manufactured by Mele Technology Co., Ltd.).
また、 光ファイバ一は組み立て時に基板による傷 ·折れを防ぐため、 クラッド を樹脂被服し強化してあるもの (昭和電線電機社製 S— Ty 1 u sなど) を使用 した。  The optical fiber used was a clad resin-reinforced one (such as S-Ty 1 us, manufactured by Showa Denki Denki Co., Ltd.) to prevent damage and breakage by the substrate during assembly.
その後ファイバー 1 5端面及び端部基板 1 1 1をともに研磨する。 この際研磨 加工コスト、 精度出しの困難さ、 端部基板 1 1 1の反射の影響を減らすため、 端 部基板 1 1 1は光ファイバ一 1 5を保持する面のみを残し研削加工などにより段 状のにがし 17 (第 6図参照) を作った後に研磨加工することが好ましい。  Thereafter, the end face of the fiber 15 and the end substrate 111 are polished together. At this time, in order to reduce the polishing processing cost, difficulty in obtaining accuracy, and the influence of the reflection of the end substrate 111, the end substrate 111 is cut by grinding, leaving only the surface holding the optical fiber 115. It is preferable to polish after making the towel 17 (see Fig. 6).
本実施例では第 10図に示すように、 光ファイバ一 15の最外側から 1mm離 れた線で囲まれた面以外を # 320のダイヤモンド砥石で深さ 70; mの段上の にがし加工を行った後研磨した。 この研磨では最大 0. 05mm (50 im) 程 度削られる。 したがって、 端部基板 1 1 1の厚みとしては 0. 2mm〜l. 05 mm、 好ましくは 0. 25mm〜0. 4mm程度の厚みがよい。  In this embodiment, as shown in FIG. 10, the surface surrounded by a line 1 mm away from the outermost side of the optical fiber 15 is removed with a # 320 diamond grindstone on a 70-m-deep step. After processing, it was polished. In this polishing, it is cut to a maximum of 0.05 mm (50 im). Therefore, the thickness of the end substrate 111 is preferably 0.2 mm to 1.05 mm, and more preferably 0.25 mm to 0.4 mm.
しかる後に反射防止薄膜をコーティングし、 32芯光ファイバ一アレイができ あがる。  After that, an anti-reflection thin film is coated, and a 32-core optical fiber array is completed.
端部基板 1 1 1が 0. 2mmと薄い場合は、 接着剤 14の厚みを厚くすること で後加工に必要な強度を得ることができる。  When the end substrate 111 is as thin as 0.2 mm, the strength required for post-processing can be obtained by increasing the thickness of the adhesive 14.
また、 スぺーサは、 接着剤の流入口が開口されている以外は閉塞していること が望ましい。 接着剤の漏れが防止できる。  Also, it is desirable that the spacer be closed except for the opening of the adhesive inlet. Adhesive leakage can be prevented.
基板 1 1に高精度のファイバ一位置決め部の穴加工する方法としては、 多結晶 セラミックスでは、 マイクロ穴放電加工またはレーザ加工により下穴を空け、 次 いでワイヤーカット放電加工、 レーザ加工 (YAG * フェムト秒) 、 テ一パ一ヮ ィヤーラップ等の内の 1つもしくは複数の工程により高精度化できる。  As a method for drilling holes in the fiber positioning part of the substrate 11 with high precision, in polycrystalline ceramics, a pre-drilled hole is made by micro-hole electric discharge machining or laser machining, and then wire cut electric discharge machining, laser machining (YAG * femto) Second), and high accuracy can be achieved by one or more processes such as tape wrapping.
また、 超音波加工や研削でマイクロ穴加工をする方法も考えられるが、 砥石の 消耗を考慮する必要がある。 多結晶セラミックスとしては、 A l T i C、 Z r B 2、 ジルコニァ、 アルミナ、 炭化珪素、 窒化珪素、 マシナブルセラミックス、 シ リコン含浸炭化珪素等などが適用できる。 In addition, micro hole drilling by ultrasonic processing or grinding can be considered. Attrition must be considered. The polycrystalline ceramic, A l T i C, Z r B 2, Jirukonia, alumina, silicon carbide, silicon nitride, machinable ceramics, and divorced impregnated silicon carbide applied.
また、 シリコン単結晶ではフォトリソグラフィによるマスキング及びエツチン グにより加工可能である。  In addition, silicon single crystal can be processed by masking and etching by photolithography.
ここで、 端部基板 1 1 1と支持基板 1 1 2の貫通孔は同時に加工してもよいが、 別々に加工してもよい。  Here, the through holes of the end substrate 111 and the support substrate 112 may be processed at the same time, or may be processed separately.
しかし両基板を重ねあわせて同時加工するか、 同じマスクによりフォトリソグ ラフィにより加工するなどの方法がより好ましい。 すなわち貫通穴のセンター相 対位置はきわめて高精度に重なりファイバー 1 5の平行性を確保し、 端部基板 1 1 1のクリアランスを 0. 2〜1. 4 mとすることにより、 ファイバー先端の 位置を高精度に定めることができ、 支持基板 1 1 2を数ミクロン大きくすること により、 現実に多数のファイバ一の組み立てが可能となる。  However, it is more preferable that both substrates are overlapped and processed at the same time, or processed by photolithography using the same mask. In other words, the relative position of the center of the through hole overlaps with extremely high precision, ensuring the parallelism of the fiber 15 and the clearance of the end substrate 11 to 0.2 to 1.4 m, so that the position of the fiber tip Can be determined with high accuracy, and by increasing the size of the support substrate 112 by several microns, it is possible to actually assemble a large number of fibers.
また、 両基板 1 1 1, 1 1 2の貫通穴入り口及び支持基板ファイバー出口側へ は 30 m〜 1 00; mの Rまたは C面取りを施すと実際にファイバ一を挿入組 み立てが容易となつてよい。  Also, if the R or C chamfer of 30 m to 100 m is applied to the entrance of the through holes of both substrates 1 1 and 1 1 and the exit of the support substrate fiber, it is easy to actually insert and assemble the fiber. It may be good.
基板の R、 C面取りはダイヤモンド刃物による機械加工やブラシ研磨、 遊離砥 粒を用いる超音波加工やフォトリソエッチングまたは基板穴あけ後のコーティン グ等の肉盛りで可能である。  The R and C chamfering of the substrate can be done by machining with a diamond blade, brush polishing, ultrasonic processing using loose abrasives, photolitho etching or coating after drilling the substrate.
本実施例では、 32個のファイバ一のコアの位置ずれを、 コア間距離 250 mでコア位置ずれ量の平均値 0. 8 ΓΠ、 標準偏差 0. 6 m、 最大のずれ 2. 4 zmで組み立てる事ができた。 測定方法は、 出来上がったファイバ一アレイの 全ファイバ一のコアに可視光を入射し、 端面を高精度カメラで撮影し、 これを画 像処理しコアの中心座標を算出した。  In the present embodiment, the displacement of the core of one of the 32 fibers is calculated as the average value of the core displacement of 0.8 mm, the standard deviation of 0.6 m, and the maximum displacement of 2.4 zm at a distance of 250 m between the cores. I was able to assemble. The measurement was performed by injecting visible light into the cores of all the fibers in the completed fiber array, photographing the end face with a high-precision camera, processing the images, and calculating the center coordinates of the core.
また、 端部基板 1 1 1と支持基板 1 1 1 2との位置を 3 mmのスぺーサ 1 3に より離したのでファイバー 1 5の軸が極めて平行性のよいァレイを得ることがで きた。 産業上の利用可能性 In addition, since the position of the end substrate 1 1 1 and the support substrate 1 1 1 2 was separated by a spacer 13 of 3 mm, an array with extremely parallel axes of the fibers 15 could be obtained. . Industrial applicability
以上に説明したように本発明によれば、 容易に光ファイバ一を挿入接着作業が 可能となり、 さらにファイバーを高精度に 2次元配置できる光ファイバ一アレイ を提供することができる。 また、 互いの光ファイバ一軸の平行性に優れる光ファ ィバーアレイを提供することができる。  As described above, according to the present invention, it is possible to easily insert and bond an optical fiber, and to provide an optical fiber array in which fibers can be arranged two-dimensionally with high precision. Further, it is possible to provide an optical fiber array having excellent parallelism between optical fibers in one axis.

Claims

請 求 の 範 囲 The scope of the claims
1. 基板に所定の間隔で形成した複数の貫通孔に、 光ファイバ一を整列固定し てなる光ファイバ一アレイにおいて、 前記貫通孔は光ファイバ一の位置決め部と この位置決め部よりも大径の保持部とからなることを特徴とする光ファイバーァ レイ。 1. In an optical fiber array in which optical fibers are aligned and fixed in a plurality of through holes formed at predetermined intervals in a substrate, the through holes have a positioning portion for the optical fiber and a diameter larger than the positioning portion. An optical fiber array comprising a holding portion.
2. 請求の範囲第 1項に記載の光ファイバ一アレイにおいて、 前記位置決め部 の基板厚み方向の長さが少なくとも 0. 3 mmでこの位置決め部の径が前記光フ アイバーの直径に対して 0. 2 /xm〜l . 4 m大きく、 また前記保持部の径が 前記光ファイバ一の直径に対して 1 ^m〜30 m大きいことを特徴とする光フ アイバーアレイ。  2. The optical fiber array according to claim 1, wherein a length of the positioning portion in a thickness direction of the substrate is at least 0.3 mm, and a diameter of the positioning portion is smaller than a diameter of the optical fiber. 2 / xm to l.4 m larger, and the diameter of the holding part is larger than the diameter of the optical fiber by 1 ^ m to 30 m.
3. 請求の範囲第 1項または第 2項に記載の光ファイバ一アレイにおいて、 前 記基板は、 厚さが 0. 3mmから 1. 5 mmのシリコン単結晶であることを特徴 とする光ファイバ一アレイ。  3. The optical fiber array according to claim 1 or 2, wherein the substrate is a single crystal silicon having a thickness of 0.3 mm to 1.5 mm. One array.
4. 請求の範囲第 1項または第 2項に記載の光ファイバ一アレイにおいて、 前 記基板は、 厚さが 0. 3mmから 1. 5 mmの多結晶セラミックスであることを 特徴とする光ファイバ一アレイ。 4. The optical fiber array according to claim 1 or 2, wherein the substrate is a polycrystalline ceramic having a thickness of 0.3 mm to 1.5 mm. One array.
5. 複数の光ファイバ一を該光ファイバ一の軸を互いに平行に位置決めして所 定間隔に整列固定する光ファイバーァレイにおいて、 この光ファイバ一アレイは、 端面が仕上げ加工された光ファイバ一の端部を支持する端部基板と、 光ファイバ 一の端部から離れた箇所を支持する支持基板と、 前記端部基板と前記支持基板に 所定の間隔を持たせ対向させるスぺ一ザとからなることを特徴とする光ファイバ 一アレイ。  5. In an optical fiber array in which a plurality of optical fibers are positioned and fixed at predetermined intervals by positioning the axes of the optical fibers in parallel with each other, this optical fiber array is an optical fiber array whose end face is finished. An end substrate that supports the end, a support substrate that supports a location distant from one end of the optical fiber, and a spacer that faces the end substrate and the support substrate at a predetermined interval. An optical fiber array comprising:
6. 請求の範囲第 5項に記載の光ファイバ一アレイにおいて、 前記端部基板に 形成した貫通孔と前記光ファイバ一とのクリアランスを 0. l mから 1. 4: mとし、 前記支持基板に形成した貫通孔と前記光ファイバーとのクリアランスを 0. 2 mから 2 zmとすることを特徴とする請求の範囲第 5項に記載の光ファ ィバーアレイ。 6. The optical fiber array according to claim 5, wherein a clearance between the through hole formed in the end substrate and the optical fiber is from 0.1 lm to 1.4: m, and 6. The optical fiber array according to claim 5, wherein a clearance between the formed through-hole and the optical fiber is from 0.2 m to 2 zm.
7. 請求の範囲第 5項または第 6項に記載の光ファイバ一アレイにおいて、 前 記端部基板および前記支持基板の厚みは 0. 1 5mmから lmmで、 材質はシリ コン単結晶であることを特徴とする光ファイバ一アレイ。 7. The optical fiber array according to claim 5 or 6, wherein the thickness of the end substrate and the supporting substrate is 0.15 mm to lmm, and the material is silicon single crystal. An optical fiber array.
8. 請求の範囲第 5項または第 6項に記載の光ファイバ一アレイにおいて、 前 記端部基板および前記支持基板の厚みは 0. 1 5mmから lmmで、 材質は多結 晶セラミックであることを特徴とする光ファィバーアレイ。  8. The optical fiber array according to claim 5 or 6, wherein the thickness of the end substrate and the supporting substrate is 0.15 mm to lmm, and the material is a polycrystalline ceramic. An optical fiber array characterized in that:
9. 請求の範囲第 5項乃至第 8項のいずれかに記載の光ファイバーァレイにお いて、 前記スぺーザが光ファイバ一を接着する接着剤の流入口を除いて閉塞して いることを特徴とする光ファイバ一アレイ。  9. The optical fiber array according to any one of claims 5 to 8, wherein the soother is closed except for an inflow port of an adhesive for bonding the optical fiber. Characteristic optical fiber array.
10. 請求の範囲第 5項乃至第 9項のいずれかに記載の光ファイバ一アレイに おいて、 前記光ファイバ一は接着剤にて端部基板および支持基板に接着されるこ とを特徴とする光ファイバ一アレイ。  10. The optical fiber array according to any one of claims 5 to 9, wherein the optical fiber is bonded to the end substrate and the support substrate with an adhesive. Optical fiber array.
PCT/JP2003/004646 2002-04-12 2003-04-11 Optical fiber array WO2003087907A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003236113A AU2003236113A1 (en) 2002-04-12 2003-04-11 Optical fiber array
JP2003584791A JPWO2003087907A1 (en) 2002-04-12 2003-04-11 Fiber optic array

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002111078 2002-04-12
JP2002-111078 2002-04-12
JP2002-189532 2002-06-28
JP2002189532 2002-06-28

Publications (1)

Publication Number Publication Date
WO2003087907A1 true WO2003087907A1 (en) 2003-10-23

Family

ID=29253546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/004646 WO2003087907A1 (en) 2002-04-12 2003-04-11 Optical fiber array

Country Status (3)

Country Link
JP (1) JPWO2003087907A1 (en)
AU (1) AU2003236113A1 (en)
WO (1) WO2003087907A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256503A (en) * 2007-04-04 2008-10-23 Onishi Denshi Kk Inspection tool for printed wiring board
JP2013231915A (en) * 2012-05-01 2013-11-14 Furukawa Electric Co Ltd:The Optical connector
CN103605197A (en) * 2013-11-26 2014-02-26 中国科学院长春光学精密机械与物理研究所 Two-dimensional optical fiber precision-positioning coupler and manufacturing method thereof
WO2022270510A1 (en) * 2021-06-21 2022-12-29 株式会社白山 Optical fiber assembly, plate, and optical module

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435750A (en) * 1977-08-25 1979-03-16 Fujitsu Ltd Coupling unit of photo semiconductor elements and optical fibers
US5135590A (en) * 1991-05-24 1992-08-04 At&T Bell Laboratories Optical fiber alignment method
US5337384A (en) * 1993-07-06 1994-08-09 At&T Bell Laboratories Optical fiber connector
JPH09203822A (en) * 1996-01-26 1997-08-05 Kyocera Corp Optical fiber array body
JPH09243863A (en) * 1996-03-05 1997-09-19 Sumitomo Electric Ind Ltd Member for two-dimensionally arranging optical fiber and its production
WO1999000687A1 (en) * 1997-06-26 1999-01-07 Fiberguide Industries, Inc. Precision optical fiber array connector and method
JP2000266965A (en) * 1999-03-16 2000-09-29 Fuji Xerox Co Ltd Optical information connector
JP2001141962A (en) * 1999-11-16 2001-05-25 Hata Kensaku:Kk Disk for coated optical fiber
EP1253452A2 (en) * 2001-04-27 2002-10-30 FITEL USA CORPORATION (a Delaware Corporation) Optical fiber array
JP2003107283A (en) * 2001-05-30 2003-04-09 Ngk Insulators Ltd Microhole array, optical fiber array, lens array, optical fiber array substrate, lens array substrate, connector, and method of manufacturing microhole array

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435750A (en) * 1977-08-25 1979-03-16 Fujitsu Ltd Coupling unit of photo semiconductor elements and optical fibers
US5135590A (en) * 1991-05-24 1992-08-04 At&T Bell Laboratories Optical fiber alignment method
US5337384A (en) * 1993-07-06 1994-08-09 At&T Bell Laboratories Optical fiber connector
JPH09203822A (en) * 1996-01-26 1997-08-05 Kyocera Corp Optical fiber array body
JPH09243863A (en) * 1996-03-05 1997-09-19 Sumitomo Electric Ind Ltd Member for two-dimensionally arranging optical fiber and its production
WO1999000687A1 (en) * 1997-06-26 1999-01-07 Fiberguide Industries, Inc. Precision optical fiber array connector and method
JP2000266965A (en) * 1999-03-16 2000-09-29 Fuji Xerox Co Ltd Optical information connector
JP2001141962A (en) * 1999-11-16 2001-05-25 Hata Kensaku:Kk Disk for coated optical fiber
EP1253452A2 (en) * 2001-04-27 2002-10-30 FITEL USA CORPORATION (a Delaware Corporation) Optical fiber array
JP2003107283A (en) * 2001-05-30 2003-04-09 Ngk Insulators Ltd Microhole array, optical fiber array, lens array, optical fiber array substrate, lens array substrate, connector, and method of manufacturing microhole array

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256503A (en) * 2007-04-04 2008-10-23 Onishi Denshi Kk Inspection tool for printed wiring board
JP2013231915A (en) * 2012-05-01 2013-11-14 Furukawa Electric Co Ltd:The Optical connector
CN103605197A (en) * 2013-11-26 2014-02-26 中国科学院长春光学精密机械与物理研究所 Two-dimensional optical fiber precision-positioning coupler and manufacturing method thereof
WO2022270510A1 (en) * 2021-06-21 2022-12-29 株式会社白山 Optical fiber assembly, plate, and optical module

Also Published As

Publication number Publication date
AU2003236113A1 (en) 2003-10-27
JPWO2003087907A1 (en) 2005-08-25

Similar Documents

Publication Publication Date Title
JPH07248434A (en) Optical fiber array and adapter for optical fiber array
KR20040015287A (en) High-precision female format multifiber connector
CA2325424A1 (en) Method for preparing optical fibers for connection to other fibers or to planar waveguides and device for such connection
JPH09178962A (en) Optical fiber array and its production
EP1219991B1 (en) Polarization-maintaining fiber ribbon termination
US20030202768A1 (en) High density optical fiber array
US20210302664A1 (en) Lens-based connector assemblies having precision alignment features and methods for fabricating the same
WO2003087907A1 (en) Optical fiber array
JP2004078028A (en) Optical fiber guide part and its manufacturing method
JP4915633B2 (en) Manufacturing method of optical fiber array
JPS59166903A (en) Manufacture of optical fiber array body
JP4306585B2 (en) Manufacturing method of optical fiber array
JP4074563B2 (en) Manufacturing method of optical fiber guide parts
JP2002072016A (en) Optical fiber array and optical component
JP2797097B2 (en) Optical fiber alignment method
US6574412B2 (en) Method for positioning optical fibers
JP3190166B2 (en) Method of manufacturing optical switch and optical fiber array member
JP2000180639A (en) Optical fiber array element and manufacture of it
EP3859416A1 (en) Ferrule assemblies having a lens array
JP3248661B2 (en) Manufacturing method of optical waveguide module
KR20020052988A (en) Ribbon fiber and manufacturing method therefor, and optical fiber array using the same
WO2002103403A2 (en) Method of forming an ordered optic fiber array and connector arrangement for same
JP2000009958A (en) Optical fiber connector and optical coupling element
JP4207903B2 (en) Manufacturing method of optical fiber array
JP2000039541A (en) Optical fiber array and its production

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003584791

Country of ref document: JP

122 Ep: pct application non-entry in european phase