WO2003087772A2 - Method for detecting low concentrations of a target bacterium that uses phages to infect target bacterial cells - Google Patents

Method for detecting low concentrations of a target bacterium that uses phages to infect target bacterial cells Download PDF

Info

Publication number
WO2003087772A2
WO2003087772A2 PCT/US2003/011253 US0311253W WO03087772A2 WO 2003087772 A2 WO2003087772 A2 WO 2003087772A2 US 0311253 W US0311253 W US 0311253W WO 03087772 A2 WO03087772 A2 WO 03087772A2
Authority
WO
WIPO (PCT)
Prior art keywords
bacteriophage
liquid solution
present
target bacterium
biomarker
Prior art date
Application number
PCT/US2003/011253
Other languages
French (fr)
Other versions
WO2003087772A3 (en
Inventor
Angelo J. Madonna
Kent J. Voorhees
Jon C. Rees
Original Assignee
Colorado School Of Mines
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003584669A priority Critical patent/JP4490112B2/en
Priority to AT03726259T priority patent/ATE469240T1/en
Priority to DE60332740T priority patent/DE60332740D1/en
Priority to EP03726259A priority patent/EP1540018B1/en
Priority to AU2003228505A priority patent/AU2003228505B2/en
Priority to CA2482173A priority patent/CA2482173C/en
Application filed by Colorado School Of Mines filed Critical Colorado School Of Mines
Publication of WO2003087772A2 publication Critical patent/WO2003087772A2/en
Priority to EP04775884A priority patent/EP1613965A2/en
Priority to JP2006532405A priority patent/JP4578478B2/en
Priority to PCT/US2004/011285 priority patent/WO2005001475A2/en
Publication of WO2003087772A3 publication Critical patent/WO2003087772A3/en
Priority to HK05111596.0A priority patent/HK1082525A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria

Definitions

  • the beads are easily manipulated under the influence of a magnetic field facilitating the retrieval and concentration of targeted organisms. Moreover, the small size and shape of the beads allow them to become evenly dispersed in the sample, accelerating the rate of interaction between bead and target. These favorable characteristics lead to reductions in assay time and help streamline the analytical procedure making it more applicable for higher sample throughput and automation.
  • Downstream detection methods previously used with FMS include ELISA (Cudjoe, et al. 1995), dot blot assay (Skjerve et al. 1990), electrochemiluminescence (Yu and Bruno 1996), and flow cytometry (Pyle, et al. 1999).
  • the process comprises using a biological amplification procedure in which bacteriophages for the target bacterium are applied to the liquid solution.
  • Bacteriophages are viruses that infect bacteria and in the process produce many progeny. Structurally, the bacteriophage consists of a protein shell (capsid) that encapsulates the viral nucleic acid. The capsid is constructed from repeating copies of the same protein. Bacteriophages are able to infect specific bacterial cells and because of the multiplication of the genetic material, the cells eventually burst releasing millions of copies of the original phage.) The bacteriophages and any of the target bacterium present in the liquid solution are allowed to incubate.
  • a concentration of the bacteriophage is applied to the liquid solution that is below the detection limit for the biomarker for the bacteriophage for whatever analysis technique is employed. This assures that if the biomarker for the bacteriophage is detected by the analysis technique, the detectable concentration of the biomarker is attributable to the replication of the bacteriophage by the target bacterium present in the liquid solution.
  • the use of such a concentration of bacteriophage has a multiplicity of infection ("MOI") (i.e., ratio of infecting bacteriophages to target bacterium) that is too low to rapidly produce a sufficient concentration of bacteriophages or biomarkers for the bacteriophage for detection.
  • MOI multiplicity of infection
  • Another embodiment of the process addresses this problem by adding a very high concentration of the bacteriophage to the liquid solution, thereby assuring a high MOI. In this case, the concentration of the bacteriophage added to the solution may exceed the detection limit of whatever analysis technique is employed to detect the bacteriophage or biomarker of the bacteriophage.
  • the process applies parent bacteriophage to the solution that can distinguished from any progeny bacteriophage resulting from the infection of target bacterium in the mixture. If the distinguishable progency bacteriophage or a distinguishable biomarker of the progeny bacteriophage are present, this indicates that the target bacterium is present in the solution.probe.
  • the parent bacteriophage i.e., the bacteriophage initially applied to the solution
  • the parent bacteriophage are "tagged" so that whatever analysis technique is employed is inherently capable of distinguishing the parent bacteriophage or parent bacteriophage biomarkers from the progeny bacteriophage or biomarkers for the progency bacteriophage.
  • the parent bacteriophage are "tagged” with a substance that alters or shifts the mass spectrum of the parent bacteriophage relative to the progeny bacteriophage, which will not inherit the "tag" from the parent bacteriophage.
  • the purification step can be implemented after the biological amplification process.
  • the purification step involves separating the bacteriophages and the liquid solution, rather than separating the target bacterium and the liquid solution.
  • an IMS is used in which magnetic beads are coated with an antibody for the bacteriophage. The beads pick up the bacteriophages present in the solution and then a magnet is used to separate the beads from the remainder of the solution.
  • the analysis step comprises using MS/MS analysis to determine if a biomarker for the target bacterium is present.
  • MS/MS analysis produces a highly reliable indication of the presence of a biomarker for a target bacterium. As a consequence, at least in some cases, the use of MS/MS analysis renders the need for a purification step unnecessary.
  • the bacteriophages will multiply during the incubation period such that a high titer or concentration of bacteriophages will be present in the mixture and detectable by MALDI- TOF-MS analysis. If no or only a small number of the target bacterium is present, there will be a low concentration of bacteriophages present in the mixture that will not be reasonably detectable by MALDI-TOF-MS analysis.
  • a MALDI-TOF-MS analysis is performed on the incubated mixture of bacteriophages and target bacterium. The resulting mass spectrum is analyzed to determine if a protein that is associated with the bacteriophages is present. If the protein for the bacteriophage is detected, then it can be concluded that at least a low concentration of the target bacterium is present in the mixture.
  • Figure 2 is a schematic representation of the immunomagnetic purfication step used to isolate a target antigen (Escherichia coli) in one embodiment of the invention
  • Figure 4 shows a typical MALDI-TOF mass spectrum obtained from a high titer sample of MS2 in PBS; and Figures 5A-5C illustrate how an embodiment of the invention was able detect a biomarker of the bacteriophage indicative of presence of E. coli for decreasing concentrations of E. coli.
  • the invention relates to the use of a bacteriophage to indirectly detect the presence of a target bacterium in a liquid solution where the concentration of the target bacterium is or is likely to be near or below the detection limit for the particular detection technology employed.
  • MALDI/TOF matrix assisted laser desorption ionization/mass spectrometry
  • the mass spectrometry technique does not provide a reliable signal indicative of the presence of the target bacterium in the liquid solution, then it can be concluded that the target bacterium may be present in the liquid solution but in a concentration that below or near the detection limit of the mass spectrometry technique. In this case, further steps are taken to determine whether the target bacterium is present in the liquid solution in a concentration that is under the detection limit of the mass spectrometry technique.
  • the process involves a purification step that involves capturing the target bacterium that may be present in the mixture and separating any of the captured bacterium from other biological material that may be present in the mixture.
  • the need for the purification step may not be necessary in situations in which the portion of the signal associated with other biological materials can be filtered, eliminated or otherwise ignored and/or in situations in which the amplification step has a gain such that the portion of the mass spectrum associated with the bacteriophage is likely to exceed any background signal associated with other biological materials and/or situations in which a false positive is considered to be remote.
  • one of the other biological materials that can make it difficult to determine if the biomarker for the bacteriophage is present is a wild version of the bacteriophage that is present in the liquid solution that is being tested.
  • the purification step addresses the presence of a wild bacteriophage.
  • the use of MS/MS is limited to capsid proteins that are less than 7000 Da.
  • IMS immunomagnetic separation
  • Microsize beads are constructed from an iron oxide core coated with a polymeric surface.
  • Secondary antibodies raised against the Fc region of the primary antibodies are covalently attached via a linker to the polymer surface.
  • the primary antibody (raised against a targeted microorganism) is attached to the beads by strong noncovalent interactions with the secondary antibody, which holds the primary antibody in the proper orientation for reaction with the targeted antigen.
  • the immunomagnetic beads are added to the bacterial or biological mixture that is the subject of the analysis and incubated for 20 minutes at room temperature.
  • the beads are then isolated to the side of the reaction tube using a magnet. This process allows the extraneous (non-targeted) material to be removed by aspiration. At this stage, the beads can be washed several times prior to re-suspending them in PBS.
  • the bead-bacterial target complex is admixed with a low titer suspension of bacteriophage specific to the targeted bacterium. The titer is held low so that the mass spectrometry signal from the virus is non-detectable.
  • the bacteriophage After a 40-minute incubation, the bacteriophage have completed a propagation cycle of attachment, insertion, self- assembly, and cell lysis resulting in the production of many progeny that are released into the reaction milieu.
  • the milieu is then analyzed to determine if a biomarker for the bacteriophage is present that indirectly indicates that the target bacterium was present.
  • the milieu can be analyzed by MALDI-TOF-MS using a sandwich sample preparation technique with a ferulic acid matrix. Other MALDI matrices known in the art are also feasible.
  • the resulting mass spectrum shows the presence of the bacteriophage capsid protein, which would not have been present if the target bacterium was not also present.
  • Example As described hereinafter, an embodiment of the method has been used to reduce the detection limit for E. coli to less than 5.0 x 10 4 cells mL "1 .
  • the method used immunomagnetic beads coated with antibodies against E. coli, hereinafter referred to as the target-bead complex, to isolate the bacterium from solution.
  • the target-bead complex was then re-suspended in a solution containing MS2, a bacteriophage that is specific for E. coli.
  • the MS2 bacteriophage concentration was adjusted so that the ion signal from the capsid protein of the MS2 bacteriophage was below the detection limit of the mass spectrometer.
  • the E. coli bacteria were grown in trypticase soy broth (TSB) (Difco, Detroit, MI) with incubation at 37° C using standard microbial methods.
  • TLB trypticase soy broth
  • a soft-agar/host covering was prepared by overlaying agar plates (trypticase soy agar, Difco) with a 2.5 mL of melted 0.5% agar (same medium), which contained two drops of a 20 hr host in TSB.
  • the soft-agar covering was allowed to harden before the addition of a 0.5 mL overlay of a concentrated suspension of MS2, prepared by re- hydrating freeze-dried MS2 in TSB.
  • Rabbit anti-E. coli IgG antibodies (Cortex Biochem, San Leandro, CA) were attached to the immunomagnetic beads (MagaBeads, Goat anti-Rabbit IgG F(c), Cortex Biochem) using the manufacturer's suggested protocol.
  • Escherichia coli were isolated from aqueous suspensions by affinity capture using the immunomagnetic beads. Suspensions of bacteria were prepared in 1.5mL microcentrifuge tubes (Brinkmann Instruments, Inc., Westbury, Ny) by combining 100 ⁇ L of broth media with 900 ⁇ L of phosphate buffer saline (PBS, 0.01M Na 2 HPO 4 , 0.15M NaCl titrated to pH 7.35 with HC1). Cell concentrations were determined using a Petroff-Hauser counting chamber (Hauser Scientific, Horsham, PA).
  • PBS phosphate buffer saline
  • the immunomagnetic separation ( S) procedure developed in this investigation involved the following steps: In the first step, a 30 ⁇ L aliquot of the immunomagnetic beads were added to the bacterial sample solution and incubated for 20 minutes at room temperature with continuous shaking. The second step involved concentrating the beads to the side of the sample tube using a magnetic particle concentrator (Dynal, Lake Success, NY) and removing the supernatant using a lmL pipette, h the third step, the magnet was removed and the beads were re-suspended in lmL of fresh PBS with vigorous shaking for 20 sec to wash away any nonspecifically adhering components. The bead suspension was then transferred to a new tube and steps 2 and 3 repeated one more time.
  • the beads were isolated with the magnet followed by decanting the buffer wash to waste and re-suspending the beads in 500 ⁇ L of deionized water. Subsequently, the bead-E. coli complexes were admixed with a low titer (below the detection limit of the mass spectrometer) of the MS2 bacteriophage and incubated at room temperature with gentle shaking for 40 minutes. An aliquot of the suspension was then removed and analyzed for the MS2 capsid protein using a sandwich sample preparation with a ferulic acid matrix (12.5mg of ferulic acid in lmL of 17% formic acid: 33% acetonitrile: 50% deionized H 2 O).
  • a concentration of "parent" bacteriophage is applied to the liquid solution that is below the detection limit for the bacteriophage or biomarker for the bacteriophage for whatever analysis technique is employed. This assures that if the bacteriophage or the biomarker for the bacteriophage is detected by the analysis technique, the detectable concentration of the bacteriophage or biomarker is attributable to progeny bacteriophage, i.e., bacteriophage resulting from the replication of the bacteriophage by the target bacterium present in the liquid solution.
  • MOI multiplicity of infection
  • a sufficiently high concentration of "parent” bacteriophage is added to the liquid solution.
  • the concentration of the "parent” bacteriophage added to the solution may exceed the detection limit of whatever analysis technique is employed to detect the bacteriophage or biomarker of the bacteriophage. Consequently, analysis of a liquid solution treated in this manner could detect the "parent" bacteriophages that were added to the solution, rather than the progeny bacteriophage resulting from replication by the target bacteria.
  • another embodiment of the process applies a concentration of "parent" bacteriophage to the solution that is capable of being distinguished from any progeny bacteriophage.
  • the parent bacteriophage i.e., the bacteriophage initially applied to the solution
  • the parent bacteriophage are "tagged" so that whatever analysis technique is employed is inherently capable of distinguishing the parent bacteriophage or parent bacteriophage biomarkers from the progeny bacteriophage or biomarkers for the progency bacteriophage.
  • the parent bacteriophage are "tagged" with a substance that alters or shifts the mass spectrum of the parent bacteriophage relative to the progeny bacteriophage, which will not inherit the "tag" from the parent bacteriophage.
  • a biotinylated bacteriophage is employed as a parent bacteriophage and has a different mass spectrum than the progeny bacteriophage produced by the biotinylated bacteriophage infecting target bacterium present in the solution.
  • Other "tags" can be employed for other types of analytical techniques.
  • the parent bacteriophage possesses a characteristic that allows the parent bacteriophage to be separated from any of the progeny bacteriophage in the liquid solution prior to analysis, thereby assuring that most, if not all of the bacteriophage present in the liquid solution after separation are progeny bacteriophage resulting from the replication of the parent bacteriophage by target bacteria present in the liquid solution.
  • biotinylated bacteriophage are initially applied to the liquid solution. Biotinylated bacteriophage are highly attracted to strepavidin. Consequently, to separate the biotinylated bacteriophage from the liquid solution a strepavidin probe is utilized.
  • the biotinylated bacteriophage are attached to a strepavidin coated probe and the probe is placed in the liquid solution. In this case, separation of the biotinylated bacteriophage from the liquid solution after the incubation period is accomplished by removing the probe from the liquid solution.
  • strepavidin-coated magnetic beads are applied to the liquid solution. The biotinylated bacteriophages are attached to the strepavidin-coated magnetic beads prior to the application of the beads to the solution. Alternatively, the beads are used to pick up biotinylated bacteriophages that were previously added to the solution and then separated from the liquid solution using a magnet.
  • a strepavidin coated probe e.g., a slide
  • the biotinylated bacteriophages adhere to the probe and then the probe is separated from the liquid solution.
  • at least a portion of the solution is then subjected to analysis to determine if the bacteriophage or a biomarker for the bacteriophage is present, which indirectly indicates that the target bacteria was present in the solution.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Food Science & Technology (AREA)
  • Pathology (AREA)
  • Zoology (AREA)
  • General Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Toxicology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention is directed to a method for detecting low concentrations of bacteria in liquid solution that may or may not be complex liquid solutions. In one embodiment, immunomagnetic separation (IMS) is used to separate target bacterium that may be in a liquid mixture from other constituents in the mixture. A low concentration of a bacteriophage for the target bacteria is subsequently used to infect target bacterial cells that have been captured using the IMS technique. If at least a certain concentration of target bacterium are present, the bacteriophage will multiply to a point that is detectable. Matrix assisted laser desorption ionization/time-of-flight-mass spectrometry (MALDI/TOF-MS) is then used to produce a mass spectrum that is analyzed to determine if one or more proteins associated with the bacteriophage are present, thereby indirectly indicating that target bacterium were present in the liquid mixture.

Description

METHOD FOR DETECTING LOW CONCENTRATIONS
OF A TARGET BACTERIUM THAT USES PHAGES
TO INFECT TARGET BACTERIAL CELLS
CROSS REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of United States Provisional Application No.
60/319,184, entitled "METHOD OF DETECTING LOW CONCENTRATIONS OF A
TARGET BACTERIA THAT USES PHAGES TO INFECT TARGET BACTERIAL
CELLS" and filed by Angelo J. Madonna and Kent J. Noorhees on April 12, 2002, which application is incorporated by reference into this application in its entirety.
FIELD OF THE INVENTION The present invention relates to a method for detecting low concentrations of a target bacterium in a liquid mixture that uses bacteriophages to infect target bacterial cells.
BACKGROUND OF THE INVENTION Standard microbiological methods have relied on substrate-based assays to test for the presence of specific organisms (Bordner, et al. 1978). These techniques offer very high levels of selectivity but are hindered by the requirement to first grow or cultivate pure cultures of the targeted organism, which can take 24 hours or longer. This time constraint severely limits the effectiveness to provide a rapid response to the presence of virulent strains of microorganisms.
Molecular biology techniques are quickly gaining acceptance as valuable alternatives to standard microbiological tests. In particular, serological methods have been widely employed to evaluate a host of matrices for targeted microorganisms (Kingsbury & Falkow 1985; Wyatt et al. 1992). These tests focus on using antibodies to first trap and then separate targeted organisms from other constituents in complicated biological mixtures. Once isolated, the captured organism can be concentrated and detected by a variety of different techniques that do not require cultivating the biological analyte. One very popular approach, termed immunomagnetic separation (IMS), involves immobilizing antibodies to spherical, micro-sized paramagnetic beads and using the antibody-coated beads to trap targeted microorganisms from liquid media. The beads are easily manipulated under the influence of a magnetic field facilitating the retrieval and concentration of targeted organisms. Moreover, the small size and shape of the beads allow them to become evenly dispersed in the sample, accelerating the rate of interaction between bead and target. These favorable characteristics lead to reductions in assay time and help streamline the analytical procedure making it more applicable for higher sample throughput and automation. Downstream detection methods previously used with FMS include ELISA (Cudjoe, et al. 1995), dot blot assay (Skjerve et al. 1990), electrochemiluminescence (Yu and Bruno 1996), and flow cytometry (Pyle, et al. 1999). Although these tests provide satisfactory results, they are laborious to perform and give binary responses (yes/no) that are highly susceptible to false-positive results due to cross-reactivity with non-target analytes. Recently reported is a rapid method for identifying specific bacteria from complex biological mixtures using IMS coupled to matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS)(Madonna et al. 2001). This approach allowed a variety of matrices to be evaluated for the presence of a Salmonella species within a total analysis time of 1 hour. Moreover, the developed procedure required little sample processing, was relatively easy to perform, and the molecular weight information obtained made it possible to discriminate between signals from the target bacteria and signals from cross-reacted constituents.
MALDI-TOF-MS is a proven technique for identifying whole cellular microorganisms (Holland et al (1996); van Barr 2000; Madonna et al. 2000). In principle, MALDI is a 'fingerprinting' technique where mass spectra featuring varying distributions of protein signals are generated. The signature profiles that are produced, due to inherent differences in microbial proteomes, make it possible to discriminate between organisms down to the strain level (Arnold and Reilly 1998). The MALDI-TOF technique coupled with IMS includes, in one embodiment, mixing immunomagnetic beads specific to the target bacteria with the liquid mixture that may contain the target bacteria for a short incubation period (e.g., 20 min). Any target bacteria captured by the beads are washed twice, re-suspended in deionized H2O, and directly applied onto a MALDI sample probe. The target bacteria-bead complex is then overlaid with a micro-volume of matrix solution and dried at room temperature. Irradiation of the resulting crystalline mass with a high intensity laser promotes the liberation and ionization of intact cellular proteins that are subsequently detected by a TOF mass spectrometer. The resulting mass spectrum is then interrogated for definitive mass peaks that signify the presence of the target bacteria. SUMMARY OF THE INVENTION The invention is directed to a method for determining if a target bacterium is present in a liquid solution when the target bacterium is or may be present in a low concentration that is at or near the detection limit for a particular detection technology. As used herein, the term "target bacterium" refers to a specie of species of bacteria. In turn, the invention is applicable to situations in which it is desirable to determine whether a target bacterium (e.g., E. coli) is present in a liquid solution when the number of target bacterium per unit volume of solution (i.e., the concentration of the target bacterium) is or may be below the detection limit for a particular detection technology. In some instances, a plurality of target bacterium may be referred to as the target bacteria.
In one embodiment, the process comprises using a biological amplification procedure in which bacteriophages for the target bacterium are applied to the liquid solution. (Bacteriophages are viruses that infect bacteria and in the process produce many progeny. Structurally, the bacteriophage consists of a protein shell (capsid) that encapsulates the viral nucleic acid. The capsid is constructed from repeating copies of the same protein. Bacteriophages are able to infect specific bacterial cells and because of the multiplication of the genetic material, the cells eventually burst releasing millions of copies of the original phage.) The bacteriophages and any of the target bacterium present in the liquid solution are allowed to incubate. During the incubation period, the bacteriophages will multiply by infecting target bacterium present in the solution. More specifically, the bacteriophage replicates numerous copies of itself in an infected target bacterium. Eventually, the infected target bacterium lyses and the replicated or progeny bacteriophages are released into the liquid solution. The solution is then analyzed to determine if a biomarker for the bacteriophage is present, thereby indirectly indicating that the target bacterium is present in the liquid solution. Possible analysis techniques comprise mass spectrometry techniques, such as MALDI-MS and electro-spray ionization-MS techniques.
To assure that the detection of a biomarker for the bacteriophage indicates that the target bacterium is present in the liquid solution, a concentration of the bacteriophage is applied to the liquid solution that is below the detection limit for the biomarker for the bacteriophage for whatever analysis technique is employed. This assures that if the biomarker for the bacteriophage is detected by the analysis technique, the detectable concentration of the biomarker is attributable to the replication of the bacteriophage by the target bacterium present in the liquid solution. In certain situations, the use of such a concentration of bacteriophage has a multiplicity of infection ("MOI") (i.e., ratio of infecting bacteriophages to target bacterium) that is too low to rapidly produce a sufficient concentration of bacteriophages or biomarkers for the bacteriophage for detection. Another embodiment of the process addresses this problem by adding a very high concentration of the bacteriophage to the liquid solution, thereby assuring a high MOI. In this case, the concentration of the bacteriophage added to the solution may exceed the detection limit of whatever analysis technique is employed to detect the bacteriophage or biomarker of the bacteriophage. Consequently, the process applies parent bacteriophage to the solution that can distinguished from any progeny bacteriophage resulting from the infection of target bacterium in the mixture. If the distinguishable progency bacteriophage or a distinguishable biomarker of the progeny bacteriophage are present, this indicates that the target bacterium is present in the solution.probe.
In one embodiment, the parent bacteriophage (i.e., the bacteriophage initially applied to the solution) are "tagged" so that whatever analysis technique is employed is inherently capable of distinguishing the parent bacteriophage or parent bacteriophage biomarkers from the progeny bacteriophage or biomarkers for the progency bacteriophage. For example, if a mass spectral analysis technique is employed, the parent bacteriophage are "tagged" with a substance that alters or shifts the mass spectrum of the parent bacteriophage relative to the progeny bacteriophage, which will not inherit the "tag" from the parent bacteriophage. For example, a biotinylated bacteriophage can be employed as a parent bacteriophage and will have a different mass spectrum than the progeny bacteriophage produced by the biotinylated bacteriophage infecting target bacterium present in the solution. Other "tags" can be employed for other types of analytical techniques. In another embodiment, the parent bacteriophage possesses a characteristic that allows the parent bacteriophage to be separated from the progeny bacteriophage in the liquid solution prior to analysis, thereby assuring that most, if not all of the bacteriophages present in the liquid solution after separation are progeny bacteriophage resulting from the replication of the parent bacteriophage by target bacteria present in the liquid solution. In one embodiment, the parent bacteriophages initially applied to the liquid solution are biotinylated bacteriophages. Biotinylated bacteriophages are highly attracted to strepavidin. This attraction is exploited to separate the biotinylated bacteriophage from progeny bacteriophage resulting from replication of the biotinylated bacteriophage by target bacterium present in the mixture.
In one embodiment, the biotinylated bacteriophage are attached to a strepavidin coated probe. Consequently, separation of the biotinylated bacteriophage from the liquid solution after the incubation period is accomplished by removing the probe from the liquid solution. In another embodiment, strepavidin-coated magnetic beads are applied to the liquid solution. The beads are used to pick up the biotinylated bacteriophage. The beads are then separated from the liquid solution using a magnet, h yet another, embodiment a strepavidin coated probe (e.g., a slide) is applied to the liquid solution after the incubation period. The biotinylated bacteriophage adhere to the probe and then the probe is separated from the liquid solution.
Yet a further embodiment of the invention recognizes that the liquid solution in which the target bacterium may be present is or may be a complex mixture that includes biological material that makes the detection of the bacteriophage or biomarker for the bacteriophage more difficult or reduces the reliability of the information provided by the detection technology employed. For instance, when a mass spectrometry detection methodology is employed, the complex mixture may produce a signal in which the biomarker associated with the bacteriophage is obscured or, stated differently, has a low signal-to-noise ratio. To address this possibility, the liquid solution is subject to a purification step in which target bacterium that are present in the liquid solution are separated from the remainder of the solution, hi one embodiment, immuno-magnetic separation ("IMS") is utilized to separate target bacterium present in the liquid solution from the remainder of the solution. In one particular embodiment, magnetic beads are coated with an antibody for the target bacterium. The antibodies pick up the target bacterium present in the liquid mixture and then a magnet is used to separate the beads from the remainder of the liquid solution. The beads and any adhering target bacterium are then subjected to the biological amplification process and analysis. It should be appreciated this purification step also addresses the possibility that feral versions of the bacteriophage may be present in the liquid solution and that such versions could produce a false positive if the liquid solution was not subjected to a purification step.
If feral versions of the bacteriophage are not of concern, the purification step can be implemented after the biological amplification process. In this embodiment, the purification step involves separating the bacteriophages and the liquid solution, rather than separating the target bacterium and the liquid solution. In one embodiment, an IMS is used in which magnetic beads are coated with an antibody for the bacteriophage. The beads pick up the bacteriophages present in the solution and then a magnet is used to separate the beads from the remainder of the solution.
In another embodiment of the invention, the analysis step comprises using MS/MS analysis to determine if a biomarker for the target bacterium is present. The use of MS/MS analysis produces a highly reliable indication of the presence of a biomarker for a target bacterium. As a consequence, at least in some cases, the use of MS/MS analysis renders the need for a purification step unnecessary.
In yet another embodiment, the invention is directed to a process for detecting low concentrations of a target bacterium in complex mixtures. In one embodiment, the process comprises using an IMS procedure to isolate at least some of a target bacterium that may be present in a liquid mixture. The process further includes employing a biological amplification procedure in which a low titer or concentration of bacteriophages for the target bacterium are applied to at least some of the target bacterium that has been isolated by the IMS procedure. The mixture of bacteriophages and any of the target bacterium that has been isolated is allowed to incubate. If at least a certain concentration of the target bacterium is present, the bacteriophages will multiply during the incubation period such that a high titer or concentration of bacteriophages will be present in the mixture and detectable by MALDI- TOF-MS analysis. If no or only a small number of the target bacterium is present, there will be a low concentration of bacteriophages present in the mixture that will not be reasonably detectable by MALDI-TOF-MS analysis. Following incubation, a MALDI-TOF-MS analysis is performed on the incubated mixture of bacteriophages and target bacterium. The resulting mass spectrum is analyzed to determine if a protein that is associated with the bacteriophages is present. If the protein for the bacteriophage is detected, then it can be concluded that at least a low concentration of the target bacterium is present in the mixture.
It should also be appreciated that the method of the invention is capable of detecting low concentration of a target bacterium regardless of the manner in which the bacterium was grown or propogated. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 depicts, for one embodiment of the invention, an immunomagnetic bead that is used to isolate the target microorganism (antibodies not drawn to scale);
Figure 2 is a schematic representation of the immunomagnetic purfication step used to isolate a target antigen (Escherichia coli) in one embodiment of the invention;
Figure 3 is a schematic representation of the bacteriophage amplification step for one embodiment of the invention;
Figure 4 shows a typical MALDI-TOF mass spectrum obtained from a high titer sample of MS2 in PBS; and Figures 5A-5C illustrate how an embodiment of the invention was able detect a biomarker of the bacteriophage indicative of presence of E. coli for decreasing concentrations of E. coli.
DETAILED DESCRIPTION Generally, the invention relates to the use of a bacteriophage to indirectly detect the presence of a target bacterium in a liquid solution where the concentration of the target bacterium is or is likely to be near or below the detection limit for the particular detection technology employed.
Bacteriophages are viruses that infect bacteria and in the process of infecting the bacteria produce many progeny. Structurally, the bacteriophage consists of a protein shell (capsid) that encapsulates the viral nucleic acid. The capsid is constructed from repeating copies of the same protein(s). Bacteriophages are able to infect specific bacterial cells and because of the multiplication of the number of progeny, the cells eventually burst releasing millions of copies of the original phage. This infection process has been utilized to serve as a biomarker amplification step for detecting low concentrations of target bacterial cells. For example, the capsid of the MS2 bacteriophage contains 180 copies of a 13 kDa protein. This particular virus specifically infects strains of Escherichia coli and is able to produce between 10,000 to 20,000 copies of itself within 40 min after attachment to the target bacterial cell. Essentially, one E. coli could be infected with MS2 resulting in the replication of the capsid protein(s) by a factor of 1.8 x 106.
The results from matrix assisted laser desorption ionization/mass spectrometry (MALDI/TOF) can be used to show the utility of the amplification step. MALDI-TOF-MS is a proven technique for identifying whole cellular microorganisms (Holland et al 1996; van Barr 2000; Madonna et al. 2000). In principle, MALDI is a 'fingerprinting' technique where mass spectra featuring varying distributions of protein signals are generated. The signature profiles are produced due to inherent differences in microbial proteomes that make it possible to discriminate between organisms down to the strain level (Arnold and Reilly 1998).
In an experiment where the protein MALDI signal from target bacterial cells was too weak for detection, the addition of low levels (too low to detect by MALDI) of the appropriate phage to the target bacterial cells after about thirty minutes produced a detectable protein MALDI signal attributable to the phage capsid protein. Bacteriophages specific for other bacterial species typically have capsid proteins of different molecular weight and therefore give a different MALDI signal. Therefore, the procedure is applicable to a multitude of different bacterial species. Other detection technologies, such as ion mobility spectrometry, optical spectroscopy, immuno techniques, chromatographic techniques and aptamer processes, are also feasible. Generally, the process for detecting low concentrations of a target bacterium in a complex liquid mixture that contains or is likely to contain biological material other than the target bacterium comprises processing the mixture or a portion thereof to produce a liquid mixture, solution or sample for analysis that, if at least a certain concentration of the target bacterium is present in the mixture, a discernable signal or indication thereof is produced. It should be understood that the terms "liquid solution" and "liquid mixture" refer to the original solution or mixture that is the subject of the test and any liquid solutions or mixtures that, as a result of the application of the method, contain a portion of the orignal solution or mixture.
In one embodiment, the process comprises making a determination if a low concentration of a target bacterium is present in the liquid solution. This determination can be made by assuming that any of the target bacterium that are present in the liquid solution are present in a low concentration. Alternatively, an assay can be performed to determine if the target bacterium is present in a concentration that reliably exceeds the detection limit of whatever detection technology is being utilized. For instance, a mass spectrometry technique can be utilized. If the mass spectrometry technique provides a reliable signal indicative of the presence of the target bacterium in the liquid solution, no further steps needs to be taken. If, however, the mass spectrometry technique does not provide a reliable signal indicative of the presence of the target bacterium in the liquid solution, then it can be concluded that the target bacterium may be present in the liquid solution but in a concentration that below or near the detection limit of the mass spectrometry technique. In this case, further steps are taken to determine whether the target bacterium is present in the liquid solution in a concentration that is under the detection limit of the mass spectrometry technique. The process involves a purification step that involves capturing the target bacterium that may be present in the mixture and separating any of the captured bacterium from other biological material that may be present in the mixture. By separating any of the captured target bacterium from other biological material that may be present in the mixture, the portion of the subsequently produced mass spectrum signal associated with other biological material present in the mixture is reduced. In one embodiment, an immumomagnetic separation (IMS) technique is used to capture and separate the target bacterium.
The process further comprises subjecting at least some of any of the captured and separated target bacterium to an amplification step in which the target bacterium are infected with a bacteriophage that is specific to the target bacterium. If there is at least a certain concentration of the target bacterium present, the bacteriophage will multiply to a point that a biomarker associated with the bacteriophage will be detectable using an analysis techique, such as MALDI/TOF-MS. In the case of MALDI/TOF-MS, a portion of the subsequently produced mass spectral signal indicative of the presence of the bacteriophage will be increased. If there is less than a particular concentration of the target bacterium present, the bacteriophage will not multiply sufficiently to be detectable in the mass spectrum produced using MALDI/TOF-MS. In essence, provided there is a least a certain concentration of the target bacterium present in the mixture, the purification and amplification steps serve to increase the signal-to-noise ratio for the portion of the subsequently produced mass spectrum that is associated with the bacteriophage. After amplification, at least a portion of the amplified mixture is subjected to analysis to determine if a biomarker for the target bacterium is present. For example, MALDI/TOF- MS analysis can be used to produce a mass spectrum. The mass spectrum is analyzed to determine if one or more biomarkers for the bacteriophage are present. If such biomarkers are present, this is an indirect indication that at least a certain concentration of the target bacterium was present in the originally sampled mixture.
It should be appreciated that the need for the purification step may not be necessary in situations in which the portion of the signal associated with other biological materials can be filtered, eliminated or otherwise ignored and/or in situations in which the amplification step has a gain such that the portion of the mass spectrum associated with the bacteriophage is likely to exceed any background signal associated with other biological materials and/or situations in which a false positive is considered to be remote. Further, it should also be appreciated that one of the other biological materials that can make it difficult to determine if the biomarker for the bacteriophage is present is a wild version of the bacteriophage that is present in the liquid solution that is being tested. The purification step addresses the presence of a wild bacteriophage.
If the presence or possible presence of a wild bacteriophage in the solution or mixture being tested is not a concern, it is also possible to perform a purification step after the amplification step. However, in this case, the bacteriophage is separated from the remainder of the liquid solution. The previously noted IMS technique can be employed. However, the magnetic bead is coated with an antibody for the bacteriophage, rather than an antibody for the target bacterium. It is also possible in certain cases to eliminate the need for a purification step by utilizing a highly specific analysis technique, such as MS/MS, in which the biomarker for the bacteriophage is so highly specific to the bacteriophage that there is little likelihood of a false positive. Currently, the use of MS/MS is limited to capsid proteins that are less than 7000 Da. With reference to Fig. 1, the immunomagnetic separation (IMS) technique for capturing the target bacterium in a mixture and separating any captured target bacterium from other biological material in the mixture is described. Microsize beads are constructed from an iron oxide core coated with a polymeric surface. Secondary antibodies raised against the Fc region of the primary antibodies are covalently attached via a linker to the polymer surface. The primary antibody (raised against a targeted microorganism) is attached to the beads by strong noncovalent interactions with the secondary antibody, which holds the primary antibody in the proper orientation for reaction with the targeted antigen.
With reference to Fig. 2, the immunomagnetic beads are added to the bacterial or biological mixture that is the subject of the analysis and incubated for 20 minutes at room temperature. The beads are then isolated to the side of the reaction tube using a magnet. This process allows the extraneous (non-targeted) material to be removed by aspiration. At this stage, the beads can be washed several times prior to re-suspending them in PBS. With reference to Fig. 3, the bead-bacterial target complex is admixed with a low titer suspension of bacteriophage specific to the targeted bacterium. The titer is held low so that the mass spectrometry signal from the virus is non-detectable. After a 40-minute incubation, the bacteriophage have completed a propagation cycle of attachment, insertion, self- assembly, and cell lysis resulting in the production of many progeny that are released into the reaction milieu. The milieu is then analyzed to determine if a biomarker for the bacteriophage is present that indirectly indicates that the target bacterium was present. For instance, the milieu can be analyzed by MALDI-TOF-MS using a sandwich sample preparation technique with a ferulic acid matrix. Other MALDI matrices known in the art are also feasible. The resulting mass spectrum shows the presence of the bacteriophage capsid protein, which would not have been present if the target bacterium was not also present.
An IMS technique for capturing target bacterium in a mixture and separating any captured target bacterium from other biological material in the mixture and subsequent MALDI-TOF/MS analysis are described in U.S. patent application serial no. 10/063,346, entitled "Method for Determining if a Type of Bacteria is Present in a Mixture," filed on April 12, 2002, which is incorporated herein, in its entirety, by reference.
Example As described hereinafter, an embodiment of the method has been used to reduce the detection limit for E. coli to less than 5.0 x 104 cells mL"1. The method used immunomagnetic beads coated with antibodies against E. coli, hereinafter referred to as the target-bead complex, to isolate the bacterium from solution. The target-bead complex was then re-suspended in a solution containing MS2, a bacteriophage that is specific for E. coli. The MS2 bacteriophage concentration was adjusted so that the ion signal from the capsid protein of the MS2 bacteriophage was below the detection limit of the mass spectrometer. After a 40-minute incubation period, an aliquot of the solution was removed and analyzed by the on-probe MALDI-TOF-MS procedure for the 13 kDa capsid protein. The [M+H]+ (m/z 13,726) and [M+2H]+2 (m/z 6865) ion signals for the MS2 capsid protein were detected (Figure 4).
With reference to Fig. 5A, application of the process to a mixture that contains a concentration of 5.0 x 10 E. coli cells mL yields a mass spectrum with protein signals for both E. coli and the MS2 bacteriophage. The process was repeated for decreasing concentrations of E. coli. Specifically, with reference to Fig. 5B, the process was repeated for a concentration of ~5.0 x 105 E. coli cells mL"1. In this case, the mass spectrum fails to definitively show any protein signals for the E. coli cells, but does show the protein signals for the MS2 bacteriophage capsid protein. With reference to Fig. 5C, the process was repeated for an E. coli concentration of ~5.0 x 10 cells mL"1. In this case, the mass spectrum fails to definitively show any protein signals for the E. coli cells but still show protein signals for the MS2 bacteriophage capsid protein. These results indicate that E. coli was trapped by the immunomagnetic beads and then infected by the MS2 virus, which was able to multiply and increase the concentration of the capsid protein to a detectable level. Presently, target bacterium concentrations of as low as ~1.0 x 103 cells mL"1 have been indirectly detected using this process.
The following describes various aspects of the embodiment of the method implemented with respect to the example of the detection of E. coli.
E. coli Preparation
The E. coli bacteria were grown in trypticase soy broth (TSB) (Difco, Detroit, MI) with incubation at 37° C using standard microbial methods.
Bacteriophage Propagation
Bacteriophage propagation was performed in accordance to the Adams agar-overlay method as described in M. H. Adams' Bacteriophages (Interscience Publishers, Inc., New York, 1959). Briefly, a soft-agar/host covering was prepared by overlaying agar plates (trypticase soy agar, Difco) with a 2.5 mL of melted 0.5% agar (same medium), which contained two drops of a 20 hr host in TSB. The soft-agar covering was allowed to harden before the addition of a 0.5 mL overlay of a concentrated suspension of MS2, prepared by re- hydrating freeze-dried MS2 in TSB. After 24 hours, the soft agar was scraped off the surface of the agar plates and centrifuged (1000G) for 25 min to sediment the cellular debris and agar. The supernatant was conserved, passed through 0.22 μm Millipore filters, and stored by refrigeration at 4-8° C. Immunomagnetic Bead Preparation
Rabbit anti-E. coli IgG antibodies (Cortex Biochem, San Leandro, CA) were attached to the immunomagnetic beads (MagaBeads, Goat anti-Rabbit IgG F(c), Cortex Biochem) using the manufacturer's suggested protocol.
Immunomagnetic separation (IMS) E. coli
Escherichia coli were isolated from aqueous suspensions by affinity capture using the immunomagnetic beads. Suspensions of bacteria were prepared in 1.5mL microcentrifuge tubes (Brinkmann Instruments, Inc., Westbury, Ny) by combining 100 μL of broth media with 900 μL of phosphate buffer saline (PBS, 0.01M Na2HPO4, 0.15M NaCl titrated to pH 7.35 with HC1). Cell concentrations were determined using a Petroff-Hauser counting chamber (Hauser Scientific, Horsham, PA).
The immunomagnetic separation ( S) procedure developed in this investigation involved the following steps: In the first step, a 30 μL aliquot of the immunomagnetic beads were added to the bacterial sample solution and incubated for 20 minutes at room temperature with continuous shaking. The second step involved concentrating the beads to the side of the sample tube using a magnetic particle concentrator (Dynal, Lake Success, NY) and removing the supernatant using a lmL pipette, h the third step, the magnet was removed and the beads were re-suspended in lmL of fresh PBS with vigorous shaking for 20 sec to wash away any nonspecifically adhering components. The bead suspension was then transferred to a new tube and steps 2 and 3 repeated one more time. In the fourth and final step, the beads were isolated with the magnet followed by decanting the buffer wash to waste and re-suspending the beads in 500 μL of deionized water. Subsequently, the bead-E. coli complexes were admixed with a low titer (below the detection limit of the mass spectrometer) of the MS2 bacteriophage and incubated at room temperature with gentle shaking for 40 minutes. An aliquot of the suspension was then removed and analyzed for the MS2 capsid protein using a sandwich sample preparation with a ferulic acid matrix (12.5mg of ferulic acid in lmL of 17% formic acid: 33% acetonitrile: 50% deionized H2O).
MALDI-TOF MS
All mass spectra were generated on a Voyager-DE STR+ (AB Applied Biosystems, Framingham, MA) MALDI-TOF mass spectrometer, operating in the positive linear mode. The following parameters were used: accelerating voltage 25 kV, grid voltage 92% of accelerating voltage, extraction delay time of 350 nsec, and low mass ion gate set to 4 l Da. The laser intensity (N2, 337 nm) was set just above the ion generation threshold and pulsed every 300ns. Mass spectra were acquired from each sample by accumulating 100 laser shots from five different sample spots (final spectrum = average of 5 x 100 laser shots).
It should be appreciated that to assure that the detection of a biomarker for the bacteriophage indicates that the target bacterium is present in the liquid solution, a concentration of "parent" bacteriophage is applied to the liquid solution that is below the detection limit for the bacteriophage or biomarker for the bacteriophage for whatever analysis technique is employed. This assures that if the bacteriophage or the biomarker for the bacteriophage is detected by the analysis technique, the detectable concentration of the bacteriophage or biomarker is attributable to progeny bacteriophage, i.e., bacteriophage resulting from the replication of the bacteriophage by the target bacterium present in the liquid solution. In certain situations, the use of such a concentration of "parent" bacteriophage has a multiplicity of infection ("MOI") (i.e., the ratio of the number of parent bacteriophage to the number of target bacterium) that is too low to produce a sufficient concentration of bacteriophages or biomarkers for the bacteriophage for detection.
To overcome the drawbacks associated with a low MOI, a sufficiently high concentration of "parent" bacteriophage is added to the liquid solution. In this case, the concentration of the "parent" bacteriophage added to the solution may exceed the detection limit of whatever analysis technique is employed to detect the bacteriophage or biomarker of the bacteriophage. Consequently, analysis of a liquid solution treated in this manner could detect the "parent" bacteriophages that were added to the solution, rather than the progeny bacteriophage resulting from replication by the target bacteria.
Consequently, another embodiment of the process applies a concentration of "parent" bacteriophage to the solution that is capable of being distinguished from any progeny bacteriophage. In one embodiment, the parent bacteriophage (i.e., the bacteriophage initially applied to the solution) are "tagged" so that whatever analysis technique is employed is inherently capable of distinguishing the parent bacteriophage or parent bacteriophage biomarkers from the progeny bacteriophage or biomarkers for the progency bacteriophage. For example, if a mass spectral analysis technique is employed, the parent bacteriophage are "tagged" with a substance that alters or shifts the mass spectrum of the parent bacteriophage relative to the progeny bacteriophage, which will not inherit the "tag" from the parent bacteriophage. For example, a biotinylated bacteriophage is employed as a parent bacteriophage and has a different mass spectrum than the progeny bacteriophage produced by the biotinylated bacteriophage infecting target bacterium present in the solution. Other "tags" can be employed for other types of analytical techniques.
In another embodiment, the parent bacteriophage possesses a characteristic that allows the parent bacteriophage to be separated from any of the progeny bacteriophage in the liquid solution prior to analysis, thereby assuring that most, if not all of the bacteriophage present in the liquid solution after separation are progeny bacteriophage resulting from the replication of the parent bacteriophage by target bacteria present in the liquid solution. In one embodiment, biotinylated bacteriophage are initially applied to the liquid solution. Biotinylated bacteriophage are highly attracted to strepavidin. Consequently, to separate the biotinylated bacteriophage from the liquid solution a strepavidin probe is utilized. In one embodiment, the biotinylated bacteriophage are attached to a strepavidin coated probe and the probe is placed in the liquid solution. In this case, separation of the biotinylated bacteriophage from the liquid solution after the incubation period is accomplished by removing the probe from the liquid solution. In another embodiment, strepavidin-coated magnetic beads are applied to the liquid solution. The biotinylated bacteriophages are attached to the strepavidin-coated magnetic beads prior to the application of the beads to the solution. Alternatively, the beads are used to pick up biotinylated bacteriophages that were previously added to the solution and then separated from the liquid solution using a magnet. In yet another, embodiment a strepavidin coated probe (e.g., a slide) is applied to the liquid solution after the incubation period. The biotinylated bacteriophages adhere to the probe and then the probe is separated from the liquid solution. Regardless of the manner in which the biotinylated bacteriophages are separated from the liquid mixture, at least a portion of the solution is then subjected to analysis to determine if the bacteriophage or a biomarker for the bacteriophage is present, which indirectly indicates that the target bacteria was present in the solution.

Claims

What is claimed is:
1. A method for determining if a target bacterium is present in a liquid solution when the target bacterium is or may be present in a low concentration that is near or below the detection limit for a particular detection technology comprising: making a determination as to whether a low concentration of a target bacterium may be present in a liquid solution; using, following said step of making and if a determination is made that a low concentration of said target bacterium may be present, a first quantity of a bacteriophage to infect at least some of any target bacterium that are present in said liquid solution and multiply the number of bacteriophage in said liquid solution; and analyzing, following said step of using, at least a portion of said liquid solution to determine if a biomarker for said bacteriophage is present that indirectly indicates that said target bacterium is also present in said liquid solution.
2. A method, as claimed in claim 1, wherein: said step of making comprises assuming that any of said target bacterium that are present in said liquid solution are present in said liquid solution in a low concentration.
3. A method, as claimed in claim 1, wherein: said step of making comprises performing an assay to determine if a biomarker for said target bacterium is present that is indicative of the presence of a concentration of said target bacterium that reliably exceeds the detection limit of the detection technology.
4. A method, as claimed in claim 3, wherein: said step of performing an assay comprises performing a mass spectrum analysis.
5. A method, as claimed in claim 1, wherein: said step of using comprises applying a first quantity of said bacteriophage to said liquid solution such that there is likely to be a high multiplicity of infection ("MOI") number.
6. A method, as claimed in claim 1, wherein: said step of analyzing comprises performing a mass spectrum analysis.
7. A method, as claimed in claim 1, wherein: said step of analyzing comprises performing a MALDI analysis.
8. A method, as claimed in claim 1, wherein: said step of analyzing comprises performing a MALDI-TOF analysis.
9. A method, as claimed in claim 1, wherein: said step of analyzing comprises performing an electro-spray ionization mass spectrometry analysis.
10. A method, as claimed in claim 1, wherein: said step of analyzing comprises performing an ion mobility spectrometry analysis.
11. A method, as claimed in claim 1, wherein: said step of analyzing comprises performing an optical spectroscopy analysis.
12. A method, as claimed in claim 1, wherein: said step of analyzing comprises performing an immuno analysis.
13. A method, as claimed in claim 1, wherein: said step of analyzing comprises performing a chromatographic analysis.
14. A method, as claimed in claim 1, wherein: said step of analyzing comprises performing an aptamer analysis.
15. A method, as claimed in claim 1, further comprising: determining whether said liquid solution is likely to contain a biological element with a biomarker that could create a false positive for a biomarker for said bacteriophage.
16. A method, as claimed in claim 15, wherein: said step of determining comprises assuming that a biological element is present in said liquid solution that has a biomarker that could create a false positive for a biomarker for said bacteriophage.
17. A method, as claimed in claim 15, wherein: said step of determining comprises performing an assay to determine if a biomarker is present that could create a false positive for a biomarker for said bacteriophage.
18. A method, as claimed in claim 15, further comprising: after a determination has been made that said biological element may present, separating said target bacterium from said liquid solution.
19. A method, as claimed in claim 18, wherein: said step of separating comprises using immuno-magnet beads coated with antibodies for said target bacteria.
20. A method, as claimed in claim 18, further comprising: after a determination has been made said step of separating is performed prior to said step of using.
21. A method, as claimed in claim 18, wherein: after a determination has been made that said biological element may present and after said step of using, separating said bacteriophage from said liquid solution.
22. A method for determining if a target bacterium is present in a liquid solution when the target bacterium is or may be present in a low concentration that is near or below the detection limit for a particular detection technology comprising: making a determination as to whether a low concentration of a target bacterium may be present in a liquid solution; using, following said step of making and if a determination is made that a low concentration of said target bacterium may be present, a first quantity of a biotinylated bacteriophage to infect at least some of any target bacterium that are present in said liquid solution and multiply the number of bacteriophage in said liquid solution; and analyzing, following said step of using, said liquid solution to determine if a biomarker for said bacteriophage is present that indirectly indicates that said target bacterium is also present in said liquid solution.
23. A method, as claimed in claim 22, wherein: said step of using comprises applying a first quantity of said biotinylated bacteriophage to said liquid solution such that there is likely to be a high multiplicity of infection ("MOI") number.
24. A method, as claimed in claim 22, wherein: said step of using comprises applying a first quantity of said biotinylated bacteriophage to said liquid solution that is near or likely to exceed the multiplicity of infection ("MOI") number, wherein said first quantity of biotinylated bacteriophage are attached to a strepavidin coated probe.
25. A method, as claimed in claim 22, wherein: said step of analyzing comprises separating a substantial portion of said biotinylated bacteriophage from said liquid solution to produce a remaining liquid solution.
26. A method, as claimed in claim 25, wherein: said step of separating comprises using a strepavidin coated probe.
27. A method, as claimed in claim 26, wherein: said step of using a strepavidin coated probe comprises separating a strepavidin coated probe from said liquid solution, said strepavidin coated probe having been used to apply said biotinylated bacteriophage to said liquid solution in said step of using.
28. A method, as claimed in claim 26, wherein: said step of using a strepavidin coated probe comprises applying a strepavidin coated probe to said liquid solution to capture biotinylated bacteriophage in said liquid solution.
29. A method, as claimed in claim 25, wherein: said step of analyzing comprises assaying said remaining liquid solution to determine if a biomarker for said bacteriophage is present.
30. A method, as claimed in claim 29, wherein: said step of assaying comprises performing a mass spectrum analysis.
31. A method, as claimed in claim 22, further comprises: separating said target bacterium from said mixture.
32. A method, as claimed in claim 31, wherein: said step of separating is performed prior to said step of using.
33. A method, as claimed in claim 22, further comprises: separating said biotinylated bacteriophage from said mixture.
34. A method, as claimed in claim 33, wherein: said step of separating is performed after said step of using.
35. A method for determining if a target bacterium is present in a liquid solution when the target bacterium is or may be present in a low concentration that is near or below the detection limit for a particular detection technology comprising: first determining whether a low concentration of a target bacterium may be present in a liquid solution; second determining whether a biological element may be present in said liquid solution that has a biomarker that could create a false positive for a biomarker for a bacteriophage used in said subsequent step of using and used in said step of analyzing as an indirect biomarker for the presence of said target bacterium; first using, following said step of first determining and when a determination has been made that a low concentration of said target bacterium may be present, a first quantity of a biotinylated bacteriophage to infect at least some of any target bacterium that are present in said liquid solution and multiply the number of bacteriophage in said liquid solution; second using, following said step of second determining and when a determination has been made that a biological element may be present, purification technique; and analyzing, following said steps of first using and second using, said liquid solution to determine if a biomarker for said bacteriophage is present that indirectly indicates that said target bacterium is also present in said liquid solution.
36. A method, as claimed in claim 35, wherein: said step of second using comprises performing a purification technique that separates at least some of any target bacterium that are present in said liquid solution from said liquid solution.
37. A method, as claimed in claim 35, wherein: said step of performing occurs before said step of first using.
38. A method, as claimed in claim 37, wherein: said step of performing comprises using immuno-magnetic beads to which are attached antibodies for said target bacterium.
39. A method, as claimed in claim 35, wherein: said step of second using comprises performing a purification technique that separates said bacteriophage from said liquid mixture.
40. A method, as claimed in claim 39, wherein: said step of performing occurs after said step of first using.
41. A method, as claimed in claim 39, wherein: said step of performing comprises using immuno-magnetic beads to which are attached antibodies for said bacteriophage.
42. A method for determining if a target bacterium is present in a liquid solution when the target bacterium is or may be present in a low concentration that is near or below the detection limit for a particular detection technology comprising: making a determination as to whether a low concentration of a target bacterium may be present in a liquid solution; using, following said step of making and if a determination is made that a low concentration of said target bacterium may be present, a first quantity of a tagged bacteriophage to infect at least some of any target bacterium that are present in said liquid solution and produce a number of untagged bacteriophage in said liquid solution; and analyzing said liquid solution to determine if a biomarker for said untagged bacteriophage and that is distinguishable relative to any biomarkers for said tagged bacteriophage is present and that indirectly indicates that said target bacterium is also present in said liquid solution.
43. A method, as claimed in claim 42, wherein: said step of analyzing comprises separating said tagged bacteriophage from said liquid solution..
44. A method, as claimed in claim 42, wherein: said step of analyzing comprises using a mass spectrometry analysis technique to produce a mass spectrum.
45. A method, as claimed in claim 44, wherein: said step of using comprises inspecting said mass spectrum to determine if a biomarker that is unique to said untagged bacteriophage relative to said tagged bacteriophage is present.
PCT/US2003/011253 2002-04-12 2003-04-10 Method for detecting low concentrations of a target bacterium that uses phages to infect target bacterial cells WO2003087772A2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
AT03726259T ATE469240T1 (en) 2002-04-12 2003-04-10 METHOD FOR DETECTING LOW CONCENTRATIONS OF A TARGET BACTERIA USING PHAGES TO INFECT TARGET BACTERIAL CELLS
DE60332740T DE60332740D1 (en) 2002-04-12 2003-04-10 METHOD FOR DETECTING LOW CONCENTRATIONS OF A TARGET BACTERIUM USING PHAGS FOR INFECTING TARGET BACTERIAL CELLS
EP03726259A EP1540018B1 (en) 2002-04-12 2003-04-10 Method for detecting low concentrations of a target bacterium that uses phages to infect target bacterial cells
AU2003228505A AU2003228505B2 (en) 2002-04-12 2003-04-10 Method for detecting low concentrations of a target bacterium that uses phages to infect target bacterial cells
CA2482173A CA2482173C (en) 2002-04-12 2003-04-10 Method for detecting low concentrations of a target bacterium that uses phages to infect target bacterial cells
JP2003584669A JP4490112B2 (en) 2002-04-12 2003-04-10 A method for detecting low concentrations of target bacteria using phage to infect target bacterial cells
EP04775884A EP1613965A2 (en) 2003-04-10 2004-04-12 Apparatus and method for detecting microscopic living organisms using bacteriophage
JP2006532405A JP4578478B2 (en) 2003-04-10 2004-04-12 Apparatus and method for detecting microorganisms using bacteriophage
PCT/US2004/011285 WO2005001475A2 (en) 2003-04-10 2004-04-12 Apparatus and method for detecting microscopic living organisms using bacteriophage
HK05111596.0A HK1082525A1 (en) 2002-04-12 2005-12-15 Method for detecting low concentrations of a target bacterium that uses phages to infect target bacterial cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US31918402P 2002-04-12 2002-04-12
US60/319,184 2002-04-12

Publications (2)

Publication Number Publication Date
WO2003087772A2 true WO2003087772A2 (en) 2003-10-23
WO2003087772A3 WO2003087772A3 (en) 2005-04-21

Family

ID=29250416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/011253 WO2003087772A2 (en) 2002-04-12 2003-04-10 Method for detecting low concentrations of a target bacterium that uses phages to infect target bacterial cells

Country Status (10)

Country Link
US (3) US7166425B2 (en)
EP (1) EP1540018B1 (en)
JP (2) JP4490112B2 (en)
AT (1) ATE469240T1 (en)
AU (1) AU2003228505B2 (en)
CA (1) CA2482173C (en)
DE (1) DE60332740D1 (en)
ES (1) ES2346424T3 (en)
HK (1) HK1082525A1 (en)
WO (1) WO2003087772A2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005001475A3 (en) * 2003-04-10 2005-03-03 Kent Voorhees Apparatus and method for detecting microscopic living organisms using bacteriophage
EP1556502A2 (en) * 2002-10-15 2005-07-27 Regents Of The University Of Minnesota Assays to detect or quantify bacterial or viral pathogens and contaminants
WO2006083292A2 (en) * 2004-06-07 2006-08-10 Microphage, Incorporated Microorganism detection using bacteriophage amplification
US7153407B2 (en) 1999-11-08 2006-12-26 Princeton Biochemicals, Inc. Multi-dimensional electrophoresis apparatus
US7166425B2 (en) 2002-04-12 2007-01-23 Colorado School Of Mines Method for detecting low concentrations of a target bacterium that uses phages to infect target bacterial cells
WO2007035504A1 (en) * 2005-09-15 2007-03-29 Microphage Incorporated Method and apparatus for identification of microorganisms using bacteriophage
US7329388B2 (en) 1999-11-08 2008-02-12 Princeton Biochemicals, Inc. Electrophoresis apparatus having staggered passage configuration
WO2008063838A2 (en) * 2006-10-31 2008-05-29 Microphage Incorporated Method and apparatus for enhanced bacteriophage-based diagnostic assays by selective inhibition of potential cross-reactive organisms
US8007724B2 (en) 2003-11-07 2011-08-30 Princeton Biochemicals, Inc. Electrophoresis apparatus having at least one auxiliary buffer passage
US8092990B2 (en) 2005-03-31 2012-01-10 Colorado School Of Mines Apparatus and method for detecting microscopic organisms using bacteriophage
US8182746B2 (en) 2003-11-07 2012-05-22 Princeton Biochemicals, Inc. Electrophoresis process using a valve system
US8216780B2 (en) 2002-04-12 2012-07-10 Microphage (Tm) Incorporated Method for enhanced sensitivity in bacteriophage-based diagnostic assays
CN102762980A (en) * 2010-03-03 2012-10-31 株式会社日立高新技术 Analysis device
WO2013038022A1 (en) 2011-09-16 2013-03-21 bioMérieux Method for characterizing bacteria by detection of non-structural bacteriophage proteins
US8455186B2 (en) 2007-06-15 2013-06-04 MicroPhage™ Incorporated Method of detection of microorganisms with enhanced bacteriophage amplification
US8697434B2 (en) 2008-01-11 2014-04-15 Colorado School Of Mines Detection of phage amplification by SERS nanoparticles
CN104865186A (en) * 2015-05-29 2015-08-26 重庆大学 Portable quick detection method for pathogenic bacteria
US9441204B2 (en) 2008-04-03 2016-09-13 Colorado School Of Mines Compositions and methods for detecting Yersinia pestis bacteria
EP3287148A3 (en) * 2016-08-26 2018-06-20 Bacsassin B.V. System for bacteria detection and elimination according to sid
CN113325063A (en) * 2021-05-19 2021-08-31 宁波大学 Device and method for verifying detection result of colloidal gold immunochromatographic test paper

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020192676A1 (en) * 2001-06-18 2002-12-19 Madonna Angelo J. Method for determining if a type of bacteria is present in a mixture
US20050003346A1 (en) * 2002-04-12 2005-01-06 Colorado School Of Mines Apparatus and method for detecting microscopic living organisms using bacteriophage
US20090286225A1 (en) * 2004-02-13 2009-11-19 Microphagetm Incorporated Method and apparatus for bacteriophage-based diagnostic assays
US20050250096A1 (en) * 2004-02-13 2005-11-10 Microphage, Incorporated Microorganism detection using bacteriophage amplification
JP2008535480A (en) * 2005-03-04 2008-09-04 ブレイズ ベンチャー テクノロジーズ リミテッド Bacteria collection method and collection apparatus
FR2883296B1 (en) * 2005-03-15 2007-05-18 Nicolas Bara METHOD AND DEVICE FOR ISOLATING MICROORGANISMS
US20110097702A1 (en) * 2005-03-31 2011-04-28 Voorhees Kent J Methods and compositions for in situ detection of microorganisms on a surface
US20070178450A1 (en) * 2006-01-27 2007-08-02 Microphage (Tm) Incorporation Method and apparatus for determining level of microorganisms using bacteriophage
US20070292397A1 (en) * 2006-06-19 2007-12-20 Mcnulty Amy K Method for the detection and neutralization of bacteria
EP2140018B1 (en) 2007-04-04 2012-08-01 Guild Associates, Inc. Biological detection system and method
CN102308215B (en) * 2009-02-10 2014-06-25 株式会社日立高新技术 Immunoanalytical method and system using mass spectrometry technology
US20110183314A1 (en) * 2010-01-26 2011-07-28 Microphage Incorporated Bacteriophage-based microorganism diagnostic assay using speed or acceleration of bacteriophage reproduction
GB201011152D0 (en) 2010-07-02 2010-08-18 Microsens Medtech Ltd Capture of micro-organisms
US10519483B2 (en) 2012-02-21 2019-12-31 Laboratory Corporation Of America Holdings Methods and systems for rapid detection of microorganisms using infectious agents
JP2015510598A (en) * 2012-02-21 2015-04-09 ラボラトリー コーポレイション オブ アメリカ ホールディングス Method and system for detection of microorganisms
US10662459B2 (en) 2012-03-23 2020-05-26 Laboratory Corporation Of America Holdings Biologic machines for the detection of biomolecules
JP2015518167A (en) * 2012-05-29 2015-06-25 バイオデシックス・インコーポレイテッドBiodesix Inc Deep-MALDITOF mass spectrometry method for complex biological samples (eg, serum) and uses thereof
US9481903B2 (en) 2013-03-13 2016-11-01 Roche Molecular Systems, Inc. Systems and methods for detection of cells using engineered transduction particles
WO2014160418A2 (en) 2013-03-13 2014-10-02 GeneWeave Biosciences, Inc. Non-replicative transduction particles and transduction particle-based reporter systems
US9540675B2 (en) 2013-10-29 2017-01-10 GeneWeave Biosciences, Inc. Reagent cartridge and methods for detection of cells
US10351893B2 (en) 2015-10-05 2019-07-16 GeneWeave Biosciences, Inc. Reagent cartridge for detection of cells
JP2019049455A (en) * 2017-09-08 2019-03-28 東芝テック株式会社 Sample preparation device and sample preparation method
WO2020257502A1 (en) 2019-06-21 2020-12-24 Laboratory Corporation Of America Holdings Methods for producing mutant bacteriophages for the detection of listeria
CA3147173A1 (en) 2019-08-26 2021-03-04 Stephen Erickson Devices and methods for detecting microorganisms using recombinant reproduction-deficient indicator bacteriophage
JP2022547218A (en) 2019-09-11 2022-11-10 ラボラトリー コーポレイション オブ アメリカ ホールディングス Methods and systems for rapid detection of microorganisms using recombinant infectious agents to express indicator subunits

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995005483A1 (en) * 1993-08-18 1995-02-23 The Minister Of Agriculture, Fisheries And Food In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Method and test kits for detection of bacteriophage
US5498525A (en) * 1990-08-09 1996-03-12 Amersham International Plc Methods for rapid microbial detection
US5888725A (en) * 1992-09-22 1999-03-30 The Secretary Of State For The Minister Of Agriculture Fisheries And Food In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Method for identifying target bacteria
US6037118A (en) * 1998-05-14 2000-03-14 University Of Maryland Baltimore County Viral characterization by direct detection of capsid proteins

Family Cites Families (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3839175A (en) * 1973-06-28 1974-10-01 Owens Illinois Inc Electrodeposition of enzymes
US4104126A (en) 1976-01-29 1978-08-01 Nichols Institute Of Endocrinology, Inc. Non-isotopic substrate assay employing bacteriolysis products
DE3317415A1 (en) * 1983-05-13 1984-11-15 Kernforschungsanlage Jülich GmbH, 5170 Jülich CHAMBER FOR TREATING CELLS IN THE ELECTRICAL FIELD
US4797363A (en) 1984-03-19 1989-01-10 Board Of Trustees, University Of Illinois Bacteriophages as recognition and identification agents
EP0175761A4 (en) 1984-03-19 1986-09-24 Marius Constantin Teodorescu Bacteriophages as recognition and identification agents.
CA1277931C (en) 1984-06-05 1990-12-18 Shimon Ulitzur Detection and/or identification of microorganisms in a test sample usingbioluminescence or other exogenous genetically-introduced marker
US4861709A (en) 1985-05-31 1989-08-29 Technicon Research A.G. Detection and/or identification of microorganisms in a test sample using bioluminescence or other exogenous genetically-introduced marker
FR2590675B1 (en) * 1985-11-27 1990-10-12 Transia MIXTURE OF SPECIFIC ANTIBODIES OF LACTIC BACTERIOPHAGES AND ITS APPLICATIONS TO THE DETECTION AND NEUTRALIZATION OF SAID BACTERIOPHAGES
US5085982A (en) 1986-06-12 1992-02-04 City Of Hope Method of detecting specific substances by selective growth of living cells
CA1313111C (en) 1986-12-01 1993-01-26 William J. Hubbard Method of identifying unknown organisms
US5620845A (en) * 1988-06-06 1997-04-15 Ampcor, Inc. Immunoassay diagnostic kit
JP2922951B2 (en) * 1988-08-02 1999-07-26 ロンドン バイオテクノロジー リミティド Amplification assay for hydrolase enzyme
US5126024A (en) * 1989-12-19 1992-06-30 Colorado School Of Mines Apparatus and method for concentrating microorganisms from a liquid medium on an electrode by electrodeposition
EP0439354A3 (en) 1990-01-24 1992-06-17 Amoco Corporation Signal generating moiety and method for use
US5135870A (en) * 1990-06-01 1992-08-04 Arizona Board Of Regents Laser ablation/ionizaton and mass spectrometric analysis of massive polymers
US5168037A (en) 1990-08-02 1992-12-01 Phyllis Entis Method for the preparation of a labelled virus without the inactivation of viral binding sites and method of assay utilizing said labelled virus
US5101105A (en) * 1990-11-02 1992-03-31 Univeristy Of Maryland, Baltimore County Neutralization/chemical reionization tandem mass spectrometry method and apparatus therefor
GB2255561B (en) 1991-04-20 1995-06-21 Agricultural & Food Res Lysins from bacteriophages
ES2241710T3 (en) 1991-11-25 2005-11-01 Enzon, Inc. PROCEDURE TO PRODUCE MULTIVALENT PROTEINS FROM UNION TO ANTIGEN.
US6300061B1 (en) 1992-02-07 2001-10-09 Albert Einstein College Of Medicine Of Yeshiva University Mycobacterial species-specific reporter mycobacteriophages
WO1993017129A1 (en) 1992-02-28 1993-09-02 Judkins Paul W Method and diagnostic kit for determination of bacteria
GB9220027D0 (en) 1992-09-22 1992-11-04 Mini Agriculture & Fisheries Method and kits for detection of bacteria
US5469369A (en) * 1992-11-02 1995-11-21 The United States Of America As Represented By The Secretary Of The Navy Smart sensor system and method using a surface acoustic wave vapor sensor array and pattern recognition for selective trace organic vapor detection
CA2150262C (en) 1992-12-04 2008-07-08 Kaspar-Philipp Holliger Multivalent and multispecific binding proteins, their manufacture and use
US5679510A (en) 1993-04-27 1997-10-21 Hybridon, Inc. Quantitative detection of specific nucleic acid sequences using lambdoid bacteriophages linked by oligonucleotides to solid support
DE4314998A1 (en) * 1993-05-06 1994-11-10 Max Delbrueck Centrum Monoclonal antibodies against filamentous phages, their preparation and use for detecting and isolating the phages
US5443987A (en) * 1993-09-02 1995-08-22 Decicco; Benedict T. Detection system for microbial contamination in health-care products
US5550062A (en) * 1993-10-27 1996-08-27 Microsensor Systems, Inc. Method and apparatus for chemical detection by pyrolysis
US5658747A (en) * 1994-05-10 1997-08-19 Biocontrol System, Inc. Compositions and methods for control of reactivity between diagnostic reagents and microorganisms
US5824507A (en) * 1994-05-20 1998-10-20 Genelabs Technologies, Inc. Hepatitis G virus and molecular cloning thereof
US5498528A (en) * 1994-06-10 1996-03-12 King; Wing Detection of helicobacter pylori
CA2130072C (en) 1994-08-12 2003-02-18 John W. Cherwonogrodzky Method of detecting a pathogen using a virus
US5656424A (en) 1995-02-15 1997-08-12 Albert Einstein College Of Medicine, A Division Of Yeshiva University Identification of mycobacterium tuberculosis complex species
US5476768A (en) * 1995-03-10 1995-12-19 Becton, Dickinson And Company Mycobacteriophage DSGA specific for the mycobacterium tuberculosis complex
DE19517940A1 (en) 1995-05-18 1996-11-21 Merck Patent Gmbh Detection of listeria using recombinant bacteriophages
US5874226A (en) * 1995-05-22 1999-02-23 H. Lee Browne In situ immunodetection of antigens
US6004770A (en) * 1995-06-07 1999-12-21 Arizona State University Board Of Regents Sample presentation apparatus for mass spectrometry
US6316266B1 (en) * 1995-06-07 2001-11-13 Arizona State University Board Of Regents Sample presentation apparatus for mass spectrometry
US6093541A (en) * 1995-06-07 2000-07-25 Arizona State University Board Of Regents Mass spectrometer having a derivatized sample presentation apparatus
GB9525661D0 (en) * 1995-12-15 1996-02-14 Biotec Diagnostics Limited Method
US6461833B1 (en) 1995-12-15 2002-10-08 Biotec Laboratories Limited Method to detect bacteria
US5859375A (en) * 1996-04-03 1999-01-12 Barringer Research Limited Apparatus for and method of collecting trace samples for analysis
US6177266B1 (en) * 1996-04-29 2001-01-23 The United States Of America As Represented By The Secretary Of The Army Rapid identification of bacteria by mass spectrometry
AU3869297A (en) 1996-08-26 1998-03-19 Bio Benture Bank Co., Ltd. Novel bacteriophage, method for screening the same, novel biobactericidal materials prepared with the use of the same, and reagent for detecting the same
US6322783B1 (en) * 1996-08-26 2001-11-27 Seishi Takahashi Bacteriophages, method for screening same and bactericidal compositions using same, and detection kits using same
US5789174A (en) * 1996-10-11 1998-08-04 Universite Laval Detection of periodontal pathogens including bacteroides forsythus, porphyromonas gingivalis, prevotilla intermedia and prevotella nigrescens
US5710005A (en) * 1996-10-29 1998-01-20 Biocode, Inc. Analyte detection with a gradient lateral flow device
US7153651B1 (en) 1996-10-31 2006-12-26 Inverness Medical - Biostar, Inc. Flow-through optical assay devices providing laminar flow of fluid samples, and methods of construction thereof
US5958675A (en) 1997-04-18 1999-09-28 3M Innovative Properties Company Method for detecting bacteria using bacteriophage, contrast-coloring dye and precipitable dye
IT1291913B1 (en) 1997-05-22 1999-01-21 Angeletti P Ist Richerche Bio METHOD INVOLVING THE USE OF BACTERIOPHAGES FOR THE DETECTION OF THE PRESENCE OF MOLECULES OF INTEREST IN BIOLOGICAL SAMPLES
TW552304B (en) 1997-08-08 2003-09-11 Food Industry Res & Dev Inst Rapid identification of microorganisms
US6235480B1 (en) * 1998-03-13 2001-05-22 Promega Corporation Detection of nucleic acid hybrids
DE69928250T2 (en) 1998-06-04 2006-08-03 Microsens Biophage Ltd. ANALYTICAL PROCEDURE USING MULTIPELVIRUS MARKING
US6183950B1 (en) * 1998-07-31 2001-02-06 Colorado School Of Mines Method and apparatus for detecting viruses using primary and secondary biomarkers
US6379918B1 (en) 1998-08-14 2002-04-30 Biocontrol Systems, Inc. Composition, formulae, devices and methods for control of specificity and inclusivity of microorganisms containing closely related antigen epitopes
EP1031630B1 (en) 1999-02-22 2004-10-20 Matsushita Electric Industrial Co., Ltd. Method for detecting bacteria
US6482632B1 (en) * 1999-03-29 2002-11-19 Council Of Scientic And Industrial Research Bacteriophage, a process for the isolation thereof, and a universal growth medium useful in the process thereof
US6580068B1 (en) * 1999-07-09 2003-06-17 Sandia Corporation Method and apparatus for time dispersive spectroscopy
CA2380480C (en) 1999-07-30 2010-10-26 Profos Ag Detection and identification of bacterial strains
US6737266B1 (en) 1999-10-01 2004-05-18 3M Innovative Properties Company Devices and methods for microorganism detection
DE60037267T2 (en) * 1999-10-06 2008-10-09 Oxonica, Inc., Mountain View SURFACE IMPROVED SPECTROSCOPIC ACTIVE COMPOSITE NANOPARTICLES
DE19957542C2 (en) 1999-11-30 2002-01-10 Infineon Technologies Ag Alternating phase mask
US6436661B1 (en) 2000-04-13 2002-08-20 3M Innovative Properties Company Bacteria and bacteriophage detection using immobilized enzyme substrates
US6799119B1 (en) * 2000-05-15 2004-09-28 Colorado School Of Mines Method for detection of biological related materials using biomarkers
GB0017121D0 (en) 2000-07-13 2000-08-30 Blackburn Juliet Convertible seating and bedding apparatus
US6528325B1 (en) 2000-10-13 2003-03-04 Dexall Biomedical Labs, Inc. Method for the visual detection of specific antibodies in human serum by the use of lateral flow assays
US6514778B2 (en) * 2001-01-31 2003-02-04 United Microelectronics Corp. Method for measuring effective gate channel length during C-V method
US8124355B2 (en) * 2001-02-01 2012-02-28 Biomerieux S.A. Detection and identification of groups of bacteria
CN1141318C (en) * 2001-02-28 2004-03-10 中国医学科学院血液学研究所 Human blood and blood vessel cytopoiesis hormone and its preparation
US20020192676A1 (en) 2001-06-18 2002-12-19 Madonna Angelo J. Method for determining if a type of bacteria is present in a mixture
HUP0401079A3 (en) * 2001-07-10 2008-04-28 Teva Pharma Drug delivery system for zero order, zero order-biphasic, ascending or descending drug delivery
WO2003035889A2 (en) 2001-07-13 2003-05-01 Investigen, Inc. Compositions and methods for bacteria detection
US6544729B2 (en) 2001-07-20 2003-04-08 University Of Tennessee Bioluminescent biosensor device
JP4554206B2 (en) * 2001-09-27 2010-09-29 ガンガゲン インコーポレーティッド Neutralized whole cell immunogenic bacterial composition
US7034113B2 (en) * 2002-02-22 2006-04-25 Paradigm Diagnostics, Llc Bacteriocin-metal complexes in the detection of pathogens and other biological analytes
US20050003346A1 (en) * 2002-04-12 2005-01-06 Colorado School Of Mines Apparatus and method for detecting microscopic living organisms using bacteriophage
AU2003228505B2 (en) 2002-04-12 2009-01-08 Colorado School Of Mines Method for detecting low concentrations of a target bacterium that uses phages to infect target bacterial cells
US8216780B2 (en) * 2002-04-12 2012-07-10 Microphage (Tm) Incorporated Method for enhanced sensitivity in bacteriophage-based diagnostic assays
US20040002126A1 (en) * 2002-06-28 2004-01-01 Michel Houde Method, device and system for detecting the presence of microorganisms
US20050208475A1 (en) * 2002-09-16 2005-09-22 Eric Best Process and apparatus comprising episcopic differential contrast (EDIC) microscopy plus epifluorescence microscopy (EF) for the detection or identification of biological materials on surfaces
WO2004036177A2 (en) * 2002-10-15 2004-04-29 Regents Of The University Of Minnesota Assays to detect or quantify bacterial or viral pathogens and contaminants
US7282349B2 (en) * 2003-12-16 2007-10-16 Kimberly-Clark Worldwide, Inc. Solvatochromatic bacterial detection
US20090286225A1 (en) * 2004-02-13 2009-11-19 Microphagetm Incorporated Method and apparatus for bacteriophage-based diagnostic assays
US20050250096A1 (en) * 2004-02-13 2005-11-10 Microphage, Incorporated Microorganism detection using bacteriophage amplification
US20050255043A1 (en) * 2004-04-09 2005-11-17 Hnatowich Donald J Bacteriophage imaging of inflammation
EP1796785A1 (en) 2004-07-20 2007-06-20 Medtronic, Inc. Concurrent delivery of treatment therapy with telemetry in an implantable medical device
US8092990B2 (en) * 2005-03-31 2012-01-10 Colorado School Of Mines Apparatus and method for detecting microscopic organisms using bacteriophage
US20070178450A1 (en) * 2006-01-27 2007-08-02 Microphage (Tm) Incorporation Method and apparatus for determining level of microorganisms using bacteriophage
US8697434B2 (en) * 2008-01-11 2014-04-15 Colorado School Of Mines Detection of phage amplification by SERS nanoparticles
US7674602B2 (en) * 2008-02-20 2010-03-09 The Clorox Company Method for detecting a plurality of catalase positive microorganisms
US9441204B2 (en) * 2008-04-03 2016-09-13 Colorado School Of Mines Compositions and methods for detecting Yersinia pestis bacteria

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5498525A (en) * 1990-08-09 1996-03-12 Amersham International Plc Methods for rapid microbial detection
US5888725A (en) * 1992-09-22 1999-03-30 The Secretary Of State For The Minister Of Agriculture Fisheries And Food In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Method for identifying target bacteria
WO1995005483A1 (en) * 1993-08-18 1995-02-23 The Minister Of Agriculture, Fisheries And Food In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Method and test kits for detection of bacteriophage
US6037118A (en) * 1998-05-14 2000-03-14 University Of Maryland Baltimore County Viral characterization by direct detection of capsid proteins

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
CHATTERJEE ET AL.: 'A high yielding mutant of mycobacteriophage L1 and its application as a diagnostic tool' FEMS MICROBIOLOGY LETTERS vol. 188, no. 1, July 2000, pages 47 - 53, XP002996217 *
FAVRIN ET AL.: 'Development and optimization of a novel immunomagnetic separation-bacteriophage assay for detection of Salmonella enterica serovar enteritidis in broth' APPLIED AND ENVIRONMENTAL MICROBIOLOGY vol. 67, no. 1, January 2001, pages 217 - 224, XP002996220 *
NAKAMURA ET AL.: 'A visualization method of filamentous phage infection and phage-derived proteins in Escherichia coli using biotinylated phages' BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS vol. 289, no. 1, 23 November 2001, pages 252 - 256, XP002996219 *
OLSVIK ET AL.: 'Magnetic separation techniques in diagnostic microbiology' CLINICAL MICROBIOLOGY REVIEWS vol. 7, no. 1, January 1994, pages 43 - 54, XP002996234 *
See also references of EP1540018A2 *
SIUZDAK ET AL.: 'Probing viruses with mass spectrometry' JOURNAL OF MASS SPECTROMETRY vol. 33, no. 3, March 1998, pages 203 - 211, XP000863342 *
STEWART ET AL.: 'The specific and sensitive detection of bacterial pathogens within 4h using bacteriophage amplification' JOURNAL OF APPLIED MICROBIOLOGY vol. 84, no. 5, May 1998, pages 777 - 783, XP000979801 *
SUN ET AL.: 'Use of bioluminescent salmonella for assessing the efficiency of constructed phage-based biosorbent' JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY vol. 25, no. 5, November 2000, pages 273 - 275, XP008016601 *
TAN ET AL.: 'Rapid simultaneous detection of two orchid viruses using LC- and/or MALDI-mass spectrometry' JOURNAL OF VIROLOGICAL METHODS vol. 85, no. 1-2, March 2000, pages 93 - 99, XP002996218 *

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7736480B2 (en) 1999-11-08 2010-06-15 Princeton Biochemicals, Inc. Multi-dimensional electrophoresis method
US7153407B2 (en) 1999-11-08 2006-12-26 Princeton Biochemicals, Inc. Multi-dimensional electrophoresis apparatus
US7329388B2 (en) 1999-11-08 2008-02-12 Princeton Biochemicals, Inc. Electrophoresis apparatus having staggered passage configuration
US7811436B2 (en) 1999-11-08 2010-10-12 Princeton Biochemicals, Inc. Electrophoresis apparatus having an outlet passage
US8216780B2 (en) 2002-04-12 2012-07-10 Microphage (Tm) Incorporated Method for enhanced sensitivity in bacteriophage-based diagnostic assays
US7166425B2 (en) 2002-04-12 2007-01-23 Colorado School Of Mines Method for detecting low concentrations of a target bacterium that uses phages to infect target bacterial cells
US7972773B2 (en) 2002-04-12 2011-07-05 Colorado School Of Mines Method for detecting concentrations of a target bacterium that uses phages to infect target bacterial cells
EP1556502A2 (en) * 2002-10-15 2005-07-27 Regents Of The University Of Minnesota Assays to detect or quantify bacterial or viral pathogens and contaminants
EP1556502A4 (en) * 2002-10-15 2006-07-19 Univ Minnesota Assays to detect or quantify bacterial or viral pathogens and contaminants
WO2005001475A3 (en) * 2003-04-10 2005-03-03 Kent Voorhees Apparatus and method for detecting microscopic living organisms using bacteriophage
US8007725B2 (en) 2003-11-07 2011-08-30 Princeton Biochemicals, Inc. Electrophoresis apparatus having valve system
US8268247B2 (en) 2003-11-07 2012-09-18 Princeton Biochemicals, Inc. Electrophoresis extraction device
US8007724B2 (en) 2003-11-07 2011-08-30 Princeton Biochemicals, Inc. Electrophoresis apparatus having at least one auxiliary buffer passage
US8182746B2 (en) 2003-11-07 2012-05-22 Princeton Biochemicals, Inc. Electrophoresis process using a valve system
US8030092B2 (en) 2003-11-07 2011-10-04 Princeton Biochemicals, Inc. Controlled electrophoresis method
WO2006083292A2 (en) * 2004-06-07 2006-08-10 Microphage, Incorporated Microorganism detection using bacteriophage amplification
WO2006083292A3 (en) * 2004-06-07 2007-04-26 Microphage Inc Microorganism detection using bacteriophage amplification
US8092990B2 (en) 2005-03-31 2012-01-10 Colorado School Of Mines Apparatus and method for detecting microscopic organisms using bacteriophage
WO2007035504A1 (en) * 2005-09-15 2007-03-29 Microphage Incorporated Method and apparatus for identification of microorganisms using bacteriophage
AU2006292496B2 (en) * 2005-09-15 2011-04-14 Microphage Incorporated Method and apparatus for identification of microorganisms using bacteriophage
WO2008063838A2 (en) * 2006-10-31 2008-05-29 Microphage Incorporated Method and apparatus for enhanced bacteriophage-based diagnostic assays by selective inhibition of potential cross-reactive organisms
WO2008063838A3 (en) * 2006-10-31 2008-07-10 Microphage Inc Method and apparatus for enhanced bacteriophage-based diagnostic assays by selective inhibition of potential cross-reactive organisms
US8455186B2 (en) 2007-06-15 2013-06-04 MicroPhage™ Incorporated Method of detection of microorganisms with enhanced bacteriophage amplification
US8697434B2 (en) 2008-01-11 2014-04-15 Colorado School Of Mines Detection of phage amplification by SERS nanoparticles
US9441204B2 (en) 2008-04-03 2016-09-13 Colorado School Of Mines Compositions and methods for detecting Yersinia pestis bacteria
CN102762980A (en) * 2010-03-03 2012-10-31 株式会社日立高新技术 Analysis device
US9128070B2 (en) 2010-03-03 2015-09-08 Hitachi High-Technologies Corporation Analysis device
EP2543994A4 (en) * 2010-03-03 2018-01-17 Hitachi High-Technologies Corporation Analysis device
FR2980213A1 (en) * 2011-09-16 2013-03-22 Biomerieux Sa PROCESS FOR CHARACTERIZING BACTERIA BY DETECTION OF NON-STRUCTURAL PROTEINS OF BACTERIOPHAGES
WO2013038022A1 (en) 2011-09-16 2013-03-21 bioMérieux Method for characterizing bacteria by detection of non-structural bacteriophage proteins
CN104865186A (en) * 2015-05-29 2015-08-26 重庆大学 Portable quick detection method for pathogenic bacteria
EP3287148A3 (en) * 2016-08-26 2018-06-20 Bacsassin B.V. System for bacteria detection and elimination according to sid
CN113325063A (en) * 2021-05-19 2021-08-31 宁波大学 Device and method for verifying detection result of colloidal gold immunochromatographic test paper
CN113325063B (en) * 2021-05-19 2024-05-03 宁波大学 Verifying device and method for colloidal gold immunochromatography test paper detection result

Also Published As

Publication number Publication date
US20040224359A1 (en) 2004-11-11
JP4490112B2 (en) 2010-06-23
CA2482173A1 (en) 2003-10-23
JP2005524394A (en) 2005-08-18
US7972773B2 (en) 2011-07-05
US20070148638A1 (en) 2007-06-28
EP1540018B1 (en) 2010-05-26
EP1540018A2 (en) 2005-06-15
WO2003087772A3 (en) 2005-04-21
JP2010088456A (en) 2010-04-22
AU2003228505B2 (en) 2009-01-08
EP1540018A4 (en) 2006-05-24
DE60332740D1 (en) 2010-07-08
US7166425B2 (en) 2007-01-23
ES2346424T3 (en) 2010-10-15
AU2003228505A1 (en) 2003-10-27
ATE469240T1 (en) 2010-06-15
CA2482173C (en) 2012-10-23
US20070275370A1 (en) 2007-11-29
HK1082525A1 (en) 2006-06-09

Similar Documents

Publication Publication Date Title
EP1540018B1 (en) Method for detecting low concentrations of a target bacterium that uses phages to infect target bacterial cells
Madonna et al. Detection of Escherichia coli using immunomagnetic separation and bacteriophage amplification coupled with matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry
Madonna et al. Detection of bacteria from biological mixtures using immunomagnetic separation combined with matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry
US20090246752A1 (en) Apparatus and method for detecting microscopic living organisms using bacteriophage
US8092990B2 (en) Apparatus and method for detecting microscopic organisms using bacteriophage
US8216780B2 (en) Method for enhanced sensitivity in bacteriophage-based diagnostic assays
US20020192676A1 (en) Method for determining if a type of bacteria is present in a mixture
JP2009508490A (en) Method and apparatus for microbial identification using bacteriophage
JP2005524394A5 (en)
US9441204B2 (en) Compositions and methods for detecting Yersinia pestis bacteria
WO2005001475A2 (en) Apparatus and method for detecting microscopic living organisms using bacteriophage
US8455186B2 (en) Method of detection of microorganisms with enhanced bacteriophage amplification
JP6370781B2 (en) Method for detecting at least one mechanism of resistance to glycopeptides by mass spectrometry
Kailasa et al. Recent advances in the direct and nanomaterials-based matrix-assisted laser desorption/ionization mass spectrometric approaches for rapid characterization and identification of foodborne pathogens
Wu Suresh Kumar Kailasa*, Vaibhavkumar N. Mehta
Devi et al. Sample preparation methods for the rapid ms analysis of microorganisms

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2482173

Country of ref document: CA

Ref document number: 2003584669

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003228505

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2003726259

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003726259

Country of ref document: EP