WO2003084083A1 - Transmitter, receiver, and wireless communication device comprising transmitter and receiver - Google Patents

Transmitter, receiver, and wireless communication device comprising transmitter and receiver Download PDF

Info

Publication number
WO2003084083A1
WO2003084083A1 PCT/JP2003/003882 JP0303882W WO03084083A1 WO 2003084083 A1 WO2003084083 A1 WO 2003084083A1 JP 0303882 W JP0303882 W JP 0303882W WO 03084083 A1 WO03084083 A1 WO 03084083A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency
filter
frequency band
band
Prior art date
Application number
PCT/JP2003/003882
Other languages
French (fr)
Japanese (ja)
Inventor
Shigetaka Noguchi
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002092268A external-priority patent/JP2003289262A/en
Priority claimed from JP2002103985A external-priority patent/JP2003298432A/en
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to AU2003236164A priority Critical patent/AU2003236164A1/en
Publication of WO2003084083A1 publication Critical patent/WO2003084083A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0491Circuits with frequency synthesizers, frequency converters or modulators

Definitions

  • Transmitting device, receiving device, and wireless communication device including them
  • the present invention relates to a transmitting device that modulates an input signal into a high-frequency signal and transmits a high-frequency signal in a desired frequency band, receives a high-frequency signal in a plurality of frequency bands, and outputs an intermediate frequency signal in a desired frequency band
  • the present invention relates to a receiving device that demodulates the signal and a wireless communication device including the receiving device.
  • the 5 GHz band has only four channels with a frequency band of 20 MHz (the occupied signal frequency band is 18 MHz), and if many wireless communication terminals or multiple communication systems exist in the same area, However, there is a high possibility that the throughput will decrease due to interference.
  • basically only one communication channel is used, and it is not assumed that a large number of channels will be bundled at the same time for large-capacity communication.
  • low-power wireless communication systems using the quasi-millimeter wave band of the 25 GHz band and the 27 GHz band have recently been approved under the Radio Law and standardization has been promoted.
  • a personal area system designed for Internet access has a frequency of 460 MHz from 24.77 GHz to 25.23 GHz (excluding upper and lower 20 MHz guard bands).
  • 23 radio channels can be allocated at a frequency interval of 20 MHz (the occupied signal frequency band per channel is 18 MHz), and 3 channels can be allocated. Simultaneous transmission below the channel is possible.
  • wireless LAN and wireless home link are used in a home factory using 27.02 GHz to 27.46 GHz (excluding upper and lower 20 MHz guard bands).
  • 22 radio channels can be arranged at a frequency of 20 MHz, and simultaneous transmission of 6 channels or less is possible.
  • the frequency band of the radio signal is not constant.
  • filters used in transmitters especially filters that require steep attenuation characteristics to prevent the transmission of interfering waves to adjacent channels (such as SAW filters) are used in the frequency band of radio signals. It is necessary to change the characteristics of the filter according to the conditions. For example, if there are three types of radio signal frequency bands, at least three types of filters having different pass frequency bands are required in the IF frequency band and the baseband frequency band.
  • a transmission device shown in FIG. 7 As an example of such a transmission device provided with a filter corresponding to the frequency band of a radio signal, a transmission device shown in FIG. 7 is considered.
  • the transmitting device in FIG. 7 includes a signal modulating unit 10 c, a first IF transmitting unit 12 0, a second IF transmitting unit 13 30, an RF transmitting unit 40, a transmitting / receiving antenna 50, and a control unit 17. It consists of 0a.
  • the digital signal modulator 11c provided with transmission signal generation means generates a first IF signal based on information on the frequency band of the transmission signal transmitted by the control unit 170a.
  • the first IF signal removes unnecessary harmonic components such as a second harmonic and a third harmonic by a digital filter 12c, and is converted from a digital signal to an analog signal by a DZA converter 13c. You.
  • the digital filter 12 c switches the characteristics of the filter according to the frequency band of the signal, and the increase in the number of components and the development / manufacturing cost as the characteristics of the digital circuit is smaller than that of the analog filter.
  • the signal path of the analogized first IF signal is switched according to the frequency band by the operation of the first IF signal switch 127 a, and the first IF signal path filter (1 2 1 — Pass through one of the filters from 1 to 1 2 2— n).
  • the first IF signal via a first IF signal switch 127b, is a signal suitable for the input of a first frequency converter 123, in a first IF transmitting amplifier 122. It is amplified to power.
  • the first IF signal is up-converted into a second IF signal by a local signal (frequency is fixed) input from the first local oscillator 124. .
  • the signal path of the second IF signal is switched according to the frequency band by the action of the second IF signal switch 128a, and the second IF signal path filter (1 291—1 to 1 2 Pass through one of the 9-n) phil evenings.
  • the second IF signal is passed through a second IF signal switch 128b to a second IF transmission amplifier 132 having a transmission power control function, and a second frequency converter. It is amplified to the signal power suitable for the input of 133.
  • the second frequency converter 1333 inputs the oral signal generated from the second local oscillator 1334, thereby up-converting the second IF signal into an RF signal.
  • the control unit 170a controls the generation frequency of the roll signal generated by the second local oscillator 1334, and adjusts the frequency band of the RF signal to a desired transmission channel.
  • the RF signal passes through a wide-band RF bandpass filter 135 that passes a signal frequency band of all channels for the purpose of removing the transmission spurious generated by the second frequency converter 133. Thereafter, the RF signal is amplified to a predetermined transmission power by the RF power amplifier 42, and is radiated into the air from the transmission / reception antenna 50 via the transmission / reception switch 43 and the RF bandpass filter 44.
  • the transmitting device of FIG. 7 described in the section of the prior art does not Filters having different characteristics are required depending on the number of bands.
  • a communication system with three frequency bands (3 channel specification) requires at least three filters with different characteristics
  • a communication system with 6 frequency bands (6 channel specification) requires at least 6 filters. Filters with different characteristics are required.
  • a switch circuit in order to perform switching between multiple filters, a switch circuit must be at least 2 in order to perform stable impedance matching between the leakage of the transmission signal to other signal paths and the circuits connected before and after. You need them.
  • the number of switches and the number of filters are doubled because the transmission signal is up-converted in two stages.
  • the 6-channel specification at least 12 filters (two sets of filters with six different characteristics) and four switch circuits are required to transmit signals in multiple frequency bands.
  • an object of the present invention is to increase the number of filters for eliminating unnecessary radiation such as spurious signals in a transmission signal, particularly for the purpose of transmitting signals in a plurality of frequency bands, in view of the above-described problems. It is an object of the present invention to provide a transmitting device capable of transmitting radio signals in a plurality of frequency bands and a radio communication device using the same without providing a switch circuit for switching the filter. is there.
  • a receiving device shown in FIG. 14 is considered.
  • the receiving device shown in Fig. 14 includes a transmitting / receiving antenna 60, an RF receiving unit 70, a first IF converting unit 150, a second IF converting unit 160, a signal demodulating unit 100c, and a control unit.
  • Part 1 7 0 b It is composed of
  • the RF reception signal input from the transmission / reception antenna 60 is amplified by the RF reception amplifier 74 via the transmission / reception switch 72 after passing through the broadband RF bandpass filter 71 that passes the signal frequency band of all channels. .
  • a local signal generated from the first local oscillator 154 is input to the first frequency converter (mixer) 151, whereby the signal is down-converted into a first IF reception signal.
  • control unit 17 Ob analyzes the preamble signal or the like received in advance, detects the frequency band of the received signal, and always sets the center frequency of the received signal to the center frequency of the first IF frequency band ( For example, the oscillation frequency of the local oscillator 154 is controlled so as to be fixed at 2400 ⁇ 10 MHz and 2400 ⁇ 20 MHz).
  • the signal path of the first IF reception signal is switched according to the frequency band by the operation of the first IF signal switch 158, and any one of the first IF bandpass filters 152-1 to 152-n is output. Pass the two first IF bandpass filters. After passing through, the first IF received signal passes through the first IF signal switch 159 and is input to the first IF frequency amplifier 153 having an automatic gain control function, and the signal strength suitable for the input of the subsequent circuit Is amplified.
  • the control unit 17 Ob controls the first IF signal switches 158 and 159 similarly to the local oscillator 154, and also controls the switching of the first IF bandpass filter.
  • the first IF received signal is down-converted to a second IF received signal in a frequency converter 161 by a local signal (frequency is fixed) input from a second local oscillator 164.
  • the signal path of the second IF reception signal is switched according to the frequency band by the action of the second IF signal switch 168, and the second IF band-pass filter (162-1 to 162-n) Pass one of the Phil evenings.
  • the second IF reception signal is input to the second IF frequency amplifier 163 via the second IF signal switch 169 and adjusted to a signal strength suitable for the input of the AZD converter 101c. .
  • Second IF signal switch 168, 169 The signal switching is controlled according to the frequency band of the received signal recognized in advance by the control unit 170b in the manner described above.
  • the second IF reception signal is converted from an analog signal to a digital signal by the AZD converter 101c, and the digital reception filter 102c further removes noise components and the like to perform IF frequency sampling.
  • the received signal is demodulated by the signal demodulator 103c.
  • the receiving apparatus of FIG. 14 needs filters having different characteristics according to the number of frequency bands of the received signal.
  • a communication system with three frequency bands (3 channel specification) requires three filters with different characteristics
  • a communication system with 6 frequency bands (6 channel specification) requires at least 6 filters. You need different characteristics of Phil.
  • the switch circuit in order to switch between multiple filters, the switch circuit must be at least 2 in order to perform stable impedance matching between the leakage of the received signal to other signal paths and the circuits connected before and after. You need them.
  • the RF reception signal is down-converted in two stages, so that the number of switches and the number of filters are doubled.
  • the 6-channel specification at least 12 filters (two sets of filters with six different characteristics) and four switch circuits are required to demodulate received signals in multiple frequency bands.
  • an object of the present invention is to provide a filter for removing an adjacent wave or noise of a received signal, particularly for receiving a signal in a plurality of frequency bands.
  • a receiving device capable of demodulating wireless signals in a plurality of frequency bands without increasing the number of switches and without providing a switch circuit for switching the filter, and a wireless communication device including the same. It is in.
  • a first invention is directed to a modulation unit that modulates an input signal into a first intermediate frequency signal in a predetermined frequency band, and an IF conversion unit that converts the first intermediate frequency signal into a high frequency signal
  • a transmission device comprising: an RF transmission unit that transmits the high-frequency signal; and a control unit that controls each unit, wherein the modulation unit modulates the first intermediate frequency signal.
  • the first IF filter that allows the first intermediate frequency signal to pass therethrough, wherein the control unit is configured to control a frequency of the first intermediate frequency signal at the edge of a pass frequency band of the first IF filter.
  • the frequency of the modulation section is adjusted and set so that edges are aligned.
  • a second invention is the transmission device according to the first invention, wherein the IF conversion unit converts the first intermediate frequency signal modulated by the modulation unit into a second intermediate frequency signal.
  • a first IF conversion unit including: a first frequency conversion unit; a second IF filter that passes the second intermediate frequency signal; and a second IF conversion unit that converts the second intermediate frequency signal into a high frequency signal.
  • a second IF conversion unit including a second IF conversion unit, wherein the control unit includes an edge of a frequency band of the first intermediate frequency signal at an edge of a pass frequency band of the first IF filter.
  • the frequency of the modulation section is adjusted and set so that the first frequency is adjusted so that the edge of the frequency band of the second intermediate frequency signal is aligned with the edge of the pass frequency band of the second filter.
  • the frequency of the conversion means is adjusted and set.
  • a third invention is the transmission device according to the first or second invention, wherein the modulation unit comprises: a digital filter for removing unnecessary harmonic components of the intermediate frequency signal; DZA conversion means for converting the passing signal to an analog signal
  • the control unit adjusts and sets the frequency of the modulation unit so that the edge of the frequency band of the first intermediate frequency signal is aligned with the edge of the pass frequency band of the digital filter.
  • a fourth invention is the transmission device according to the first, second, or third invention, wherein the first IF filter is a band-pass filter or a low-pass filter.
  • a fifth aspect of the present invention is the transmission device according to the third aspect, wherein the digital filter is a digital filter having a band pass filter or a mouth-to-pass filter function.
  • a sixth invention is the transmission device according to the second or third invention, wherein the second device is referred to as the second device.
  • a seventh invention is a modulation section for modulating an input signal into a baseband signal in a predetermined frequency band, an IF conversion section for converting the baseband signal via an intermediate frequency or to a high-frequency signal, and the high-frequency signal
  • a control unit for controlling each unit, the modulation unit comprising: a signal modulation unit configured to modulate the baseband signal; and a signal modulation unit configured to transmit the baseband signal.
  • a control unit that adjusts and sets the frequency of the modulation unit so that the edge of the frequency band of the baseband signal is aligned with the edge of the passband of the baseband filter.
  • An eighth invention is the transmission device according to the seventh invention, wherein the IF conversion unit is a first frequency conversion unit that converts the baseband signal modulated by the modulation unit into an intermediate frequency signal.
  • a first IF converter provided with an IF filter for passing the intermediate frequency signal
  • a second IF converter provided with second frequency converting means for converting the intermediate frequency signal into a high frequency signal.
  • the control unit aligns the edge of the frequency band of the baseband signal with the edge of the passband of the baseband filter.
  • the frequency of the first frequency conversion means is adjusted and set so that the edge of the frequency band of the intermediate frequency signal is aligned with the edge of the pass frequency band of the IF filter. It is characterized by doing.
  • a ninth invention is the transmission device according to the seventh or eighth invention, wherein the modulation unit comprises: a digital filter for removing unnecessary harmonic components of the baseband signal; and the digital filter.
  • DZA conversion means for converting an evening pass signal into an analog signal
  • the control unit is configured to adjust the edge of the passband of the digital filter to the edge of the frequency band of the baseband signal. It is characterized in that the frequency is adjusted and set.
  • a tenth invention is the transmission device according to the seventh, eighth, or ninth invention, wherein the baseband filter is a mouth-to-pass filter.
  • An eleventh invention is the transmission device according to the ninth invention, wherein the digital filter is a digital filter having a low-pass filter function.
  • a twelfth invention is the transmission device according to the seventh or eighth invention, wherein the IF device.
  • a thirteenth invention is a wireless communication device comprising the transmission device according to any one of the first to twelve inventions.
  • the frequency of the local signal of the signal modulation means and the frequency conversion means is adjusted and set so that the edges of the frequency band of the intermediate frequency signal and the baseband signal are aligned with the edges of the pass frequency band of the filter. It is not necessary to prepare filters having different passbands for each channel as in the conventional case. This is because the noise component can be removed by moving the frequency band of the intermediate frequency signal to pass through a filter having a predetermined pass frequency band.
  • the modulation signal of the first intermediate frequency band is The upper limit frequency is aligned with the upper edge of the first IF filter, and the pass frequency band of the digital filter is adjusted according to the frequency band of the modulated signal.
  • the first filter removes a harmonic noise component such as a second harmonic and a third harmonic that cannot be removed by the digital filter generated in a signal modulation process.
  • the lower limit frequency of the transmission signal of the second IF frequency band is aligned with the lower edge of the second filter, and Noise such as image components existing in the frequency band on the side is removed.
  • the upper limit frequency of the modulation signal in a baseband frequency band is set to be equal to the edge of the base spanned filter, and according to the frequency band of the modulation signal. Adjust the passband of the digital filter. In the baseband filter, harmonic noise components such as 2nd and 3rd harmonics that cannot be completely eliminated during the signal modulation process are removed.
  • the conversion frequency of the frequency conversion means by adjusting the conversion frequency of the frequency conversion means, the lower edge of the transmission signal of the second intermediate frequency band is aligned with the lower edge of the IF filter, and the lower side of the transmission signal is adjusted. Eliminates noise such as image components existing in the frequency band. Thereby, the above-mentioned problem is solved.
  • a fourteenth aspect of the present invention provides an RF receiving unit that receives a high-frequency signal, an IF conversion unit that converts the high-frequency signal into an intermediate frequency signal, a demodulation unit that demodulates the intermediate frequency signal, and a control unit that controls each unit.
  • a IF conversion unit, the IF conversion unit comprising: a frequency conversion unit configured to convert a high-frequency signal received by the RF reception unit into an intermediate frequency signal; and And a filter that passes a signal in a frequency band. The frequency of the local signal of the frequency conversion means is adjusted and set so that the edges of the frequency band of the intermediate frequency signal are aligned.
  • a fifteenth invention is the receiving device according to the fifteenth invention, further comprising: a detection unit configured to detect a frequency band of a received signal from a received harmonic signal, wherein the control unit is configured to receive the received signal.
  • the frequency of the local signal of the frequency conversion means is adjusted and set based on the above frequency band.
  • a sixteenth invention is the receiving device according to the fifteenth invention, wherein the demodulation section demodulates a control signal of a specific frequency band including the information of the frequency band, Detecting a frequency band of the received signal based on the demodulated control signal.
  • a seventeenth invention is the receiving device according to the fifteenth, fifteenth, or sixteenth invention, wherein the IF conversion unit includes a first frequency conversion unit and a first filter.
  • the frequency of the local signal of the second frequency conversion means is set so that the lower or upper edge of the frequency band of the intermediate frequency signal is aligned with the edge of the second frequency converter.
  • An eighteenth invention is the receiving device according to the seventeenth invention, wherein the first filter is a band-pass filter or a one-pass filter.
  • a nineteenth invention is a receiving device according to the seventeenth invention, wherein the second filter is a wireless communication device including the receiving device.
  • the intermediate frequency signal is provided at an edge of a pass frequency band of the filter. Since the frequency of the oral signal of the frequency conversion means is adjusted and set so that the edges of the frequency band are aligned, it is not necessary to prepare filters having different pass frequency bands for each channel as in the related art. This is because the noise component can be removed by moving the frequency band of the intermediate frequency signal to pass through the filter having a predetermined pass frequency band.
  • a first IF conversion unit and a second IF conversion unit are provided, and the control unit adjusts the conversion frequency of the first frequency conversion unit of the first IF conversion unit, thereby providing a first filter.
  • the upper edge of the received signal in the first IF frequency band is aligned with the upper limit frequency to remove noise components existing in the upper frequency band of the received signal such as the upper adjacent wave and the spurious.
  • the lower edge of the second filter is provided with a second IF frequency band or a single band frequency band.
  • the noise components existing in the lower frequency band of the received signal, such as the lower adjacent wave are removed by aligning the upper limit frequencies of the received signals of the received signals.
  • FIG. 1 is a block diagram showing a configuration example of the transmitting apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of a flowchart relating to the transmission method of the transmission device according to the first embodiment and the second embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of a frequency characteristic of a transmission signal on the frequency axis according to the first embodiment and the second embodiment of the present invention.
  • FIG. 4 is a diagram showing an example of a correlation between a filter and a transmission signal on the frequency axis according to the first embodiment of the present invention.
  • FIG. 5 is a block diagram illustrating a configuration example of a transmission device according to the second embodiment of the present invention.
  • FIG. 6 is a diagram showing an example of a correlation between a filter and a transmission signal on the frequency axis according to the second embodiment of the present invention.
  • FIG. 7 is a block diagram showing a configuration example of a conventional transmission device.
  • FIG. 8 is a block diagram showing a configuration example of a receiving device according to the third embodiment of the present invention.
  • FIG. 9 is a diagram showing an example of a flowchart relating to the receiving method of the receiving device according to the third embodiment and the fourth embodiment according to the present invention.
  • FIG. 10 is a diagram showing an example of a received signal frequency characteristic on the frequency axis according to the embodiment of the present invention.
  • FIG. 11 is a diagram showing an example of a correlation between a received signal and a received signal on the frequency axis according to the third embodiment of the present invention.
  • FIG. 12 is a block diagram showing a configuration example of a receiving device according to the fourth embodiment of the present invention.
  • FIG. 13 is a diagram showing an example of a correlation between a received signal and a received signal on the frequency axis according to the fourth embodiment of the present invention.
  • FIG. 14 is a block diagram showing a configuration example of a conventional receiving apparatus.
  • FIG. 1 is a block diagram showing a configuration of the transmitting apparatus according to the first embodiment.
  • the transmitting device according to the first embodiment of the present invention includes a signal modulating unit 10 a, a first IF transmitting unit 20 a, a second IF transmitting unit 30, an RF transmitting unit 40, and a transmitting / receiving antenna 5.
  • 0 and the control unit 70a Configuration of RF Transmitter 40 and Transmit / Receive Antenna 50
  • the function and the function are the same as those of the example of the transmitting apparatus shown in FIG. 7, but the signal modulating section 10 a, the first IF transmitting section 20 a, the second IF transmitting section 30, and the control section 70 a Is different from the example of the transmitting apparatus shown in FIG.
  • the digital signal modulator 11a including the transmission signal modulating means generates the first IF signal based on the information on the frequency band of the transmission signal transmitted from the control unit 70a.
  • the first IF signal removes unnecessary harmonic components such as a second harmonic and a third harmonic by a band-pass filter or a digital filter 12 a having a single-pass filter function, and a DZA converter 13 a It is converted from a digital signal to an analog signal.
  • the analogized first IF signal passes through the first IF bandpass filter 14, and is input to the first frequency converter 23 a by the first IF transmission amplifier 22. It is amplified to a suitable signal power.
  • the first IF signal is up-converted into a second IF signal by a local signal input from the first local oscillator 24a.
  • the up-converted second IF signal passes through a second IF band-pass filter 25 and a second IF transmission amplifier 32 having a transmission power control function, and a second frequency converter 33 Is amplified to a signal power suitable for the input.
  • the second frequency converter 33 up-converts the second IF signal into an RF signal by inputting a local signal generated by the second local oscillator 34.
  • the RF signal passes through a wide-band RF bandpass filter 35 that passes the signal frequency band of all the channels, which also has a purpose of removing the transmission spurious generated by the second frequency converter 33. Thereafter, the RF signal is amplified to a predetermined transmission power by the RF power amplifier 42, and is radiated into the air from the transmission / reception antenna 50 via the transmission / reception switch 43 and the RF bandpass filter 44. .
  • the control unit 70a controls the digital signal modulator 11a based on the frequency band of the transmission signal so that the upper limit of the frequency band of the transmission signal comes to the upper edge of the first IF bandpass filter 14. Adjust the frequency of the generated transmission signal, and The pass frequency band of the filter 12a is adjusted according to the frequency band of the modulation signal. Further, the control unit 70a controls the first local oscillator based on the frequency band of the transmission signal so that the lower limit of the frequency band of the transmission signal comes to the lower edge of the second IF bandpass filter 25. Adjust the oscillation frequency of 24a. The control unit 70a also controls the entire transmission device, such as adjusting the gain of the transmission / reception switch 43 and the second IF transmission amplifier 32.
  • FIG. 2 is a flowchart illustrating a transmission method of the transmission device according to the first embodiment of the present invention.
  • FIG. 3 is a graph illustrating an example of a transmission signal frequency characteristic on the frequency axis according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing an example of a correlation between a filter and a transmission signal on the frequency axis according to the first embodiment of the present invention.
  • signals in three frequency bands as shown in (a), (b), and (c) of FIG. 3 are used.
  • (A) in Fig. 3 shows a transmission signal when only one channel is used.
  • the center frequency of the transmission signal is fc, and the frequency band is 2 Af ( ⁇ f is the half bandwidth of the frequency band of one channel).
  • (B) of FIG. 3 shows a transmission signal when two channels are used simultaneously.
  • the center frequency of the transmission signal is fc and the frequency band is 4 ⁇ f.
  • C in Fig. 3 shows a transmission signal when three channels are used simultaneously.
  • the center frequency of the transmission signal is fc, and the frequency band is 6 Af.
  • the control unit 70a of the transmitting apparatus adjusts the transmission signal generated by the digital signal modulator 11a according to the frequency band occupied by the control signal to be transmitted. It adjusts the frequency band of the first IF signal) and the local oscillation frequency of the first local oscillator 24a.
  • the center frequency of the control signal including control information for notifying the other party of information necessary for wireless communication such as its own transmission time and the frequency band of the transmission signal is set to the center frequency of the frequency band used for transmission.
  • the local oscillation frequency of the second local oscillator 34 is also adjusted.
  • the transmitting device generates a control signal and performs actual transmission.
  • step S13 the control unit 70a of the transmitting apparatus transmits the transmission signal (first IF signal) generated by the digital signal modulator 11a based on the frequency band of the data signal to be transmitted by itself. Adjust the frequency band so that the upper limit frequency of the first IF signal comes to the upper edge of the first IF bandpass filter 14 (fc + 2Af for 1-channel signal) I do.
  • step S14 the oral oscillation frequency of the first local oscillator 24a is adjusted so that the lower limit frequency of the second IF signal is lower than the lower edge of the second IF bandpass filter 25. (In the case of 1-channel signal, adjust so that it comes to fc ⁇ 2 ⁇ f).
  • the local oscillation frequency of the second local oscillator 34 is adjusted so that the center frequency of the RF signal obtained by up-converting the second IF signal matches the frequency band of the channel used for transmission.
  • step S15 the data signal is actually generated and transmitted. If the transmission process is to be continued, the process returns to step S11. Otherwise, the transmission process is terminated (step S16).
  • FIG. 4 shows a case where the transmission signal has three frequency bands.
  • the first IF band pass filter 14 has a characteristic of a center frequency fc 1 and a pass frequency band 6 ⁇ f
  • the bandpass filter 25 has a characteristic of a center frequency fc2 and a pass frequency band of 6 Af.
  • the pass frequency bands of the bandpass filters 14 and 25 are set according to the transmission signal having the maximum frequency band. In other words, the pass frequency band of each band-pass filter is (maximum number of simultaneously transmittable channels X 2 ⁇ f).
  • (Al) in FIG. 4 is a correlation diagram regarding the first IF signal when one channel is used for the transmission signal, and reference numeral 181-1-1 indicates the frequency characteristic of the first IF signal.
  • Reference numeral 191 indicates the frequency characteristic of the first IF bandpass filter 14.
  • (A 2) of FIG. 4 is a correlation diagram regarding the second IF signal when one channel is used for the transmission signal.
  • Reference numeral 181-2 denotes the frequency characteristic of the second IF signal
  • reference numeral 192 denotes the second IF signal. Indicates the frequency characteristic of the second IF bandpass filter 25.
  • (Bl) in FIG. 4 is a correlation diagram relating to the first IF signal when two channels are used for the transmission signal, and reference numeral 182-1 denotes the frequency characteristic of the first IF transmission signal.
  • (B2) of FIG. 4 is a correlation diagram relating to the second IF signal when two channels are simultaneously used for the transmission signal, and reference numeral 182-2 denotes a frequency characteristic of the second IF signal.
  • (C1) of FIG. 4 is a correlation diagram regarding the first IF signal when three channels are used simultaneously for the transmission signal, and reference numeral 183_1 indicates the frequency characteristic of the first IF signal.
  • (C 2) in FIG. 4 is a correlation diagram regarding the second IF signal when three channels are simultaneously used for the transmission signal, and reference numeral 183-2 indicates a frequency characteristic of the second IF transmission signal. .
  • the frequency band of one channel is 20 MHz, and the carrier center frequency (R
  • the passing frequency bandwidth of the first IF band-pass filter 14 and the second band-pass filter 25 has characteristics that match the signal frequency bandwidth of the maximum channel (in this case, three channels).
  • the pass frequency band of the first IF bandpass filter 14 is 10 MHz to 70 MHz
  • the pass frequency band of the second IF bandpass filter 25 is 2410 MHz. From 2470 MHz.
  • the center frequency IF1 of the transmission signal in the first IF frequency band may be obtained by adding 2 ⁇ f to fc1.
  • a transmission signal having a center frequency of 6 OMHz and a frequency band of 2 OMHz may be generated by the signal modulation section 11a (see (a1) in FIG. 4).
  • the center frequency IF2 of the transmission signal of the second IF frequency band is 2 ⁇ from fc 2. Since we only need to reduce f
  • the local frequency L ⁇ 1 emitted from the first local oscillator 24 a is
  • the center frequency IF1 of the transmission signal in the first IF frequency band can be obtained by adding ⁇ f to fc1.
  • a transmission signal having a center frequency of 5 OMHz and a frequency band of 4 OMHz may be generated by the signal modulation section 11a (see (b1) in FIG. 4).
  • the center frequency IF2 of the transmission signal of the second IF frequency band is expressed by ⁇ f from fc 2. It is enough to reduce
  • the local frequency L ⁇ 1 generated by the first local oscillator 24 is the local frequency L ⁇ 1 generated by the first local oscillator 24.
  • the center frequency IF1 of the transmission signal in the first IF frequency band may be fc1, so that
  • a transmission signal having a center frequency of 40 MHz and a frequency band of 60 MHz may be generated by the signal modulator 11a (see (c1) in FIG. 4).
  • the center frequency IF2 of the transmission signal of the second IF frequency band may remain fc2 as it is. So
  • the local frequency LO 1 emitted from the first local oscillator 24 a is
  • FIG. 5 is a block diagram illustrating a configuration of a transmission device according to the second embodiment.
  • the main difference from the first embodiment is that the baseband transmitting section 20 directly up-converts the baseband signal to the second IF transmission signal.
  • the specifications of the modulator 10b and the controller 70b are partially different.
  • Other configurations of the second IF transmission unit 30, the RF transmission unit 40, and the transmission / reception antenna 50 are the same as those in the example of the first embodiment.
  • the digital signal modulator 11b including the transmission signal generation means generates a baseband signal based on the information on the frequency band of the transmission signal transmitted by the control unit 70b.
  • the baseband signal is filtered by a digital filter 12b having a low-pass filter function to remove unnecessary harmonic components such as a second harmonic and a third harmonic, and is converted from a digital signal to an analog signal by a DZA converter 13b. Is converted.
  • the baseband signal is up-converted in the first frequency converter 23 b into a second IF signal by a local signal input from the first local oscillator 24 b.
  • the transmission signal processing and control method from the time of up-conversion to the second IF signal to the transmission and reception antenna 50 is as described in the example of the first embodiment. Further, a transmission operation flow of the transmission device of the example of the second embodiment is the same as that of the first embodiment shown in FIG.
  • FIG. 6 is a diagram showing an example of a correlation between a filter and a transmission signal on the frequency axis according to the second embodiment of the present invention.
  • FIG. 6 shows a case where there are three transmission frequency bands.
  • the baseband low-pass filter 15 has the characteristic of the maximum pass frequency 3 ⁇ f
  • the second IF band-pass filter 25 has It has the characteristics of center frequency fc2 and maximum pass frequency band 6 ⁇ f.
  • FIG. 6 is a correlation diagram relating to a signal when one channel is used for the transmission signal, and is the same as (a 2) of FIG. (A 3) in FIG. 6 is a correlation diagram for the baseband signal when one channel is used for the transmission signal.
  • Reference numerals 18 1-3 denote the frequency characteristics of the baseband signal
  • reference numerals 19 3 Indicates the frequency characteristic of the baseband low pass filter 15
  • reference numeral 194 indicates the return frequency characteristic of the baseband low pass filter 15.
  • (B 2) of FIG. 6 is a correlation diagram relating to a signal when two channels are simultaneously used for a transmission signal, and is the same as (b 2) of FIG. (B 3) of FIG. 6 is a correlation diagram for the baseband signal when two channels are used simultaneously for the transmission signal, and reference numeral 182-2-3 indicates the frequency characteristic of the baseband signal.
  • (C 2) of FIG. 6 is a correlation diagram relating to signals when three channels are simultaneously used for the transmission signal, and is the same as (c 2) of FIG. (C 3) in FIG. 6 is a correlation diagram for the baseband signal when three channels are simultaneously used for the transmission signal, and reference numeral 183-3 denotes the frequency characteristic of the baseband signal.
  • the frequency band of one channel is 20 MHz
  • the carrier center frequency (RF) of the RF signal is 25.00 GHz
  • the carrier center frequency (fc2) of the signal in the second IF frequency band is 2440 MHz.
  • the pass frequency band of the baseband low-pass filter 15 and the second IF band-pass filter 25 has characteristics that match the transmission signal band of the maximum channel (in this case, three channels).
  • the pass frequency band of the baseband low-pass filter 15 is 30 MHz or less (from ⁇ 30 MHz to +30 MHz including the return frequency of the signal), and the second IF band-pass
  • the pass frequency band of the filter 25 is from 2410 MHz to 2470 MHz.
  • the center frequency B B of the transmission signal in the baseband frequency band may be obtained by adding 2 ⁇ f to 0 Hz.
  • a transmission signal having a center frequency of 20 MHz and a frequency band of 20 MHz may be generated by the signal generator 1 lb (see (a3) in FIG. 6).
  • the center frequency IF2 of the transmission signal of the second IF frequency band is calculated by calculating 2 ⁇ f from fc2. I just need to reduce it,
  • the local frequency L ⁇ 1 generated by the first local oscillator 24 b is
  • the center frequency B B of the transmission signal in the baseband frequency band may be obtained by adding ⁇ f to 0 Hz.
  • a transmission signal having a center frequency of 10 MHz and a frequency band of 4 OMHz may be generated by the signal modulation unit 1 lb (see (b3) in FIG. 6).
  • the center frequency IF2 of the transmission signal in the second IF frequency band is reduced by ⁇ f from fc2. I just need to
  • the oral frequency L O 1 emitted from the first local oscillator 24b is
  • the center frequency B B of the transmission signal in the baseband frequency band can be kept at 0 Hz.
  • a transmission signal having a center frequency of 0 Hz and a frequency band of 60 MHz may be generated by signal generation 1 lb (see (c3) in FIG. 6).
  • the transmission signal of the baseband frequency band is up-compensated to the second IF frequency band.
  • the center frequency IF 2 of the transmission signal in the second IF frequency band can be left as it is at f c 2,
  • the local frequency L ⁇ 1 generated by the first local oscillator 24 b is
  • the wireless communication device of the present invention can be used as a wireless communication terminal of a low-power wireless communication system in the 25 GHz band described in the section of the related art.
  • the number of filters for removing harmonic components ⁇ noise components generated in a transmission signal generation stage is not increased for transmitting signals in different frequency bands, and the filter is not increased. It is possible to transmit radio signals in a plurality of different frequency bands without providing a switch circuit for switching evenings. As a result, the number of components can be reduced, which is effective in reducing manufacturing costs and miniaturizing the transmitting device.
  • unnecessary harmonic components such as a second harmonic and a third harmonic can be removed by a digital filter having a bandpass filter or a one-pass filter function. Even when a digital filter is not used, the effect of the invention can be obtained, and in that case, a further merit in cost can be expected.
  • FIG. 8 is a block diagram showing a configuration of a receiving apparatus according to a third embodiment.
  • the receiving device includes a transmitting / receiving antenna 60, an RF receiving unit 80, a first IF converting unit 90, a second IF converting unit 100a, a signal demodulating unit 110a, a control unit 70c. It is composed of The configurations and functions of the transmitting / receiving antenna 60, the RF receiving unit 80, and the digital signal demodulating unit 100a are the same as those of the receiving device in FIG. 14 described above, but the first IF converting unit 90 and the The IF converter 100a of FIG. 14 is different from the receiver of FIG.
  • the RF receive signal input from the transmit / receive antenna 60 passes through the broadband RF bandpass filter 81, which passes the signal frequency band of all channels, and The signal is amplified by the RF receiving amplifier 84 via the exchanger 82.
  • the signal output from RF receiving amplifier 84 is down-converted by first frequency converter 91 to a first IF received signal.
  • the frequency of the first IF received signal is adjusted by the control unit 70c controlling the frequency of the local signal generated by the first local oscillator 94 according to the frequency band of the received signal.
  • the control unit 70c analyzes the control signal received in advance, detects the frequency band of the received signal, and sets the upper limit of the frequency band of the received signal to the upper edge of the first IF bandpass filter 92.
  • the oscillation frequency of the first local oscillator 94 is controlled so that The first IF reception signal is mainly subjected to removal of noise components such as upper adjacent waves by passing through the first IF bandpass filter 92.
  • the first IF receiving amplifier 93 having the automatic gain control function amplifies the first IF receiving signal so as to match the input level of the circuit at the subsequent stage.
  • the automatic gain control function is controlled by the controller 70c based on the signal strength detected by the digital signal demodulator 113a.
  • the first IF reception signal output from first IF reception amplifier 93 is down-converted into a second IF reception signal by second frequency converter 10la.
  • the frequency of the second IF reception signal can be varied by the frequency of the local signal generated by the second local oscillator 104a, and is controlled by the control unit 70c.
  • the control unit 70 c analyzes the preamble including the control signal received in advance, detects the frequency band of the received signal, and sets the lower limit of the frequency band of the received signal to the second IF bandpass filter 10 2
  • the oscillation frequency of the local oscillator 104a is controlled so that it is at the lower edge of.
  • the first IF reception signal is mainly subjected to removal of noise components such as lower adjacent waves by passing through the second IF bandpass filter 102.
  • the second IF receiving amplifier 103 amplifies the second IF receiving signal so as to match the input level of the AZD converter 111a at the subsequent stage.
  • the second IF reception signal is converted from an analog signal to a digital signal by the AZD converter 111a, and the digital reception filter 112a further removes noise components and the like. Then, the received signal is demodulated by the digital signal demodulator 1 13 a that performs IF frequency sampling.
  • FIG. 9 is a flowchart showing a receiving method of the receiving apparatus according to the third embodiment of the present invention
  • FIG. 10 shows an example of a received signal frequency characteristic of the embodiment according to the present invention on a frequency axis.
  • FIG. 11 is a diagram showing an example of a correlation between a received signal and a received signal on a frequency axis according to the third embodiment of the present invention.
  • signals in three frequency bands as shown in (a), (b), and (c) of FIG. 10 are used.
  • (A) in Fig. 10 shows the received signal when only one channel is used.
  • the carrier frequency is fc; the frequency band is 2 Af ( ⁇ f is the half bandwidth of the frequency band of one channel).
  • (B) of FIG. 10 shows a received signal when two channels are used simultaneously, where the carrier frequency is fc and the frequency band is 4.
  • C of FIG. 10 shows a received signal when three channels are used simultaneously, and the carrier frequency is f c and the frequency band is 6 ⁇ .
  • the receiving apparatus receives control information issued by its own communication system in order to obtain information necessary for wireless communication such as its own receiving time and frequency band of a received signal. Try. Since the frequency band of the preamble signal containing the control information is usually determined in advance by the communication protocol, the control unit 70c adjusts the first local oscillator according to the frequency band conforming to the communication protocol. The local frequency generated by the local oscillator 104 and the second local oscillator 104a is set. For example, if the frequency band of the control signal is predetermined as one channel (2 ⁇ ), the local frequencies generated by the first local oscillator 94 and the second local oscillator 104a are The frequency is adjusted to receive the received signal of channel 1. In the next step S22, control signal reception is tried while scanning each channel. View. If the control signal cannot be received, the reception is tried again after a certain time, and this step is repeated until the control signal can be received.
  • the demodulation process of the control signal is performed by the digital signal demodulation unit 113a in step S23, and the control unit 70c analyzes the demodulated data of the control signal.
  • the control unit 70c detects information necessary for reception, such as reception timing, a channel to be used, and a frequency band, from the analyzed control information.
  • the control unit 70c adjusts the oral frequency of the first local oscillator 94 based on the analyzed information such as the frequency band, and Adjust so that the upper limit frequency is at the upper edge of the first first IF band bus filter 92 (fc + 2 ⁇ f for 1-channel signal).
  • step S26 the control unit 70c adjusts the local frequency of the first local oscillator 94 so that the lower limit frequency of the second IF reception signal is lower than the lower frequency of the second IF bandpass filter 102. Adjust so that it comes to the edge (fc_2Af for 1-channel signal).
  • step S27 the data signal is received, the radio signal is demodulated, and the received data is delivered to a data processing device such as a computer (PC).
  • PC computer
  • FIG. 11 shows a case where there are three reception frequency bands, and the first IF node path filter 92 has a characteristic of a center frequency fc 1 and a pass frequency band of 6 ⁇ f.
  • the bandpass filter 102 of Fig. 2 has the characteristics of center frequency fc2 and pass frequency band 6Af.
  • the pass frequency band of the bandpass filter 92, 102 is set according to the received signal having the maximum frequency band. In other words, the pass frequency band of each band bus filter is (maximum number of simultaneously transmittable channels X 2 ⁇ f).
  • FIG. 11 shows the first IF reception when one channel is used for the reception signal.
  • FIG. 2 is a correlation diagram relating to the received signal, where reference numeral 281-1 indicates the frequency characteristic of the first IF received signal, and reference numeral 291 indicates the frequency characteristic of the first IF bandpass filter 92.
  • a 2 of FIG. 11 is a correlation diagram regarding the second IF received signal when one channel is used for the received signal, and reference numeral 281-2 denotes the frequency characteristic of the second IF received signal.
  • Reference numeral 292 indicates the frequency characteristics of the second IF bandpass filter 102.
  • (Bl) in Fig. 11 is a correlation diagram regarding the first IF received signal (SIF 1) when two channels are used for the received signal, and reference numeral 282_1 denotes the frequency of the first IF received signal. The characteristics are shown.
  • (B2) of FIG. 11 is a phase diagram relating to the second IF received signal when two channels are simultaneously used for the received signal, and reference numeral 282-2 denotes a frequency characteristic of the second IF received signal. .
  • (C 1) in FIG. 11 is a correlation diagram regarding the first IF received signal when three channels are simultaneously used for the received signal, and reference numeral 283-1 indicates the frequency characteristic of the first IF received signal.
  • (C 2) of FIG. 11 is a correlation diagram regarding the second IF received signal when three channels are simultaneously used for the received signal, and reference numeral 283-2 indicates the frequency characteristic of the second IF received signal. .
  • the frequency band of one channel is 20 MHz
  • the carrier frequency of the RF signal is 25.00 GHz
  • the carrier signal of the first IF frequency band is 2440 MHz
  • the carrier of the second IF frequency band is 2440 MHz.
  • the signal center frequency (fc2) is 40 MHz.
  • the pass frequency bandwidth of the first IF band-pass filter 92 and the second band-pass filter 102 has characteristics that match the signal bandwidth of the maximum channel (in this case, three channels).
  • the passing frequency band of the first IF bandpass filter 92 is 2410 MHz to 2470 MHz
  • the passing frequency band of the second IF bandpass filter 102 is 10 MHz to 70 MHz.
  • the received signal uses only one channel, in order to down-convert the RF received signal to the first IF frequency band, the received signal center frequency IF1 of the first IF frequency band is represented by 2 in fc1. What is necessary is just to add ⁇ f.
  • the oral frequency L ⁇ 1 emitted from the first local oscillator 94 is
  • the center frequency IF2 of the received signal of the second IF frequency band is 2 ⁇ from fc 2. Since we only need to reduce f
  • the local frequency L ⁇ 2 generated by the second local oscillator 104 is
  • the received signal uses two channels at the same time, in order to down-convert the RF received signal to the first IF frequency band, the received signal center frequency IF1 of the first IF frequency band must be fc1 Since we only need to add ⁇ f,
  • the received signal center frequency IF2 of the second IF frequency band is obtained by subtracting ⁇ f from fc2. I just need to reduce it,
  • the received signal center frequency IF1 of the first IF frequency band is directly fc 1 So
  • the received signal of the first IF frequency band is converted to the second IF frequency band.
  • the received signal center frequency IF2 in the second IF frequency band can be left as it is at fc2.
  • the second local oscillator 104 only needs to generate a local signal of 2400 MHz (see (c2) in FIG. 11).
  • FIG. 12 is a block diagram showing a configuration of a receiving apparatus according to the fourth embodiment.
  • the main difference from the third embodiment is that the first IF reception signal is directly down-converted to a baseband signal in the second IF conversion section 10 Ob.
  • the specifications of the signal demodulation unit 110b and the control unit 70d are partially different.
  • the other configuration of the transmitting / receiving antenna 60, the RF receiving unit 80, and the first IF converting unit 90 are the same as those of the third embodiment.
  • the received signal processing and control method from the transmitting / receiving antenna 60 to the output of the first IF receiving amplifier 93 is as described in the example of the third embodiment.
  • the first IF reception signal output from first IF reception amplifier 93 is down-converted into a baseband reception signal by second frequency converter 10 lb.
  • the frequency of a local signal for down-converting to a baseband received signal differs depending on the frequency band of the signal.
  • the control unit 70d controls the frequency of the local signal generated by the second local oscillator 104b.
  • the control unit 70d resolves the control signal generated by the own system received in advance. In prayer, we detect the frequency band of the received signal, and set the local oscillator 104 b so that the folded frequency at the lower limit of the frequency band of the received signal comes to the edge of the baseband one-pass filter 105.
  • the baseband reception signal is mainly subjected to removal of noise components such as lower adjacent waves by passing through the second IF bandpass filter 102.
  • the baseband reception amplifier 106 amplifies the baseband reception signal so as to match the input level of the AZD converter 111 in the subsequent stage.
  • the baseband received signal is converted from an analog signal to a digital signal by the AZD converter 111b, and the digital signal is further demodulated by the digital receive filter 112b to remove noise components and perform baseband frequency sampling.
  • the received signal is demodulated by the unit 113 b.
  • the receiving operation flow of the receiving apparatus of the example of the fourth embodiment is the same as that of the third embodiment shown in FIG. 11, and a detailed description is omitted.
  • FIG. 13 is a diagram showing, on the frequency axis, an example of the correlation between a received signal and a filter according to the fourth embodiment of the present invention.
  • FIG. 13 shows a case where there are three reception frequency bands, and the first IF bandpass filter 92 has characteristics of a center frequency fc 1 and a pass frequency band 6 ⁇ f,
  • the low-pass filter 105 has the characteristic of the maximum pass frequency 3 ⁇ f.
  • (Al) in FIG. 13 is a correlation diagram relating to the first IF received signal when one channel is used for the received signal, and is the same as (a1) in FIG. 11 described above.
  • (A 3) in FIG. 13 is a correlation diagram regarding the baseband received signal when one channel is used for the received signal.
  • Reference numeral 3 denotes a frequency characteristic of the baseband low-pass filter 105
  • reference numeral 294 denotes a folded frequency characteristic of the base-span low-pass filter 105.
  • (B l) in Fig. 13 shows the first case where two channels are used simultaneously for the received signal.
  • FIG. 11 is a correlation diagram regarding an IF reception signal, which is the same as (a 2) in FIG. (B 3) of FIG. 13 is a correlation diagram regarding the baseband received signal when two channels are simultaneously used for the received signal, and reference numeral 282-3 denotes the frequency characteristic of the baseband received signal.
  • (C1) in FIG. 13 is a correlation diagram regarding the first IF received signal when three channels are simultaneously used for the received signal, and is the same as (a3) in FIG. 11 described above.
  • (C 3) of FIG. 13 is a correlation diagram relating to the baseband received signal when three channels are simultaneously used for the received signal, and reference numeral 282-3 indicates the frequency characteristic of the baseband received signal.
  • the frequency band of one channel is 20 MHz
  • the carrier center frequency (RF1) of the RF signal is 25.00 GHz
  • the carrier center frequency (fc1) of the first IF frequency band is 2440 MHz.
  • the passing frequency band of the first IF band pass filter 92 has characteristics that match the reception signal band of the maximum channel (in this case, three channels).
  • the pass frequency band of the first IF bandpass filter 22 is from 2410 MHz to 247 OMHz
  • the pass frequency band of the baseband lowpass filter 105 is 3 OMHz or less (the signal folding frequency is also lower). (Including — 30 MHz to +30 MHz).
  • the carrier center frequency BB of the baseband frequency band is deviated by 2 ⁇ f from the baseband carrier frequency 0 Hz. So it's fine
  • the oral frequency L ⁇ 3 emitted from the second local oscillator 44b is
  • the method of down-converting the RF received signal to the first IF frequency band is obtained by the same method as in (Equation 12-1) and (Equation 12-2). Then, 01 becomes 22.55 (GHz) (see (b1) in Fig. 13).
  • the carrier center frequency BB of the baseband frequency band is obtained by subtracting ⁇ f from the baseband carrier frequency 0 Hz. So good
  • the carrier center frequency BB of the baseband frequency band becomes the same as the baseband carrier frequency 0 Hz.
  • the detection of the frequency band of the received signal has been performed by the control unit, but another device may be provided and detected there. Further, although the number of IF conversion units is two, the number is not limited to this, and may be one or three.
  • the receiving apparatus of the third embodiment or the fourth embodiment described above in a wireless communication apparatus, it is possible to transmit wireless signals transmitted from a wireless communication system using signals in multiple frequency bands.
  • a signal can be received.
  • the wireless communication device of the present invention can be used as a wireless communication terminal of a low-power wireless communication system in the 25 GHz band described in the section of the related art.
  • a switch circuit for switching the filter without increasing the number of filters for removing adjacent waves and noise of the received signal to receive signals in different frequency bands. It is possible to demodulate wireless signals in a plurality of different frequency bands without providing a particular frequency band.
  • the number of components can be reduced, which is effective in reducing manufacturing costs and downsizing the receiving device.
  • the reception device of the present invention is provided in the wireless communication device to receive signals in all frequency bands used for transmission in the wireless communication system. It becomes possible.
  • the transmitting device, the receiving device, and the wireless communication device provided with the same according to the present invention can be used in a personal area assuming outdoor Internet access at a hot spot such as a station or a coffee shop. This is useful for a wireless communication system used in a community area or the like that assumes a wireless home link.

Abstract

The generation frequency band of a first IF signal generated by a digital signal modulator (11a) frequency band of a transmission signal, is adjusted depending on the so that the generation frequency band is compatible with the upper frequency edge of a first IF band-pass filter (14). In addition, the oscillation frequency of a first local oscillator (24a) is adjusted so that a second IF signal, generated by converting the first IF signal by a first frequency converter (23a), compatible with the lower frequency edge of a second IF band-pass filter (25). This allows the transmission signal, including a plurality of frequency bands, to be transmitted with no additional filter and without providing a switch for the filter.

Description

明 細 書  Specification
送信装置、 受信装置及びそれらを備えた無線通信装置 Transmitting device, receiving device, and wireless communication device including them
技術分野 Technical field
本発明は、 入力信号を変調して高周波信号に変換し、 所望の周波数帯の高周波 信号を送信する送信装置、 複数の周波数帯の高周波信号を受信して、 所望の周波 数帯の中間周波数信号に復調する受信装置及びそれらを備えた無線通信装置に関 するものである。  The present invention relates to a transmitting device that modulates an input signal into a high-frequency signal and transmits a high-frequency signal in a desired frequency band, receives a high-frequency signal in a plurality of frequency bands, and outputs an intermediate frequency signal in a desired frequency band The present invention relates to a receiving device that demodulates the signal and a wireless communication device including the receiving device.
背景技術 Background art
近年、 5 GHz帯を使用した免許不要の小電力無線通信システムが複数提案、 規格化され、 実際に I EEE 802. 11 aや AR I B (電波産業会) の H i一 SWAN規格等を使用した無線通信システムが開発されている。 しかしながら、 5 GHz帯は周波数帯域 20 MH z (占有信号周波数帯域は 18 MH z ) のチヤ ンネルが 4つしかなく、 数多くの無線通信端末あるいは複数の通信システムが同 一エリアに存在する場合には、 干渉によるスループットの低下が生じる可能性が 大きい。 さらに、 通信チャンネルは基本的に 1チャンネルのみの使用であり、 複 数のチヤンネルを同時に束ねて大容量の通信を行うことは想定されていない。 このような問題点の解決を図るために、 最近になって 25 GHz帯や 27GH z帯の準ミリ波帯を使用した小電力無線通信システムが電波法上で許可され、 規 格化が進められている。 例えば、 駅や喫茶店等のホットスポットでの屋外イン夕 —ネットアクセスを想定したパーソナルエリアのシステムは、 24. 77 GHz から 25. 23 GHz (上下 20MHzのガードバンドは除く) までの 460M Hzの周波数帯域を使用し、 周波数間隔 20 MHz (1チャンネル当たりの占有 信号周波数帯が 18MHz) で 23の無線チャンネルが配置可能であり、 3チヤ ンネル以下の同時送信が可能となっている。 さらに、 2 7 . 0 2 G H zから 2 7 . 4 6 GH z (上下 2 0 MH zのガードバンドは除く) を使用した、 家庭内ゃェ 場内での無線 L ANや無線ホームリンクを想定したコミュニティエリアでは、 周 波数 2 0 MH z間隔で 2 2の無線チヤンネルが配置可能であり、 6チヤンネル以 下の同時送信が可能である。 In recent years, several unlicensed low-power wireless communication systems using the 5 GHz band have been proposed and standardized, and have actually used the IEEE 802.11a and the ARIB (Radio Industry Association) Hi-SWAN standard. Wireless communication systems have been developed. However, the 5 GHz band has only four channels with a frequency band of 20 MHz (the occupied signal frequency band is 18 MHz), and if many wireless communication terminals or multiple communication systems exist in the same area, However, there is a high possibility that the throughput will decrease due to interference. In addition, basically only one communication channel is used, and it is not assumed that a large number of channels will be bundled at the same time for large-capacity communication. In order to solve these problems, low-power wireless communication systems using the quasi-millimeter wave band of the 25 GHz band and the 27 GHz band have recently been approved under the Radio Law and standardization has been promoted. ing. For example, outdoors in a hot spot such as a train station or a coffee shop—a personal area system designed for Internet access has a frequency of 460 MHz from 24.77 GHz to 25.23 GHz (excluding upper and lower 20 MHz guard bands). 23 radio channels can be allocated at a frequency interval of 20 MHz (the occupied signal frequency band per channel is 18 MHz), and 3 channels can be allocated. Simultaneous transmission below the channel is possible. In addition, it is assumed that wireless LAN and wireless home link are used in a home factory using 27.02 GHz to 27.46 GHz (excluding upper and lower 20 MHz guard bands). In the community area, 22 radio channels can be arranged at a frequency of 20 MHz, and simultaneous transmission of 6 channels or less is possible.
このような、 複数チャンネルの同時送信が認められている通信システムでは、 無線信号の周波数帯域が一定ではない。 このことは、 送信装置で使用するフィル タ、 特に隣接チヤンネルへの妨害波の送信防止を目的とする急峻な減衰特性が必 要なフィル夕 (S AWフィル夕等) は、 無線信号の周波数帯に合わせてフィルタ の特性を変化させる必要がある。 例えば、 無線信号の周波数帯域が 3種類ある場 合には、 I F周波数帯とベースバンド周波数帯等において、 通過周波数帯域の異 なるフィルタが最低 3種類は必要となる。  In such a communication system in which simultaneous transmission of a plurality of channels is permitted, the frequency band of the radio signal is not constant. This means that filters used in transmitters, especially filters that require steep attenuation characteristics to prevent the transmission of interfering waves to adjacent channels (such as SAW filters), are used in the frequency band of radio signals. It is necessary to change the characteristics of the filter according to the conditions. For example, if there are three types of radio signal frequency bands, at least three types of filters having different pass frequency bands are required in the IF frequency band and the baseband frequency band.
このような、 無線信号の周波数帯域に応じたフィル夕を備えた送信装置の例と して、 図 7に示す送信装置が考えられている。  As an example of such a transmission device provided with a filter corresponding to the frequency band of a radio signal, a transmission device shown in FIG. 7 is considered.
図 7の送信装置は、 信号変調部 1 0 c, 第 1の I F送信部 1 2 0 , 第 2の I F 送信部 1 3 0, R F送信部 4 0 , 送受信用アンテナ 5 0, 制御部 1 7 0 aから構 成されている。  The transmitting device in FIG. 7 includes a signal modulating unit 10 c, a first IF transmitting unit 12 0, a second IF transmitting unit 13 30, an RF transmitting unit 40, a transmitting / receiving antenna 50, and a control unit 17. It consists of 0a.
送信信号の生成手段を備えたデジタル信号変調器 1 1 cは、 制御部 1 7 0 aの 発信する送信信号の周波数帯域の情報に基づいて、 第 1の I F信号を生成する。 前記第 1の I F信号は、 デジタルフィル夕 1 2 cにより 2倍波や 3倍波等の不要 な高調波成分が取り除かれ、 DZA変換器 1 3 cによりデジタル信号からアナ口 グ信号に変換される。  The digital signal modulator 11c provided with transmission signal generation means generates a first IF signal based on information on the frequency band of the transmission signal transmitted by the control unit 170a. The first IF signal removes unnecessary harmonic components such as a second harmonic and a third harmonic by a digital filter 12c, and is converted from a digital signal to an analog signal by a DZA converter 13c. You.
ここで、 前記デジタルフィルタ 1 2 cは、 信号の周波数帯域に応じてフィル夕 の特性を切り替えることは、 デジタル回路の特性として部品点数や開発製造コス トの増加はアナログフィル夕と比較して小さいが、 サンプリング周波数等の関係 で、 不要な高周波成分を全て取り除くことは不可能である。 従って、 更に後段に アナログフィルタが必要となる。 Here, the digital filter 12 c switches the characteristics of the filter according to the frequency band of the signal, and the increase in the number of components and the development / manufacturing cost as the characteristics of the digital circuit is smaller than that of the analog filter. However, it is impossible to remove all unnecessary high-frequency components due to sampling frequency and other factors. Therefore, at a later stage An analog filter is required.
次に、 アナログ化された第 1の I F信号は、 第 1の I F信号スィッチ 1 2 7 a の作用により周波数帯域に応じて信号経路を切り替えられ、 第 1の I Fノ ンドパ スフィル夕 (1 2 1— 1から 1 2 2— n ) のうちのいずれか 1つのフィルタを通 過する。 その通過後に前記第 1の I F信号、 は第 1の I F信号スィツチ 1 2 7 b を介して、 第 1の I F送信増幅器 1 2 2で、 第 1の周波数変換器 1 2 3の入力に 適する信号電力に増幅される。  Next, the signal path of the analogized first IF signal is switched according to the frequency band by the operation of the first IF signal switch 127 a, and the first IF signal path filter (1 2 1 — Pass through one of the filters from 1 to 1 2 2— n). After passing therethrough, the first IF signal, via a first IF signal switch 127b, is a signal suitable for the input of a first frequency converter 123, in a first IF transmitting amplifier 122. It is amplified to power.
第 1の周波数変換器 1 2 3において、 前記第 1の I F信号は、 第 1の局部発振 器 1 2 4から入力されるローカル信号 (周波数は固定) により第 2の I F信号に アップコンバートされる。 第 2の I F信号は、 第 2の I F信号スィッチ 1 2 8 a の作用により周波数帯域に応じて信号経路を切り替えられ、 第 2の I Fノ^;'ンドパ スフィル夕 (1 2 9— 1から 1 2 9— n ) のうちのいずれか 1つのフィル夕を通 過する。 その通過後に、 第 2の I F信号は第 2の I F信号スィッチ 1 2 8 bを介 して、 送信電力の制御機能を有する第 2の I F送信増幅器 1 3 2で、 第 2の周波 数変換器 1 3 3の入力に適する信号電力に増幅される。  In the first frequency converter 123, the first IF signal is up-converted into a second IF signal by a local signal (frequency is fixed) input from the first local oscillator 124. . The signal path of the second IF signal is switched according to the frequency band by the action of the second IF signal switch 128a, and the second IF signal path filter (1 291—1 to 1 2 Pass through one of the 9-n) phil evenings. After that, the second IF signal is passed through a second IF signal switch 128b to a second IF transmission amplifier 132 having a transmission power control function, and a second frequency converter. It is amplified to the signal power suitable for the input of 133.
次に、 第 2の周波数変換器 1 3 3は、 第 2の局部発振器 1 3 4より発生する口 —カル信号を入力することにより、 第 2の I F信号を R F信号にアップコンバー トする。 ここで、 制御部 1 7 0 aは、 第 2の局部発振器 1 3 4の発生するロー力 ル信号の発生周波数を制御して、 R F信号の周波数帯域を所望の送信チャンネル に適合させる。  Next, the second frequency converter 1333 inputs the oral signal generated from the second local oscillator 1334, thereby up-converting the second IF signal into an RF signal. Here, the control unit 170a controls the generation frequency of the roll signal generated by the second local oscillator 1334, and adjusts the frequency band of the RF signal to a desired transmission channel.
次に、 R F信号は、 第 2の周波数変換器 1 3 3の発する送信スプリアスを除去 する目的をもつ全チャンネルの信号周波数帯を通過させる広帯域の R Fバンドパ スフィルタ 1 3 5を通過する。 その後 R F信号は、 R F電力増幅器 4 2により、 所定の送信電力に増幅され、 送受信切替器 4 3と R Fバンドパスフィルタ 4 4を 経由して、 送受信用アンテナ 5 0より、 空中に放射される。  Next, the RF signal passes through a wide-band RF bandpass filter 135 that passes a signal frequency band of all channels for the purpose of removing the transmission spurious generated by the second frequency converter 133. Thereafter, the RF signal is amplified to a predetermined transmission power by the RF power amplifier 42, and is radiated into the air from the transmission / reception antenna 50 via the transmission / reception switch 43 and the RF bandpass filter 44.
しかしながら、 従来の技術の項で説明した図 7の送信装置は、 送信信号の周波 数帯域の数に応じて異なる特性のフィルタが必要となる。 つまり、 3つの周波数 帯域をもつ通信システムでは (3チャンネル仕様) 、 最低 3個の異なる特性のフ ィルタが必要であり、 6つの周波数帯域をもつ通信システムでは (6チャンネル 仕様) 、 最低 6個の異なる特性のフィルタが必要である。 However, the transmitting device of FIG. 7 described in the section of the prior art does not Filters having different characteristics are required depending on the number of bands. In other words, a communication system with three frequency bands (3 channel specification) requires at least three filters with different characteristics, and a communication system with 6 frequency bands (6 channel specification) requires at least 6 filters. Filters with different characteristics are required.
さらに、 複数のフィル夕の切り替えを行うためには、 他の信号経路への送信信 号の漏れと前後段に接続される回路との安定したインピーダンスマッチングを行 うために、 スィッチ回路が最低 2個は必要となる。 図 7の構成では、 送信信号を 2段階にアップコンバートしているので、 スィッチの個数とフィル夕の個数も倍 になる。 6チャンネル仕様では、 少なくともフィル夕 1 2個 (6種類の異なる特 性のフィルタが 2セット) とスィッチ回路 4個が、 複数の周波数帯の信号を送信 するためには必要である。  In addition, in order to perform switching between multiple filters, a switch circuit must be at least 2 in order to perform stable impedance matching between the leakage of the transmission signal to other signal paths and the circuits connected before and after. You need them. In the configuration of Fig. 7, the number of switches and the number of filters are doubled because the transmission signal is up-converted in two stages. With the 6-channel specification, at least 12 filters (two sets of filters with six different characteristics) and four switch circuits are required to transmit signals in multiple frequency bands.
このことは、 余計なフィル夕とスィッチ回路が必要となり、 製造コストが増加 するだけではなく、 小型の携帯機器に送信装置を搭載する場合には実装面積が増 大するというデメリットがある。 さらに、 異なる特性のフィル夕を開発すること は開発コストの増大を生じるだけでなく、 異なる種類のフィル夕間で均一な減衰 特性を揃えることの困難性により、 送信信号の周波数帯域ごとに送信性能がばら ついてしまうという課題も存在する。  This requires extra filters and switch circuits, which not only increases the manufacturing cost, but also has the disadvantage of increasing the mounting area when the transmitter is mounted on a small portable device. In addition, developing filters with different characteristics not only increases the development cost, but also makes it difficult to provide uniform attenuation characteristics between different types of filters. There is also a problem that it may vary.
従って、 本発明の目的は、 上記の課題を鑑みて、 送信信号のスプリアス等の不 用輻射を除去するためのフィル夕を、 複数の周波数帯の信号を送信する目的のた めに特に増加させることは無しに、 また前記フィル夕を切り替えるためのスイツ チ回路を特に設けること無しに、 複数の周波数帯の無線信号を送信可能な送信装 置及びそれを用いた無線通信装置を提供することにある。  Accordingly, an object of the present invention is to increase the number of filters for eliminating unnecessary radiation such as spurious signals in a transmission signal, particularly for the purpose of transmitting signals in a plurality of frequency bands, in view of the above-described problems. It is an object of the present invention to provide a transmitting device capable of transmitting radio signals in a plurality of frequency bands and a radio communication device using the same without providing a switch circuit for switching the filter. is there.
また、 無線信号の周波数帯域に応じたフィル夕を備えた受信装置の例として、 図 1 4に示す受信装置が考えられている。  Further, as an example of a receiving device provided with a filter according to the frequency band of a radio signal, a receiving device shown in FIG. 14 is considered.
図 1 4の受信装置は、 送受信用アンテナ 6 0, R F受信部 7 0, 第 1の I F変 換部 1 5 0 , 第 2の I F変換部 1 6 0, 信号復調部 1 0 0 c , 制御部 1 7 0 bか ら構成されている。 送受信アンテナ 60から入力される RF受信信号は、 全チヤ ンネルの信号周波数帯を通過させる広帯域の RFバンドパスフィル夕 71を通過 後に、 送受信切替器 72を経由して RF受信増幅器 74により増幅される。 次に、 第 1の周波数変換器 (ミキサ) 151に、 第 1の局部発振器 154より 発生するローカル信号を入力することにより、 第 1の I F受信信号にダウンコン バートされる。 ここで、 制御部 17 O bは、 あらかじめ受信されたプリアンブル 信号等を解析して、 受信信号の周波数帯域の検出を行い、 常に受信信号の中心周 波数が第 1の I F周波数帯の中心周波数 (例えば 2400± 10MHz、 240 0±20MHz) に固定されるように、 局部発振器 154の発振周波数を制御す る。 The receiving device shown in Fig. 14 includes a transmitting / receiving antenna 60, an RF receiving unit 70, a first IF converting unit 150, a second IF converting unit 160, a signal demodulating unit 100c, and a control unit. Part 1 7 0 b It is composed of The RF reception signal input from the transmission / reception antenna 60 is amplified by the RF reception amplifier 74 via the transmission / reception switch 72 after passing through the broadband RF bandpass filter 71 that passes the signal frequency band of all channels. . Next, a local signal generated from the first local oscillator 154 is input to the first frequency converter (mixer) 151, whereby the signal is down-converted into a first IF reception signal. Here, the control unit 17 Ob analyzes the preamble signal or the like received in advance, detects the frequency band of the received signal, and always sets the center frequency of the received signal to the center frequency of the first IF frequency band ( For example, the oscillation frequency of the local oscillator 154 is controlled so as to be fixed at 2400 ± 10 MHz and 2400 ± 20 MHz).
第 1の I F受信信号は、 第 1の I F信号スィッチ 158の作用により周波数帯 域に応じて信号経路が切り替えられ、 第 1の I Fバンドパスフィルタ 152— 1 から 152— nのうちのいずれか 1つの前記第 1の I Fバンドパスフィル夕を通 過する。 その通過後に、 第 1の I F受信信号は第 1の I F信号スィツチ 159を 経て、 自動利得制御機能を備えた第 1の I F周波数増幅器 153に入力され、 後 段の回路の入力に適した信号強度に増幅される。 制御部 17 O bは、 局部発振器 154と同様に、 第 1の I F信号スィッチ 158, 159を制御して、 前記第 1 の I Fバンドパスフィル夕の切り替え制御も行っている。  The signal path of the first IF reception signal is switched according to the frequency band by the operation of the first IF signal switch 158, and any one of the first IF bandpass filters 152-1 to 152-n is output. Pass the two first IF bandpass filters. After passing through, the first IF received signal passes through the first IF signal switch 159 and is input to the first IF frequency amplifier 153 having an automatic gain control function, and the signal strength suitable for the input of the subsequent circuit Is amplified. The control unit 17 Ob controls the first IF signal switches 158 and 159 similarly to the local oscillator 154, and also controls the switching of the first IF bandpass filter.
前記第 1の I F受信信号は、 周波数変換器 161において、 第 2の局部発振器 164から入力されるローカル信号 (周波数は固定) により第 2の I F受信信号 にダウンコンバートされる。 第 2の I F受信信号は、 第 2の I F信号スィッチ 1 68の作用により周波数帯域に応じて信号経路を切り替えられ、 第 2の I Fバン ドパスフィルタ (162— 1から 162—n) のうちのいずれか 1つのフィル夕 を通過する。 その通過後に、 第 2の I F受信信号は第 2の I F信号スィッチ 16 9を介して、 第 2の I F周波数増幅器 163に入力され、 AZD変換器 101 c の入力に適した信号強度に調整される。 第 2の I F信号スィッチ 168, 169 の信号切り替えは、 制御部 1 7 0 bが前述した方法であらかじめ認識した受信信 号の周波数帯域に応じて制御している。 The first IF received signal is down-converted to a second IF received signal in a frequency converter 161 by a local signal (frequency is fixed) input from a second local oscillator 164. The signal path of the second IF reception signal is switched according to the frequency band by the action of the second IF signal switch 168, and the second IF band-pass filter (162-1 to 162-n) Pass one of the Phil evenings. After the passage, the second IF reception signal is input to the second IF frequency amplifier 163 via the second IF signal switch 169 and adjusted to a signal strength suitable for the input of the AZD converter 101c. . Second IF signal switch 168, 169 The signal switching is controlled according to the frequency band of the received signal recognized in advance by the control unit 170b in the manner described above.
第 2の I F受信信号は、 AZD変換器 1 0 1 cによりアナログ信号からデジタ ル信号に変換され、 デジタル受信フィルタ 1 0 2 cによりノイズ成分等を更に除 去して、 I F周波数サンプリングを行うデジタル信号復調器 1 0 3 cにより、 受 信信号が復調される。  The second IF reception signal is converted from an analog signal to a digital signal by the AZD converter 101c, and the digital reception filter 102c further removes noise components and the like to perform IF frequency sampling. The received signal is demodulated by the signal demodulator 103c.
しかしながら、 前述したように図 1 4の受信装置は、 受信信号の周波数帯域の 数に応じて異なる特性のフィル夕が必要となる。 つまり、 3つの周波数帯域をも つ通信システムでは (3チャンネル仕様) 、 3個の異なる特性のフィル夕が必要 であり、 6つの周波数帯域をもつ通信システムでは (6チャンネル仕様) 、 最低 6個の異なる特性のフィル夕が必要である。  However, as described above, the receiving apparatus of FIG. 14 needs filters having different characteristics according to the number of frequency bands of the received signal. In other words, a communication system with three frequency bands (3 channel specification) requires three filters with different characteristics, and a communication system with 6 frequency bands (6 channel specification) requires at least 6 filters. You need different characteristics of Phil.
さらに、 複数のフィル夕の切り替えを行うためには、 他の信号経路への受信信 号の漏れと前後段に接続される回路との安定したインピーダンスマッチングを行 うために、 スィッチ回路が最低 2個は必要となる。 図 1 4の構成では、 R F受信 信号を 2段階にダウンコンバートしているので、 スィッチの個数とフィルタの個 数も倍になる。 6チャンネル仕様では、 少なくともフィルタ 1 2個 (6種類の異 なる特性のフィル夕が 2セット) とスィッチ回路 4個が、 複数の周波数帯の受信 信号を復調するためには必要である。  In addition, in order to switch between multiple filters, the switch circuit must be at least 2 in order to perform stable impedance matching between the leakage of the received signal to other signal paths and the circuits connected before and after. You need them. In the configuration of Fig. 14, the RF reception signal is down-converted in two stages, so that the number of switches and the number of filters are doubled. With the 6-channel specification, at least 12 filters (two sets of filters with six different characteristics) and four switch circuits are required to demodulate received signals in multiple frequency bands.
このことは、 余計なフィル夕とスィッチ回路が必要となり、 製造コストが増加 するだけではなく、 小型の携帯機器に受信装置を搭載する場合には実装面積が増 大するというデメリットがある。 さらに、 異なる特性のフィルタを開発すること は開発コス卜の増大とともに、 異なる種類のフィルタ間で均一な減衰特性を得る ことは難しく、 受信信号の周波数帯域により復調性能がばらついてしまうという 課題も存在する。  This requires extra filters and switch circuits, which not only increases the manufacturing cost, but also has the disadvantage of increasing the mounting area when the receiver is mounted on a small portable device. Furthermore, developing filters with different characteristics increases the development cost, and it is difficult to obtain uniform attenuation characteristics between different types of filters, and there is also a problem that the demodulation performance varies depending on the frequency band of the received signal. I do.
従って、 本発明の目的は、 上記の課題を鑑みて、 受信信号の隣接波やノイズを 除去するためのフィル夕を、 複数の周波数帯の信号を受信する目的のために特に 増加させることは無しに、 また前記フィル夕を切り替えるためのスィッチ回路を 特に設けること無しに、 複数の周波数帯の無線信号を復調可能な受信装置及びそ れを備えた無線通信装置を提供することにある。 Therefore, in view of the above problems, an object of the present invention is to provide a filter for removing an adjacent wave or noise of a received signal, particularly for receiving a signal in a plurality of frequency bands. To provide a receiving device capable of demodulating wireless signals in a plurality of frequency bands without increasing the number of switches and without providing a switch circuit for switching the filter, and a wireless communication device including the same. It is in.
発明の開示 Disclosure of the invention
上記課題を解決するため、 第 1の発明は、 入力信号を所定の周波数帯域の第 1 の中間周波数信号に変調する変調部と、 該第 1の中間周波数信号を高周波信号に 変換する I F変換部と、 該高周波信号を送信する R F送信部と、 各部を制御する 制御部とを備えた送信装置であって、 前記変調部は、 前記第 1の中間周波数信号 に変調する信号変調手段と、 該第 1の中間周波数信号を通過させる前記第 1の I Fフィル夕とを備え、 前記制御部は、 前記第 1の I Fフィル夕の通過周波数帯域 のエッジに前記第 1の中間周波数信号の周波数帯のエッジを揃えるように前記変 調部の周波数を調整設定することを特徴とする。  In order to solve the above problems, a first invention is directed to a modulation unit that modulates an input signal into a first intermediate frequency signal in a predetermined frequency band, and an IF conversion unit that converts the first intermediate frequency signal into a high frequency signal A transmission device comprising: an RF transmission unit that transmits the high-frequency signal; and a control unit that controls each unit, wherein the modulation unit modulates the first intermediate frequency signal. The first IF filter that allows the first intermediate frequency signal to pass therethrough, wherein the control unit is configured to control a frequency of the first intermediate frequency signal at the edge of a pass frequency band of the first IF filter. The frequency of the modulation section is adjusted and set so that edges are aligned.
第 2の発明は、 第 1の発明に記載の送信装置であって、 前記 I F変換部は、 前 記変調部で変調された第 1の中間周波数信号を第 2の中間周波数信号に変換する 第 1の周波数変換手段と、 該第 2の中間周波数信号を通過させる第 2の I Fフィ ル夕とを備えた第 1の I F変換部と、 前記第 2の中間周波数信号を高周波信号に 変換する第 2の周波数変換手段を備えた第 2の I F変換部とからなり、 前記制御 部は、 前記第 1の I Fフィル夕の通過周波数帯域のエッジに前記第 1の中間周波 数信号の周波数帯のエッジを揃えるように前記変調部の周波数を調整設定し、 前 記第 2のフィル夕の通過周波数帯域のエツジに前記第 2の中間周波数信号の周波 数帯のエツジを揃えるように前記第 1の周波数変換手段の周波数を調整設定する ことを特徴とする。  A second invention is the transmission device according to the first invention, wherein the IF conversion unit converts the first intermediate frequency signal modulated by the modulation unit into a second intermediate frequency signal. A first IF conversion unit including: a first frequency conversion unit; a second IF filter that passes the second intermediate frequency signal; and a second IF conversion unit that converts the second intermediate frequency signal into a high frequency signal. And a second IF conversion unit including a second IF conversion unit, wherein the control unit includes an edge of a frequency band of the first intermediate frequency signal at an edge of a pass frequency band of the first IF filter. The frequency of the modulation section is adjusted and set so that the first frequency is adjusted so that the edge of the frequency band of the second intermediate frequency signal is aligned with the edge of the pass frequency band of the second filter. The frequency of the conversion means is adjusted and set.
第 3の発明は、 第 1又は第 2の発明に記載の送信装置であって、 前記変調部は 、 該中間周波数信号の不要な高調波成分を除去するためのデジタルフィルタと、 該デジタルフィルタの通過信号をアナログ信号に変換する DZ A変換手段とを備 え、 前記制御部は、 前記デジタルフィル夕の通過周波数帯域のエッジに前記第 1 の中間周波数信号の周波数帯のエッジを揃えるように前記変調部の周波数を調整 設定することを特徴とする。 A third invention is the transmission device according to the first or second invention, wherein the modulation unit comprises: a digital filter for removing unnecessary harmonic components of the intermediate frequency signal; DZA conversion means for converting the passing signal to an analog signal The control unit adjusts and sets the frequency of the modulation unit so that the edge of the frequency band of the first intermediate frequency signal is aligned with the edge of the pass frequency band of the digital filter.
第 4の発明は、 第 1、 第 2又は第 3の発明に記載の送信装置であって、 前記第 1の I Fフィルタは、 バンドパスフィルタもしくはローパスフィルタであること を特徴とする。  A fourth invention is the transmission device according to the first, second, or third invention, wherein the first IF filter is a band-pass filter or a low-pass filter.
第 5の発明は、 第 3に記載の送信装置であって、 前記デジタルフィル夕は、 バ ンドパスフィル夕もしくは口一パスフィル夕の機能を有するデジタルフィル夕で あることを特徴とする。  A fifth aspect of the present invention is the transmission device according to the third aspect, wherein the digital filter is a digital filter having a band pass filter or a mouth-to-pass filter function.
第 6の発明は、 第 2又は第 3の発明に記載の送信装置であって、 前記第 2の I とする。  A sixth invention is the transmission device according to the second or third invention, wherein the second device is referred to as the second device.
第 7の発明は、 入力信号を所定の周波数帯域のベースバンド信号に変調する変 調部と、 該ベースバンド信号を中間周波数を経由して若しくは高周波信号に変換 する I F変換部と、 該高周波信号を送信する R F送信部と、 各部を制御する制御 部とを備えた送信装置であって、 前記変調部は、 前記ベースバンド信号に変調す る信号変調手段と、 該ベースバンド信号を通過させる前記バースバンドフィルタ とを備え、 前記制御部は、 前記ベースバンドフィル夕の通過周波数帯域のエッジ に前記べ一スバンド信号の周波数帯のエッジを揃えるように前記変調部の周波数 を調整設定することを特徴とする。  A seventh invention is a modulation section for modulating an input signal into a baseband signal in a predetermined frequency band, an IF conversion section for converting the baseband signal via an intermediate frequency or to a high-frequency signal, and the high-frequency signal And a control unit for controlling each unit, the modulation unit comprising: a signal modulation unit configured to modulate the baseband signal; and a signal modulation unit configured to transmit the baseband signal. And a control unit that adjusts and sets the frequency of the modulation unit so that the edge of the frequency band of the baseband signal is aligned with the edge of the passband of the baseband filter. And
第 8の発明は、 第 7の発明に記載の送信装置であって、 前記 I F変換部は、 前 記変調部で変調されたベースバンド信号を中間周波数信号に変換する第 1の周波 数変換手段と、 該中間周波数信号を通過させる I Fフィル夕とを備えた第 1の I F変換部と、 前記中間周波数信号を高周波信号に変換する第 2の周波数変換手段 を備えた第 2の I F変換部とからなり、 前記制御部は、 前記ベースバンドフィル 夕の通過周波数帯域のエッジに前記ベースバンド信号の周波数帯のエッジを揃え るように前記変調部の周波数を調整設定し、 前記 I Fフィル夕の通過周波数帯域 のエツジに前記中間周波数信号の周波数帯のエツジを揃えるように前記第 1の周 波数変換手段の周波数を調整設定することを特徴とする。 An eighth invention is the transmission device according to the seventh invention, wherein the IF conversion unit is a first frequency conversion unit that converts the baseband signal modulated by the modulation unit into an intermediate frequency signal. A first IF converter provided with an IF filter for passing the intermediate frequency signal, and a second IF converter provided with second frequency converting means for converting the intermediate frequency signal into a high frequency signal. The control unit aligns the edge of the frequency band of the baseband signal with the edge of the passband of the baseband filter. The frequency of the first frequency conversion means is adjusted and set so that the edge of the frequency band of the intermediate frequency signal is aligned with the edge of the pass frequency band of the IF filter. It is characterized by doing.
第 9の発明は、 第 7又は第 8の発明に記載の送信装置であって、 前記変調部は 、 該ベースバンド信号の不要な高調波成分を除去するためのデジタルフィル夕と 、 該デジタルフィル夕の通過信号をアナログ信号に変換する DZA変換手段とを 備え、 前記制御部は、 前記デジタルフィル夕の通過周波数帯域のエッジに前記べ ースバンド信号の周波数帯のエッジを揃えるように前記変調部の周波数を調整設 定することを特徴とする。  A ninth invention is the transmission device according to the seventh or eighth invention, wherein the modulation unit comprises: a digital filter for removing unnecessary harmonic components of the baseband signal; and the digital filter. DZA conversion means for converting an evening pass signal into an analog signal, wherein the control unit is configured to adjust the edge of the passband of the digital filter to the edge of the frequency band of the baseband signal. It is characterized in that the frequency is adjusted and set.
第 1 0の発明は、 第 7、 第 8又は第 9の発明に記載の送信装置であって、 前記 ベースバンドフィル夕は、 口一パスフィル夕であることを特徴とする。  A tenth invention is the transmission device according to the seventh, eighth, or ninth invention, wherein the baseband filter is a mouth-to-pass filter.
第 1 1の発明は、 第 9の発明に記載の送信装置であって、 前記デジタルフィル 夕フィル夕は、 ローパスフィル夕の機能を有するデジタルフィルタであることを 特徴とする。  An eleventh invention is the transmission device according to the ninth invention, wherein the digital filter is a digital filter having a low-pass filter function.
第 1 2の発明は、 第 7又は第 8の発明に記載の送信装置であって、 前記 I Fフ る。  A twelfth invention is the transmission device according to the seventh or eighth invention, wherein the IF device.
第 1 3の発明は、 第 1から第 1 2の発明のいずれかに記載の送信装置を備えた ことを特徴とする無線通信装置である。  A thirteenth invention is a wireless communication device comprising the transmission device according to any one of the first to twelve inventions.
本発明においては、 フィル夕の通過周波数帯域のエッジに前記中間周波数信号 やベースバンド信号の周波数帯のエッジを揃えるように信号変調手段や周波数変 換手段のローカル信号の周波数を調整設定するので、 従来のように、 各通過周波 数帯域の異なるフィルタをチャンネル毎に用意する必要はない。 中間周波数信号 の周波数帯域を移動して、 所定の通過周波数帯域を有するフィル夕を通過させ、. ノイズ成分を取り除くことができるからである。  In the present invention, the frequency of the local signal of the signal modulation means and the frequency conversion means is adjusted and set so that the edges of the frequency band of the intermediate frequency signal and the baseband signal are aligned with the edges of the pass frequency band of the filter. It is not necessary to prepare filters having different passbands for each channel as in the conventional case. This is because the noise component can be removed by moving the frequency band of the intermediate frequency signal to pass through a filter having a predetermined pass frequency band.
例えば、 変調部で入力信号を変調する際に、 第 1の中間周波数帯の変調信号の 上限周波数が第 1の I Fフィルタの上側ェッジに揃うようにするとともに、 変調 信号の周波数帯域に応じて、 デジタルフィル夕の通過周波数帯域を調整する。 前 記第 1のフィルタは信号の変調過程で発生する前記デジタルフィルタでは除去し 切れない 2倍波、 3倍波等の高調波ノイズ成分を除去する。 更に、 前記周波数変 換遮断器の変換周波数を調整することにより、 第 2のフィルタの下側エッジに前 記第 2の I F周波数帯の送信信号の下限周波数が揃うようにして、 送信信号の下 側の周波数帯に存在するイメージ成分等のノイズを除去する。 For example, when modulating the input signal with the modulator, the modulation signal of the first intermediate frequency band is The upper limit frequency is aligned with the upper edge of the first IF filter, and the pass frequency band of the digital filter is adjusted according to the frequency band of the modulated signal. The first filter removes a harmonic noise component such as a second harmonic and a third harmonic that cannot be removed by the digital filter generated in a signal modulation process. Further, by adjusting the conversion frequency of the frequency conversion circuit breaker, the lower limit frequency of the transmission signal of the second IF frequency band is aligned with the lower edge of the second filter, and Noise such as image components existing in the frequency band on the side is removed.
また、 前記信号変調手段で入力信号を変調する際に、 ベースバンド周波数帯の 前記変調信号の上限周波数が前記べ一スパンドフィル夕のエツジに揃うようにす るとともに、 前記変調信号の周波数帯域に応じて、 デジタルフィル夕の通過周波 帯域を調整する。 ベースバンドフィル夕では信号の変調過程で発生する除去し切 れない 2倍波、 3倍波等の高調波ノイズ成分を除去する。  Further, when modulating the input signal by the signal modulating means, the upper limit frequency of the modulation signal in a baseband frequency band is set to be equal to the edge of the base spanned filter, and according to the frequency band of the modulation signal. Adjust the passband of the digital filter. In the baseband filter, harmonic noise components such as 2nd and 3rd harmonics that cannot be completely eliminated during the signal modulation process are removed.
更に、 前記周波数変換手段の変換周波数を調整することにより、 前記 I Fフィ ル夕の下側エツジに前記第 2の中間周波数帯の送信信号の下限周波数が揃うよう にして、 送信信号の下側の周波数帯に存在するイメージ成分等のノイズを除去す る。 これにより、 前記課題の解決が図られる。  Further, by adjusting the conversion frequency of the frequency conversion means, the lower edge of the transmission signal of the second intermediate frequency band is aligned with the lower edge of the IF filter, and the lower side of the transmission signal is adjusted. Eliminates noise such as image components existing in the frequency band. Thereby, the above-mentioned problem is solved.
以上、 本発明の課題を解決するための手段として、 各フィル夕を用いてノイズ 成分をカットする方法を説明したが、 特にデジタルフィル夕が無い場合でも、 課 題の解決は可能である。 また、 第 1の I F変換部は、 複数でも問題はなく、 中間 周波数信号のノイズを除去するのに必要分だけあればよい。  As described above, as a means for solving the problem of the present invention, a method of cutting a noise component by using each filter has been described. However, even without a digital filter, the problem can be solved. Also, there is no problem even if there are a plurality of first IF conversion units, and it is sufficient that the first IF conversion unit is only necessary for removing noise of the intermediate frequency signal.
また、 第 1 4の発明は、 高周波信号を受信する R F受信部と、 該高周波信号を 中間周波数信号に変換する I F変換部と、 該中間周波数信号を復調する復調部と 、 各部を制御する制御部とを備えた受信装置であって、 前記 I F変換部は、 前記 R F受信部で受信した高周波信号を中間周波数信号に変換するための周波数変換 手段と、 変換された前記中間周波数信号の所定の周波数帯域の信号を通過させる フィル夕とを備え、 前記制御部は、 前記フィル夕の通過周波数帯域のエッジに前 記中間周波数信号の周波数帯のエッジを揃えるように前記周波数変換手段のロー カル信号の周波数を調整設定することを特徴とする。 Also, a fourteenth aspect of the present invention provides an RF receiving unit that receives a high-frequency signal, an IF conversion unit that converts the high-frequency signal into an intermediate frequency signal, a demodulation unit that demodulates the intermediate frequency signal, and a control unit that controls each unit. A IF conversion unit, the IF conversion unit comprising: a frequency conversion unit configured to convert a high-frequency signal received by the RF reception unit into an intermediate frequency signal; and And a filter that passes a signal in a frequency band. The frequency of the local signal of the frequency conversion means is adjusted and set so that the edges of the frequency band of the intermediate frequency signal are aligned.
第 1 5の発明は、 第 1 4の発明に記載の受信装置であって、 受信した高調波信 号から受信信号の周波数帯域を検出する検出手段を備え、 前記制御部は、 前記受 信信号の周波数帯域に基づいて前記周波数変換手段のローカル信号の周波数を調 整設定することを特徴とする。  A fifteenth invention is the receiving device according to the fifteenth invention, further comprising: a detection unit configured to detect a frequency band of a received signal from a received harmonic signal, wherein the control unit is configured to receive the received signal. The frequency of the local signal of the frequency conversion means is adjusted and set based on the above frequency band.
第 1 6の発明は、 第 1 5の発明に記載の受信装置であって、 前記復調部は、 前 記周波数帯域の情報を含んだ特定の周波数帯域の制御信号を復調し、 前記検出手 段が、 復調された前記制御信号に基づいて前記受信信号の周波数帯域を検出する ことを特徴とする。  A sixteenth invention is the receiving device according to the fifteenth invention, wherein the demodulation section demodulates a control signal of a specific frequency band including the information of the frequency band, Detecting a frequency band of the received signal based on the demodulated control signal.
第 1 7の発明は、 第 1 4、 第 1 5又は第 1 6の発明に記載の受信装置であって 、 前記 I F変換部は、 第 1の周波数変換手段と第 1のフィル夕を有する第 1の I F変換部と、 第 2の周波数変換手段と第 2のフィル夕を有する第 2の I F変換部 とからなり、 前記周波数設定手段は、 前記第 1のフィル夕の通過帯域の上限或い は下限のエッジに中間周波数信号の周波数帯域の上限或いは下限のエッジが揃う ように前記第 1の周波数変換手段のローカル信号の周波数を設定し、 前記第 2の フィル夕の通過帯域の下限或いは上限のエッジに中間周波数信号の周波数帯域の 下限或いは上限のエツジが揃うように前記第 2の周波数変換手段のローカル信号 の周波数を設定することを特徴とする。  A seventeenth invention is the receiving device according to the fifteenth, fifteenth, or sixteenth invention, wherein the IF conversion unit includes a first frequency conversion unit and a first filter. A first IF converter, a second IF converter having a second frequency converter and a second filter, wherein the frequency setting means includes an upper limit or a lower limit of a pass band of the first filter. Sets the frequency of the local signal of the first frequency conversion means so that the upper or lower edge of the frequency band of the intermediate frequency signal is aligned with the lower edge, and the lower or upper limit of the pass band of the second filter. The frequency of the local signal of the second frequency conversion means is set so that the lower or upper edge of the frequency band of the intermediate frequency signal is aligned with the edge of the second frequency converter.
第 1 8の発明は、 第 1 7の発明に記載の受信装置であって、 前記第 1のフィル 夕は、 バンドパスフィルタもしくは口一パスフィル夕であることを特徴とする。 第 1 9の発明は、 第 1 7の発明に記載の受信装置であって、 前記第 2のフィル 第 2 0の発明は、 前記受信装置を備えたことを特徴とする無線通信装置である 本発明においては、 フィル夕の通過周波数帯域のエッジに前記中間周波数信号 の周波数帯のエッジを揃えるように前記周波数変換手段の口一カル信号の周波数 を調整設定するので、 従来のように、 各通過周波数帯域の異なるフィルタをチヤ ンネル毎に用意する必要はない。 中間周波数信号の周波数帯域を移動して、 所定 の通過周波数帯域を有するフィル夕を通過させ、 ノィズ成分を取り除くことがで きるからである。 An eighteenth invention is the receiving device according to the seventeenth invention, wherein the first filter is a band-pass filter or a one-pass filter. A nineteenth invention is a receiving device according to the seventeenth invention, wherein the second filter is a wireless communication device including the receiving device. In the invention, the intermediate frequency signal is provided at an edge of a pass frequency band of the filter. Since the frequency of the oral signal of the frequency conversion means is adjusted and set so that the edges of the frequency band are aligned, it is not necessary to prepare filters having different pass frequency bands for each channel as in the related art. This is because the noise component can be removed by moving the frequency band of the intermediate frequency signal to pass through the filter having a predetermined pass frequency band.
例えば、 第 1の I F変換部と第 2の I F変換部を備え、 制御部が第 1の I F変 換部の第 1の周波数変換手段の変換周波数を調整することにより、 第 1のフィル 夕の上側ェッジに第 1の I F周波数帯の受信信号の上限周波数が揃うようにして 、 上側隣接波ゃスプリァス等の受信信号の上側周波数帯に存在するノイズ成分を 除去する。 さらに、 第 2の I F変換部の第 2の周波数変換手段の変換周波数を調 整することにより、 前記第 2のフィル夕の下側ェッジに第 2の I F周波数帯ある いはべ一バンド周波数帯の受信信号の上限周波数を揃うようにして、 下側隣接波 等の受信信号の下側周波数帯に存在するノイズ成分を除去する。 こうして、 従来 のようにチャンネルごとにフィル夕を設けたり、 またフィル夕を切り替えるため のスィッチ回路を設けること無しに、 複数の周波数帯の無線信号を復調可能とす る。 図面の簡単な説明  For example, a first IF conversion unit and a second IF conversion unit are provided, and the control unit adjusts the conversion frequency of the first frequency conversion unit of the first IF conversion unit, thereby providing a first filter. The upper edge of the received signal in the first IF frequency band is aligned with the upper limit frequency to remove noise components existing in the upper frequency band of the received signal such as the upper adjacent wave and the spurious. Further, by adjusting the conversion frequency of the second frequency conversion means of the second IF conversion section, the lower edge of the second filter is provided with a second IF frequency band or a single band frequency band. The noise components existing in the lower frequency band of the received signal, such as the lower adjacent wave, are removed by aligning the upper limit frequencies of the received signals of the received signals. Thus, radio signals in a plurality of frequency bands can be demodulated without providing a filter for each channel or providing a switch circuit for switching the filter as in the related art. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の第 1の実施の形態に係わる送信装置の構成例を示したプロッ ク図である。  FIG. 1 is a block diagram showing a configuration example of the transmitting apparatus according to the first embodiment of the present invention.
図 2は、 本発明の第 1の実施の形態及び第 2の実施の形態に係わる送信装置の 送信方法に関するフローチャートの例を示した図である。  FIG. 2 is a diagram showing an example of a flowchart relating to the transmission method of the transmission device according to the first embodiment and the second embodiment of the present invention.
図 3は、 本発明の第 1の実施の形態及び第 2の実施の形態に係わる送信信号の 周波数特性の一例を周波数軸上で示した図である。  FIG. 3 is a diagram showing an example of a frequency characteristic of a transmission signal on the frequency axis according to the first embodiment and the second embodiment of the present invention.
図 4は、 本発明の第 1の実施の形態に係わるフィル夕と送信信号の相関の一例 を周波数軸上で示した図である。 図 5は、 本発明の第 2の実施の形態に係わる送信装置の構成例を示すプロック 図である。 FIG. 4 is a diagram showing an example of a correlation between a filter and a transmission signal on the frequency axis according to the first embodiment of the present invention. FIG. 5 is a block diagram illustrating a configuration example of a transmission device according to the second embodiment of the present invention.
図 6は、 本発明の第 2の実施の形態に係わるフィル夕と送信信号の相関の一例 を周波数軸上で示した図である。  FIG. 6 is a diagram showing an example of a correlation between a filter and a transmission signal on the frequency axis according to the second embodiment of the present invention.
図 7は、 従来の送信装置の構成例を示したブロック図である。  FIG. 7 is a block diagram showing a configuration example of a conventional transmission device.
図 8は、 本発明に係わる第 3の実施の形態に係わる受信装置の構成例を示した ブロック図である。  FIG. 8 is a block diagram showing a configuration example of a receiving device according to the third embodiment of the present invention.
図 9は、 本発明に係わる第 3の実施の形態及び第 4の実施の形態に係わる受信 装置の受信方法に関するフローチャートの例を示した図である。  FIG. 9 is a diagram showing an example of a flowchart relating to the receiving method of the receiving device according to the third embodiment and the fourth embodiment according to the present invention.
図 1 0は、 本発明に係わる実施の形態の受信信号周波数特性の一例を周波数軸 上で示した図である。  FIG. 10 is a diagram showing an example of a received signal frequency characteristic on the frequency axis according to the embodiment of the present invention.
図 1 1は、 本発明の第 3の実施の形態に係わるフィル夕と受信信号の相関の一 例を周波数軸上で示した図である。  FIG. 11 is a diagram showing an example of a correlation between a received signal and a received signal on the frequency axis according to the third embodiment of the present invention.
図 1 2は、 本発明に係わる第 4の実施の形態に係わる受信装置の構成例を示す ブロック図である。  FIG. 12 is a block diagram showing a configuration example of a receiving device according to the fourth embodiment of the present invention.
図 1 3は、 本発明の第 4の実施に係わるフィル夕と受信信号の相関の一例を周 波数軸上で示した図である。  FIG. 13 is a diagram showing an example of a correlation between a received signal and a received signal on the frequency axis according to the fourth embodiment of the present invention.
図 1 4は、 従来の受信装置の構成例を示したブロック図である。  FIG. 14 is a block diagram showing a configuration example of a conventional receiving apparatus.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態について説明する。  Hereinafter, embodiments of the present invention will be described.
<第 1の実施の形態 >  <First embodiment>
図 1は、 第 1の実施の形態に係わる送信装置の構成を示すプロック図である。 本発明の第 1の実施の形態の送信装置は、 信号変調部 1 0 a、 第 1の I F送信 部 2 0 a、 第 2の I F送信部 3 0、 R F送信部 4 0、 送受信用アンテナ 5 0、 制 御部 7 0 aから構成されている。 R F送信部 4 0と送受信用アンテナ 5 0の構成 および機能は、 前記図 7に示す送信装置の例と同様であるが、 信号変調部 1 0 a 、 第 1の I F送信部 2 0 a、 第 2の I F送信部 3 0、 制御部 7 0 aは、 前記図 7 に示す送信装置の例とは異なっている。 FIG. 1 is a block diagram showing a configuration of the transmitting apparatus according to the first embodiment. The transmitting device according to the first embodiment of the present invention includes a signal modulating unit 10 a, a first IF transmitting unit 20 a, a second IF transmitting unit 30, an RF transmitting unit 40, and a transmitting / receiving antenna 5. 0 and the control unit 70a. Configuration of RF Transmitter 40 and Transmit / Receive Antenna 50 The function and the function are the same as those of the example of the transmitting apparatus shown in FIG. 7, but the signal modulating section 10 a, the first IF transmitting section 20 a, the second IF transmitting section 30, and the control section 70 a Is different from the example of the transmitting apparatus shown in FIG.
送信信号の変調手段を備えたデジタル信号変調器 1 1 aは、 制御部 7 0 aの発 信する送信信号の周波数帯域の情報に基づいて、 第 1の I F信号を生成する。 第 1の I F信号は、 バンドパスフィルタあるいは口一パスフィル夕機能を有するデ ジタルフィル夕 1 2 aにより 2倍波や 3倍波等の不要な高調波成分が取り除かれ 、 DZA変換器 1 3 aによりデジタル信号からアナログ信号に変換される。 次に、 アナログ化された第 1の I F信号は、 第 1の I Fバンドパスフィル夕 1 4を通過し、 第 1の I F送信増幅器 2 2で、 第 1の周波数変換器 2 3 aの入力に 適する信号電力に増幅される。  The digital signal modulator 11a including the transmission signal modulating means generates the first IF signal based on the information on the frequency band of the transmission signal transmitted from the control unit 70a. The first IF signal removes unnecessary harmonic components such as a second harmonic and a third harmonic by a band-pass filter or a digital filter 12 a having a single-pass filter function, and a DZA converter 13 a It is converted from a digital signal to an analog signal. Next, the analogized first IF signal passes through the first IF bandpass filter 14, and is input to the first frequency converter 23 a by the first IF transmission amplifier 22. It is amplified to a suitable signal power.
第 1の周波数変換器 2 3 aにおいて、 前記第 1の I F信号は、 第 1の局部発振 器 2 4 aから入力されるローカル信号により第 2の I F信号にアップコンバート される。 アップコンバートされた第 2の I F信号は、 第 2の I Fバンドパスフィ ルタ 2 5を通過し、 送信電力の制御機能を有する第 2の I F送信増幅器 3 2で、 第 2の周波数変換器 3 3の入力に適する信号電力に増幅される。 第 2の周波数変 換器 3 3は、 第 2の局部発振器 3 4より発生するローカル信号を入力することに より、 第 2の I F信号を R F信号にアップコンバートする。  In the first frequency converter 23a, the first IF signal is up-converted into a second IF signal by a local signal input from the first local oscillator 24a. The up-converted second IF signal passes through a second IF band-pass filter 25 and a second IF transmission amplifier 32 having a transmission power control function, and a second frequency converter 33 Is amplified to a signal power suitable for the input. The second frequency converter 33 up-converts the second IF signal into an RF signal by inputting a local signal generated by the second local oscillator 34.
次に、 R F信号は、 第 2の周波数変換器 3 3の発する送傳スプリアスを除去す る目的ももつ全チャンネルの信号周波数帯を通過させる広帯域の R Fバンドパス フィル夕 3 5を通過する。 その後 R F信号は、 R F電力増幅器 4 2により、 所定 の送信電力に増幅され、 送受信切替器 4 3と R Fバンドパスフィル夕 4 4を経由 して、 送受信用アンテナ 5 0より、 空中に放射される。  Next, the RF signal passes through a wide-band RF bandpass filter 35 that passes the signal frequency band of all the channels, which also has a purpose of removing the transmission spurious generated by the second frequency converter 33. Thereafter, the RF signal is amplified to a predetermined transmission power by the RF power amplifier 42, and is radiated into the air from the transmission / reception antenna 50 via the transmission / reception switch 43 and the RF bandpass filter 44. .
制御部 7 0 aは、 送信信号の周波数帯域に基づいて、 送信信号の周波数帯域の 上限が第 1の I Fバンドパスフィル夕 1 4の上側エッジに来るように、 デジタル 信号変調器 1 1 aで生成される送信信号の周波数を調整し、 さらに第 1のデジ夕 ルフィル夕 1 2 aの通過周波数帯域を変調信号の周波数帯に応じて調整する。 さらに、 制御部 7 0 aは、 送信信号の周波数帯域に基づいて、 送信信号の周波 数帯域の下限が第 2の I Fバンドパスフィルタ 2 5の下側エッジに来るように、 第 1の局部発振器 2 4 aの発振周波数を調整する。 また、 制御部 7 0 aは、 送受 信切替器 4 3や第 2の I F送信増幅器 3 2のゲイン調整等の送信装置全体の制御 も担っている。 The control unit 70a controls the digital signal modulator 11a based on the frequency band of the transmission signal so that the upper limit of the frequency band of the transmission signal comes to the upper edge of the first IF bandpass filter 14. Adjust the frequency of the generated transmission signal, and The pass frequency band of the filter 12a is adjusted according to the frequency band of the modulation signal. Further, the control unit 70a controls the first local oscillator based on the frequency band of the transmission signal so that the lower limit of the frequency band of the transmission signal comes to the lower edge of the second IF bandpass filter 25. Adjust the oscillation frequency of 24a. The control unit 70a also controls the entire transmission device, such as adjusting the gain of the transmission / reception switch 43 and the second IF transmission amplifier 32.
図 2は、 本発明の第 1の実施の形態に係わる送信装置の送信方法に関するフ口 一チャートであり、 図 3は本発明に係わる実施の形態の送信信号周波数特性の一 例を周波数軸上に示した図であり、 図 4は本発明の第 1の実施の形態に係わるフ ィル夕と送信信号の相関の一例を周波数軸上で示した図である。  FIG. 2 is a flowchart illustrating a transmission method of the transmission device according to the first embodiment of the present invention. FIG. 3 is a graph illustrating an example of a transmission signal frequency characteristic on the frequency axis according to the embodiment of the present invention. FIG. 4 is a diagram showing an example of a correlation between a filter and a transmission signal on the frequency axis according to the first embodiment of the present invention.
以下に、 本発明に係わる送信装置の送信方法について、 主に図 2を使用して、 適宜、 図 1 , 図 3, 図 4も参照しながら説明する。  Hereinafter, the transmission method of the transmission apparatus according to the present invention will be described mainly with reference to FIG. 2 and also to FIGS. 1, 3, and 4 as appropriate.
本実施の形態では、 図 3の (a ) , ( b ) , ( c ) に示すような 3つの周波数 帯域の信号を使用する。 図 3の (a ) は 1つのチャンネルのみを使用した場合の 送信信号を示しており、 送信信号の中心周波数は f c、 周波数帯域は 2 A f (Δ f は 1チャンネルの周波数帯域の半値幅) である。 図 3の (b ) は 2つのチャン ネルを同時に使用した場合の送信信号を示しており、 送信信号の中心周波数は f c , 周波数帯域は 4 Δ fである。 図 3の (c ) は 3つのチャンネルを同時に使用 した場合の送信信号を示しており、 送信信号の中心周波数は f c、 周波数帯域は 6 A fである。  In the present embodiment, signals in three frequency bands as shown in (a), (b), and (c) of FIG. 3 are used. (A) in Fig. 3 shows a transmission signal when only one channel is used. The center frequency of the transmission signal is fc, and the frequency band is 2 Af (Δf is the half bandwidth of the frequency band of one channel). It is. (B) of FIG. 3 shows a transmission signal when two channels are used simultaneously. The center frequency of the transmission signal is fc and the frequency band is 4Δf. (C) in Fig. 3 shows a transmission signal when three channels are used simultaneously. The center frequency of the transmission signal is fc, and the frequency band is 6 Af.
最初に図 2のステップ S 1 1で、 送信装置の制御部 7 0 aは、 送信しようとす る制御信号の占有する周波数帯域に合わせて、 デジタル信号変調器 1 1 aで生成 する送信信号 (第 1の I F信号) の周波数帯域の調整と、 第 1の局部発信器 2 4 aのローカル発振周波数の調整を行う。 また、 自己の送信時間や送信信号の周波 数帯域等の無線通信に必要な情報を相手方に知らせるための制御情報を含んだ制 御信号の中心周波数が、 送信に使用する周波数帯域の中心周波数に合うように、 第 2の局部発振器 3 4のローカル発振周波数の調整も行う。 ステップ S 1 2で、 送信装置は、 制御信号を生成して、 実際に送信を行う。 First, in step S11 of FIG. 2, the control unit 70a of the transmitting apparatus adjusts the transmission signal generated by the digital signal modulator 11a according to the frequency band occupied by the control signal to be transmitted. It adjusts the frequency band of the first IF signal) and the local oscillation frequency of the first local oscillator 24a. In addition, the center frequency of the control signal including control information for notifying the other party of information necessary for wireless communication such as its own transmission time and the frequency band of the transmission signal is set to the center frequency of the frequency band used for transmission. To fit The local oscillation frequency of the second local oscillator 34 is also adjusted. In step S12, the transmitting device generates a control signal and performs actual transmission.
ステップ S 1 3で、 送信装置の制御部 7 0 aは、 自己が送信しょうとするデー 夕信号の周波数帯域に基づいて、 デジタル信号変調器 1 1 aで生成する送信信号 (第 1の I F信号) の周波数帯域の調整をして、 第 1の I F信号の上限周波数が 第 1の I Fバンドパスフィルタ 1 4の上側エッジ (1チャンネルの信号の場合は f c + 2 A f ) に来るように調整を行う。  In step S13, the control unit 70a of the transmitting apparatus transmits the transmission signal (first IF signal) generated by the digital signal modulator 11a based on the frequency band of the data signal to be transmitted by itself. Adjust the frequency band so that the upper limit frequency of the first IF signal comes to the upper edge of the first IF bandpass filter 14 (fc + 2Af for 1-channel signal) I do.
ステップ S 1 4では、 第 1の局部発信器 2 4 aの口一カル発振周波数を調整し て、 第 2の I F信号の下限周波数が第 2の I Fバンドパスフィルタ 2 5の下側ェ ッジ (1チャンネルの信号の場合は f c— 2 Δ f ) に来るように調整を行う。 また、 第 2の I F信号をアップコンバートした R F信号の中心周波数が、 送信 に使用するチヤンネルの周波数帯域に合うように、 第 2の局部発振器 3 4の口一 カル発振周波数を調整する。  In step S14, the oral oscillation frequency of the first local oscillator 24a is adjusted so that the lower limit frequency of the second IF signal is lower than the lower edge of the second IF bandpass filter 25. (In the case of 1-channel signal, adjust so that it comes to fc−2Δf). In addition, the local oscillation frequency of the second local oscillator 34 is adjusted so that the center frequency of the RF signal obtained by up-converting the second IF signal matches the frequency band of the channel used for transmission.
ステップ S 1 5で、 実際にデータ信号の生成と送信処理を行い、 送信処理を続 ける場合はステップ S 1 1に戻り、 そうでなければ送信処理を終了する (ステツ プ S 1 6 ) 。  In step S15, the data signal is actually generated and transmitted. If the transmission process is to be continued, the process returns to step S11. Otherwise, the transmission process is terminated (step S16).
次に図 4を用いてフィル夕と送信信号の相関について説明する。 図 4において は、 送信信号の周波数帯域が 3通りの場合について示されており、 第 1の I Fバ ンドパスフィル夕 1 4は中心周波数 f c 1 , 通過周波数帯域 6 Δ f の特性を有し 、 第 2のバンドパスフィル夕 2 5は中心周波数 f c 2, 通過周波数帯域 6 A f の 特性を有している。 前記バンドパスフィル夕 1 4, 2 5の通過周波数帯域は、 最 大周波数帯域を有する送信信号に合わせて設定される。 言い換えれば、 各バンド パスフィルタの通過周波数帯域は、 (最大同時送信可能チャンネル数 X 2 Δ f ) となる。  Next, the correlation between the transmission signal and the transmission signal will be described with reference to FIG. FIG. 4 shows a case where the transmission signal has three frequency bands. The first IF band pass filter 14 has a characteristic of a center frequency fc 1 and a pass frequency band 6 Δf, and The bandpass filter 25 has a characteristic of a center frequency fc2 and a pass frequency band of 6 Af. The pass frequency bands of the bandpass filters 14 and 25 are set according to the transmission signal having the maximum frequency band. In other words, the pass frequency band of each band-pass filter is (maximum number of simultaneously transmittable channels X 2 Δf).
図 4の (a l ) は、 送信信号に 1チャンネルを使用した場合の第 1の I F信号 に関する相関図であり、 符号 1 8 1— 1は第 1の I F信号の周波数特性を示し、 符号 191は第 1の I Fバンドパスフィル夕 14の周波数特性を示している。 図 4の (a 2) は、 送信信号に 1チャンネルを使用した場合の第 2の I F信号に関 する相関図であり、 符号 181— 2は第 2の I F信号の周波数特性を示し、 符号 192は第 2の I Fバンドパスフィルタ 25の周波数特性を示している。 (Al) in FIG. 4 is a correlation diagram regarding the first IF signal when one channel is used for the transmission signal, and reference numeral 181-1-1 indicates the frequency characteristic of the first IF signal. Reference numeral 191 indicates the frequency characteristic of the first IF bandpass filter 14. (A 2) of FIG. 4 is a correlation diagram regarding the second IF signal when one channel is used for the transmission signal. Reference numeral 181-2 denotes the frequency characteristic of the second IF signal, and reference numeral 192 denotes the second IF signal. Indicates the frequency characteristic of the second IF bandpass filter 25.
図 4の (b l) は、 送信信号に 2チャンネルを使用した場合の第 1の I F信号 に関する相関図であり、 符号 182— 1は第 1の I F送信信号の周波数特性を示 している。 図 4の (b2) は、 送信信号に 2チャンネルを同時使用した場合の第 2の I F信号に関する相関図であり、 符号 182— 2は第 2の I F信号の周波数 特性を示している。  (Bl) in FIG. 4 is a correlation diagram relating to the first IF signal when two channels are used for the transmission signal, and reference numeral 182-1 denotes the frequency characteristic of the first IF transmission signal. (B2) of FIG. 4 is a correlation diagram relating to the second IF signal when two channels are simultaneously used for the transmission signal, and reference numeral 182-2 denotes a frequency characteristic of the second IF signal.
図 4の (c 1) は、 送信信号に 3チャンネルを同時使用した場合の第 1の I F 信号に関する相関図であり、 符号 183 _ 1は第 1の I F信号の周波数特性を示 している。 図 4の (c 2) は、 送信信号に 3チャンネルを同時使用した場合の第 2の I F信号に関する相関図であり、 符号 183— 2は第 2の I F送信信号の周 波数特性を示している。  (C1) of FIG. 4 is a correlation diagram regarding the first IF signal when three channels are used simultaneously for the transmission signal, and reference numeral 183_1 indicates the frequency characteristic of the first IF signal. (C 2) in FIG. 4 is a correlation diagram regarding the second IF signal when three channels are simultaneously used for the transmission signal, and reference numeral 183-2 indicates a frequency characteristic of the second IF transmission signal. .
1チャンネルの周波数帯域は 20 MHz、 RF信号のキャリア中心周波数 (R The frequency band of one channel is 20 MHz, and the carrier center frequency (R
F) は 25. 00GHz, 第 2の I F信号のキャリア中心周波数 (f c 2) は 2 440MHz、 第 1の I F信号のキャリア中心周波数 (f c 1) は 40 MHzで ある。 第 1の I Fバンドパスフィル夕 14と第 2のバンドパスフィル夕 25の通 過周波数帯域幅は最大チャンネル時 (この場合は 3チャンネル時) の信号周波数 帯域幅に適合する特性になっている。 第 1の実施の形態の例では、 第 1の I Fノ' ンドパスフィル夕 14の通過周波数帯域は 10 MH zから 70 MH zであり、 第 2の I Fバンドパスフィル夕 25の通過周波数帯域は 2410 MHzから 247 0MHzである。 F) is 25.00 GHz, the carrier center frequency (fc2) of the second IF signal is 2440 MHz, and the carrier center frequency (fc1) of the first IF signal is 40 MHz. The passing frequency bandwidth of the first IF band-pass filter 14 and the second band-pass filter 25 has characteristics that match the signal frequency bandwidth of the maximum channel (in this case, three channels). In the example of the first embodiment, the pass frequency band of the first IF bandpass filter 14 is 10 MHz to 70 MHz, and the pass frequency band of the second IF bandpass filter 25 is 2410 MHz. From 2470 MHz.
送信信号が 1チャンネルのみを使用している場合、 第 1の I F周波数帯の送信 信号の中心周波数 I F 1は、 f c 1に 2△ f を加えれば良い。  When the transmission signal uses only one channel, the center frequency IF1 of the transmission signal in the first IF frequency band may be obtained by adding 2 △ f to fc1.
I F l= f c l+2A f =40+2X 10=60 (MHz) . . . (式 1— 1) IF l = fc l + 2A f = 40 + 2X 10 = 60 (MHz) .. (Equation 1—1)
となる。 Becomes
すなわち、 中心周波数 6 OMHzで周波数帯域 2 OMHzの送信信号を信号変 調部 1 1 aで発生させれば良い (図 4の (a 1) 参照) 。  In other words, a transmission signal having a center frequency of 6 OMHz and a frequency band of 2 OMHz may be generated by the signal modulation section 11a (see (a1) in FIG. 4).
次に、 第 1の I F周波数帯の送信信号を第 2の I F周波数帯にアップコンパ一 卜するためには、 第 2の I F周波数帯の送信信号の中心周波数 I F 2は、 f c 2 から 2 Δ f を減ずれば良いので、  Next, in order to up-compress the transmission signal of the first IF frequency band to the second IF frequency band, the center frequency IF2 of the transmission signal of the second IF frequency band is 2 Δ from fc 2. Since we only need to reduce f
I F 2= f c 2-2 A f=2440-2X 10=2420 (MH z )  I F 2 = f c 2-2 A f = 2440-2X 10 = 2420 (MH z)
• · · (式 1一 2)  • · (Equation 1 2)
となる。 Becomes
すなわち第 1の局部発振器 24 aの発するローカル周波数 L〇 1は、  That is, the local frequency L〇 1 emitted from the first local oscillator 24 a is
LOl= I F 2- I F l=2420-60=2360 (MHz) LOl = I F 2- I F l = 2420-60 = 2360 (MHz)
• · · (式 1一 3)  • · (Equation 1 1 3)
となる (図 4の (a 2) 参照) 。 (See (a2) in Fig. 4).
更に、 第 2の I F信号を中心周波数 25 GHzの RF信号にアップコンバート するためには、 第 2の局部発振器 34の発する口一カル周波数 L〇 2は、 L02=RF- I F 2 = 25 - 2. 42 = 22. 58 GHz  Further, in order to up-convert the second IF signal into an RF signal having a center frequency of 25 GHz, the oral frequency L〇 2 emitted from the second local oscillator 34 is given by: L02 = RF−IF 2 = 25−2 . 42 = 22. 58 GHz
. · . (式 1一 4)  . (Equation 1-1 4)
となる。 Becomes
送信信号が 2チャンネルを同時に使用している場合、 第 1の I F周波数帯の送 信信号の中心周波数 I F 1は、 f c 1に Δ f を加えれば良いので、  If the transmission signal uses two channels at the same time, the center frequency IF1 of the transmission signal in the first IF frequency band can be obtained by adding Δf to fc1.
I F l = f c 1+A f = 40+ 10 = 50 (MHz)  I F l = f c 1 + A f = 40+ 10 = 50 (MHz)
• · · (式 2— 1)  • · (Equation 2—1)
となる。 Becomes
すなわち、 中心周波数 5 OMH zで周波数帯域 4 OMH zの送信信号を信号変 調部 1 1 aで発生させれば良い (図 4の (b 1) 参照) 。 次に、 第 1の I F周波数帯の送信信号を第 2の I F周波数帯にアップコンパ一 卜するためには、 第 2の I F周波数帯の送信信号の中心周波数 I F 2は、 f c 2 から Δ f を減ずれば良いので、 That is, a transmission signal having a center frequency of 5 OMHz and a frequency band of 4 OMHz may be generated by the signal modulation section 11a (see (b1) in FIG. 4). Next, in order to up-compress the transmission signal of the first IF frequency band to the second IF frequency band, the center frequency IF2 of the transmission signal of the second IF frequency band is expressed by Δf from fc 2. It is enough to reduce
I F2=f c 2-A f =2440- 10=2430 (MHz)  I F2 = f c 2-A f = 2440-10 = 2430 (MHz)
· · · (式 2 - 2)  · (Formula 2-2)
となる。 Becomes
すなわち第 1の局部発振器 24の発するローカル周波数 L〇 1は、  That is, the local frequency L〇1 generated by the first local oscillator 24 is
L01 = I F2— I F 1 = 2430 - 50 = 2380 (MHz) L01 = IF2-IF1 = 2430-50 = 2380 (MHz)
• · · (式 2 - 3)  • · (Equation 2-3)
となる (図 4の (b 2) 参照) 。 (See (b2) in Fig. 4).
更に、 第 2の I F信号を中心周波数 25 GHzの RF信号にアップコンバート するためには、 第 2の局部発振器 34の発するローカル周波数 L〇 2は、 L02=RF- I F 2 = 25- 2. 43 = 22. 57 GHz  Furthermore, in order to up-convert the second IF signal into an RF signal having a center frequency of 25 GHz, the local frequency L〇2 generated by the second local oscillator 34 is given by: L02 = RF-IF 2 = 25−2.43 = 22.57 GHz
. . . (式 2— 4)  ... (Equation 2—4)
となる。 Becomes
送信信号が 3チャンネルを同時に使用している場合、 第 1の I F周波数帯の送 信信号の中心周波数 I F 1は、 f c 1のままで良いので、  When the transmission signal uses three channels simultaneously, the center frequency IF1 of the transmission signal in the first IF frequency band may be fc1, so that
I F 2= f c 2 = 40 (MHz)  I F 2 = f c 2 = 40 (MHz)
• · · (式 3— 1)  • · · (Equation 3-1)
となる。 Becomes
すなわち、 中心周波数 40 MHzで周波数帯域 60 MHzの送信信号を信号変 調部 11 aで発生させれば良い (図 4の (c 1) 参照) 。  In other words, a transmission signal having a center frequency of 40 MHz and a frequency band of 60 MHz may be generated by the signal modulator 11a (see (c1) in FIG. 4).
次に、 第 1の I F周波数帯の送信信号を第 2の I F周波数帯にアップコンバート するためには、 第 2の I F周波数帯の送信信号の中心周波数 I F 2は、 そのまま f c 2のままで良いので、 Next, in order to up-convert the transmission signal of the first IF frequency band to the second IF frequency band, the center frequency IF2 of the transmission signal of the second IF frequency band may remain fc2 as it is. So
I F2=f c 2 = 2440 (MHz) • · · (式 3 - 2) I F2 = fc 2 = 2440 (MHz) • · (Equation 3-2)
となる。 Becomes
すなわち第 1の局部発振器 24 aの発するローカル周波数 LO 1は、  That is, the local frequency LO 1 emitted from the first local oscillator 24 a is
LOl= I F2- I F l=2440-40=2400 (MHz) LOl = I F2- I F l = 2440-40 = 2400 (MHz)
· · · (式 3— 3)  · · · (Equation 3—3)
となる (図 4の (c 2) 参照) 。 (See (c2) in Fig. 4).
更に、 第 2の I F信号を中心周波数 25GHzの RF信号にアップコンバート するためには、 第 2の局部発振器 34の発するローカル周波数 LO 2は、 L02=RF- I F 2 = 25- 2. 44 = 22. 56GHz  Furthermore, in order to up-convert the second IF signal into an RF signal having a center frequency of 25 GHz, the local frequency LO 2 generated by the second local oscillator 34 is L02 = RF-IF 2 = 25−2.44 = 22 . 56GHz
· · · (式 3— 4)  · · · (Equation 3-4)
となる。 Becomes
ぐ第 2の実施の形態 >  Second embodiment>
以下に、 第 2の実施の形態について説明する。  Hereinafter, a second embodiment will be described.
図 5は、 第 2の実施の形態に係わる送信装置の構成を示すプロック図である。 第 1の実施の形態との主要な相違点は、 ベースバンド送信部 20 において、 ベ ースバンド信号を、 直接的に第 2の I F送信信号にアップコンバートしている点 であり、 これに合わせて信号変調部 10 bと制御部 70bの仕様が一部異なって いる。 その他の、 第 2の I F送信部 30、 RF送信部 40、 送受信用アンテナ 5 0については、 前記第 1の実施の形態の例と構成及び機能は同じである。  FIG. 5 is a block diagram illustrating a configuration of a transmission device according to the second embodiment. The main difference from the first embodiment is that the baseband transmitting section 20 directly up-converts the baseband signal to the second IF transmission signal. The specifications of the modulator 10b and the controller 70b are partially different. Other configurations of the second IF transmission unit 30, the RF transmission unit 40, and the transmission / reception antenna 50 are the same as those in the example of the first embodiment.
送信信号の生成手段を備えたデジタル信号変調器 11 bは、 制御部 70 bの発 信する送信信号の周波数帯域の情報に基づいて、 ベースバンド信号を生成する。 前記ベースバンド信号は、 ローパスフィル夕機能を有するデジタルフィル夕 12 bにより 2倍波や 3倍波等の不要な高調波成分が取り除かれ、 DZA変換器 13 bによりデジタル信号からアナ口グ信号に変換される。  The digital signal modulator 11b including the transmission signal generation means generates a baseband signal based on the information on the frequency band of the transmission signal transmitted by the control unit 70b. The baseband signal is filtered by a digital filter 12b having a low-pass filter function to remove unnecessary harmonic components such as a second harmonic and a third harmonic, and is converted from a digital signal to an analog signal by a DZA converter 13b. Is converted.
次に、 アナログ化されたベースバンド信号は、 ベースバンド口一パスフィル夕 Next, the analogized baseband signal is passed through the baseband
15を通過し、 ベースバンド送信増幅器 26で、 第 1の周波数変換器 23 bの入 力に適する信号電力に増幅される。 前記ベースバンド信号は、 第 1の周波数変換 器 2 3 bにおいて、 第 1の局部発振器 2 4 bから入力されるローカル信号により 第 2の I F信号にアップコンバートされる。 15 and the input of the first frequency converter 23b at the baseband transmission amplifier 26. It is amplified to a signal power suitable for power. The baseband signal is up-converted in the first frequency converter 23 b into a second IF signal by a local signal input from the first local oscillator 24 b.
第 2の I F信号にアップコンバートされてから送送信アンテナ 5 0までの送信 信号処理及び制御方法は、 第 1の実施の形態の例で説明した通りである。 また、 第 2の実施の形態の例の送信装置の送信動作フローは、 図 2に示す第 1の実施の 形態と同様である。  The transmission signal processing and control method from the time of up-conversion to the second IF signal to the transmission and reception antenna 50 is as described in the example of the first embodiment. Further, a transmission operation flow of the transmission device of the example of the second embodiment is the same as that of the first embodiment shown in FIG.
図 6は本発明の第 2の実施に係わるフィル夕と送信信号の相関の一例を周波数 軸上で示した図である。 図 6においては、 送信周波数帯域が 3通りの場合につい て示しており、 ベースバンドローパスフィルタ 1 5は最大通過周波数 3 Δ f の特 性を有し、 第 2の I Fバンドパスフィル夕 2 5は中心周波数 f c 2、 最大通過周 波数帯域 6 Δ f の特性を有している。  FIG. 6 is a diagram showing an example of a correlation between a filter and a transmission signal on the frequency axis according to the second embodiment of the present invention. FIG. 6 shows a case where there are three transmission frequency bands. The baseband low-pass filter 15 has the characteristic of the maximum pass frequency 3Δf, and the second IF band-pass filter 25 has It has the characteristics of center frequency fc2 and maximum pass frequency band 6Δf.
図 6の (a 2 ) は、 送信信号に 1チャンネルを使用した場合の信号に関する相 関図であり、 前記図 4の (a 2 ) と同じものである。 図 6の (a 3 ) は、 送信信 号に 1チヤンネルを使用した場合のベースバンド信号に関する相関図であり、 符 号 1 8 1— 3はベースバンド信号の周波数特性を示し、 符号 1 9 3はベースバン ドローパスフィル夕 1 5の周波数特性を示し、 符号 1 9 4はべ一スバンドローバ スフィル夕 1 5の折り返し周波数特性を示している。  (A 2) of FIG. 6 is a correlation diagram relating to a signal when one channel is used for the transmission signal, and is the same as (a 2) of FIG. (A 3) in FIG. 6 is a correlation diagram for the baseband signal when one channel is used for the transmission signal. Reference numerals 18 1-3 denote the frequency characteristics of the baseband signal, and reference numerals 19 3 Indicates the frequency characteristic of the baseband low pass filter 15 and reference numeral 194 indicates the return frequency characteristic of the baseband low pass filter 15.
図 6の (b 2 ) は、 送信信号に 2チャンネルを同時に使用した場合の信号に関 する相関図であり、 前記図 4の (b 2 ) と同じものである。 図 6の (b 3 ) は、 送信信号に 2チヤンネルを同時に使用した場合のベースバンド信号に関する相関 図であり、 符号 1 8 2— 3はベースバンド信号の周波数特性を示している。 図 6の (c 2 ) は、 送信信号に 3チャンネルを同時に使用した場合の信号に関 する相関図であり、 前記図 4の (c 2 ) と同じものである。 図 6の (c 3 ) は、 送信信号に 3チヤンネルを同時に使用した場合のベースバンド信号に関する相関 図であり、 符号 1 8 3— 3はべ一スバンド信号の周波数特性を示している。 この図 6を用いて、 第 2の実施形態の送信装置に関する具体的な例について説 明を行う。 1チャンネルの周波数帯域は 20 MHz、 RF信号のキャリア中心中 心周波数 (RF) は 25. 00 GHz, 第 2の I F周波数帯の信号のキャリア中 心周波数 (f c 2) は 2440MHzである。 ベースバンドローパスフィル夕 1 5と第 2の I Fバンドパスフィル夕 25の通過周波数帯域は最大チャンネル時 ( この場合は 3チャンネル時) の送信信号帯域に適合する特性になっている。 第 2 の実施の形態の例 1では、 ベースバンドローパスフィルタ 15の通過周波数帯域 は 30 MHz以下 (信号の折り返し周波数も含めれば、 —30 MHzから +30 MHz) であり、 第 2の I Fバンドパスフィルタ 25の通過周波数帯域は 241 0MHzから 2470MHzである。 (B 2) of FIG. 6 is a correlation diagram relating to a signal when two channels are simultaneously used for a transmission signal, and is the same as (b 2) of FIG. (B 3) of FIG. 6 is a correlation diagram for the baseband signal when two channels are used simultaneously for the transmission signal, and reference numeral 182-2-3 indicates the frequency characteristic of the baseband signal. (C 2) of FIG. 6 is a correlation diagram relating to signals when three channels are simultaneously used for the transmission signal, and is the same as (c 2) of FIG. (C 3) in FIG. 6 is a correlation diagram for the baseband signal when three channels are simultaneously used for the transmission signal, and reference numeral 183-3 denotes the frequency characteristic of the baseband signal. A specific example of the transmitting apparatus according to the second embodiment will be described with reference to FIG. The frequency band of one channel is 20 MHz, the carrier center frequency (RF) of the RF signal is 25.00 GHz, and the carrier center frequency (fc2) of the signal in the second IF frequency band is 2440 MHz. The pass frequency band of the baseband low-pass filter 15 and the second IF band-pass filter 25 has characteristics that match the transmission signal band of the maximum channel (in this case, three channels). In Example 1 of the second embodiment, the pass frequency band of the baseband low-pass filter 15 is 30 MHz or less (from −30 MHz to +30 MHz including the return frequency of the signal), and the second IF band-pass The pass frequency band of the filter 25 is from 2410 MHz to 2470 MHz.
送信信号が 1チヤンネルのみを使用している場合、 ベースバンド周波数帯の送 信信号の中心周波数 B Bは、 0 H zに 2 Δ f を加えれば良い。  When only one channel is used for the transmission signal, the center frequency B B of the transmission signal in the baseband frequency band may be obtained by adding 2 Δf to 0 Hz.
BB=0+2A f=0 +2 X 1 0=20 (MHz) BB = 0 + 2A f = 0 +2 X 1 0 = 20 (MHz)
• · · (式 1— 5)  • · (Equation 1—5)
となる。 Becomes
すなわち、 中心周波数 20 MHzで周波数帯域 20 MHzの送信信号を信号生 成部 1 l bで発生させれば良い (図 6の (a 3) 参照) 。  That is, a transmission signal having a center frequency of 20 MHz and a frequency band of 20 MHz may be generated by the signal generator 1 lb (see (a3) in FIG. 6).
次に、 ベースバンド周波数帯の送信信号を第 2の I F周波数帯にアップコンパ 一卜するためには、 第 2の I F周波数帯の送信信号の中心周波数 I F 2は、 f c 2から 2△ f を減ずれば良いので、  Next, in order to up-compress the transmission signal of the baseband frequency band to the second IF frequency band, the center frequency IF2 of the transmission signal of the second IF frequency band is calculated by calculating 2 △ f from fc2. I just need to reduce it,
I F2= f c 2-2A f=2440- 2 X 1 0=2420 (MHz)  I F2 = f c 2-2A f = 2440- 2 X 1 0 = 2420 (MHz)
• · · (式 1一 6)  • · (Equation 1-6)
となる。 Becomes
すなわち第 1の局部発振器 24 bの発するローカル周波数 L〇 1は、  That is, the local frequency L〇 1 generated by the first local oscillator 24 b is
LO 1 = I F 1 -BB=2420 - 20 = 2400 (MHz) LO 1 = IF 1 -BB = 2420-20 = 2400 (MHz)
• · · (式 1— 7) となる (図 6の (a 2) 参照) 。 • · (Equation 1—7) (See (a2) in Fig. 6).
更に、 第 2の I F信号を中心周波数 25 GHzの RF信号にアップコンバート するためには、 第 2の局部発振器 34の発するローカル周波数 L〇 2は、 L02=RF- I F 2 = 25 - 2. 40 = 22. 60 GHz  Further, in order to up-convert the second IF signal into an RF signal having a center frequency of 25 GHz, the local frequency L〇2 generated by the second local oscillator 34 is given by: L02 = RF-IF 2 = 25−2.40 = 22. 60 GHz
· · · (式 1— 8)  · · · (Equation 1—8)
となる。 Becomes
送信信号が 2チヤンネルを同時に使用している場合、 ベースバンド周波数帯の 送信信号の中心周波数 B Bは、 0 H zに Δ fを加えれば良い。  If the transmission signal uses two channels simultaneously, the center frequency B B of the transmission signal in the baseband frequency band may be obtained by adding Δf to 0 Hz.
ΒΒ-0+Δ f = 0 + 10 = 10 (MHz) ΒΒ-0 + Δ f = 0 + 10 = 10 (MHz)
· · · (式 2— 5)  · · · (Equation 2—5)
となる。 Becomes
すなわち、 中心周波数 10 MH zで周波数帯域 4 OMHzの送信信号を信号変 調部 1 l bで発生させれば良い (図 6の (b3) 参照) 。  That is, a transmission signal having a center frequency of 10 MHz and a frequency band of 4 OMHz may be generated by the signal modulation unit 1 lb (see (b3) in FIG. 6).
次に、 ベースバンド周波数帯の送信信号を第 2の I F周波数帯にアップコンパ 一卜するためには、 第 2の I F周波数帯の送信信号の中心周波数 I F 2は、 f c 2から Δ f を減ずれば良いので、  Next, in order to up-compress the transmission signal in the baseband frequency band to the second IF frequency band, the center frequency IF2 of the transmission signal in the second IF frequency band is reduced by Δf from fc2. I just need to
I F2- f c 2-A f=2440- 10=2430 (MHz)  I F2- f c 2-A f = 2440-10 = 2430 (MHz)
• · · (式 2— 6)  • · (Equation 2—6)
となる。 Becomes
すなわち第 1の局部発振器 24bの発する口一カル周波数 L O 1は、  That is, the oral frequency L O 1 emitted from the first local oscillator 24b is
LO 1 = I F 2— BB=2430 - 10 = 2420 (MHz)  LO 1 = IF 2— BB = 2430-10 = 2420 (MHz)
• · · (式 2— 7)  • · (Equation 2—7)
となる (図 6の (b2) 参照) 。 (See (b2) in Fig. 6).
更に、 第 2の I F信号を中心周波数 25 GHzの RF信号にアップコンバート するためには、 第 2の局部発振器 34の発するローカル周波数 L〇 2は、 L02=RF- I F 2 = 25 - 2. 42 = 22. 58 GHz • · · (式 2 - 8) Furthermore, in order to up-convert the second IF signal into an RF signal having a center frequency of 25 GHz, the local frequency L〇2 generated by the second local oscillator 34 is given by: L02 = RF-IF 2 = 25−2.42 = 22. 58 GHz • · (Equation 2-8)
となる。 Becomes
送信信号が 3チヤンネルを同時に使用している場合、 ベースバンド周波数帯の 送信信号の中心周波数 B Bは、 0 H zのままで良いので、  When the transmission signal uses three channels at the same time, the center frequency B B of the transmission signal in the baseband frequency band can be kept at 0 Hz.
BB=0 (Hz) BB = 0 (Hz)
• · · (式 3— 5)  • · (Equation 3—5)
となる。 Becomes
すなわち、 中心周波数 0 Hzで周波数帯域 60 MHzの送信信号を信号生成 1 l bで発生させれば良い (図 6の (c 3) 参照) 。  That is, a transmission signal having a center frequency of 0 Hz and a frequency band of 60 MHz may be generated by signal generation 1 lb (see (c3) in FIG. 6).
次に、 ベースバンド周波数帯の送信信号を第 2の I F周波数帯にアップコンパ Next, the transmission signal of the baseband frequency band is up-compensated to the second IF frequency band.
—トするためには、 第 2の I F周波数帯の送信信号の中心周波数 I F 2は、 その まま f c 2のままで良いので、 —In order to achieve this, the center frequency IF 2 of the transmission signal in the second IF frequency band can be left as it is at f c 2,
I F2= f c 2 = 2440 (MHz)  I F2 = f c 2 = 2440 (MHz)
• · · (式 3— 6)  • · (Equation 3—6)
となる。 Becomes
すなわち第 1の局部発振器 24 bの発するローカル周波数 L〇 1は、  That is, the local frequency L〇 1 generated by the first local oscillator 24 b is
LO 1 = I F 2— BB= 2440 _ 0 = 2440 (MHz) LO 1 = IF 2— BB = 2440 _ 0 = 2440 (MHz)
• · · (式 3— 7)  • · (Equation 3—7)
となる (図 6の (c 2) 参照) 。 (See (c2) in Fig. 6).
更に、 第 2の I F信号を中心周波数 25GHzの RF信号にアップコンバート するためには、 第 1の局部発振器 24bの発するローカル周波数 L 02は、 L02=RF- I F 2 = 25-2. 44 = 22. 56GHz  Further, in order to up-convert the second IF signal into an RF signal having a center frequency of 25 GHz, the local frequency L 02 generated by the first local oscillator 24b is given by: L02 = RF-IF 2 = 25−2.44 = 22 . 56GHz
• · · (式 3— 8)  • · (Equation 3—8)
となる。 Becomes
以上、 これまでに説明した第 1の実施の形態あるいは第 2の実施の形態の送信 装置を無線通信装置に備えることにより、 複数の周波数帯域の信号を使用する無 線通信システムより送信される無線信号の送信が可能となる。 例えば、 本発明の 無線通信装置を、 従来の技術の項で述べた 2 5 GH z帯における小電力無線通信 システムの無線通信端末として利用することが可能である。 As described above, by providing the transmitting apparatus of the first embodiment or the second embodiment described above in a wireless communication apparatus, wireless signals using a plurality of frequency bands are not used. It becomes possible to transmit a radio signal transmitted from the line communication system. For example, the wireless communication device of the present invention can be used as a wireless communication terminal of a low-power wireless communication system in the 25 GHz band described in the section of the related art.
本発明の送信装置によれば、 送信信号の生成段階で発生する高調波成分ゃノィ ズ成分を除去するためのフィルタを、 異なる周波数帯域の信号を送信するために 増加させずに、 また前記フィル夕を切り替えるためのスィッチ回路を特に設けず に、 複数の異なる周波数帯域の無線信号を送信することが可能となる。 その結果 として、 部品の個数が削減できるので、 製造コストの削減と送信装置の小型化に 効果がある。  According to the transmission apparatus of the present invention, the number of filters for removing harmonic components ゃ noise components generated in a transmission signal generation stage is not increased for transmitting signals in different frequency bands, and the filter is not increased. It is possible to transmit radio signals in a plurality of different frequency bands without providing a switch circuit for switching evenings. As a result, the number of components can be reduced, which is effective in reducing manufacturing costs and miniaturizing the transmitting device.
また、 バンドパスフィル夕あるいは口一パスフィルタ機能を有するデジタルフ ィルタにより 2倍波や 3倍波等の不要な高調波成分を取り除くことができる。 な お、 デジタルフィルタを使用しない場合でも、 前記発明の効果はあり、 その場合 には、 更にコスト的なメリットが期待できる。  In addition, unnecessary harmonic components such as a second harmonic and a third harmonic can be removed by a digital filter having a bandpass filter or a one-pass filter function. Even when a digital filter is not used, the effect of the invention can be obtained, and in that case, a further merit in cost can be expected.
さらに、 複数の周波数帯域の信号を使用する無線通信システムにおいて、 本発 明の送信装置を無線通信装置に備えることにより、 無線通信システムに使用され る全ての周波数帯域の信号を送信することが可能になる。  Furthermore, in a wireless communication system using signals in a plurality of frequency bands, it is possible to transmit signals in all frequency bands used in the wireless communication system by providing the transmitting device of the present invention in the wireless communication device. become.
<第 3の実施の形態 > ' 図 8は、 第 3の実施の形態に係わる受信装置の構成を示すプロック図である。 前記受信装置は、 送受信用アンテナ 6 0、 R F受信部 8 0、 第 1の I F変換部 9 0、 第 2の I F変換部 1 0 0 a、 信号復調部 1 1 0 a、 制御部 7 0 cから構成 されている。 送受信用アンテナ 6 0と R F受信部 8 0及びデジタル信号復調部 1 0 0 aの構成および機能は、 前記図 1 4の受信装置と同様であるが、 第 1の I F 変換部 9 0及び第 2の I F変換部 1 0 0 aが前記図 1 4の受信装置とは異なって いる。 <Third Embodiment> 'Fig. 8 is a block diagram showing a configuration of a receiving apparatus according to a third embodiment. The receiving device includes a transmitting / receiving antenna 60, an RF receiving unit 80, a first IF converting unit 90, a second IF converting unit 100a, a signal demodulating unit 110a, a control unit 70c. It is composed of The configurations and functions of the transmitting / receiving antenna 60, the RF receiving unit 80, and the digital signal demodulating unit 100a are the same as those of the receiving device in FIG. 14 described above, but the first IF converting unit 90 and the The IF converter 100a of FIG. 14 is different from the receiver of FIG.
送受信用アンテナ 6 0から入力される R F受信信号は、 全チャンネルの信号周 波数帯を通過させる広帯域の R Fバンドパスフィル夕 8 1を通過後に、 送受信切 替器 8 2を経由して R F受信増幅器 8 4により増幅される。 R F受信増幅器 8 4 を出力した信号は、 第 1の周波数変換器 9 1により第 1の I F受信信号にダウン コンバートされる。 第 1の I F受信信号の周波数は、 第 1の局部発振器 9 4より 発生するローカル信号の周波数を制御部 7 0 cが受信信号の周波数帯域に応じて 制御することにより調整される。 The RF receive signal input from the transmit / receive antenna 60 passes through the broadband RF bandpass filter 81, which passes the signal frequency band of all channels, and The signal is amplified by the RF receiving amplifier 84 via the exchanger 82. The signal output from RF receiving amplifier 84 is down-converted by first frequency converter 91 to a first IF received signal. The frequency of the first IF received signal is adjusted by the control unit 70c controlling the frequency of the local signal generated by the first local oscillator 94 according to the frequency band of the received signal.
制御部 7 0 cは、 あらかじめ受信された制御信号を解析して、 受信信号の周波 数帯域の検出を行い、 受信信号の周波数帯域の上限が第 1の I Fバンドパスフィ ルタ 9 2の上側エッジに来るように、 第 1の局部発振器 9 4の発振周波数を制御 する。 第 1の I F受信信号は、 第 1の I Fバンドパスフィル夕 9 2の通過により 、 主に上側隣接波等のノイズ成分が除去される。 自動利得制御機能を備えた第 1 の I F受信増幅器 9 3は、 後段の回路の入力レベルに適合するように第 1の I F 受信信号の増幅を行う。 自動利得制御機能は、 デジタル信号復調器 1 1 3 aで検 出した信号強度に基づいて、 制御部 7 0 cが制御を行う。  The control unit 70c analyzes the control signal received in advance, detects the frequency band of the received signal, and sets the upper limit of the frequency band of the received signal to the upper edge of the first IF bandpass filter 92. The oscillation frequency of the first local oscillator 94 is controlled so that The first IF reception signal is mainly subjected to removal of noise components such as upper adjacent waves by passing through the first IF bandpass filter 92. The first IF receiving amplifier 93 having the automatic gain control function amplifies the first IF receiving signal so as to match the input level of the circuit at the subsequent stage. The automatic gain control function is controlled by the controller 70c based on the signal strength detected by the digital signal demodulator 113a.
第 1の I F受信増幅器 9 3から出力される第 1の I F受信信号は、 第 2の周波 数変換器 1 0 l aにより、 第 2の I F受信信号にダウンコンバートされる。 第 2 の I F受信信号の周波数は、 第 2の局部発振器 1 0 4 aより発生するローカル信 号の周波数により可変でき、 制御部 7 0 cにより制御されている。  The first IF reception signal output from first IF reception amplifier 93 is down-converted into a second IF reception signal by second frequency converter 10la. The frequency of the second IF reception signal can be varied by the frequency of the local signal generated by the second local oscillator 104a, and is controlled by the control unit 70c.
制御部 7 0 cは、 あらかじめ受信された制御信号を含んだプリアンブルを解析 して、 受信信号の周波数帯の検出を行い、 受信信号の周波数帯域の下限が第 2の I Fバンドパスフィルタ 1 0 2の下側エッジに来るように、 局部発振器 1 0 4 a の発振周波数を制御する。 第 1の I F受信信号は、 第 2の I Fバンドパスフィル 夕 1 0 2の通過により、 主に下側隣接波等のノイズ成分が除去される。 第 2の I F受信増幅器 1 0 3は、 後段の AZD変換器 1 1 1 aの入力レベルに適合するよ うに第 2の I F受信信号の増幅を行う。  The control unit 70 c analyzes the preamble including the control signal received in advance, detects the frequency band of the received signal, and sets the lower limit of the frequency band of the received signal to the second IF bandpass filter 10 2 The oscillation frequency of the local oscillator 104a is controlled so that it is at the lower edge of. The first IF reception signal is mainly subjected to removal of noise components such as lower adjacent waves by passing through the second IF bandpass filter 102. The second IF receiving amplifier 103 amplifies the second IF receiving signal so as to match the input level of the AZD converter 111a at the subsequent stage.
第 2の I F受信信号は、 AZD変換器 1 1 1 aによりアナログ信号からデジ夕 ル信号に変換され、 デジタル受信フィルタ 1 1 2 aによりノイズ成分等を更に除 去して、 I F周波数サンプリングを行うデジタル信号復調器 1 1 3 aにより、 受 信信号が復調される。 The second IF reception signal is converted from an analog signal to a digital signal by the AZD converter 111a, and the digital reception filter 112a further removes noise components and the like. Then, the received signal is demodulated by the digital signal demodulator 1 13 a that performs IF frequency sampling.
図 9は、 本発明の第 3の実施の形態に係わる受信装置の受信方法に関するフロ 一チャートであり、 図 1 0は本発明に係わる実施の形態の受信信号周波数特性の 一例を周波数軸上に示した図であり、 図 1 1は本発明の第 3の実施の形態に係わ るフィル夕と受信信号の相関の一例を周波数軸上で示した図である。  FIG. 9 is a flowchart showing a receiving method of the receiving apparatus according to the third embodiment of the present invention, and FIG. 10 shows an example of a received signal frequency characteristic of the embodiment according to the present invention on a frequency axis. FIG. 11 is a diagram showing an example of a correlation between a received signal and a received signal on a frequency axis according to the third embodiment of the present invention.
以下に、 本発明に係わる受信装置の受信方法について、 主に図 9を使用して、 適宜、 図 8 , 図 1 0, 図 1 1も参照しながら説明する。  Hereinafter, the receiving method of the receiving apparatus according to the present invention will be described mainly with reference to FIG. 9 and also to FIGS. 8, 10 and 11 as appropriate.
本実施の形態では、 図 1 0の (a ) , ( b ) , (c ) に示すような 3つの周波 数帯域の信号を使用する。 図 1 0の (a ) は 1つのチャンネルのみを使用した場 合の受信信号を示しており、 キャリア周波数は f c;、 周波数帯域は 2 A f (Δ f は 1チャンネルの周波数帯域の半値幅) である。 図 1 0の (b ) は 2つのチャン ネルを同時に使用した場合の受信信号を示しており、 キャリア周波数は f c、 周 波数帯域は 4 である。 図 1 0の (c ) は 3つのチャンネルを同時に使用した 場合の受信信号を示しており、 キャリア周波数は f c、 周波数帯域は 6 Δ ίであ る。  In the present embodiment, signals in three frequency bands as shown in (a), (b), and (c) of FIG. 10 are used. (A) in Fig. 10 shows the received signal when only one channel is used. The carrier frequency is fc; the frequency band is 2 Af (Δf is the half bandwidth of the frequency band of one channel). It is. (B) of FIG. 10 shows a received signal when two channels are used simultaneously, where the carrier frequency is fc and the frequency band is 4. (C) of FIG. 10 shows a received signal when three channels are used simultaneously, and the carrier frequency is f c and the frequency band is 6Δί.
最初に図 9のステップ S 2 1で、 受信装置は、 自己の受信時間や受信信号の周 波数帯域等の無線通信に必要な情報を得るために、 自己の通信システムが発する 制御情報の受信を試みる。 制御情報が入っているプリアンブル信号の周波数帯域 は、 通常は事前に通信プロトコルにより決定されているので、 制御部 7 0 cが前 記通信プロトコルに適合した周波数帯域に合わせて、 第 1の局部発振器 9 4及び 第 2の局部発振器 1 0 4 aの発生するローカル周波数を設定する。 例えば、 前記 制御信号の周波数帯域が 1チャンネル (2 Δ Π と事前に決められている場合に は、 第 1の局部発振器 9 4と第 2の局部発振器 1 0 4 aが発生させるローカル周 波数は、 1チャンネルの受信信号を受信する場合の周波数設定に調整される。 次のステップ S 2 2では、 各チャンネルを走査しながら、 制御信号の受信を試 みる。 制御信号が受信できなかった場合には、 一定時間後に再び受信を試み、 制 御信号が受信できるまでこのステツプを繰り返す。 First, in step S21 of FIG. 9, the receiving apparatus receives control information issued by its own communication system in order to obtain information necessary for wireless communication such as its own receiving time and frequency band of a received signal. Try. Since the frequency band of the preamble signal containing the control information is usually determined in advance by the communication protocol, the control unit 70c adjusts the first local oscillator according to the frequency band conforming to the communication protocol. The local frequency generated by the local oscillator 104 and the second local oscillator 104a is set. For example, if the frequency band of the control signal is predetermined as one channel (2ΔΠ), the local frequencies generated by the first local oscillator 94 and the second local oscillator 104a are The frequency is adjusted to receive the received signal of channel 1. In the next step S22, control signal reception is tried while scanning each channel. View. If the control signal cannot be received, the reception is tried again after a certain time, and this step is repeated until the control signal can be received.
制御信号が受信できた場合は、 ステップ S 2 3で制御信号の復調処理をデジ夕 ル信号復調部 1 1 3 aで行い、 制御部 7 0 cが制御信号の復調データを解析する 。 次のステップ S 2 4では、 制御部 7 0 cは、 解析した制御情報より受信夕イミ ング, 使用するチャンネル, 周波数帯域等の受信に必要な情報を検出する。 次のステップ S 2 5では、 制御部 7 0 cが前記解析した周波数帯域等の情報に 基づいて、 第 1の局部発振器 9 4の口一カル周波数を調整して、 第 1の I F受信 信号の上限周波数が第 1の第 1の I Fバンドバスフィル夕 9 2の上側ェッジ ( 1 チャンネルの信号の場合は f c + 2△ f ) に来るように調整を行う。 ステップ S 2 6では、 制御部 7 0 cが第 1の局部発振器 9 4のローカル周波数を調整して、 第 2の I F受信信号の下限周波数が第 2の I Fバンドパスフィルタ 1 0 2の下側 エッジ (1チャンネルの信号の場合は f c _ 2 A f ) に来るように調整を行う。 次のステップ S 2 7で、 データ信号の受信を行い、 無線信号を復調してバソコ ン (P C) 等のデータ処理装置に受信データを引き渡す。 次のステップ S 2 8で は、 引き続いて別の受信処理を行う場合はステップ S 2 1に戻り、 別の受信処理 を行わない場合は受信動作を終了する。  If the control signal can be received, the demodulation process of the control signal is performed by the digital signal demodulation unit 113a in step S23, and the control unit 70c analyzes the demodulated data of the control signal. In the next step S24, the control unit 70c detects information necessary for reception, such as reception timing, a channel to be used, and a frequency band, from the analyzed control information. In the next step S25, the control unit 70c adjusts the oral frequency of the first local oscillator 94 based on the analyzed information such as the frequency band, and Adjust so that the upper limit frequency is at the upper edge of the first first IF band bus filter 92 (fc + 2 △ f for 1-channel signal). In step S26, the control unit 70c adjusts the local frequency of the first local oscillator 94 so that the lower limit frequency of the second IF reception signal is lower than the lower frequency of the second IF bandpass filter 102. Adjust so that it comes to the edge (fc_2Af for 1-channel signal). In the next step S27, the data signal is received, the radio signal is demodulated, and the received data is delivered to a data processing device such as a computer (PC). In the next step S28, if another reception process is to be performed subsequently, the process returns to step S21, and if another reception process is not to be performed, the reception operation ends.
次に、 図 1 1を用いてフィル夕と受信信号の相関について説明する。 図 1 1に おいては、 受信周波数帯域が 3通りの場合について示されており、 第 1の I Fノ ンドパスフィル夕 9 2は中心周波数 f c 1, 通過周波数帯域 6△ fの特性を有し 、 第 2のバンドパスフィル夕 1 0 2は中心周波数 f c 2, 通過周波数帯域 6 A f の特性を有している。 前記バンドパスフィル夕 9 2 , 1 0 2の通過周波数帯域は 、 最大周波数帯域を有する受信信号に合わせて設定される。 言い換えれば、 各バ ンドバスフィル夕の通過周波数帯域は、 (最大同時送信可能チャンネル数 X 2 Δ f ) となる。  Next, the correlation between the received signal and the received signal will be described with reference to FIG. FIG. 11 shows a case where there are three reception frequency bands, and the first IF node path filter 92 has a characteristic of a center frequency fc 1 and a pass frequency band of 6 △ f. The bandpass filter 102 of Fig. 2 has the characteristics of center frequency fc2 and pass frequency band 6Af. The pass frequency band of the bandpass filter 92, 102 is set according to the received signal having the maximum frequency band. In other words, the pass frequency band of each band bus filter is (maximum number of simultaneously transmittable channels X 2 Δf).
図 1 1の (a l ) は、 受信信号に 1チャンネルを使用した場合の第 1の I F受 信信号に関する相関図であり、 符号 281— 1は第 1の I F受信信号の周波数特 性を示し、 符号 291は第 1の I Fバンドパスフィル夕 92の周波数特性を示し ている。 図 11の (a 2) は、 受信信号に 1チャンネルを使用した場合の第 2の I F受信信号に関する相関図であり、 符号 281— 2は第 2の I F受信信号の周 波数特性を示し、 符号 292は第 2の I Fバンドパスフィル夕 102の周波数特 性を示している。 Figure 11 (al) shows the first IF reception when one channel is used for the reception signal. FIG. 2 is a correlation diagram relating to the received signal, where reference numeral 281-1 indicates the frequency characteristic of the first IF received signal, and reference numeral 291 indicates the frequency characteristic of the first IF bandpass filter 92. (A 2) of FIG. 11 is a correlation diagram regarding the second IF received signal when one channel is used for the received signal, and reference numeral 281-2 denotes the frequency characteristic of the second IF received signal. Reference numeral 292 indicates the frequency characteristics of the second IF bandpass filter 102.
図 1 1の (b l) は、 受信信号に 2チャンネルを使用した場合の第 1の I F受 信信号 (S I F 1) に関する相関図であり、 符号 282 _ 1は第 1の I F受信信 号の周波数特性を示している。 図 11の (b2) は、 受信信号に 2チャンネルを 同時使用した場合の第 2の I F受信信号に関する相闋図であり、 符号 282— 2 は第 2の I F受信信号の周波数特性を示している。  (Bl) in Fig. 11 is a correlation diagram regarding the first IF received signal (SIF 1) when two channels are used for the received signal, and reference numeral 282_1 denotes the frequency of the first IF received signal. The characteristics are shown. (B2) of FIG. 11 is a phase diagram relating to the second IF received signal when two channels are simultaneously used for the received signal, and reference numeral 282-2 denotes a frequency characteristic of the second IF received signal. .
図 11の (c 1) は、 受信信号に 3チャンネルを同時使用した場合の第 1の I F受信信号に関する相関図であり、 符号 283— 1は第 1の I F受信信号の周波 数特性を示している。 図 11の (c 2) は、 受信信号に 3チャンネルを同時使用 した場合の第 2の I F受信信号に関する相関図であり、 符号 283— 2は第 2の I F受信信号の周波数特性を示している。  (C 1) in FIG. 11 is a correlation diagram regarding the first IF received signal when three channels are simultaneously used for the received signal, and reference numeral 283-1 indicates the frequency characteristic of the first IF received signal. I have. (C 2) of FIG. 11 is a correlation diagram regarding the second IF received signal when three channels are simultaneously used for the received signal, and reference numeral 283-2 indicates the frequency characteristic of the second IF received signal. .
この図 11を用いて、 第 1の実施形態の受信装置に関する具体的な例について 説明を行う。 1チャンネルの周波数帯域は 20 MHz、 RF信号のキャリア信号 中心周波数 (RF 1) は 25. 00GHz, 第 1の I F周波数帯のキャリア信号 中心周波数 (f c l) は 2440MHz、 第 2の I F周波数帯のキャリア信号中 心周波数 (f c 2) は 40 MHzである。 第 1の I Fバンドパスフィルタ 92と 第 2のバンドパスフィル夕 102の通過周波数帯域幅は最大チャンネル時 (この 場合は 3チャンネル時) の信号帯域幅に適合する特性になっている。 第 3の実施 の形態の例では、 第 1の I Fバンドパスフィルタ 92の通過周波数帯域は 241 0 MHzから 2470MHzであり、 第 2の I Fバンドパスフィル夕 102の通 過周波数帯域は 10MHzから 70MHzである。 受信信号が 1チャンネルのみを使用している場合、 RF受信信号を第 1の I F 周波数帯にダウンコンバートするためには、 第 1の I F周波数帯の受信信号中心 周波数 I F 1は、 f c 1に 2△ f を加えれば良い。 A specific example of the receiving device according to the first embodiment will be described with reference to FIG. The frequency band of one channel is 20 MHz, the carrier frequency of the RF signal is 25.00 GHz, the carrier signal of the first IF frequency band is 2440 MHz, and the carrier of the second IF frequency band is 2440 MHz. The signal center frequency (fc2) is 40 MHz. The pass frequency bandwidth of the first IF band-pass filter 92 and the second band-pass filter 102 has characteristics that match the signal bandwidth of the maximum channel (in this case, three channels). In the example of the third embodiment, the passing frequency band of the first IF bandpass filter 92 is 2410 MHz to 2470 MHz, and the passing frequency band of the second IF bandpass filter 102 is 10 MHz to 70 MHz. is there. If the received signal uses only one channel, in order to down-convert the RF received signal to the first IF frequency band, the received signal center frequency IF1 of the first IF frequency band is represented by 2 in fc1. What is necessary is just to add Δf.
I F 1は、  IF 1
I F l= f c l+2A f =2440+2X l 0=2460 (MHz)  I F l = f c l + 2A f = 2440 + 2X l 0 = 2460 (MHz)
(式 1 1— 1 )  (Equation 1 1— 1)
となる。 Becomes
すなわち第 1の局部発振器 94の発する口一カル周波数 L〇 1は、  That is, the oral frequency L〇 1 emitted from the first local oscillator 94 is
LO 1 =RF 1 - I F 1 =25 - 2. 46 = 22. 54 (GHz)  LO 1 = RF 1-IF 1 = 25-2.46 = 22.54 (GHz)
(式 11— 2)  (Equation 11-2)
となる (図 11の (a 1) 参照) 。 (See (a1) in Fig. 11).
次に、 第 1の I F周波数帯の受信信号を第 2の I F周波数帯にダウンコンパ一 トするためには、 第 2の I F周波数帯の受信信号の中心周波数 I F 2は、 f c 2 から 2△ f を減ずれば良いので、  Next, in order to down-compare the received signal of the first IF frequency band to the second IF frequency band, the center frequency IF2 of the received signal of the second IF frequency band is 2 △ from fc 2. Since we only need to reduce f
I F 2= f c 2— 2 Δ f = 40— 2 X 10 = 20 (MHz)  I F 2 = f c 2— 2 Δ f = 40— 2 X 10 = 20 (MHz)
(式 1 1— 3)  (Equation 11-3)
となる。 Becomes
すなわち第 2の局部発振器 104の発するローカル周波数 L〇 2は、  That is, the local frequency L〇 2 generated by the second local oscillator 104 is
LO2= I F l- I F2=2460-20=2440 (MHz) LO2 = I F l- I F2 = 2460-20 = 2440 (MHz)
(式 1 1— 4)  (Equation 11-4)
となる (図 11の (a 2) 参照) 。 (See (a2) in Fig. 11).
受信信号が 2チャンネルを同時に使用している場合、 R F受信信号を第 1の I F周波数帯にダウンコンバートするためには、 第 1の I F周波数帯の受信信号中 心周波数 I F 1は、 f c 1に Δ f を加えれば良いので、  If the received signal uses two channels at the same time, in order to down-convert the RF received signal to the first IF frequency band, the received signal center frequency IF1 of the first IF frequency band must be fc1 Since we only need to add Δf,
I F l = f c 1+A f = 2440 + 10 = 2450 (MHz)  I F l = f c 1 + A f = 2440 + 10 = 2450 (MHz)
(式 12— 1 ) となる。 (Equation 12— 1) Becomes
すなわち、 第 1の局部発振器 94の発生するローカル信号の周波数 L O 1は、 L01=RF l- I F l = 25-2. 45 = 22. 55 (GHz)  That is, the frequency LO1 of the local signal generated by the first local oscillator 94 is L01 = RFl-IFl = 25-2.45 = 22.55 (GHz)
(式 12— 2)  (Equation 12-2)
となる (図 11の (b 1) 参照) 。 (See (b1) in Fig. 11).
次に、 第 1の I F周波数帯の受信信号を第 2の I F周波数帯にダウンコンバー トするためには、 第 2の I F周波数帯の受信信号中心周波数 I F 2は、 f c 2か ら△ f を減ずれば良いので、  Next, in order to down-convert the received signal of the first IF frequency band to the second IF frequency band, the received signal center frequency IF2 of the second IF frequency band is obtained by subtracting △ f from fc2. I just need to reduce it,
I F2= f c 2-A f =40- 10=30 (MHz)  I F2 = f c 2-A f = 40-10 = 30 (MHz)
(式 12— 3)  (Equation 12-3)
となる。 Becomes
すなわち、 第 2の局部発振器 44の発生する口一カル信号の周波数 L〇 2は、 LO2= I F l- I F2=2450-30=2420 (MHz)  That is, the frequency L〇2 of the oral signal generated by the second local oscillator 44 is LO2 = IFl-IF2 = 2450-30 = 2420 (MHz)
(式 12— 4)  (Equation 12—4)
となる (図 11の (b 2) 参照) 。 (See (b2) in Fig. 11).
受信信号が 3チャンネルを同時に使用している場合、 RF受信信号を第 1の I F周波数帯にダウンコンバートするためには、 第 1の I F周波数帯の受信信号中 心周波数 I F 1は、 そのまま f c 1となるので、  When the received signal uses three channels at the same time, in order to down-convert the RF received signal to the first IF frequency band, the received signal center frequency IF1 of the first IF frequency band is directly fc 1 So,
I F l = f c l = 2440 (MHz)  I F l = f cl = 2440 (MHz)
(式 13— 1)  (Equation 13-1)
となる。 Becomes
すなわち、 第 1の局部発振器 94の発生するローカル信号の周波数 L〇 1は、 L〇 1 =RF 1— I F 1 =25 - 2. 44 = 22. 56 (GHz)  That is, the frequency L〇 1 of the local signal generated by the first local oscillator 94 is L〇 1 = RF 1—IF 1 = 25-2.44 = 22.56 (GHz)
(式 13— 2)  (Equation 13-2)
となる (図 11の (c 1) 参照) 。 (See (c1) in Fig. 11).
次に、 第 1の I F周波数帯の受信信号を第 2の I F周波数帯に トするためには、 第 2の I F周波数帯の受信信号中心周波数 I F 2は、 そのまま f c 2のままで良いので、 Next, the received signal of the first IF frequency band is converted to the second IF frequency band. In order to achieve this, the received signal center frequency IF2 in the second IF frequency band can be left as it is at fc2.
I F2= f c 2 = 40 = 40 (MHz)  I F2 = f c 2 = 40 = 40 (MHz)
(式 13 - 3)  (Equation 13-3)
となる。 Becomes
すなわち、 第 1の局部発振器 94の発生するローカル信号の周波数 L〇 2は、 LO2= I F l- I F2=2440-40=2400 (MHz)  That is, the frequency L〇2 of the local signal generated by the first local oscillator 94 is LO2 = IFl-IF2 = 2440-40 = 2400 (MHz)
(式 13 - 4)  (Equation 13-4)
であるので、 第 2の局部発振器 104は 2400 MHzのローカル信号を発生す れば良い (図 11の (c 2) 参照) 。 Therefore, the second local oscillator 104 only needs to generate a local signal of 2400 MHz (see (c2) in FIG. 11).
<第 4の実施の形態 > <Fourth embodiment>
以下に、 第 4の実施の形態について説明する。  Hereinafter, a fourth embodiment will be described.
図 12は、 第 4の実施の形態に係わる受信装置の構成を示すブロック図である 。 第 3の実施の形態との主要な相違点は、 第 2の I F変換部 10 Obにおいて、 第 1の I F受信信号を、 直接ベースバンド信号にダウンコンバートしている点で あり、 これに合わせて信号復調部 110 bと制御部 70 dの仕様が一部異なって いる。 その他の、 送受信用アンテナ 60、 RF受信部 80及び第 1の I F変換部 90に関しては、 前記第 3の実施の形態の例と構成及び機能は同じである。 送受信用アンテナ 60から第 1の I F受信増幅器 93の出力までの、 受信信号 処理及び制御方法は、 第 3の実施の形態の例で説明した通りである。  FIG. 12 is a block diagram showing a configuration of a receiving apparatus according to the fourth embodiment. The main difference from the third embodiment is that the first IF reception signal is directly down-converted to a baseband signal in the second IF conversion section 10 Ob. The specifications of the signal demodulation unit 110b and the control unit 70d are partially different. The other configuration of the transmitting / receiving antenna 60, the RF receiving unit 80, and the first IF converting unit 90 are the same as those of the third embodiment. The received signal processing and control method from the transmitting / receiving antenna 60 to the output of the first IF receiving amplifier 93 is as described in the example of the third embodiment.
第 1の I F受信増幅器 93から出力される第 1の I F受信信号は、 第 2の周波 数変換器 10 l bにより、 ベースバンド受信信号にダウンコンバートされる。 ベ ースバンド受信信号にダウンコンバートするためのローカル信号の周波数は、 信 号の周波数帯域により異なる。 信号の周波数帯域に応じて、 制御部 70 dは、 第 2の局部発振器 104bより発生するローカル信号の周波数制御を行っている。 制御部 70dは、 あらかじめ受信された自己のシステムが発する制御信号を解 祈して、 受信信号の周波数帯域の検出を行い、 受信信号の周波数帯域の下限の折 り返し周波数が、 ベースバンド口一パスフィルタ 1 0 5のエッジに来るように、 局部発振器 1 0 4 bの発振周波数を制御する。 ベースバンド受信信号は、 第 2の I Fバンドパスフィル夕 1 0 2の通過により、 主に下側隣接波等のノイズ成分が 除去される。 ベースバンド受信増幅器 1 0 6は、 後段の AZD変換器 1 1 1 の 入力レベルに適合するようにベースバンド受信信号の増幅を行う。 The first IF reception signal output from first IF reception amplifier 93 is down-converted into a baseband reception signal by second frequency converter 10 lb. The frequency of a local signal for down-converting to a baseband received signal differs depending on the frequency band of the signal. In accordance with the frequency band of the signal, the control unit 70d controls the frequency of the local signal generated by the second local oscillator 104b. The control unit 70d resolves the control signal generated by the own system received in advance. In prayer, we detect the frequency band of the received signal, and set the local oscillator 104 b so that the folded frequency at the lower limit of the frequency band of the received signal comes to the edge of the baseband one-pass filter 105. Control the oscillation frequency of The baseband reception signal is mainly subjected to removal of noise components such as lower adjacent waves by passing through the second IF bandpass filter 102. The baseband reception amplifier 106 amplifies the baseband reception signal so as to match the input level of the AZD converter 111 in the subsequent stage.
ベースバンド受信信号は、 AZD変換器 1 1 1 bによりアナログ信号からデジ タル信号に変換され、 デジタル受信フィルタ 1 1 2 bによりノイズ成分等を更に 除去して、 ベースバンド周波数サンプリングを行うデジタル信号復調器 1 1 3 b により、 受信信号が復調される。  The baseband received signal is converted from an analog signal to a digital signal by the AZD converter 111b, and the digital signal is further demodulated by the digital receive filter 112b to remove noise components and perform baseband frequency sampling. The received signal is demodulated by the unit 113 b.
第 4の実施の形態の例の受信装置の受信動作フローは、 図 1 1に示す第 3の実 施の形態と同様であり、 詳しい説明は省略する。  The receiving operation flow of the receiving apparatus of the example of the fourth embodiment is the same as that of the third embodiment shown in FIG. 11, and a detailed description is omitted.
図 1 3は本発明の第 4の実施に係わるフィル夕と受信信号の相関の一例を周波 数軸上で示した図である。 図 1 3においては、 受信周波数帯域が 3通りの場合に ついて示しており、 第 1の I Fバンドパスフィル夕 9 2は中心周波数 f c 1及び 通過周波数帯域 6 Δ fの特性を有し、 ベースバンドローパスフィル夕 1 0 5は最 大通過周波数 3 Δ f の特性を有している。  FIG. 13 is a diagram showing, on the frequency axis, an example of the correlation between a received signal and a filter according to the fourth embodiment of the present invention. FIG. 13 shows a case where there are three reception frequency bands, and the first IF bandpass filter 92 has characteristics of a center frequency fc 1 and a pass frequency band 6 Δf, The low-pass filter 105 has the characteristic of the maximum pass frequency 3Δf.
図 1 3の (a l ) は、 受信信号に 1チャンネルを使用した場合の第 1の I F受 信信号に関する相関図であり、 前記図 1 1の (a 1 ) と同じものである。 図 1 3 の (a 3 ) は、 受信信号に 1チャンネルを使用した場合のベースバンド受信信号 に関する相関図であり、 符号 2 8 1—3はベースバンド受信信号の周波数特性を 示し、 符号 2 9 3はベースバンドローパスフィル夕 1 0 5の周波数特性を示し、 符号 2 9 4はべ一スパンドローパスフィルタ 1 0 5の折り返し周波数特性を示し ている。  (Al) in FIG. 13 is a correlation diagram relating to the first IF received signal when one channel is used for the received signal, and is the same as (a1) in FIG. 11 described above. (A 3) in FIG. 13 is a correlation diagram regarding the baseband received signal when one channel is used for the received signal. Reference numeral 3 denotes a frequency characteristic of the baseband low-pass filter 105, and reference numeral 294 denotes a folded frequency characteristic of the base-span low-pass filter 105.
図 1 3の (b l ) は、 受信信号に 2チャンネルを同時に使用した場合の第 1の (B l) in Fig. 13 shows the first case where two channels are used simultaneously for the received signal.
I F受信信号に関する相関図であり、 前記図 1 1の (a 2 ) と同じものである。 図 13の (b 3) は、 受信信号に 2チャンネルを同時に使用した場合のベースバ ンド受信信号に関する相関図であり、 符号 282— 3はベースバンド受信信号の 周波数特性を示している。 FIG. 11 is a correlation diagram regarding an IF reception signal, which is the same as (a 2) in FIG. (B 3) of FIG. 13 is a correlation diagram regarding the baseband received signal when two channels are simultaneously used for the received signal, and reference numeral 282-3 denotes the frequency characteristic of the baseband received signal.
図 13の (c 1) は、 受信信号に 3チャンネルを同時に使用した場合の第 1の I F受信信号に関する相関図であり、 前記図 1 1の (a 3) と同じものである。 図 13の (c 3) は、 受信信号に 3チャンネルを同時に使用した場合のベ一スバ ンド受信信号に関する相関図であり、 符号 282— 3はべ一スバンド受信信号の 周波数特性を示している。  (C1) in FIG. 13 is a correlation diagram regarding the first IF received signal when three channels are simultaneously used for the received signal, and is the same as (a3) in FIG. 11 described above. (C 3) of FIG. 13 is a correlation diagram relating to the baseband received signal when three channels are simultaneously used for the received signal, and reference numeral 282-3 indicates the frequency characteristic of the baseband received signal.
この図 13を用いて、 第 4の実施形態の受信装置に関する具体的な例について 説明を行う。 1チャンネルの周波数帯域は 20 MHz、 RF信号のキャリア中心 周波数 (RF 1) は 25. 00 GHz, 第 1の I F周波数帯のキャリア中心周波 数 (f c 1) は 2440 MHzである。 第 1の I Fバンドパスフィル夕 92の通 過周波数帯域は最大チャンネル時 (この場合は 3チャンネル時) の受信信号帯域 に適合する特性になっている。 第 4の実施の形態の例では、 第 1の I Fバンドパ スフィルタ 22の通過周波数帯域は 2410MHzから 247 OMHzであり、 ベースバンドローパスフィル夕 105の通過周波数帯域は 3 OMHz以下 (信号 の折り返し周波数も含めれば、 — 30 MHzから +30 MHz) である。  A specific example of the receiving device according to the fourth embodiment will be described with reference to FIG. The frequency band of one channel is 20 MHz, the carrier center frequency (RF1) of the RF signal is 25.00 GHz, and the carrier center frequency (fc1) of the first IF frequency band is 2440 MHz. The passing frequency band of the first IF band pass filter 92 has characteristics that match the reception signal band of the maximum channel (in this case, three channels). In the example of the fourth embodiment, the pass frequency band of the first IF bandpass filter 22 is from 2410 MHz to 247 OMHz, and the pass frequency band of the baseband lowpass filter 105 is 3 OMHz or less (the signal folding frequency is also lower). (Including — 30 MHz to +30 MHz).
受信信号が 1チャンネルのみを使用している場合、 RF受信信号を第 1の I F 周波数帯にダウンコンバートする方法は前記 (式 1 1一 1) 及び前記 (式 11一 2) と同様の方法で求められ、 101は22. 54 (GHz) となる (図 13の ( a 1 ) 参照) 。  When only one channel is used for the received signal, the method of down-converting the RF received signal to the first IF frequency band is the same as in the above (Equation 11-11) and (Equation 11-12). Then, 101 becomes 22.54 (GHz) (see (a1) in Fig. 13).
次に、 第 1の I F周波数帯の受信信号をベースバンド周波数にダウンコンパ一 卜するためには、 ベースバンド周波数帯のキャリア中心周波数 BBは、 ベースバ ンドキヤリァ周波数 0 H zから 2 Δ f を減ずれば良いので、  Next, in order to down-compress the received signal of the first IF frequency band to the baseband frequency, the carrier center frequency BB of the baseband frequency band is deviated by 2 Δf from the baseband carrier frequency 0 Hz. So it's fine
BB=0 - 2厶 f =_2X 10=_20 (MHz) BB = 0-2 m f = _2X 10 = _20 (MHz)
(式 11— 5) となる。 (Equation 11-5) Becomes
すなわち第 2の局部発振器 44bの発する口一カル周波数 L〇 3は、  That is, the oral frequency L〇3 emitted from the second local oscillator 44b is
LO3= I F l-BB=2440+20=2460 (MHz) LO3 = I F l-BB = 2440 + 20 = 2460 (MHz)
(式 1 1— 6)  (Equation 1 1— 6)
となる (図 13の (a 3) 参照) 。 (See (a3) in Fig. 13).
受信信号が 2チヤンネルを同時に使用している場合、 R F受信信号を第 1の I F周波数帯にダウンコンバートする方法は前記 (式 12 - 1) 及び前記 (式 12 -2) と同様の方法で求められ、 し01は22. 55 (GHz) となる (図 13 の (b 1) 参照) 。  If the received signal uses two channels at the same time, the method of down-converting the RF received signal to the first IF frequency band is obtained by the same method as in (Equation 12-1) and (Equation 12-2). Then, 01 becomes 22.55 (GHz) (see (b1) in Fig. 13).
次に、 第 1の I F周波数帯の受信信号をベースバンド周波数にダウンコンパ一 卜するためには、 ベースバンド周波数帯のキャリア中心周波数 BBは、 ベースバ ンドキヤリァ周波数 0 H zから△ f を減ずれば良いので、  Next, in order to down-compress the received signal of the first IF frequency band to the baseband frequency, the carrier center frequency BB of the baseband frequency band is obtained by subtracting △ f from the baseband carrier frequency 0 Hz. So good
ΒΒ=0-Δ f =- 10=- 10 (MHz)  ΒΒ = 0-Δ f =-10 = -10 (MHz)
(式 12 _ 5 )  (Equation 12 _ 5)
となる。 Becomes
すなわち第 3の局部発振器 104bの発するローカル周波数 L O 3は、 L03= I F 1 - BB=2440 + 10 = 2450 (MHz)  That is, the local frequency L O 3 generated by the third local oscillator 104b is L03 = IF1−BB = 2440 + 10 = 2450 (MHz)
(式 12— 6)  (Equation 12-6)
となる (図 13の (b 3) 参照) 。 (See (b3) in Fig. 13).
受信信号が 3チャンネルを同時に使用している場合、 RF受信信号を第 1の I If the received signal uses three channels at the same time, the RF
F周波数帯にダウンコンバートする方法は前記 (式 13- 1) 及び前記 (式 13 -2) と同様の方法で求められ、 し〇1は22. 56 (GHz) となる (図 13 の (c 1) 参照) 。 The method of down-conversion to the F frequency band is obtained by the same method as in the above (Equation 13-1) and (Equation 13-2), and 〇1 is 22.56 (GHz) (Fig. 13 (c 1)).
次に、 第 1の I F周波数帯の受信信号をベースバンド周波数にダウンコンバー 卜するためには、 ベースバンド周波数帯のキャリア中心周波数 BBは、 ベースバ ンドキヤリァ周波数 0 H zと同じになるので、 BB=0—△ f = 0 (Hz) Next, in order to down-convert the received signal of the first IF frequency band to the baseband frequency, the carrier center frequency BB of the baseband frequency band becomes the same as the baseband carrier frequency 0 Hz. BB = 0— △ f = 0 (Hz)
(式 13— 5 )  (Equation 13—5)
となる。 Becomes
すなわち第 3の局部発振器 104bの発するローカル周波数 L 03は、 LO3=I F l-BB=2440— 0=2440 (MHz)  That is, the local frequency L 03 generated by the third local oscillator 104b is LO3 = I F l-BB = 2440-0 = 2440 (MHz)
(式 13— 6 )  (Equation 13-6)
となる (図 13の (c 3) 参照) 。 (See (c3) in Fig. 13).
なお、 受信信号の周波数帯域の検出は、 制御部が行っていたが、 別の装置を設 けてそこで検出しても良い。 また、 I F変換部は 2つであるが、 数はこれに限ら ず、 1つでも、 3つでもよい。  The detection of the frequency band of the received signal has been performed by the control unit, but another device may be provided and detected there. Further, although the number of IF conversion units is two, the number is not limited to this, and may be one or three.
以上、 これまでに説明した第 3の実施の形態あるいは第 4の実施の形態の受信 装置を無線通信装置に備えることにより、 複数の周波数帯域の信号を使用する無 線通信システムより送信される無線信号の受信が可能となる。 例えば、 本発明の 無線通信装置を、 従来の技術の項で述べた 25GHz帯における小電力無線通信 システムの無線通信端末として利用した可能である。  As described above, by providing the receiving apparatus of the third embodiment or the fourth embodiment described above in a wireless communication apparatus, it is possible to transmit wireless signals transmitted from a wireless communication system using signals in multiple frequency bands. A signal can be received. For example, the wireless communication device of the present invention can be used as a wireless communication terminal of a low-power wireless communication system in the 25 GHz band described in the section of the related art.
本発明の受信装置によれば、 受信信号の隣接波やノイズを除去するためのフィ ル夕を異なる周波数帯域の信号を受信するために増加させずに、 また前記フィル 夕を切り替えるためのスィツチ回路を特に設けずに、 複数の異なる周波数帯域の 無線信号を復調することが可能となる。  According to the receiving apparatus of the present invention, a switch circuit for switching the filter without increasing the number of filters for removing adjacent waves and noise of the received signal to receive signals in different frequency bands. It is possible to demodulate wireless signals in a plurality of different frequency bands without providing a particular frequency band.
また、 その結果として、 部品の個数が削減できるので、 製造コストの削減と受 信装置の小型化に効果がある。  As a result, the number of components can be reduced, which is effective in reducing manufacturing costs and downsizing the receiving device.
さらに、 複数の周波数帯域の信号を使用する無線通信システムにおいて、 本発 明の受信装置を無線通信装置に備えることにより、 無線通信システムの送信に使 用される全ての周波数帯域の信号を受信することが可能になる。  Further, in a wireless communication system using signals in a plurality of frequency bands, the reception device of the present invention is provided in the wireless communication device to receive signals in all frequency bands used for transmission in the wireless communication system. It becomes possible.
産業上の利用可能性 本発明に係る送信装置、 受信装置及びそれらを備えた無線通信装置は、 駅や喫 茶店等のホットスポッ卜での屋外インターネットアクセスを想定したパーソナル エリァゃ家庭内や工場内での無線 L ANや無線ホームリンクを想定したコミュニ ティエリァ等で使用する無線通信システムに使用するのに有用である。 Industrial applicability The transmitting device, the receiving device, and the wireless communication device provided with the same according to the present invention can be used in a personal area assuming outdoor Internet access at a hot spot such as a station or a coffee shop. This is useful for a wireless communication system used in a community area or the like that assumes a wireless home link.

Claims

請 求 の 範 囲 The scope of the claims
1 . 入力信号を所定の周波数帯域の第 1の中間周波数信号に変調する変調部と 、 該第 1の中間周波数信号を高周波信号に変換する I F変換部と、 該高周波信号 を送信する R F送信部と、 各部を制御する制御部とを備えた送信装置であって、 前記変調部は、 前記第 1の中間周波数信号に変調する信号変調手段と、 該第 1. の中間周波数信号を通過させる前記第 1の I Fフィル夕とを備え、 1. A modulation unit that modulates an input signal into a first intermediate frequency signal in a predetermined frequency band, an IF conversion unit that converts the first intermediate frequency signal into a high-frequency signal, and an RF transmission unit that transmits the high-frequency signal And a control unit for controlling each unit, wherein the modulation unit modulates the first intermediate frequency signal, and the first intermediate frequency signal passes the first intermediate frequency signal. With the first IF Fill
前記制御部は、 前記第 1の I Fフィル夕の通過周波数帯域のエッジに前記第 1 の中間周波数信号の周波数帯のエッジを揃えるように前記変調部の周波数を調整 設定することを特徴とする送信装置。  The control unit adjusts and sets the frequency of the modulation unit so that the edge of the frequency band of the first intermediate frequency signal is aligned with the edge of the pass frequency band of the first IF filter. apparatus.
2 . 前記 I F変換部は、  2. The IF conversion unit:
前記変調部で変調された第 1の中間周波数信号を第 2の中間周波数信号に変換 する第 1の周波数変換手段と、 該第 2の中間周波数信号を通過させる第 2の I F フィル夕とを備えた第 1の I F変換部と、  A first frequency conversion means for converting the first intermediate frequency signal modulated by the modulation section into a second intermediate frequency signal, and a second IF filter for passing the second intermediate frequency signal. A first IF converter,
前記第 2の中間周波数信号を高周波信号に変換する第 2の周波数変換手段を備 えた第 2の I F変換部とからなり、  A second IF conversion unit comprising second frequency conversion means for converting the second intermediate frequency signal into a high-frequency signal,
前記制御部は、  The control unit includes:
前記第 1の I Fフィルタの通過周波数帯域のエッジに前記第 1の中間周波数信 号の周波数帯のエッジを揃えるように前記変調部の周波数を調整設定し、 前記第 2のフィル夕の通過周波数帯域のエッジに前記第 2の中間周波数信号の周波数帯 のエツジを揃えるように前記第 1の周波数変換手段の周波数を調整設定すること を特徴とする請求の範囲第 1項に記載の送信装置。  The frequency of the modulation section is adjusted and set so that the edge of the frequency band of the first intermediate frequency signal is aligned with the edge of the pass frequency band of the first IF filter, and the pass frequency band of the second filter is set. 2. The transmission device according to claim 1, wherein the frequency of the first frequency conversion means is adjusted and set so that an edge of the frequency band of the second intermediate frequency signal is aligned with an edge of the second intermediate frequency signal.
3 . 前記変調部は、 該中間周波数信号の不要な高調波成分を除去するためのデ ジ夕ルフィル夕と、 該デジタルフィル夕の通過信号をアナログ信号に変換する D ZA変換手段とを備え、  3. The modulation unit includes a digital filter for removing unnecessary harmonic components of the intermediate frequency signal, and DZA conversion means for converting a signal passed through the digital filter into an analog signal,
前記制御部は、 前記デジタルフィル夕の通過周波数帯域のェッジに前記第 1の 中間周波数信号の周波数帯のエツジを揃えるように前記変調部の周波数を調整設 定することを特徴とする請求の範囲第 1項又は第 2項に記載の送信装置。 The control unit may control the edge of a pass frequency band of the digital filter to the first frequency. 3. The transmission device according to claim 1, wherein a frequency of the modulation unit is adjusted and set so that an edge of a frequency band of the intermediate frequency signal is aligned.
4. 前記第 1の I Fフィル夕は、 バンドパスフィル夕もしくは口一パスフィル 夕であることを特徴とする請求の範囲第 1項、 第 2項又は第 3項に記載の送信装  4. The transmission device according to claim 1, wherein the first IF filter is a bandpass filter or a mouth-to-pass filter.
5 . 前記デジタルフィル夕は、 バンドパスフィル夕もしくはローパスフィルタ の機能を有するデジタルフィル夕であることを特徴とする請求の範囲第 3項に記 載の送信装置。 5. The transmitting device according to claim 3, wherein the digital filter is a digital filter having a band-pass filter function or a low-pass filter function.
6 . 前記第 2の I Fフィル夕は、 バンドパスフィル夕もしくはハイパスフィル 夕であることを特徴とする請求の範囲第 2項又は第 3項に記載の送信装置。 6. The transmitting apparatus according to claim 2, wherein the second IF filter is a band-pass filter or a high-pass filter.
7 . 入力信号を所定の周波数帯域のベースバンド信号に変調する変調部と、 該 ベースバンド信号を中間周波数を経由して若しくは高周波信号に変換する I F変 換部と、 該高周波信号を送信する R F送信部と、 各部を制御する制御部とを備え た送信装置であって、 7. A modulation unit that modulates the input signal into a baseband signal of a predetermined frequency band, an IF conversion unit that converts the baseband signal via an intermediate frequency or into a high-frequency signal, and an RF that transmits the high-frequency signal A transmission device comprising a transmission unit and a control unit for controlling each unit,
前記変調部は、 前記ベースバンド信号に変調する信号変調手段と、 該ベースバ ンド信号を通過させる前記バースバンドフィル夕とを備え、  The modulation unit includes: signal modulation means for modulating the baseband signal; and the verse band filter for passing the baseband signal.
前記制御部は、 前記ベースバンドフィル夕の通過周波数帯域のエッジに前記べ ースバンド信号の周波数帯のエッジを揃えるように前記変調部の周波数を調整設 定することを特徴とする送信装置。  The transmission device, wherein the control unit adjusts and sets a frequency of the modulation unit so that an edge of a frequency band of the baseband signal is aligned with an edge of a pass frequency band of the baseband filter.
8 . 前記 I F変換部は、 8. The IF conversion unit:
前記変調部で変調されたベースバンド信号を中間周波数信号に変換する第 1の 周波数変換手段と、 該中間周波数信号を通過させる I Fフィル夕とを備えた第 1 の I F変換部と、  A first frequency conversion unit that converts a baseband signal modulated by the modulation unit into an intermediate frequency signal, and a first IF conversion unit that includes an IF filter that passes the intermediate frequency signal;
前記中間周波数信号を高周波信号に変換する第 2の周波数変換手段を備えた第 2の I F変換部とからなり、  A second IF conversion unit including second frequency conversion means for converting the intermediate frequency signal into a high frequency signal,
前記制御部は、 前記ベースバンドフィル夕の通過周波数帯域のエッジに前記ベースバンド信号 の周波数帯のエッジを揃えるように前記変調部の周波数を調整設定し、 前記 I F フィルタの通過周波数帯域のエッジに前記中間周波数信号の周波数帯のエッジを 揃えるように前記第 1の周波数変換手段の周波数を調整設定することを特徴とす る請求の範囲第 7項に記載の送信装置。 The control unit includes: The frequency of the modulation unit is adjusted and set so that the edge of the frequency band of the baseband signal is aligned with the edge of the passband of the baseband filter, and the edge of the intermediate frequency signal is set at the edge of the passband of the IF filter. 8. The transmitting apparatus according to claim 7, wherein a frequency of said first frequency conversion means is adjusted and set so as to align edges of a frequency band.
9 . 前記変調部は、 該ベースバンド信号の不要な高調波成分を除去するための デジタルフィルタと、 該デジタルフィル夕の通過信号をアナログ信号に変換する D/A変換手段とを備え、  9. The modulation section includes a digital filter for removing unnecessary harmonic components of the baseband signal, and D / A conversion means for converting a signal passed through the digital filter into an analog signal,
前記制御部は、 前記デジタルフィル夕の通過周波数帯域のエッジに前記ベース バンド信号の周波数帯のエッジを揃えるように前記変調部の周波数を調整設定す ることを特徴とする請求の範囲第 7項又は第 8項に記載の送信装置。  8. The control unit according to claim 7, wherein the control unit adjusts and sets a frequency of the modulation unit so that an edge of a frequency band of the baseband signal is aligned with an edge of a pass frequency band of the digital filter. Or the transmission device according to item 8.
1 0. 前記ベースバンドフィルタは、 ローパスフィルタであることを特徴とす る請求の範囲第第 7項、 第 8項又は第 9項に記載の送信装置。  10. The transmitting apparatus according to claim 7, wherein the baseband filter is a low-pass filter.
1 1 . 前記デジタルフィル夕フィルタは、 口一パスフィル夕の機能を有するデ ジタルフィルタであることを特徴とする請求の範囲第 9項に記載の送信装置。 あることを特徴とする請求の範囲第 7項又は第 8項に記載の送信装置。  11. The transmitting apparatus according to claim 9, wherein the digital filter is a digital filter having a function of a one-pass filter. 9. The transmission device according to claim 7, wherein:
1 3. 請求の範囲第第 1項から第 1 2項のいずれかに記載の送信装置を備えた ことを特徴とする無線通信装置。  1 3. A wireless communication device comprising the transmission device according to any one of claims 1 to 12.
1 4. 高周波信号を受信する R F受信部と、 該高周波信号を中間周波数信号に 変換する I F変換部と、 該中間周波数信号を復調する復調部と、 各部を制御する 制御部とを備えた受信装置であつて、 1 4. An RF receiver that receives a high-frequency signal, an IF converter that converts the high-frequency signal to an intermediate frequency signal, a demodulator that demodulates the intermediate frequency signal, and a control unit that controls each unit. Device
前記 I F変換部は、 前記 R F受信部で受信した高周波信号を中間周波数信号に 変換するための周波数変換手段と、 変換された前記中間周波数信号の所定の周波 数帯域の信号を通過させるフィル夕とを備え、  The IF conversion unit includes: a frequency conversion unit configured to convert a high-frequency signal received by the RF reception unit into an intermediate frequency signal; and a filter configured to pass a signal of a predetermined frequency band of the converted intermediate frequency signal. With
前記制御部は、 前記フィル夕の通過周波数帯域のエッジに前記中間周波数信号 の周波数帯のェッジを揃えるように前記周波数変換手段のローカル信号の周波数 を調整設定することを特徴とする受信装置。 The control unit may include an intermediate frequency signal at an edge of a pass frequency band of the filter. A receiver for adjusting and setting the frequency of the local signal of the frequency conversion means so that the edges of the frequency band are aligned.
1 5 . 受信した高調波信号から受信信号の周波数帯域を検出する検出手段を備 え、  1 5. Equipped with detection means for detecting the frequency band of the received signal from the received harmonic signal,
前記制御部は、 前記受信信号の周波数帯域に基づいて前記周波数変換手段の口 —カル信号の周波数を調整設定することを特徴とする請求の範囲第 1 4項に記載  15. The control unit according to claim 14, wherein the control unit adjusts and sets a frequency of an oral signal of the frequency conversion unit based on a frequency band of the received signal.
1 6. 前記復調部は、 前記周波数帯域の情報を含んだ特定の周波数帯域の制御 信号を復調し、 1 6. The demodulation unit demodulates a control signal of a specific frequency band including the information of the frequency band,
前記検出手段が、 復調された前記制御信号に基づいて前記受信信号の周波数帯 域を検出することを特徴とする請求の範囲第 1 5項に記載の受信装置。  16. The receiving apparatus according to claim 15, wherein said detecting means detects a frequency band of the received signal based on the demodulated control signal.
1 7 . 前記 I F変換部は、 第 1の周波数変換手段と第 1のフィル夕を有する第 1の I F変換部と、 第 2の周波数変換手段と第 2のフィル夕を有する第 2の I F 変換部とからなり、  17. The IF conversion section includes a first IF conversion section having first frequency conversion means and a first filter, and a second IF conversion section having second frequency conversion means and a second filter. Department and
前記周波数設定手段は、 前記第 1のフィル夕の通過帯域の上限或いは下限のェ ッジに中間周波数信号の周波数帯域の上限或いは下限のエツジが揃うように前記 第 1の周波数変換手段のローカル信号の周波数を設定し、 前記第 2のフィル夕の 通過帯域の下限或いは上限のエッジに中間周波数信号の周波数帯域の下限或いは 上限のエッジが揃うように前記第 2の周波数変換手段のローカル信号の周波数を 設定することを特徴とする請求の範囲第 1 4項、 第 1 5項又は第 1 6項に記載の  The frequency setting means includes a local signal of the first frequency conversion means such that an upper or lower edge of a frequency band of the intermediate frequency signal is aligned with an upper or lower edge of a pass band of the first filter. The frequency of the local signal of the second frequency conversion means is set such that the lower or upper edge of the frequency band of the intermediate frequency signal is aligned with the lower or upper edge of the pass band of the second filter. Set forth in claims 14, 15 or 16 characterized by the following:
1 8. 前記第 1のフィル夕は、 バンドパスフィル夕もしくは口一パスフィル夕 であることを特徴とする請求の範囲第 1 7項に記載の受信装置。 18. The receiving apparatus according to claim 17, wherein the first filter is a band-pass filter or a mouth-to-pass filter.
1 9. 前記第 2のフィル夕は、 バンドパスフィル夕もしくはハイパスフィルタ であることを特徴とする請求の範囲第 1 7項に記載の受信装置。  19. The receiving apparatus according to claim 17, wherein the second filter is a band-pass filter or a high-pass filter.
2 0. 請求項 1 4から 1 9のいずれかに記載の受信装置を備えたことを特徴と する無線通信装置。 20. A receiving device according to any one of claims 14 to 19, Wireless communication device.
PCT/JP2003/003882 2002-03-28 2003-03-27 Transmitter, receiver, and wireless communication device comprising transmitter and receiver WO2003084083A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003236164A AU2003236164A1 (en) 2002-03-28 2003-03-27 Transmitter, receiver, and wireless communication device comprising transmitter and receiver

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-092268 2002-03-28
JP2002092268A JP2003289262A (en) 2002-03-28 2002-03-28 Receiver and wireless communication device provided with the same
JP2002-103985 2002-04-05
JP2002103985A JP2003298432A (en) 2002-04-05 2002-04-05 Transmitter and radio communication device provided with the same

Publications (1)

Publication Number Publication Date
WO2003084083A1 true WO2003084083A1 (en) 2003-10-09

Family

ID=28677565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003882 WO2003084083A1 (en) 2002-03-28 2003-03-27 Transmitter, receiver, and wireless communication device comprising transmitter and receiver

Country Status (2)

Country Link
AU (1) AU2003236164A1 (en)
WO (1) WO2003084083A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05227051A (en) * 1991-10-17 1993-09-03 Nokia Mobile Phones Ltd Method and device for adjusting bandwidth of radiotelephone
JPH077446A (en) * 1993-06-18 1995-01-10 Fujitsu General Ltd Variable filter circuit
JPH0946249A (en) * 1995-07-25 1997-02-14 Yaesu Musen Co Ltd Digital filter
JPH10285063A (en) * 1997-04-02 1998-10-23 Kokusai Electric Co Ltd Band pass filter for communication equipment
JP2000236268A (en) * 1999-02-15 2000-08-29 Toyo Commun Equip Co Ltd Software radio set
JP2001103024A (en) * 1999-09-29 2001-04-13 Fujitsu Ltd Digital radio equipment, digital radio communication system, digital radio transmitter and digital radio communicating method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05227051A (en) * 1991-10-17 1993-09-03 Nokia Mobile Phones Ltd Method and device for adjusting bandwidth of radiotelephone
JPH077446A (en) * 1993-06-18 1995-01-10 Fujitsu General Ltd Variable filter circuit
JPH0946249A (en) * 1995-07-25 1997-02-14 Yaesu Musen Co Ltd Digital filter
JPH10285063A (en) * 1997-04-02 1998-10-23 Kokusai Electric Co Ltd Band pass filter for communication equipment
JP2000236268A (en) * 1999-02-15 2000-08-29 Toyo Commun Equip Co Ltd Software radio set
JP2001103024A (en) * 1999-09-29 2001-04-13 Fujitsu Ltd Digital radio equipment, digital radio communication system, digital radio transmitter and digital radio communicating method

Also Published As

Publication number Publication date
AU2003236164A1 (en) 2003-10-13

Similar Documents

Publication Publication Date Title
EP0920729B1 (en) Apparatus and method for receiving a modulated radio frequency signal
JP4494650B2 (en) System and process for shared functional block CDMA / GSM communication transceiver
US20180352607A1 (en) Adjacent Channel Optimized Receiver
CN1049310C (en) Radio receiver
US8311156B2 (en) Hybrid receiver architecture using upconversion followed by direct downconversion
US6970681B2 (en) Integrated multimode radio and components thereof
US7257380B2 (en) Integrated multimode radio and components thereof
US20170164210A1 (en) Spectrum allocation system and method for multi-band wireless rf data communications
WO1998008300A9 (en) Apparatus and method for receiving a modulated radio frequency signal
US7444167B2 (en) Dual-band wireless LAN RF transceiver
JP2001513952A (en) Single chip wireless transceiver
EP0806841A1 (en) Elimination of D.C. offset and spurious AM suppression in a direct conversion receiver
US20110039505A1 (en) Integrated multimode radio transmitter and components thereof
US20040259518A1 (en) Multi standard transceiver architecture for wlan
CN109412635B (en) Satellite-borne measurement and control equipment
US20050107115A1 (en) Mobile multimode terminal with joint power amplifier
US20030153294A1 (en) Wireless communications equipment
JP2840496B2 (en) Dual band wireless communication device
US8014466B2 (en) Wide-band direct conversion transmission apparatus
US7224997B2 (en) Apparatus and method for radio signal parallel processing
US20080279169A1 (en) Methods and Apparatuses for Intrasystem and Intersystem Sliding Intermediate Frequency Transception
WO2003084083A1 (en) Transmitter, receiver, and wireless communication device comprising transmitter and receiver
KR100349659B1 (en) Wireless Local Area Network RF Front-End Transceiver
US8731122B1 (en) Spurious component reduction
KR100395093B1 (en) Rf device of etcs

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase