WO2003080842A1 - Zearalenone-detoxifying enzyme gene and transformant having the gene transferred thereinto - Google Patents

Zearalenone-detoxifying enzyme gene and transformant having the gene transferred thereinto Download PDF

Info

Publication number
WO2003080842A1
WO2003080842A1 PCT/JP2003/003602 JP0303602W WO03080842A1 WO 2003080842 A1 WO2003080842 A1 WO 2003080842A1 JP 0303602 W JP0303602 W JP 0303602W WO 03080842 A1 WO03080842 A1 WO 03080842A1
Authority
WO
WIPO (PCT)
Prior art keywords
zearalenone
protein
gene
seq
dna
Prior art date
Application number
PCT/JP2003/003602
Other languages
French (fr)
Japanese (ja)
Inventor
Isamu Yamaguchi
Makoto Kimura
Naoko Ando
Arisa Nishiyama
Tetsuko Fukuda
Hideaki Kakeya
Hiroyuki Osada
Original Assignee
Riken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken filed Critical Riken
Publication of WO2003080842A1 publication Critical patent/WO2003080842A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/02Antidotes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/24Drugs for disorders of the endocrine system of the sex hormones
    • A61P5/32Antioestrogens
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8259Phytoremediation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8274Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance

Definitions

  • the present invention relates to a protein capable of purifying mycotoxin-infected plants and a gene encoding the same.
  • a known disease of the plant is Fusarium head blight of wheat, which is infected with phytopathogenic fungi and damages the plant, causing a large loss in yield.
  • the disease has been widespread due to recent warm and humid climate change.
  • wheat scabs which were widespread around the world, were incurable diseases that could not be affected even in North America where advanced intensive agriculture is conducted. It became. For this reason, red mold has recently been taken up as a major problem in Europe and the United States, and national measures are being taken.
  • Protecting wheat, an important crop, from the threat of Fusarium head blight is an important issue in order to secure a stable and secure food supply on a global scale.
  • Fusarium head blight is a plant disease caused by a plant called Fusarium, which infects grasses such as wheat, corn, and rice. More than seventeen species of Fusarium, including Fusarium graminea rum, have been isolated and reported as Fusarium mycobacteria (Fusarium Mycotoxins, iaxonomy and Pathogeni city J. Che 1 Rows). ky3 ⁇ 4, Elsevier Science Ltd., (1989) p. 1-39). If a plant is infected with Fusarium head blight, the yield and quality of the grain will be significantly reduced, which will be economically hurt, and the accumulation of mycotoxin toxin in the grain will cause food hygiene problems. Is caused.
  • red blight is a double threat to food supply.
  • pesticides such as tebuconazole are used to control Fusarium head blight, it is not very practical due to the possibility of emergence of resistant bacteria, increased labor and cost, difficulty in timing of application, and pesticide persistence. is not. Therefore, efforts have been made to cultivate varieties resistant to red blight (“Plant disease resistance from the molecular level”, supervision: Tetsuka Yamada, Isao Shimamoto Yuichiro Watanabe, Shujunsha, Japan, ( 1997) p. 90-97).
  • Trichothecene toxins are also protein synthesis inhibitors and enhance infectivity as a virulence factor when bacteria are infected.
  • a gene that blocks the protein synthesis inhibitory activity of the trichothecene toxin Japanese Patent Application Laid-Open No. 2000-32985
  • the trichothecene toxin are extracellularly excreted. Pumping genes (Alexander, J, "Molecular & general genetics” (1999) 261, p. 977-984) have been reported.
  • Zearalenone [6- (10-hydroxy-6-oxo-trans-1-onedecenyl)-/ 3-ratatatone resorcylate] is a mycotoxin with estrogenic activity produced by Fusarium spp. It is.
  • Zearalenone is an endocrine disruptor that has estrogenic activity and can cause toxic symptoms and reproductive harm to humans and livestock who take it (Etienne, M and Jammali, M. Journal of animal science ( 1982) 55, p. 1-10).
  • An object of the present invention is to provide a gene encoding a protein that detoxifies zearalenone accumulated in plants due to infection with Fusarium head blight.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, succeeded in isolating a protein having an activity of degrading zearalenone, and a gene encoding the protein, and completed the present invention. Reached.
  • the present invention is as follows.
  • the protein in [1] may be characterized in that zearalenones are compounds having estrogenic activity.
  • zearalenones include zearalenone, zearalenol, j8-zearalenol, h-zearalanore, ⁇ -zearalanol, 2,4-0-dimethyl- ⁇ -hydroxyzearalenone, and 6-amino-zearalenone. It may be at least one selected from the group consisting of non-, zearalanone and 6-acetyl-] 3-zearalenol.
  • the protein of [1] may be characterized in that the action of suppressing toxicity is a degrading action. The effect of suppressing toxicity may be to generate a compound having no estrogenic activity. Further, the protein of [1] may have an activity of pH 6 to 11, preferably pH 9 to 10.5.
  • a gene comprising the following DNA (a) or (b):
  • DNA encoding a protein having an action of suppressing the toxicity of zearalenones [4] A gene comprising the following DNA (a) or (b):
  • the genes in [2:] to [4] may be characterized in that zearalenones are compounds having estrogenic activity.
  • Zearalenones include zearalenone, hy-zearalenone, ⁇ -zearalenol, ⁇ -zearalanone, J3-zearalanol, 2,4-0-dimethyl / le- ⁇ -hydroxyzearalenone, 6-amino- It may be at least one selected from the group consisting of zearalenone, zearalanone and 6-acetyl-j3-zealarenol.
  • the genes in [2;] to [4] may be characterized in that the action of suppressing toxicity is a degradation effect. Product that suppresses toxicity The use may be to produce a compound having no estrogenic activity.
  • the transformant may be one in which a recombinant vector has been introduced into a cell selected from the group consisting of Escherichia coli, yeast cells, and gramineous plant cells.
  • a method for producing a protein which comprises culturing the transformant of [6] and collecting, from the resulting culture, a protein having an activity of suppressing toxicity of zearalenones.
  • a method for detoxifying zearalenones which comprises applying the antidote of [8] or [9] to zearalenones.
  • ⁇ IV The resistance of wheat (Triticum aestivum L.) to Fusarium head blight is roughly classified into the following four types: ⁇ IV:
  • Type I Resistance to fungal invasion (depending on flowering characteristics, shape of ears, etc.)
  • Type II Resistance to fungal growth after invasion (hyphal elongation)
  • Type III Resistance exerted in the grain (reduction of mold damage to seeds)
  • Type IV resistance based on reduced mycotoxin accumulation.
  • genes involved in type IV resistance that is, resistance based on the reduction of mycotoxin accumulation in infected plants, are not only useful in protecting plant individuals from red blight, but also from plants. It is considered to be very useful in ensuring the safety of the produced grains as food. That is, Fusarium
  • the ability to isolate and identify a gene encoding an enzyme capable of detoxifying mycotoxins, such as zearalenone, that accumulates in grains due to bacterial infection, would be very useful in protecting plants from red blight. It was thought to be.
  • the present invention has been completed based on such an idea.
  • Zearalenone in the present invention basically indicates the chemical formula shown in FIG.
  • the zearalenone detoxifying enzyme in the present invention can use other zearalenones as substrates, other than zearalenone itself of the chemical formula shown in FIG. That is, the zearalenone detoxifying enzyme of the present invention is a protein having an action of suppressing the toxicity of zearalenones by an enzymatic reaction using the zearalenones as a substrate.
  • Examples of zearalenones that can be used as a substrate by zearalenone detoxifying enzyme include zearalenone analogs in addition to zearalenone.
  • zearalenone analog means a compound having a zearalenone skeleton having a lactone ring composed of 14 carbon atoms, such as ⁇ -zearalenone, / 3-zealalenone, ⁇ -zearalanone, / 3-zearalanone, and 2 , 4 - ⁇ -Dimethinole- ⁇ -hydroxyzearalenone, 6-amino-zearalenone, zearalanone, 6-acetyl- -zearalenol and the like.
  • the zearalenones that can be used as a substrate by the zearalenone detoxifying enzyme are preferably compounds having an estrogenic activity.
  • the above zearalenones will be referred to as “zearalenone” for convenience.
  • toxicity of zearalenones or “toxicity of zearalenone” refers to toxicity brought to an individual plant by accumulation of zearalenone, for example, cell toxicity, and furthermore, human ingestion of zearalenone.
  • inhibiting the toxicity of zearalenone means that the degree of the toxicity indicated by the action of zearalenone is reduced, preferably that the toxicity becomes undetectable or lost. means.
  • detoxification has the same meaning as “suppress the toxicity of zearalenone”.
  • the action of suppressing the toxicity of zearalenone (class) is the chemical structure of zearalenone itself By suppressing the toxicity as described above. The action of suppressing the toxicity of zearalenone may be specifically caused by decomposing or cleaving zearalenone, or may be effected by chemically modifying zearalenone. .
  • the action of suppressing the toxicity of zearalenone may be one that produces a compound having no estrogenic activity using zearalenone as a substrate.
  • the action of suppressing the toxicity of zearalenone is preferably measured as an action of reducing the estrogenic activity.
  • Estrogen-like activity in the present invention means binding to an estrogen receptor and promoting the growth of a human cancer cell line MCF-7 in vitro. This estrogenic activity can be easily measured, for example, by a test as described in Example 9 herein.
  • strains available from a distribution agency were screened for their ability to detoxify zearalenone, and strains having zearalenone detoxifying enzymes were isolated.
  • the cells to be screened may be any of animal cells, plant cells, fungal cells and bacterial cells, but are preferably fungal cells.
  • Those skilled in the art can easily obtain a cell line (eg, a fungal strain) from a distributing institution based on the catalog number of each distributing institution.
  • AKU Ferty of Agriculture, Kyoto University, Kyoto, Japan
  • ATCC American Type Culture Collection Rockville, US A
  • HUT Ferty of Engineering, Hiroshima University, Hiroshima, Japan
  • IAM Institute of Applied Microbiology, University of Tokyo, Japan
  • IF0 ⁇ institute for Fermentation Osaka, Japan
  • JCM Japan Collection of Microorganisms, RIKEN
  • information such as culture conditions is provided for each cell line available from the distributing organization, and by referring to this information, those skilled in the art can easily culture the cell line.
  • the following methods can be used.
  • zearalenone for each strain. Cultivation according to a culture method known to a human. The culture is then extracted, for example, in black-mouthed form. For example, when screening for zearalenone resolution is performed as zearalenone detoxification, the extract is subjected to thin layer chromatography as follows:
  • TLC TLC analysis.
  • zearalenone a strain in which spots having the same mobility as the zearalenone standard do not appear and spots having a mobility distinct from zearalenone appear, and cells having the ability to detoxify zearalenone (for example, strains).
  • extraction and purification of zearalenone detoxification enzyme are performed from the cells selected as described above.
  • the extraction and purification of the enzyme from the cells can be performed using any technique known to those skilled in the art. For example, it may be performed by column elution separation and TLC analysis as described below.
  • the cell line is cultured in a medium supplemented with zearalenone (for fungi, for example, YG medium) according to a culture method known to those skilled in the art.
  • zearalenone for fungi, for example, YG medium
  • the cultured cells are collected, the cells are crushed with liquid nitrogen or the like, and cell debris is spun down by centrifugation to obtain supernatant.
  • the supernatant is fractionated with ammonium sulfate, and the obtained protein solution is dialyzed to obtain a crude enzyme solution.
  • This crude enzyme solution can be applied to, for example, a HiTrapQ column (Pharmacia), eluted and separated for further purification.
  • Each of the eluted fractions thus obtained is subjected to an in vitro enzyme reaction test for zearalenone, and thereafter, it can be examined by TLC whether or not it has an enzyme reaction activity for zearalenone.
  • zearalenone degradation test add zearalenone to each eluted fraction and incubate at 37 ° C.
  • zearalenone and Z or a degradation product thereof are extracted from each of the samples, and subjected to TLC.
  • spots with a mobility clearly different from that of zearalenone are detected on TLC.
  • zearalenone detoxifying enzyme is an enzyme that changes the molecular structure of zearalenone in a manner different from degradation
  • zearalenone is used for a sample obtained using an elution fraction containing such an enzyme. Clearly different mobility spots are detected.
  • the Rf value is generally used as an index of this mobility.
  • the Rf value is the sample
  • the distance from the development origin applied to the sample to the center of the color spot of the sample (the average travel distance of the compound) is the distance from the development origin to the development tip of the development solution (the maximum travel distance of the development solution).
  • Rf Is defined as the value divided by This Rf value varies depending on the affinity of the compound with the adsorbent applied to thin-layer chromatography and the solubility of the compound in the developing solution. This is useful for identifying compounds.
  • the eluted fraction identified in this way which can detect spots having a mobility clearly different from that of zearalenone upon addition of zearalenone, is subjected to a further purification step.
  • Further purification steps include FPLC separation using a gel filtration column, and those using an ion exchange column.By repeating these various protein purification steps, a desired protein can be obtained with high purity. .
  • the partial amino acid sequence of zearalenone detoxifying enzyme obtained in 1 above is determined in the present invention.
  • the purified zearalenone detoxification enzyme is fragmented with a protease such as lysyl endopeptidase (eg, TAKA RA, Kyoto, JAPAN).
  • the reaction mixture is separated for each peptide fragment by HPLC.
  • HPLC HPLC
  • Such an HPLC operation may be usually performed according to the manufacturer's instructions.
  • the peptide fragment separated by HPLC and the zearalenone detoxifying enzyme itself purified above are respectively applied to a protein sequencer, and the amino acid sequence is determined by Edman degradation.
  • a primer for PCR amplification of DNA encoding zearalenone detoxification enzyme is designed. Design a degenerate 5 'primer based on the N-terminal amino acid sequence and a degenerate 3' primer based on the amino acid sequence obtained from the peptide fragment based on the partial amino acid sequence determined above .
  • the peptide fragment used in designing the primer may be any of those separated by the above HPLC, but it is preferable to use a primer sequence that minimizes the degeneracy pattern.
  • Type II used for PCR amplification has the ability to detoxify zearalenone.
  • P Use cDNA from cells that leak.
  • This cDNA can be obtained by culturing cells capable of detoxifying zearalenone, extracting total RNA or mRNA from the culture by a conventional method, and further synthesizing it by RT-PCR. By subjecting the cDNA thus obtained to PCR amplification using the above primer set, a partial DNA fragment of the gene encoding zearalenone detoxification enzyme can be obtained.
  • As the PCR reaction conditions for example, 30 cycles of 94 ° C (30 seconds), 55 ° C (30 seconds) and 72 ° C (1 minute) may be performed. The size of the amplified product obtained is confirmed by agarose gel electrophoresis.
  • an appropriate one of the PCR amplification products obtained as described above for example, the one having the largest size is selected, cloned into an appropriate vector, and subjected to DNA sequence determination.
  • DNA sequencing can be performed by a conventional method.
  • ABI PRISM (R) 377 DNA sequencer and ABI kit are used according to the protocol provided by the manufacturer. You may.
  • RACE rapid amplification at ion of cDNA ends
  • the base sequence of the entire coding region of the zearalenone detoxifying enzyme gene of the present invention can be determined.
  • the zearalenone detoxification enzyme gene isolated and sequenced according to the above-described method 1 or 2 has the nucleotide sequence shown in SEQ ID NO: 1.
  • the amino acid sequence deduced from the nucleotide sequence of SEQ ID NO: 1 is shown in SEQ ID NO: 2.
  • the amino acid sequence deduced from the nucleotide sequence of SEQ ID NO: 1 was identical to the amino acid sequence determined by the Edman method.
  • the amino acid sequence represented by SEQ ID NO: 2 was searched in public databases (Swiss-Prot and GenBank), no corresponding sequence was found, so that this zearalenone detoxifying enzyme was a novel one. It was judged.
  • this zearalenone detoxifying enzyme gene (SEQ ID NO: 1) is a zearalenone detoxifying enzyme whose gene product (SEQ ID NO: 2) degrades zearalenone to produce a degradation product having no estrogenic activity.
  • the confirmation was performed in a system using human breast cancer cell MCF-7, as shown in 7 below.
  • the zearalenone detoxifying enzyme gene of the present invention is a DNA having the nucleotide sequence shown in SEQ ID NO: 1.
  • This DNA should be obtained, for example, by PCR-amplifying the cDNA obtained above as a ⁇ type using primers designed based on SEQ ID NO: 1, and extracting and purifying the amplified DNA fragment by a conventional method. Can be.
  • the zearalenone detoxifying enzyme gene of the present invention more generally encodes a protein having an action of suppressing the toxicity of zearalenone.
  • the zearalenone detoxifying enzyme gene of the present invention is not limited to the DNA comprising the base sequence shown in SEQ ID NO: 1.
  • the gene of the present invention may encode a protein consisting of the amino acid sequence shown in SEQ ID NO: 2.
  • the gene of the present invention has one or more (preferably 1 to 10, more preferably several) amino acids in the amino acid sequence shown in SEQ ID NO: 2 as long as it has an action of suppressing the toxicity of zearalenone. It may encode a protein consisting of a deleted, substituted or added amino acid sequence.
  • a gene encoding a protein is also included in the gene of the present invention.
  • a DNA capable of hybridizing under stringent conditions with a DNA encoding the amino acid sequence shown in SEQ ID NO: 2 or a DNA consisting of a sequence complementary to a part thereof, The gene encoding the protein having the action of suppressing the toxicity of zearalenone is also included in the gene of the present invention.
  • Stringent conditions refer to conditions under which a so-called specific hybrid is formed.
  • nucleic acids having high homology that is, DNAs having a homology of 90% or more, preferably 95% or more, and DNAs encoding a protein having an action of suppressing the toxicity of zearalenone hybridize
  • the sodium salt concentration is 15 to 750 mM, preferably 50 to 750 mM, more preferably 300 to 750 mM
  • the temperature is 25 to 70 ° (: preferably, 50 to 70 ° C, Preferably, it is a condition at 55 to 65 ° (:, a formamide concentration of 0 to 50%, preferably 20 to 50%, more preferably 35 to 45%.
  • the washing condition of the filter after hybridization is The conditions are a sodium salt concentration of 15 to 600 mM, preferably 50 to 600 mM, more preferably 300 to 600 mM, and a temperature of 50 to 70 ° C, preferably 55 to 70 ° C, more preferably 60 to 65 ° C. Such cases can be included in the "stringent conditions" of the present invention.
  • the nucleotide sequence of the gene of the present invention is then subjected to chemical synthesis, or to PCR using a cloned cDNA, cDNA library or genomic DNA library as type III, or to a DNA having the nucleotide sequence.
  • the gene of the present invention can be obtained by hybridizing the fragment to a cDNA library or a genomic DNA library as a probe.
  • the organism from which the cDNA library or the genomic DNA library is derived is not particularly limited, but is preferably an organism belonging to a fungus.
  • a gene encoding a protein having a function of suppressing the toxicity of zearalenone, which is a mutant form of the gene of the present invention can also be synthesized.
  • a protein which is a mutant of the gene of the present invention, which has a function to suppress the toxicity of zearalenone, and which produces a degradation product having no estrogen-like activity by site-directed mutagenesis or the like can also be synthesized.
  • mutant form of the gene of the present invention by site-directed mutagenesis or the like, which has the effect of suppressing the toxicity of zearalenone, and has a pH of 6 to 11, preferably pH of 9 to 10. It is also possible to synthesize a gene encoding a protein having an activity in step 5.
  • a known method such as the Kunkel method and the Gapped duplex method or a method similar thereto can be employed.
  • a mutagenesis kit using site-directed mutagenesis for example, Mutan-K TAKARA
  • Mutan-G TAKARA
  • TAKARA's LA PCR in vitro Mutagenesis Mutations are introduced using a series kit. 4. Construction of recombinant vector
  • the gene of the present invention described in 3 above is preferably cloned into a vector to prepare a recombinant vector for subsequent operations.
  • the recombinant vector of the present invention can be obtained by ligating (inserting) the zearalenone detoxifying enzyme gene of the present invention to an appropriate vector.
  • the vector for inserting the zearalenone detoxifying enzyme gene is not particularly limited as long as it can be replicated in a host, and examples thereof include plasmid DNA and phage DNA.
  • plasmid DNA examples include Escherichia coli-derived plasmids (eg, pBR322, pBR325, pUC118, pUC119, pUC18, pUC19, pBluescript, etc.), Bacillus subtilis-derived plasmids (eg, pUB110, pTP5, etc.), and yeast-derived plasmids (eg, Phage DNA; L phage (Charon4A, Charon21A, EMBL3, EMB L4, gtl0, Lgtll, LZAP, etc.).
  • retroviruses or animals such as Vincenius innoles, innores, and insects such as noculois / les, innores vectors can also be used.
  • the purified DNA is cut with an appropriate restriction enzyme, inserted into an appropriate vector DNA restriction enzyme site or a multi-cloning site, and ligated to the vector. The method is adopted.
  • the zearalenone detoxification enzyme gene needs to be incorporated into a vector so that the function of the gene is exerted.
  • the recombinant vector of the present invention is preferably prepared as a recombinant expression vector in which a zearalenone detoxification enzyme gene is incorporated into a vector so that the gene is expressed as a protein having good activity in a host.
  • various commercially available expression vectors corresponding to many host organisms can be used as the vector of the present invention.
  • Such expression vectors usually include various elements essential for expression in the host organism, such as a transcription promoter, a terminator, and a ribosome binding site, as well as a selection marker that indicates that the vector is retained in the cell.
  • Cis-elements such as polylinker, henno, and ss1 to easily introduce genes into the vector in the correct orientation, splicing signal, poly-A addition signal, ribosome binding sequence (SD sequence), secretion factor sequence, etc. useful Unique sequences are linked as necessary.
  • the expression vector containing a secretory factor sequence compatible with the host organism is used.
  • the recombinant protein can be secreted into the medium. This technique is useful because the recombinant protein can be purified directly from the culture supernatant.
  • the secretory factor sequence may be one that can be specifically cleaved with a specific protease or the like from the protein encoded by the gene incorporated in the vector after secretion into the culture supernatant, and removed.
  • the selectable marker include a dihydrofolate reductase gene, an ampicillin resistance gene, a neomycin resistance gene, and the like.
  • the zearalenone detoxification enzyme gene is ligated to the vector as described above in such a position and orientation that it can be appropriately expressed.
  • the gene of the present invention can also be directly introduced into the genome of a host organism by a homologous recombination method.
  • an appropriate targeting vector incorporating the gene of the present invention is prepared.
  • a vector that can be used for this purpose a known gene targeting vector such as Cre-- ⁇ can be used.
  • such a targeting vector incorporating the gene of the present invention is also included in the recombinant vector of the present invention. 5. Introduction of zearalenone detoxification enzyme gene into plants
  • Transgenic plants can be obtained by introducing the recombinant vector prepared as described in 4 above into a plant.
  • Plants to be transformed in the present invention include whole plants, plant organs (eg, leaves, petals, stems, roots, seeds, etc.), and plant tissues (eg, epidermis, phloem, soft tissue, xylem, vascular bundle, It refers to either a palisade tissue, spongy tissue, etc.) or plant culture cells (eg, callus).
  • the plant used for the transformation is preferably a plant in which the accumulation of zearalenone is observed in the plant due to the infection of Fusarium spp., Which is a scab of Fusarium.
  • plants into which the zearalenone detoxifying enzyme gene of the present invention is introduced include corn, wheat, rye, rye, rice, and the like. Are preferred. Examples of plants used for transformation include the following.
  • Eggplant tomato eggplant (Solanum melongena ishi), tomato (Lycopersicon escu ⁇ entum Mi l 1), bell pepper (Capsicum annuum L. var.angulosum ki ll.), Tofu-zong (Capsi cum annuum L-), Tanoko (Nicotiana tabacum L.)
  • Brassica tomato Arabidopsis thaliana, Brassica (Brassica ca mpestris), Chinese cabbage (Brassica pekinensis Rupr-), Kyahe (Brassica ole racea L. var.capitata L.)
  • Guicon Renicon sativus L
  • Nata (Brassi ca campestri s L., B. napus L.)
  • Rice paddy maize (Zea mays), rice (Oryza sativa), wheat (Triticum ae stivum L.), wom (Hordeum vulgare L.)
  • Legumes Soybean (Glycine max), Azuki (Vigna angularis Willd.), Bean (Phaseolus vulgaris.), Broad bean (Vicia faba L.)
  • Periaceae Cucumber (Cucumis sativus L.), Melon (Cucumis melo L.), Watermelon (Citrullus vulgaris Schrad.), Cabochia (C. moschata Duch., C. maxima Duch.)
  • Lily family Leek (Allium fistulosum L.), onion (Allium cepa L.), -la (Allium tuberosum Rottl.), Garlic (Allium sativum L.), Asunoragasu (Asparag us officinalis L.)
  • Perilla fritters Perilla (Perilla frutescens Britt. Var. Crispa)
  • Chrysanthemum Chrysanthemum raorifolium, Chrysanthemum coron arium L. s Lettuce (Lactuca sativa L. var. Capitata L.)
  • Gentian geese Gentian (Gentiana scabra Bunge var. Buergeri Maxim.) Nadesico geese: Carnation (Dianthus caryophyllus L.)
  • the above recombinant vector can be introduced into a plant by a conventional transformation method, for example, an agrobacterium method, a particle gun method, a PEG method, an electoral poration method, or the like.
  • agrobacterium method when used, the constructed plant expression vector is introduced into an appropriate agrobacterium, for example, Agrobacterium tumefaciens, and this strain is transformed into rice power.
  • the transgenic plants can be obtained by inoculation and infection.
  • the plant, plant organ, or plant tissue itself may be used as it is, may be used after preparing a section, or may be used after preparing a protoplast .
  • the sample thus prepared can be processed using a gene transfer apparatus (for example, PDS-1000 (BIO-RAD) or the like).
  • the treatment conditions vary depending on the plant or sample, but usually the pressure is about 450 to 2000 psi and the distance is about 4 to 12 cm.
  • the recombinant vector is introduced into the culture cell by a Partique Noregan method, an electoral poration method, or the like. At this time, it may be possible to cause homologous recombination to the plant genome using a targeting vector.
  • the tumor tissue, shoots, hairy roots, etc. obtained as a result of the transformation can be directly used for cell culture, tissue culture or organ culture, or by using a conventionally known plant tissue culture method.
  • Plant hormones eg, auxin, cytokinin, gibberellin, abscisic acid, ethylene, brassinolide, etc.
  • Plant hormones can be regenerated into plants by administration of various concentrations.
  • Whether or not the gene has been integrated into the plant can be confirmed by a PCR method, a Southern hybridization method, a Northern hybridization method, or the like.
  • PCR can be performed under the same conditions as those used to amplify the cDNA fragment inserted into the recombinant vector.
  • agarose gel electrophoresis, polyacrylamide gel electrophoresis or capillary electrophoresis By performing staining and the like, staining with Chidium bromide, SYBR Green solution, and the like, and detecting the amplified product as a single band, the transformation can be confirmed.
  • amplification products can also be detected by performing PCR using primers previously labeled with a fluorescent dye or the like. Furthermore, a method of binding the amplification product to a solid phase such as a microplate and confirming the amplification product by fluorescence or an enzymatic reaction can also be adopted.
  • the transgenic plant into which the zearalenone detoxifying enzyme gene of the present invention prepared as described above has been introduced is capable of producing zearalenone detoxifying enzyme in a plant body, thereby producing the toxicity of zearalenone produced by infection with Fusarium head blight. Can be suppressed.
  • zearalenone detoxifying enzyme Preparation of transformant and production of zearalenone detoxifying enzyme using the transformant
  • a transformant transformed cell into which the zearalenone detoxifying enzyme gene of the present invention is introduced is prepared and cultured.
  • zearalenone detoxifying enzyme can be produced.
  • the present invention also relates to such a transformant and a method for producing zearalenone detoxifying enzyme using the transformant.
  • any of bacteria such as Escherichia coli and Bacillus subtilis, yeast cells, insect cells, animal cells (for example, mammalian cells), plant cells, and the like may be used.
  • Escherichia coli, yeast cells or grass plants cells More specifically, for example, for the control of Fusarium head blight on grasses, it is preferable to use grass cells.
  • E. coli or yeast cells are preferably used.
  • yeast cells are preferably used.
  • Transformants can be selected according to a standard method, but usually, the method for culturing the transformant of the present invention using a selection marker incorporated in the recombinant vector used is suitable for culturing a host organism. Normal one used It is done according to the law.
  • a medium for culturing a transformant obtained by using a microorganism such as Escherichia coli or a yeast cell as a host contains a carbon source, a nitrogen source, inorganic salts, and the like that can be assimilated by the host microorganism.
  • a natural medium or a synthetic medium can be used as long as the medium can be efficiently used.
  • antibiotics such as ampicillin or tetracycline may be added to the medium.
  • an inducer may be added to the medium as necessary.
  • a microorganism transformed with an expression vector using the Lac promoter a microorganism transformed with an expression vector using the trp promoter such as isopropyl-1-thio-D-galactoside (IPTG) can be used.
  • IPTG isopropyl-1-thio-D-galactoside
  • IAA indoleacetic acid
  • the culture conditions are not particularly limited, but are preferably performed under conditions suitable for the host organism used for transformation.
  • the zearalenone detoxifying enzyme is produced in the cells or cells, the cells or cells are disrupted.
  • the culture solution is used as it is, or the cells or cells are removed by centrifugation or the like to obtain a supernatant.
  • the resulting solution contains zearalenone detoxifying enzyme.
  • zearalenone detoxifying enzyme can be produced using a cell-free translation system instead of performing transformation.
  • a cell-free translation system is an in vitro transcription-translation system that adds reagents such as amino acids required for translation to a suspension obtained by mechanically disrupting the structure of the host organism's cells. Alternatively, it constitutes an in vitro translation system.
  • kits that can be advantageously used are commercially available.
  • the produced zearalenone detoxifying enzyme can be used alone or by a common biochemical method used for isolating and purifying proteins, such as ammonium sulfate precipitation, gel chromatography, ion exchange chromatography, affinity chromatography, etc. When used in an appropriate combination, it can be isolated and purified from the above-mentioned culture (in a cell lysate, a culture, or a supernatant thereof) or a cell-free translation system solution. However, in some cases, for example, the culture supernatant is concentrated with an ultrafiltration filter or the like.
  • the crude enzyme solution obtained by shrinking or dialyzing after ammonium sulfate fractionation may be used as it is for zearalenone detoxification.
  • zearalenone detoxifying enzyme of the present invention has sufficient activity in a highly alkaline environment at pH 9.5. It was shown that. Further, ZHD101 has P H 7. 0 even some activity, whereas pH 4. At low pH, such as below 5 was found to be non-reversibly deactivated. As described above, the zearalenone detoxifying enzyme of the present invention exhibits, as one feature, a bias toward the alkaline side at an optimum pH. That is, the zearalenone detoxifying enzyme of the present invention has activity at pH 6 to 11, preferably at pH 9 to 10.5.
  • the toxicity of zearalenone can be suppressed by using the zearalenone detoxification enzyme of the present invention and cells or transgenic plants containing the zearalenone detoxification enzyme gene.
  • a reaction solution containing the zearalenone detoxification enzyme of the present invention or a culture of cells containing the zearalenone detoxification enzyme gene may be directly applied to a solution containing zearalenone or zearalenone.
  • the present invention may be applied to a material (plant, grain, fruit, soil, natural or artificial base, etc.) to which zearalenone is attached.
  • cultivation in an area where there is a risk of Fusarium head blight infection may reduce zearalenone contamination, or soil contaminated with zearalenone
  • cultivation in environmental water may suppress the toxicity of zearalenone contained in the surrounding environment.
  • a transformant having a zearalenone detoxifying enzyme gene is cultured, and an enzyme solution obtained from the culture is added to a solution containing zearalenone.
  • the enzyme reaction is allowed to proceed by incubating the mixture at, for example, 37 ° C.
  • the reaction product is analyzed by, for example, TLC, it can be confirmed that zearalenone is consumed and products having different mobilities are generated. In this case, it can be considered that the activity of zearalenone detoxifying enzyme was shown.
  • the transformant is cultured in the presence of zearalenone, and an extract is obtained from the culture.
  • the extract is analyzed by, for example, TLC, and the results indicate that zearalenone is consumed and products with different mobilities are generated, it is considered that the activity of zearalenone detoxifying enzyme was indicated. it can.
  • the compound produced from zearalenone by the catalytic reaction of the zearalenone detoxifying enzyme of the present invention can be subjected to NMR analysis and mass spectrometry (FAB-MS, EI-MS, etc.). By performing these determinations, the chemical structure of the compound can be determined.
  • NMR analysis and mass spectrometry FAB-MS, EI-MS, etc.
  • the estrogen-like activity of a compound produced from zearalenone (referred to as zearalenone-derived detoxification product) by the catalytic reaction of the zearalenone detoxifying enzyme of the present invention can be measured.
  • zearalenone-derived detoxification product does not have estrogen-like activity
  • the zearalenone-derived detoxification enzyme has an action of suppressing the toxicity of zearalenone.
  • the estrogen-like activity can be measured using, as an index, the cell growth promoting effect on human breast cancer cells MCF-7.
  • the cell growth-promoting effect on human breast cancer cells MCF-7 can be measured as follows. First, human breast cancer cells, MCF-7, were converted to, for example, phenol red, L-glutamine (2 mM), penicillin (50 units / ml), streptomycin (50 g / ml) and 10% fetal serum. (FCS) in the added RPMI-1640 medium, cultured at 37 ° C for humidified air containing 5% C0 2. The cultured cells are inoculated with, for example, 5 ⁇ 10 3 cells / well in RPMI medium without phenol red.
  • FCS fetal serum.
  • the medium was replaced with the same type of medium, and the test compound , Zaralenone-derived detoxification product, or 17-estradiol at various concentrations, and further culture for 120 hours.
  • the number of cells is evaluated by a color reaction.
  • the sodium salt of 2- (2-methoxy-4-nitrophenyl) -3- (4-nitrophenyl) -5- (2,4-disulfofenyl) -2-tetrazolium is used.
  • Some WST-8 TM Na kalai Tesque, Kyoto
  • the addition of 17-estradiol as a test compound increases the cell number on average by about 250% compared to a control without any addition.
  • the cell number is comparable to that of 17] 3-estradiol.
  • the ratio of the number of cells ( ⁇ ) when the test compound is added to the number of cells ( ⁇ ) when the test compound is not added [(B) / (A)] ⁇ 100 (%); In the present invention, this value is referred to as the cell growth promoting ratio.) If the force is 0% to 150%, preferably 80% to 120%, it is assumed that the test compound has no cell growth promoting effect.
  • the absence of the cell growth promoting effect of the test compound can be judged to have no estrogen-like activity. Therefore, when the above-mentioned zearalenone-derived detoxification product is added as a test compound, if the cell growth promoting action is not observed, the zearalenone-derived detoxification product is a compound having no estrogenic activity. In this manner, if it is confirmed that the zearalenone-derived detoxification product does not have estrogen-like activity, the zearalenone-detoxification enzyme that has produced the zearalenone-derived detoxification product can use a zearalenone-based compound that has no estrogen-like activity. It shows that it can be created.
  • the zearalenone detoxification enzyme of the present invention is a protein having an action of suppressing the toxicity of zearalenone. it can.
  • the determination that the zearalenone detoxifying enzyme of the present invention has the activity of suppressing the toxicity of zearalenone is limited only to the confirmation that the zearalenone-derived detoxification product has no estrogenic activity. It is not specified.
  • FIG. 1 is a photograph showing TLC data obtained by detecting the hydrolysis activity of a culture supernatant derived from the IF07063 strain on zearalenone. Lane 1, culture supernatant sample; Lane 2, negative control; Lane 3, zearalenone standard sample.
  • FIG. 2 is a view showing an HPLC profile of ZHD101 fragmented by peptide with lysylendopeptidase.
  • FIG. 3 shows a PCR primer set for amplifying a partial DNA fragment of ZHD101 based on the amino acid sequence.
  • FIG. 4 is a photograph showing the results of SDS-PAGE of recombinant ZHD101 expressed by the T7 transcription / expression system in E. coli DE3.
  • Lane 1 is a homogenate sump of wild-type DE3
  • lane 2 is a homogenate sample of DE3 (transformant) having pET12-zhdlOl
  • lane 3 is a precipitate sample of a homogenate of the transformant
  • lane 4 is a transformant
  • Lane 5 is the ZHD101 directly extracted and purified from IF07063 strain
  • Lane 6 is the molecular weight marker.
  • FIG. 5 is a photograph showing the results of TLC of recombinantly expressed ZHD101.
  • Lane 1 is a homogenate of wild-type DE3 treated with zearalenone
  • lane 2 is a homogenate of DE3 (transformant) having pET12-zhdlOl treated with zearalenone
  • lane 3 is a standard zearalenone.
  • FIG. 6 is a photograph showing TLC data in which the hydrolysis activity of ZHD101 for ⁇ -zararail and -zararail was detected.
  • Lane 1 ZHD101 treated ⁇ -zararail sample; lane 2, negative control for ⁇ -zararail; lane 3, ⁇ -zararail standard, lane 4, ZHD101 treated _ zararail sample; lane 5, negative for ⁇ -zararail Control; Lane 6, _ Zararail standard.
  • FIG. 7 shows, using a chemical formula, that zearalenone is degraded by the zearalenone degrading enzyme ZHD101 to generate a zearalenone degradation product.
  • FIG. 8 shows the cell growth promoting effect of zearalenone and a zearalenone degradation product on human breast cancer cells MCF-7.
  • Added zearalenone ( ⁇ ) or zearalenone decomposition The number of cells after incubation at 37 ° C for 120 hours against the concentration of the product (country) is shown. The results are shown as the average value SD.
  • FIG. 9 is a schematic diagram showing the steps of constructing the zhdlOl gene transfer vector pWheat-egfp :: zhdl01.
  • FIG. 10 is a photograph of a transformant (transgenic callus) into which the egfp :: zhdl01 gene has been introduced, observed under a fluorescence microscope.
  • FIG. 11 is a photograph of a regenerated rice plant into which the egfp :: zhdl01 gene has been introduced.
  • FIG. 12 is a photograph showing the result of the easter blot analysis of a transgenic individual into which the egfp :: zhdl01 gene has been introduced.
  • the leftmost is the molecular weight marker
  • lane 1 is a sample extracted from wild-type rice leaves
  • lane 2 is regenerated No. 14
  • lane 3 is regenerated No. 54
  • lane 4 is regenerated No. 68
  • lane 5 is regenerated No. 71
  • Lane 6 shows the results of regenerated body No. 76
  • lane 7 shows the results of regenerated body No. 79
  • lane 8 shows the results of regenerated body No. 79
  • lane 9 shows the results of recombinant EGFP :: ZH D101 protein.
  • FIG. 13 is a photograph showing the result of TLC analysis of the extract from the medium in which the egfp :: zhdl01 gene-introduced suspension cultured cells were cultured.
  • Lane 1 is the zearalenone standard
  • Lane 2 is the extract from the culture medium containing zearalenone in which the transfected cells have been cultured
  • Lane 3 is the extract from the culture medium containing zearalenone in which wild-type cells have been cultured
  • Lane 4 contains zearalenone.
  • the extract from the LS medium, lane 5 shows the result of the extract from the LS medium alone.
  • FIG. 14 is a graph showing changes in the amount of zearalenone in the medium during the culture period.
  • “ ⁇ ”, “ ⁇ ” and “X” indicate the amount of zearalenone in the culture medium of egfp :: zhdl01-introduced suspension culture cells
  • “Hata”, “mouth” and “ ⁇ ” indicate the wild-type suspension culture cells.
  • the amount of zearalenone in the culture medium, and the open triangle indicates the amount of zearalenone in the cell-free zearalenone-containing medium.
  • ⁇ and ⁇ indicate the amount of zearalenone in the medium
  • ⁇ and ⁇ indicate the amount of zearalenone contained in the cells
  • X and ⁇ ⁇ indicate the amount of residual zearalenone.
  • Example 1 Isolation of microorganisms having zearalenone resolution
  • Antibiotic isolates 209 and 31 microbial strains were collected by IFO (Institute for Fermentation, Osaka, Japan) and JAI (Japan Collection of Microorganisms, RIKEN). Obtained from. Each of these strains was randomly screened for zearalenone resolution.
  • YG medium (0.5% yeast extract, 2% glucose, pH 7.0) containing 100 ppm zearalenone (Sigma, St. Louis, MI) was inoculated with each strain and allowed to stand at room temperature for 1 week. Cultured. The culture was centrifuged at 6, OOOrpm for 5 minutes to separate the culture supernatant, and the culture supernatant was extracted with a black-mouthed form. This extract was concentrated, placed on a TLC plate, and developed in a developing tank using 80:20 chloroform: acetone as a solvent. This TLC plate was detected under a UV lamp (UV 254 nm).
  • FIG. 1 shows the TLC data for the IF07063 strain in this screening.
  • Lane 3 of FIG. 1 shows spots of zearalenone obtained by applying zearalenone (Sigma, St. Louis, MI) as a standard sample as a control.
  • Lane 2 shows, as a negative control, a spot of zearalenone, which was obtained by applying a buffer incubated with zearalenone (Sigma, St. Louis, MI).
  • zearalenone Sigma, St. Louis, MI
  • the lane 1 does not show spots of similar mobility to the spots of zearalenone shown in lanes 2 and 3, but instead shows spots of lower mobility than the spots. I have.
  • the Rf value of zearalenone shown in lanes 2 and 3 was approximately 0.8, whereas the Rf value of the material shown in lane 1 was approximately 0.2.
  • Lane 1 shows only the smaller mobility spots This means that the molecular structure of zearalenone was changed by the hydrolysis activity of the culture supernatant of the IF07063 strain corresponding to lane 1. Therefore, the culture supernatant of the IF07063 strain corresponding to lane 1 may contain zearalenone-degrading enzyme.
  • IF07063 strain was identified as a candidate strain having zearalenone resolution.
  • This IF07063 strain was obtained from IFO (Institute for Ferraentation, Osaka, Japan) and is classified as Clonos tachys rosea.
  • the IFO Biological Resources Database provides more detailed information on this bacterium, and based on that information, this strain can be used, for example, at 24 ° C for potato sucrose agar (PSA medium; potato 200 g, sucrose 20 g, Culture can be performed under the conditions of 1 L of distilled water, 20 g of agar, and pH 5.6).
  • Clonostachys rosea IF07063 strain was placed in 100 ml of YG medium (0.5% yeast extract, 2% g lucose, pH 7.0) containing 100 ppm of zearalenone (Sigma, St. Louis, Ml) at room temperature. For one week. Thereafter, the culture was subcultured in 1 L of the above YG medium containing 25 ppm of zearalenone, and cultured at room temperature for 1 week. Cells were collected by filtration, crushed with liquid nitrogen, and further sonicated. The cell debris was then spun down with 5, OOOXg, and ammonium sulfate was added to the supernatant at a saturation of 40-60%.
  • YG medium 0.5% yeast extract, 2% g lucose, pH 7.0
  • zearalenone Sigma, St. Louis, Ml
  • the precipitate obtained by centrifugation at 10,000 ⁇ g for 1 hour was permeated at 4 ° C. against 10 mM Tris-HCl (pH 7.5).
  • the dialyzed sample was then applied to a HiTrapQ column and eluted with 10 mM Tris-HCl (pH 7.5) showing a linear concentration gradient of NaCl (0-: IM, 5 ml / min, 20 min).
  • each of the eluted fractions obtained here was subjected to an in vitro zearalenone hydrolysis test, and then the hydrolysis activity on zearalenone was examined by TLC.
  • zearalenone hydrolysis test zearalenone 25 was added to each eluted fraction37. Incubation was carried out at ⁇ C (100 mM Tris-HCl (pH 9.5), total volume ⁇ ). Next Then, the reaction mixture was extracted with black form and a part of the extract was collected.
  • zearalenone As a negative control, a sample obtained by adding 25 ⁇ g of zearalenone (Sigma, St. Louis, Ml) to the buffer and incubating at 37 ° C. was applied. As a result, spots of zearalenone were observed. However, when the eluted fraction sample was used, no spot having the same mobility as the spot of zearalenone in the control and the negative control was observed, and instead, a spot having a lower mobility than zearalenone was found. Was observed. Therefore, the protein contained in the eluted fraction may be zearalenone degrading enzyme.
  • the individual fractions of the hornworm hornworm were further separated by FP1 (AKTA Explorer, Amersham Pharmacia Biotech, Buckingharashire, UK).
  • FPLC separation the elution fraction was applied to a gel filtration column (Superdex75 HR 10/30, Amersham Pharmacia Biotech), and eluted with 10 mM Tris-HCl (pH 7.5) containing 0.1 M NaCl.
  • These eluted fractions obtained by this FPLC were also subjected to the above-mentioned TLC to further select a catalytic fraction. The same results as above were obtained in TLC using the eluted fraction obtained from this FPLC.
  • the selected catalytic fraction was applied to an ion exchange column (MonoQ, Amersham Pharmacia 'Biotech), followed by lOmM Tris-HCl ( P ) with a linear concentration gradient of NaCl (0-0.5M). According to H7.5), elution was performed at a flow rate of 0.4 ml / min for 50 minutes.
  • the purification process using this ion exchange column MonoQ was repeated twice.
  • the above T of the catalytic fraction LC selection was also performed after the first MonoQ purification step, and the selected eluted fractions were subjected to the second MonoQ purification step to obtain further purified proteins.
  • the purified protein obtained in the second MonoQ purification step was used as zearalenone-degrading enzyme in subsequent experiments. This protein was named ZHD101.
  • ZHD101 purified according to Example 2 was digested with lysyl endopeptidase (TAKARA, Kyoto, JAPAN) at 37 ° C. for 1 hour with addition of 2 M urea.
  • the reaction mixture was separated for each peptide fragment by HPLC using a reverse-phase column, VP304-1251 (Senshu Kagaku, Tokyo, JAPAN).
  • the HPLC was performed under the following conditions: a flow rate of 1 ml / min, a concentration gradient of B from 0% to 60% (A: 0.1% aqueous solution of trifluoroacetic acid, B: 0.08% trifluoroacetic acid). Acetonitrile solution).
  • the peptide was detected at 225 nm.
  • ZHD1 of the present invention Primers for PCR amplification of 01 were designed.
  • the 5 ′ primer corresponds to four types of 5 ′ primers based on the N-terminal amino acid sequence
  • the 3 ′ primer corresponds to peaks p-32.5 and P ⁇ 34.5 obtained by HPLC in Example 3.
  • Eight kinds of 3 'primers ( Figure 3) based on the amino acid sequence of each peptide were designed and chemically synthesized.
  • PCR amplification was performed under the following conditions using the above-prepared cDNA as type III using 32 different primer pairs combining these four 5 ′ primers and eight 3 ′ primers: 94 ° 30 cycles of C (30 seconds), 55 ° C (30 seconds) and 72 ° C (1 minute). The size of the amplified fragment of the obtained amplification product was confirmed by agarose gel electrophoresis.
  • the amplified fragment obtained by the combination of N 2 (5 ′ primer) and 34.5 ⁇ 2 (3 ′ primer) was the largest, about 800 bp.
  • the amplified fragment obtained by the combination of ⁇ 1-4 (5 ′ primer) and 32.5-:!-32.5-3 (3 ′ primer) was about 550 bp.
  • a DNA base sequence was determined for an approximately 800 bp fragment obtained by combining N 2 (5 ′ primer) and 34.5 ⁇ 2 (3 ′ primer).
  • the approximately 800 bp PCR amplification product was ligated into pGEM-TEasy Better (Promega, Madison, WI). Using this recombinant vector, E.
  • coli DH5a (T0Y0B0, Osaka, JAPAN) was transformed by the heat shock method.
  • a recombinant vector was purified from a culture obtained by appropriately culturing the transformant using a plasmid purification kit (M0 BIO, Solana Beach, CA).
  • Primer 1 5'-GGG CTT CCC ACG CAG AGC CTC CAG ATC CTT AAC—3, (for first PCR of 5'-RACE) (SEQ ID NO: I 5 )
  • Primer 2 5'-CTC CGA GCC TCC AGA CAC GTC GTT CAA CAT TAC-3 '(for nested PCR of 5, 1 RACE) (SEQ ID NO: 16)
  • Primer 3 5'-ACC GCT GTG CTC GAA GAC GAG GAA ATC TCA AAG— 3 '(3'—for first PCR of RACE) (SEQ ID NO: 17)
  • Primer 4 5'-GTA ATG TTG AAC GAC GTG TCT GGA GGC TCG GAG-3 '(for nested PCR of 3, 1 RACE) (SEQ ID NO: 18)
  • SEQ ID NO: 1 shows the entire nucleotide sequence of zhdlOl thus obtained.
  • the putative amino acid sequence encoded by SEQ ID NO: 1 is shown in SEQ ID NO: 2.
  • the amino acid sequence shown in SEQ ID NO: 2 completely matched the partial amino acid sequence of the fragmented ZHD101 peptide determined in Example 3.
  • the amino acid sequence shown in SEQ ID NO: 2 was composed of 264 amino acids, and its molecular weight was calculated to be 28,751 Da.
  • RNA prepared in (1) of Example 4 was used.
  • RT-PCR amplification was performed as type III.
  • RT-PCR includes Superscript First-Strand Synthesis
  • the plasmids were digested with Ndel and BamHI, and a zhdlOl fragment was obtained by separation by agarose gel electrophoresis.
  • the zhdlOl fragment was inserted into a pET12a vector that had been digested and purified with Ndel and BamHI in advance.
  • the ligation product was transformed into DH5 °; and the colonies were selected by ampicillin resistance to obtain transformants.
  • a recombinant vector purified from a culture obtained by appropriately culturing the transformant using a plasmid purification kit (MO BI0, Solana Beach, CA) was subjected to DNA sequencing, and the nucleotide sequence of zhdlOl was determined. confirmed.
  • DE3 T0Y0B0
  • pET12-zhdlOl plasmid incorporating zhdlOl whose correct nucleotide sequence was confirmed, and transformants were selected based on ampicillin resistance.
  • a recombinant expression vector was obtained from the transformant in the same manner as described above.
  • a single roller of DE3 (T0Y0B0) transformant containing the recombinant expression vector prepared in Example 5 was inoculated into a cycle Glo medium (Funakoshi) until the 0D fraction reached 0.6.
  • the cells were cultured at 37 ° C for several hours.
  • ImM IPTG was added and the cell culture was cultured at room temperature. The next day, cells were spun down and sonicated. Then, SDS-PAGE confirmed that the recombinant ZHD101 was expressed in DE3.
  • Fig. 4 shows the results.
  • FIG. 4 shows the results of SDS-PAGE obtained by applying the following sample to a 12.5% SDS-PAGE gel.
  • Lane 1 is a homogenate samples of the wild-type DE3
  • Lane 2 PETL 2 - is DE3 having ZhdlOl (Chi words, crude recombinant ZHD101) homogenate samples (transformant)
  • Lane 4 is a soluble fraction of the homogenate of the transformant
  • Lane 5 is ZHD101 directly extracted and purified from the IF07063 strain obtained in Example 2.
  • Fig. 4 in the transformant, a protein that was not expressed in the wild type was expressed (lanes 1 and 2), and the protein expressed in the transformant was also secreted into the culture supernatant. (Lane 4), and the protein expressed in the transformant. It has the same molecular weight as ZHD101 extracted and purified directly from IF07063 strain
  • the hydrolysis activity of the crude recombinant ZHD101 derived from the transformant was detected by TLC. Wild-type DE3 homogenate and pET12- the homogenate 10 mu 1 of DE3 having ZhdlOl (transformant), was added to Zeararenon respectively Eta 2 0 at and Fi pull up the respective 100 ⁇ 1 (lOOmM Tris- HCl ( pH 9.5)) and incubated at 37 ° C for 4 hours. The reaction mixture was extracted in the same manner as above and applied to TLC plates (silica gel 60 F 254 ). The results are shown in FIG.
  • FIG. 5 shows lane 1 in which the homogenate of wild-type DE3 was treated with zearalenone, lane 2 in which the homogenate of pET12-zhdlOl-containing DE3 (transformant) was treated with zearalenone, and lane 3 with zearalenone standard.
  • 3 shows the results of TLC applying the product.
  • TLC performs extraction with black port Holm from the reaction treatment liquid, a portion of the extract was collected, charged TLC plates (Merck, Shirikagenore 60 F 254), a black hole Holm as Solvent: acetone 80: 20 (Volume ratio) and deployed in the deployment tank. This TLC plate was detected under a UV lamp (UV 254 nm). The results in FIG.
  • ZHD101 had the same zearalenone-degrading activity as ZHD101 isolated directly from the IF07063 strain.
  • the optimum pH of ZHD101 was found to be biased toward the alkaline side. That is, in the above-mentioned analysis of the hydrolysis activity of ZHD101, the enzyme reaction condition after the addition of zearalenone was a highly alkaline pH of 9.5, but ZHD101 sufficiently exhibited the enzyme activity. Thus, the optimum activity of ZHD101 was pH 9 to 10.5, but the activity was as high as pH 7.0. ZHD101 was also found to be irreversibly inactivated at low pH below pH 4.5.
  • Example 7 Degradation of zearalenone derivative by zearalenone degrading enzyme
  • which is a zearalenone derivative, ⁇ -se larenone ⁇ , / 3 -zeararenol; -Zearalenol or -Zearalenol), and ZHD101 (ammonium sulfate fraction derived from the IF07063 strain described above at 10 mM to 10 mM Tri s - HC1 (pH 7 ⁇ 5) those dialyzed in) to was added to 37 ° C De ⁇ incubated respectively (lOOraM Tri s- HCl (pH 9. 5), the total capacity ⁇ ⁇ ⁇ ). The reaction solution was extracted with a black hole form and subjected to TLC in the same manner as described above (FIG. 6).
  • Example 8 Isolation and characterization of degradation products generated from zearalenone by zearalenone degrading enzyme
  • the crude extract of zearalenone degradation product obtained by the above hydrolysis test using ZHD101 was subjected to TLC and developed using precoated silica gel 60 F 254 plate (0.25 mm thick, 20 x 20 cm, Merck). The liquid was developed using Clos form: acetone 80:20 (volume ratio). Spots on the TLC plate were detected under UV (254 nra).
  • Acetone-d 6 at 29.8 ppm and acetone-d 5 at 2.04 ppm were used as internal standards for 13 C and 1 H NMR, respectively. Chemical shifts were recorded as ⁇ values.
  • the multiplicity of the 13 C MiR signal was determined by DEPT.
  • 2D NMR spectra (PFG-DQFC0SY, PFG-HMQC and PFG-HMBC) were measured by JEOL ECP-500 using JEOL standard pulse sequence, and collected data were processed by JEOL standard software.
  • the FAB-MS spectrum was measured using a glycerol matrix on a JEOL JMSH X-110 mass spectrometer, and the EI-MS spectrum was measured using a JMS-SX102 mass spectrometer.
  • the estrogenic activity of the zearalenone degradation product obtained according to the above example was measured.
  • Estrogenic activity was measured as a cell growth promoting effect on human breast cancer cells MCF-7.
  • human breast cancer cells MCF-7 were converted to phenol red, L-glutamine (2 mM), ⁇ -cillin (50 units / ml), streptomycin (50 ⁇ g / ml) and 10% ⁇ fetal serum ( FCS) was added RPMI-1640 medium (SIGMA, St. Louis, at MO), and incubated at 37 ° C for a 5% C0 2 in including humidified air.
  • FCS RPMI-1640 medium
  • the FCS used in this experiment was treated with dextran-treated charcoal.
  • the cultured cells were inoculated with 5 ⁇ 10 3 cells per well in a 96-well plate in a phenol red-free RPMI medium containing 10% charcoal-degraded FCS.
  • the medium was replaced with the same kind of medium.
  • various concentrations of zearalenone, zearalenone degradation product, or 17-estradiol as a test compound were added, and the cells were further cultured for 120 hours. Then The number of cells was evaluated by the following color reaction.
  • the color-forming reactions include 2- (2-methoxy-4-diphenyl) -3- (4-diphenyl) -5- (2,4-disulfophenyl) -2H-tetrazo WST-8 TM (Nakalai Tesque, Kyoto), a sodium salt of lithium, was added to the culture, and the cultured cells were further cultured at 37 ° C for 4 hours.
  • the absorbance (A 45 ) of each well was determined by using a Wal lac 1420 Manoretirabeno counter (Amersham Biosciences).
  • a known estrogen, 17-estradiol 0.1 nM
  • the zearalenone (chemical formula: FIG. 7) according to the present invention has the same cell number as 17-estradiol, and thus has the same cell growth promoting activity as 17-estradiol, ie, an estrogenic activity.
  • the zearalenone degradation product of the present invention (chemical formula: FIG.
  • the zearalenone degradation product of the present invention does not show estrogenic activity. Therefore, the zearalenone-degrading enzyme ZHD101 of the present invention degrades zearalenone to a degradation product having no estrogen-like activity, thereby losing the estrogenic activity of zearalenone, that is, suppressing the toxicity of zearalenone. It was shown that you can.
  • the GFP-zhd-5 'primer (5'-ATG CG C ACT CGC AGC ACA ATC TCG-3' (SEQ ID NO: 21)
  • GFP-zhd-3 'primer 5′-T GT ACC GTT CAA AGA TGC TTC TGC-3 ′ (SEQ ID NO: 22)
  • a recombinant plasmid in which zhdl01 was incorporated into the pGEM-TEasy vector (Promega, Madison, Wis.) Prepared in Example 5 was type III.
  • a DNA fragment containing the entire zhdlO l gene was prepared by PCR amplification.
  • the PCR conditions used were as follows: 30 cycles of 30 seconds at 94 ° C, 1 minute at 57 ° C, and 1 minute at 72 ° C.
  • a synthetic linker (5′-GTA CAG GC C CGG GCC GC-3, (SEQ ID NO: 23), 5′-GGC CGC GGC CCG GGC GT) is inserted between BsrG I-Not I of pEGFP (Clontech). -3, (SEQ ID NO: 24)) was inserted to create pEGFP-SrfI.
  • the obtained PCR product was ligated to the SrfI site of the pEGFP-SrfI vector for integration into the downstream of the egfp gene, and a pEGFP-zhdlOl clone was prepared. Furthermore, the Nco I-Not I fragment (referred to as “egfp :: zhdl01” in this specification) excised from the pEGFP-zhdlOl clone was transferred to a pWheat vector (pDM302 (Genes. Genet. Syst., 72) containing the Act I promoter. , 63-69, 1997) was replaced with Tril01 (J. Biol.
  • Fig. 9 shows a schematic diagram of the vector construction process.
  • Example 11 Introduction of egfp :: zhdl01 gene into cereals using a particle gun
  • the recombinant vector pWheat-egfp :: zhdl01 obtained in Example 10 was used together with the selection marker, bialaphos resistance gene bar, as follows: A monocotyledonous plant was introduced into a callus derived from a ripe embryo of rice by the following procedure.
  • Rice mature seed embryo (also called mature embryo) is sterilized with 40% hypochlorous acid.
  • LS medium containing 70 ppm kanamycin, 70 ppm cefotaxime, and 2 ppm 2,4_D (2,4-dichlorophenoxyacetic acid) (Callus induction medium) (LS medium: LINSMAIER SK00G Medium 1, Invitrogen) was transplanted and cultured for 6 to 7 days to induce callus.
  • Canoleth was placed in an LS medium containing 2 ppm 2,4-D and 0.4 M mannitol, and pWheat-egfp :: zhdl01 and bar genes, which were coated on gold particles, respectively, were introduced using a particle gun.
  • the transgenic calli were transplanted to the LS medium (selection medium) containing 2 ppm 2, 4-D and 5 ppm bialaphos the next day, and then subcultured every two weeks to a fresh selection medium. Then, under a fluorescence microscope, calli which exhibited fluorescence by GFP (green fluorescent protein) and grew selectively were judged as transformants into which the egfp :: zhdl01 gene had been introduced (FIG. 10).
  • LS medium containing 1 mg / m 1 AA ( ⁇ -naphthalene acetate), 2 mg / ml BA (benzyladenine) and 30 g / 1 sorbitol (Regeneration medium).
  • lane 3 is regenerated body No 54
  • lane 4 is regenerated body No 68
  • lane 5 is regenerated body No 71
  • lane 6 is regenerated body No. 76
  • lane 7 is regenerated body No 79
  • lane 8 is regenerated body No 79
  • lane 9 is recombinant EGFP :: ZHD101.
  • regenerated cells No. 14, No. 54, No. 68, No. 76 and No. 79 proteins not found in the wild type were detected. This protein had the same molecular weight as the recombinant EGFP :: ZHD101. From these results, it was shown that the EGFP :: ZHD101 protein was expressed in five regenerants (No 14, No 54, No 68, No 76 and No 79).
  • Example 13 Degradation of zearalenone by suspension culture cells into which egfp :: zhdl01 was introduced Zaralenone degradation test was carried out using suspension culture cells of egfp :: zhdl01 into rice according to the following procedure.
  • egfp:: zhdl01 introduced suspension culture cells, e g fp prepared in Example 1 1:: zhdl01 callus is introduced, 2 ppm 2,4 D - (2, 4-dichloro-phenoxyethanol acetate) It was prepared by transplantation into the LS liquid medium containing LS. Similarly, wild-type suspension-cultured rice cells were similarly prepared by transplanting wild-type calli into LS liquid medium containing 2 ppm 2,4-D (2,4-dichlorophenoxyacetic acid). .
  • Lane 13 shows the results of this TLC analysis.
  • Lane 1 is a zearalenone standard
  • lane 2 is an extract from a zearalenone-containing LS medium cultured with egfp :: zhdl01 transfected cells
  • lane 3 is an extract from a zearalenone-containing LS medium cultured wild-type cells
  • lane 4 is zearalenone An extract from the LS medium containing LS medium
  • lane 5 shows an extract from the LS medium without zearalenone.
  • the extract from the culture medium in which the egfp :: zhdl01-transfected cells were cultured spots showing zearalenone disappeared, suggesting that zearalenone in the culture medium was degraded.
  • zearalenone quantification of zearalenone was performed 6 days after the start of the culture.
  • the remaining amount of zearalenone is considered to be the total amount of the amount present in the medium, the amount adhering to the cell surface, and the amount taken up into the cells. Quantification was performed for both zearalenone and the amount.
  • zearalenone was quantified in extracts from the medium three days after the start of the culture. Further, as a control, zearalenone was quantified in an extract from a cell-free LS medium containing zearalenone 6 days after the start of culture.
  • RIDASCREEN FAST Zearalenon R-Biophar
  • Table 1 shows the amount of zearalenone quantified 6 days after the start of the culture.
  • the amount of residual zearalenone in Table 1 was calculated as the total value of the amount of zearalenone in the medium and the amount of zearalenone contained in the cells.
  • the amounts of residual zearalenone in the culture medium of egfp :: zhdl01-transfected cells and wild-type cells were 6.41 / g and 260.85 ⁇ , respectively.
  • the amount of residual zearalenone in the culture medium of egfp :: zhdl01-introduced cells was about 1/117 of the amount of zearalenone at the start of the culture of 750 / ⁇ g, and was about 1/117 of the amount of residual zearalenone in the culture medium of wild-type cells. / 40.
  • the amount of residual zearalenone in the zearalenone-containing LS medium also decreased to 52.5 / zg, which was the result of the precipitation of zearalenone after culturing for 6 days.
  • the culture medium of egfp :: zhdl01-introduced cells and wild-type cells No such precipitation phenomenon was observed.
  • FIG. 14 shows the change in the amount of zearalenone in the medium based on the above results.
  • the amount of zearalenone in the culture medium of egfp :: zhdl01-transfected cells was 750 tg at the start of culture, 29.5 / _ig 3 days after the start of culture, and 0.76 ⁇ g 6 days after the start of culture. And decreased over time. Therefore, it was confirmed that zearalenone in the medium was degraded during the culture period.
  • the protein of the present invention can advantageously suppress the toxicity of zearalenone.
  • the gene of the present invention can be used for expressing the protein.
  • the transformants and transgenic plants into which the gene of the present invention has been introduced can be advantageously used for the purpose of efficiently degrading and detoxifying zearalenone contained in the surrounding environment. Sequence listing free text
  • SEQ ID Nos: 3 to 24 are synthetic DNAs.
  • N in SEQ ID NOs: 3 to 14 is a, t, c or g.

Abstract

A zearalenone-detoxifying enzyme gene; a zearalenone-detoxifying enzyme; a recombinant vector containing the gene; a transgenic plant containing the gene; a transformant containing the recombinant vector; a process for producing a protein with the use of the transformant; a zearalenone-detoxifying agent; and a method of detoxifying zearalenones.

Description

ゼァラレノン解毒酵素遺伝子及ぴ該遺伝子を導入した形質転換体 技 術 分 野  Zearalenone detoxification enzyme gene and transformant into which the gene has been introduced
本発明は、 マイコトキシン污染植物の浄化を行い得るタンパク質及ぴそれをコ 一ドする遺伝子に関する。  The present invention relates to a protein capable of purifying mycotoxin-infected plants and a gene encoding the same.
背 景 技 術  Background technology
食糧の安定供給と環境保全は、 今明後の植物科学研究に課せられた重要な研究課 題となっている。 これに対し、 近年では、 組換え技術を用いて除草剤耐性や害虫 田  The stable supply of food and environmental protection have become important research issues for plant science research in the coming days. On the other hand, in recent years, herbicide resistance and pest
耐性等の有用な形質を付与した様々な種類の組換え作物が作出されている。 Various types of recombinant crops that have been imparted with useful traits such as resistance have been produced.
植物の病気として、 植物病原糸状菌 (力ビ) が感染することにより植物体が損 傷され、 収穫の大きな損失をも引き起こす、 ムギ類赤かび病が知られている。 赤 かぴ病は、 近年の温暖で湿潤な気候の変動によってその感染が広がっている。 特 に 1 9 9 0年代に入り、 世界各地で大流行したムギ類赤かび病は、 先進的集約農 業の行われている北米においてさえ壊滅的打撃を免れることのできなかった難防 除病害となった。 このため、 欧米では昨今、 赤かび病が大きな問題として取り上 げられ、 国家規模での対策が講じられつつある。 地球規模で安定した安全な食料 供給を確保するためには、 今後、 赤かび病の脅威から重要穀物であるコムギを守 ることは重要な問題である。  A known disease of the plant is Fusarium head blight of wheat, which is infected with phytopathogenic fungi and damages the plant, causing a large loss in yield. The disease has been widespread due to recent warm and humid climate change. In particular, in the 1990s, wheat scabs, which were widespread around the world, were incurable diseases that could not be devastated even in North America where advanced intensive agriculture is conducted. It became. For this reason, red mold has recently been taken up as a major problem in Europe and the United States, and national measures are being taken. Protecting wheat, an important crop, from the threat of Fusarium head blight is an important issue in order to secure a stable and secure food supply on a global scale.
赤かぴ病は、 フザリゥム属(Fusarium)菌という力ビによって引き起こされる植 物の病気であり、 ムギ類、 トウモロコシ、 イネなどのイネ科植物に感染する。 赤 かび病菌としては、 これまでにフザリゥム グラミネアルム(Fusarium graminea rum)をはじめ 1 7種以上のフザリウム属(Fusarium)菌が単離、 報告されている ( Fusarium Mycotoxins, iaxonomy and Pathogeni city J. Che 1 Rows ky¾, Elsev ier Science Ltd. , (1989) p. 1-39) 。 植物が赤かび病に侵されると、 子実の収 量、 品質が大きく低下することにより経済的打撃を被ることに加え、 穀粒中にマ ィコトキシン毒素が蓄積することから食品衛生上の問題も引き起こされる。 この ように赤かぴ病は食糧供給にとって二重の脅威をもたらすものである。 赤かび病菌の防除には、 テブコナゾール等の農薬が使われるが、 耐性菌の出現 の可能性、 手間とコストがかさむこと、 散布時期のタイミングの難しさ、 農薬の 残留性特性などからあまり実用的ではない。 そこで、 赤かぴ病の抵抗性品種の育 成に力が注がれてきた ( 「分子レベルからみた植物の耐病性」 , 監修: 山田哲洽 島本功 渡辺雄一郎, 秀潤社, 日本, (1997) p. 90-97) 。 商業品種に赤かぴ病 抵抗性の形質を入れるためには、 まず抵抗性を示す適当な野生種を見つけ出し、 抵抗性の好ましい形質だけを商業品種に導入するために戻し交雑をく り返し、 抵 抗性でかつ収量と品質も保たれた子孫を選抜していくという育種が行われる。 し かしこの古典的な方法には多くの時間がかかり、 また抵抗性を打破する菌が出現 するなどの問題も生じていた ( 「分子レベルからみた植物の耐病性」 , 監修: 山 田哲治 島本功 渡辺雄一郎, 秀潤社, 日本, (1997), p. 90-97) 。 Fusarium head blight is a plant disease caused by a plant called Fusarium, which infects grasses such as wheat, corn, and rice. More than seventeen species of Fusarium, including Fusarium graminea rum, have been isolated and reported as Fusarium mycobacteria (Fusarium Mycotoxins, iaxonomy and Pathogeni city J. Che 1 Rows). ky¾, Elsevier Science Ltd., (1989) p. 1-39). If a plant is infected with Fusarium head blight, the yield and quality of the grain will be significantly reduced, which will be economically hurt, and the accumulation of mycotoxin toxin in the grain will cause food hygiene problems. Is caused. Thus, red blight is a double threat to food supply. Although pesticides such as tebuconazole are used to control Fusarium head blight, it is not very practical due to the possibility of emergence of resistant bacteria, increased labor and cost, difficulty in timing of application, and pesticide persistence. is not. Therefore, efforts have been made to cultivate varieties resistant to red blight (“Plant disease resistance from the molecular level”, supervision: Tetsuka Yamada, Isao Shimamoto Yuichiro Watanabe, Shujunsha, Japan, ( 1997) p. 90-97). In order to put the varieties resistant to red blight in commercial varieties, first find suitable wild varieties that exhibit resistance, and repeat the backcrossing to introduce only the favorable traits of resistance into the commercial variety, Breeding is carried out by selecting progeny that are resistant and have high yield and quality. However, this classical method took a lot of time and also had problems such as the emergence of bacteria that break the resistance (“Plant disease resistance from the molecular level”, supervision: Tetsuharu Yamada Shimamoto Isao Yuichiro Watanabe, Shujunsha, Japan, (1997), p. 90-97).
また、 赤かぴ病菌の感染によって、 マイコ トキシンのトリコテセン系毒素が穀 粒中に蓄積されることが知られている。 トリコテセン系毒素は、 タンパク合成阻 害剤でもあり、 菌が感染する際に病原性因子として感染力を増強する。 トリコテ セン系毒素の毒性を妨げる方法として、 トリコテセン系毒素のタンパク質合成阻 害活性をプロックする遺伝子 (特開 2 0 0 0— 3 2 9 8 5号公報) 及びトリコテ セン系毒素を細胞外に排出するポンプ作用性遺伝子 (Alexander, J, "Molecula r & general genetics" (1999) 261, p. 977- 984) が報告されている。 しかしな がらこのトリコテセン系毒素自体を不活化し得る遺伝子は未だ見つかつていない 同様に、 赤かぴ病菌の感染により、 ゼァラレノンが、 トウモロコシ、 コムギ等 の穀物作物の穀粒中に蓄積されることが知られている (Pittet, A. , "Revue Med i cine Veterinaire" Ecole Nat ionale Veterinaire de Toulouse, フフンス, 丄 998) 149, p. 479-492) 。 ゼァラレノン [6 -(10-ヒ ドロキシ- 6 -ォキソ -トランス- 1-ゥンデセニル) - /3 -レゾルシル酸ラタ トン] は、 赤かぴ病菌であるフザリゥム 属菌によって生産されるエストロゲン様活性を有するマイコトキシンである。 フ ザリゥム属菌が植物に感染すると、 収穫前又は収穫後の穀物作物の穀粒中にゼァ ラレノン;^生産され蓄積される (Pittet, A. , "Revue Medicine Veterinaire" E cole Nationale Veterinaire de Toulouse, フランス, (1998) 149, p. 479-492 ) 。 ゼァラレノンは、 エストロゲン様活性を有し、 それを摂取した人間や家畜に 中毒症状や生殖障害を引き起こし得る環境ホルモン物質である (Et i enne, M and Jammal i, M. Journal of animal sc i ence (1982) 55, p. 1-10) 。 セァラレノ ン及びその代謝産物については、 ヒ トのエストロゲン受容体に結合すること (Mi ks icek, R. J., The Journal oi steroid biochemi stry and molecular biology " (1994) 49, p. 13-160) 及び in vitroでヒ ト乳がん細胞系 MCF-7の増殖を促進す ること (Makela, S., et al., "Environmental Health Perspectives" (1994) 1 02, p. 572-578) が報告されている。 It is also known that mycotoxin trichothecene toxin accumulates in grains due to infection with E. coli. Trichothecene toxins are also protein synthesis inhibitors and enhance infectivity as a virulence factor when bacteria are infected. As a method for preventing the toxicity of the trichothecene toxin, a gene that blocks the protein synthesis inhibitory activity of the trichothecene toxin (Japanese Patent Application Laid-Open No. 2000-32985) and the trichothecene toxin are extracellularly excreted. Pumping genes (Alexander, J, "Molecular & general genetics" (1999) 261, p. 977-984) have been reported. However, a gene that can inactivate the trichothecene toxin itself has not yet been found.Similarly, infection with E. coli can accumulate zearalenone in the grains of cereals such as corn and wheat. (Pittet, A., "Revue Medicine Veterinaire" Ecole Nat ionale Veterinaire de Toulouse, Hufuns, 998 998) 149, p. 479-492). Zearalenone [6- (10-hydroxy-6-oxo-trans-1-onedecenyl)-/ 3-ratatatone resorcylate] is a mycotoxin with estrogenic activity produced by Fusarium spp. It is. When a Fusarium bacterium infects a plant, zearalenone is produced and accumulated in the grains of cereal crops before and after harvest (Pittet, A., "Revue Medicine Veterinaire" Ecole Nationale Veterinaire de Toulouse , France, (1998) 149, p. 479-492 ). Zearalenone is an endocrine disruptor that has estrogenic activity and can cause toxic symptoms and reproductive harm to humans and livestock who take it (Etienne, M and Jammali, M. Journal of animal science ( 1982) 55, p. 1-10). For sialalenone and its metabolites, binding to human estrogen receptor (Miks icek, RJ, The Journal oi steroid biochemistry and molecular biology "(1994) 49, p. 13-160) and in vitro (Makela, S., et al., "Environmental Health Perspectives" (1994) 102, p. 572-578) have been reported to promote the growth of the human breast cancer cell line MCF-7.
赤かぴ病からの植物の保護においては、 このような穀物のゼァラレノン汚染の 問題を解決することは非常に重要である。 しかしながら、 ゼァラレノンの有効な 解毒処理については、 化学的手法、 酵素的手法等のいずれにおいても有効な方法 が未だ報告されていない。 発 明 の 開 示  It is very important to solve the problem of zearalenone contamination of cereals in protecting plants from red blight. However, no effective method has yet been reported for effective detoxification of zearalenone, either in chemical or enzymatic methods. Disclosure of the invention
本発明は、 赤かび病菌の感染により植物体内に蓄積されるゼァラレノンを解毒 するタンパク質をコードする遺伝子を提供することを目的とする。  An object of the present invention is to provide a gene encoding a protein that detoxifies zearalenone accumulated in plants due to infection with Fusarium head blight.
本発明者らは、 上記課題を解決するため鋭意検討を重ねた結果、 ゼァラレノン を分解する活性を有するタンパク質、 及び該タンパク質をコードする遺伝子を単 離することに成功し、 本発明を完成するに至った。  The present inventors have conducted intensive studies to solve the above problems, and as a result, succeeded in isolating a protein having an activity of degrading zearalenone, and a gene encoding the protein, and completed the present invention. Reached.
すなわち、 本発明は以下の通りである。  That is, the present invention is as follows.
[1] 以下の(a)又は(b)のタンパク質。  [1] The following protein (a) or (b):
(a) 配列番号 2に示されるアミノ酸配列からなるタンパク質  (a) a protein consisting of the amino acid sequence of SEQ ID NO: 2
(b) 配列番号 2に示されるアミノ酸配列において 1若しくは数個のアミノ酸が 欠失、 置換若しくは付加されたアミノ酸配列からなり、 かつ、 ゼァラレノン類の 毒性を抑制する作用を有するタンパク質  (b) a protein comprising an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2, and having an action of suppressing toxicity of zearalenones
ここで [1]におけるタンパク質は、 ゼァラレノン類がエストロゲン様活性を有 する化合物であることを特徴とするものであり得る。 ゼァラレノン類は、 ゼァラ レノン、 ゼァラレノール、 j8 -ゼァラレノール、 ひ-ゼァララノーノレ、 β -ゼァ ララノール、 2, 4— 0 -ジメチル- δ -ヒ ドロキシゼァラレノン、 6-ァミノ—ゼァラレ ノン、 ゼァララノン及ぴ 6 -ァセチル- ]3 -ゼァラレノールからなる群から選択され る少なくとも 1つであってもよい。 また [1]のタンパク質は、 毒性を抑制する作 用が分解作用であることを特徴とするものであり得る。 毒性を抑制する作用は、 エストロゲン様活性を有しない化合物を生成するものであってもよい。 さらに [1 ]のタンパク質は、 p H 6〜 1 1、 好ましくは p H 9〜 1 0 . 5で活性を有する ものであり得る。 Here, the protein in [1] may be characterized in that zearalenones are compounds having estrogenic activity. Examples of zearalenones include zearalenone, zearalenol, j8-zearalenol, h-zearalanore, β-zearalanol, 2,4-0-dimethyl-δ-hydroxyzearalenone, and 6-amino-zearalenone. It may be at least one selected from the group consisting of non-, zearalanone and 6-acetyl-] 3-zearalenol. The protein of [1] may be characterized in that the action of suppressing toxicity is a degrading action. The effect of suppressing toxicity may be to generate a compound having no estrogenic activity. Further, the protein of [1] may have an activity of pH 6 to 11, preferably pH 9 to 10.5.
[2] 以下の(a)又は(b)のタンパク質をコードする遺伝子。  [2] A gene encoding the following protein (a) or (b):
(a) 配列番号 2に示されるアミノ酸配列からなるタンパク質  (a) a protein consisting of the amino acid sequence of SEQ ID NO: 2
(b) 配列番号 2に示されるァミノ酸配列において 1若しくは数個のアミノ酸が 欠失、 置換若しくは付加されたアミノ酸配列からなり、 かつ、 ゼァラレノン類の 毒性を抑制する作用を有するタンパク質  (b) a protein comprising an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2, and having an action of suppressing toxicity of zearalenones
[3] 以下の(a)又は(b)の DNAからなる遺伝子。  [3] A gene comprising the following DNA (a) or (b):
(a) 配列番号 1に示される塩基配列からなる DNA  (a) DNA comprising the nucleotide sequence of SEQ ID NO: 1
(b) 配列番号 1に示される塩基配列からなる DNAの全部若しくは一部に相補的 な塩基配列からなる DNAとストリンジェントな条件下でハイブリダィズし、 かつ (b) hybridizing under stringent conditions with DNA consisting of a nucleotide sequence complementary to all or part of the DNA consisting of the nucleotide sequence shown in SEQ ID NO: 1, and
、 ゼァラレノン類の毒性を抑制する作用を有するタンパク質をコードする DNA [4] 以下の(a)又は(b)の DNAからなる遺伝子。 DNA encoding a protein having an action of suppressing the toxicity of zearalenones [4] A gene comprising the following DNA (a) or (b):
(a) 配列番号 2に示されるアミノ酸配列をコードする DNA  (a) DNA encoding the amino acid sequence shown in SEQ ID NO: 2
(b) 配列番号 2に示されるアミノ酸配列をコードする DNAの全部若しくは一部 に相補的な塩基配列からなる DNAとストリンジヱントな条件下でハイブリダイズ し、 かつ、 ゼァラレノン類の毒性を抑制する作用を有するタンパク質をコードす る DNA  (b) hybridizing under stringent conditions with DNA consisting of a nucleotide sequence complementary to all or part of the DNA encoding the amino acid sequence shown in SEQ ID NO: 2, and inhibiting the toxicity of zearalenones DNA encoding protein
ここで、 [2:]〜 [4]における遺伝子は、 ゼァラレノン類がエストロゲン様活性を 有する化合物であることを特徴とするものであり得る。 ゼァラレノン類は、 ゼァ ラレノン、 ひ-ゼァラレノーノレ、 β -ゼァラレノール、 α -ゼァララノーノレ、 J3 -ゼ ァララノール、 2, 4 - 0-ジメチ ·/レ- δ -ヒ ドロキシゼァラレノン、 6-ァミノ-ゼァラ レノン、 ゼァララノン及び 6 -ァセチル - j3 -ゼァラレノールからなる群から選択さ れる少なくとも 1つであってよい。 また [2;]〜 [4]における遺伝子は、 毒性を抑制 する作用が分解作 であることを特徴とするものであり得る。 毒性を抑制する作 用は、 エストロゲン様活性を有しない化合物を生成するものであってよい。 Here, the genes in [2:] to [4] may be characterized in that zearalenones are compounds having estrogenic activity. Zearalenones include zearalenone, hy-zearalenone, β-zearalenol, α-zearalanone, J3-zearalanol, 2,4-0-dimethyl / le-δ-hydroxyzearalenone, 6-amino- It may be at least one selected from the group consisting of zearalenone, zearalanone and 6-acetyl-j3-zealarenol. Further, the genes in [2;] to [4] may be characterized in that the action of suppressing toxicity is a degradation effect. Product that suppresses toxicity The use may be to produce a compound having no estrogenic activity.
[5] [2]〜 [4]の遺伝子を含む組換えベクター。 [5] A recombinant vector containing the gene of [ 2 ] to [4].
[6] [5]の組換えベクターを含む形質転換体。  [6] A transformant comprising the recombinant vector of [5].
ここで、 上記形質転換体は、 大腸菌、 酵母細胞及びイネ科植物細胞からなる群 より選択される細胞に組換えベクターが導入されたものであり得る。  Here, the transformant may be one in which a recombinant vector has been introduced into a cell selected from the group consisting of Escherichia coli, yeast cells, and gramineous plant cells.
[7] [6]の形質転換体を培養し、 得られる培養物からゼァラレノン類の毒性を抑 制する作用を有するタンパク質を採取することを含む該タンパク質の製造方法。  [7] A method for producing a protein, which comprises culturing the transformant of [6] and collecting, from the resulting culture, a protein having an activity of suppressing toxicity of zearalenones.
[8] [6]の形質転換体を含有する解毒剤。 [8] An antidote containing the transformant of [ 6 ].
[9] [1]のタンパク質を含有する解毒剤。 [9] An antidote containing the protein of [1].
[10] ゼァラレノン類に [8]又は [9]の解毒剤を適用することを含む、 ゼァラレノ ン類の解毒方法。 [10] A method for detoxifying zearalenones, which comprises applying the antidote of [8] or [9] to zearalenones.
[11] [2:!〜 [4]の遺伝子を含むトランスジエニック植物。 以下、 本発明を詳細に説明する。  [11] [2 :! A transgenic plant comprising the gene according to [4]. Hereinafter, the present invention will be described in detail.
コムギ (Triticum aestivum L. ) の赤かび病に対する抵抗性は、 大きく分けて 以下のタイプ]:〜 IVの 4種類に分類されている :  The resistance of wheat (Triticum aestivum L.) to Fusarium head blight is roughly classified into the following four types: ~ IV:
〔1〕 タイプ I:菌の侵入に対する抵抗性 (開花特性、 穂の形状等による) 〔2〕 タイプ II:侵入後の菌の進展 (菌糸の伸長) に対する抵抗性  [1] Type I: Resistance to fungal invasion (depending on flowering characteristics, shape of ears, etc.) [2] Type II: Resistance to fungal growth after invasion (hyphal elongation)
〔3〕 タイプ ΙΠ:穀粒の部分で発揮される抵抗性 (種子に対するカビによる損傷 の低減)  [3] Type III: Resistance exerted in the grain (reduction of mold damage to seeds)
〔4〕 タイプ IV:マイコトキシン蓄積量の低減に基づく抵抗性。  [4] Type IV: resistance based on reduced mycotoxin accumulation.
これらの抵抗性は、 それぞれが異なった多くの遺伝子に支配されていると考え られている。 そこで、 赤かび病抵抗性に関わる遺伝子の機能を人為的に調節する ことができれば、 植物に赤かぴ病に対する抵抗性を付与することができると考え られた。  These resistances are thought to be governed by many different genes. Therefore, it was thought that if the function of the gene related to Fusarium head blight resistance could be artificially regulated, plants could be given resistance to Fusarium head blight.
特に、 タイプ IVの抵抗性、 すなわち感染植物のマイコ トキシン蓄積量の低減に 基づく抵抗性に関わる遺伝子は、 植物個体を赤かぴ病から保護する上で有用であ るだけでなく、 該植物から生産される穀粒についての食品としての安全性を確保 する上でも非常に有用であると考えられる。 すなわち、 フザリウム属(Fusarium) 菌の感染により榖粒中に蓄積されるマイコトキシン、 例えばゼァラレノンを解毒 することができる酵素をコードする遺伝子を単離 ·同定することができれば、 赤 かぴ病からの植物の保護において、 非常に有用であろうと考えられた。 本発明は 、 このような着想に基づいて完成されたものである。 In particular, genes involved in type IV resistance, that is, resistance based on the reduction of mycotoxin accumulation in infected plants, are not only useful in protecting plant individuals from red blight, but also from plants. It is considered to be very useful in ensuring the safety of the produced grains as food. That is, Fusarium The ability to isolate and identify a gene encoding an enzyme capable of detoxifying mycotoxins, such as zearalenone, that accumulates in grains due to bacterial infection, would be very useful in protecting plants from red blight. It was thought to be. The present invention has been completed based on such an idea.
本発明におけるゼァラレノンは、 基本的に図 7に示す化学式のものを指す。 し かし、 本発明におけるゼァラレノン解毒酵素は、 図 7に示す化学式のゼァラレノ ンそのもの以外の、 その他のゼァラレノン類を基質とすることもできる。 すなわ ち、 本発明のゼァラレノン解毒酵素は、 ゼァラレノン類を基質とした酵素反応に より、 該ゼァラレノン類の毒性を抑制する作用を示すタンパク質である。 ゼァラ レノン解毒酵素が基質とし得るゼァラレノン類としては、 ゼァラレノンの他に、 ゼァラレノン類縁体が含まれる。 ゼァラレノン類縁体とは、 1 4個の炭素からな るラク トン環を有するゼララレノン骨格をもつ化合物を意味し、 例えば α -ゼァ ラレノーノレ、 /3 -ゼァラレノーノレ、 α—ゼァララノーノレ、 /3—ゼァララノーノレ、 2, 4 -◦—ジメチノレ- δ—ヒ ドロキシゼァラレノン、 6-ァミノ-ゼァラレノン、 ゼァララ ノン及び 6 -ァセチル- -ゼァラレノール等が挙げられる。 ゼァラレノン解毒酵素 が基質とし得るゼァラレノン類は、 エストロゲン様活性を有する化合物であるこ とが好ましい。 以下、 上記ゼァラレノン類を便宜上 「ゼァラレノン」 と称して説 明する。  Zearalenone in the present invention basically indicates the chemical formula shown in FIG. However, the zearalenone detoxifying enzyme in the present invention can use other zearalenones as substrates, other than zearalenone itself of the chemical formula shown in FIG. That is, the zearalenone detoxifying enzyme of the present invention is a protein having an action of suppressing the toxicity of zearalenones by an enzymatic reaction using the zearalenones as a substrate. Examples of zearalenones that can be used as a substrate by zearalenone detoxifying enzyme include zearalenone analogs in addition to zearalenone. The term zearalenone analog means a compound having a zearalenone skeleton having a lactone ring composed of 14 carbon atoms, such as α-zearalenone, / 3-zealalenone, α-zearalanone, / 3-zearalanone, and 2 , 4 -◦-Dimethinole-δ-hydroxyzearalenone, 6-amino-zearalenone, zearalanone, 6-acetyl- -zearalenol and the like. The zearalenones that can be used as a substrate by the zearalenone detoxifying enzyme are preferably compounds having an estrogenic activity. Hereinafter, the above zearalenones will be referred to as “zearalenone” for convenience.
本発明において、 「ゼァラレノン類の毒性」 又は 「ゼァラレノンの毒性」 とは 、 ゼァラレノンが蓄積されることにより植物個体にもたらされる毒性、 例えば細 胞毒性、 さらに、 ゼァラレノンを摂取することによりヒ ト及ぴ家畜を含む哺乳動 物にもたらされる毒性、 例えば環境ホルモン活性に基づく毒性、 特にエス トロゲ ン様活性に基づく毒性、 より具体的には、 例えば雌性生殖器の肥大化、 乳腺の増 大、 死流産、 胚発生阻害、 胎子数の減少、 繁殖障害、 腔脱、 直腸脱、 催奇性、 発 ガン性等を意味する。 本発明において 「ゼァラレノン(類)の毒性を抑制する」 と は、 ゼァラレノンの作用により示される上記毒性の程度が軽減されること、 好ま しくは、 上記毒性が検出不能になるか又は失われることを意味する。 なお本発明 における 「解毒」 とは 「ゼァラレノンの毒性を抑制する」 ことと同じ意味である 。 「ゼァラレノン(類)の毒性を抑制する作用」 は、 ゼァラレノン自体の化学構造 を変化させることによりその毒性を上記のように抑制する作用を意味する。 ゼァ ラレノンの毒性を抑制する作用は、 具体的には、 ゼァラレノンを分解又は切断す ることによるものであってよいし、 ゼァラレノンに化学的な修飾を施すことによ るものであってもよい。 特に、 ゼァラレノンの毒性を抑制する作用は、 ゼァラレ ノンを基質としてエストロゲン様活性を有しない化合物を生成するものであり得 る。 本発明において、 ゼァラレノンの毒性を抑制する作用は、 好ましくはェス ト ロゲン様活性を低下させる作用として測定されるものである。 本発明における 「 エストロゲン様活性」 とは、 エストロゲン受容体に結合し、 かつ in vitroでヒ ト ¾がん細胞系 MCF-7の増殖を促進することを意味する。 このエストロゲン様活性 は、 例えば本明細書の実施例 9に記載したような試験によって容易に測定するこ とが可能である。 In the present invention, “toxicity of zearalenones” or “toxicity of zearalenone” refers to toxicity brought to an individual plant by accumulation of zearalenone, for example, cell toxicity, and furthermore, human ingestion of zearalenone. Toxicity to mammals, including livestock, such as toxicity based on endocrine disrupting activities, especially estrogen-like activity, more specifically, for example, enlargement of the female genital tract, enlargement of the mammary gland, abortion, It refers to inhibition of embryonic development, decreased number of fetuses, reproductive disorders, cavity prolapse, rectal prolapse, teratogenicity, carcinogenicity, etc. In the present invention, "inhibiting the toxicity of zearalenone (s)" means that the degree of the toxicity indicated by the action of zearalenone is reduced, preferably that the toxicity becomes undetectable or lost. means. In the present invention, “detoxification” has the same meaning as “suppress the toxicity of zearalenone”. "The action of suppressing the toxicity of zearalenone (class)" is the chemical structure of zearalenone itself By suppressing the toxicity as described above. The action of suppressing the toxicity of zearalenone may be specifically caused by decomposing or cleaving zearalenone, or may be effected by chemically modifying zearalenone. . In particular, the action of suppressing the toxicity of zearalenone may be one that produces a compound having no estrogenic activity using zearalenone as a substrate. In the present invention, the action of suppressing the toxicity of zearalenone is preferably measured as an action of reducing the estrogenic activity. “Estrogen-like activity” in the present invention means binding to an estrogen receptor and promoting the growth of a human cancer cell line MCF-7 in vitro. This estrogenic activity can be easily measured, for example, by a test as described in Example 9 herein.
1 . ゼァラレノン解毒酵素の単離 1. Isolation of zearalenone detoxifying enzyme
本発明では、 分譲機関から入手できる多種多様な菌株に対し、 ゼァラレノンを 解毒する能力についてスクリーニングを行って、 ゼァラレノン解毒酵素を保持す る菌株を単離した。 このスク リーニング対象とする細胞は、 動物細胞、 植物細胞 、 真菌細胞及び細菌細胞のいずれでもよいが、 好ましくは真菌細胞である。 分譲 機関からの細胞株 (例えば真菌株) の入手は、 各分譲機関のカタログ番号に基づ いて、 当業者であれば容易に行うことができる。 分譲機関としては、 AKU (Facul ty of Agriculture, Kyoto University, Kyoto, Japan) 、 ATCC (American Type Cu lture Collection Rockville, U. S. A) 、 HUT (Faculty of Engineering, Hiroshim a University, Hiroshima, Japan) 、 IAM (Institute of Applied Microbiology, U niversity of Tokyo, Japan) 、 IF0 ^institute for Fermentation, Osaka, Japan ) 、 JCM (Japan Collection of Microorganisms, RIKEN) 等がある。 また、 分譲 機関から入手できる各細胞株には培養条件等の情報が提供されており、 それを参 照することにより、 当業者であれば該細胞株を容易に培養することができる。 ゼァラレノンを解毒する能力についてスクリ一二ングを行うために、 限定する ものではないが、 例えば以下のような方法を用いることができる。 入手した細胞 を、 各株毎に、 ゼァラレノンを添加した培地 (真菌では例えば YG培地) 中で当業 者に公知の培養方法に従って培養する。 次いで培養物を、 例えばクロ口ホルムで 抽出する。 例えば、 ゼァラレノン解毒作用として、 ゼァラレノン分解能に関する スクリ一ユングを行う場合には、 抽出物を以下のような薄層クロマトグラフィーIn the present invention, a wide variety of strains available from a distribution agency were screened for their ability to detoxify zearalenone, and strains having zearalenone detoxifying enzymes were isolated. The cells to be screened may be any of animal cells, plant cells, fungal cells and bacterial cells, but are preferably fungal cells. Those skilled in the art can easily obtain a cell line (eg, a fungal strain) from a distributing institution based on the catalog number of each distributing institution. AKU (Faculty of Agriculture, Kyoto University, Kyoto, Japan), ATCC (American Type Culture Collection Rockville, US A), HUT (Faculty of Engineering, Hiroshima University, Hiroshima, Japan), IAM ( Institute of Applied Microbiology, University of Tokyo, Japan), IF0 ^ institute for Fermentation, Osaka, Japan), JCM (Japan Collection of Microorganisms, RIKEN) and the like. In addition, information such as culture conditions is provided for each cell line available from the distributing organization, and by referring to this information, those skilled in the art can easily culture the cell line. In order to screen for the ability to detoxify zearalenone, for example, but not limited to, the following methods can be used. Transfer the obtained cells to a medium (for example, YG medium for fungi) containing zearalenone for each strain. Cultivation according to a culture method known to a human. The culture is then extracted, for example, in black-mouthed form. For example, when screening for zearalenone resolution is performed as zearalenone detoxification, the extract is subjected to thin layer chromatography as follows:
(TLC)分析に供すればよい。 その TLC分析において、 ゼァラレノン標準物と同程度 の移動度のスポットが現れず、 かつゼァラレノンと明らかに移動度の異なるスポ ットが現れるような菌株を、 ゼァラレノンを解毒する能力を有する細胞 (例えば 菌株) の候補として選択することができる。 (TLC) analysis. In the TLC analysis, a strain in which spots having the same mobility as the zearalenone standard do not appear and spots having a mobility distinct from zearalenone appear, and cells having the ability to detoxify zearalenone (for example, strains). ) Can be selected as a candidate.
続いて、 上記の通り選択された細胞から、 ゼァラレノン解毒酵素の抽出及び精 製を行う。 細胞からの該酵素の抽出及び精製は、 当業者には公知の任意の技術を 用いて行うことができるが、 例えば以下のようにカラム溶出分離と TLCによる分 析とによって行ってもよレヽ。  Subsequently, extraction and purification of zearalenone detoxification enzyme are performed from the cells selected as described above. The extraction and purification of the enzyme from the cells can be performed using any technique known to those skilled in the art. For example, it may be performed by column elution separation and TLC analysis as described below.
まず、 当該細胞株を、 ゼァラレノンを添加した培地 (真菌では例えば YG培地) 中で当業者に公知の培養方法に従って培養する。 次いで培養細胞を回収し、 該細 胞を液体窒素等で破砕し、 細胞破片を遠心分離によってスピンダウンさせて、 上 清を取得する。 この上清を硫安分画し、 得たタンパク質溶液を透析にかけて粗酵 素液を得ることができる。 この粗酵素液を、 例えば HiTrapQカラム (Pharmacia) に適用して溶出させて分離し、 さらなる精製を行うことができる。  First, the cell line is cultured in a medium supplemented with zearalenone (for fungi, for example, YG medium) according to a culture method known to those skilled in the art. Next, the cultured cells are collected, the cells are crushed with liquid nitrogen or the like, and cell debris is spun down by centrifugation to obtain supernatant. The supernatant is fractionated with ammonium sulfate, and the obtained protein solution is dialyzed to obtain a crude enzyme solution. This crude enzyme solution can be applied to, for example, a HiTrapQ column (Pharmacia), eluted and separated for further purification.
得られた溶出分画は、 それぞれ in vitroでのゼァラレノンに対する酵素反応試 験に供し、 その後 TLCにてゼァラレノンに対する酵素反応活性を有するかどうか について調べることができる。  Each of the eluted fractions thus obtained is subjected to an in vitro enzyme reaction test for zearalenone, and thereafter, it can be examined by TLC whether or not it has an enzyme reaction activity for zearalenone.
例えば in vitroでのゼァラレノン分解反応試験においては、 それぞれの溶出分 画にゼァラレノンを添加し、 3 7 °Cでインキュベートする。 次いで、 その各サン プルからゼァラレノン及ぴ Z又はその分解産物を抽出し、 TLCにかける。 ゼァラ レノン分解酵素を含む画分では、 TLC上に、 ゼァラレノンとは明らかに異なる移 動度のスポットが検出される。 なお、 ゼァラレノン解毒酵素が、 分解とは異なる 様式でゼァラレノンの分子構造を変化させる酵素である場合にも、 同様に、 その ような酵素を含む溶出分画を用いて得たサンプルについて、 ゼァラレノンとは明 らかに異なる移動度のスポットが検出される。  For example, in an in vitro zearalenone degradation test, add zearalenone to each eluted fraction and incubate at 37 ° C. Next, zearalenone and Z or a degradation product thereof are extracted from each of the samples, and subjected to TLC. In the fraction containing zearalenone-degrading enzyme, spots with a mobility clearly different from that of zearalenone are detected on TLC. When zearalenone detoxifying enzyme is an enzyme that changes the molecular structure of zearalenone in a manner different from degradation, similarly, zearalenone is used for a sample obtained using an elution fraction containing such an enzyme. Clearly different mobility spots are detected.
この移動度の指標としては、 一般に Rf値が用いられる。 Rf値とは、 試料を最初 に塗布した展開原点から試料の発色スポットの中心までの距離 (化合物の平均移 動距離) を、 展開原点から展開液の展開先端までの距離 (展開液の最大移動距離The Rf value is generally used as an index of this mobility. The Rf value is the sample The distance from the development origin applied to the sample to the center of the color spot of the sample (the average travel distance of the compound) is the distance from the development origin to the development tip of the development solution (the maximum travel distance of the development solution).
) で割った値として定義される。 この Rf値は、 化合物と薄層クロマトグラフィー に塗布した吸着剤との親和性や、 化合物の展開液への溶解性によつて変化するが 、 一定の条件下では化合物の種類に固有の値を示すため、 化合物の同定に有用で ある。 ) Is defined as the value divided by This Rf value varies depending on the affinity of the compound with the adsorbent applied to thin-layer chromatography and the solubility of the compound in the developing solution. This is useful for identifying compounds.
このようにして同定された、 ゼァラレノン添加の際にゼァラレノンとは明らか に異なる移動度のスポットを検出し得る溶出分画を、 さらなる精製工程にかける 。 さらなる精製工程としては、 ゲル濾過カラムを用いる FPLC分離、 イオン交換力 ラムを用いるもの等が挙げられ、 これらの様々なタンパク質精製工程を繰り返し 行うことにより、 所望のタンパク質を高純度で得ることができる。  The eluted fraction identified in this way, which can detect spots having a mobility clearly different from that of zearalenone upon addition of zearalenone, is subjected to a further purification step. Further purification steps include FPLC separation using a gel filtration column, and those using an ion exchange column.By repeating these various protein purification steps, a desired protein can be obtained with high purity. .
2 . ゼァラレノン解毒酵素遺伝子の単離 2. Isolation of zearalenone detoxification enzyme gene
上記 1で得たゼァラレノン解毒酵素をコードする遺伝子を単離するために、 本 発明ではまず、 例えばゼァラレノン解毒酵素の部分アミノ酸配列を決定する。 アミノ酸配列決定のために、 例えばリジルエンドぺプチダーゼ (例えば、 TAKA RA, Kyoto, JAPAN) 等のタンパク質分解酵素によって、 精製したゼァラレノン解 毒酵素をペプチド断片化する。 その反応混合物を、 HPLCによってペプチド断片毎 に分離する。 このような HPLC操作は、 通常は製造業者の説明書に従って行えばよ い。 次に HPLCにより分離されたペプチド断片、 及び上記で精製したゼァラレノン 解毒酵素そのものを、 それぞれタンパク質シーケンサーにかけ、 エドマン分解に よるアミノ酸配列決定を行う。  In order to isolate the gene encoding zearalenone detoxifying enzyme obtained in 1 above, first, for example, the partial amino acid sequence of zearalenone detoxifying enzyme is determined in the present invention. For amino acid sequencing, the purified zearalenone detoxification enzyme is fragmented with a protease such as lysyl endopeptidase (eg, TAKA RA, Kyoto, JAPAN). The reaction mixture is separated for each peptide fragment by HPLC. Such an HPLC operation may be usually performed according to the manufacturer's instructions. Next, the peptide fragment separated by HPLC and the zearalenone detoxifying enzyme itself purified above are respectively applied to a protein sequencer, and the amino acid sequence is determined by Edman degradation.
次いで、 ゼァラレノン解毒酵素をコードする DNAを PCR増幅するためのプライマ 一を設計する。 N末端のアミノ酸配列に基づく縮重した 5'プライマーと、 ぺプチ ド断片より得られたァミノ酸配列に基づく縮重した 3'プライマーとを、 上記で決 定した部分アミノ酸配列に基づいて設計する。 プライマー設計の際に用いるぺプ チド断片は、 上記の HPLCで分離されたいずれのものでもよいが、 縮重パターンが できるだけ少なくなるようなプライマー配列とすることが好ましい。  Next, a primer for PCR amplification of DNA encoding zearalenone detoxification enzyme is designed. Design a degenerate 5 'primer based on the N-terminal amino acid sequence and a degenerate 3' primer based on the amino acid sequence obtained from the peptide fragment based on the partial amino acid sequence determined above . The peptide fragment used in designing the primer may be any of those separated by the above HPLC, but it is preferable to use a primer sequence that minimizes the degeneracy pattern.
PCR増幅をするために用いる鎳型としては、 ゼァラレノンを解毒する能力を有 P 漏藤 02 する細胞由来の cDNAを用いる。 この cDNAは、 ゼァラレノン解毒能を有する細胞を 培養し、 その培養物から全 RNA又は mRNAを常法により抽出し、 さらに RT - PCRによ り合成したものを用いることができる。 そのようにして得た cDNAに対し上記のプ ライマーセットを用いて PCR増幅を行うことによって、 ゼァラレノン解毒酵素を コードする遺伝子の部分 DNA断片を得ることができる。 PCR反応条件としては、 例 えば 94°C (30秒) 、 55°C (30秒) 及ぴ 72°C (1分) を 30サイクル行えばよい。 得 られた増幅産物は、 ァガロースゲル電気泳動により、 その増幅断片のサイズを確 認する。 Type II used for PCR amplification has the ability to detoxify zearalenone. P Use cDNA from cells that leak. This cDNA can be obtained by culturing cells capable of detoxifying zearalenone, extracting total RNA or mRNA from the culture by a conventional method, and further synthesizing it by RT-PCR. By subjecting the cDNA thus obtained to PCR amplification using the above primer set, a partial DNA fragment of the gene encoding zearalenone detoxification enzyme can be obtained. As the PCR reaction conditions, for example, 30 cycles of 94 ° C (30 seconds), 55 ° C (30 seconds) and 72 ° C (1 minute) may be performed. The size of the amplified product obtained is confirmed by agarose gel electrophoresis.
さらに、 以上のようにして得た PCR増幅産物のうち適当なものを、 例えば最も サイズの大きいものを選択し、 適当なベクター中にクローニングし、 DNA配列決 定に供する。 DNA配列決定は、 常法により行うことができるが、 例えば ABI PRISM (R) 377 DNAシーケンサー、 及び ABIキッ卜(Applied Biosystems, Foster City, CA, USA)を用い、 製造業者の提供するプロトコールに従って行ってもよい。  Furthermore, an appropriate one of the PCR amplification products obtained as described above, for example, the one having the largest size is selected, cloned into an appropriate vector, and subjected to DNA sequence determination. DNA sequencing can be performed by a conventional method. For example, ABI PRISM (R) 377 DNA sequencer and ABI kit (Applied Biosystems, Foster City, CA, USA) are used according to the protocol provided by the manufacturer. You may.
さらに、 このゼァラレノン解毒酵素遺伝子の部分 DNA断片の 5'端及ぴ 3'端の DNA 領域の塩基配列を決定するために、 RACE (cDNA末端高速増幅法; rapid ampl ific at ion of cDNA ends) を実施することができる。 RACEにより増幅した DNA断片は 、 上記と同様にクローユングし、 DNA配列決定に供する。  Furthermore, in order to determine the base sequence of the 5′-end and 3′-end DNA regions of the partial DNA fragment of the zearalenone detoxifying enzyme gene, RACE (rapid amplification at ion of cDNA ends) was used. Can be implemented. The DNA fragment amplified by RACE is cloned in the same manner as described above, and used for DNA sequencing.
こうして、 本発明のゼァラレノン解毒酵素遺伝子のコード領域全体の塩基配列 を決定することができる。  Thus, the base sequence of the entire coding region of the zearalenone detoxifying enzyme gene of the present invention can be determined.
3 . 本発明のゼァラレノン解毒酵素遺伝子 3. The zearalenone detoxifying enzyme gene of the present invention
本発明の 1つの実施形態として、 上記 1及ぴ 2の方法に従って単離され、 配列 決定されたゼァラレノン解毒酵素遺伝子は、 配列番号 1に示される塩基配列を有 していた。 また、 配列番号 1の塩基配列から推定されるアミノ酸配列を、 配列番 号 2に示す。 この実施形態においては、 配列番号 1の塩基配列から推定されるァ ミノ酸配列とエドマン法により決定されたアミノ酸配列は一致していた。 さらに 、 配列番号 2に示されるアミノ酸配列を、 公共データベース (Swiss- Prot及び Ge nBank) において検索したところ、 相当する配列は見出されなかったことから、 このゼァラレノン解毒酵素は新規なものであると判断された。 さらに、 このゼァラレノン解毒酵素遺伝子 (配列番号 1 ) は、 その遺伝子産物 (配列番号 2 ) がゼァラレノンを分解してエストロゲン様活性を有しない分解産 物を生成するゼァラレノン解毒酵素であることが確認された。 その確認は、 後述 の 7に示されるように、 ヒ ト乳がん細胞 MCF - 7を用いた系で行った。 In one embodiment of the present invention, the zearalenone detoxification enzyme gene isolated and sequenced according to the above-described method 1 or 2 has the nucleotide sequence shown in SEQ ID NO: 1. The amino acid sequence deduced from the nucleotide sequence of SEQ ID NO: 1 is shown in SEQ ID NO: 2. In this embodiment, the amino acid sequence deduced from the nucleotide sequence of SEQ ID NO: 1 was identical to the amino acid sequence determined by the Edman method. Furthermore, when the amino acid sequence represented by SEQ ID NO: 2 was searched in public databases (Swiss-Prot and GenBank), no corresponding sequence was found, so that this zearalenone detoxifying enzyme was a novel one. It was judged. Furthermore, it was confirmed that this zearalenone detoxifying enzyme gene (SEQ ID NO: 1) is a zearalenone detoxifying enzyme whose gene product (SEQ ID NO: 2) degrades zearalenone to produce a degradation product having no estrogenic activity. . The confirmation was performed in a system using human breast cancer cell MCF-7, as shown in 7 below.
したがって、 本発明の 1つの実施形態では、 本発明のゼァラレノン解毒酵素遺 伝子は、 配列番号 1に示される塩基配列からなる DNAである。 この DNAは、 例えば 、 配列番号 1に基づいて設計されるプライマーを用いて、 上記で得た cDNAを铸型 として PCR増幅し、 その DNA増幅断片を常法により抽出 ·精製することにより取得 することができる。  Therefore, in one embodiment of the present invention, the zearalenone detoxifying enzyme gene of the present invention is a DNA having the nucleotide sequence shown in SEQ ID NO: 1. This DNA should be obtained, for example, by PCR-amplifying the cDNA obtained above as a 铸 type using primers designed based on SEQ ID NO: 1, and extracting and purifying the amplified DNA fragment by a conventional method. Can be.
本発明のゼァラレノン解毒酵素遺伝子は、 より一般的には、 ゼァラレノンの毒 性を抑制する作用を有するタンパク質をコードするものである。  The zearalenone detoxifying enzyme gene of the present invention more generally encodes a protein having an action of suppressing the toxicity of zearalenone.
本発明のゼァラレノン解毒酵素遺伝子は、 上記の配列番号 1に示される塩基配 列からなる DNAに限定されるものではない。 本発明の遺伝子は、 配列番号 2に示 されるアミノ酸配列からなるタンパク質をコードするものであってもよい。 さら に本発明の遺伝子は、 ゼァラレノンの毒性を抑制する作用を有する限り、 配列番 号 2に示されるアミノ酸配列において 1若しくは複数個 (好ましくは 1 〜10個、 より好ましくは数個) のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列 からなるタンパク質をコードするものであってもよい。  The zearalenone detoxifying enzyme gene of the present invention is not limited to the DNA comprising the base sequence shown in SEQ ID NO: 1. The gene of the present invention may encode a protein consisting of the amino acid sequence shown in SEQ ID NO: 2. Furthermore, the gene of the present invention has one or more (preferably 1 to 10, more preferably several) amino acids in the amino acid sequence shown in SEQ ID NO: 2 as long as it has an action of suppressing the toxicity of zearalenone. It may encode a protein consisting of a deleted, substituted or added amino acid sequence.
また、 配列番号 1に示される塩基配列又はその一部に相補的な配列からなる DN Aと、 ストリンジヱントな条件下でハイブリダィズすることができる DNAであって 、 上記ゼァラレノンの毒性を抑制する作用を有するタンパク質をコードするもの も本発明の遺伝子に含まれる。 同様に、 配列番号 2に示されるアミノ酸配列をコ ードする DNA又はその一部に相捕的な配列からなる DNAと、 ストリンジェントな条 件下でハイブリダイズすることができる DNAであって、 上記ゼァラレノンの毒性 を抑制する作用を有するタンパク質をコードするものも本発明の遺伝子に含まれ る。 ストリンジ-ントな条件とは、 いわゆる特異的なハイブリッドが形成される 条件をいう。 例えば、 相同性が高い核酸同士、 すなわち 90%以上、 好ましくは 95 %以上の相同性を有する DNAであって、 ゼァラレノンの毒性を抑制する作用を有 するタンパク質をコードする DNA同士がハイブリダイズし、 それより相同性が低 い核酸同士がハイブリダィズしない条件が挙げられる。 より具体的には、 ナトリ ゥム塩濃度が 15〜750mM、 好ましくは 50〜750mM、 より好ましくは 300〜750mM、 温 度が 25〜70° (:、 好ましくは 50°C〜70°C、 より好ましくは 55〜65° (:、 ホルムアミ ド 濃度 0〜50%、 好ましくは 20〜50%、 より好ましくは 35〜45%での条件をいう。 さらにハイプリダイゼーシヨン後のフィルターの洗浄条件が、 ナトリウム塩濃度 が 15〜600mM、 好ましくは 50〜600mM、 より好ましくは 300〜600mM、 温度が 50〜70 °C、 好ましくは 55〜70°C、 より好ましくは 60〜65°Cでの条件である場合も、 本発 明における 「ス トリンジェントな条件」 に含めることができる。 In addition, a DNA that can hybridize under stringent conditions with DNA consisting of a sequence complementary to the base sequence shown in SEQ ID NO: 1 or a part thereof, and has an action of suppressing the toxicity of zearalenone. A gene encoding a protein is also included in the gene of the present invention. Similarly, a DNA capable of hybridizing under stringent conditions with a DNA encoding the amino acid sequence shown in SEQ ID NO: 2 or a DNA consisting of a sequence complementary to a part thereof, The gene encoding the protein having the action of suppressing the toxicity of zearalenone is also included in the gene of the present invention. Stringent conditions refer to conditions under which a so-called specific hybrid is formed. For example, nucleic acids having high homology, that is, DNAs having a homology of 90% or more, preferably 95% or more, and DNAs encoding a protein having an action of suppressing the toxicity of zearalenone hybridize, Lower homology Conditions under which the nucleic acids do not hybridize to each other. More specifically, the sodium salt concentration is 15 to 750 mM, preferably 50 to 750 mM, more preferably 300 to 750 mM, and the temperature is 25 to 70 ° (: preferably, 50 to 70 ° C, Preferably, it is a condition at 55 to 65 ° (:, a formamide concentration of 0 to 50%, preferably 20 to 50%, more preferably 35 to 45%. Furthermore, the washing condition of the filter after hybridization is The conditions are a sodium salt concentration of 15 to 600 mM, preferably 50 to 600 mM, more preferably 300 to 600 mM, and a temperature of 50 to 70 ° C, preferably 55 to 70 ° C, more preferably 60 to 65 ° C. Such cases can be included in the "stringent conditions" of the present invention.
—且本発明の遺伝子の塩基配列が確定されると、 その後は化学合成によって、 又はクローニングされた cDNA、 cDNAライブラリー若しくはゲノム DNAライブラリ ーを铸型とした PCRによって、 あるいは該塩基配列を有する DNA断片をプローブと して cDNAライプラリー若しくはゲノム DNAライブラリーに対してハイブリダイズ させることによって、 本発明の遺伝子を得ることができる。 cDNAライブラリ一又 はゲノム DNAライブラリ一等が由来する生物は、 特に限定されるものではないが 、 真菌類に属する生物であることが好ましい。  Once the nucleotide sequence of the gene of the present invention has been determined, it is then subjected to chemical synthesis, or to PCR using a cloned cDNA, cDNA library or genomic DNA library as type III, or to a DNA having the nucleotide sequence. The gene of the present invention can be obtained by hybridizing the fragment to a cDNA library or a genomic DNA library as a probe. The organism from which the cDNA library or the genomic DNA library is derived is not particularly limited, but is preferably an organism belonging to a fungus.
さらに、 部位特異的突然変異誘発法等によって、 本発明の遺伝子の変異型であ つてゼァラレノンの毒性を抑制する作用を有するタンパク質をコードする遺伝子 を合成することもできる。 また部位特異的突然変異誘発法等により、 本発明の遣 伝子の変異型であって、 ゼァラレノンの毒性を抑制する作用を有し、 かつエスト ロゲン様活性を有しない分解産物を生成するタンパク質をコードする遺伝子を合 成することもできる。 さらに部位特異的突然変異誘発法等により、 本発明の遺伝 子の変異型であって、 ゼァラレノンの毒性を抑制する作用を有し、 かつ p H 6〜 1 1、 好ましくは p H 9〜1 0 . 5で活性を有するタンパク質をコードする遺伝 子を合成することもできる。  Furthermore, by a site-directed mutagenesis method or the like, a gene encoding a protein having a function of suppressing the toxicity of zearalenone, which is a mutant form of the gene of the present invention, can also be synthesized. In addition, a protein which is a mutant of the gene of the present invention, which has a function to suppress the toxicity of zearalenone, and which produces a degradation product having no estrogen-like activity by site-directed mutagenesis or the like. Encoding genes can also be synthesized. Furthermore, it is a mutant form of the gene of the present invention by site-directed mutagenesis or the like, which has the effect of suppressing the toxicity of zearalenone, and has a pH of 6 to 11, preferably pH of 9 to 10. It is also possible to synthesize a gene encoding a protein having an activity in step 5.
遺伝子に変異を導入するには、 Kunkel法、 Gapped duplex法等の公知の手法又 はこれに準ずる方法を採用することができる。 例えば部位特異的突然変異誘発法 を利用した変異導入用キット (例えば Mutan- K TAKARA社製) や Mutan- G (TAKARA社 製) )などを用いて、 あるいは、 TAKARA社の LA PCR in vitro Mutagenesi s シリ 一ズキットを用いて変異の導入が行われる。 4 . 組換えベクターの作製 In order to introduce a mutation into a gene, a known method such as the Kunkel method and the Gapped duplex method or a method similar thereto can be employed. For example, using a mutagenesis kit using site-directed mutagenesis (for example, Mutan-K TAKARA) or Mutan-G (TAKARA), or using TAKARA's LA PCR in vitro Mutagenesis Mutations are introduced using a series kit. 4. Construction of recombinant vector
上記 3に記載した本発明の遺伝子は、 続く操作のために、 ベクター中にクロー ユングして組換えベクターを作製することが好ましい。  The gene of the present invention described in 3 above is preferably cloned into a vector to prepare a recombinant vector for subsequent operations.
本発明の組換えベクターは、 適当なベクターに本発明のゼァラレノン解毒酵素 遺伝子を連結(揷入)することにより得ることができる。 ゼァラレノン解毒酵素遺 伝子を挿入するためのベクターは、 宿主中で複製可能なものであれば特に限定さ れず、 例えば、 プラスミ ド DNA、 ファージ DNA等が挙げられる。  The recombinant vector of the present invention can be obtained by ligating (inserting) the zearalenone detoxifying enzyme gene of the present invention to an appropriate vector. The vector for inserting the zearalenone detoxifying enzyme gene is not particularly limited as long as it can be replicated in a host, and examples thereof include plasmid DNA and phage DNA.
プラスミ ド DNAとしては、 大腸菌由来のプラスミ ド (例えば pBR322、 pBR325、 pUC118、 pUC119、 pUC18、 pUC19、 pBluescript等) 、 枯草菌由来のプラスミ ド ( 例えば pUB110、 pTP5等)、 酵母由来のプラスミ ド (例えば YEpl3、 YCp50等)などが 挙げられ、 ファージ DNAとしては; Lファージ (Charon4A、 Charon21A、 EMBL3、 EMB L4、 gtl0、 ; L gtl l、 ; L ZAP等) が挙げられる。 さらに、 レトロウイルス又はヮ クシニアゥイノレスなどの動物ゥイノレス、 ノ キュロウイ/レスなどの昆虫ゥイノレスべ クタ一を用いることもできる。  Examples of the plasmid DNA include Escherichia coli-derived plasmids (eg, pBR322, pBR325, pUC118, pUC119, pUC18, pUC19, pBluescript, etc.), Bacillus subtilis-derived plasmids (eg, pUB110, pTP5, etc.), and yeast-derived plasmids (eg, Phage DNA; L phage (Charon4A, Charon21A, EMBL3, EMB L4, gtl0, Lgtll, LZAP, etc.). In addition, retroviruses or animals such as Vincenius innoles, innores, and insects such as noculois / les, innores vectors can also be used.
ベクターにゼァラレノン解毒酵素遺伝子を挿入するには、 まず、 精製された DN Aを適当な制限酵素で切断し、 適当なベクター DNAの制限酵素部位又はマルチク ローニングサイ トに揷入してベクターに連結する方法などが採用される。  To insert the zearalenone detoxifying enzyme gene into a vector, first, the purified DNA is cut with an appropriate restriction enzyme, inserted into an appropriate vector DNA restriction enzyme site or a multi-cloning site, and ligated to the vector. The method is adopted.
ゼァラレノン解毒酵素遺伝子は、 その遺伝子の機能が発揮されるように、 べク ターに組み込まれることが必要である。 特に、 本発明の組換えベクターは、 宿主 内で良好な活性を有するタンパク質として発現されるようにゼァラレノン解毒酵 素遺伝子をベクターに組み込んだ、 組換え発現ベクターとして作製することが好 ましい。 このために、 本発明のベクターとしては、 数多くの宿主生物に対応した 市販の各種発現ベクターを用いることができる。 それらの発現ベクターには、 通 常、 転写プロモーター、 ターミネータ一、 リボソーム結合部位などの宿主生物に おける発現に必須な各種エレメントの他、 ベクターが細胞内に保持されているこ とを示す選択マーカーやベクター内に簡単に正しい向きで遺伝子を揷入するため のポリ リンカ一、 ェンノ、ンサ一などのシスエレメント、 スプライシングシグナノレ 、 ポリ A付加シグナル、 リボソーム結合配列 (SD配列) 、 分泌因子配列等の有用 な配列が必要に応じて連結されている。 組換え発現べクタ一を用いて形質転換体 を作製し、 それを培養することによって組換えタンパク質を産生させる場合には 、 宿主生物に適合した分泌因子配列を含む発現ベクターを用いることにより、 組 換えタンパク質を培地中に分泌させることができる。 この手法は、 培養上清から 直接組換えタンパク質を精製することができるため、 有用である。 さらに、 この 分泌因子配列は、 培養上清への分泌後に、 ベクターに組み込んだ遺伝子にコード されるタンパク質から、 特定のプロテアーゼ等で特異的に切断して除去すること ができるものであってもよい。 なお、 選択マーカーとしては、 例えばジヒ ドロ葉 酸還元酵素遺伝子、 アンピシリン耐性遺伝子、 ネオマイシン耐性遺伝子等が挙げ られる。 The zearalenone detoxification enzyme gene needs to be incorporated into a vector so that the function of the gene is exerted. In particular, the recombinant vector of the present invention is preferably prepared as a recombinant expression vector in which a zearalenone detoxification enzyme gene is incorporated into a vector so that the gene is expressed as a protein having good activity in a host. For this purpose, various commercially available expression vectors corresponding to many host organisms can be used as the vector of the present invention. Such expression vectors usually include various elements essential for expression in the host organism, such as a transcription promoter, a terminator, and a ribosome binding site, as well as a selection marker that indicates that the vector is retained in the cell. Cis-elements such as polylinker, henno, and ss1 to easily introduce genes into the vector in the correct orientation, splicing signal, poly-A addition signal, ribosome binding sequence (SD sequence), secretion factor sequence, etc. useful Unique sequences are linked as necessary. When a transformant is produced by using a recombinant expression vector and the recombinant protein is produced by culturing the transformant, the expression vector containing a secretory factor sequence compatible with the host organism is used. The recombinant protein can be secreted into the medium. This technique is useful because the recombinant protein can be purified directly from the culture supernatant. Furthermore, the secretory factor sequence may be one that can be specifically cleaved with a specific protease or the like from the protein encoded by the gene incorporated in the vector after secretion into the culture supernatant, and removed. . Examples of the selectable marker include a dihydrofolate reductase gene, an ampicillin resistance gene, a neomycin resistance gene, and the like.
以上のようなベクターに、 ゼァラレノン解毒酵素遺伝子を、 適切に発現される ような位置及ぴ向きで連結する。  The zearalenone detoxification enzyme gene is ligated to the vector as described above in such a position and orientation that it can be appropriately expressed.
さらに、 本発明の遺伝子は、 相同組換え法により宿主生物ゲノムに直接導入す ることもできる。 その場合には、 本発明の遺伝子を組み込んだ適当なターゲティ ングベクターを作製する。 このために使用可能なベクターとしては、 例えば Cre- ΙοχΡ等の公知のジーンターゲティング用ベクターを用いることができる。 本明細 書においては、 このような本発明の遺伝子を組み込んだターゲティングベクター も、 本発明の組換えベクターに包含されるものとする。 5 . ゼァラレノン解毒酵素遺伝子の植物への導入  Further, the gene of the present invention can also be directly introduced into the genome of a host organism by a homologous recombination method. In that case, an appropriate targeting vector incorporating the gene of the present invention is prepared. As a vector that can be used for this purpose, a known gene targeting vector such as Cre--οχΡ can be used. In the present specification, such a targeting vector incorporating the gene of the present invention is also included in the recombinant vector of the present invention. 5. Introduction of zearalenone detoxification enzyme gene into plants
上記 4に記載の通り作製した組換えベクターを植物に導入することにより、 ト ランスジエニック植物を得ることができる。  Transgenic plants can be obtained by introducing the recombinant vector prepared as described in 4 above into a plant.
本発明において形質転換の対象となる植物は、 植物体全体、 植物器官(例えば 葉、 花弁、 茎、 根、 種子等)、 植物組織(例えば表皮、 師部、 柔組織、 木部、 維管 束、 柵状組織、 海綿状組織等)又は植物培養細胞 (例えばカルス) のいずれをも 意味するものである。 形質転換に用いられる植物としては、 赤かぴ病菌であるフ ザリゥム属菌の感染により植物体内にゼァラレノンの蓄積が見られる植物である ことが好ましい。 限定するものではないが、 本発明のゼァラレノン解毒酵素遺伝 子を導入する植物としては、 トウモロコシ、 コムギ、 ォォムギ、 ライ麦、 イネ等 のイネ科植物が好ましい。 形質転換に用いられる植物として、 例えば以下のよう なものが考えられる。 Plants to be transformed in the present invention include whole plants, plant organs (eg, leaves, petals, stems, roots, seeds, etc.), and plant tissues (eg, epidermis, phloem, soft tissue, xylem, vascular bundle, It refers to either a palisade tissue, spongy tissue, etc.) or plant culture cells (eg, callus). The plant used for the transformation is preferably a plant in which the accumulation of zearalenone is observed in the plant due to the infection of Fusarium spp., Which is a scab of Fusarium. Although not limited thereto, plants into which the zearalenone detoxifying enzyme gene of the present invention is introduced include corn, wheat, rye, rye, rice, and the like. Are preferred. Examples of plants used for transformation include the following.
ナス禾斗: ナス (Solanum melongena し. )、 卜マ卜 (Lycopersicon escu丄 entum Mi l 1)、 ピーマン (Capsicum annuum L. var. angulosum ki ll. ) 、 トウフ- ゾン (Capsi cum annuum L - )、 タノくコ (Nicotiana tabacum L. )  Eggplant tomato: eggplant (Solanum melongena ishi), tomato (Lycopersicon escu 丄 entum Mi l 1), bell pepper (Capsicum annuum L. var.angulosum ki ll.), Tofu-zong (Capsi cum annuum L-), Tanoko (Nicotiana tabacum L.)
アブラナ禾斗 : シロイヌナズナ (Arabidopsis thaliana)、 アブラナ (Brassica ca mpestris し)、 ノヽクサイ (Brassica pekinensis Rupr - )、 キヤへッ (Brassica ole racea L. var. capitata L. ) N グイコン (Raphanus sativus L )、 ナタ (Brassi ca campestri s L. , B. napus L. ) Brassica tomato: Arabidopsis thaliana, Brassica (Brassica ca mpestris), Chinese cabbage (Brassica pekinensis Rupr-), Kyahe (Brassica ole racea L. var.capitata L.) N Guicon (Raphanus sativus L) Nata (Brassi ca campestri s L., B. napus L.)
イネ禾斗: トウモロコシ (Zea mays)、 イネ (Oryza sativa)、 コムギ (Triticum ae stivum L. 、 ォォム (Hordeum vulgare L.  Rice paddy: maize (Zea mays), rice (Oryza sativa), wheat (Triticum ae stivum L.), wom (Hordeum vulgare L.)
マメ科: ダイズ(Glycine max)、 ァズキ(Vigna angularis Willd. )、 インゲン( Phaseolus vulgaris し. )、 ソラマメ (Vicia faba L. )  Legumes: Soybean (Glycine max), Azuki (Vigna angularis Willd.), Bean (Phaseolus vulgaris.), Broad bean (Vicia faba L.)
ゥリ科: キユウリ(Cucumis sativus L. )、 メロン (Cucumis melo L. )、 スイカ( Citrullus vulgaris Schrad. )、 カボチヤ (C. moschata Duch. , C. maxima Duch. )  Periaceae: Cucumber (Cucumis sativus L.), Melon (Cucumis melo L.), Watermelon (Citrullus vulgaris Schrad.), Cabochia (C. moschata Duch., C. maxima Duch.)
ヒノレガオ禾斗: サッマィモ (Ipomoea batatas)  Hinoregao geese: Samaimo (Ipomoea batatas)
ユリ科:ネギ(Allium fistulosum L. )、 タマネギ(All ium cepa L. )、 -ラ(Al l ium tuberosum Rottl. )、 ニンニク(Allium sativum L. )、 ァスノ ラガス(Asparag us officinalis L. )  Lily family: Leek (Allium fistulosum L.), onion (Allium cepa L.), -la (Allium tuberosum Rottl.), Garlic (Allium sativum L.), Asunoragasu (Asparag us officinalis L.)
シソ禾斗: シソ (Perilla frutescens Britt. var. crispa)  Perilla fritters: Perilla (Perilla frutescens Britt. Var. Crispa)
キク禾斗: キク (Chrysanthemum raorifolium)、 シュンギク (Chrysanthemum coron arium L. ) s レタス (Lactuca sativa L. var. capitata L. Chrysanthemum: Chrysanthemum raorifolium, Chrysanthemum coron arium L. s Lettuce (Lactuca sativa L. var. Capitata L.)
/くラ禾斗:ノくラ (Rose hybrida Hort. )、 イチゴ (Fragaria x ananassa Duch. ) ミカン科: ミカン (Citras unshiu)、 サンショウ (Zanthoxylura piperitum DC. ) フ卜モモ科: ユー力 U (Eucalyptus globulus Labill)  / Kura Hakuto: Nokura (Rose hybrida Hort.), Strawberry (Fragaria x ananassa Duch.) Rutaceae: Citrus unshiu, Sansho (Zanthoxylura piperitum DC.) Eucalyptus globulus Labill)
ャナギ禾斗: ポプラ (Populas nigra L. var. ital ica Koehne)  Willow Doo: Poplar (Populas nigra L. var. Ital ica Koehne)
ァカザ科: ホウレンソゥ(Spinacia oleracea L. ) , テンサイ (Beta vulgaris Families: Spinach (Spinacia oleracea L.), Sugar beet (Beta vulgaris)
L. ) リンドウ禾斗: リンドウ (Gentiana scabra Bunge var. buergeri Maxim. ) ナデシコ禾斗: カーネーション (Dianthus caryophyllus L. ) L.) Gentian geese: Gentian (Gentiana scabra Bunge var. Buergeri Maxim.) Nadesico geese: Carnation (Dianthus caryophyllus L.)
上記組換えベクターは、 通常の形質転換方法、 例えばァグロパクテリ ゥム法、 パーティクルガン法、 PEG法、 エレク ト口ポレーシヨン法等によって植物中に導 入することができる。 例えばァグロバタテリゥム法を用いる場合は、 構築した植 物用発現ベクターを適当なァグロバタテリゥム、 例えばァグロパクテリ ゥム ·チ ュメファシエンス(Agrobacterium tumefaciens)に導入し、 この菌株をイネの力 ルスに接種して感染させ、 トランスジエニック植物を得ることができる。  The above recombinant vector can be introduced into a plant by a conventional transformation method, for example, an agrobacterium method, a particle gun method, a PEG method, an electoral poration method, or the like. For example, when the agrobacterium method is used, the constructed plant expression vector is introduced into an appropriate agrobacterium, for example, Agrobacterium tumefaciens, and this strain is transformed into rice power. The transgenic plants can be obtained by inoculation and infection.
また、 パーティクルガン法を用いる場合は、 植物体、 植物器官、 植物組織自体 をそのまま使用してもよく、 切片を調製した後に使用してもよく、 プロ トプラス トを調製して使用してもよい。 このように調製した試料を遺伝子導入装置 (例え ば PDS- 1000 (BIO- RAD社)等) を用いて処理することができる。 処理条件は植物又 は試料により異なるが、 通常は 450〜2000psi程度の圧力、 4〜12cm程度の距離で 行う。  When the particle gun method is used, the plant, plant organ, or plant tissue itself may be used as it is, may be used after preparing a section, or may be used after preparing a protoplast . The sample thus prepared can be processed using a gene transfer apparatus (for example, PDS-1000 (BIO-RAD) or the like). The treatment conditions vary depending on the plant or sample, but usually the pressure is about 450 to 2000 psi and the distance is about 4 to 12 cm.
植物培養細胞を宿主として用いる場合は、 形質転換は、 組換えベクターをパー ティクノレガン法、 エレク ト口ポレーシヨン法等で培養細胞に導入する。 この際タ ーゲティングベクターを用いて、 植物ゲノムに対し相同組換えを引き起こすこと も可能であり得る。  When a plant culture cell is used as a host, for the transformation, the recombinant vector is introduced into the culture cell by a Partique Noregan method, an electoral poration method, or the like. At this time, it may be possible to cause homologous recombination to the plant genome using a targeting vector.
形質転換の結果得られる腫瘍組織やシュート、 毛状根などは、 そのまま細胞培 養、 組織培養又は器官培養に用いることが可能であり、 また従来知られている植 物組織培養法を用い、 適当な濃度の植物ホルモン (オーキシン、 サイ トカイニン 、 ジベレリン、 アブシジン酸、 エチレン、 ブラシノライ ド等) の投与などにより 植物体に再生させることができる。  The tumor tissue, shoots, hairy roots, etc. obtained as a result of the transformation can be directly used for cell culture, tissue culture or organ culture, or by using a conventionally known plant tissue culture method. Plant hormones (eg, auxin, cytokinin, gibberellin, abscisic acid, ethylene, brassinolide, etc.) can be regenerated into plants by administration of various concentrations.
遺伝子が植物に組み込まれたか否かの確認は、 PCR法、 サザンハイブリダィゼ ーシヨン法、 ノーザンハイブリダィゼーシヨン法等により行うことができる。 例 えば、 トランスジヱニック植物から DNAを調製し、 DNA特異的プライマーを設計し て PCRを行う。 PCRは、 組換えベクターに挿入した cDNA断片を増幅するために使用 した条件と同様の条件で行うことができる。 その後は、 増幅産物についてァガロ ースゲル電気泳動、 ポリアクリルァミ ドゲル電気泳動又はキヤビラリ一電気泳動 等を行い、 臭化工チジゥム、 SYBR Green液等により染色し、 そして増幅産物を 1 本のバンドとして検出することにより、 形質転換されたことを確認することがで きる。 また、 予め蛍光色素等により標識したプライマーを用いて PCRを行い、 増 幅産物を検出することもできる。 さらに、 マイクロプレート等の固相に増幅産物 を結合させ、 蛍光又は酵素反応等により増幅産物を確認する方法も採用すること ができる。 Whether or not the gene has been integrated into the plant can be confirmed by a PCR method, a Southern hybridization method, a Northern hybridization method, or the like. For example, prepare DNA from transgenic plants, design DNA-specific primers, and perform PCR. PCR can be performed under the same conditions as those used to amplify the cDNA fragment inserted into the recombinant vector. After that, agarose gel electrophoresis, polyacrylamide gel electrophoresis or capillary electrophoresis By performing staining and the like, staining with Chidium bromide, SYBR Green solution, and the like, and detecting the amplified product as a single band, the transformation can be confirmed. In addition, amplification products can also be detected by performing PCR using primers previously labeled with a fluorescent dye or the like. Furthermore, a method of binding the amplification product to a solid phase such as a microplate and confirming the amplification product by fluorescence or an enzymatic reaction can also be adopted.
以上記載の通りにして作製した本発明のゼァラレノン解毒酵素遺伝子を導入し たトランスジヱニック植物は、 植物体内でゼァラレノン解毒酵素を生産すること によって、 赤かび病菌の感染により生産されるゼァラレノンの毒性を抑制するこ とができる。  The transgenic plant into which the zearalenone detoxifying enzyme gene of the present invention prepared as described above has been introduced is capable of producing zearalenone detoxifying enzyme in a plant body, thereby producing the toxicity of zearalenone produced by infection with Fusarium head blight. Can be suppressed.
6 . 形質転換体の作製及び該形質転換体を用いたゼァラレノン解毒酵素の製造 本発明では、 本発明のゼァラレノン解毒酵素遺伝子を導入した形質転換体 (形 質転換細胞) を作製し、 それを培養することによりゼァラレノン解毒酵素を製造 することができる。 本発明は、 このような形質転換体及び該形質転換体を用いた ゼァラレノン解毒酵素の製造方法にも関する。 6. Preparation of transformant and production of zearalenone detoxifying enzyme using the transformant In the present invention, a transformant (transformed cell) into which the zearalenone detoxifying enzyme gene of the present invention is introduced is prepared and cultured. Thus, zearalenone detoxifying enzyme can be produced. The present invention also relates to such a transformant and a method for producing zearalenone detoxifying enzyme using the transformant.
形質転換には、 大腸菌や枯草菌等の細菌、 酵母細胞、 昆虫細胞、 動物細胞 (例 えば、 哺乳動物細胞) 、 植物細胞等、 いずれを使用してもよい。 本発明において は、 特に大腸菌、 酵母細胞又はイネ科植物細胞を使用することが好ましい。 より 詳細には、 例えば、 イネ科植物に対する赤かび病対策のためにはイネ科植物細胞 を用いることが好ましい。 ゼァラレノン解毒酵素の製造においては、 大腸菌又は 酵母細胞を使用することが好ましい。 酵母細胞の発酵を利用した食品製造におい ては、 酵母細胞を用いることが好ましい。  For transformation, any of bacteria such as Escherichia coli and Bacillus subtilis, yeast cells, insect cells, animal cells (for example, mammalian cells), plant cells, and the like may be used. In the present invention, it is particularly preferable to use Escherichia coli, yeast cells or grass plants cells. More specifically, for example, for the control of Fusarium head blight on grasses, it is preferable to use grass cells. In the production of zearalenone detoxifying enzyme, E. coli or yeast cells are preferably used. In food production using yeast cell fermentation, yeast cells are preferably used.
形質転換には、 一般的に行われている手法、 例えば、 リン酸カルシウム法、 ェ レク トロポレーション法、 リポフエクション法、 パーティクルガン法、 PEG法等 を適用することができる。 形質転換体の選択は、 定法に従って行うことができる が、 通常は使用した組換えベクターに組み込まれた選択マーカーを利用して行う 本発明の形質転換体を培養する方法は、 宿主生物の培養に用いられる通常の方 法に従って行われる。 例えば、 大腸菌や酵母細胞等の微生物を宿主として得られ た形質転換体を培養する培地としては、 宿主微生物が資化し得る炭素源、 窒素源 、 無機塩類等を含有し、 形質転換体の培養を効率的に行える培地であれば、 天然 培地、 合成培地のいずれを用いてもよい。 培地には、 必要に応じてアンピシリン やテトラサイクリン等の抗生物質を添加してもよい。 For the transformation, generally used techniques, for example, a calcium phosphate method, an electroporation method, a lipofection method, a particle gun method, a PEG method and the like can be applied. Transformants can be selected according to a standard method, but usually, the method for culturing the transformant of the present invention using a selection marker incorporated in the recombinant vector used is suitable for culturing a host organism. Normal one used It is done according to the law. For example, a medium for culturing a transformant obtained by using a microorganism such as Escherichia coli or a yeast cell as a host contains a carbon source, a nitrogen source, inorganic salts, and the like that can be assimilated by the host microorganism. Either a natural medium or a synthetic medium can be used as long as the medium can be efficiently used. If necessary, antibiotics such as ampicillin or tetracycline may be added to the medium.
プロモーターとして誘導性のものを用いた発現ベクターで形質転換した微生物 を培養する場合は、 必要に応じてインデューサーを培地に添加してもよい。 例え ば、 Lacプロモーターを用いた発現ベクターで形質転換した微生物を培養すると きにはイソプロピル- 1 -チォ- - D -ガラク トシド(IPTG)等を、 trpプロモーター を用いた発現ベクターで形質転換した微生物を培養するときにはインドール酢酸 (IAA)等を培地に添加してもよい。  When culturing a microorganism transformed with an expression vector using an inducible promoter, an inducer may be added to the medium as necessary. For example, when culturing a microorganism transformed with an expression vector using the Lac promoter, a microorganism transformed with an expression vector using the trp promoter such as isopropyl-1-thio-D-galactoside (IPTG) can be used. When culturing is used, indoleacetic acid (IAA) or the like may be added to the medium.
培養条件は特に限定されないが、 好ましくは形質転換に用いる宿主生物に適し た条件下で行われる。  The culture conditions are not particularly limited, but are preferably performed under conditions suitable for the host organism used for transformation.
培養後、 ゼァラレノン解毒酵素が菌体内又は細胞内に生産される場合には菌体 又は細胞を破砕する。 一方、 目的のタンパク質が菌体外又は細胞外に生産される 場合には、 培養液をそのまま使用するか、 遠心分離等により菌体又は細胞を除去 し、 上清を得る。 得られた液中に、 ゼァラレノン解毒酵素が含まれる。  After culturing, if the zearalenone detoxifying enzyme is produced in the cells or cells, the cells or cells are disrupted. On the other hand, when the target protein is produced outside the cells or cells, the culture solution is used as it is, or the cells or cells are removed by centrifugation or the like to obtain a supernatant. The resulting solution contains zearalenone detoxifying enzyme.
本発明では、 形質転換を行う代わりに、 無細胞翻訳系を使用してゼァラレノン 解毒酵素を生産することもできる。  In the present invention, zearalenone detoxifying enzyme can be produced using a cell-free translation system instead of performing transformation.
「無細胞翻訳系」 とは、 宿主生物の細胞の構造を機械的に破壊して得た懸濁液 に、 翻訳に必要なアミノ酸などの試薬を加え、 試験管中などの in vitro転写翻訳 系又は in vitro翻訳系を構成したものである。 無細胞翻訳系としては、 有利に使 用可能なキットが市販されている。  A cell-free translation system is an in vitro transcription-translation system that adds reagents such as amino acids required for translation to a suspension obtained by mechanically disrupting the structure of the host organism's cells. Alternatively, it constitutes an in vitro translation system. As a cell-free translation system, kits that can be advantageously used are commercially available.
生産されたゼァラレノン解毒酵素は、 タンパク質の単離精製に用いられる一般 的な生化学的方法、 例えば硫酸アンモニゥム沈殿、 ゲルクロマトグラフィー、 ィ オン交換クロマトグラフィー、 ァフィ二ティークロマトグラフィ一等を単独で又 は適宜組み合わせて用いることにより、 上記培養物中 (細胞破砕液、 培養液、 又 はそれらの上清中) あるいは無細胞翻訳系の溶液中から単離精製することができ る。 しかしながら、 場合により、 例えば培養上清を限外濾過型フィルタ一等で濃 縮したり、 硫安分画後に透析にかけたりして得られた粗酵素液を、 そのままゼァ ラレノン解毒処理に用いることもあり得る。 The produced zearalenone detoxifying enzyme can be used alone or by a common biochemical method used for isolating and purifying proteins, such as ammonium sulfate precipitation, gel chromatography, ion exchange chromatography, affinity chromatography, etc. When used in an appropriate combination, it can be isolated and purified from the above-mentioned culture (in a cell lysate, a culture, or a supernatant thereof) or a cell-free translation system solution. However, in some cases, for example, the culture supernatant is concentrated with an ultrafiltration filter or the like. The crude enzyme solution obtained by shrinking or dialyzing after ammonium sulfate fractionation may be used as it is for zearalenone detoxification.
また本発明のゼァラレノン解毒酵素の 1つの実施形態である、 配列番号 2に示 されるアミノ酸配列を有するタンパク質 (ZHD101;実施例参照) は、 pH 9 . 5の 高アルカリ環境で十分な活性を有していることが示された。 また、 ZHD101は PH 7 . 0でもある程度の活性を有し、 一方 pH 4 . 5を下回るような低 pHにおいては不 可逆的に失活することが分かった。 このように、 本発明のゼァラレノン解毒酵素 は、 1つの特徴として、 至適 pHのアルカリ側への偏りを示す。 すなわち、 本発明 のゼァラレノン解毒酵素は、 pH 6〜 1 1、 好ましくは pH 9〜1 0 . 5で活性を有 するものである。 Further, a protein having an amino acid sequence represented by SEQ ID NO: 2 (ZHD101; see Example), which is one embodiment of the zearalenone detoxifying enzyme of the present invention, has sufficient activity in a highly alkaline environment at pH 9.5. It was shown that. Further, ZHD101 has P H 7. 0 even some activity, whereas pH 4. At low pH, such as below 5 was found to be non-reversibly deactivated. As described above, the zearalenone detoxifying enzyme of the present invention exhibits, as one feature, a bias toward the alkaline side at an optimum pH. That is, the zearalenone detoxifying enzyme of the present invention has activity at pH 6 to 11, preferably at pH 9 to 10.5.
7 . ゼァラレノン解毒酵素によるゼァラレノンの解毒 7. Detoxification of zearalenone by zearalenone detoxifying enzyme
本発明のゼァラレノン解毒酵素、 及び該ゼァラレノン解毒酵素遺伝子を含む細 胞又はトランスジエニック植物を用いて、 ゼァラレノンの毒性を抑制することが できる。 ゼァラレノンの毒性を抑制するためには、 本発明のゼァラレノン解毒酵 素を含む反応溶液又は該ゼァラレノン解毒酵素遺伝子を含む細胞の培養物を、 ゼ ァラレノン又はゼァラレノンを含む溶液に対して直接適用してもよいし、 ゼァラ レノンが付着した材料 (植物体、 穀粒、 果実、 土壌又は天然若しくは人工基材等 ) に適用してもよい。 ゼァラレノン解毒酵素遺伝子を含むトランスジヱニック植 物を使用する場合には、 赤かび病感染の恐れがある地域で栽培することによりゼ ァラレノン汚染を低減させてもよいし、 ゼァラレノンで汚染された土壌又は環境 水 (地下水、 下水、 雨水、 河川水又は栽培用水等) にて栽培することにより、 周 囲環境に含有されるゼァラレノ.ンの毒性を抑制してもよい。  The toxicity of zearalenone can be suppressed by using the zearalenone detoxification enzyme of the present invention and cells or transgenic plants containing the zearalenone detoxification enzyme gene. In order to suppress the toxicity of zearalenone, a reaction solution containing the zearalenone detoxification enzyme of the present invention or a culture of cells containing the zearalenone detoxification enzyme gene may be directly applied to a solution containing zearalenone or zearalenone. Alternatively, the present invention may be applied to a material (plant, grain, fruit, soil, natural or artificial base, etc.) to which zearalenone is attached. When using transgenic plants containing the zearalenone detoxification enzyme gene, cultivation in an area where there is a risk of Fusarium head blight infection may reduce zearalenone contamination, or soil contaminated with zearalenone Alternatively, cultivation in environmental water (groundwater, sewage, rainwater, river water or cultivation water, etc.) may suppress the toxicity of zearalenone contained in the surrounding environment.
本発明のゼァラレノン解毒酵素の活性の確認を行うためには、 まずゼァラレノ ン解毒酵素遺伝子を有する形質転換体を培養し、 その培養物から得た酵素液をゼ ァラレノンが含まれる溶液に添加する。 これを例えば 37°Cでー晚ィンキュベート することによって酵素反応を進行させ、 この反応物を例えば TLCで分析したとき 、 ゼァラレノンが消費され、 かつ移動度の異なる生成物が生じている結果を確認 できた場合には、 ゼァラレノン解毒酵素の活性が示されたと考えることができる また本発明のゼァラレノン解毒酵素遺伝子を有する形質転換体のゼァラレノン 解毒活性の確認を行うためには、 まずその形質転換体をゼァラレノン存在下で塔 養し、 その培養物から抽出物を得る。 そしてその抽出物について、 例えば TLCで 分析したとき、 ゼァラレノンが消費され、 かつ移動度の異なる生成物が生じてい る結果を確認できた場合には、 ゼァラレノン解毒酵素の活性が示されたと考える ことができる。 In order to confirm the activity of the zearalenone detoxifying enzyme of the present invention, first, a transformant having a zearalenone detoxifying enzyme gene is cultured, and an enzyme solution obtained from the culture is added to a solution containing zearalenone. The enzyme reaction is allowed to proceed by incubating the mixture at, for example, 37 ° C. When the reaction product is analyzed by, for example, TLC, it can be confirmed that zearalenone is consumed and products having different mobilities are generated. In this case, it can be considered that the activity of zearalenone detoxifying enzyme was shown. In order to confirm the zearalenone detoxification activity of the transformant having the zearalenone detoxification enzyme gene of the present invention, first, the transformant is cultured in the presence of zearalenone, and an extract is obtained from the culture. When the extract is analyzed by, for example, TLC, and the results indicate that zearalenone is consumed and products with different mobilities are generated, it is considered that the activity of zearalenone detoxifying enzyme was indicated. it can.
本発明のゼァラレノン解毒酵素の触媒反応により、 ゼァラレノンから生成され る化合物は、 NMR分析及び質量分析 (FAB-MS、 EI - MS等) にかけることができる。 これらの分 を行うことによって、 該化合物の化学構造を決定することが可能で ある。 これらの分析法は公知であり、 NMR測定機及び質量分析計の製造業者の説 明書に従って実施することができる。 NMR分析及び質量分析の一般的な教科書と しては、 例えば 「有機化学のためのスぺク トル解析法 UV, IR, 丽 R, MSの解説 と演習」 (M. Hesse著 東京化学同人) 等が挙げられる。  The compound produced from zearalenone by the catalytic reaction of the zearalenone detoxifying enzyme of the present invention can be subjected to NMR analysis and mass spectrometry (FAB-MS, EI-MS, etc.). By performing these determinations, the chemical structure of the compound can be determined. These analytical methods are known and can be performed according to the manufacturer's instructions of the NMR spectrometer and the mass spectrometer. A general textbook on NMR analysis and mass spectrometry is, for example, “Explanation and Exercise of UV, IR, IR, and MS for Spectrum Analysis for Organic Chemistry” (M. Hesse, Tokyo Chemical Doujinshi) And the like.
本発明のゼァラレノン解毒酵素の触媒反応により、 ゼァラレノンから生成され る化合物 (ゼァラレノン由来解毒生成物と称する) について、 エス トロゲン様活 性の測定を行うことができる。 ゼァラレノン由来解毒生成物がエストロゲン様活 性を有しないことが確認された場合、 ゼァラレノン由来解毒生成物を生成させた ゼァラレノン解毒酵素は、 「ゼァラレノンの毒性を抑制する作用を有する」 と判 断してよい。 エス トロゲン様活性の測定は、 当業者が使用可能な様々な手法を用 いることができるが、 例えば、 ヒ ト乳がん細胞 MCF - 7に対する細胞増殖促進作用 を指標として測定することができる。  The estrogen-like activity of a compound produced from zearalenone (referred to as zearalenone-derived detoxification product) by the catalytic reaction of the zearalenone detoxifying enzyme of the present invention can be measured. When it is confirmed that the zearalenone-derived detoxification product does not have estrogen-like activity, it is determined that the zearalenone-derived detoxification enzyme has an action of suppressing the toxicity of zearalenone. Good. Various techniques available to those skilled in the art can be used to measure the estrogen-like activity. For example, the estrogen-like activity can be measured using, as an index, the cell growth promoting effect on human breast cancer cells MCF-7.
ヒ ト乳がん細胞 MCF - 7に対する細胞増殖促進作用の測定は、 次のようにして行 うことができる。 まず、 ヒト乳がん細胞 MCF- 7を、 例えばフエノールレッド、 L- グルタミン(2 mM)、 ペニシリ ン(50ユニッ ト/ ml)、 ス トレプトマイシン(50 g/ml )及ぴ 10%ゥシ胎児血清(FCS)を添加した RPMI- 1640培地にて、 5 %C02を含む加湿 空気中で 37°Cで培養する。 培養した上記細胞は、 フエノールレッ ド不含 RPMI培地 中に 1ゥエル当たり例えば 5 X 103細胞を接種する。 これを 37°Cで 20時間培養した 後、 培地を同種の培地に交換し、 この培養物に、 試験化合物 、 ゼァラレノン由来解毒生成物、 又は 17 -エストラジオールを様々な濃度で添 加して、 さらに 120時間培養する。 次いで、 発色反応により細胞数を評価する。 発色反応には、 2- (2-メ トキシ- 4 -二トロフエ二ル)- 3- (4-ニトロフエ二ル)- 5- (2, 4 -ジスルホフエ二ル)- 2Η-テトラゾリゥムのーナトリゥム塩である、 WST - 8™ (Na kalai Tesque, Kyoto) を使用することができる。 そして最後に、 各ゥエルの吸 光度 (A450) を、 ί列え iiWal lac 1420マノレチラべノレカウンター (Araersham Biosci e nces) によって測定する。 本発明では、 限定するものではないが、 既知のェス ト ロゲンである 17 -エストラジオール (0. 1 ηΜ)を対照として使用することができ る。 The cell growth-promoting effect on human breast cancer cells MCF-7 can be measured as follows. First, human breast cancer cells, MCF-7, were converted to, for example, phenol red, L-glutamine (2 mM), penicillin (50 units / ml), streptomycin (50 g / ml) and 10% fetal serum. (FCS) in the added RPMI-1640 medium, cultured at 37 ° C for humidified air containing 5% C0 2. The cultured cells are inoculated with, for example, 5 × 10 3 cells / well in RPMI medium without phenol red. After incubating this at 37 ° C for 20 hours, the medium was replaced with the same type of medium, and the test compound , Zaralenone-derived detoxification product, or 17-estradiol at various concentrations, and further culture for 120 hours. Next, the number of cells is evaluated by a color reaction. For the color reaction, the sodium salt of 2- (2-methoxy-4-nitrophenyl) -3- (4-nitrophenyl) -5- (2,4-disulfofenyl) -2-tetrazolium is used. Some WST-8 ™ (Na kalai Tesque, Kyoto) can be used. Finally, the absorbance of each Ueru (A 450), measured by ί column e iiWal lac 1420 Manorechira base Honoré counter (Araersham Biosci e nces). In the present invention, 17-estradiol (0.1 ηΜ), which is a known ester, can be used as a control without limitation.
17 -エストラジオールを試験化合物として添加すると、 何も添加しない対照 と比較して、 細胞数が平均約 250%増大することがわかっている。 ゼァラレノン を添加した場合には、 17 ]3 -エストラジオールと同程度の細胞数を示す。 本発明 においては、 試験化合物を添加しない場合の細胞数(Α)に対する、 試験化合物を 添加する場合の細胞数(Β)の比率 ([ (B) / (A) ] X 100 (%) ;本発明ではこの値を細 胞増殖促進比率と称する) 力 0%〜150%、 好ましくは 80%〜120%であれば、 そ の試験化合物に関して細胞増殖促進作用がみられないものとする。 そして本発明 においては、 該試験化合物について、 細胞増殖促進作用がみられないことはエス トロゲン様活性を有しないものと判断することができる。 したがって、 上記のゼ ァラレノン由来解毒生成物を試験化合物として添加する場合に、 細胞増殖促進作 用がみられなければ、 該ゼァラレノン由来解毒生成物はエス トロゲン様活性を有 しない化合物である。 このようにしてゼァラレノン由来解毒生成物がエストロゲ ン様活性を有しないことが確認されれば、 該ゼァラレノン由来解毒生成物を生成 したゼァラレノン解毒酵素は、 ゼァラレノンを基質としてエストロゲン様活性を 有しない化合物を生成できることが示される。 すなわち、 ゼァラレノン由来解毒 生成物がエス トロゲン様活性を有しないことを確認することによって、 本発明の ゼァラレノン解毒酵素について、 ゼァラレノンの毒性を抑制する作用を有するタ ンパク質であることを確認することができる。 但し、 本発明のゼァラレノン解毒 酵素がゼァラレノンの毒性を抑制する作用を有することの判定は、 ゼァラレノン 由来解毒生成物がエストロゲン様活性を有しないことの確認によるものだけに限 定されるものではない。 図面の簡単な説明 It has been found that the addition of 17-estradiol as a test compound increases the cell number on average by about 250% compared to a control without any addition. When zearalenone is added, the cell number is comparable to that of 17] 3-estradiol. In the present invention, the ratio of the number of cells (Β) when the test compound is added to the number of cells (Α) when the test compound is not added ([(B) / (A)] × 100 (%); In the present invention, this value is referred to as the cell growth promoting ratio.) If the force is 0% to 150%, preferably 80% to 120%, it is assumed that the test compound has no cell growth promoting effect. And, in the present invention, the absence of the cell growth promoting effect of the test compound can be judged to have no estrogen-like activity. Therefore, when the above-mentioned zearalenone-derived detoxification product is added as a test compound, if the cell growth promoting action is not observed, the zearalenone-derived detoxification product is a compound having no estrogenic activity. In this manner, if it is confirmed that the zearalenone-derived detoxification product does not have estrogen-like activity, the zearalenone-detoxification enzyme that has produced the zearalenone-derived detoxification product can use a zearalenone-based compound that has no estrogen-like activity. It shows that it can be created. That is, by confirming that the zearalenone-derived detoxification product does not have an estrogen-like activity, it is possible to confirm that the zearalenone detoxification enzyme of the present invention is a protein having an action of suppressing the toxicity of zearalenone. it can. However, the determination that the zearalenone detoxifying enzyme of the present invention has the activity of suppressing the toxicity of zearalenone is limited only to the confirmation that the zearalenone-derived detoxification product has no estrogenic activity. It is not specified. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 IF07063株由来の培養上清のゼァラレノンに対する加水分解活性を検 出した TLCのデータを示す写真である。 レーン 1、 培養上清サンプル; レーン 2 、 陰性対照; レーン 3、 ゼァラレノン標準サンプル。  FIG. 1 is a photograph showing TLC data obtained by detecting the hydrolysis activity of a culture supernatant derived from the IF07063 strain on zearalenone. Lane 1, culture supernatant sample; Lane 2, negative control; Lane 3, zearalenone standard sample.
図 2は、 リジルェンドぺプチダーゼによりぺプチド断片化した ZHD101のの HPLC プロファイルを示す図である。  FIG. 2 is a view showing an HPLC profile of ZHD101 fragmented by peptide with lysylendopeptidase.
図 3は、 アミノ酸配列に基づき ZHD101の部分 DNA断片を増幅するための PCRプラ イマーセットを示す。  FIG. 3 shows a PCR primer set for amplifying a partial DNA fragment of ZHD101 based on the amino acid sequence.
図 4は、 大腸菌 DE3中で T7転写/発現系により発現させた組換え ZHD101の SDS- P AGEの結果を示す写真である。 レーン 1は野生型 DE3のホモジェネートサンプ Λ^、 レーン 2は pET12- zhdlOlを有する DE3 (开質転換体) のホモジヱネートサンプル 、 レーン 3は形質転換体のホモジヱネートの沈殿サンプル、 レーン 4は形質転換 体のホモジェネートの可溶性分画、 レーン 5は IF07063株から直接に抽出精製し た ZHD101、 レーン 6は分子量マーカーである。  FIG. 4 is a photograph showing the results of SDS-PAGE of recombinant ZHD101 expressed by the T7 transcription / expression system in E. coli DE3. Lane 1 is a homogenate sump of wild-type DE3, lane 2 is a homogenate sample of DE3 (transformant) having pET12-zhdlOl, lane 3 is a precipitate sample of a homogenate of the transformant, and lane 4 is a transformant Lane 5 is the ZHD101 directly extracted and purified from IF07063 strain, and Lane 6 is the molecular weight marker.
図 5は、 組換え発現された ZHD101の TLCの結果を示す写真である。 レーン 1は 野生型 DE3のホモジェネートをゼァラレノンと処理したもの、 レーン 2は pET12- z hdlOlを有する DE3 (形質転換体) のホモジヱネートをゼァラレノンと処理したも の、 レーン 3はゼァラレノン標準物である。  FIG. 5 is a photograph showing the results of TLC of recombinantly expressed ZHD101. Lane 1 is a homogenate of wild-type DE3 treated with zearalenone, lane 2 is a homogenate of DE3 (transformant) having pET12-zhdlOl treated with zearalenone, and lane 3 is a standard zearalenone.
図 6は、 ZHD101の α -ゼァラレール、 -ゼァラレールに対する加水分解活性を 検出した TLCのデータを示す写真である。 レーン 1、 ZHD101処理 α -ゼァラレール サンプル ; レーン 2、 α -ゼァラレールに対する陰性対照 ; レーン 3、 α -ゼァラ レール標準物、 レーン 4、 ZHD101処理 _ゼァラレールサンプル; レーン 5、 β - ゼァラレールに対する陰性対照; レーン 6、 _ゼァラレール標準物。 FIG. 6 is a photograph showing TLC data in which the hydrolysis activity of ZHD101 for α-zararail and -zararail was detected. Lane 1, ZHD101 treated α-zararail sample; lane 2, negative control for α -zararail; lane 3, α-zararail standard, lane 4, ZHD101 treated _ zararail sample; lane 5, negative for β-zararail Control; Lane 6, _ Zararail standard.
図 7は、 ゼァラレノンがゼァラレノン分解酵素 ZHD101によって分解されてゼァ ラレノン分解産物が生成することを化学式を用いて示している。  FIG. 7 shows, using a chemical formula, that zearalenone is degraded by the zearalenone degrading enzyme ZHD101 to generate a zearalenone degradation product.
図 8は、 ゼァラレノン及ぴゼァラレノン分解産物のヒ ト乳がん細胞 MCF- 7に対 する細胞増殖促進作用を示す。 添加したゼァラレノン(擊)又はゼァラレノン分解 産物(國)の濃度に対する、 3 7°Cで 1 20時間のインキュベート後の細胞数を示 している。 結果は平均値士 S.D.で示す。 FIG. 8 shows the cell growth promoting effect of zearalenone and a zearalenone degradation product on human breast cancer cells MCF-7. Added zearalenone (擊) or zearalenone decomposition The number of cells after incubation at 37 ° C for 120 hours against the concentration of the product (country) is shown. The results are shown as the average value SD.
図 9は、 zhdlOl遺伝子導入用ベクター pWheat - egfp: :zhdl01の構築工程を示す 概略図である。  FIG. 9 is a schematic diagram showing the steps of constructing the zhdlOl gene transfer vector pWheat-egfp :: zhdl01.
図 1 0は、 egfp::zhdl01遺伝子が導入された形質転換体 (トランスジエニック カルス) の蛍光顕微鏡下での観察写真である。  FIG. 10 is a photograph of a transformant (transgenic callus) into which the egfp :: zhdl01 gene has been introduced, observed under a fluorescence microscope.
図 1 1は、 egfp: :zhdl01遺伝子を導入したイネ再生体の写真である。  FIG. 11 is a photograph of a regenerated rice plant into which the egfp :: zhdl01 gene has been introduced.
図 1 2は、 egfp: :zhdl01遺伝子を導入したトランスジヱニック個体のゥエスタ ンブロット分析の結果を示す写真である。 最も左側は分子量マーカー、 レーン 1 は野生型イネ葉より抽出したサンプル、 レーン 2は再生体 No 14、 レーン 3は再生 体 No 54、 レーン 4は再生体 No 68、 レーン 5は再生体 No 71、 レーン 6は再生体 No 7 6、 レーン 7は再生体 No 79、 レーン 8は再生体 No 79、 レーン 9は組み換え EGFP:: ZH D101タンパク質の結果を示す。  FIG. 12 is a photograph showing the result of the easter blot analysis of a transgenic individual into which the egfp :: zhdl01 gene has been introduced. The leftmost is the molecular weight marker, lane 1 is a sample extracted from wild-type rice leaves, lane 2 is regenerated No. 14, lane 3 is regenerated No. 54, lane 4 is regenerated No. 68, lane 5 is regenerated No. 71, Lane 6 shows the results of regenerated body No. 76, lane 7 shows the results of regenerated body No. 79, lane 8 shows the results of regenerated body No. 79, and lane 9 shows the results of recombinant EGFP :: ZH D101 protein.
図 1 3は、 egfp: :zhdl01遺伝子導入懸濁培養細胞を培養した培地からの抽出物 の TLC分析の結果を示す写真である。 レーン 1はゼァラレノン標準物、 レーン 2は 遺伝子導入細胞を培養したゼァラレノン含有培養培地からの抽出物、 レーン 3は 野生型細胞を培養したゼァラレノン含有培養培地からの抽出物、 レーン 4はゼァ ラレノン含有 LS培地からの抽出物、 レーン 5は LS培地のみからの抽出物の結果を 示す。  FIG. 13 is a photograph showing the result of TLC analysis of the extract from the medium in which the egfp :: zhdl01 gene-introduced suspension cultured cells were cultured. Lane 1 is the zearalenone standard, Lane 2 is the extract from the culture medium containing zearalenone in which the transfected cells have been cultured, Lane 3 is the extract from the culture medium containing zearalenone in which wild-type cells have been cultured, and Lane 4 contains zearalenone. The extract from the LS medium, lane 5 shows the result of the extract from the LS medium alone.
図 14は、 培養期間における培地中のゼァラレノン量の変化を示すグラフであ る。 グラフ中、 「♦」 「◊」 「X」 は、 egfp: :zhdl01導入懸濁培養細胞の培養培 地についてのゼァラレノン量、 「秦」 「口」 「酾」 は、 野生型懸濁培養細胞の培 養培地についてのゼァラレノン量、 ▲は、 細胞不含のゼァラレノン含有培地のゼ ァラレノン量を示す。 ♦及ぴ拿は培地中のゼァラレノン量、 ◊及ぴロは細胞が含 有するゼァラレノン量、 X及ぴ騸は残存ゼァラレノン量を表す。 本明細書は、 本願の優先権の基礎である特願 2002 -84 1 3 9号及ぴ特願 200 2-3487 60号の明細書に記載された内容を包含する。 発明を実施するための最良の形態 . FIG. 14 is a graph showing changes in the amount of zearalenone in the medium during the culture period. In the graph, “♦”, “◊” and “X” indicate the amount of zearalenone in the culture medium of egfp :: zhdl01-introduced suspension culture cells, and “Hata”, “mouth” and “酾” indicate the wild-type suspension culture cells. The amount of zearalenone in the culture medium, and the open triangle indicates the amount of zearalenone in the cell-free zearalenone-containing medium. ♦ and ぴ indicate the amount of zearalenone in the medium, ◊ and ぴ indicate the amount of zearalenone contained in the cells, and X and ぴ 騸 indicate the amount of residual zearalenone. This description includes part or all of the contents as disclosed in the description of Japanese Patent Application No. 2002-84139 and Japanese Patent Application No. 2003-248760, which are the basis of the priority of the present application. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 実施例を用いて本発明をさらに具体的に説明する。 但し、 本発明の技術 的範囲はこれら実施例に限定されるものではない。  Hereinafter, the present invention will be described more specifically with reference to examples. However, the technical scope of the present invention is not limited to these examples.
[実施例 1 ]ゼァラレノン分解能を有する微生物の単離  [Example 1] Isolation of microorganisms having zearalenone resolution
(1)スクリ一二ング対象菌株  (1) strains to be screened
抗生物質単離株 2 0 9種及び 3 1種の微生物菌株を、 I F O (Institute for Fermentation, Osaka, j apan) 乂は J C M (Japan Col lect ion of Mi croorgani s ms, RIKEN) の各分讓機関から入手した。 これらの各菌株に対し、 ゼァラレノン 分解能についてランダムスクリ一二ングを行った。  Antibiotic isolates 209 and 31 microbial strains were collected by IFO (Institute for Fermentation, Osaka, Japan) and JAI (Japan Collection of Microorganisms, RIKEN). Obtained from. Each of these strains was randomly screened for zearalenone resolution.
(2)ゼァラレノン分解能に関する微生物菌株のスクリ一二ング  (2) Screening of microbial strains for zearalenone resolution
100 ppmのゼァラレノン (Sigma, St. Loui s, MI) を含有する 100mlの YG 培地 (0. 5% yeast extract, 2% glucose, pH 7. 0) に各菌株を接種し、 室温で 1週間 にわたり培養した。 この培養物を 6, OOOrpmで 5分間遠心分離して培養上清を分離 し、 この培養上淸をクロ口ホルムで抽出した。 この抽出液を濃縮して TLCプレー トにのせ、 溶媒としてクロ口ホルム : アセトン 80 : 20を用いて展開槽にて展開し た。 この TLCプレートについて、 UVランプ (UV 254nm) 下で検出を行った。 その 結果、 IF07063株について、 ゼァラレノンの分解産物とみられるスポッ トを検出 することができた。 本スクリ一二ングにおける IF07063株についての TLCのデータ を図 1に示す。 図 1のレーン 3には、 対照として、 ゼァラレノン (Sigma, St. L oui s, MI) を標準サンプルとして適用して得た、 ゼァラレノンのスポッ トが示さ れている。 またレーン 2には、 陰性対照として、 バッファーにゼァラレノン (Si gma, St. Loui s, MI) を添加してインキュベートしたものを適用して得た、 ゼァ ラレノンのスポットが示されている。 そしてレーン 1では、 IF07063株の培養上 清から抽出したサンプルを適用したところ、 ゼァラレノンの分解産物とみられる スポッ トが検出された。 該レーン 1には、 レーン 2及び 3に示されたゼァラレノ ンのスポットと同程度の移動度のスポッ トは示されておらず、 代わりに該スポッ トよりも移動度が小さいスポットが示されている。 レーン 2及ぴ 3に示されたゼ ァラレノンの Rf値はおよそ 0. 8であるのに対し、 レーン 1に示された物質の Rf値 はおよそ 0. 2であった。 レーン 1に、 移動度がより小さいスポットのみが示され たことは、 レーン 1に対応する IF07063株の培養上清が有する加水分解活性によ つて、 ゼァラレノンの分子構造が変化したことを意味する。 従って、 レーン 1に 対応する IF07063株の培養上清にはゼァラレノン分解酵素が含まれる可能性があ る。 100 ml of YG medium (0.5% yeast extract, 2% glucose, pH 7.0) containing 100 ppm zearalenone (Sigma, St. Louis, MI) was inoculated with each strain and allowed to stand at room temperature for 1 week. Cultured. The culture was centrifuged at 6, OOOrpm for 5 minutes to separate the culture supernatant, and the culture supernatant was extracted with a black-mouthed form. This extract was concentrated, placed on a TLC plate, and developed in a developing tank using 80:20 chloroform: acetone as a solvent. This TLC plate was detected under a UV lamp (UV 254 nm). As a result, spots that could be considered as degradation products of zearalenone were detected in IF07063 strain. Figure 1 shows the TLC data for the IF07063 strain in this screening. Lane 3 of FIG. 1 shows spots of zearalenone obtained by applying zearalenone (Sigma, St. Louis, MI) as a standard sample as a control. Lane 2 shows, as a negative control, a spot of zearalenone, which was obtained by applying a buffer incubated with zearalenone (Sigma, St. Louis, MI). In lane 1, when a sample extracted from the culture supernatant of the IF07063 strain was applied, spots that were considered to be degradation products of zearalenone were detected. The lane 1 does not show spots of similar mobility to the spots of zearalenone shown in lanes 2 and 3, but instead shows spots of lower mobility than the spots. I have. The Rf value of zearalenone shown in lanes 2 and 3 was approximately 0.8, whereas the Rf value of the material shown in lane 1 was approximately 0.2. Lane 1 shows only the smaller mobility spots This means that the molecular structure of zearalenone was changed by the hydrolysis activity of the culture supernatant of the IF07063 strain corresponding to lane 1. Therefore, the culture supernatant of the IF07063 strain corresponding to lane 1 may contain zearalenone-degrading enzyme.
このような TLCの結果に基づき、 IF07063株をゼァラレノン分解能を有する菌株 の候補として同定した。 この IF07063株は、 I F O (Institute for Ferraentatio n, Osaka, Japan) から分譲されたものであり、 クロノスタキス ' ロゼァ(Clonos tachys rosea)に分類される。 I F O生物資源データベースにはこの菌について より詳細な情報が示されており、 その情報に基づけば、 この菌株は例えば、 2 4 °Cにてポテトスクロース寒天培地 (PSA培地;ポテト 200g、 スクロース 20g、 蒸 留水 1 L、 寒天 20g, pH 5.6) の培養条件にて培養することができる。  Based on such TLC results, IF07063 strain was identified as a candidate strain having zearalenone resolution. This IF07063 strain was obtained from IFO (Institute for Ferraentation, Osaka, Japan) and is classified as Clonos tachys rosea. The IFO Biological Resources Database provides more detailed information on this bacterium, and based on that information, this strain can be used, for example, at 24 ° C for potato sucrose agar (PSA medium; potato 200 g, sucrose 20 g, Culture can be performed under the conditions of 1 L of distilled water, 20 g of agar, and pH 5.6).
[実施例 2 ]IF07063株からのゼァラレノン分解酵素の抽出及び精製 [Example 2] Extraction and purification of zearalenone-degrading enzyme from IF07063 strain
(1)ゼァラレノン分解酵素の抽出及び精製  (1) Extraction and purification of zearalenone degrading enzyme
クロノスタキス · ロゼァ(Clonostachys rosea) IF07063株を、 100 ppmのゼァラ レノン (Sigma, St. Louis, Ml) を含有する YG培地 (0.5% yeast extract, 2% g lucose, pH 7.0) 100ml中で、 室温で 1週間にわたり培養した。 その後、 該培養 物を 25 ppmのゼァラレノンを含有する上記 YG培地 1 Lに植え継ぎ、 室温で 1週間 にわたり培養した。 細胞を濾過により回収し、 それを液体窒素で破碎し、 さらに 超音波破碎処理した。 次に細胞破片を 5, OOOXgによってスピンダウンし、 硫酸ァ ンモニゥムを 40〜60%の飽和度で上清に添加した。 10, 000 X gで 1時間にわたる 遠心分離によって得られた沈殿物を、 4 °Cで lOmM Tris-HCl (pH 7.5)に対して透 析した。 次いで透析したサンプルを HiTrapQカラムに適用し、 NaClの線形濃度勾 配 (0〜: IM、 5ml/分、 20分) を示すような 10mM Tris- HC1 (pH 7.5)によって溶出し た。  Clonostachys rosea IF07063 strain was placed in 100 ml of YG medium (0.5% yeast extract, 2% g lucose, pH 7.0) containing 100 ppm of zearalenone (Sigma, St. Louis, Ml) at room temperature. For one week. Thereafter, the culture was subcultured in 1 L of the above YG medium containing 25 ppm of zearalenone, and cultured at room temperature for 1 week. Cells were collected by filtration, crushed with liquid nitrogen, and further sonicated. The cell debris was then spun down with 5, OOOXg, and ammonium sulfate was added to the supernatant at a saturation of 40-60%. The precipitate obtained by centrifugation at 10,000 × g for 1 hour was permeated at 4 ° C. against 10 mM Tris-HCl (pH 7.5). The dialyzed sample was then applied to a HiTrapQ column and eluted with 10 mM Tris-HCl (pH 7.5) showing a linear concentration gradient of NaCl (0-: IM, 5 ml / min, 20 min).
ここで得られた溶出分画を、 それぞれ in vitroでのゼァラレノン加水分解試験 に供し、 その後 TLCにてゼァラレノンに対する加水分解活性について調べた。 ゼ ァラレノン加水分解試験は、 各溶出分画にゼァラレノン 25 を加えて 37。Cにて ー晚インキュベートして行った (lOOmM Tris - HCl (pH 9.5), 総容量 ΙΟΟμ Ι) 。 次 いでその反応液からクロ口ホルムによる抽出を行い、 その抽出物の一部を採取しEach of the eluted fractions obtained here was subjected to an in vitro zearalenone hydrolysis test, and then the hydrolysis activity on zearalenone was examined by TLC. In the zearalenone hydrolysis test, zearalenone 25 was added to each eluted fraction37. Incubation was carried out at 晚 C (100 mM Tris-HCl (pH 9.5), total volume ΙΟΟμΙ). Next Then, the reaction mixture was extracted with black form and a part of the extract was collected.
、 TLCプレ一ト (Merck, シリカゲノレ 60 F254) にチャージし、 溶媒としてクロ口 ホルム: アセトン 80 : 20 (体積比) を用いて展開槽にて展開した。 この TLCプレ ートについて、 UVランプ (UV 254nm) 下で検出を行った。 その結果、 ゼァラレノ ンの分解産物とみられるスポットを検出することができた溶出分画を選択するこ とができた。 ゼァラレノンの分解産物とみられるスポットの検出結果は、 図 1と 同様であった。 対照としてゼァラレノン (Sigma, St. Louis, Ml) を標準サンプ ルとして適用した結果、 ゼァラレノンのスポッ トが観察された。 陰性対照として は、 バッファーにゼァラレノン (Sigma, St. Louis, Ml) 25 μ gを添加して 37°C でー晚インキュベートしたサンプルを適用した結果、 ゼァラレノンのスポッ トが 観察された。 しかし、 溶出分画サンプルを用いた場合には、 対照及び陰性対照に おける前記のゼァラレノンのスポッ トと同程度の移動度のスポットは認められず 、 代わりに、 ゼァラレノンよりも移動度が小さいスポットが観察された。 従って 、 溶出分画に含まれるタンパク質は、 ゼァラレノン分解酵素であり得る。 なお蝕 媒性分画とは異なる溶出分画を用いたサンプルを適用した場合には、 ゼァラレノ ンと同じ移動度のスポットのみが示された。 このようにして同定されたゼァラレ ノン分解酵素を含み得る溶出分画 (触媒性分画) を、 酵素のさらなる精製のため に、 次の FPLC分離に供した。 Was charged into a TLC plate (Merck, silica gel 60 F 254 ), and developed in a developing tank using 80:20 (volume ratio) of form: acetone as a solvent. This TLC plate was detected under a UV lamp (UV 254 nm). As a result, it was possible to select an eluted fraction in which spots that could be considered as degradation products of zearalenone could be detected. The detection results for spots that appeared to be degradation products of zearalenone were the same as in Figure 1. As a control, zalalenone (Sigma, St. Louis, Ml) was applied as a standard sample, and spots of zearalenone were observed. As a negative control, a sample obtained by adding 25 μg of zearalenone (Sigma, St. Louis, Ml) to the buffer and incubating at 37 ° C. was applied. As a result, spots of zearalenone were observed. However, when the eluted fraction sample was used, no spot having the same mobility as the spot of zearalenone in the control and the negative control was observed, and instead, a spot having a lower mobility than zearalenone was found. Was observed. Therefore, the protein contained in the eluted fraction may be zearalenone degrading enzyme. In addition, when a sample using an elution fraction different from the lyophilic fraction was applied, only spots having the same mobility as zearalenone were shown. The eluted fraction (catalytic fraction) that could contain the zearalenone degrading enzyme thus identified was subjected to the next FPLC separation for further purification of the enzyme.
言亥角虫媒个生分画を FP1 (AKTAエクスプローラ, Amersham Pharmaci a Biotech, Bu ckingharashire, UK) によってさらに分離した。 FPLC分離においては、 ゲル濾過 カラム (Superdex75 HR 10/30, Amersham Pharmacia Biotech) に該溶出分画を 適用し、 0. 1M NaClを含む 10mM Tri s-HCl (pH 7· 5)によって溶出した。 この FPLCに よって得られるこれらの溶出分画についても、 上述の TLCに供して、 さらに触媒 性分画を選択した。 この FPLCから得られる溶出分画を用いた TLCにおいても、 上 記と同様の結果が得られた。  The individual fractions of the hornworm hornworm were further separated by FP1 (AKTA Explorer, Amersham Pharmacia Biotech, Buckingharashire, UK). In the FPLC separation, the elution fraction was applied to a gel filtration column (Superdex75 HR 10/30, Amersham Pharmacia Biotech), and eluted with 10 mM Tris-HCl (pH 7.5) containing 0.1 M NaCl. These eluted fractions obtained by this FPLC were also subjected to the above-mentioned TLC to further select a catalytic fraction. The same results as above were obtained in TLC using the eluted fraction obtained from this FPLC.
さらに、 選択した触媒性分画を、 イオン交換カラム (MonoQ, Amersham Pharma cia ' Biotech) に適用し、 続いて NaClの線形濃度勾配 (0〜0. 5M) を有する lOmM T ri s-HCl (PH 7. 5)により、 流速 0. 4ml/分にて 50分間にわたり溶出した。 このィォ ン交換カラム MonoQを使用した精製工程は、 2回繰り返した。 触媒性分画の上記 T LCによる選択は 1回目の MonoQ精製工程の後にも行い、 選択された溶出分画を次 の 2回目の MonoQ精製工程に供してさらなる精製タンパク質を得た。 そしてこの 2回目の MonoQ精製工程により得られた精製タンパク質を、 ゼァラレノン分解酵 素として以後の実験に用いた。 またこのタンパク質を、 ZHD101と命名した。 In addition, the selected catalytic fraction was applied to an ion exchange column (MonoQ, Amersham Pharmacia 'Biotech), followed by lOmM Tris-HCl ( P ) with a linear concentration gradient of NaCl (0-0.5M). According to H7.5), elution was performed at a flow rate of 0.4 ml / min for 50 minutes. The purification process using this ion exchange column MonoQ was repeated twice. The above T of the catalytic fraction LC selection was also performed after the first MonoQ purification step, and the selected eluted fractions were subjected to the second MonoQ purification step to obtain further purified proteins. The purified protein obtained in the second MonoQ purification step was used as zearalenone-degrading enzyme in subsequent experiments. This protein was named ZHD101.
[実施例 3 ]ゼァラレノン分解酵素の部分アミノ酸配列決定 [Example 3] Partial amino acid sequencing of zearalenone degrading enzyme
実施例 2に従って精製した ZHD101を、 リジルエンドべプチダーゼ (TAKARA, Ky oto, JAPAN) によって 2 M尿素を添加して 37°Cで 1時間かけて消化した。 その反 応混合物を、 逆相カラムである VP304- 1251 (Senshu Kagaku, Tokyo, JAPAN) を 用いる HPLCによってペプチド断片毎に分離した。 該 HPLCは以下の条件で実施した :流速は l ml/分、 60分間にわたる濃度勾配として Bを 0%〜60% (A : 0. 1 %ト リフルォロ酢酸水溶液、 B : 0. 08%トリフルォロ酢酸ァセトニトリル溶液) 。 な ぉぺプチドの検出は 225nmで行った。  ZHD101 purified according to Example 2 was digested with lysyl endopeptidase (TAKARA, Kyoto, JAPAN) at 37 ° C. for 1 hour with addition of 2 M urea. The reaction mixture was separated for each peptide fragment by HPLC using a reverse-phase column, VP304-1251 (Senshu Kagaku, Tokyo, JAPAN). The HPLC was performed under the following conditions: a flow rate of 1 ml / min, a concentration gradient of B from 0% to 60% (A: 0.1% aqueous solution of trifluoroacetic acid, B: 0.08% trifluoroacetic acid). Acetonitrile solution). The peptide was detected at 225 nm.
HPLCの結果、 7つの主ピーク (p - 12、 p - 18、 p-24. 5、 p- 32· 5、 p - 34. 5、 p - 36· 5 、 p-39) が現れた (図 2 ) 。 そこで、 これらの 7つの主ピークの各々を、 12分、 18分、 24. 5分、 32. 5分、 34. 5分、 36. 5分、 39分に溶出させ、 手作業で回収した。 これらのぺプチド及ぴ全体タンパク質について、 製造業者の説明書に従って自動 タンノヽ。ク質シーケンサー Proci se HT 492 (Applied Biosystems, Inc. , Foster C ity, CA) を使用して、 エドマン分解によるアミノ酸配列決定を行った。  As a result of HPLC, seven main peaks (p-12, p-18, p-24.5, p-32.5, p-34.5, p-36.5, p-39) appeared (Fig. 2). Therefore, each of these seven main peaks was eluted at 12, 18, 24.5, 32.5, 34.5, 36.5, and 39 minutes and collected manually. For these peptides and whole protein, auto-tank according to the manufacturer's instructions. Amino acid sequencing by Edman degradation was performed using a quality sequencer, Procise HT 492 (Applied Biosystems, Inc., Foster City, CA).
[実施例 4 ]ゼァラレノン分解酵素遺伝子の単離 [Example 4] Isolation of zearalenone degrading enzyme gene
クロノスタキス · ロゼァ(Clonostachys rosea) IF07063株を、 100 ppmのゼァラ レノン (Sigma, St. Louis, MI) を含有する YG培地 (0. 5% yeast extract, 2% g lucose, pH 7. 0) 100ml中で、 室温で 1週間にわたり培養した。 この培養物から 、 RNeasy Miniキット (Qiagen GmbH, Hi 1 den Germany) を用いて全 RNAを抽出し 、 精製した。 この全 RNAを錶型として、 RT-PCR用 Superscript First-Strand Synt hesisシステム (Invitrogen, Groningen, The Nethrlands) を用いて、 逆早 写 PC R (RT-PCR) を行って cDNAを合成した。  Clonostachys rosea IF07063 strain in 100 ml of YG medium (0.5% yeast extract, 2% g lucose, pH 7.0) containing 100 ppm of zearalenone (Sigma, St. Louis, MI) And cultured for 1 week at room temperature. From this culture, total RNA was extracted and purified using the RNeasy Mini kit (Qiagen GmbH, Hi 1 den Germany). Using this total RNA as type II, cDNA was synthesized by reverse premature PCR (RT-PCR) using a Superscript First-Strand Synthesis System for RT-PCR (Invitrogen, Groningen, The Nethrlands).
次に、 実施例 3で決定した ZHD101の部分アミノ酸配列に基づき、 本発明の ZHD1 01を PCR増幅するためのプライマーを設計した。 5'プライマーとしては、 N末端 のアミノ酸配列に基づく 4種の 5'プライマー、 3'プライマーとしては、 実施例 3 の HPLCで得たピーク p-32. 5及ぴ P - 34. 5に相当するぺプチドのそれぞれのアミノ酸 配列に基づく 8種の 3'プライマー (図 3 ) を設計し、 化学合成した。 これらの 4 種の 5'プライマー及び 8種の 3'プライマーを組み合わせた 32通りのプライマー対 を別個に用い、 上記で作製した cDNAを铸型として、 以下の条件に従って PCR増幅 を実施した: 94°C (30秒) 、 55°C (30秒) 及び 72°C (1分) を 30サイクル。 得ら れた増幅産物は、 ァガロースゲル電気泳動により、 その増幅断片のサイズを確認、 した。 Next, based on the partial amino acid sequence of ZHD101 determined in Example 3, ZHD1 of the present invention Primers for PCR amplification of 01 were designed. The 5 ′ primer corresponds to four types of 5 ′ primers based on the N-terminal amino acid sequence, and the 3 ′ primer corresponds to peaks p-32.5 and P−34.5 obtained by HPLC in Example 3. Eight kinds of 3 'primers (Figure 3) based on the amino acid sequence of each peptide were designed and chemically synthesized. PCR amplification was performed under the following conditions using the above-prepared cDNA as type III using 32 different primer pairs combining these four 5 ′ primers and eight 3 ′ primers: 94 ° 30 cycles of C (30 seconds), 55 ° C (30 seconds) and 72 ° C (1 minute). The size of the amplified fragment of the obtained amplification product was confirmed by agarose gel electrophoresis.
その結果、 N 2 (5'プライマー) と 34. 5- 2 (3'プライマー) の組み合わせによ つて得られた増幅断片が最も大きく、 約 800bpであった。 一方 Ν 1〜4 (5'プライ マー)と 32. 5 -:!〜 32. 5-3 (3'プライマー)の組み合わせによつて得られた増幅断片 は約 550bpであった。 本実施例では N 2 (5'プライマー)と 34. 5- 2 (3'プライマー) の組み合わせによって得られた約 800bpの断片について DNA塩基配列決定を行った 。 まず、 この約 800bpの PCR増幅産物を、 pGEM - TEasyベタター (Promega, Madison , WI) 中にライゲーシヨンした。 この組換えベクターを用いてヒートショック法 により、 大腸菌 DH5 a (T0Y0B0, Osaka, JAPAN) を形質転換した。 この形質転換 体を適宜培養して得た培養物から、 組換えベクターをプラスミ ド精製キット (M0 BIO, Solana Beach, CA) により精製した。  As a result, the amplified fragment obtained by the combination of N 2 (5 ′ primer) and 34.5−2 (3 ′ primer) was the largest, about 800 bp. On the other hand, the amplified fragment obtained by the combination of Ν 1-4 (5 ′ primer) and 32.5-:!-32.5-3 (3 ′ primer) was about 550 bp. In this example, a DNA base sequence was determined for an approximately 800 bp fragment obtained by combining N 2 (5 ′ primer) and 34.5−2 (3 ′ primer). First, the approximately 800 bp PCR amplification product was ligated into pGEM-TEasy Better (Promega, Madison, WI). Using this recombinant vector, E. coli DH5a (T0Y0B0, Osaka, JAPAN) was transformed by the heat shock method. A recombinant vector was purified from a culture obtained by appropriately culturing the transformant using a plasmid purification kit (M0 BIO, Solana Beach, CA).
DNA配列決定には、 解析用ソフトウェア Sequencing analysis v. 3. 4. (Applied Biosystems)を組み込んだ ABI PRISM (R) 377 DNAシーケンサー、 及ぴ ABIキット( Applied Biosystems, Foster City, CA, USA)を用い、 製造業者の提供するプロ トコールに従って上記組換えベクターをサンプルとして用いて常法により行った zhdlOlの 5'端及ぴ 3'端の DNA領域の塩基配列を決定するために、 SMART RACE cD NA増幅キット (Clontech, Palo Alto, CA) を用いて RACE (cDNA末端高速増幅; r apid ampl ification of cDNA ends) を実施した。 手順は全て、 製造業者の提供 するプロトコールに従って実施した。 本実施例では、 5' -RACE PCR反応及ぴ 3' - RA CE PCR反応において、 以下のプライマーを設計し、 化学合成して用いた。 プライマー 1 : 5' - GGG CTT CCC ACG CAG AGC CTC CAG ATC CTT AAC— 3, (5' -RA CEの第 1 PCR用) (配列番号 I5) For DNA sequencing, use the ABI PRISM (R) 377 DNA sequencer incorporating the analysis software Sequencing analysis v. 3. 4. (Applied Biosystems) and the ABI kit (Applied Biosystems, Foster City, CA, USA). In order to determine the nucleotide sequence of the 5'-end and 3'-end DNA regions of zhdlOl, which was performed by a conventional method using the above recombinant vector as a sample according to the protocol provided by the manufacturer, SMART RACE cDNA amplification was performed. RACE (rapid amplification of cDNA ends) was performed using a kit (Clontech, Palo Alto, CA). All procedures were performed according to the protocol provided by the manufacturer. In this example, the following primers were designed and chemically synthesized for use in the 5′-RACE PCR reaction and the 3′-RACE PCR reaction. Primer 1: 5'-GGG CTT CCC ACG CAG AGC CTC CAG ATC CTT AAC—3, (for first PCR of 5'-RACE) (SEQ ID NO: I 5 )
プライマー 2 : 5' -CTC CGA GCC TCC AGA CAC GTC GTT CAA CAT TAC-3' (5,一 RA CEのネステイツ ド PCR用) (配列番号 16)  Primer 2: 5'-CTC CGA GCC TCC AGA CAC GTC GTT CAA CAT TAC-3 '(for nested PCR of 5, 1 RACE) (SEQ ID NO: 16)
プライマー 3 : 5' -ACC GCT GTG CTC GAA GAC GAG GAA ATC TCA AAG— 3' (3'— RA CEの第 1 PCR用) (配列番号 17)  Primer 3: 5'-ACC GCT GTG CTC GAA GAC GAG GAA ATC TCA AAG— 3 '(3'—for first PCR of RACE) (SEQ ID NO: 17)
プライマー 4 : 5' -GTA ATG TTG AAC GAC GTG TCT GGA GGC TCG GAG - 3' (3,一 RA CEのネステイツ ド PCR用) (配列番号 18)  Primer 4: 5'-GTA ATG TTG AAC GAC GTG TCT GGA GGC TCG GAG-3 '(for nested PCR of 3, 1 RACE) (SEQ ID NO: 18)
増幅 DNA断片については、 上記と同様にして DNA塩基配列決定を行った。 このよ うにして得られた zhdlOl全体の塩基配列を配列番号 1に示す。 また配列番号 1に よってコードされる推定上のアミノ酸配列を配列番号 2に示す。 この配列番号 2 に示されるアミノ酸配列は、 実施例 3で決定された断片化された ZHD101ぺプチド の部分アミノ酸配列と完全に一致した。 配列番号 2に示されるアミノ酸配列は 26 4個のアミノ酸からなり、 その分子量は 28, 751 Daと算出された。  The DNA base sequence of the amplified DNA fragment was determined in the same manner as described above. SEQ ID NO: 1 shows the entire nucleotide sequence of zhdlOl thus obtained. The putative amino acid sequence encoded by SEQ ID NO: 1 is shown in SEQ ID NO: 2. The amino acid sequence shown in SEQ ID NO: 2 completely matched the partial amino acid sequence of the fragmented ZHD101 peptide determined in Example 3. The amino acid sequence shown in SEQ ID NO: 2 was composed of 264 amino acids, and its molecular weight was calculated to be 28,751 Da.
さらに、 NCBIのインターネットサイ トの BLASTPプログラムを利用して、 タンパ ク質データベース(Swi s s- Prot及ぴ GenBank)に対する相同性検索を行った。 この 検索により、 本発明の ZHD101は新規なタンパク質であることが判明した。 本発明 者らはまた、 保存ドメインデータベース (RPS- BLAST) に対して、 可能性上の触 媒部位の検索を行った。 この結果、 ZHD101は、 4 X e-11のE値 (Ollis,ら (1992) Protein Eng. 5, 197-221) で α / 加水分解酵素フォールドとの間で高い相同性 を有していた。 Furthermore, a homology search was performed on a protein database (Swiss-Prot and GenBank) using the BLASTP program on the NCBI Internet site. This search revealed that ZHD101 of the present invention was a novel protein. The present inventors also performed a search for possible catalytic sites against a conserved domain database (RPS-BLAST). As a result, ZHD101 had a high homology with the α / hydrolase fold at an E value of 4 × e- 11 (Ollis, et al. (1992) Protein Eng. 5, 197-221).
[実施例 5 ]組換えベクターの作製及び形質転換体の作製 [Example 5] Preparation of recombinant vector and preparation of transformant
zhdlOlのコード領域全体を含む DNA断片を得るために、 5'プライマ一 (5' -GCC CAT ATG CGC ACT CGC AGC ACA ATC- 3' (配列番号 19) ; Ndel部位に下線を付した) 及ぴ 3'プライマー (5' -TCG GAT CCG AGC TAT CGT GAG CAG TG- 3' (配列番号 20) ; BamHI部位に下線を付した) を使用し、 実施例 4の(1)で調製した全 RNAを錶型と して、 RT - PCR増幅を行った。 RT - PCRには、 Superscript First-Strand Synthesis  In order to obtain a DNA fragment containing the entire coding region of zhdlOl, 5 'primer (5'-GCC CAT ATG CGC ACT CGC AGC ACA ATC-3' (SEQ ID NO: 19); Ndel site is underlined) and Using the 3 'primer (5'-TCG GAT CCG AGC TAT CGT GAG CAG TG-3' (SEQ ID NO: 20); BamHI site is underlined), the total RNA prepared in (1) of Example 4 was used. RT-PCR amplification was performed as type III. RT-PCR includes Superscript First-Strand Synthesis
(Invitrogen, Groningen, The Nethrlands) を製造業者の説明書に従 つて用いて、 cDNAを合成した。 この増幅産物を pGEM- TEasyベクター中にライゲー シヨンした。 (Invitrogen, Groningen, The Nethrlands) according to the manufacturer's instructions. Was used to synthesize cDNA. This amplification product was ligated into the pGEM-TEasy vector.
続いてそれらのプラスミ ドを Ndel及び BamHIによって消ィ匕し、 ァガロースゲル 電気泳動による分離によって zhdlOl断片を得た。 次に zhdlOl断片を、 予め Ndel及 ぴ BamHIで消化し精製した pET12aベクター中に挿入した。 このライゲーシヨン産 物を DH5 o;中へと形質転換し、 そのコロニーをアンピシリン耐性により選択して 形質転換体を得た。 この形質転換体を適宜培養して得た培養物から、 プラスミ ド 精製キット (MO BI0, Solana Beach, CA) により精製した組換えベクターを、 DN A塩基配列決定に供して、 zhdlOlの塩基配列を確認した。 これにより正しい塩基 配列が確認された zhdlOlを組み込んだプラスミ ド (pET12- zhdlOl) を用いて、 DE 3 (T0Y0B0) を形質転換し、 アンピシリ ン耐性により形質転換体を選択した。 該 形質転換体から上記と同様にして組換え発現ベクターを得た。  Subsequently, the plasmids were digested with Ndel and BamHI, and a zhdlOl fragment was obtained by separation by agarose gel electrophoresis. Next, the zhdlOl fragment was inserted into a pET12a vector that had been digested and purified with Ndel and BamHI in advance. The ligation product was transformed into DH5 °; and the colonies were selected by ampicillin resistance to obtain transformants. A recombinant vector purified from a culture obtained by appropriately culturing the transformant using a plasmid purification kit (MO BI0, Solana Beach, CA) was subjected to DNA sequencing, and the nucleotide sequence of zhdlOl was determined. confirmed. DE3 (T0Y0B0) was transformed using a plasmid (pET12-zhdlOl) incorporating zhdlOl whose correct nucleotide sequence was confirmed, and transformants were selected based on ampicillin resistance. A recombinant expression vector was obtained from the transformant in the same manner as described above.
[実施例 6 ]形質転換体を用いたゼァラレノン分解酵素の製造 [Example 6] Production of zearalenone-degrading enzyme using transformant
実施例 5で作製した組換え発現ベクターを含む DE3 (T0Y0B0) の形質転換体の 単一コロ -一をサイクルグロ一培地 (フナコシ社製) に接種し、 0D画が 0. 6に達 するまで 37°Cで数時間培養した。 組換えタンパク質を誘導するために、 I mM IPT Gを添加し、 細胞培養物を室温でー晚培養した。 翌日、 細胞をスピンダウンさせ 、 それらを超音波破砕処理した。 そして、 組換え ZHD101が DE3で発現されること を、 SDS- PAGEで確認した。 その結果を図 4に示す。  A single roller of DE3 (T0Y0B0) transformant containing the recombinant expression vector prepared in Example 5 was inoculated into a cycle Glo medium (Funakoshi) until the 0D fraction reached 0.6. The cells were cultured at 37 ° C for several hours. To induce the recombinant protein, ImM IPTG was added and the cell culture was cultured at room temperature. The next day, cells were spun down and sonicated. Then, SDS-PAGE confirmed that the recombinant ZHD101 was expressed in DE3. Fig. 4 shows the results.
図 4には、 12. 5% SDS- PAGEゲルに次のサンプルを適用して得た SDS- PAGEの結 果を示した。 レーン 1は野生型 DE3のホモジェネートサンプルであり、 レーン 2 は pETl2- zhdlOlを有する DE3 (形質転換体) のホモジェネートサンプル (すなわ ち、 粗組換え ZHD101) であり、 レーン 3は形質転換体のホモジヱネートの沈殿サ ンプルであり、 レーン 4は形質転換体のホモジェネートの可溶性分画であり、 レ ーン 5は実施例 2で得た IF07063株から直接に抽出精製した ZHD101である。 図 4 に示される通り、 形質転換体では野生型で発現の見られないタンパク質が発現し ており (レーン 1及び 2 ) 、 形質転換体で発現している該タンパク質は培養上清 にも分泌されており (レーン 4 ) 、 さらに形質転換体で発現している該タンパク 質は IF07063株から直接に抽出精製した ZHD101と同等の分子量を有していることFIG. 4 shows the results of SDS-PAGE obtained by applying the following sample to a 12.5% SDS-PAGE gel. Lane 1 is a homogenate samples of the wild-type DE3, Lane 2 PETL 2 - is DE3 having ZhdlOl (Chi words, crude recombinant ZHD101) homogenate samples (transformant), lane 3 transformants Lane 4 is a soluble fraction of the homogenate of the transformant, and Lane 5 is ZHD101 directly extracted and purified from the IF07063 strain obtained in Example 2. As shown in Fig. 4, in the transformant, a protein that was not expressed in the wild type was expressed (lanes 1 and 2), and the protein expressed in the transformant was also secreted into the culture supernatant. (Lane 4), and the protein expressed in the transformant. It has the same molecular weight as ZHD101 extracted and purified directly from IF07063 strain
(レーン 5 ) から、 形質転換体では ZHD101と同じ該タンパク質を発現し分泌して いることが示された。 なおこの ZHD101の分子量は、 およそ 30kDであった。 (Lane 5) showed that the transformant expressed and secreted the same protein as ZHD101. The molecular weight of ZHD101 was about 30 kD.
また、 形質転換体に由来する粗組換え ZHD101について、 加水分解活性を TLCで 検出した。 野生型 DE3のホモジェネート、 そして pET12- zhdlOlを有する DE3 (形質 転換体) のホモジェネート 10 μ 1に、 ゼァラレノンをそれぞれ添加して Η20でフィ ルアップして各 100 μ 1とし (lOOmM Tris- HCl (pH 9. 5) ) 、 37°Cで 4時間インキュ ペートした。 この反応混合物を上記と同様にクロ口ホルムで抽出し、 TLCプレー ト (シリカゲル 60 F254) に適用した。 その結果を図 5に示した。 The hydrolysis activity of the crude recombinant ZHD101 derived from the transformant was detected by TLC. Wild-type DE3 homogenate and pET12- the homogenate 10 mu 1 of DE3 having ZhdlOl (transformant), was added to Zeararenon respectively Eta 2 0 at and Fi pull up the respective 100 μ 1 (lOOmM Tris- HCl ( pH 9.5)) and incubated at 37 ° C for 4 hours. The reaction mixture was extracted in the same manner as above and applied to TLC plates (silica gel 60 F 254 ). The results are shown in FIG.
図 5は、 レーン 1には野生型 DE3のホモジェネートをゼァラレノンと処理した もの、 レーン 2には pET12- zhdlOlを有する DE3 (形質転換体) のホモジェネート をゼァラレノンと処理したもの、 レーン 3にはゼァラレノン標準物を適用した TL Cの結果を示す。 TLCは、 反応処理液からクロ口ホルムによる抽出を行い、 抽出物 の一部を採取し、 TLCプレート (Merck, シリカゲノレ 60 F254) にチャージし、 溶 媒としてクロ口ホルム : アセ トン 80 : 20 (体積比) を用いて展開槽にて展開した 。 この TLCプレートについて、 UVランプ (UV 254nm) 下で検出を行った。 この図 5の結果は、 図 1の結果と同様であった。 従って,袓換え ZHD101は、 IF07063株か ら直接単離した ZHD101と同じ、 ゼァラレノン分解活性を有することを確認するこ とができた。 . なお、 この ZHD101の至適 pHは、 アルカリ側に偏っていることが分かった。 すな わち、 上記の ZHD101の加水分解活性の分析においてゼァラレノンを添加した後の 酵素反応条件は高アルカリ性の pH 9. 5であるが、 ZHD101は酵素活性を十分発揮し ていた。 このように ZHD101の至適活性は pH 9〜10. 5であるが、 pH 7. 0でもある程 度の活性が示された。 ZHD101はまた、 pH 4. 5を下回るような低 pHにおいては不可 逆的に失活することが分かった。 この不可逆的な失活は、 次のような実験により 確認された。 まず、 1Mのリン酸バッファ一を 1Z10量添加した ZHD101含有硫安画 分を pH 4. 5及ぴ pH 5. 5に調整し、 それらを 30分間氷上に置いた。 これらのサンプ ルを、 それぞれクロマトチャンパ一内ですみやかに 10mM Tris-HCl (pH 7. 5)に対 して透析し、 続いてゼァラレノンに対する in vitro加水分解試験 (pH 9. 5) に供 して TLCにて分析したところ、 pH 5. 5に調整したサンプルはゼァラレノン分解活 性を示すが、 pH 4. 5に調整したサンプルはゼァラレノン分解活性を示さないこと が分かった。 つまり、 pH 4. 5の条件下に置かれた ZHD101は、 その後に至適 pH下に て反応させてもその酵素活性を示さないことから、 PH 4. 5の条件下で不可逆的に 失活されることが判明した。 Figure 5 shows lane 1 in which the homogenate of wild-type DE3 was treated with zearalenone, lane 2 in which the homogenate of pET12-zhdlOl-containing DE3 (transformant) was treated with zearalenone, and lane 3 with zearalenone standard. 3 shows the results of TLC applying the product. TLC performs extraction with black port Holm from the reaction treatment liquid, a portion of the extract was collected, charged TLC plates (Merck, Shirikagenore 60 F 254), a black hole Holm as Solvent: acetone 80: 20 (Volume ratio) and deployed in the deployment tank. This TLC plate was detected under a UV lamp (UV 254 nm). The results in FIG. 5 were similar to the results in FIG. Therefore, it was confirmed that the recombinant ZHD101 had the same zearalenone-degrading activity as ZHD101 isolated directly from the IF07063 strain. The optimum pH of ZHD101 was found to be biased toward the alkaline side. That is, in the above-mentioned analysis of the hydrolysis activity of ZHD101, the enzyme reaction condition after the addition of zearalenone was a highly alkaline pH of 9.5, but ZHD101 sufficiently exhibited the enzyme activity. Thus, the optimum activity of ZHD101 was pH 9 to 10.5, but the activity was as high as pH 7.0. ZHD101 was also found to be irreversibly inactivated at low pH below pH 4.5. This irreversible deactivation was confirmed by the following experiment. First, a ZHD101-containing ammonium sulfate fraction to which 1M phosphate buffer (1M) was added in an amount of 1Z10 was adjusted to pH 4.5 and pH 5.5, and they were placed on ice for 30 minutes. These samples were each dialyzed against a chromatographic Champa one inside in rapidly 10mM Tris-HCl (pH 7. 5), subsequently subjected to in vitro hydrolysis test for Zeararenon (pH 9. 5) Analysis by TLC showed that the sample adjusted to pH 5.5 showed zearalenone decomposition activity, but the sample adjusted to pH 4.5 did not show zearalenone decomposition activity. In other words, ZHD101 placed at pH 4.5 does not show its enzymatic activity even if it is subsequently reacted at an optimum pH, so it is irreversibly inactivated under pH 4.5. It turned out to be.
[実施例 7 ]ゼァラレノン分解酵素によるゼァラレノン誘導体の分解 [Example 7] Degradation of zearalenone derivative by zearalenone degrading enzyme
ゼァラレノン誘導体であるひ, β—セ尸ラレノ一ノレ α, /3 -zeararenol ; ーゼァ ラレノール又は -ゼァラレノールを表す)を、 ZHD101 (上記 IF07063株に由来す る硫安分画 40〜60%のタンパク質を 10mM Tri s - HC1 (pH 7· 5)で透析したもの) に それぞれ添加して 37°Cでー晚インキュベートした (lOOraM Tri s- HCl (pH 9. 5), 総 容量 ΙΟΟ μ Ι) 。 その反応液をクロ口ホルムで抽出し、 上記と同様に TLCをおこな つた (図 6 ) 。 対照として Q;, ゼァラレノールの標準物 (図 6のレーン 3及び 6 ) 、 及び陰性対照としてバッファーに α, j3 -ゼァラレノールを添加してインキ ュペートしたもの (図 6のレーン 2及び 5 ) を用いた。 その結果、 ZHD101処理に より、 対照及び陰性対照に見られる α, ]3 -ゼァラレノールのスポッ トは、 UV (254 nm)下では完全に喪失し、 分解産物を検出することができなかった (図 6のレー ン 1及び 4 ) 。 この結果より、 分解物は、 UV下で TLCプレート上に検出されなか つたか、 水溶性が高くてクロ口ホルムで抽出不可能であったことが推察できる。 基質が完全になくなつていることから、 ゼァラレノン誘導体である α, ゼァラ レノールについても、 ZHD101はおそらく分解を引き起こしたと考えられた。 Β, which is a zearalenone derivative, β-se larenone α, / 3 -zeararenol; -Zearalenol or -Zearalenol), and ZHD101 (ammonium sulfate fraction derived from the IF07063 strain described above at 10 mM to 10 mM Tri s - HC1 (pH 7 · 5) those dialyzed in) to was added to 37 ° C De晚incubated respectively (lOOraM Tri s- HCl (pH 9. 5), the total capacity ΙΟΟ μ Ι). The reaction solution was extracted with a black hole form and subjected to TLC in the same manner as described above (FIG. 6). As a control, a standard of Q; zearalenol (lanes 3 and 6 in FIG. 6) and a negative control in which α, j3-zearalenol was added to a buffer and the ink was added (lanes 2 and 5 in FIG. 6) were used. . As a result, spots of α,] 3-Zearalenol found in the control and the negative control were completely lost under UV (254 nm) by ZHD101 treatment, and no degradation products could be detected (Fig. 6 lanes 1 and 4). From this result, it can be inferred that the decomposed product was not detected on the TLC plate under UV, or that it was too soluble in water to be extracted with black form. The complete disappearance of the substrate suggests that ZHD101 probably caused the degradation of the zearalenone derivative α, zearalenol.
[実施例 8 ]ゼァラレノン分解酵素によりゼァラレノンから生成される分解産物 の単離及び特性解析 [Example 8] Isolation and characterization of degradation products generated from zearalenone by zearalenone degrading enzyme
ZHD101を用いた上記の加水分解試験によって得られたゼァラレノン分解産物の 粗抽出物を TLCに供し、 プレコートシリカゲル 60 F254プレート (0. 25 mm厚、 20 X 20 cm、 Merck) を用いて、 展開液としてクロ口ホルム : ァセトン 80 : 20 (体積比 )を用いて展開した。 該 TLCプレートのスポットは、 UV (254 nra)下で検出した。 The crude extract of zearalenone degradation product obtained by the above hydrolysis test using ZHD101 was subjected to TLC and developed using precoated silica gel 60 F 254 plate (0.25 mm thick, 20 x 20 cm, Merck). The liquid was developed using Clos form: acetone 80:20 (volume ratio). Spots on the TLC plate were detected under UV (254 nra).
これによつて精製された分解産物を、 丽 R分析にかけた。 匪 Rスぺク トルは、 JE 0L ECP- 500分光器により、 ァセトン- d6において13 C NMRを 125 MHzで、 NMRを 50 0 MHzで測定した。 The degradation products purified in this way were subjected to 丽 R analysis. Marauder R Skull, JE By 0L ECP- 500 spectrometer, Aseton - in d 6 the 13 C NMR at 125 MHz, NMR was measured at 50 0 MHz.
29. 8 ppmでのァセ トン- d6及び 2. 04 ppmでのァセ トン- d5を、 それぞれ13 C及ぴ1 H NMRの内部標準として用いた。 化学シフ トは δ値で記録した。 13C MiRシグナル の多重度は DEPTで決定した。 2D NMRスぺク トル (PFG- DQFC0SY、 PFG- HMQC及び PF G-HMBC) は JEOL ECP- 500にて、 JE0L標準パルスシークェンスにより測定し、 収集 したデータは JE0L標準ソフトウエアで処理した。 FAB- MSスぺクトルは JEOL JMSH X- 110質量分析計でグリセロールマトリックスを用いて、 また EI- MSスぺク トルは JMS- SX102質量分析計で、 それぞれ測定した。 Acetone-d 6 at 29.8 ppm and acetone-d 5 at 2.04 ppm were used as internal standards for 13 C and 1 H NMR, respectively. Chemical shifts were recorded as δ values. The multiplicity of the 13 C MiR signal was determined by DEPT. 2D NMR spectra (PFG-DQFC0SY, PFG-HMQC and PFG-HMBC) were measured by JEOL ECP-500 using JEOL standard pulse sequence, and collected data were processed by JEOL standard software. The FAB-MS spectrum was measured using a glycerol matrix on a JEOL JMSH X-110 mass spectrometer, and the EI-MS spectrum was measured using a JMS-SX102 mass spectrometer.
以下は FAB- MSスぺク トル、 EI- MSスぺク トル及ぴ NMRスぺク トルの測定結果であ る。  The following are the measurement results of the FAB-MS spectrum, EI-MS spectrum and NMR spectrum.
FAB-MS (m/z : positive): 293 (M+H) + FAB-MS (m / z: positive): 293 (M + H) +
EI-MS.: 292 (M+, 8%) , 274 (M+- H20, 24%) , 162 (100%) , 161 (86%) , 112 (30%) . -匪 R (500 MHz, アセ トン- d5, δ ppm); 8. 12 (2H, br s, 2 - OH及び 4— OH), 6. 38 (2H, d, 2. 0 Hz, H - 1 及ぴ H - 5) , 6. 25 (1H, d, 16. 5 Hz, H— ) , 6. 13 (1 H, ddd, 6. 8, 7. 1, 16. 5 Hz, H - 2,), 6. 03 (1H, d, 2. 0 Hz, H— 3) , 3. 69 (1H, m , H— 10,), 3. 41 (1H, br d, 3. 8 Hz, 10' -OH) , 2. 48 (2H, t, 7. 2 Hz, H—5,), 2 . 43 (2H, t, 7. 1 Hz, H— 7' ) , 2. 17 (2H, ra, H— 3' ) , 1. 70 (2H, m, H - 4,), 1. 58 (2H, m, H— 8' ), 1. 37 (2H, m, H - 9,), 1. 10 (3H, d, 6. 2 Hz, H - 11,)· EI-MS .: 292 (M + , 8%), 274 (M + - H 2 0, 24%), 162 (100%), 161 (86%), 112 (30%) -. Negation R (500 MHz, acetone - d 5, δ ppm); 8. 12 (2H, br s, 2 - OH and 4- OH), 6. 38 (2H , d, 2. 0 Hz, H - 1及Pi H - 5), 6.25 (1H, d, 16.5 Hz, H—), 6.13 (1H, ddd, 6.8, 7.1, 16.5 Hz, H-2,), 6. 03 (1H, d, 2.0 Hz, H-3), 3.69 (1H, m, H-10,), 3.41 (1H, br d, 3.8 Hz, 10'-OH), 2.48 (2H, t, 7.2 Hz, H-5), 2.43 (2H, t, 7.1 Hz, H-7 '), 2.17 (2H, ra, H-3') ), 1.70 (2H, m, H-4,), 1.58 (2H, m, H-8 '), 1.37 (2H, m, H-9,), 1.10 (3H, d, 6.2 Hz, H-11,)
13C— NMR (125 MHz, アセ トン— d6, δ ppm); 210. 47 (s, C- 6,), 159. 49 (s, C— 2 and C— 4), 140. 73 (s, C一 6), 131. 53 (d, C - ), 130. 56 (d, C— 2,), 105. 49 (d , C-1 及ぴ C-5) , 102. 42 (d, C - 3) , 67. 34 (d, C— 10,), 43. 11 (t, C- 7,) , 42. 15 (t, C— 5' ) , 39. 65 (t, C— 9,), 33. 00 (t, C— 3' ), 24. 09 (t, C一 4,), 24. 03 ( q, C— 11' ), 20. 93 (t, C一 8' )。 1 3 C- NMR (125 MHz, acetone - d 6, δ ppm); 210. 47 (s, C- 6,), 159. 49 (s, C- 2 and C- 4), 140. 73 ( s, C-1 6), 131.53 (d, C-), 130.56 (d, C-2,), 105.49 (d, C-1 and C-5), 102.42 (d , C-3), 67.34 (d, C-10), 43.11 (t, C-7,), 42.15 (t, C-5 '), 39.65 (t, C- 9,), 33.00 (t, C—3 ′), 24.09 (t, C—1, 4), 24.03 (q, C—11 ′), 20.93 (t, C—8 ′) ).
上記の質量分析法 (FAB- MS及ぴ EI- MS) 並びに NMRスペク トルにより、 上記のゼ ァラレノン分解産物の分子式を C17H2404と決定した。 !H NMRスぺク トルにおいてゼ ァラレノンと比較した場合に特徴的なピークである δ 6. 38 (d)、 3. 69 (m) 及び 3. 41 (br d) は、 C- 10'、 C-1 及び 10' -OHに割り当てられる。 このことは、 ゼ ァラレノンにおけるエステル結合が加水分解され、 続いて脱炭酸されたことを意 味する。 C' - 1における幾何構造は、 高い結合定数(: 16. 5 Hz)に基づいて Eコン ホメーシヨンと決定した。 13 C NMRスペク トルによって、 1個のケトン、 3個の s p2 4価炭素原子、 1個の sp2メチン炭素原子及び 1個のメチル炭素を含む 17個の 炭素原子が、 上記のゼァラレノン分解産物に存在することが確認された。 PFG- DQ FC0SY 及ぴ PFG- HMQCのデータから、 それぞれプロ トンスピンネッ トワーク及び 全ての一重結合性1 H -13 Cの結合を確認した。 PFG-HMBCスぺク トルにおいて観察さ れる長距離結合は、 上記のゼァラレノン分解産物において、 ケトン基(δ 210. 47 )が C-6'に位置すること、 及ぴゼァラレノンの開環及ぴ C - 12'でのカルボキシル基 の欠失が生ずることを示している。 このことは、 C-1 (d, δ 105. 49) 及ぴ C - 10 ' (d, δ 67. 34)における化学シフ ト及ぴ多重性によっても支持された。 以上の 解析に基づき、 上記のゼァラレノン分解産物の全体構造は、 1- (3, 5-ジヒ ドロキ シフヱ-ル) - 10-ヒ ドロキシ- 1-ゥンデセン- 6, -オンと決定された。 この化学構造 は図 7に示した。 この分析結果より、 本発明のゼァラレノン分解酵素 ZHD101によ つてゼァラレノンが分解されてゼァラレノン分解産物が生成することが分かり、 その反応を化学式によって記載した (図 7 ) 。 Additional mass spectrometry by (FAB- MS及Pi EI- MS) and NMR spectrum were determined the molecular formula of an peptidase Ararenon degradation products with C 17 H 24 0 4. ! Δ 6.38 (d), 3.69 (m) and 3.41 (br d), which are characteristic peaks when compared with zearalenone in the 1 H NMR spectrum, are C-10 ′, C Assigned to -1 and 10'-OH. This means that the ester bond in zearalenone was hydrolyzed and subsequently decarboxylated. To taste. C '- geometry in 1, high binding constants: was determined with E configuration Homeshiyon based on (1 6 5 Hz.). By 13 C NMR spectra, one ketone, three sp 2 4-valent carbon atoms, 17 carbon atoms, including one sp 2 methine carbon atom and one methyl carbons, above Zeararenon degradation products Was confirmed to be present. PFG- DQ from FC0SY及Pi PFG- HMQC data, each pro Tonsupin'ne' network and all single bonds of 1 H - evaluation of binding 13 C. The long-range bond observed in the PFG-HMBC spectrum is due to the fact that the ketone group (δ 210.47) is located at C-6 'in the above-mentioned zearalenone degradation product, This indicates that a deletion of the carboxyl group at -12 'occurs. This was also supported by the chemical shift and multiplicity at C-1 (d, δ 105.49) and C-10 '(d, δ 67.34). Based on the above analysis, the overall structure of the above-mentioned zearalenone degradation product was determined to be 1- (3,5-dihydroxyl-propyl) -10-hydroxy-1-l-decene-6, -one. The chemical structure is shown in FIG. From this analysis result, it was found that zearalenone was degraded by the zearalenone degrading enzyme ZHD101 of the present invention to produce a zearalenone degradation product, and the reaction was described by a chemical formula (FIG. 7).
[実施例 9 ]ゼァラレノン分解産物のエストロゲン様活性 [Example 9] Estrogenic activity of zearalenone degradation product
上記実施例に従って得られたゼァラレノン分解産物について、 エス トロゲン様 活性の測定を行った。 エス トロゲン様活性は、 ヒ ト乳がん細胞 MCF-7に対する細 胞增殖促進作用として測定した。  The estrogenic activity of the zearalenone degradation product obtained according to the above example was measured. Estrogenic activity was measured as a cell growth promoting effect on human breast cancer cells MCF-7.
まず、 ヒ ト乳がん細胞 MCF- 7を、 フエノールレッド、 L -グルタミン(2 mM)、 ぺ -シリン(50ュニット /ml)、 ストレプトマイシン(50 μ g/ml)及ぴ 10%ゥシ胎児血 清(FCS)を添加した RPMI- 1640培地 (SIGMA, St. Louis, MO) にて、 5 %C02を含 む加湿空気中で 37°Cで培養した。 本実験に用いた FCSは、 デキストラン処理チヤ コールで処理した。 培養した上記細胞は、 10%チヤコール分解 FCSを含有するフ エノールレツド不含 RPMI培地中、 96ゥェルプレートにて 1 ゥエル当たり 5 X 103細 胞を接種した。 これを 37°Cで 20時間培養した後、 培地を同種の培地に交換した。 この培養物に、 試験化合物とするゼァラレノン、 ゼァラレノン分解産物、 又は 17 -エストラジオールを様々な濃度で添加し、 さらに 120時間培養した。 次いで、 次の発色反応により細胞数を評価した。 発色反応としては、 2-(2 -メ トキシ- 4-二 ト口フエニル) - 3- (4-二ト口フエ二ル)- 5- (2, 4-ジスルホフエ二ノレ) - 2H-テ トラゾ リウムのーナトリウム塩である、 WST- 8™ (Nakalai Tesque, Kyoto) を培養物に 添加し、 培養細胞を 37°Cでさらに 4時間培養した。 各ゥエルの吸光度 (A45。) を 、 Wal lac 1420マノレチラべノレカウンター (Amersham Biosc i ences) ίこよって額 U定 した。 本実施例では、 既知のエストロゲンである 17 -エストラジオール (0. 1 n M)を対照として使用した。 17 β -エストラジオールを試験化合物として添加した 場合、 何も添加しない対照と比較して、 細胞数が平均約 250%増大する。 本発明 に係るゼァラレノン (化学式:図 7 ) は、 17 -エストラジオールと同程度の細 胞数を示すことから、 17 -エストラジオールと同程度の細胞増殖促進作用すな わちエス トロゲン様活性を有する。 一方、 本発明のゼァラレノン分解産物 (化学 式:図 7 ) は、 ゼァラレノンの 1000倍高い濃度であっても、 細胞数をほとんど増 加させず、 細胞増殖促進作用はみられなかった (図 8 ) 。 すなわち、 本発明のゼ ァラレノン分解産物は、 エス トロゲン様活性を示さない。 従って、 本発明のゼァ ラレノン分解酵素 ZHD101は、 ゼァラレノンを分解して、 エス トロゲン様活性を示 さない分解産物とすることにより、 ゼァラレノンのエストロゲン様活性を喪失さ せ、 すなわちゼァラレノンの毒性を抑制することができることが示された。 First, human breast cancer cells MCF-7 were converted to phenol red, L-glutamine (2 mM), ぺ -cillin (50 units / ml), streptomycin (50 μg / ml) and 10% ゥ fetal serum ( FCS) was added RPMI-1640 medium (SIGMA, St. Louis, at MO), and incubated at 37 ° C for a 5% C0 2 in including humidified air. The FCS used in this experiment was treated with dextran-treated charcoal. The cultured cells were inoculated with 5 × 10 3 cells per well in a 96-well plate in a phenol red-free RPMI medium containing 10% charcoal-degraded FCS. After culturing this at 37 ° C for 20 hours, the medium was replaced with the same kind of medium. To this culture, various concentrations of zearalenone, zearalenone degradation product, or 17-estradiol as a test compound were added, and the cells were further cultured for 120 hours. Then The number of cells was evaluated by the following color reaction. The color-forming reactions include 2- (2-methoxy-4-diphenyl) -3- (4-diphenyl) -5- (2,4-disulfophenyl) -2H-tetrazo WST-8 ™ (Nakalai Tesque, Kyoto), a sodium salt of lithium, was added to the culture, and the cultured cells were further cultured at 37 ° C for 4 hours. The absorbance (A 45 ) of each well was determined by using a Wal lac 1420 Manoretirabeno counter (Amersham Biosciences). In this example, a known estrogen, 17-estradiol (0.1 nM) was used as a control. When 17β-estradiol is added as a test compound, the number of cells is increased by an average of about 250% compared to a control in which nothing is added. The zearalenone (chemical formula: FIG. 7) according to the present invention has the same cell number as 17-estradiol, and thus has the same cell growth promoting activity as 17-estradiol, ie, an estrogenic activity. On the other hand, the zearalenone degradation product of the present invention (chemical formula: FIG. 7) hardly increased the cell number even at a concentration 1000 times higher than zearalenone, and did not show a cell growth promoting effect (FIG. 8). . That is, the zearalenone degradation product of the present invention does not show estrogenic activity. Therefore, the zearalenone-degrading enzyme ZHD101 of the present invention degrades zearalenone to a degradation product having no estrogen-like activity, thereby losing the estrogenic activity of zearalenone, that is, suppressing the toxicity of zearalenone. It was shown that you can.
[実施例 1 0 ] zhdl01遺伝子導入用ベクターの構築 [Example 10] Construction of zhdl01 gene transfer vector
zhdlOlの DNA配列 (配列番号 1 ) に基づき、 GFP- zhd- 5'プライマー (5' - ATG CG C ACT CGC AGC ACA ATC TCG- 3' (配列番号 21) ) 及び GFP- zhd - 3'プライマー (5' - T GT ACC GTT CAA AGA TGC TTC TGC- 3' (配列番号 22) ) を設計して、 化学合成した 。 これらのプライマーと Ventポリメラーゼ (New England Bi olabs) とを使用し 、 実施例 5で作製した、 pGEM- TEasyベクター (Promega, Madi son, WI) 中に zhdl 01を組み込んだ組換えプラスミ ドを鎳型として用いる PCR増幅を行って、 zhdlO l 遺伝子全体を含む DNA断片を作製した。 ここで用いた PCR条件は以下の通りである : 94°Cで 30秒、 57°Cで 1分、 72°Cで 1分を 1サイクルとして 30サイクル。 またこれ とは別に、 pEGFP (Clontech) の BsrG I- Not I間に合成リンカ一 (5' - GTA CAG GC C CGG GCC GC- 3,(配列番号 23)、 5' - GGC CGC GGC CCG GGC GT - 3, (配列番号 24) ) を挿入し、 pEGFP-Srf Iを作成しておいた。 得られた PCR産物は、 egfp遺伝子の下 流に組み込むために pEGFP - Srf Iベクターの Srf Iサイ トへライゲーシヨンして、 pEGFP- zhdlOlクローンを作製した。 さらに、 pEGFP-zhdlOlクローンから切り出し た Nco I-Not I断片 (本明細書では 「egfp : : zhdl01」 と呼ぶ) を、 Act Iプロモー ターを含む pWheatベクター (pDM302 (Genes. Genet. Syst. , 72, 63-69, 1997)の Pst I-Sma I間を Tri l01 (J. Biol. Chem. , 273, 1654-1661, 1998)で置き換え、 H ind III_BstXI間を削除し Nco Iサイ トを作出したベクター) の Nc。 I - Not I部位 中にライゲーシヨンして、 遺伝子導入用組換えべクターである pWheat - egf p:: zhd 101を構築した。 図 9にベクター構築工程の概略図を示した。 Based on the zhdlOl DNA sequence (SEQ ID NO: 1), the GFP-zhd-5 'primer (5'-ATG CG C ACT CGC AGC ACA ATC TCG-3' (SEQ ID NO: 21)) and GFP-zhd-3 'primer ( 5′-T GT ACC GTT CAA AGA TGC TTC TGC-3 ′ (SEQ ID NO: 22)) was designed and chemically synthesized. Using these primers and Vent polymerase (New England Biolabs), a recombinant plasmid in which zhdl01 was incorporated into the pGEM-TEasy vector (Promega, Madison, Wis.) Prepared in Example 5 was type III. A DNA fragment containing the entire zhdlO l gene was prepared by PCR amplification. The PCR conditions used were as follows: 30 cycles of 30 seconds at 94 ° C, 1 minute at 57 ° C, and 1 minute at 72 ° C. Separately from this, a synthetic linker (5′-GTA CAG GC C CGG GCC GC-3, (SEQ ID NO: 23), 5′-GGC CGC GGC CCG GGC GT) is inserted between BsrG I-Not I of pEGFP (Clontech). -3, (SEQ ID NO: 24)) Was inserted to create pEGFP-SrfI. The obtained PCR product was ligated to the SrfI site of the pEGFP-SrfI vector for integration into the downstream of the egfp gene, and a pEGFP-zhdlOl clone was prepared. Furthermore, the Nco I-Not I fragment (referred to as “egfp :: zhdl01” in this specification) excised from the pEGFP-zhdlOl clone was transferred to a pWheat vector (pDM302 (Genes. Genet. Syst., 72) containing the Act I promoter. , 63-69, 1997) was replaced with Tril01 (J. Biol. Chem., 273, 1654-1661, 1998), and Hind III_BstXI was deleted to create an Nco I site. Vector) NC. The ligation was performed at the I-NotI site to construct a recombinant vector pWheat-egfp :: zhd101 for gene transfer. Fig. 9 shows a schematic diagram of the vector construction process.
[実施例 1 1 ]パーティクルガンを用いた穀類への egfp : : zhdl01遺伝子の導入 実施例 1 0で得た組換えベクター pWheat-egfp : : zhdl01を、 選抜マーカーのビ ァラフォス耐性遺伝子 barと共に、 以下のような手順によってモデル単子葉植物 イネの完熟胚由来カルスに導入した。 [Example 11] Introduction of egfp :: zhdl01 gene into cereals using a particle gun The recombinant vector pWheat-egfp :: zhdl01 obtained in Example 10 was used together with the selection marker, bialaphos resistance gene bar, as follows: A monocotyledonous plant was introduced into a callus derived from a ripe embryo of rice by the following procedure.
イネ完熟種子胚 (完熟胚とも称する) は 40 %次亜塩素酸で滅菌 ·洗浄後、 70 p pmカナマイシン、 70 ppmセフオタキシム及び 2 ppm 2, 4_D (2, 4 -ジクロロフエノ キシ酢酸) を含む LS培地(カルス誘導培地) (LS培地: LINSMAIER SK00G Medium 1 , Invitrogen) に移植し、 6〜7日間培養してカルスを誘導した。 カノレスを 2 ppm 2, 4-D 及ぴ 0. 4 Mマン-トールを含む LS培地におき、 パーティクルガンを用いて 、 それぞれ金粒子へコーティングした pWheat- egfp : : zhdl01及び bar遺伝子を導入 した。 遺伝子導入を行ったカルスは翌日、 2 ppm 2, 4- D及ぴ 5 ppmビアラフォス含 有 LS培地(選抜培地)に移植し、 その後 2週間ごとに新鮮な選抜培地に継代した。 そして、 蛍光顕微鏡下で、 GFP (緑色蛍光タンパク質) により蛍光を呈し、 選択 的に増殖してきたカルスを、 egfp : : zhdl01遺伝子が導入された形質転換体として 判断した (図 1 0 ) 。 約 2. 5〜3ヶ月増殖させた後、 増殖した選抜カルスを 1 mg/m 1 AA ( α -ナフタリン酢酸ナトリウム) 、 2 mg/ml BA (ベンジルアデニン) 及び 30 g/1 ソルビトールを含む LS培地 (再分化培地) に移植した。 再分化植物を 5 p pmビアラフォス含有 LS培地 (選抜発根培地) に移植した 2〜3週間後馴化し、 再生 体を得た (図 1 1 ) 。 . [実施例 1 2 ]形質転換ィネにおける EGFP:: ZHD101の発現 Rice mature seed embryo (also called mature embryo) is sterilized with 40% hypochlorous acid. After washing, LS medium containing 70 ppm kanamycin, 70 ppm cefotaxime, and 2 ppm 2,4_D (2,4-dichlorophenoxyacetic acid) (Callus induction medium) (LS medium: LINSMAIER SK00G Medium 1, Invitrogen) was transplanted and cultured for 6 to 7 days to induce callus. Canoleth was placed in an LS medium containing 2 ppm 2,4-D and 0.4 M mannitol, and pWheat-egfp :: zhdl01 and bar genes, which were coated on gold particles, respectively, were introduced using a particle gun. The transgenic calli were transplanted to the LS medium (selection medium) containing 2 ppm 2, 4-D and 5 ppm bialaphos the next day, and then subcultured every two weeks to a fresh selection medium. Then, under a fluorescence microscope, calli which exhibited fluorescence by GFP (green fluorescent protein) and grew selectively were judged as transformants into which the egfp :: zhdl01 gene had been introduced (FIG. 10). LS medium containing 1 mg / m 1 AA (α-naphthalene acetate), 2 mg / ml BA (benzyladenine) and 30 g / 1 sorbitol (Regeneration medium). The regenerated plants were acclimated 2-3 weeks after transplantation to an LS medium (selective rooting medium) containing 5 ppm bialaphos to obtain a regenerated body (FIG. 11). . [Example 12] Expression of EGFP :: ZHD101 in transformed rice
egfp :: zhdlOl遺伝子を導入して得られたイネ再生体において EGFP : : ZHD101タン パク質が発現しているかを、 ウェスタンプロット分析で試験した。  Western blot analysis was performed to examine whether the EGFP :: ZHD101 protein was expressed in the regenerated rice obtained by introducing the egfp :: zhdlOl gene.
再生体の葉 0. 1 gを液体窒素中で粉碎し、 抽出バッファー 100 μ ΐ を加えよく 混和した。 これを遠心分離(15, 000 rpm、 5 min)して上清を回収し、 粗タンパク 質とした。 得られた粗タンパク質を 1レーン当たり 20 g、 10 %SDS -ポリアタリ ルアミ ドゲルに適用し電気泳動した。 泳動後、 PVDF膜に転写し抗 gfp抗体により G FP : : ZHD101融合タンパク質を検出した。 その結果を図 1 2に示した。 レーン 1は 野生型イネ葉より抽出したサンプル、 レーン 2は再生体 No 14、 レーン 3は再生体 N o 54、 レーン 4は再生体 No 68、 レーン 5は再生体 No 71、 レーン 6は再生体 No 76、 レーン 7は再生体 No 79、 レーン 8は再生体 No 79、 レーン 9は組み換え EGFP:: ZHD10 1である。 再生体 No 14、 No 54、 No 68, No 76及び No 79において、 野生型では見 られないタンパク質が検出された。 またこのタンパク質は、 組み換え EGFP : : ZHD1 01と同じ分子量であった。 これらの結果から、 再生体 5個体 (No 14、 No 54、 No 68, No 76及び No 79) で EGFP: : ZHD101タンパク質が発現していることが示された  0.1 g of the regenerated leaves were ground in liquid nitrogen, and 100 μl of extraction buffer was added and mixed well. This was centrifuged (15,000 rpm, 5 min) to recover the supernatant, which was used as a crude protein. The obtained crude protein was applied to a 10% SDS-polyatarylamide gel at 20 g per lane and electrophoresed. After the electrophoresis, the protein was transferred to a PVDF membrane, and the GFP :: ZHD101 fusion protein was detected with an anti-gfp antibody. The results are shown in FIG. Lane 1 is a sample extracted from wild-type rice leaves, lane 2 is regenerated body No. 14, lane 3 is regenerated body No 54, lane 4 is regenerated body No 68, lane 5 is regenerated body No 71, and lane 6 is regenerated body No. 76, lane 7 is regenerated body No 79, lane 8 is regenerated body No 79, and lane 9 is recombinant EGFP :: ZHD101. In regenerated cells No. 14, No. 54, No. 68, No. 76 and No. 79, proteins not found in the wild type were detected. This protein had the same molecular weight as the recombinant EGFP :: ZHD101. From these results, it was shown that the EGFP :: ZHD101 protein was expressed in five regenerants (No 14, No 54, No 68, No 76 and No 79).
[実施例 1 3 ] egfp: : zhdl01を導入した懸濁培養細胞によるゼァラレノン分解 イネの egfp : : zhdl01導入懸濁培養細胞を用いて、 以下の手順でゼァラレノン分 解試験をおこなった。 [Example 13] Degradation of zearalenone by suspension culture cells into which egfp :: zhdl01 was introduced Zaralenone degradation test was carried out using suspension culture cells of egfp :: zhdl01 into rice according to the following procedure.
egfp : : zhdl01導入懸濁培養細胞は、 実施例 1 1で作製した egfp : : zhdl01が導入 されたカルスを、 2 ppm 2,4- D (2, 4 -ジクロロフエノキシ酢酸) を含む LS液体培 地に移植することにより調製した。 また、 イネの野生型懸濁培養細胞も同様に、 2 ppm 2, 4-D (2, 4 -ジクロロフヱノキシ酢酸) を含む LS液体培地に野生型カルス を移植することにより、 調製した。 次いで、 このようにして調製した egfp : : zhdl 01導入懸濁培養細胞と野生型懸溻培養細胞のそれぞれについて、 約 50 mgの懸濁 培養細胞を、 ゼァラレノンを 750 g添加した 50 ppraゼァラレノン含有 LS培地 15 m 1中に加え、 26°Cで振とう培養した。 培養開始から 3日後、 上記のそれぞれの培地からゼァラレノンを含む抽出物を クロ口ホルムで抽出し、 その培地抽出物を TLCプレートにのせてクロ口ホルム : アセトン(80 : 20)で展開し、 UV下で検出を行った。 また、 ゼァラレノン含有 LS培 地及びゼァラレノン非含有 LS培地のそれぞれから同様に抽出した抽出物を対照と して用いた。 この TLC分析の結果を、 図 1 3に示す。 レーン 1はゼァラレノン標準 物、 レーン 2は egfp : : zhdl01導入細胞を培養したゼァラレノン含有 LS培地からの 抽出物、 レーン 3は野生型細胞を培養したゼァラレノン含有 LS培地からの抽出物 、 レーン 4はゼァラレノン含有 LS培地からの抽出物、 レーン 5はゼァラレノン非含 有 LS培地からの抽出物を示している。 野生型細胞を培養した培地及ぴゼァラレノ ン含有 LS培地からの抽出物においては、 ゼァラレノン標準物の移動度と同じスポ ッ トが検出されたことから、 培地中にゼァラレノンが残存することが示された。 一方、 egfp : : zhdl01導入細胞を培養した培地からの抽出物では、 ゼァラレノンを 示すスポッ トが消失しており、 培地中のゼァラレノンが分解されたことが示唆さ れた。 egfp:: zhdl01 introduced suspension culture cells, e g fp prepared in Example 1 1:: zhdl01 callus is introduced, 2 ppm 2,4 D - (2, 4-dichloro-phenoxyethanol acetate) It was prepared by transplantation into the LS liquid medium containing LS. Similarly, wild-type suspension-cultured rice cells were similarly prepared by transplanting wild-type calli into LS liquid medium containing 2 ppm 2,4-D (2,4-dichlorophenoxyacetic acid). . Next, about 50 mg of the suspension cultured cells and 50 ppra zearalenone-containing LS added with 750 g of zearalenone were added to each of the thus-prepared egfp :: zhdl01-introduced suspension culture cells and wild-type suspension culture cells. The medium was added to 15 ml of the medium, and cultured with shaking at 26 ° C. After 3 days from the start of the culture, extract the extract containing zearalenone from each of the above media using a black-mouthed form, place the medium extract on a TLC plate, and develop with a black-mouthed form: acetone (80:20). Detection was performed below. Extracts similarly extracted from the zearalenone-containing LS medium and the zearalenone-free LS medium were used as controls. Figure 13 shows the results of this TLC analysis. Lane 1 is a zearalenone standard, lane 2 is an extract from a zearalenone-containing LS medium cultured with egfp :: zhdl01 transfected cells, lane 3 is an extract from a zearalenone-containing LS medium cultured wild-type cells, and lane 4 is zearalenone An extract from the LS medium containing LS medium, and lane 5 shows an extract from the LS medium without zearalenone. Extracts from the medium in which wild-type cells were cultured and the LS medium containing zearalenone were found to have the same spots as the mobility of the zearalenone standard, indicating that zearalenone remained in the medium. Was. On the other hand, in the extract from the culture medium in which the egfp :: zhdl01-transfected cells were cultured, spots showing zearalenone disappeared, suggesting that zearalenone in the culture medium was degraded.
そこで次に、 残存するゼァラレノンの量を調べるため、 培養開始から 6 日後の ゼァラレノンの定量を行った。 残存するゼァラレノン量は、 培地中に存在する量 と、 細胞表面に付着している量及び細胞内に取り込まれた量との合計量と考えら れるため、 培地中のゼァラレノン量と細胞が含有するゼァラレノン量との両方に ついて定量を行った。 また、 培地中のゼァラレノンが分解されていることを確認 する目的で、 培養開始から 3日後の培地からの抽出物についてもゼァラレノンを 定量した。 さらに、 対照として、 培養開始から 6 日後の、 細胞を含まないゼァラ レノン含有 LS培地からの抽出物についてもゼァラレノンを定量した。 以上のゼァ ラレノンの定量には、 RIDASCREEN FAST Zearalenon (R-Biophar) を使用説明書 に従って使用した。  Therefore, next, to determine the amount of remaining zearalenone, quantification of zearalenone was performed 6 days after the start of the culture. The remaining amount of zearalenone is considered to be the total amount of the amount present in the medium, the amount adhering to the cell surface, and the amount taken up into the cells. Quantification was performed for both zearalenone and the amount. In order to confirm that zearalenone in the medium was degraded, zearalenone was quantified in extracts from the medium three days after the start of the culture. Further, as a control, zearalenone was quantified in an extract from a cell-free LS medium containing zearalenone 6 days after the start of culture. For the above quantification of zearalenone, RIDASCREEN FAST Zearalenon (R-Biophar) was used according to the instruction manual.
このようにして定量された、 培養開始から 6 日後のゼァラレノン量を表 1に示 す。 表 1 Table 1 shows the amount of zearalenone quantified 6 days after the start of the culture. table 1
Figure imgf000041_0001
表 1における残存ゼァラレノン量は、 培地中のゼァラレノン量と細胞が含有す るゼァラレノン量との合計値として算出した。 egfp: :zhdl01導入細胞及び野生型 細胞の培養培地における残存ゼァラレノン量は、 それぞれ 6.41 /g及び 260.85 μ であった。 また、 egfp: :zhdl01導入細胞の培養培地における残存ゼァラレノ ン量は、 培養開始時のゼァラレノン量 750 /^gの約 1/117であり、 野生型細胞の培 養培地における残存ゼァラレノン量の約 1/40であった。 なお、 ゼァラレノン含有 LS培地中の残存ゼァラレノン量も 52.5 /z gまで減少したが、 これは 6日間の培養 でゼァラレノンが析出した結果であり、 egfp: :zhdl01導入細胞及ぴ野生型細胞の 培養培地についてはこの析出現象は観察されなかった。
Figure imgf000041_0001
The amount of residual zearalenone in Table 1 was calculated as the total value of the amount of zearalenone in the medium and the amount of zearalenone contained in the cells. The amounts of residual zearalenone in the culture medium of egfp :: zhdl01-transfected cells and wild-type cells were 6.41 / g and 260.85 μ, respectively. In addition, the amount of residual zearalenone in the culture medium of egfp :: zhdl01-introduced cells was about 1/117 of the amount of zearalenone at the start of the culture of 750 / ^ g, and was about 1/117 of the amount of residual zearalenone in the culture medium of wild-type cells. / 40. The amount of residual zearalenone in the zearalenone-containing LS medium also decreased to 52.5 / zg, which was the result of the precipitation of zearalenone after culturing for 6 days.The culture medium of egfp :: zhdl01-introduced cells and wild-type cells No such precipitation phenomenon was observed.
さらに、 上記結果に基づく培地中のゼァラレノン量の変化を、 図 1 4に示す。 図 1 4に示される通り、 egfp: :zhdl01導入細胞の培養培地における培地中のゼァ ラレノン量は、 培養開始時の 750 t g、 培養開始から 3日後の 29.5 /_ig、 6 日後 の 0.76 μ gというように経時的に減少した。 従って、 培地中のゼァラレノンが培 養期間中に分解されたことが確認された。  FIG. 14 shows the change in the amount of zearalenone in the medium based on the above results. As shown in Fig. 14, the amount of zearalenone in the culture medium of egfp :: zhdl01-transfected cells was 750 tg at the start of culture, 29.5 / _ig 3 days after the start of culture, and 0.76 μg 6 days after the start of culture. And decreased over time. Therefore, it was confirmed that zearalenone in the medium was degraded during the culture period.
これらのデータから、 egfp: :zhdl01遺伝子を導入した形質転換細胞が、 培地中 のゼァラレノンを強力に分解できることが示された。 この結果は、 egfp: :zhdl01 を導入したトランスジエニックイネ植物体が、 ゼァラレノンの分解能を持つこと を示す。 本明細書中で引用した全ての刊行物、 特許及び特許出願はその全体を参考とし て本明細書中に組み入れるものとする。 産業上の利用可能性 These data indicate that transformed cells into which the egfp :: zhdl01 gene has been introduced can strongly degrade zearalenone in the medium. This result indicates that the transgenic rice plant into which egfp :: zhdl01 has been introduced has zearalenone resolution. All publications, patents and patent applications cited herein are incorporated by reference in their entirety. And are incorporated herein by reference. Industrial applicability
本発明のタンパク質を用いれば、 ゼァラレノンの毒性を有利に抑制することが できる。 また本発明の遺伝子は、 該タンパク質を発現させるために用いることが できる。 さらに、 本発明の遺伝子を導入した形質転換体及びトランスジエニック 植物は、 周囲環境中に含まれるゼァラレノンを効率的に分解し解毒する目的で、 有利に使用することができる。 配列表フリーテキス ト  Use of the protein of the present invention can advantageously suppress the toxicity of zearalenone. Further, the gene of the present invention can be used for expressing the protein. Furthermore, the transformants and transgenic plants into which the gene of the present invention has been introduced can be advantageously used for the purpose of efficiently degrading and detoxifying zearalenone contained in the surrounding environment. Sequence listing free text
配列番号 3〜 2 4は合成 DNAである。  SEQ ID NOs: 3 to 24 are synthetic DNAs.
配列番号 3〜1 4の nは、 a、 t、 c又は gである。  N in SEQ ID NOs: 3 to 14 is a, t, c or g.

Claims

請 求 の 範 囲 以下の(a)又は(b)のタンパク質。 Scope of Claim The following (a) or (b) protein.
(a) 配列番号 2に示されるァミノ酸配列からなるタンパク質  (a) a protein consisting of the amino acid sequence shown in SEQ ID NO: 2
(b) 配列番号 2に示されるアミノ酸配列において 1若しくは数個のアミノ酸 が欠失、 置換若しくは付加されたアミノ酸配列からなり、 かつ、 ゼァラレノ ン類の毒性を抑制する作用を有するタンパク質  (b) a protein comprising an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2, and having an action of suppressing toxicity of zearalenones
2 ゼァラレノン類が、 エストロゲン様活性を有する化合物である、 請求項 1 記載のタンパク質。  2. The protein according to claim 1, wherein the zearalenone is a compound having an estrogenic activity.
3 ゼァラレノン類が、 ゼァラレノン、 ひ -ゼァラレノール、 /3 -ゼァラレノー ル、 α -ゼァララノール、 j8 -ゼァララノール、 2, 4-0-ジメチル- δ -ヒ ドロキ シゼァラレノン、 6-ァミノ-ゼァラレノン、 ゼァララノン及び 6-ァセチル- j3 -ゼァラレノールからなる群から選択される少なくとも 1つである、 請求 項 1又は 2記載のタンパク質。  3 The zearalenones are zearalenone, γ-zearalenol, / 3-zearalenol, α-zearalanol, j8-zearalanol, 2,4-0-dimethyl-δ-hydroxy-zearalenone, 6-amino-zearalenone, zearalanone and 6-acetyl The protein according to claim 1, which is at least one selected from the group consisting of-j3-zearalenol.
4 毒性を抑制する作用が分解作用である、 請求項 1〜 3のいずれか 1項記载 4. The method according to claim 1, wherein the effect of suppressing toxicity is a decomposition effect.
5 毒性を抑制する作用が、 エストロゲン様活性を有しない化合物を生成する ものである、 請求項 1〜4のいずれか 1項記載のタンパク質。 5. The protein according to any one of claims 1 to 4, wherein the action of suppressing toxicity is to produce a compound having no estrogenic activity.
6 ρ Η 6〜 1 1で活性を有する、 請求項 1〜 5のいずれか 1項記載のタンパ ク質。  The protein according to any one of claims 1 to 5, which has an activity at 6ρΗ6 to 11.
7 ρ Η 9〜 1 0 . 5で活性を有する、 請求項 6記載のタンパク質。  7. The protein according to claim 6, which has an activity at 7 ρ Η 9 to 10.5.
8 以下の(a)又は(b)のタンパク質をコードする遺伝子。 8 A gene encoding the following protein (a) or (b):
(a) 配列番号 2に示されるアミノ酸配列からなるタンパク質  (a) a protein consisting of the amino acid sequence of SEQ ID NO: 2
(b) 配列番号 2に示されるアミノ酸配列において 1若しくは数個のアミノ酸 が欠失、 置換若しくは付加されたアミノ酸配列からなり、 かつ、 ゼァラレノ ン類の毒性を抑制する作用を有するタンパク質  (b) a protein comprising an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2, and having an action of suppressing toxicity of zearalenones
9 以下の(a)又は(b)の DNAからなる遺伝子。  9 A gene consisting of the following DNA (a) or (b):
(a) 配列番号 1に示される塩基配列からなる DNA  (a) DNA comprising the nucleotide sequence of SEQ ID NO: 1
(b) 配列番号 1に示される塩基配列からなる DNAの全部若しくは一部に相補 的な塩基配列からなる DNAとストリンジユントな条件下でハイブリダイズし 、 かつ、 ゼァラレノン類の毒性を抑制する作用を有するタンパク質をコード する DNA (b) complementary to all or part of the DNA consisting of the nucleotide sequence of SEQ ID NO: 1 Encoding a protein that hybridizes under stringent conditions with DNA consisting of a specific base sequence and that has a function of suppressing the toxicity of zearalenones
1 0 . 以下の(a)又は(b)の DNAからなる遺伝子。  10. A gene consisting of the following DNA (a) or (b):
(a) 配列番号 2に示されるアミノ酸配列をコードする DNA  (a) DNA encoding the amino acid sequence shown in SEQ ID NO: 2
(b) 配列番号 2に示されるアミノ酸配列をコードする DNAの全部若しくは一 部に相補的な塩基配列からなる DNAとストリンジェントな条件下でハイブリ ダイズし、 かつ、 ゼァラレノン類の毒性を抑制する作用を有するタンパク質 をコードする DNA  (b) an ability to hybridize under stringent conditions to DNA consisting of a nucleotide sequence complementary to all or part of the DNA encoding the amino acid sequence shown in SEQ ID NO: 2, and to suppress the toxicity of zearalenones DNA encoding a protein having
1 1 . ゼァラレノン類が、 エストロゲン様活性を有する化合物である、 請求項11. The zearalenone is a compound having estrogenic activity.
8 〜 1 0のいずれか 1項記載の遺伝子。 The gene according to any one of 8 to 10.
1 2 . ゼァラレノン類が、 ゼァラレノン、 α -ゼァラレノーノレ、 β -ゼァラレノ ール、 α -ゼァララノール、 ]3 -ゼァララノール、 2, 4-0 -ジメチル- δ -ヒ ドロ キシゼァラレノン、 6-ァミノ-ゼァラレノン、 ゼァララノン及び 6-ァセチノレ- /3 -ゼァラレノールからなる群から選択される少なくとも 1つである、 請求 項 8 〜 1 1のいずれか 1項記載の遺伝子。 12. The zearalenones are zearalenone, α-zearalenone, β-zearalenol, α-zearalanol,] 3-zearalanol, 2,4-0-dimethyl-δ-hydroxyzearalenone, 6-amino-zearalenone, zearalanone and The gene according to any one of claims 8 to 11, wherein the gene is at least one selected from the group consisting of 6-acetinol- / 3-zelarenol.
1 3 . 毒性を抑制する作用が分解作用である、 請求項 8 〜 1 2のいずれか 1項 記載の遺伝子。  13. The gene according to any one of claims 8 to 12, wherein the action of suppressing toxicity is a decomposition action.
1 4 . 毒性を抑制する作用が、 エス トロゲン様活性を有しない化合物を生成す るものである、 請求項 8 〜 1 3のいずれか 1項記載の遺伝子。  14. The gene according to any one of claims 8 to 13, wherein the action of suppressing toxicity is to generate a compound having no estrogen-like activity.
1 5 . 請求項 8 〜 1 4のいずれか 1項記載の遺伝子を含む糸且換えベクター。 15. A thread and recombinant vector containing the gene according to any one of claims 8 to 14.
1 6 . 請求項 1 5記載の組換えベクターを含む形質転換体。 16. A transformant comprising the recombinant vector according to claim 15.
1 7 . 大腸菌、 酵母細胞及びイネ科植物細胞からなる群より選択される細胞に 組換えベクターが導入された、 請求項 1 6記載の形質転換体。  17. The transformant according to claim 16, wherein the recombinant vector has been introduced into a cell selected from the group consisting of Escherichia coli, yeast cells, and gramineous plant cells.
1 8 . 請求項 1 6又は 1 7記載の形質転換体を培養し、 得られる培養物からゼ ァラレノン類の毒性を抑制する作用を有するタンパク質を採取することを含 む、 該タンパク質の製造方法。 18. A method for producing a protein, comprising culturing the transformant according to claim 16 or 17, and collecting a protein having an action of suppressing toxicity of zearalenones from the obtained culture.
1 9 . 請求項 1 6又は 1 7記載の形質転換体を含有する解毒剤。 19. An antidote containing the transformant according to claim 16 or 17.
2 0 . 請求項 1 〜 7のいずれか 1項記載のタンパク質を含有する解毒剤。 20. An antidote containing the protein according to any one of claims 1 to 7.
. ゼァラレノン類に請求項 1 9又は 2 0記載の解毒剤を適用することを含 む、 ゼァラレノン類の解毒方法。A method for detoxifying zearalenones, which comprises applying the antidote according to claim 19 or 20 to zearalenones.
. 請求項 8〜 1 4のいずれか 1項記載の遺伝子を含むトランスジエニック 植物。 A transgenic plant comprising the gene according to any one of claims 8 to 14.
PCT/JP2003/003602 2002-03-25 2003-03-25 Zearalenone-detoxifying enzyme gene and transformant having the gene transferred thereinto WO2003080842A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-84139 2002-03-25
JP2002084139 2002-03-25
JP2002348760A JP2004000130A (en) 2002-03-25 2002-11-29 Zearalenone detoxification enzyme gene and transformant transferred with the same
JP2002-348760 2002-11-29

Publications (1)

Publication Number Publication Date
WO2003080842A1 true WO2003080842A1 (en) 2003-10-02

Family

ID=28456240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003602 WO2003080842A1 (en) 2002-03-25 2003-03-25 Zearalenone-detoxifying enzyme gene and transformant having the gene transferred thereinto

Country Status (2)

Country Link
JP (1) JP2004000130A (en)
WO (1) WO2003080842A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012113827A1 (en) 2011-02-24 2012-08-30 Eucodis Bioscience Gmbh Feed processing enzymes
CN107099521A (en) * 2017-05-09 2017-08-29 中国农业科学院农产品加工研究所 A kind of acid resistance zearalenone detoxication enzyme and its encoding gene and application
CN109825484A (en) * 2017-11-23 2019-05-31 吉林中粮生化有限公司 Zearalenone hydrolase ZHD101 mutant and the method for utilizing the mutant hydrolysed corn zeranol

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101280811B1 (en) 2010-11-15 2013-07-02 (주)진바이오텍 Microorganism having zearalenone decomposing activity, method for degrading zearalenone using thereof and feed additives comprising the same
AT514775B1 (en) * 2013-08-28 2017-11-15 Erber Ag Polypeptide for hydrolytic cleavage of zearalenone and / or zearalenone derivatives, isolated polynucleotide thereof and additive containing the polypeptide
KR101494624B1 (en) * 2013-11-07 2015-02-24 동아대학교 산학협력단 Agromyces sp. M15 strain having degradation activity of zearalenone and uses thereof
KR102108744B1 (en) * 2017-10-20 2020-05-08 대한민국 Clonostachys rosea having degradation activity for zearalenone and uses thereof
CN110029095B (en) * 2019-04-15 2022-06-07 南京工业大学 Zearalenone degrading enzyme and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998022602A1 (en) * 1996-11-22 1998-05-28 Pioneer Hi-Bred International, Inc. Zearalenone detoxification compositions and methods
WO2002076205A2 (en) * 2001-03-27 2002-10-03 Pioneer Hi-Bred International, Inc. Compositions and methods of zearalenone detoxification

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998022602A1 (en) * 1996-11-22 1998-05-28 Pioneer Hi-Bred International, Inc. Zearalenone detoxification compositions and methods
WO2002076205A2 (en) * 2001-03-27 2002-10-03 Pioneer Hi-Bred International, Inc. Compositions and methods of zearalenone detoxification

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKAHASHI-ANDO N. ET AL.: "A novel lactonohydrolase responsible for the detoxification of zearalenone: enzyme purification and gene cloning", BIOCHEM. J., vol. 365, July 2002 (2002-07-01), pages 1 - 6, XP002967677 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012113827A1 (en) 2011-02-24 2012-08-30 Eucodis Bioscience Gmbh Feed processing enzymes
CN107099521A (en) * 2017-05-09 2017-08-29 中国农业科学院农产品加工研究所 A kind of acid resistance zearalenone detoxication enzyme and its encoding gene and application
CN107099521B (en) * 2017-05-09 2020-08-25 中国农业科学院农产品加工研究所 Acid-resistant zearalenone detoxifying enzyme and coding gene and application thereof
CN109825484A (en) * 2017-11-23 2019-05-31 吉林中粮生化有限公司 Zearalenone hydrolase ZHD101 mutant and the method for utilizing the mutant hydrolysed corn zeranol
CN109825484B (en) * 2017-11-23 2022-06-28 吉林中粮生化有限公司 Zearalenone hydrolase ZHD101 mutant and method for hydrolyzing zearalenone by using mutant

Also Published As

Publication number Publication date
JP2004000130A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
Swathi Anuradha et al. Transgenic tobacco and peanut plants expressing a mustard defensin show resistance to fungal pathogens
JP4719754B2 (en) DNA related to the gene encoding the α subunit of the second isozyme of rice anthranilate synthase
Dos Santos et al. Defense gene expression analysis of Arabidopsis thaliana parasitized by Orobanche ramosa
CN102124111B (en) Novel genes involved in biosynthesis
AU2016355682A1 (en) Haploid induction compositions and methods for use therefor
Renouard et al. Abscisic acid regulates pinoresinol–lariciresinol reductase gene expression and secoisolariciresinol accumulation in developing flax (Linum usitatissimum L.) seeds
CN105746255B (en) The purposes of herbicide tolerant protein
Huang et al. A hypersensitive response was induced by virulent bacteria in transgenic tobacco plants overexpressing a plant ferredoxin-like protein (PFLP)
CN105724139B (en) The purposes of herbicide tolerant protein
HU217789B (en) Process for isolating antipathogene proteins from plants, for producing them with recombinant technics, and compositions and transgenic plants containing this proteins
CN111690662A (en) Application of soybean bHLH transcription factor GmPIF1 gene in promotion of isoflavone synthesis
KR20020013518A (en) Transgenic plant resistant to mycotoxins and methods
CN1310761A (en) Enzyme
WO2007034953A1 (en) Protoporphyrinogen oxidase having activity of imparting resistance against acifluorfen and gene thereof
WO2003080842A1 (en) Zearalenone-detoxifying enzyme gene and transformant having the gene transferred thereinto
CN105724140B (en) The purposes of herbicide tolerant protein
CN109266647A (en) Rice-stem borer is caused harm inducible promoter and its application
US7419812B2 (en) Sequences encoding PhzO and methods
EP0967278A2 (en) Flowering regulating gene and its use
JP5229783B2 (en) Plant having enhanced chitin elicitor responsiveness and method for producing the same
US6800794B1 (en) Nucleic acid comprising the sequence of a promoter unductible by stress and a gene sequence coding for a stilbene synthase
CN104487576A (en) Papaver bracteatum with modified alkaloid content
Basavaraju et al. A modified in-planta transformation technique to generate stable gain-in function transformants in a recalcitrant indica rice genotype
JP3234534B2 (en) Transformed homonomies
JP5164093B2 (en) Method for increasing resistance of rice to pathogens and pathogen-resistant rice transformants

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase