WO2003080143A1 - Base material for reconstructing tissue or organ containing cell-free tissue matrix and cell growth factor - Google Patents

Base material for reconstructing tissue or organ containing cell-free tissue matrix and cell growth factor Download PDF

Info

Publication number
WO2003080143A1
WO2003080143A1 PCT/JP2003/003581 JP0303581W WO03080143A1 WO 2003080143 A1 WO2003080143 A1 WO 2003080143A1 JP 0303581 W JP0303581 W JP 0303581W WO 03080143 A1 WO03080143 A1 WO 03080143A1
Authority
WO
WIPO (PCT)
Prior art keywords
tissue
matrix
bladder
cell growth
growth factor
Prior art date
Application number
PCT/JP2003/003581
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiko Tabata
Osamu Ogawa
Original Assignee
Kaken Pharmaceutical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaken Pharmaceutical Co., Ltd. filed Critical Kaken Pharmaceutical Co., Ltd.
Priority to AU2003221081A priority Critical patent/AU2003221081A1/en
Priority to JP2003577967A priority patent/JP4431399B2/en
Publication of WO2003080143A1 publication Critical patent/WO2003080143A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3683Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment

Definitions

  • the present invention relates to a substrate for reconstructing a biological tissue or organ, that is, a substrate for regeneration that induces invasion of cells from surrounding tissues and regenerates and repairs the biological tissue or organ.
  • a substrate for reconstructing a tissue or organ comprising a decellularized tissue matrix and a cell growth factor.
  • Biological tissue engineering is an attempt to regenerate and repair damaged or defective parts of living tissues or organs.
  • scaffold materials for proliferation and differentiation of various cells have been researched and developed.
  • synthetic scaffolds have been created, but there are many issues that need to be improved. Therefore, the production of a scaffold material from a biological material has been considered and attempted.
  • attempts to use various biological tissues or organs perform decellularization to suppress immune rejection of tissues or organs, collect only extracellular matrix, and use it as a scaffold There is.
  • These biological scaffolds have better mechanical properties and body fluid storage properties than synthetic scaffolds.
  • the scaffold shrinks.
  • One way to solve this is to insert cells.
  • isolation and seeding of cells are complicated, and another method is desired.
  • a cell growth factor as a method to suppress the contraction of the scaffold by promoting the invasion of the cell into the scaffold material instead of the cell in the body.
  • This is the point of the present invention.
  • various cells and cell growth factors can be combined and put into a decellularized tissue matrix and used.
  • bladder dysfunction due to a congenital disease or bladder enlargement surgery is necessary when the bladder is removed due to cancer.
  • Patch repair is usually performed on the gastrointestinal tract, but there are many problems such as reabsorption of urine from the intestinal tract, rupture and carcinogenesis, and the regeneration of the bladder itself is ideal.
  • the present invention has solved these problems, that is, it can be used not only for bladder but also for reconstruction of various other living tissues or organs, is excellent in biocompatibility, does not cause graft shrinkage, and is easy to operate. It is an object of the present invention to provide a simple and economically inexpensive base material for reconstructing a tissue or organ that can bring out tissue repair ability.
  • the present invention provides a living tissue or a tissue having a function of inducing regeneration of a living tissue or organ and regenerating and repairing the living tissue or organ, comprising a decellularized tissue matrix and a cell growth factor. It is a substrate for organ reconstruction.
  • the decellularized tissue matrix in the present invention refers to a matrix in which most of the cellular components of a living tissue or organ have been removed and a porous extracellular matrix remains, and decellularized from any living tissue or organ. Includes all products that have been processed.
  • the tissue or organ from which the decellularized tissue matrix can be obtained is not particularly limited as long as it is a living tissue or organ.
  • Examples include vas deferens, fallopian tubes, ureters and lymph vessels.
  • Preferred are the bladder, the small intestine and the esophagus, and particularly preferred is the bladder.
  • Cell growth factors in the present invention include cell growth factors (cell growth factors) such as bFGF (basic fibroblast growth factor), aFGF PDGF TGF- ⁇ 1 VEGF HGF HB_EGF CTG FI GF-I and IGF-II. It includes what is called or interleukins, cytokins, bioactive peptides and chemokines, but is preferably bFGF HGF CTGF and PDGF, and particularly preferably bFGF. These growth factors can be used alone or in combination of two or more.
  • bFGF that can be used in the present invention is an organ such as the pituitary gland, brain, retina, corpus luteum, adrenal gland, etc.
  • Extracted products those produced by genetic engineering techniques such as recombinant DNA technology, and modified products thereof that can act as fibroblast growth factors.
  • modified form of bFGF include those obtained by adding, substituting or deleting an amino acid in the amino acid sequence of bFGF obtained by the above-described extraction or genetic engineering technique.
  • the bFGF that can be used in the present invention preferably includes, for example, those described in WO 87/01728 and WO 89704832, particularly those described in the former.
  • the amount of cell growth factor in the tissue or organ reconstruction substrate of the present invention may be determined by the following: decellularized tissue matrix, type of cell growth factor, type of tissue or organ to be reconstructed, lesion site, extent of lesion, patient condition, etc.
  • decellularized tissue matrix 1,000 to 100,000 g, preferably 5,000 to 50,000 g, more preferably 2,000 to 30,000 / g g.
  • the tissue or organ to be reconstructed in the present invention is not particularly limited as long as it is a living tissue or organ, and for example, esophagus, bladder, urethra, small intestine, liver, lung, skeletal muscle, smooth muscle, cardiac muscle, kidney, bone, Cartilage, skin, hair, brain, nerve, muscle, blood vessels, kidney, retina, cornea, diaphragm, pericardium, serosa, amniotic membrane, tendon, ligament, large intestine, duodenum, trachea, intubation, fallopian tubes, ureters and Examples include lymphatic vessels and the like.
  • Preferred are the bladder, small intestine, and urethra, and particularly preferred is the bladder.
  • the tissue or organ for obtaining the decellularized tissue matrix and the tissue or organ to be reconstructed may be the same or different, but both tissues or organs are the same. In some cases, it is preferable.
  • FIG. 1 is a diagram (A) of the decellularized tissue matrix from rat bladder and the HE staining result (B).
  • Figure 2 shows the preparation of decellularized tissue matrix from rat bladder and the inclusion of cell growth factor in rat bladder before decellularization (1) and decellularized tissue matrix from rat bladder ( 2) Decellularized tissue mat after lyophilization Lix (3) and a decellularized tissue matrix (4) after impregnation with an aqueous cell growth factor solution.
  • FIG. 3 is a graph showing the release of cell growth factor from a decellularized tissue matrix containing cell growth factor in an aqueous solution (PBS).
  • FIG. 4 is a graph showing degradation of a decellularized tissue matrix and attenuation of a cell growth factor contained in the decellularized tissue matrix in a subcutaneous mouse.
  • Figure 5 is a graph (top) and a macroscopic image showing the granulation-forming ability of the decellularized tissue matrix containing cell growth factors embedded in the living body for a certain period of time, 7 days after subcutaneous implantation in mice. (Bottom).
  • Figure 6 shows HE staining results of bladder tissue on grafts of rats in groups A, B, C and D 4 weeks after surgery ((A), (B), (C) and ( D)).
  • FIG. 7 shows the bladder ((A), (B), (C) and (D)) of the rats in groups A, B, C and D 4 weeks after the operation.
  • the region surrounded by the arrow is the graft site.
  • FIG. 8 is a graph showing the graft area of rats in groups A, B, C, and D four weeks after surgery.
  • Figure 9 shows HE staining results of bladder tissue on grafts of rats in groups A, B, C and D 12 weeks after surgery ((A), (B), (C) and (D )).
  • the substrate for tissue or organ reconstruction of the present invention can be produced by including a cell growth factor in a decellularized tissue matrix.
  • the decellularized tissue matrix can be obtained by subjecting the cells or tissues to the above-described tissues or organs by a conventional method, for example, treatment with a surfactant such as Triton X-100 or other known treatments, for example, repeated freeze-thawing, osmotic pressure change, etc. Can be prepared according to the destruction method.
  • the decellularized tissue matrix can be lyophilized and stored for later use.
  • the method for incorporating the cell growth factor into the decellularized tissue matrix may be any method that allows the cell growth factor to be uniformly distributed in the decellularized tissue matrix.
  • the method is not particularly limited, and examples thereof include a method of impregnating a cell growth factor solution into a decellularized tissue matrix, a method of freeze-drying a decellularized tissue matrix, and impregnating or adding a cell growth factor solution thereto.
  • the tissue or organ reconstruction base material of the present invention may be used, for example, when there is a tissue dysfunction due to a congenital disease, when the tissue or organ is excised due to cancer, or when the wound healing power is poor due to complications such as diabetes. Or, when wound healing power is poor due to infection of surrounding tissues, etc., it can be used effectively for reconstruction of the tissues or organs.
  • the reconstruction of a tissue or an organ using the reconstruction substrate of the present invention can be performed, for example, by using the reconstruction substrate as a graph and patch-repairing the tissue or organ to be reconstructed.
  • Example 1 Preparation of decellularized tissue matrix from rat bladder and its morphological evaluation
  • the bladder of a rat weighing 250 to 300 g was excised and the surrounding tissues were excised and decellularized by the following method.
  • HE staining Specimens were prepared and the morphology was recorded with a light microscope. Another specimen was fixed with 2.5% aqueous dartaldehyde solution, dehydrated, replaced with t-butyl alcohol, freeze-dried, coated with platinum vapor deposition, and observed and recorded with a scanning electron microscope.
  • Example 2 Cell growth factor binding method by impregnation of lyophilized decellularized tissue matrix in aqueous solution and evaluation of binding state in aqueous solution
  • the matrix prepared by the above method was frozen in distilled water at 180 ° C. for 12 hours, and then lyophilized for 48 hours using a vacuum pump. This was impregnated with an aqueous bFGF solution and allowed to stand at 37 ° C for 1 hour to prepare a decellularized tissue matrix containing cell growth factors. Separately, the matrix before lyophilization was impregnated with an aqueous bFGF solution.
  • FGF basic fibroblast growth factors
  • Example 3 Evaluation of correlation between in vivo attenuation of cell growth factor and matrix degradation (method)
  • bFGF in vivo release experiments A matrix containing radiolabeled cell growth factor, prepared in a similar manner as described above, was implanted subcutaneously in the back of 6-week-old female d dY mice. Thereafter, this was sacrificed over time and the remaining radioactivity of the matrix and the surrounding tissue was measured to examine the remaining bFGF.
  • a 5 mg decellularized tissue matrix from rat bladder is impregnated with an aqueous solution containing 5 g of bFGF or PBS lOl in the same manner as above, and one group is directly implanted under the mouse subcutaneously in the same manner as above.
  • the remaining two groups were sealed in a diffusion chamber and implanted subcutaneously in a mouse in the same manner as described above. After this was removed 7 or 14 days later, the matrix alone was reimplanted subcutaneously in another mouse. Seven days after matrix implantation (or re-implantation) in each group, the mice were sacrificed and subcutaneous tissues 2 cm square around the matrix were collected to evaluate the tissue weight and the like.
  • Example 5 Bladder Patch Repair Surgery Using Decellularized Tissue Matrix from Rat Bladder Containing FGF, Use b Examination of relationship between FGF concentration and bladder reconstructed image on matrix graft, patch size.
  • the rat bladder was decellularized, and the portion corresponding to the bladder apex 2Z3 was removed therefrom to prepare a decellularized tissue matrix containing various concentrations of bFGF.
  • Another 10-week-old female Wistar rat was anesthetized with xylazine-ketamine, a midline incision was made in the lower abdomen to expose the bladder, the apical 2/3 of the bladder was excised, and the decellularized tissue matrix was used. This defect was patch repaired as a graft.
  • the suture between the bladder and the graft was continuously sutured using 8-0 absorbent thread, and the four corners were marked with 7-0 nylon thread. After the restoration was completed, a tube was inserted through the urethra and physiological saline was injected to confirm that there was no leak. At the same time, the graft size at the time of filling was recorded as the major and minor diameters of the marking thread.
  • the rats are sacrificed and the bladder is emptied.After injecting 10% formalin or Krebs solution equivalent to the bladder capacity, the urethral opening is clamped, and the distance between the marking threads is reduced. It was measured. The graft area was defined as major axis X minor axis Z2. Tissues were fixed in formalin, photographed, and dehydrated, paraffin-embedded, and HE-stained in all groups at 4 weeks and 3 animals at 12 weeks in each group.
  • the substrate for tissue or organ reconstruction of the present invention can be used in tissue or organ reconstruction such as patch repair for bladder reconstruction, is excellent in biocompatibility, does not bring about graft repair, is a simple and economical method. Can bring out the tissue repair ability.
  • the substrate for tissue or organ reconstruction according to the present invention suppresses contraction of a graft, which cannot be obtained with a conventional biologically-derived scaffold, by gradually releasing cell growth factors and promoting cell invasion from the tissue to the substrate. Has an effect.
  • the method of the present invention is more convenient than the conventional method of inserting cells into a biologically-derived scaffold.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

It is intended to provide a base material for reconstructing a tissue or an organ which is highly biocompatible and shows regulated graft contraction. Namely, a base material for reconstructing a tissue or an organ which contains a cell-free tissue matrix and a cell growth factor.

Description

明 細 書 脱細胞化組織マトリックス及び細胞成長因子を含む組織又は臓器再建用基材 技術分野  Description Base material for tissue or organ reconstruction containing decellularized tissue matrix and cell growth factor
本発明は、 生体組織又は臓器の再建用基材、 すなわち、 周辺組織からの細胞の 侵入を誘導し、 生体組織又は臓器を再生して修復するような再生用基材、 より特 定的には、 脱細胞化組織マトリックスと細胞成長因子とを含む、 組織又は臓器の 再建用基材に関する。 背景技術  The present invention relates to a substrate for reconstructing a biological tissue or organ, that is, a substrate for regeneration that induces invasion of cells from surrounding tissues and regenerates and repairs the biological tissue or organ. A substrate for reconstructing a tissue or organ, comprising a decellularized tissue matrix and a cell growth factor. Background art
生体組織又は臓器の損傷又は欠損部を再生修復する試みが生体組織工学である。 この試みの中で、 種々の細胞の増殖分化のための足場材料が研究開発されている。 これまでにも、 合成物質による足場が作られているが、 改善すべき問題も多い。 そこで、 生体由来材料からの足場材料の作製が考えられ、 試みられている。 これ までに、 様々な生体組織又は臓器を使い、 組織又は臓器への免疫拒絶反応を抑制 することを目的として脱細胞化処理を行い、 細胞外マトリックスのみを回収し、 それを足場として利用する試みがある。 これらの生体由来足場材料は合成足場材 料に比べて力学特性、 体液保存性などに優れている。 しかしながら、 生体内で用 いたとき、 足場が収縮するという欠点があった。 これを解決する方法として細胞 を入れる方法がある。 ところが、 この方法では、 細胞の単離、 播種などが煩雑で あり、 別の方法が望まれる。  Biological tissue engineering is an attempt to regenerate and repair damaged or defective parts of living tissues or organs. In this attempt, scaffold materials for proliferation and differentiation of various cells have been researched and developed. To date, synthetic scaffolds have been created, but there are many issues that need to be improved. Therefore, the production of a scaffold material from a biological material has been considered and attempted. To date, attempts to use various biological tissues or organs, perform decellularization to suppress immune rejection of tissues or organs, collect only extracellular matrix, and use it as a scaffold There is. These biological scaffolds have better mechanical properties and body fluid storage properties than synthetic scaffolds. However, when used in vivo, the scaffold shrinks. One way to solve this is to insert cells. However, in this method, isolation and seeding of cells are complicated, and another method is desired.
そこで、 細胞の代わりに足場材料への細胞の侵入を体内で促進することで、 足 場の収縮を抑制する方法として、 細胞成長因子を入れることを考えた。 この点が 本発明のポイントである。 もちろん、 場合によっては、 各種の細胞と細胞成長因 子とを組み合わせて、 脱細胞化組識マトリックスに入れ、 用いることも可能であ る。  Therefore, we considered adding a cell growth factor as a method to suppress the contraction of the scaffold by promoting the invasion of the cell into the scaffold material instead of the cell in the body. This is the point of the present invention. Of course, in some cases, various cells and cell growth factors can be combined and put into a decellularized tissue matrix and used.
グラフト収縮の一つの原因は、 平滑筋などの組織又は臓器の再生が悪いことで あり、 細胞成長因子を入れ、 脱細胞化組織マトリックスからそれらの因子が徐放 化されることで、 上記の組織又は臓器の再生が促進されると考えられる。 One cause of graft contraction is poor regeneration of tissues or organs, such as smooth muscle, which contains cell growth factors and releases them slowly from the decellularized tissue matrix. It is thought that the regeneration of the above-mentioned tissue or organ is promoted by the conversion.
例えば、 膀胱再建手術を考えた場合には、 先天性疾患による膀胱機能障害や、 癌により膀胱を切除した場合に膀胱拡大手術が必要である。 通常は消化管をもつ てパッチ修復を行うが、 腸管から尿の再吸収、 破裂、 発癌などの問題は多く、 膀 胱そのものの再生が理想的である。  For example, considering bladder reconstruction surgery, bladder dysfunction due to a congenital disease or bladder enlargement surgery is necessary when the bladder is removed due to cancer. Patch repair is usually performed on the gastrointestinal tract, but there are many problems such as reabsorption of urine from the intestinal tract, rupture and carcinogenesis, and the regeneration of the bladder itself is ideal.
各種人工材料を用いたパッチ修復による膀胱再建の歴史は 1 9 6 0年代にさか のぼり、 実に多様な材料が動物実験から臨床治験まで使用されてきた。 しかし、 非吸収性の材料は異物反応、 結石形成などのために尿路への使用には適せず、 一 方、 吸収性高分子や各種生物由来材料ではグラフト上への良好な再生を認める一 方で、 グラフト面積そのものの収縮のために不十分な機能付加しかもたらすこと ができなかった。 その後、 消化管を利用した膀胱再建術の進歩があつたが、 上に 述べた長期的な問題点が明らかになるとともに、 膀胱再建は再び注目を浴びつつ ある。  The history of bladder reconstruction by patch repair using various artificial materials dates back to the 1960s, and a wide variety of materials have been used from animal experiments to clinical trials. However, non-absorbable materials are not suitable for use in the urinary tract due to foreign body reactions, stone formation, etc. On the other hand, absorbent polymers and various biological materials show good regeneration on grafts On the other hand, the contraction of the graft area itself could result in insufficient function addition. After that, progress was made in bladder reconstruction using the gastrointestinal tract, but as the long-term problems mentioned above became apparent, bladder reconstruction is gaining attention again.
1 9 9 0年代に入り、 小腸粘膜下組織 (smal l intes t ine submucosa: SIS) と、 脱細胞化膀胱マトリックス (bl adder acel lul ar mat r ix) の二つの生物材料につ いて、 動物実験で優れた修復性が報告され膀胱再建の新たな材料として期待され たものの、 大欠損の修復においてはやはり上に述べたグラフト収縮のためにいず れも十分な機能付加をもたらさないことが判明した。 ただ、 この二つの生物材料 は米国ではすでに尿道再建などには日常的に臨床で使用されており、 特に S I S は C O O K社の商品として流通している。  In the 1990s, animal experiments were conducted on two biological materials, small intestine submucosa (SIS) and decellularized bladder matrix (bl adder acel lul ar matrix). Repair was reported to be a new material for bladder reconstruction, but none of the major defects were repaired due to the above-mentioned graft contraction, which did not provide sufficient function. did. However, these two biological materials are already routinely used in the United States for urethral reconstruction, etc., and in particular, SIS is distributed as a product of COOK.
一方、 別のグループは体外で大量培養した自己膀胱細胞をグラフト上に播種し て膀胱修復を行うことでグラフトの収縮が抑制しうることを報告し、 現在臨床治 験に入っている。 自家細胞移植の有用性はこの研究により証明されたが、 その一 方でこのように複雑な操作と多額の医療費を必要とする医療が広く世界に受け入 れられていくにはクリア一すべき問題が多い。  On the other hand, another group has reported that a large amount of autologous bladder cells cultured outside the body can be seeded on a graft and bladder repair performed to suppress graft contraction, and are now in clinical trials. Although the usefulness of autologous cell transplantation has been proved by this study, it is clear that such complicated operations and medical care requiring large medical costs will not be widely accepted in the world. There are many problems to be solved.
何らかの方法で膀胱そのものの優れた修復能を十分に引き出すことができれば、 細胞移植のような複雑な方法をとらなくとも十分な膀胱の再生をもたらしうる可 能性はあり、 そのような治療法の開発が現在の課題である。 発明の開示 If the bladder itself can be fully rehabilitated in some way, it may be possible to regenerate the bladder without taking complicated procedures such as cell transplantation. Development is the current challenge. Disclosure of the invention
本発明は、 これら問題点を解決した、 すなわち、 膀胱のみならず、 他の様々な 生体組織又は臓器の再建にも使用でき、 生体適合性に優れ、 グラフト収縮をもた らさず、 操作が簡便であり、 経済的にも低廉な、 組織修復能を引き出す組織又は 臓器再建用基材を提供することを課題とする。  The present invention has solved these problems, that is, it can be used not only for bladder but also for reconstruction of various other living tissues or organs, is excellent in biocompatibility, does not cause graft shrinkage, and is easy to operate. It is an object of the present invention to provide a simple and economically inexpensive base material for reconstructing a tissue or organ that can bring out tissue repair ability.
本発明者らは、 上記課題を解決するために鋭意研究を行なった結果、 本発明を 成した。  Means for Solving the Problems The present inventors have conducted intensive studies in order to solve the above problems, and as a result, have made the present invention.
本発明は、 脱細胞化組織マトリックスと細胞成長因子とを含むことを特徴とす る、 生体組織又は臓器の再生を誘導し、 生体組織又は臓器を再生して修復する機 能を持つ生体組織又は臓器の再建用基材である。  The present invention provides a living tissue or a tissue having a function of inducing regeneration of a living tissue or organ and regenerating and repairing the living tissue or organ, comprising a decellularized tissue matrix and a cell growth factor. It is a substrate for organ reconstruction.
本発明における脱細胞化組織マトリックスとは、 生体組織又は臓器の細胞成分 の大部分が除去されており、 多孔性の細胞外マトリックスが残存しているものを いい、 あらゆる生体組織又は臓器から脱細胞処理を施して作製したもの全てを含 む。  The decellularized tissue matrix in the present invention refers to a matrix in which most of the cellular components of a living tissue or organ have been removed and a porous extracellular matrix remains, and decellularized from any living tissue or organ. Includes all products that have been processed.
脱細胞化組織マトリックスを得ることができる組織又は臓器としては、 生体組 織又は臓器であれば特に制限はないが、 たとえば、 食道、 膀胱、 尿道、 小腸、 肝 臓、 肺、 骨格筋、 平滑筋、 心筋、 腎臓、 骨、 軟骨、 皮膚、 毛髪、 脳、 神経、 筋肉、 血管、 塍臓、 網膜、 角膜、 横隔膜、 心膜、 漿膜、 羊膜、 腱、 靭帯、 大腸、 十二指 腸、 気管、 精輸管、 卵管、 尿管及びリンパ管などが挙げられる。 好ましくは、 膀 胱、 小腸及び食道などであり、 特に好ましくは膀胱である。  The tissue or organ from which the decellularized tissue matrix can be obtained is not particularly limited as long as it is a living tissue or organ.For example, esophagus, bladder, urethra, small intestine, liver, lung, lung, skeletal muscle, smooth muscle , Myocardium, kidney, bone, cartilage, skin, hair, brain, nerve, muscle, blood vessels, kidney, retina, cornea, diaphragm, pericardium, serosa, amnion, tendon, ligament, large intestine, duodenum, trachea, Examples include vas deferens, fallopian tubes, ureters and lymph vessels. Preferred are the bladder, the small intestine and the esophagus, and particularly preferred is the bladder.
本発明における細胞成長因子には、 bFGF (塩基性線維芽細胞成長因子)、 aFGF PDGF TGF— β 1 VEGF HGF HB_EGF CTG F I GF— I及び I GF— II など一般に細胞成長因子 (細胞増殖因子) と呼 ばれているもの、 あるいはインターロイキン、 サイト力イン、 生理活性ペプチド 類及びケモカイン類などが含まれるが、 好ましくは bFGF HGF CTGF 及び PDGFであり、 特に好ましくは bFGFである。 また、 これら成長因子は、 単独でも、 2種類以上の組み合わせでも、 使用することができる。 具体的には、 本発明に使用できる bFGFは、 脳下垂体、 脳、 網膜、 黄体、 副腎などの臓器 より抽出されたもの、 組換え D N A技術などの遺伝子工学的手法で製造されたも の、 さらに、 これらの修飾体であって線維芽細胞成長因子として作用し得るもの を含む。 bFGFの修飾体としては、 上記の抽出又は遺伝子工学的手法で得られ た bFGFのァミノ酸配列においてァミノ酸が付加、 置換又は欠失したものを挙 げることができる。 本発明において使用できる b FGFとして、 好ましくは、 た とえば、 WO 87/01728、 WO 89704832、 特に前者に記載された ものが挙げられる。 Cell growth factors in the present invention include cell growth factors (cell growth factors) such as bFGF (basic fibroblast growth factor), aFGF PDGF TGF-β1 VEGF HGF HB_EGF CTG FI GF-I and IGF-II. It includes what is called or interleukins, cytokins, bioactive peptides and chemokines, but is preferably bFGF HGF CTGF and PDGF, and particularly preferably bFGF. These growth factors can be used alone or in combination of two or more. Specifically, bFGF that can be used in the present invention is an organ such as the pituitary gland, brain, retina, corpus luteum, adrenal gland, etc. Extracted products, those produced by genetic engineering techniques such as recombinant DNA technology, and modified products thereof that can act as fibroblast growth factors. Examples of the modified form of bFGF include those obtained by adding, substituting or deleting an amino acid in the amino acid sequence of bFGF obtained by the above-described extraction or genetic engineering technique. The bFGF that can be used in the present invention preferably includes, for example, those described in WO 87/01728 and WO 89704832, particularly those described in the former.
本発明の組織又は臓器再建用基材における細胞成長因子の量は、 脱細胞化組織 マトリックスや細胞成長因子の種類、 再建すべき組織もしくは臓器の種類、 病変 部位、 病変の程度、 患者の状態などによって異なるが、 たとえば、 脱細胞化組織 マトリックス l g 中に、 1 , 0 0 0〜 1 0 0 , O O O g、 好ましくは 5, 000〜 50, 000 g、 より好ましくは 2, 000〜 30, 000 / g である。  The amount of cell growth factor in the tissue or organ reconstruction substrate of the present invention may be determined by the following: decellularized tissue matrix, type of cell growth factor, type of tissue or organ to be reconstructed, lesion site, extent of lesion, patient condition, etc. For example, in the decellularized tissue matrix lg, 1,000 to 100,000 g, preferably 5,000 to 50,000 g, more preferably 2,000 to 30,000 / g g.
本発明における再建すべき組織又は臓器としては、 生体組織又は臓器であれば 特に限定されないが、 たとえば食道、 膀胱、 尿道、 小腸、 肝臓、 肺、 骨格筋、 平 滑筋、 心筋、 腎臓、 骨、 軟骨、 皮膚、 毛髪、 脳、 神経、 筋肉、 血管、 塍臓、 網膜、 角膜、 横隔膜、 心膜、 漿膜、 羊膜、 腱、 靭帯、 大腸、 十二指腸、 気管、 精輸管、 卵管、 尿管及びリンパ管などが挙げられ、 好ましくは、 膀胱、 小腸、 尿道であり、 特に好ましくは膀胱である。  The tissue or organ to be reconstructed in the present invention is not particularly limited as long as it is a living tissue or organ, and for example, esophagus, bladder, urethra, small intestine, liver, lung, skeletal muscle, smooth muscle, cardiac muscle, kidney, bone, Cartilage, skin, hair, brain, nerve, muscle, blood vessels, kidney, retina, cornea, diaphragm, pericardium, serosa, amniotic membrane, tendon, ligament, large intestine, duodenum, trachea, intubation, fallopian tubes, ureters and Examples include lymphatic vessels and the like. Preferred are the bladder, small intestine, and urethra, and particularly preferred is the bladder.
本発明の組織又は臓器再建用基材において、 脱細胞化組織マトリックスを得る ための組織又は臓器と再建すべき組織又は臓器は同一でも、 異なっていても良い が、 両方の組織又は臓器が同一であることが好ましい場合もある。 図面の簡単な説明  In the tissue or organ reconstruction substrate of the present invention, the tissue or organ for obtaining the decellularized tissue matrix and the tissue or organ to be reconstructed may be the same or different, but both tissues or organs are the same. In some cases, it is preferable. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 ラット膀胱からの脱細胞化組織マトリックスの図 (A) 及びその HE 染色結果 (B) である。  FIG. 1 is a diagram (A) of the decellularized tissue matrix from rat bladder and the HE staining result (B).
図 2は、 ラット膀胱からの脱細胞化組織マトリックスの調製及びこれに細胞成 長因子を含有させる工程における、 脱細胞化処理前のラット膀胱 (1)、 ラット 膀胱からの脱細胞化組織マトリックス ( 2 )、 凍結乾燥後の脱細胞化組織マト リックス ( 3 ) 及び細胞成長因子水溶液に含浸後の脱細胞化組織マトリックス (4) である。 Figure 2 shows the preparation of decellularized tissue matrix from rat bladder and the inclusion of cell growth factor in rat bladder before decellularization (1) and decellularized tissue matrix from rat bladder ( 2) Decellularized tissue mat after lyophilization Lix (3) and a decellularized tissue matrix (4) after impregnation with an aqueous cell growth factor solution.
図 3は、 水溶液 (PBS) 中における、 細胞成長因子を含有させた脱細胞化組 織マトリックスからの細胞成長因子の放出を示すグラフである。  FIG. 3 is a graph showing the release of cell growth factor from a decellularized tissue matrix containing cell growth factor in an aqueous solution (PBS).
図 4は、 マウス皮下における、 脱細胞化組織マトリックスの分解、 及び脱細胞 化組織マトリックスに含有させた細胞成長因子の減衰を示すグラフである。 図 5は、 生体内に一定期間埋入した細胞成長因子を含有させた脱細胞化組織マ トリックスのマウス皮下への埋め直し後 7日目の肉芽形成能を示すグラフ (上 部) と肉眼像を示す図 (下部) である。  FIG. 4 is a graph showing degradation of a decellularized tissue matrix and attenuation of a cell growth factor contained in the decellularized tissue matrix in a subcutaneous mouse. Figure 5 is a graph (top) and a macroscopic image showing the granulation-forming ability of the decellularized tissue matrix containing cell growth factors embedded in the living body for a certain period of time, 7 days after subcutaneous implantation in mice. (Bottom).
図 6は、 術後 4週後の A群、 B群、 C群及び D群のラットのグラフト上での膀 胱組織の HE染色結果 (それぞれ (A)、 (B)、 (C) 及び (D)) である。  Figure 6 shows HE staining results of bladder tissue on grafts of rats in groups A, B, C and D 4 weeks after surgery ((A), (B), (C) and ( D)).
図 7は、 術後 4週間後の A群、 B群、 C群及び D群のラットの膀胱 (それぞれ (A)、 (B)、 (C) 及び (D)) である。 矢印で囲まれた領域がグラフト部位で ある。  FIG. 7 shows the bladder ((A), (B), (C) and (D)) of the rats in groups A, B, C and D 4 weeks after the operation. The region surrounded by the arrow is the graft site.
図 8は、 術後 4週間後の A群、 B群、 C群及び D群のラットのグラフト面積を 示すグラフである。  FIG. 8 is a graph showing the graft area of rats in groups A, B, C, and D four weeks after surgery.
図 9は、 術後 12週間後の A群、 B群、 C群及び D群のラットのグラフト上で の膀胱組織の HE染色結果 (それぞれ (A)、 (B)、 (C) 及び (D)) である。 発明を実施するための最良の形態  Figure 9 shows HE staining results of bladder tissue on grafts of rats in groups A, B, C and D 12 weeks after surgery ((A), (B), (C) and (D )). BEST MODE FOR CARRYING OUT THE INVENTION
本発明の組織又は臓器再建用基材は、 脱細胞化組織マトリックスに細胞成長因 子を含有させることにより製造することができる。  The substrate for tissue or organ reconstruction of the present invention can be produced by including a cell growth factor in a decellularized tissue matrix.
脱細胞化組織マトリックスは、 前記したような組織又は臓器から常法、 たとえ ば TritonX— 100などの界面活性剤処理又はそれ以外の公知の処理、 例えば、 繰り返し凍結融解、 浸透圧変化などにより細胞を破壊する方法にしたがつて調製 することができる。 脱細胞化組織マトリックスは、 凍結乾燥して保存し、 その後 に使用することもできる。  The decellularized tissue matrix can be obtained by subjecting the cells or tissues to the above-described tissues or organs by a conventional method, for example, treatment with a surfactant such as Triton X-100 or other known treatments, for example, repeated freeze-thawing, osmotic pressure change, etc. Can be prepared according to the destruction method. The decellularized tissue matrix can be lyophilized and stored for later use.
細胞成長因子を脱細胞化組織マトリックスに含有させる方法としては、 細胞成 長因子を脱細胞化組織マトリックスに均一に分布させることができる方法であれ ば特に限定されず、 たとえば、 脱細胞化組織マトリックスに細胞成長因子溶液を 含浸する方法、 脱細胞化組織マトリックスを凍結乾燥し、 これに細胞成長因子溶 液を含浸又は添加する方法を例示できる。 The method for incorporating the cell growth factor into the decellularized tissue matrix may be any method that allows the cell growth factor to be uniformly distributed in the decellularized tissue matrix. The method is not particularly limited, and examples thereof include a method of impregnating a cell growth factor solution into a decellularized tissue matrix, a method of freeze-drying a decellularized tissue matrix, and impregnating or adding a cell growth factor solution thereto.
本発明の組織又は臓器再建用基材は、 たとえば先天性疾患による組織機能障害 がある場合、 癌などにより組織又は臓器を切除した場合、 糖尿病などの合併症に より創傷治癒力が劣っている場合又は周辺組織の感染などにより創傷治癒力が 劣っている場合などに、 その組織又は臓器の再建に効果的に使用することができ る。  The tissue or organ reconstruction base material of the present invention may be used, for example, when there is a tissue dysfunction due to a congenital disease, when the tissue or organ is excised due to cancer, or when the wound healing power is poor due to complications such as diabetes. Or, when wound healing power is poor due to infection of surrounding tissues, etc., it can be used effectively for reconstruction of the tissues or organs.
本発明の再建用基材による組織又は臓器の再建は、 たとえば、 再建用基材をグ ラフトとして用い、 再建すべき組織又は臓器をパッチ修復することにより行うこ とができる。 実施例  The reconstruction of a tissue or an organ using the reconstruction substrate of the present invention can be performed, for example, by using the reconstruction substrate as a graph and patch-repairing the tissue or organ to be reconstructed. Example
以下、 本発明を実施例によりさらに説明するが、 本発明を限定するものではな い。  Hereinafter, the present invention will be further described with reference to Examples, but the present invention is not limited thereto.
実施例 1 : ラット膀胱からの脱細胞化組織マトリックスの作製とその形態学的評 価 Example 1: Preparation of decellularized tissue matrix from rat bladder and its morphological evaluation
(方法)  (Method)
250〜300 gのラットの膀胱を摘出し、 周囲組織を切除した後に下記の方 法で脱細胞化を行った。  The bladder of a rat weighing 250 to 300 g was excised and the surrounding tissues were excised and decellularized by the following method.
1) 1 OmM PBS + 0. 1 %アジ化ナトリウム溶液を加え、 37°Cで 6時間、 震盪した。  1) 1 OmM PBS + 0.1% sodium azide solution was added, and shaken at 37 ° C for 6 hours.
2) 0. 1M PBSを加え、 室温にて数分間洗浄した。  2) 0.1M PBS was added and washed at room temperature for several minutes.
3) 1M N a C 1 + 200 OKunitz units DNase Iを加え、 37 °Cで 6時間震 盪した。  3) 1M NaC1 + 200 OKunitz units DNase I was added and shaken at 37 ° C for 6 hours.
4) 4%Triton- X水溶液を加え、 37 °Cで 6時間震盪した。  4) 4% Triton-X aqueous solution was added and shaken at 37 ° C for 6 hours.
5) 70%エタノールを加え、 1時間洗浄した。 これを 3回繰り返した。  5) 70% ethanol was added and washed for 1 hour. This was repeated three times.
6) 蒸留水を加え、 1時間洗浄した。 これを 3回繰り返した。  6) Distilled water was added and washed for 1 hour. This was repeated three times.
得られた脱細胞化組織マトリックスを、 10%ホルマリンで固定後、 HE染色 標本を作製し、 光学顕微鏡で形態を記録した。 又、 別の標本を 2. 5%ダルタル アルデヒド水溶液で固定、 脱水、 t一ブチルアルコールで置換後、 凍結乾燥し、 白金蒸着でコートした後、 走査型電子顕微鏡で観察記録した。 After fixing the obtained decellularized tissue matrix with 10% formalin, HE staining Specimens were prepared and the morphology was recorded with a light microscope. Another specimen was fixed with 2.5% aqueous dartaldehyde solution, dehydrated, replaced with t-butyl alcohol, freeze-dried, coated with platinum vapor deposition, and observed and recorded with a scanning electron microscope.
(結果) 図 1の (A) 及び (B) に示されるように、 得られた脱細胞化組織マト リックスでは、 膀胱の細胞成分の大部分が除去されており、 細胞外マトリックス の多孔性の組織が残存していた。 実施例 2 :凍結乾燥した脱細胞化組織マトリックスの水溶液含浸による細胞成長 因子の結合方法及び水溶液中での結合状態の評価  (Results) As shown in Fig. 1 (A) and (B), in the obtained decellularized tissue matrix, most of the cell components of the bladder were removed, and the porosity of the extracellular matrix was reduced. The tissue remained. Example 2: Cell growth factor binding method by impregnation of lyophilized decellularized tissue matrix in aqueous solution and evaluation of binding state in aqueous solution
(方法)  (Method)
上記方法で作製したマトリックスを、 蒸留水内で、 一 80°Cで 12時間凍結後、 真空ポンプを用いて、 48時間凍結乾燥した。 これに bFGF水溶液を含浸し、 37 °Cで 1時間静置することで、 細胞成長因子を含有する脱細胞化組織マトリッ クスを作製した。 これとは別に、 凍結乾燥前のマトリックスに bFGF水溶液を 含浸させた。  The matrix prepared by the above method was frozen in distilled water at 180 ° C. for 12 hours, and then lyophilized for 48 hours using a vacuum pump. This was impregnated with an aqueous bFGF solution and allowed to stand at 37 ° C for 1 hour to prepare a decellularized tissue matrix containing cell growth factors. Separately, the matrix before lyophilization was impregnated with an aqueous bFGF solution.
125 Iで放射ラベル化した 100〜 200 の塩基性線維芽細胞成長因子 (以 下 b FGFと略す) 水溶液を、 ラットのマトリックス 1個分 (乾燥重量 10〜 12mg) あたり 20 ^1 ずつ含浸して、 細胞成長因子を含有する脱細胞化組織マ トリックスを得 (図 2)、 これを lml の PB S内又は尿中にて 37°Cで震盪し、 一定時間後の溶液内の放射活性をガンマカウンタ一定量し、 b FGFとマトリツ クスとの相互作用を評価した。 An aqueous solution of 100 to 200 basic fibroblast growth factors (hereinafter abbreviated as FGF) radiolabeled with 125 I was impregnated with 20 ^ 1 per rat matrix (dry weight 10 to 12 mg) at a rate of 20 ^ 1. A decellularized tissue matrix containing cell growth factors was obtained (Fig. 2). This was shaken in 1 ml of PBS or urine at 37 ° C, and the radioactivity in the solution after a certain time was measured by gamma. A fixed amount of the counter was used to evaluate the interaction between bFGF and the matrix.
(結果)  (Result)
脱細胞化組織マトリックスに含浸させた b F G Fは、 凍結乾燥前後にかかわら ず、 最初の 24時間に一定量が脱着し、 以後はプラートに達した (図 3)。 凍結 乾燥したマトリックスでは、 乾燥前のマトリックスを使用した場合よりも放出が 抑制されていた。 また、 尿中での放出は、 PBS内よりもさらに低かった。  A certain amount of bFGF impregnated in the decellularized tissue matrix was detached in the first 24 hours, before and after freeze-drying, and reached a plateau thereafter (Fig. 3). Freeze-dried matrices had a lower release than the undried matrices. Also, release in urine was even lower than in PBS.
(考察)  (Discussion)
この方法により、 一定量の b FGFをマトリックスに付着させることが可能で ある。 また、 このマトリックスを尿道の再建に使用しても、 尿中に大量に失われ ることはないと考えられた。 実施例 3 :細胞成長因子の生体内での減衰とマトリックスの分解の相関の評価 (方法) By this method, it is possible to attach a certain amount of bFGF to the matrix. Also, when this matrix is used for urethral reconstruction, it is lost in large quantities in the urine. It was not thought to be. Example 3: Evaluation of correlation between in vivo attenuation of cell growth factor and matrix degradation (method)
bFGFの生体内での放出実験:上で述べたのと同様の方法で作製した放射ラ ベル化した細胞成長因子を含有するマトリックスを、 6週令のメス d dYマウス の背部皮下に埋入し、 以後、 経時的にこれを犠牲死させて、 マトリックス及び周 辺組織の残存放射活性を測定して、 bFGFの残留を検討した。  bFGF in vivo release experiments: A matrix containing radiolabeled cell growth factor, prepared in a similar manner as described above, was implanted subcutaneously in the back of 6-week-old female d dY mice. Thereafter, this was sacrificed over time and the remaining radioactivity of the matrix and the surrounding tissue was measured to examine the remaining bFGF.
マトリックスの分解実験: Bolton-Hunter試薬を用いて 1251で放射ラベル化し た脱細胞化組織マトリックスを上記と同様の方法で、 マウス皮下に埋入し、 生体 内での分解速度を調べた。 Matrix degradation experiments: Bolton-Hunter reagent in 125 1 with the decellularized tissue matrix was radiolabeled in the same manner as described above, were implanted subcutaneously into mice, was examined the degradation rate in vivo.
(結果)  (Result)
bFGFは、 埋入後 6週間に渡り、 徐々に減衰していった。 また、 マトリック スの分解もこれと同様の経過を取った (図 4)。  bFGF gradually attenuated over 6 weeks after implantation. The matrix decomposition followed the same process (Fig. 4).
脱細胞化組織マトリックスに結合した bFGFは、 マトリックスの分解ととも に、 生体内から消失していくと考えられる。 実施例 4 :生体内での、 細胞成長因子活性の残存の評価  It is considered that bFGF bound to the decellularized tissue matrix disappears from the living body as the matrix is degraded. Example 4: Evaluation of residual cell growth factor activity in vivo
(方法)  (Method)
ラット膀胱からの脱細胞化組織マトリックス 5mgに 5 gの bFGFを含む水 溶液又は PBS l O l を、 上記と同様の方法で含浸し、 一群はそのまま上記と 同様の方法でマウス皮下に埋入し、 残りの二群はディフ一ジョンチャンバ一内に 封入して上記と同様の方法で、 マウス皮下に埋入した。 これを、 7又は 14日後 に取り出した後に、 マトリックスのみを別のマウスの皮下に再埋入した。 いずれ の群もマトリックス埋入 (又は再埋入) 7日後に、 マウスを犠牲死させて、 マト リックスの周囲 2 cm四方の皮下組織を採取し、 組織重量などを評価した。  A 5 mg decellularized tissue matrix from rat bladder is impregnated with an aqueous solution containing 5 g of bFGF or PBS lOl in the same manner as above, and one group is directly implanted under the mouse subcutaneously in the same manner as above. The remaining two groups were sealed in a diffusion chamber and implanted subcutaneously in a mouse in the same manner as described above. After this was removed 7 or 14 days later, the matrix alone was reimplanted subcutaneously in another mouse. Seven days after matrix implantation (or re-implantation) in each group, the mice were sacrificed and subcutaneous tissues 2 cm square around the matrix were collected to evaluate the tissue weight and the like.
(結果)  (Result)
bFGFを含浸させたマトリックスでは、 2週間以上に渡って、 マトリックス 周囲での肉芽形成を認めた (図 5)。 マトリックスに結合した b F G Fの活性は生体内に埋入しても保たれていると 考えられた。 実施例 5 : F GFを含有させたラット膀胱からの脱細胞化組織マトリックスに よる膀胱パッチ修復手術、 使用 b F G F濃度とマトリックスグラフト上での膀胱 再生像、 パッチサイズの関係の検討。 In the matrix impregnated with bFGF, granulation around the matrix was observed for more than 2 weeks (Fig. 5). It was considered that the activity of bFGF bound to the matrix was maintained even when implanted in vivo. Example 5: Bladder Patch Repair Surgery Using Decellularized Tissue Matrix from Rat Bladder Containing FGF, Use b Examination of relationship between FGF concentration and bladder reconstructed image on matrix graft, patch size.
(方法)  (Method)
ラットの膀胱を脱細胞化処理し、 そこから膀胱頂部 2Z3に当たる部分を取り 出し、 様々な濃度の bFGFを含有させた脱細胞化組織マトリックスを作製した。 別の 1 0週齢のメス Wistar ラットに、 キシラジン—ケタミン麻酔を施し、 下腹 部を正中切開して膀胱を露出し、 膀胱の頂部側 2/ 3を切除し、 上記脱細胞化組 織マトリックスをグラフトとして用い、 この欠損部分をパッチ修復した。  The rat bladder was decellularized, and the portion corresponding to the bladder apex 2Z3 was removed therefrom to prepare a decellularized tissue matrix containing various concentrations of bFGF. Another 10-week-old female Wistar rat was anesthetized with xylazine-ketamine, a midline incision was made in the lower abdomen to expose the bladder, the apical 2/3 of the bladder was excised, and the decellularized tissue matrix was used. This defect was patch repaired as a graft.
膀胱とグラフトとの縫合は、 8— 0の吸収糸を用い、 連続縫合し、 4隅を 7 _ 0ナイロン糸でマ一キングした。 修復終了後に、 尿道よりチューブを入れて生理 食塩水を注入してリークのないことを確認し、 同時に充満時のグラフトサイズを マーキング糸の長短径として記録した。  The suture between the bladder and the graft was continuously sutured using 8-0 absorbent thread, and the four corners were marked with 7-0 nylon thread. After the restoration was completed, a tube was inserted through the urethra and physiological saline was injected to confirm that there was no leak. At the same time, the graft size at the time of filling was recorded as the major and minor diameters of the marking thread.
0, 5, 2 5, 1 00 の bFGFを含む脱細胞化組織マトリックスについ て、 各 9匹のダル一プを作製し、 術後 4週目に 4匹を、 12週目に 5匹を評価し た。 各々を A, B, C, D群とした。 また、 コント口一ルとして膀胱 2Z3切除 後にそのまま縫合閉鎖したグループを 6匹作製し、 4, 1 2週後に各 3匹づっを 評価した。  For each decellularized tissue matrix containing 0, 5, 25, and 100 bFGF, 9 duplicates were prepared, and 4 were evaluated 4 weeks after operation and 5 were evaluated at 12 weeks. did. Each was designated as A, B, C, D groups. In addition, as a control, 6 groups of sutures were closed after resection of the bladder 2Z3, and 3 groups were evaluated 4 and 12 weeks later.
ウレタン (900mg/kg, sc) 麻酔下に下腹部を切開して膀胱を露出し、 尿道 から 3 F rのポリエチレンチューブを留置した。 チューブの端に T字管を連結し、 一方は圧トランスデューサ一に、 他方は注入ポンプに接続した。 創部より膀胱を 圧排して空虚としてから、 注入ルートより 6. Oml/hr の速度で生理食塩水を注 入して膀胱内圧の測定を行い、 尿道留置チューブ周囲からの注入液のリークを もって最大膀胱容量とした。 検査は一個体につき 5回連続して行い、 中間値 3回 分の平均値をその個体の膀胱容量とした。 検査終了後にラットを犠牲死させ、 膀胱を空虚な状態としてから、 膀胱容量と 同等量の 1 0 %ホルマリン又は Krebs液を注入後、 外尿道口をクランプし、 マ一 キング糸の間の距離を測定した。 グラフト面積は長径 X短径 Z 2で定義した。 各群において 4週目の全てと 1 2週目の 3匹づつについて、 組織をホルマリン 固定後、 写真を撮影し、 脱水、 パラフィン包埋、 H E染色を施行した。 Under anesthesia with urethane (900 mg / kg, sc), the lower abdomen was incised to expose the bladder, and a 3 Fr polyethylene tube was placed from the urethra. A T-tube was connected to the end of the tube, one to the pressure transducer and the other to the infusion pump. After evacuating the bladder from the wound to make it empty, measure the bladder pressure by injecting physiological saline at a rate of 6.Oml / hr from the infusion route, and measure the maximum by leaking the infusate around the urethral indwelling tube. Bladder capacity. The test was performed five times in a row for each individual, and the average of the three median values was taken as the bladder capacity of that individual. After the test is completed, the rats are sacrificed and the bladder is emptied.After injecting 10% formalin or Krebs solution equivalent to the bladder capacity, the urethral opening is clamped, and the distance between the marking threads is reduced. It was measured. The graft area was defined as major axis X minor axis Z2. Tissues were fixed in formalin, photographed, and dehydrated, paraffin-embedded, and HE-stained in all groups at 4 weeks and 3 animals at 12 weeks in each group.
(結果)  (Result)
4週目の時点で、 いずれの群においても上皮の再生は完了していた。 粘膜下層 では、 b F G Fの濃度が高いほどグラフト内に浸潤する間葉系細胞の量が多かつ た (図 6〜7 )。 またこの時点において、 b F G Fの濃度に依存してグラフト面 積の収縮が抑制されていた (図 8 )。  At week 4, epithelial regeneration was complete in all groups. In the submucosa, the higher the concentration of bFGF, the greater the amount of mesenchymal cells infiltrating into the graft (Figures 6-7). At this time, the contraction of the graft area was suppressed depending on the bFGF concentration (FIG. 8).
1 2週目の時点では、 各群において平滑筋層の形成が認められた (図 9 )。 発明の効果  At the 12th week, smooth muscle layer formation was observed in each group (FIG. 9). The invention's effect
本発明の組織又は臓器再建用基材は、 膀胱再建のパッチ修復のような組織又は 臓器の再建において使用でき、 生体適合性に優れ、 グラフト修復をもたらさず、 簡便で経済的にも低廉な方法で組織修復能を引き出すことができる。  The substrate for tissue or organ reconstruction of the present invention can be used in tissue or organ reconstruction such as patch repair for bladder reconstruction, is excellent in biocompatibility, does not bring about graft repair, is a simple and economical method. Can bring out the tissue repair ability.
本発明の組織又は臓器再建用基材は、 細胞増殖因子を徐放し組織から基材への 細胞の侵入を促進させることで、 従来の生体由来足場材料では得られないグラフ 卜の収縮を抑制する効果を有する。 しかも、 本発明の方法は、 従来の生体由来足 場材料に細胞を入れる方法より、 簡便性に優れている。  The substrate for tissue or organ reconstruction according to the present invention suppresses contraction of a graft, which cannot be obtained with a conventional biologically-derived scaffold, by gradually releasing cell growth factors and promoting cell invasion from the tissue to the substrate. Has an effect. Moreover, the method of the present invention is more convenient than the conventional method of inserting cells into a biologically-derived scaffold.

Claims

請 求 の 範 囲 The scope of the claims
1 . 脱細胞化組織マトリックスと細胞成長因子とを含む、 組織又は臓器の再建 用基材。 1. A substrate for reconstructing a tissue or organ, comprising a decellularized tissue matrix and a cell growth factor.
2 . 細胞成長因子が b F G Fである請求項 1に記載の再建用基材。  2. The reconstruction substrate according to claim 1, wherein the cell growth factor is bFGF.
3 . 脱細胞化組織マトリックスが膀胱由来である請求項 1又は請求項 2に記載 の再建用基材。  3. The reconstruction substrate according to claim 1 or 2, wherein the decellularized tissue matrix is derived from the bladder.
4. 請求項 1〜3のいずれか 1項に記載の再建用基材の製造方法であって、 脱 細胞化組織マトリックスに細胞成長因子溶液を含浸又は添加することを含 む方法。  4. The method for producing a substrate for reconstruction according to any one of claims 1 to 3, which comprises impregnating or adding a cell growth factor solution to the decellularized tissue matrix.
PCT/JP2003/003581 2002-03-25 2003-03-25 Base material for reconstructing tissue or organ containing cell-free tissue matrix and cell growth factor WO2003080143A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003221081A AU2003221081A1 (en) 2002-03-25 2003-03-25 Base material for reconstructing tissue or organ containing cell-free tissue matrix and cell growth factor
JP2003577967A JP4431399B2 (en) 2002-03-25 2003-03-25 Tissue or organ reconstruction substrate comprising decellularized tissue matrix and cell growth factor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002084138 2002-03-25
JP2002/84138 2002-03-25

Publications (1)

Publication Number Publication Date
WO2003080143A1 true WO2003080143A1 (en) 2003-10-02

Family

ID=28449198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003581 WO2003080143A1 (en) 2002-03-25 2003-03-25 Base material for reconstructing tissue or organ containing cell-free tissue matrix and cell growth factor

Country Status (3)

Country Link
JP (1) JP4431399B2 (en)
AU (1) AU2003221081A1 (en)
WO (1) WO2003080143A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007521114A (en) * 2003-12-10 2007-08-02 ハンク・シー・ケイ・ウー Methods and compositions for reconstruction of soft tissue features
JP2011528586A (en) * 2008-07-22 2011-11-24 グランドホープ バイオテック カンパニー リミテッド Biomedical implant for nasal muscle and method for producing the same
JP2018198867A (en) * 2017-05-29 2018-12-20 学校法人成蹊学園 Method of marking biocompatible polymer material, and marked biocompatible polymer material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996024661A1 (en) * 1995-02-10 1996-08-15 Purdue Research Foundation Submucosa as a growth substrate for cells
WO1999065470A1 (en) * 1998-06-19 1999-12-23 Lifecell Corporation Particulate acellular tissue matrix

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996024661A1 (en) * 1995-02-10 1996-08-15 Purdue Research Foundation Submucosa as a growth substrate for cells
WO1999065470A1 (en) * 1998-06-19 1999-12-23 Lifecell Corporation Particulate acellular tissue matrix

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007521114A (en) * 2003-12-10 2007-08-02 ハンク・シー・ケイ・ウー Methods and compositions for reconstruction of soft tissue features
JP2011528586A (en) * 2008-07-22 2011-11-24 グランドホープ バイオテック カンパニー リミテッド Biomedical implant for nasal muscle and method for producing the same
JP2018198867A (en) * 2017-05-29 2018-12-20 学校法人成蹊学園 Method of marking biocompatible polymer material, and marked biocompatible polymer material
JP7084566B2 (en) 2017-05-29 2022-06-15 創生ライフサイエンス株式会社 Marking method for biocompatible polymer materials

Also Published As

Publication number Publication date
AU2003221081A1 (en) 2003-10-08
JPWO2003080143A1 (en) 2005-07-21
JP4431399B2 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
Atala Future perspectives in reconstructive surgery using tissue engineering
DE69817863T2 (en) BLADDER RECONSTRUCTION
Jia et al. Urethral tissue regeneration using collagen scaffold modified with collagen binding VEGF in a beagle model
AU777853C (en) Three-dimensional stromal tissue
Kropp et al. Reliable and reproducible bladder regeneration using unseeded distal small intestinal submucosa
Li et al. Extrahepatic bile duct regeneration in pigs using collagen scaffolds loaded with human collagen-binding bFGF
ELBAHNASY et al. Bladder wall substitution with synthetic and non-intestinal organic materials
Atala Tissue engineering in the genitourinary system
US20080081362A1 (en) Multilayered Composite for Organ Augmentation and Repair
Atala Tissue engineering in urologic surgery
Atala Bladder regeneration by tissue engineering.
US20190069990A1 (en) Tubular Prostheses
Atala New methods of bladder augmentation
Li et al. Urethral Reconstruction Using Bone Marrow Mesenchymal Stem Cell–and Smooth Muscle Cell–Seeded Bladder Acellular Matrix
Falke et al. Tissue engineering of the bladder
Chun et al. Urethroplasty using autologous urethral tissue-embedded acellular porcine bladder submucosa matrix grafts for the management of long-segment urethral stricture in a rabbit model
US20090136553A1 (en) Triggerably dissolvable hollow fibers for controlled delivery
JP2000516503A (en) Cell inoculated bladder submucosa for tissue reconstruction
Kanatani et al. Fabrication of an optimal urethral graft using collagen-sponge tubes reinforced with copoly (L-lactide/ε-caprolactone) fabric
Atala Future trends in bladder reconstructive surgery
Uchibori et al. Use of a pedicled omental flap to reduce inflammation and vascularize an abdominal wall patch
JP4431399B2 (en) Tissue or organ reconstruction substrate comprising decellularized tissue matrix and cell growth factor
Ring et al. Analysis of neovascularization of PEGT/PBT-copolymer dermis substitutes in balb/c-mice
EP4393522A1 (en) Implant for the reconstruction of the urinary bladder, the method of its preparation and the scaffold for the implant for the reconstruction of the urinary bladder
XiangGuo et al. The application of oxygen generating keratin/silk fibroin for urethral reconstruction: A preliminary study

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003577967

Country of ref document: JP

122 Ep: pct application non-entry in european phase