WO2003079427A1 - Plasma processing method - Google Patents

Plasma processing method Download PDF

Info

Publication number
WO2003079427A1
WO2003079427A1 PCT/JP2003/002934 JP0302934W WO03079427A1 WO 2003079427 A1 WO2003079427 A1 WO 2003079427A1 JP 0302934 W JP0302934 W JP 0302934W WO 03079427 A1 WO03079427 A1 WO 03079427A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
frequency power
processing
applying
electrode
Prior art date
Application number
PCT/JP2003/002934
Other languages
French (fr)
Japanese (ja)
Inventor
Tadashi Gondai
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Publication of WO2003079427A1 publication Critical patent/WO2003079427A1/en
Priority to US10/942,888 priority Critical patent/US7569154B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge

Definitions

  • the present invention relates to a plasma processing method, and more particularly to a plasma processing method capable of stably generating plasma even when an applied high frequency power is low.
  • a processing gas is introduced into an airtight processing container provided with electrodes, and high-frequency power is applied to the electrodes to process the processing gas. Plasma is generated, and predetermined processing such as etching and film formation is performed on the surface of the object.
  • the present invention has been made in view of the above-mentioned problems of the conventional plasma processing method, and has an object to stabilize even when a high-frequency power to be applied is low and after a long-time operation of the plasma processing apparatus. It is another object of the present invention to provide a new and improved plasma processing method capable of generating plasma. Disclosure of the invention
  • the present invention introduces a processing gas into an airtight processing container and applies high frequency power to form a plasma of the processing gas, and a predetermined process is performed on a processing surface of an object to be processed.
  • a method of performing a plasma process comprising: applying a DC voltage to an electrode disposed in the processing container and on which the object to be processed is mounted; and applying the DC voltage after applying the DC voltage. Applying high frequency power to the It is characterized by doing. According to this method, it is possible to stably generate plasma even when the applied high-frequency power is low and even with a processing apparatus in which foreign matter adheres after long-time use.
  • the present invention is characterized in that the method has a step of cutting off the DC voltage during the formation of plasma after applying the high-frequency power. According to such a method, it is possible to minimize the influence of the DC voltage during the plasma processing of the object to be processed, and to apply the conventional processing conditions as they are.
  • the invention is characterized in that the DC voltage is -0.5 kV or less as a ground reference.
  • the present invention is characterized in that the pressure in the processing container is 1 OmTorr or more and 2 OmTorr or less, and the high-frequency power is 50 W or more and 450 W or less.
  • the present invention is characterized in that the pressure inside the processing container is 1 OmTorr or more and 25 mTorr or less, and the high ill wave power is 50 W or more and 200 W or less. Furthermore, the present invention is characterized in that the pressure in the processing container is 1 OmTorr or more and 3 OmTorr or less, and the high-frequency power is 50 W or more and 150 W or less.
  • the present invention provides a method for introducing a processing gas into an airtight processing container and applying high-frequency power to form a plasma of the processing gas, and performing a predetermined plasma processing on a processing surface of an object to be processed.
  • a step of applying a DC voltage to a first electrode disposed in the processing container and on which the object to be processed is mounted, and after applying a DC voltage to the first electrode, Applying high frequency power for plasma formation to a second electrode different from the electrode; applying high frequency power for plasma formation to the second electrode; and then applying high frequency power for bias to the first electrode. It is characterized by having a process.
  • the present invention provides a process gas introduced into a hermetically sealed process vessel, and a high-frequency power is applied to form a plasma of the process gas. Applying a DC voltage to a first electrode disposed in the processing vessel and on which the object is placed, and applying a DC voltage to the first electrode. Applying a bias high-frequency power to the first electrode; and applying a bias high-frequency power to the first electrode, and then forming a plasma on a second electrode different from the first electrode. And a step of applying high-frequency power for use.
  • the present invention provides a process gas introduced into an airtight process container, and a high-frequency power is applied to an antenna to form a plasma of the process gas, and a predetermined plasma process is performed on a process surface of an object to be processed.
  • a method comprising: applying a DC voltage to an electrode disposed in the processing container and on which the object is placed; applying a DC voltage to the electrode; and applying high-frequency power for plasma formation to the antenna. Applying a high frequency power for plasma formation to the antenna and then applying a high frequency power for bias to the electrode after applying the high frequency power for plasma formation to the antenna.
  • the present invention is characterized in that the application of the DC voltage is stopped during the formation of the plasma.
  • FIG. 1 is a sectional view schematically showing a plasma etching apparatus according to an embodiment of the present invention.
  • FIG. 2 is a sectional view schematically showing a plasma etching apparatus according to another embodiment of the present invention.
  • the plasma etching apparatus 100 has, for example, a substantially cylindrical air-tight processing container 102 grounded, and the processing chamber 102 includes a semiconductor wafer W.
  • a lower electrode 104 also serving as a mounting table for mounting The lower electrode 104 is maintained at a predetermined temperature by a temperature control mechanism (not shown) including a heater and a temperature measuring member embedded inside.
  • a heat transfer gas supply mechanism (not shown) is provided between the semiconductor wafer W and the lower electrode 104, and a heat transfer gas (for example, He gas) is supplied from the heat transfer gas supply mechanism to a predetermined position.
  • the semiconductor wafer W is configured to be supplied with pressure and to transmit heat from the lower electrode 104 to the semiconductor wafer W, so that the temperature of the semiconductor wafer W can be controlled.
  • An upper electrode 108 is provided so as to face the lower electrode 104, and is grounded via the processing container 102.
  • high-frequency power is applied only to lower electrode 104, but high-frequency power may also be applied to upper electrode 108.
  • a gas introduction port 106 connected to a gas introduction system (not shown) is provided at the upper part of the processing vessel 102, and a plurality of gas discharge ports 109 provided in the upper electrode 108 are provided.
  • the processing gas is introduced into the processing vessel 102.
  • the process gas for example, mixed gas of C 4 F 8 and CO and A r and 0 2 is used.
  • An exhaust pipe 110 connected to an exhaust mechanism (not shown) is provided at a lower portion of the processing vessel 102, and is exhausted through the exhaust pipe 110 so that the inside of the processing vessel 102 is exhausted. Is maintained at a specified pressure.
  • a magnet may be provided outside both side walls of the processing container 102 to apply a magnetic field perpendicular to the electric field. In this case, it is preferable that the strength of the magnetic field of the magnet is configured to be variable.
  • the lower electrode 104 is connected to a high-frequency power supply 114 via a matching box 112 and a DC power supply 118 which is a feature of the present invention via a resistor 116.
  • the resistor 116 acts as a filter for cutting off the high-frequency power from the high-frequency power supply 114.
  • the frequency of the high-frequency power supply 114 is preferably from 10 MHz to 200 MHz, and may be, for example, 13.56 MHz.
  • the DC power supply 118 is configured to apply a negative potential, for example, a potential of 0.5 kV to the lower electrode 104.
  • a choke coil may be provided between the DC power supply 118 and the high-frequency power supply 114 to assist the interruption of the high-frequency power.
  • Electric power is supplied from the high-frequency power supply 114 and the DC power supply 118 to bring the processing gas introduced into the processing vessel 102 into a plasma state, and emit the gas near the lower electrode 104 between the electrodes.
  • An object is etched by the energy of ions and radicals accelerated by the generated self-bias voltage.
  • the semiconductor wafer W is placed on the lower electrode 104 in the processing container 102 and exhausted by an exhaust mechanism (not shown) through the exhaust pipe 110. Thereafter, a predetermined processing gas is introduced from the gas inlet 106 through the gas discharge port 109 at a predetermined flow rate into the processing container 102, and the pressure is adjusted to a predetermined pressure.
  • a DC voltage of, for example, 0.5 kV is applied to the lower electrode 104 from the DC power supply 118, and thereafter, for example, the frequency of 13.56 MHz is applied from the high frequency power supply 114. Apply high frequency power of z. The power applied from the high-frequency power supply 114 will be described later.
  • the processing gas in the processing container 102 is made into a plasma, and a predetermined etching process is performed on the surface of the processing object.
  • the blank column is not implemented, but from the above tendency, it is judged that plasma ignition can be performed stably in this range.
  • the plasma was generated stably even if the power supply from the DC power supply 118 was cut off.
  • the ignition of the plasma It is confirmed by adjusting the capacitance (not shown) that there is a matching state where the reflected wave becomes zero.
  • the capacitance value of the matching device 1 1 in 2 at the time alignment due to the application of the DC voltage Since there is no significant change, the effect of applying a DC voltage to the plasma state is considered to be negligible. Therefore, plasma processing of the object to be processed can be performed in the same manner as when no DC voltage is applied.
  • the power is applied by the high-frequency power supply 114 to convert the processing gas into plasma, and a predetermined processing is performed on the surface of the processing target.
  • the pressure in the processing vessel 102 is 1 O m T 0 rr
  • the power of the high-frequency power supply 114 is 50 W
  • the DC power supply 118 supplies a DC voltage of -0.5 kV. Since the high-frequency power is applied while the gas is energized, the plasma can be easily ignited even when the applied high-frequency power is as low as about 50 W. After the plasma is stabilized, the DC power supply may be cut off, so that the influence of the object on the plasma processing can be minimized.
  • a plasma treatment method that can be used in processes under various conditions can be provided. In this state, plasma can be ignited, which has the effect of facilitating maintenance.
  • FIG. 2 is a schematic cross-sectional view of a plasma etching apparatus 200 according to another embodiment of the present invention.
  • the plasma etching apparatus 200 components having substantially the same functional configuration as the plasma etching apparatus 100 shown in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.
  • the plasma etching apparatus 200 has a processing container 201, and the processing container 201 includes a processing container main body 202 having a bottomed cylindrical shape and is grounded for safety.
  • a top plate 203 is hermetically attached to an upper opening of the processing container body 202 via an insulating member 204.
  • the top plate 203 is provided with an upper electrode 1 • 8 as a second electrode.
  • a high-frequency power source 206 is connected to the top plate 203 via a matching device 205.
  • the wafer W is mounted on the lower electrode, which is the first electrode.
  • a predetermined processing gas is introduced into the processing container 201, and the pressure is adjusted to a predetermined pressure.
  • a DC voltage of, for example, 0.5 kV is applied to the lower electrode 104 on which the wafer W is placed.
  • a high frequency power for plasma formation having a frequency of, for example, 60 MHz is applied to the upper electrode 108.
  • high frequency power for bias having a frequency of 13.56 MHz is applied to the lower electrode 104.
  • the application of a DC voltage of 0.5 kV to the lower electrode 104 is turned off.
  • the plasma ignition method may be as follows in addition to the above method. That is, for example, a DC voltage of 0.5 kV is applied to the lower electrode 104 on which the wafer W is placed.
  • the lower electrode 104 has a frequency of 13, for example. Apply 56MHz bias high frequency power.
  • a high frequency power for forming a plasma having a frequency of, for example, 60 MHz is applied to the upper electrode 108.
  • the application of a DC voltage of 0.5 kV to the lower electrode 104 is turned off.
  • the present invention is also applicable to a case where an inductively coupled plasma device provided with an antenna instead of the upper electrode 108 is used.
  • a DC voltage of, for example, 0.5 kV is applied to the electrode on which the wafer W is placed, and then high-frequency power for plasma formation, for example, having a frequency of 13.56 MHz, is applied to the antenna, and then the wafer is For example, a high frequency bias power having a frequency of 3.2 MHz is applied to the electrode on which W is placed. Then, the application of a DC voltage of 0.5 kV to the electrode on which the wafer W is placed after the plasma is formed is set to 0 FF.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

A plasma processing method in which plasma can be fired stably with a low high frequency power and a low gas pressure even after long time operation by applying a DC voltage of -0.5 kV, for example, from a DC power supply (118) to a lower electrode (104) before a high frequency power is applied from a high frequency power supply (114) to the lower electrode (104) through a matching unit (112) when the surface of a wafer W mounted on the lower electrode (104) disposed in a processing container (102) is subjected to a specified plasma processing with plasma of a processing gas formed by applying a high frequency power to the processing gas introduced into the airtight processing container (102).

Description

明 細 書 プラズマ処理方法 技術分野  Description Plasma processing method Technical field
この発明はプラズマ処理方法に係り、 特に印加する高周波電力が低い場合にも 安定してプラズマの生成が可能なプラズマ処理方法に関する。 背景技術  The present invention relates to a plasma processing method, and more particularly to a plasma processing method capable of stably generating plasma even when an applied high frequency power is low. Background art
半導体製造工程、 液晶表示装置の製造工程などで行われるプラズマ処理におい ては、 電極が備えられた気密な処理容器内に処理ガスを導入し、 電極に高周波電 力を印加して、 処理ガスをプラズマ化し、 被処理体表面にエッチングや成膜等所 定の処理を行っている。  In a plasma process performed in a semiconductor manufacturing process, a liquid crystal display device manufacturing process, or the like, a processing gas is introduced into an airtight processing container provided with electrodes, and high-frequency power is applied to the electrodes to process the processing gas. Plasma is generated, and predetermined processing such as etching and film formation is performed on the surface of the object.
ところが、 上記製造工程のプロセスの多様化に伴って、 電極に印加される高周 波電力が低い条件の下で処理を行う必要性が生じる場合がある。 また、 製品の製 造工程などで、 連続的に長時間プラズマ処理装置を稼動させた場合、 プラズマ処 理装置内部に処理により発生した異物が付着し、 プラズマを安定して発生するこ とができなくなる場合がある。  However, with the diversification of the manufacturing process, it may be necessary to perform the process under the condition that the high-frequency power applied to the electrode is low. In addition, if the plasma processing equipment is operated continuously for a long time in the product manufacturing process, foreign matter generated by the processing adheres to the inside of the plasma processing equipment, and plasma can be generated stably. May disappear.
この発明は、 従来のプラズマ処理方法が有する上記問題点に鑑みてなされたも のであって、 その目的は、 印加する高周波電力が低い場合、 および長時間のブラ ズマ処理装置稼動後においても、 安定してプラズマの生成が可能な新規かつ改良 されたプラズマ処理方法を提供することである。 発明の開示  The present invention has been made in view of the above-mentioned problems of the conventional plasma processing method, and has an object to stabilize even when a high-frequency power to be applied is low and after a long-time operation of the plasma processing apparatus. It is another object of the present invention to provide a new and improved plasma processing method capable of generating plasma. Disclosure of the invention
上記課題を解決するため、 この発明は、 気密な処理容器内に処理ガスを導入す るとともに高周波電力を印加して前記処理ガスのブラズマを形成し、 被処理体の 処理面に対して所定のプラズマ処理を施す方法であって、 前記処理容器内に配置 され前記被処理体が載置された電極に直流電圧を印加する工程と、 前記直流電圧 を印加した後、 前記直流電圧を印加した電極に高周波電力を印加する工程とを有 することを特徴とする。 かかる方法によれば、 印加される高周波電力が低い場合、 および長時間使用後の異物付着が生じた処理装置によっても、 安定してプラズマ を発生させることができる。 In order to solve the above problems, the present invention introduces a processing gas into an airtight processing container and applies high frequency power to form a plasma of the processing gas, and a predetermined process is performed on a processing surface of an object to be processed. A method of performing a plasma process, comprising: applying a DC voltage to an electrode disposed in the processing container and on which the object to be processed is mounted; and applying the DC voltage after applying the DC voltage. Applying high frequency power to the It is characterized by doing. According to this method, it is possible to stably generate plasma even when the applied high-frequency power is low and even with a processing apparatus in which foreign matter adheres after long-time use.
また、 この発明は、 前記直流電圧が、 前記高周波電力を印加した後でプラズマ の形成中に遮断される工程を有することを特徴とする。 かかる方法によれば、 被 処理体のプラズマ処理時の直流電圧の影響を最小限に留めることが可能であり、 従来の処理条件をそのまま適用することができる。  Further, the present invention is characterized in that the method has a step of cutting off the DC voltage during the formation of plasma after applying the high-frequency power. According to such a method, it is possible to minimize the influence of the DC voltage during the plasma processing of the object to be processed, and to apply the conventional processing conditions as they are.
また、 この発明は、 前記直流電圧は、 アース基準として— 0. 5 kV以下であ ることを特徴とする。  Further, the invention is characterized in that the DC voltage is -0.5 kV or less as a ground reference.
さらに、 この発明は、 前記処理容器内の圧力は、 1 OmT o r r以上 2 OmT o r r以下、 前記高周波電力は、 50W以上 450W以下であることを特徴とす る。  Furthermore, the present invention is characterized in that the pressure in the processing container is 1 OmTorr or more and 2 OmTorr or less, and the high-frequency power is 50 W or more and 450 W or less.
また、 この発明は、 前記処理容器内の圧力は、 1 OmTo r r以上 25mTo r r以下、 前記高 ill波電力は、 50W以上 200W以下であることを特徴とする。 さらに、 この発明は、 前記処理容器内の圧力は、 1 OmT o r r以上 3 OmT o r r以下、 前記高周波電力は、 50W以上 150W以下であることを特徴とす る。  Further, the present invention is characterized in that the pressure inside the processing container is 1 OmTorr or more and 25 mTorr or less, and the high ill wave power is 50 W or more and 200 W or less. Furthermore, the present invention is characterized in that the pressure in the processing container is 1 OmTorr or more and 3 OmTorr or less, and the high-frequency power is 50 W or more and 150 W or less.
これらの領域では、 直流電圧を印加しないときにはプラズマ着火しにくかった が、 直流電圧を印加することで、 安定したプラズマ着火が行える。  In these regions, plasma ignition was difficult when no DC voltage was applied, but stable plasma ignition can be achieved by applying a DC voltage.
また、 この発明は、 気密な処理容器内に処理ガスを導入するとともに高周波電 力を印加して前記処理ガスのプラズマを形成し、 被処理体の処理面に対して所定 のブラズマ処理を施す方法であって、 前記処理容器内に配置され前記被処理体が 載置された第 1の電極に直流電圧を印加する工程と、 前記第 1の電極に直流電圧 を印加した後、 前記第 1の電極とは別の第 2の電極にプラズマ形成用高周波電力 を印加する工程と、 前記第 2の電極にプラズマ形成用高周波電力を印加した後に、 前記第 1の電極にバイアス用高周波電力を印加する工程とを備えたとこを特徴と する。  Also, the present invention provides a method for introducing a processing gas into an airtight processing container and applying high-frequency power to form a plasma of the processing gas, and performing a predetermined plasma processing on a processing surface of an object to be processed. Wherein a step of applying a DC voltage to a first electrode disposed in the processing container and on which the object to be processed is mounted, and after applying a DC voltage to the first electrode, Applying high frequency power for plasma formation to a second electrode different from the electrode; applying high frequency power for plasma formation to the second electrode; and then applying high frequency power for bias to the first electrode. It is characterized by having a process.
また、 この発明は、 気密な処理容器内に処理ガスを導入するとともに高周波電 力を印加して前記処理ガスのプラズマを形成し、 被処理体の処理面に対して所定 のプラズマ処理を施す方法であって、 前記処理容器内に配置され前記被処理体が 載置された第 1の電極に直流電圧を印加する工程と、 前記第 1の電極に直流電圧 を印加した後に、 前記第 1の電極にバイアス用高周波電力を印加する工程と、 前 記第 1の電極にバイァス用高周波電力を印加した後に、 前記第 1の電極とは別の 第 2の電極にプラズマ形成用高周波電力を印加する工程とを備えたとこを特徴と する。 In addition, the present invention provides a process gas introduced into a hermetically sealed process vessel, and a high-frequency power is applied to form a plasma of the process gas. Applying a DC voltage to a first electrode disposed in the processing vessel and on which the object is placed, and applying a DC voltage to the first electrode. Applying a bias high-frequency power to the first electrode; and applying a bias high-frequency power to the first electrode, and then forming a plasma on a second electrode different from the first electrode. And a step of applying high-frequency power for use.
また、 この発明は、 気密な処理容器内に処理ガスを導入するとともにアンテナ に高周波電力を印加して前記処理ガスのプラズマを形成し、 被処理体の処理面に 対して所定のプラズマ処理を施す方法であって、 前記処理容器内に配置され前記 被処理体が載置された電極に直流電圧を印加する工程と、 前記電極に直流電圧を 印加した後、 前記アンテナにプラズマ形成用高周波電力を印加する工程と、 前記 アンテナにプラズマ形成用高周波電力を印加した後に、 前記電極にバイァス用高 周波電力を印加する工程とを備えたとこを特徴とする。  Further, the present invention provides a process gas introduced into an airtight process container, and a high-frequency power is applied to an antenna to form a plasma of the process gas, and a predetermined plasma process is performed on a process surface of an object to be processed. A method comprising: applying a DC voltage to an electrode disposed in the processing container and on which the object is placed; applying a DC voltage to the electrode; and applying high-frequency power for plasma formation to the antenna. Applying a high frequency power for plasma formation to the antenna and then applying a high frequency power for bias to the electrode after applying the high frequency power for plasma formation to the antenna.
さらに、 この発明は、 前記直流電圧の印加を、 前記プラズマの形成中に停止す ることを特徴とする。 図面の簡単な説明  Further, the present invention is characterized in that the application of the DC voltage is stopped during the formation of the plasma. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 この発明の一実施の形態であるプラズマエッチング装置の概略を示す 断面図である。  FIG. 1 is a sectional view schematically showing a plasma etching apparatus according to an embodiment of the present invention.
図 2は、 この発明の他の実施の形態であるプラズマエッチング装置の概略を示 す断面図である。 発明を実施するための最良の形態  FIG. 2 is a sectional view schematically showing a plasma etching apparatus according to another embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下に添付図面を参照しながら、 この発明にかかるプラズマ処理方法の好適な 実施の形態について詳細に説明する。 ここでは、 この発明を図 1に示すプラズマ エッチング装置 1 0 0を例として説明する。  Hereinafter, preferred embodiments of a plasma processing method according to the present invention will be described in detail with reference to the accompanying drawings. Here, the present invention will be described using the plasma etching apparatus 100 shown in FIG. 1 as an example.
図 1に示すように、 プラズマエッチング装置 1 0 0は、 例えば略円筒形の接地 された気密な処理容器 1 0 2を有しており、 この処理容器 1 0 2には、 半導体ゥ ェハ Wを載置する載置台を兼ねた下部電極 1 0 4が上下動可能に設けられている < 下部電極 1 0 4は、 内部に埋め込まれたヒー夕や温度測定部材等からなる温度 調節機構 (図示せず) により所定温度に維持される。 半導体ウェハ Wと下部電極 1 0 4との間には、 伝熱ガス供給機構 (図示せず) が設けられており、 この伝熱 ガス供給機構から伝熱ガス (例えば H eガス) が所定の圧力で供給され、 下部電 極 1 0 4からの熱を半導体ウェハ Wに伝えるように構成され、 半導体ウェハ Wの 温度を制御することが可能になっている。 As shown in FIG. 1, the plasma etching apparatus 100 has, for example, a substantially cylindrical air-tight processing container 102 grounded, and the processing chamber 102 includes a semiconductor wafer W. A lower electrode 104 also serving as a mounting table for mounting The lower electrode 104 is maintained at a predetermined temperature by a temperature control mechanism (not shown) including a heater and a temperature measuring member embedded inside. A heat transfer gas supply mechanism (not shown) is provided between the semiconductor wafer W and the lower electrode 104, and a heat transfer gas (for example, He gas) is supplied from the heat transfer gas supply mechanism to a predetermined position. The semiconductor wafer W is configured to be supplied with pressure and to transmit heat from the lower electrode 104 to the semiconductor wafer W, so that the temperature of the semiconductor wafer W can be controlled.
下部電極 1 0 4に対向して上部電極 1 0 8が設けられ、 処理容器 1 0 2を介し て接地されている。 本実施の形態においては、 下部電極 1 0 4にのみ高周波電力 を印加しているが、 上部電極 1 0 8にも高周波電力を印加するように構成しても よい。  An upper electrode 108 is provided so as to face the lower electrode 104, and is grounded via the processing container 102. In the present embodiment, high-frequency power is applied only to lower electrode 104, but high-frequency power may also be applied to upper electrode 108.
処理容器 1 0 2上部には、 ガス導入系 (図示せず) に接続されたガス導入口 1 0 6が設けられ、 上部電極 1 0 8に設けられた複数のガス吐出口 1 0 9より、 処 理ガスを処理容器 1 0 2内に導入する。 処理ガスには、 例えば C 4 F 8と C Oと A rと 02との混合ガス等が用いられる。 A gas introduction port 106 connected to a gas introduction system (not shown) is provided at the upper part of the processing vessel 102, and a plurality of gas discharge ports 109 provided in the upper electrode 108 are provided. The processing gas is introduced into the processing vessel 102. The process gas, for example, mixed gas of C 4 F 8 and CO and A r and 0 2 is used.
処理容器 1 0 2下部には、 排気機構 (図示せず) に接続された排気管 1 1 0が 設けられ、 この排気管 1 1 0を介して排気されることで、 処理容器 1 0 2内は所 定の圧力に保たれる。 処理容器 1 0 2の両側壁外部に磁石を設け、 電界に垂直な 磁場を与えるようにしてもよい。 この場合、 磁石の磁場の強度は可変であるよう に構成されることが好ましい。  An exhaust pipe 110 connected to an exhaust mechanism (not shown) is provided at a lower portion of the processing vessel 102, and is exhausted through the exhaust pipe 110 so that the inside of the processing vessel 102 is exhausted. Is maintained at a specified pressure. A magnet may be provided outside both side walls of the processing container 102 to apply a magnetic field perpendicular to the electric field. In this case, it is preferable that the strength of the magnetic field of the magnet is configured to be variable.
下部電極 1 0 4には、 整合器 1 1 2を介して高周波電源 1 1 4が、 抵抗 1 1 6 を介して本発明の特徴である直流電源 1 1 8が接続されている。 抵抗 1 1 6は、 高周波電源 1 1 4からの高周波電力を遮断するフィル夕として作用する。 高周波 電源 1 1 4の周波数は、 1 0 M H z〜2 0 0 M H zが好ましく、 例えば 1 3 . 5 6 MH zとすることができる。 また、 直流電源 1 1 8は、 下部電極 1 0 4にマイ ナスの電位、 例えば一 0 . 5 k Vの電位を与えるように構成されている。 直流電 源 1 1 8と高周波電源 1 1 4との間に、 チョークコイルを設け、 高周波電力の遮 断を補助するように構成してもよい。  The lower electrode 104 is connected to a high-frequency power supply 114 via a matching box 112 and a DC power supply 118 which is a feature of the present invention via a resistor 116. The resistor 116 acts as a filter for cutting off the high-frequency power from the high-frequency power supply 114. The frequency of the high-frequency power supply 114 is preferably from 10 MHz to 200 MHz, and may be, for example, 13.56 MHz. The DC power supply 118 is configured to apply a negative potential, for example, a potential of 0.5 kV to the lower electrode 104. A choke coil may be provided between the DC power supply 118 and the high-frequency power supply 114 to assist the interruption of the high-frequency power.
この高周波電源 1 1 4および直流電源 1 1 8から電力を与え、 処理容器 1 0 2 内に導入された処理ガスをプラズマ状態とし、 電極間の下部電極 1 0 4近傍に発 生する自己バイアス電圧により加速されたイオン及びラジカルのエネルギーによ り、 被処理体にエッチング処理を施す。 Electric power is supplied from the high-frequency power supply 114 and the DC power supply 118 to bring the processing gas introduced into the processing vessel 102 into a plasma state, and emit the gas near the lower electrode 104 between the electrodes. An object is etched by the energy of ions and radicals accelerated by the generated self-bias voltage.
次に、 プラズマエッチング装置 1 0 0を用いてエッチング処理を行う際の動作 を説明する。 まず、 処理容器 1 0 2内の下部電極 1 0 4上に半導体ウェハ Wを載 置し、 排気管 1 1 0を介して排気機構 (図示せず) により排気する。 その後、 ガ ス導入口 1 0 6から、 ガス吐出口 1 0 9を通って所定の処理ガスを所定の流量で 処理容器 1 0 2内に導入し、 所定の圧力になるように調節する。  Next, an operation in performing an etching process using the plasma etching apparatus 100 will be described. First, the semiconductor wafer W is placed on the lower electrode 104 in the processing container 102 and exhausted by an exhaust mechanism (not shown) through the exhaust pipe 110. Thereafter, a predetermined processing gas is introduced from the gas inlet 106 through the gas discharge port 109 at a predetermined flow rate into the processing container 102, and the pressure is adjusted to a predetermined pressure.
続いて、 下部電極 1 0 4に対して、 直流電源 1 1 8より例えば一 0 . 5 k Vの 直流電圧を印加し、 その後に、 高周波電源 1 1 4から例えば周波数が 1 3 . 5 6 MH zの高周波電力を印加する。 高周波電源 1 1 4からの印加電力については後 述する。 これら、 直流電圧および高周波電力を印加して、 処理容器 1 0 2内の処 理ガスをブラズマ化し、 被処理体表面に所定のェッチング処理を施す。  Subsequently, a DC voltage of, for example, 0.5 kV is applied to the lower electrode 104 from the DC power supply 118, and thereafter, for example, the frequency of 13.56 MHz is applied from the high frequency power supply 114. Apply high frequency power of z. The power applied from the high-frequency power supply 114 will be described later. By applying these DC voltage and high-frequency power, the processing gas in the processing container 102 is made into a plasma, and a predetermined etching process is performed on the surface of the processing object.
次に、 本発明の特徴である直流電源 1 1 8による効果について説明する。 ブラ ズマエッチング装置 1 0 0で、 処理ガスとして、 C Oと 02ガスと N 2との混合ガ スを用い、 いろいろな高周波印加電力、 および処理容器内の圧力でプラズマを形 成した。 その結果を表 1に示す。 Next, the effect of the DC power supply 118 which is a feature of the present invention will be described. Bra Zuma etching apparatus 1 0 0, as the process gas, a mixed gas of CO and 0 2 gas and N 2, was form form the plasma at a pressure of various RF applied power, and the processing vessel. The results are shown in Table 1.
ここでは半導体ウェハ 5枚を連続で処理し、 全て安定してプラズマが着火した 場合は〇、 5枚中 1枚の処理時に、 プラズマが着火しにくかった場合を△、 全て プラズマが着火しなかった場合を Xとした。 Here, five semiconductor wafers were processed continuously, and plasma was ignited stably when all plasma was ignited.When plasma was difficult to ignite during processing of one of five wafers, all plasma was not ignited. The case was X.
表 1 table 1
Figure imgf000008_0001
表 1に示すように、 処理容器内の圧力が低いほど、 また高周波電力が小さいほ どプラズマは着火しにくい。 例えば、 圧力 2 OmT o rその場合には、 高周波電 力を約 500Wまで印加しないとプラズマは着火せず、 5 OmT o r rにすると、 100Wの高周波電力によってプラズマが着火することになる。 空欄は、 実施は していないが、 上記のような傾向から、 この範囲では安定してプラズマ着火が行 えると判断される。
Figure imgf000008_0001
As shown in Table 1, the lower the pressure inside the processing vessel and the lower the high-frequency power, the more difficult it is for plasma to ignite. For example, at a pressure of 2 OmT or in that case, the plasma will not ignite unless high-frequency power is applied up to about 500 W, and at 5 OmT orr, the plasma will be ignited by 100 W of high-frequency power. The blank column is not implemented, but from the above tendency, it is judged that plasma ignition can be performed stably in this range.
これに対して、 下部電極 104に高周波電力を印加する前に一 0. 5kVの直 流電圧を印加すると、 処理容器 102内の圧力が 1 OmT 0 r r、 高周波電力が 50 Wでも半導体ウェハ 5枚の全てにおいてブラズマが着火することが確かめら れた。 また、 直流電圧が一 0. 4kV以下では、 処理容器 102内の圧力 1 Om Torr、 高周波電力 50 Wでは、 半導体ウェハ 5枚全てでプラズマは着火しな かった。  On the other hand, if a DC voltage of 0.5 kV is applied before the high-frequency power is applied to the lower electrode 104, even if the pressure in the processing vessel 102 is 1 OmT 0 rr and the high-frequency power is 50 W, five semiconductor wafers It was confirmed that the plasma ignited in all of the cases. When the DC voltage was less than 0.4 kV, the plasma did not ignite on all five semiconductor wafers when the pressure in the processing vessel 102 was 1 Om Torr and the high frequency power was 50 W.
プラズマ着火後は、 直流電源 118からの電力供給を遮断しても、 プラズマは 安定して生成されていた。 なお、 プラズマの着火は、 整合器 112内部のコンデ ンサ (図示せず) 容量を調節し、 反射波がゼロとなる整合状態が存在することで 確認される。 また、 処理ガスとして C 4 F 8と C Oと A rと 0 2との混合ガスを用 いた場合の、 整合時の整合器 1 1 2内のコンデンサ容量値には、 直流電圧を印加 したことによる有意な変化はないことから、 プラズマ状態への直流電圧印加によ る影響は無視できると考えられる。 従って、 被処理体に対するプラズマ処理は、 直流電圧を印加しない場合と同様に行うことが可能である。 After the ignition of the plasma, the plasma was generated stably even if the power supply from the DC power supply 118 was cut off. In addition, the ignition of the plasma It is confirmed by adjusting the capacitance (not shown) that there is a matching state where the reflected wave becomes zero. Also, when you were use a mixed gas of C 4 F 8 and CO and A r and 0 2 as the processing gas, the capacitance value of the matching device 1 1 in 2 at the time alignment, due to the application of the DC voltage Since there is no significant change, the effect of applying a DC voltage to the plasma state is considered to be negligible. Therefore, plasma processing of the object to be processed can be performed in the same manner as when no DC voltage is applied.
以上のように、 気密な処理容器 1 0 2内に、 処理ガスを導入し、 高周波電源 1 1 4により電力を印加して処理ガスをプラズマ化し、 被処理体表面に所定の処理 を行う際に、 処理容器 1 0 2内の圧力 1 O m T 0 r r、 高周波電源 1 1 4の電力 5 0 Wに対し、 直流電源 1 1 8により、 —0 . 5 k Vの直流電圧を印加すると、 処理ガスをエネルギー的に励起させた状態で高周波電力を印加することになるの で、 印加する高周波電力が 5 0 W程度と低い場合にも、 プラズマの着火を容易に 行うことができる。 プラズマ安定後には、 直流電源を遮断してもよいので、 被処 理体のプラズマ処理への影響を最小限に留めることができる。  As described above, when a processing gas is introduced into the hermetic processing container 102, the power is applied by the high-frequency power supply 114 to convert the processing gas into plasma, and a predetermined processing is performed on the surface of the processing target. When the pressure in the processing vessel 102 is 1 O m T 0 rr, and the power of the high-frequency power supply 114 is 50 W, the DC power supply 118 supplies a DC voltage of -0.5 kV. Since the high-frequency power is applied while the gas is energized, the plasma can be easily ignited even when the applied high-frequency power is as low as about 50 W. After the plasma is stabilized, the DC power supply may be cut off, so that the influence of the object on the plasma processing can be minimized.
また、 このように、 低高周波電力、 低ガス圧力でのプラズマ着火が容易になる ことで、 様々な条件のプロセスに使用可能なプラズマ処理方法が提供でき、 また、 長時間使用後の異物が付着した状態でも、 プラズマの着火が可能なので、 メイン テナンスが容易になる効果がある。  In addition, by facilitating plasma ignition at low high-frequency power and low gas pressure, a plasma treatment method that can be used in processes under various conditions can be provided. In this state, plasma can be ignited, which has the effect of facilitating maintenance.
次に、 図 2は、 本発明の他の実施の形態にかかるブラズマエツチング装置 2 0 0の概略断面図である。 なお、 このプラズマエッチング装置 2 0 0において、 図 1に示すプラズマエッチング装置 1 0 0と実質的に同一の機能構成を有する構成 要素については、 同一の符号を付してその説明を省略する。  Next, FIG. 2 is a schematic cross-sectional view of a plasma etching apparatus 200 according to another embodiment of the present invention. In the plasma etching apparatus 200, components having substantially the same functional configuration as the plasma etching apparatus 100 shown in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.
このプラズマエッチング装置 2 0 0は、 処理容器 2 0 1を有しており、 この処 理容器 2 0 1は、 有底筒状の処理容器本体 2 0 2を備えていて保安接地されてい る。 この処理容器本体 2 0 2の上部開口には、 絶縁部材 2 0 4を介して天板 2 0 3が気密に装着されている。 この天板 2 0 3には、 図 1に示すプラズマェヅチン グ装置 1 0 0と同様に第 2電極である上部電極 1◦ 8が設けられている。 そして、 天板 2 0 3には、 整合器 2 0 5を介して高周波電源 2 0 6が接続されている。 このようなプラズマエッチング装置 2 0 0においてエッチング処理を行うには、 まず、 図 1に示すプラズマエッチング装置 100と同様に、 ウェハ Wを第 1電極 である下部電極上に載置する。 The plasma etching apparatus 200 has a processing container 201, and the processing container 201 includes a processing container main body 202 having a bottomed cylindrical shape and is grounded for safety. A top plate 203 is hermetically attached to an upper opening of the processing container body 202 via an insulating member 204. As in the plasma etching apparatus 100 shown in FIG. 1, the top plate 203 is provided with an upper electrode 1 • 8 as a second electrode. A high-frequency power source 206 is connected to the top plate 203 via a matching device 205. In order to perform an etching process in such a plasma etching apparatus 200, First, similarly to the plasma etching apparatus 100 shown in FIG. 1, the wafer W is mounted on the lower electrode, which is the first electrode.
次いで、 所定の処理ガスを処理容器 201内に導入するとともに所定の圧力に なるように調整する。  Next, a predetermined processing gas is introduced into the processing container 201, and the pressure is adjusted to a predetermined pressure.
その後、 ウェハ Wが置かれた下部電極 104に例えば一 0. 5kVの直流電圧 を印加する。  Thereafter, a DC voltage of, for example, 0.5 kV is applied to the lower electrode 104 on which the wafer W is placed.
次に、 上部電極 108に例えば周波数が 60 MH zのプラズマ形成用高周波電 力を印加する。  Next, a high frequency power for plasma formation having a frequency of, for example, 60 MHz is applied to the upper electrode 108.
次いで、 下部電極 104に例えば周波数が 13. 56MHzのバイァス用高周 波電力を印加する。  Next, for example, high frequency power for bias having a frequency of 13.56 MHz is applied to the lower electrode 104.
そして、 プラズマ形成後に下部電極 104への一 0. 5 kVの直流電圧の印加 を OFFにする。  After the plasma is formed, the application of a DC voltage of 0.5 kV to the lower electrode 104 is turned off.
また、 プラズマ点火の方法に関しては、 上記方法の他に次のようにしてもよい。 すなわち、 ウェハ Wが置かれた下部電極 104に例えば一 0. 5kVの直流電圧 を印加する。  The plasma ignition method may be as follows in addition to the above method. That is, for example, a DC voltage of 0.5 kV is applied to the lower electrode 104 on which the wafer W is placed.
次に、 下部電極 104に例えば周波数が 13。 56MHzのバイァス用高周波 電力を印加する。  Next, the lower electrode 104 has a frequency of 13, for example. Apply 56MHz bias high frequency power.
次いで、 上部電極 108に例えば周波数が 60 MH zのプラズマ形成用高周波 電力を印加する。  Next, a high frequency power for forming a plasma having a frequency of, for example, 60 MHz is applied to the upper electrode 108.
そして、 プラズマ形成後に下部電極 104への一 0. 5 kVの直流電圧の印加 を OFFにする。  After the plasma is formed, the application of a DC voltage of 0.5 kV to the lower electrode 104 is turned off.
さらに、 本発明は、 上部電極 108の替わりにアンテナが設けられた誘導結合 型プラズマ装置を使用した場合にも適用可能である。  Further, the present invention is also applicable to a case where an inductively coupled plasma device provided with an antenna instead of the upper electrode 108 is used.
この場合、 まずウェハ Wが置かれた電極に例えば一 0. 5 kVの直流電圧を印 加し、 次にアンテナに例えば周波数が 13. 56 MHzのプラズマ形成用高周波 電力を印加し、 次いで、 ウェハ Wが置かれた電極に例えば周波数が 3. 2MHz のバイアス用高周波電力を印加する。 そして、 プラズマ形成後にウェハ Wが置か れた電極への一 0. 5 kVの直流電圧の印加を 0 F Fにする。  In this case, first, a DC voltage of, for example, 0.5 kV is applied to the electrode on which the wafer W is placed, and then high-frequency power for plasma formation, for example, having a frequency of 13.56 MHz, is applied to the antenna, and then the wafer is For example, a high frequency bias power having a frequency of 3.2 MHz is applied to the electrode on which W is placed. Then, the application of a DC voltage of 0.5 kV to the electrode on which the wafer W is placed after the plasma is formed is set to 0 FF.
以上説明したように、 本発明によれば、 印加する高周波電力が低い場合、 およ び長時間のブラズマ処理装置稼動後においても安定してブラズマの生成が可能な ブラズマ処理方法提供される。 As described above, according to the present invention, when the applied high frequency power is low, And a plasma processing method capable of stably generating a plasma even after operating the plasma processing apparatus for a long time.

Claims

請 求 の 範 囲 The scope of the claims
1. 気密な処理容器内に処理ガスを導入するとともに高周波電力を印加して 前記処理ガスのプラズマを形成し、 被処理体の処理面に対して所定のブラズマ処 理を施す方法であって、 1. A method for introducing a processing gas into an airtight processing container and applying high frequency power to form a plasma of the processing gas, and performing a predetermined plasma processing on a processing surface of an object to be processed,
前記処理容器内に配置され前記被処理体が載置された電極に直流電圧を印加す る工程と、  Applying a DC voltage to an electrode disposed in the processing container and on which the object is placed;
前記直流電圧を印加した後、 前記直流電圧を印加した電極に高周波電力を印加 する工程と、  After applying the DC voltage, applying high-frequency power to the electrode to which the DC voltage has been applied,
を有することを特徴とするプラズマ処理方法。 A plasma processing method comprising:
2. 前記直流電圧が、 前記高周波電力を印加した後で、 プラズマの形成中に 遮断される工程を有することを特徴とする請求の範囲第 1項に記載のプラズマ処 理方法。 2. The plasma processing method according to claim 1, further comprising a step of interrupting the DC voltage during plasma formation after applying the high-frequency power.
3. 前記直流電圧は、 —0. 5 kV以下であることを特徴とする請求の範囲 第 1項又は第 2項に記載のブラズマ処理方法。 3. The plasma processing method according to claim 1, wherein the DC voltage is −0.5 kV or less.
4. 前記処理容器内の圧力は、 1 OmT o r r以上 2 OmT o r r以下、 前 記高周波電力は、 50W以上 450W以下であることを特徴とする請求の範囲第 1項ないし第 3項のいずれか 1項に記載のプラズマ処理方法。 4. The pressure in the processing container is 1 OmT orr or more and 2 OmT orr or less, and the high frequency power is 50 W or more and 450 W or less, any one of claims 1 to 3 characterized by the above-mentioned. Item 6. The plasma processing method according to item 1.
5. 前記処理容器内の圧力は、 1 OmT o r r以上 25mT o r r以下、 前 記高周波電力は、 50W以上 200W以下であることを特徴とする請求の範囲第 1項ないし第 3項のいずれか 1項に記載のプラズマ処理方法。 5. The pressure in the processing container is 1 OmT or more and 25 mT or less or less, and the high frequency power is 50 W or more and 200 W or less, any one of claims 1 to 3 characterized by the above-mentioned. 4. The plasma processing method according to 1.
6. 前記処理容器内の圧力は、 1 OmT 0 r r以上 3 OmT o r r以下、 前 記高周波電力は、 50W以上 150W以下であることを特徴とする請求の範囲第 1項ないし第 3項のいずれか 1項に記載のプラズマ処理方法。 6. The pressure in the processing container is 1 OmT 0 rr or more and 3 OmT orr or less, and the high frequency power is 50 W or more and 150 W or less, any one of claims 1 to 3, wherein Item 2. The plasma processing method according to item 1.
7 . 気密な処理容器内に処理ガスを導入するとともに高周波電力を印加して 前記処理ガスのブラズマを形成し、 被処理体の処理面に対して所定のブラズマ処 理を施す方法であって、 7. A method of introducing a processing gas into an airtight processing container and applying high-frequency power to form a plasma of the processing gas, and performing a predetermined plasma processing on a processing surface of an object to be processed,
前記処理容器内に配置され前記被処理体が載置された第 1の電極に直流電圧を 印加する工程と、  Applying a DC voltage to a first electrode disposed in the processing container and on which the object is placed;
前記第 1の電極に直流電圧を印加した後、 前記第 1の電極とは別の第 2の電極 にブラズマ形成用高周波電力を印加する工程と、  After applying a DC voltage to the first electrode, applying a high-frequency power for plasma formation to a second electrode different from the first electrode,
前記第 2の電極にプラズマ形成用高周波電力を印加した後に、 前記第 1の電極 にバイァス用高周波電力を印加する工程と、  Applying high frequency power for bias to the first electrode after applying high frequency power for plasma formation to the second electrode;
を備えたとこを特徴とするブラズマ処理方法。 A plasma processing method characterized by comprising:
8 . 気密な処理容器内に処理ガスを導入するとともに高周波電力を印加して 前記処理ガスのプラズマを形成し、 被処理体の処理面に対して所定のブラズマ処 理を施す方法であって、 8. A method of introducing a processing gas into an airtight processing container and applying high-frequency power to form a plasma of the processing gas, and performing a predetermined plasma processing on a processing surface of an object to be processed,
前記処理容器内に配置され前記被処理体が載置された第 1の電極に直流電圧を 印加する工程と、  Applying a DC voltage to a first electrode disposed in the processing container and on which the object is placed;
前記第 1の電極に直流電圧を印加した後に、 前記第 1の電極にバイァス用高周 波電力を印加する工程と、  Applying a high-frequency power for bias to the first electrode after applying a DC voltage to the first electrode;
前記第 1の電極にバイァス用高周波電力を印加した後に、 前記第 1の電極とは 別の第 2の電極にプラズマ形成用高周波電力を印加する工程と、  After applying a high frequency power for bias to the first electrode, a step of applying high frequency power for plasma formation to a second electrode different from the first electrode;
を備えたとこを特徴とするプラズマ処理方法。  A plasma processing method characterized by comprising:
9 . 気密な処理容器内に処理ガスを導入するとともにアンテナに高周波電力 を印加して前記処理ガスのブラズマを形成し、 被処理体の処理面に対して所定の プラズマ処理を施す方法であって、 9. A method in which a processing gas is introduced into an airtight processing container and high-frequency power is applied to an antenna to form a plasma of the processing gas, and a predetermined plasma processing is performed on a processing surface of an object to be processed. ,
前記処理容器内に配置され前記被処理体が載置された電極に直流電圧を印加す る工程と、  Applying a DC voltage to an electrode disposed in the processing container and on which the object is placed;
前記電極に直流電圧を印加した後、 前記アンテナにブラズマ形成用高周波電力 を印加する工程と、 After applying a DC voltage to the electrode, a high frequency power for plasma formation is applied to the antenna. Applying,
前記アンテナにプラズマ形成用高周波電力を印加した後に、 前記電極にバイァ ス用高周波電力を印加する工程と、  Applying high-frequency power for bias to the electrode after applying high-frequency power for plasma formation to the antenna;
を備えたとこを特徴とするプラズマ処理方法。 A plasma processing method characterized by comprising:
1 0 . 前記直流電圧の印加を、 前記プラズマの形成中に停止することを特徴 とする請求の範囲第 7項ないし第 9項のいずれか 1項に記載のプラズマ処理方法 c 10. The plasma processing method c according to any one of claims 7 to 9, wherein the application of the DC voltage is stopped during the formation of the plasma.
PCT/JP2003/002934 2002-03-19 2003-03-12 Plasma processing method WO2003079427A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/942,888 US7569154B2 (en) 2002-03-19 2004-09-17 Plasma processing method, plasma processing apparatus and computer storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002076039 2002-03-19
JP2002-76039 2002-03-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/942,888 Continuation-In-Part US7569154B2 (en) 2002-03-19 2004-09-17 Plasma processing method, plasma processing apparatus and computer storage medium

Publications (1)

Publication Number Publication Date
WO2003079427A1 true WO2003079427A1 (en) 2003-09-25

Family

ID=28035402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/002934 WO2003079427A1 (en) 2002-03-19 2003-03-12 Plasma processing method

Country Status (2)

Country Link
TW (1) TW200306137A (en)
WO (1) WO2003079427A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI488546B (en) * 2012-02-23 2015-06-11 Shinkawa Kk A plasma generating device and a plasma reactor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634778A (en) * 1992-07-14 1994-02-10 Nippon Nuclear Fuel Dev Co Ltd Nuclear fuel element
US5468296A (en) * 1993-12-17 1995-11-21 Lsi Logic Corporation Apparatus for igniting low pressure inductively coupled plasma
JPH08213362A (en) * 1995-02-02 1996-08-20 Sony Corp Plasma treatment equipment and plasma treatment method
US5716534A (en) * 1994-12-05 1998-02-10 Tokyo Electron Limited Plasma processing method and plasma etching method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634778A (en) * 1992-07-14 1994-02-10 Nippon Nuclear Fuel Dev Co Ltd Nuclear fuel element
US5468296A (en) * 1993-12-17 1995-11-21 Lsi Logic Corporation Apparatus for igniting low pressure inductively coupled plasma
US5716534A (en) * 1994-12-05 1998-02-10 Tokyo Electron Limited Plasma processing method and plasma etching method
JPH08213362A (en) * 1995-02-02 1996-08-20 Sony Corp Plasma treatment equipment and plasma treatment method

Also Published As

Publication number Publication date
TW200306137A (en) 2003-11-01
TWI301731B (en) 2008-10-01

Similar Documents

Publication Publication Date Title
US10504697B2 (en) Particle generation suppresor by DC bias modulation
JP5205378B2 (en) Method and system for controlling the uniformity of a ballistic electron beam by RF modulation
TWI622081B (en) Plasma processing apparatus and plasma processing method
KR102038617B1 (en) Plasma treatment method and plasma treatment device
US8337713B2 (en) Methods for RF pulsing of a narrow gap capacitively coupled reactor
JP5219479B2 (en) Uniformity control method and system in ballistic electron beam enhanced plasma processing system
JP3776856B2 (en) Plasma processing apparatus and plasma processing method
WO2017126184A1 (en) Plasma processing method and plasma processing device
US20100147801A1 (en) High-Frequency Plasma Processing Apparatus
JP2002270576A (en) Plasma treating system and plasma treating method
JPH03218627A (en) Method and device for plasma etching
JP2006245510A (en) Method and device for plasma processing
JP7374362B2 (en) Plasma treatment method and plasma treatment device
TWI651753B (en) Method for etching power modulation of high aspect ratio features
CN108630513B (en) Plasma processing apparatus and plasma processing method
WO2000017920A1 (en) Plasma processing method
JPH02166732A (en) Method and apparatus for
TW201630068A (en) Plasma etching method
JP4256064B2 (en) Control method of plasma processing apparatus
JP2019192923A (en) Plasma processing device and plasma processing method
JP6763750B2 (en) How to process the object to be processed
WO2003079427A1 (en) Plasma processing method
JP2023507941A (en) Semiconductor processing equipment and method for cleaning dielectric window of semiconductor processing equipment
US20050115676A1 (en) Plasma processing method, plasma processing apparatus and computer storage medium
JP4373685B2 (en) Plasma processing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

WWE Wipo information: entry into national phase

Ref document number: 10942888

Country of ref document: US