WO2003079117A1 - Full phase shifting mask in damascene process - Google Patents

Full phase shifting mask in damascene process Download PDF

Info

Publication number
WO2003079117A1
WO2003079117A1 PCT/US2003/006041 US0306041W WO03079117A1 WO 2003079117 A1 WO2003079117 A1 WO 2003079117A1 US 0306041 W US0306041 W US 0306041W WO 03079117 A1 WO03079117 A1 WO 03079117A1
Authority
WO
WIPO (PCT)
Prior art keywords
shifters
fpsm
layout
mask
cut
Prior art date
Application number
PCT/US2003/006041
Other languages
French (fr)
Inventor
Christophe Pierrat
Original Assignee
Numerical Technologies, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Numerical Technologies, Inc. filed Critical Numerical Technologies, Inc.
Priority to EP03713753A priority Critical patent/EP1483628B1/en
Priority to CN03805394A priority patent/CN100595681C/en
Priority to AT03713753T priority patent/ATE550691T1/en
Priority to AU2003217789A priority patent/AU2003217789A1/en
Priority to JP2003577058A priority patent/JP4486364B2/en
Priority to KR1020047014145A priority patent/KR100739923B1/en
Publication of WO2003079117A1 publication Critical patent/WO2003079117A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/30Alternating PSM, e.g. Levenson-Shibuya PSM; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/70Adapting basic layout or design of masks to lithographic process requirements, e.g., second iteration correction of mask patterns for imaging

Definitions

  • a full phase shifting mask for patterning a metal layer in an integrated circuit is described.
  • the full phase shifting mask can be used with a damascene process, thereby allowing hard-to-etch materials, such as copper, to be used for the metal layer.
  • a standard binary mask includes a patterned opaque
  • a radiation (e.g. light) source is shone on the mask (wherein the term mask can also refer herein to a reticle) corresponding to that layer. This radiation passes through the transparent regions of the mask and is blocked by the opaque regions of the mask, thereby selectively exposing a photoresist layer on the wafer.
  • the areas in the photoresist layer exposed to the radiation i.e. irradiated areas, are either soluble or insoluble in a specific solvent, called a developer. If the irradiated areas are soluble, then the photoresist is called a positive photoresist. In contrast, if the irradiated areas are insoluble, then the photoresist is called a negative photoresist.
  • the underlying semiconductor layer no longer covered by photoresist can be removed by an anisotropic etch, thereby transferring the desired pattern onto the wafer. This process can be repeated for each layer of the integrated circuit design on the wafer.
  • a conventional process for patterning a metal layer comprises depositing that metal layer on the wafer and then depositing a positive photoresist layer on the metal layer.
  • the positive photoresist can then be exposed using a clear field binary mask (wherein the opaque pattern on the mask represents features in the layout) .
  • etching can be performed to generate the desired pattern in the metal layer.
  • a damascene process can be used to form a copper pattern.
  • the damascene process can include forming an oxide layer on the wafer and then depositing a negative photoresist layer on the oxide layer.
  • the negative photoresist can be exposed using the clear field binary mask. After exposure, the exposed portions of the oxide layer can be easily etched to form the desired pattern.
  • copper can be deposited and planarized (e.g. using a CMP operation), thereby forming the desired pattern in copper.
  • a type of phase shifting mask can be advantageously used in a damascene process.
  • the damascene process can include the development of a positive photoresist, thereby ensuring optimal resolution of the metal pattern.
  • the inherent qualities of a PSM and a positive photoresist facilitate the conversion of an original layout to a PSM layout .
  • a mask set for patterning a metal layer in an integrated circuit is provided.
  • the mask set can include a full phase shifting mask (FPSM) and a dark field trim mask.
  • the FPSM includes a plurality of shifters, wherein the shifters define most features in the metal layer.
  • the dark field trim mask can include at least a first cut.
  • the FPSM can further include one or more assist shifters, sometimes also called assist bars or scattering bars. Assist shifters, which are very small and therefore do not print, nonetheless aid in printing resolution. Assist shifters can be placed on either side of isolated shifters, placed alongside isolated edges of one or more sets of densely packed shifters, and/or interspersed with a plurality of intermediate spaced shifters. In one embodiment, the FPSM and/or the trim mask can include other proximity corrections .
  • proximity corrections could be provided by either rule-based optical proximity correction (OPC) or model-based OPC .
  • OPC optical proximity correction
  • model-based OPC optical proximity correction
  • optical proximity correction is used herein it is used generically to refer to any type of proximity correction, e.g. resist, etch, micro-loading, etc.
  • An exemplary technique of making a phase shifting mask is also provided.
  • a layout for defining a plurality of features in a metal layer can be received.
  • This layout can be converted, if necessary, so that most of the features in the layout are represented by shifters in the PSM (called an FPSM herein) .
  • both critical and non-critical features can be represented by shifters in a one-to-one correspondence. If a phase conflict occurs in the converted layout, then a feature associated with the phase conflict can be cut, thereby creating two shifters. At this point, one of the two shifters can be changed to a different phase.
  • the converted layout can then be transferred to the FPSM using a known mask writing process .
  • the FPSM can be used for patterning a metal layer, such as copper, in a damascene process.
  • An exemplary technique for patterning the metal layer is also provided.
  • an oxide layer can be deposited on a wafer.
  • a positive photoresist layer can be deposited on the oxide layer.
  • the positive photoresist layer can be exposed with a full phase shifting mask (FPSM) and a trim mask.
  • the FPSM includes a plurality of shifters, wherein the shifters represent most features in the metal layer.
  • the trim mask is a dark field trim mask with at least one cut. This cut corresponds to a cut on the FPSM, wherein the cut on the FPSM resolved a phase conflict on the FPSM.
  • the positive photoresist layer can be developed and the exposed portions of the oxide layer can be etched, thereby transferring the desired pattern to the oxide layer.
  • the metal layer can be deposited on the wafer and planarized to substantially a top surface of the etched oxide layer. In this manner, the desired pattern has been transferred to the metal layer without etching of the metal .
  • This damascene process is particularly useful for hard- to-etch metals, such as copper.
  • Figure 1A illustrates a full phase shifting mask
  • FPSM FPSM layout for forming three lines in a metal layer.
  • Figure IB illustrates a trim layout that corresponds to the FPSM layout of Figure 1A. Specifically, the trim layout can eliminate extraneous features created by the FPSM layout.
  • Figure 1C illustrates an aerial image after exposing two masks implementing the FPSM layout of Figure 1A and the trim layout of Figure IB.
  • Figure 2A illustrates a FPSM layout including proximity corrections, wherein the modified FPSM layout can form three lines in a metal layer.
  • Figure 2B illustrates a trim layout that corresponds to the FPSM layout of Figure 2A.
  • Figure 2C illustrates a printed image after exposing masks implementing the FPSM layout of Figure 2A and the trim layout of Figure 2B .
  • Figure 3A illustrates a FPSM layout including an isolated shifter and two assist shifters placed on either side of the isolated shifter.
  • Figure 3B illustrates a FPSM layout including multiple densely spaced shifters with assist shifters placed at their periphery.
  • Figure 3C illustrates a FPSM layout includes intermediate spaced (i.e. between isolated and densely spaced) shifters with interspersed assist shifters.
  • Figure 3D illustrates a FPSM layout including shifters and assist shifters in an exemplary configuration.
  • Figure 3E illustrates a FPSM layout in which multiple shifters in a common area can be cut to resolve a phase conflict .
  • Figure 4 illustrates an exemplary technique of making an FPSM.
  • Figure 5 illustrates an exemplary technique for patterning a metal layer with a FPSM.
  • phase shifting mask can be advantageously used in a damascene process with positive photoresist.
  • complementary phase shifters also called shifters
  • the exposure radiation transmitted by one shifter is approximately 180 degrees out of phase with the exposure radiation transmitted by the other shifter. Therefore, rather than constructively interfering and merging into a single image, the projected images destructively interfere where their edges overlap, thereby creating a clear and very small low intensity image between the pair of shifters. This low intensity image generally represents a feature on the layout .
  • the shifters can be used to print critical features of a layout. These critical features can be user-defined and could include the gates of transistors. In a standard process, this PSM can be used in conjunction with a clear field trim mask that defines other features of the layout .
  • the phase shifters can be formed on a full phase shifting mask (FPSM) , which can define substantially all of the desired features of a layout for the metal layer.
  • FPSM full phase shifting mask
  • FIG. 1A illustrates a FPSM layout 100 that can be used in a damascene process for forming features in a metal layer.
  • FPSM layout 100 includes shifters 101, 102, 103, and 104, wherein shifters 101 and 103 could provide 0 degree phase, whereas shifters 102 and 104 could provide 180 degree phase.
  • the desired three line pattern is shown best in Figure IB by the dashed lines.
  • shifters 101 and 103 could be 180 degree shifters, whereas shifters 102 and 104 could be 0 degree shifters. Moreover, shifters 101 and 103 could be 185 degree shifters, and shifters 102 and 104 could be 5 degree shifters. The important aspect is that adjacent shifters have a phase difference of approximately 180 degrees.
  • a cut 105 can be provided, thereby resolving a potential phase conflict when assigning phase to the shifters of FPSM layout 100.
  • cut 105 results in an unexposed region between phase shifter 102 and phase shifter 103.
  • a trim layout 110 shown in Figure IB, can expose this remainder of the feature, i.e. by exposing the photoresist in that area.
  • trim layout 110 can include a cut 111 (which is substantially the size of cut 105) to account for the adjacency of shifters 101 and 102 as well as the adjacency of shifters 103 and 104.
  • trim layout 110 which includes the target layout (shown in dashed lines) for context, would actually include only cut 111 (shown in white) .
  • the relationship between the width of the shifters and that of the printed lines can be 1-1. In other words, a 100 nm wide shifter can roughly define a 100 nm wide metal line. Note that proximity effects can affect this width. Therefore, appropriate correction to the shifter can be used to more closely approximate the desired line width.
  • Figure 1C illustrates an aerial image 120 that could be formed by exposing a mask implementing FPSM layout 100 as well as a mask implementing trim layout 110.
  • the trim mask was exposed to twice the energy of the FPSM (referenced as a 1:2 exposure ratio) .
  • the FPSM was exposed to N mJ/cm 2
  • the trim mask was exposed to 2N mJ/cm 2 .
  • the exposure conditions for aerial image 120 were a wavelength ( ⁇ ) of 193 nm, a partial coherence ( ⁇ ) of 0.4, and a numerical aperture (NA) of 0.85.
  • aerial image 120 indicates a low intensity
  • the red portion indicates a high intensity
  • the yellow portion indicates an intermediate intensity
  • the high intensity correlates to a high exposure
  • the low intensity correlates to a low exposure.
  • the transition from high to low intensity is abrupt, thereby resulting in well- defined features.
  • aerial image 120 illustrates the formation of three lines 121, 122, and 123 (which correspond to the target layout shown as dashed lines in Figure IB) .
  • the predicted printed edge is shown as a black line in the aerial image.
  • lines 121, 122, and 123 could represent exposed areas of an oxide layer following development of a positive photoresist layer. After etching these exposed areas, a copper layer could be deposited and planarized using the above-described damascene process, thereby forming three copper lines on the wafer.
  • the damascene process can include the development of a positive photoresist, the printing resolution of the metal pattern can be optimized.
  • cut and phase assignment described in reference to Figure 1A can be used on any region that includes a bend and tends to print large. In other words, the cut and phase assignment can be used on many corners of a FPSM layout.
  • proximity corrections To further improve lithographic performance, various modifications can be made to a layout to compensate for various proximity effects . These modifications are called proximity corrections.
  • One type of proximity correction called optical proximity correction (OPC) , applies systematic changes to geometries of the layout to improve the printability of a wafer pattern in response to a variety of proximity effects, e.g. etch, resist, micro-loading, other proximity effects, and/or combinations of proximity effects .
  • OPC optical proximity correction
  • Rule-based OPC can include rules to implement certain changes to the layout, thereby compensating for some lithographic distortions that occur when printing the features onto the wafer. For example, to compensate for line-end shortening, rule-based OPC can add a hammerhead to a line end. Additionally, to compensate for corner rounding, rule-based OPC can add (or subtract) serif shapes from outer (or inner) corners . These changes can form features on the wafer that are closer to the original intended layout .
  • model-based OPC a real pattern transfer can be simulated (i.e. predicted) with a set of mathematical formulas (i.e. models) .
  • model-based OPC the edges of a feature in a layout can be dissected into a plurality of segments, thereby allowing these segments to be individually moved to correct for proximity effects. The placement of the dissection points is determined by the feature shape, size, and/or position relative to other features .
  • FIG. 2A illustrates an FPSM layout 200, similar to FPSM layout 100 but including several proximity corrections, which can be used in a damascene process.
  • FPSM layout 100 includes shifters 201, 202, 203, and 204, wherein shifters 201 and 203 could provide 0 degree phase, whereas shifters 202 and 204 could provide 180 degree phase.
  • shifters 201- 204 are formed in a dark field mask.
  • a cut 205 can be provided, thereby resolving a potential phase conflict when assigning phase to the shifters of FPSM layout 200.
  • a trim layout 210 can be provided, as shown in Figure 2B. Trim layout 210 includes a cut 211, which is substantially the size of cut 205, to account for the adjacency of shifters 201 and 202, shifters 201 and 204, as well as shifters 203 and 204. Note that cut 211 can include proximity corrections including edge modifications as well as one or more cuts therein.
  • additional cuts on trim mask 210 can be used to provide critical dimension (CD) control.
  • CD critical dimension
  • Figure 2C illustrates an aerial image 220 that could be formed by exposing a mask implementing FPSM layout 200 as well as a mask implementing trim layout 210. Once again, the trim mask was exposed to twice the energy of the FPSM (referenced as a 1:2 exposure ratio) . To permit comparisons, the exposure conditions for aerial image 220 are identical to those used for aerial image 120, e.g.
  • Standard OPC parameters which refer to the segment lengths after dissection, can be used for aerial image 220.
  • the OPC parameters can include 20 nm for the FPSM mask and 40 nm for the trim mask.
  • aerial image 220 As evidenced by the substantially red bands in aerial image 220, the transition from intermediate to low intensity is even more abrupt than in aerial image 120, thereby resulting in three extremely well defined features 221, 222, and 223.
  • the resulting OPC image i.e. aerial image 220
  • both aerial images 120 and 220 illustrate 100 nm features.
  • the predicted printed edge is shown as a black line in the aerial image.
  • Figures 1C and 2C are shown on the same page to illustrate the improvements provided by OPC .
  • assist shifters (which because of their small size do not print, but nonetheless aid in printing resolution) can be used to define isolated, and semi-isolated metal lines.
  • the phase of each metal line can be alternated to provide better feature definition and the semi-isolated metal lines on the end can receive assist shifters as well.
  • assist shifters could be used to improve the printing of an isolated metal line.
  • Figure 3A illustrates a FPSM layout 300 including an isolated metal line that will be defined using a phase shifter 301. By adding assist shifters 302 and 303, placed on either side of and out of phase with shifter 301, the isolated metal line can be defined more easily.
  • Figure 3B illustrates a FPSM layout 310 including multiple densely packed metal lines that will be defined using shifters 312-316 (wherein adjacent shifters have opposite phase) .
  • shifters 312-316 wherein adjacent shifters have opposite phase
  • assist shifters can be used. Therefore, in this example, shifters 312 and 316 can have assist shifters 311 and 317, respectively, placed alongside their isolated edges to improve their printing. The assist shifters are out of phase with the phase of the features themselves .
  • Figure 3C illustrates a FPSM layout 320 including intermediate spaced or semi-isolated (i.e. between isolated and densely packed) metal lines that will be defined by shifters
  • phase of adjacent shifters/assist shifters have opposite phase.
  • the configuration of the shifters including assist shifters (e.g. Figures 3A-3C) and determining phase assignment of those shifters can be a function of pitch in the layout as well as an exposure setting.
  • Figure 3D illustrates an FPSM layout 330 including shifters 331 and 334 for printing metal lines in a U-shape configuration. As shown, all but one corner (cut 338) of the U will be defined on the phase shifting layer (with that corner defined by an opening, or cut, on the trim layout (not shown) ) . To improve printing of the features corresponding to those shifters, assist shifters 335, 336, and 337 can be added to FPSM layout 330. In one embodiment, although shifters 331 and 334 actually define the same feature, a cut 338 is placed to resolve a potential phase conflict between the U-shaped metal line and other features (not shown) . In this case, an associated dark field trim mask (not shown) could include an appropriate cut to expose the area corresponding to cut 338, c . f . Figure IB .
  • Figure 3E illustrates a FPSM layout 350 including shifters 351, 352, 353, and 354, wherein all shifters correspond to individual features, e.g. two metal lines along side two shorter metal lines. Because of phase assignments made in other part of the layout (not shown) , phase conflicts are created between shifters 351 and 352 as well as between shifters 353 and 354. In one embodiment, these shifters can be cut in the areas designated by cut-lines 355 and 356. In that case, the upper portion of shifter 351 can be switched to a phase opposite that the lower portion. In a similar manner, the lower portion of shifter 354 can be switched to a phase opposite that the upper portion. In this case, an associated dark field trim mask could expose the areas where the cuts were made in shifters 351 and 354.
  • FIG. 4 illustrates an exemplary technique 400 of making a FPSM and trim mask.
  • a layout for defining a plurality of features in a metal layer can be received (e.g. the target or desired layout). This layout could be included in a GDS II file or other appropriate format.
  • the layout can be converted, if necessary, so that substantially all of the features in the layout are defined by shifters in a FPSM layout.
  • both critical and non-critical features can be represented by shifters in a one-to-one correspondence. This conversion can further include finding phase conflicts, cutting shifters as appropriate to resolve these phase conflicts, placing assist features as needed to improve printing resolution, and generating a trim mask layout based on the FPSM layout .
  • the converted layout for defining a plurality of features in a metal layer can be received (e.g. the target or desired layout). This layout could be included in a GDS II file or other appropriate format.
  • the layout can be converted, if necessary, so that substantially all of the features in the layout are defined by
  • the mask set can be used for patterning a metal layer, such as copper, in a damascene process .
  • FIG. 5 illustrates an exemplary technique 500 for patterning that metal layer.
  • an oxide layer can be deposited on a wafer.
  • a positive photoresist layer can be deposited on the oxide layer.
  • the positive photoresist layer can be • exposed with a FPSM and a trim mask in step 503.
  • the FPSM includes a plurality of shifters, wherein the shifters represent most features in the metal layer.
  • the trim mask is a dark field trim mask with at least one cut. This cut corresponds to a cut on the FPSM, wherein the cut on the FPSM resolved a phase conflict on the FPSM.
  • the positive photoresist layer can be developed.
  • the oxide layer can be etched in step 505, thereby transferring the desired pattern to the oxide layer.
  • the metal layer can be deposited on the wafer.
  • the metal layer can be planarized to substantially a top surface of the etched oxide layer. In this manner, the desired pattern has been transferred to the metal layer without etching of the metal.
  • This damascene process is particularly useful for hard-to-etch metals, such as copper .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

A full phase shifting mask (FPSM) can be advantageously used in a damascene process for hard-to-etch metal layers. Because the FPSM can be used with a positive photoresist, features on an original layout can be replaced with shifters on a FPSM layout. Adjacent shifters should be of opposite phase, e.g. 0 and 180 degrees. In one embodiment, a dark field trim mask can be used with the FPSM. The trim mask can include cuts that correspond to cuts on the FPSM. Cuts on the FPSM can be made to resolve phase conflicts between proximate shifters. In one case, exposing two proximate shifters on the FPSM and a corresponding cut on the trim mask can form a feature in the metal layer. The FPSM and/or the trim mask can include proximity corrections to further improve printing resolution.

Description

FULL PHASE SHIFTING MASK IN DAMASCENE PROCESS
RELATED APPLICATIONS
[0001] This application is related to and claims the benefit of priority of the non-provisional application 10/295,575 filed 14 November 2002, entitled "Full Phase Shifting Mask In Damascene Process", having inventor Christophe Pierrat, and assigned to the assignee of the present application.
[0002] This application is related to and claims the benefit of priority of the provisional application 60/363,674 filed 11 Mar 2002, entitled "Full Phase Mask in Damascene Process", having inventor Christophe Pierrat, and assigned to the assignee of the present application.
[0003] This application is related to and claims the benefit of priority of the non-provisional application 09/669,368 filed 26 Sep 2000, entitled "Phase Shift Masking for Intersecting Lines", having inventor Christophe Pierrat, and assigned to the assignee of the present application.
[0004] This application is related to and claims the benefit of priority of the non-provisional application 09/932,239 filed 17 Aug 2001, entitled "Phase Conflict Resolution for Photolithographic Masks", having inventors Christophe Pierrat, et . al . , and assigned to the assignee of the present application.
BACKGROUND OF THE INVENTION Field of the Invention
[0005] A full phase shifting mask for patterning a metal layer in an integrated circuit is described. In particular, the full phase shifting mask can be used with a damascene process, thereby allowing hard-to-etch materials, such as copper, to be used for the metal layer. Description of the Related Art
[0006] A standard binary mask includes a patterned opaque
(e.g. chrome) layer formed {on a transparent (e.g. quartz) substrate. The pattern can be transferred onto the wafer using optical lithography. Specifically, for each layer of the circuit design, a radiation (e.g. light) source is shone on the mask (wherein the term mask can also refer herein to a reticle) corresponding to that layer. This radiation passes through the transparent regions of the mask and is blocked by the opaque regions of the mask, thereby selectively exposing a photoresist layer on the wafer.
[0007] The areas in the photoresist layer exposed to the radiation, i.e. irradiated areas, are either soluble or insoluble in a specific solvent, called a developer. If the irradiated areas are soluble, then the photoresist is called a positive photoresist. In contrast, if the irradiated areas are insoluble, then the photoresist is called a negative photoresist. After development of the photoresist layer, the underlying semiconductor layer no longer covered by photoresist can be removed by an anisotropic etch, thereby transferring the desired pattern onto the wafer. This process can be repeated for each layer of the integrated circuit design on the wafer.
[0008] A conventional process for patterning a metal layer comprises depositing that metal layer on the wafer and then depositing a positive photoresist layer on the metal layer. The positive photoresist can then be exposed using a clear field binary mask (wherein the opaque pattern on the mask represents features in the layout) . At this point, etching can be performed to generate the desired pattern in the metal layer.
[0009] This process works well for metal patterns having critical dimensions greater than 0.13 microns. However, to enhance device performance at smaller critical dimensions, the semiconductor industry is moving from aluminum to copper. Unfortunately, copper is very difficult to etch. Therefore, a conventional metal process as described above cannot be used for a copper layer.
[0010] However, a damascene process can be used to form a copper pattern. The damascene process can include forming an oxide layer on the wafer and then depositing a negative photoresist layer on the oxide layer. The negative photoresist can be exposed using the clear field binary mask. After exposure, the exposed portions of the oxide layer can be easily etched to form the desired pattern. At this point, copper can be deposited and planarized (e.g. using a CMP operation), thereby forming the desired pattern in copper.
[0011] However, positive photoresists are currently the dominant resists for many applications as they provide better resolution than negative photoresists. Therefore, a need arises for a technique of patterning a metal layer, particularly a hard-to-etch metal, using a positive photoresist.
SUMMARY OF THE INVENTION
[0012] In accordance with one aspect of the invention, a type of phase shifting mask (PSM) can be advantageously used in a damascene process. The damascene process can include the development of a positive photoresist, thereby ensuring optimal resolution of the metal pattern. Of importance, the inherent qualities of a PSM and a positive photoresist facilitate the conversion of an original layout to a PSM layout . [0013] In one embodiment, a mask set for patterning a metal layer in an integrated circuit is provided. The mask set can include a full phase shifting mask (FPSM) and a dark field trim mask. The FPSM includes a plurality of shifters, wherein the shifters define most features in the metal layer. The dark field trim mask can include at least a first cut. This first cut corresponds to a second cut on the FPSM, wherein the second cut resolves a phase conflict on the FPSM. In one case, exposing two proximate shifters on the FPSM and the first cut on the trim mask can form a feature in the metal layer. [0014] The FPSM can further include one or more assist shifters, sometimes also called assist bars or scattering bars. Assist shifters, which are very small and therefore do not print, nonetheless aid in printing resolution. Assist shifters can be placed on either side of isolated shifters, placed alongside isolated edges of one or more sets of densely packed shifters, and/or interspersed with a plurality of intermediate spaced shifters. In one embodiment, the FPSM and/or the trim mask can include other proximity corrections . These proximity corrections could be provided by either rule-based optical proximity correction (OPC) or model-based OPC . Although the term optical proximity correction is used herein it is used generically to refer to any type of proximity correction, e.g. resist, etch, micro-loading, etc.
[0015] An exemplary technique of making a phase shifting mask (PSM) is also provided. In this technique, a layout for defining a plurality of features in a metal layer can be received. This layout can be converted, if necessary, so that most of the features in the layout are represented by shifters in the PSM (called an FPSM herein) . In one embodiment, both critical and non-critical features can be represented by shifters in a one-to-one correspondence. If a phase conflict occurs in the converted layout, then a feature associated with the phase conflict can be cut, thereby creating two shifters. At this point, one of the two shifters can be changed to a different phase. The converted layout can then be transferred to the FPSM using a known mask writing process . The FPSM can be used for patterning a metal layer, such as copper, in a damascene process.
[0016] An exemplary technique for patterning the metal layer is also provided. In this technique, an oxide layer can be deposited on a wafer. Then, a positive photoresist layer can be deposited on the oxide layer. At this point, the positive photoresist layer can be exposed with a full phase shifting mask (FPSM) and a trim mask. The FPSM includes a plurality of shifters, wherein the shifters represent most features in the metal layer. In one embodiment, the trim mask is a dark field trim mask with at least one cut. This cut corresponds to a cut on the FPSM, wherein the cut on the FPSM resolved a phase conflict on the FPSM. At this point, the positive photoresist layer can be developed and the exposed portions of the oxide layer can be etched, thereby transferring the desired pattern to the oxide layer. Then, the metal layer can be deposited on the wafer and planarized to substantially a top surface of the etched oxide layer. In this manner, the desired pattern has been transferred to the metal layer without etching of the metal . This damascene process is particularly useful for hard- to-etch metals, such as copper.
BRIEF DESCRIPTION OF THE FIGURES
[0017] The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing (s) will be provided by the Patent and Trademark Office upon request and payment of the necessary fee.
[0018] Figure 1A illustrates a full phase shifting mask
(FPSM) layout for forming three lines in a metal layer.
[0019] Figure IB illustrates a trim layout that corresponds to the FPSM layout of Figure 1A. Specifically, the trim layout can eliminate extraneous features created by the FPSM layout.
[0020] Figure 1C illustrates an aerial image after exposing two masks implementing the FPSM layout of Figure 1A and the trim layout of Figure IB. [0021] Figure 2A illustrates a FPSM layout including proximity corrections, wherein the modified FPSM layout can form three lines in a metal layer.
[0022] Figure 2B illustrates a trim layout that corresponds to the FPSM layout of Figure 2A.
[0023] Figure 2C illustrates a printed image after exposing masks implementing the FPSM layout of Figure 2A and the trim layout of Figure 2B .
[0024] Figure 3A illustrates a FPSM layout including an isolated shifter and two assist shifters placed on either side of the isolated shifter.
[0025] Figure 3B illustrates a FPSM layout including multiple densely spaced shifters with assist shifters placed at their periphery.
[0026] Figure 3C illustrates a FPSM layout includes intermediate spaced (i.e. between isolated and densely spaced) shifters with interspersed assist shifters.
[0027] Figure 3D illustrates a FPSM layout including shifters and assist shifters in an exemplary configuration.
[0028] Figure 3E illustrates a FPSM layout in which multiple shifters in a common area can be cut to resolve a phase conflict .
[0029] Figure 4 illustrates an exemplary technique of making an FPSM.
[0030] Figure 5 illustrates an exemplary technique for patterning a metal layer with a FPSM.
DETAILED DESCRIPTION OF THE FIGURES
Overview Of Phase Shifting For Non-Damascene Layers [0031] In accordance with one aspect of the invention, a type of phase shifting mask (PSM) can be advantageously used in a damascene process with positive photoresist. In a PSM, complementary phase shifters (also called shifters) are configured such that the exposure radiation transmitted by one shifter is approximately 180 degrees out of phase with the exposure radiation transmitted by the other shifter. Therefore, rather than constructively interfering and merging into a single image, the projected images destructively interfere where their edges overlap, thereby creating a clear and very small low intensity image between the pair of shifters. This low intensity image generally represents a feature on the layout .
[0032] For example, in one embodiment, the shifters can be used to print critical features of a layout. These critical features can be user-defined and could include the gates of transistors. In a standard process, this PSM can be used in conjunction with a clear field trim mask that defines other features of the layout .
Overview Of Phase Shifting For Damascene Layers [0033] In accordance with one feature of the invention, instead of defining a feature by the low intensity area between the shifters, the high intensity areas created by the shifters can define the features. Thus, the inherent qualities of a PSM and a positive photoresist facilitate the conversion of an original layout to a PSM layout that can be used in a damascene process. Specifically, an original layout can be easily converted to a PSM layout by replacing features with shifters. [0034] In one embodiment, the phase shifters can be formed on a full phase shifting mask (FPSM) , which can define substantially all of the desired features of a layout for the metal layer. This FPSM can be used in conjunction with a dark field trim mask that can further define the areas of features left unexposed by the FPSM (explained below) . For example, Figure 1A illustrates a FPSM layout 100 that can be used in a damascene process for forming features in a metal layer. FPSM layout 100 includes shifters 101, 102, 103, and 104, wherein shifters 101 and 103 could provide 0 degree phase, whereas shifters 102 and 104 could provide 180 degree phase. The desired three line pattern is shown best in Figure IB by the dashed lines.
[0035] Note that the phase assignments discussed herein are illustrative only. Thus, shifters 101 and 103 could be 180 degree shifters, whereas shifters 102 and 104 could be 0 degree shifters. Moreover, shifters 101 and 103 could be 185 degree shifters, and shifters 102 and 104 could be 5 degree shifters. The important aspect is that adjacent shifters have a phase difference of approximately 180 degrees.
[0036] To conform to this requirement, a cut 105 can be provided, thereby resolving a potential phase conflict when assigning phase to the shifters of FPSM layout 100. Note that cut 105 results in an unexposed region between phase shifter 102 and phase shifter 103. However, a trim layout 110, shown in Figure IB, can expose this remainder of the feature, i.e. by exposing the photoresist in that area. Specifically, trim layout 110 can include a cut 111 (which is substantially the size of cut 105) to account for the adjacency of shifters 101 and 102 as well as the adjacency of shifters 103 and 104. Note that trim layout 110, which includes the target layout (shown in dashed lines) for context, would actually include only cut 111 (shown in white) . In one embodiment, the relationship between the width of the shifters and that of the printed lines can be 1-1. In other words, a 100 nm wide shifter can roughly define a 100 nm wide metal line. Note that proximity effects can affect this width. Therefore, appropriate correction to the shifter can be used to more closely approximate the desired line width.
[0037] Figure 1C illustrates an aerial image 120 that could be formed by exposing a mask implementing FPSM layout 100 as well as a mask implementing trim layout 110. In this case, the trim mask was exposed to twice the energy of the FPSM (referenced as a 1:2 exposure ratio) . In other words, if the FPSM was exposed to N mJ/cm2, then the trim mask was exposed to 2N mJ/cm2. The exposure conditions for aerial image 120 were a wavelength (λ) of 193 nm, a partial coherence (σ) of 0.4, and a numerical aperture (NA) of 0.85.
[0038] The blue portion of aerial image 120 indicates a low intensity, the red portion indicates a high intensity, the yellow portion indicates an intermediate intensity, etc. The high intensity correlates to a high exposure, whereas the low intensity correlates to a low exposure. As evidenced by the yellow and red bands in aerial image 120, the transition from high to low intensity is abrupt, thereby resulting in well- defined features. Specifically, aerial image 120 illustrates the formation of three lines 121, 122, and 123 (which correspond to the target layout shown as dashed lines in Figure IB) . The predicted printed edge is shown as a black line in the aerial image.
[0039] In accordance with one aspect of the invention, lines 121, 122, and 123 could represent exposed areas of an oxide layer following development of a positive photoresist layer. After etching these exposed areas, a copper layer could be deposited and planarized using the above-described damascene process, thereby forming three copper lines on the wafer. Advantageously, because the damascene process can include the development of a positive photoresist, the printing resolution of the metal pattern can be optimized.
[0040] Note that the cut and phase assignment described in reference to Figure 1A can be used on any region that includes a bend and tends to print large. In other words, the cut and phase assignment can be used on many corners of a FPSM layout.
[0041] To further improve lithographic performance, various modifications can be made to a layout to compensate for various proximity effects . These modifications are called proximity corrections. One type of proximity correction, called optical proximity correction (OPC) , applies systematic changes to geometries of the layout to improve the printability of a wafer pattern in response to a variety of proximity effects, e.g. etch, resist, micro-loading, other proximity effects, and/or combinations of proximity effects .
[0042] Rule-based OPC can include rules to implement certain changes to the layout, thereby compensating for some lithographic distortions that occur when printing the features onto the wafer. For example, to compensate for line-end shortening, rule-based OPC can add a hammerhead to a line end. Additionally, to compensate for corner rounding, rule-based OPC can add (or subtract) serif shapes from outer (or inner) corners . These changes can form features on the wafer that are closer to the original intended layout .
[0043] In model-based OPC, a real pattern transfer can be simulated (i.e. predicted) with a set of mathematical formulas (i.e. models) . In model-based OPC, the edges of a feature in a layout can be dissected into a plurality of segments, thereby allowing these segments to be individually moved to correct for proximity effects. The placement of the dissection points is determined by the feature shape, size, and/or position relative to other features .
[0044] Figure 2A illustrates an FPSM layout 200, similar to FPSM layout 100 but including several proximity corrections, which can be used in a damascene process. FPSM layout 100 includes shifters 201, 202, 203, and 204, wherein shifters 201 and 203 could provide 0 degree phase, whereas shifters 202 and 204 could provide 180 degree phase. Once again, shifters 201- 204 are formed in a dark field mask.
[0045] To conform to a configuration in which adjacent shifters have a phase difference of approximately 180 degrees, a cut 205 can be provided, thereby resolving a potential phase conflict when assigning phase to the shifters of FPSM layout 200. To expose the extraneous feature created by cut 205, a trim layout 210 can be provided, as shown in Figure 2B. Trim layout 210 includes a cut 211, which is substantially the size of cut 205, to account for the adjacency of shifters 201 and 202, shifters 201 and 204, as well as shifters 203 and 204. Note that cut 211 can include proximity corrections including edge modifications as well as one or more cuts therein. [0046] In one embodiment, additional cuts on trim mask 210 can be used to provide critical dimension (CD) control. U.S. Provisional Patent Application 60/359,909, entitled "Non- Critical Blocking for Full Phase Masks", filed on February 26, 2002 by Numerical Technologies, Inc., and incorporated by reference herein, describes such additional cuts. [0047] Figure 2C illustrates an aerial image 220 that could be formed by exposing a mask implementing FPSM layout 200 as well as a mask implementing trim layout 210. Once again, the trim mask was exposed to twice the energy of the FPSM (referenced as a 1:2 exposure ratio) . To permit comparisons, the exposure conditions for aerial image 220 are identical to those used for aerial image 120, e.g. wavelength (λ) of 193 nm, a partial coherence (σ) of 0.4, and a numerical aperture (NA) of 0.85. Standard OPC parameters, which refer to the segment lengths after dissection, can be used for aerial image 220. In one embodiment, the OPC parameters can include 20 nm for the FPSM mask and 40 nm for the trim mask.
[0048] As evidenced by the substantially red bands in aerial image 220, the transition from intermediate to low intensity is even more abrupt than in aerial image 120, thereby resulting in three extremely well defined features 221, 222, and 223. Thus, compared to the non-OPC result (i.e. aerial image 120), the resulting OPC image (i.e. aerial image 220) improves straightness of the edges of the three lines as well as intensity. In one embodiment, both aerial images 120 and 220 illustrate 100 nm features. The predicted printed edge is shown as a black line in the aerial image. Figures 1C and 2C are shown on the same page to illustrate the improvements provided by OPC .
[0049] In accordance with one embodiment of the invention, assist shifters (which because of their small size do not print, but nonetheless aid in printing resolution) can be used to define isolated, and semi-isolated metal lines. In the case of densely packed metal lines, the phase of each metal line can be alternated to provide better feature definition and the semi-isolated metal lines on the end can receive assist shifters as well. Specifically, assist shifters could be used to improve the printing of an isolated metal line. For example, Figure 3A illustrates a FPSM layout 300 including an isolated metal line that will be defined using a phase shifter 301. By adding assist shifters 302 and 303, placed on either side of and out of phase with shifter 301, the isolated metal line can be defined more easily.
[0050] Figure 3B illustrates a FPSM layout 310 including multiple densely packed metal lines that will be defined using shifters 312-316 (wherein adjacent shifters have opposite phase) . In the case of semi-isolated features on the ends of the row, e.g. shifters 312 and 316 that have no printable, proximate features, assist shifters can be used. Therefore, in this example, shifters 312 and 316 can have assist shifters 311 and 317, respectively, placed alongside their isolated edges to improve their printing. The assist shifters are out of phase with the phase of the features themselves .
[0051] Figure 3C illustrates a FPSM layout 320 including intermediate spaced or semi-isolated (i.e. between isolated and densely packed) metal lines that will be defined by shifters
322, 324, 326, and 328 with interspersed assist shifters 321,
323, 325, 327, and 329. Once again, the phase of adjacent shifters/assist shifters have opposite phase. Note that the configuration of the shifters including assist shifters (e.g. Figures 3A-3C) and determining phase assignment of those shifters can be a function of pitch in the layout as well as an exposure setting.
[0052] Figure 3D illustrates an FPSM layout 330 including shifters 331 and 334 for printing metal lines in a U-shape configuration. As shown, all but one corner (cut 338) of the U will be defined on the phase shifting layer (with that corner defined by an opening, or cut, on the trim layout (not shown) ) . To improve printing of the features corresponding to those shifters, assist shifters 335, 336, and 337 can be added to FPSM layout 330. In one embodiment, although shifters 331 and 334 actually define the same feature, a cut 338 is placed to resolve a potential phase conflict between the U-shaped metal line and other features (not shown) . In this case, an associated dark field trim mask (not shown) could include an appropriate cut to expose the area corresponding to cut 338, c . f . Figure IB .
[0053] Figure 3E illustrates a FPSM layout 350 including shifters 351, 352, 353, and 354, wherein all shifters correspond to individual features, e.g. two metal lines along side two shorter metal lines. Because of phase assignments made in other part of the layout (not shown) , phase conflicts are created between shifters 351 and 352 as well as between shifters 353 and 354. In one embodiment, these shifters can be cut in the areas designated by cut-lines 355 and 356. In that case, the upper portion of shifter 351 can be switched to a phase opposite that the lower portion. In a similar manner, the lower portion of shifter 354 can be switched to a phase opposite that the upper portion. In this case, an associated dark field trim mask could expose the areas where the cuts were made in shifters 351 and 354.
[0054] Figure 4 illustrates an exemplary technique 400 of making a FPSM and trim mask. In step 401, a layout for defining a plurality of features in a metal layer can be received (e.g. the target or desired layout). This layout could be included in a GDS II file or other appropriate format. In step 402, the layout can be converted, if necessary, so that substantially all of the features in the layout are defined by shifters in a FPSM layout. In one embodiment, both critical and non-critical features can be represented by shifters in a one-to-one correspondence. This conversion can further include finding phase conflicts, cutting shifters as appropriate to resolve these phase conflicts, placing assist features as needed to improve printing resolution, and generating a trim mask layout based on the FPSM layout . The converted layout
(including both the FPSM and trim layouts) can then be transferred to the physical masks (or reticle) using a known mask writing process in step 403. The mask set can be used for patterning a metal layer, such as copper, in a damascene process .
[0055] Figure 5 illustrates an exemplary technique 500 for patterning that metal layer. In step 501, an oxide layer can be deposited on a wafer. In step 502, a positive photoresist layer can be deposited on the oxide layer. At this point, the positive photoresist layer can be • exposed with a FPSM and a trim mask in step 503. The FPSM includes a plurality of shifters, wherein the shifters represent most features in the metal layer. In one embodiment, the trim mask is a dark field trim mask with at least one cut. This cut corresponds to a cut on the FPSM, wherein the cut on the FPSM resolved a phase conflict on the FPSM. In step 504, the positive photoresist layer can be developed. At this point, the oxide layer can be etched in step 505, thereby transferring the desired pattern to the oxide layer. In step 506, the metal layer can be deposited on the wafer. In step 507, the metal layer can be planarized to substantially a top surface of the etched oxide layer. In this manner, the desired pattern has been transferred to the metal layer without etching of the metal. This damascene process is particularly useful for hard-to-etch metals, such as copper .
[0056] Although illustrative embodiments of the invention have been described in detail herein with reference to the accompanying figures, it is to be understood that the invention is not limited to those precise embodiments. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed. As such, many modifications and variations will be apparent.
[0057] For example, instead of cutting a feature at a corner (e.g. Figures 1A, 2A, 3D, and 3E) , the cut could be made in the line. Thus, referring to Figure 1A, in lieu of cut 105, a cut could be made in shifter 104 at position 106. The techniques described herein can be applied to mask layouts for various lithographic process technologies, including ultraviolet, deep ultraviolet (DUV) , extreme ultraviolet (EUV) , x-ray, etc. Accordingly, it is intended that the scope of the invention be defined by the following Claims and their equivalents.

Claims

1. A mask set for patterning a metal layer in an integrated circuit, the mask set used for a damascene process, the mask set comprising: a full phase shifting mask (FPSM) including a plurality of shifters, wherein the shifters represent substantially all features in the metal layer; and a dark field trim mask including at least a first cut, the first cut corresponding to a second cut on the FPSM, the second cut resolving a phase conflict on the FPSM.
2. The mask set of Claim 1, wherein the second cut is associated with two proximate shifters on the FPSM, wherein the two proximate shifters and the first cut form a feature in the metal layer.
3. The mask set of Claim 2, wherein the FPSM further includes an assist shifter associated with an isolated shifter.
4. The mask set of Claim 2 , wherein the FPSM further includes an assist shifter associated with an isolated edge of a set of densely spaced shifters.
5. The mask set of Claim 2, wherein the FPSM further includes a plurality of assist shifters interspersed with a plurality of intermediate spaced shifters.
6. The mask set of Claim 2 , wherein the FPSM further includes an assist shifter associated with a semi-isolated shifter.
7. The mask set of Claim 2, wherein at least one of the FPSM and the trim mask include proximity corrections .
8. A method for patterning a metal layer on a wafer, the method comprising: depositing an oxide layer on the wafer; depositing a positive photoresist layer on the oxide layer; exposing the positive photoresist layer with a full phase shifting mask (FPSM) , the FPSM including a plurality of shifters, wherein the shifters represent most features in the metal layer; exposing the positive photoresist layer with a dark field trim mask including at least a first cut, the first cut corresponding to a second cut on the FPSM, the second cut resolving a phase conflict on the FPSM; developing the positive photoresist layer after the dual exposure ; etching the oxide layer based on the developing; depositing the metal layer on the wafer; and planarizing the metal layer to substantially a top surface of the etched oxide layer.
9. The method of Claim 8, wherein the metal includes copper .
10. A layout for a phase shifting mask (PSM), the PSM used to form a plurality of features on a metal layer, the metal layer forming one layer of an integrated circuit, the layout comprising: a plurality of shifters representing most of the plurality of features .
11. The layout of Claim 10, wherein at least two shifters in a common area represent one feature .
12. A method of making a phase shifting mask (PSM), the method comprising: receiving a layout for defining a plurality of features in a metal layer on an integrated circuit using a damascene process; converting the layout, if necessary, so that most of the features in the layout are represented by shifters in the PSM; and transferring the converted layout to the PSM.
13. The method of Claim 12, wherein if a phase conflict occurs in the converted layout, then cutting a feature associated with the phase conflict, thereby creating two shifters, and changing one of the two shifters to a different phase .
PCT/US2003/006041 2002-03-11 2003-02-27 Full phase shifting mask in damascene process WO2003079117A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP03713753A EP1483628B1 (en) 2002-03-11 2003-02-27 Full phase shifting mask in damascene process
CN03805394A CN100595681C (en) 2002-03-11 2003-02-27 Full phase shifting mask in damascene process
AT03713753T ATE550691T1 (en) 2002-03-11 2003-02-27 FULL PHASE SHIFT MASK IN A DAMASCENE PROCESS
AU2003217789A AU2003217789A1 (en) 2002-03-11 2003-02-27 Full phase shifting mask in damascene process
JP2003577058A JP4486364B2 (en) 2002-03-11 2003-02-27 All phase phase shift mask in damascene process
KR1020047014145A KR100739923B1 (en) 2002-03-11 2003-02-27 Full phase shifting mask in damascene process

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US36367402P 2002-03-11 2002-03-11
US60/363,674 2002-03-11
US10/295,575 US6866971B2 (en) 2000-09-26 2002-11-14 Full phase shifting mask in damascene process
US10/295,575 2002-11-14

Publications (1)

Publication Number Publication Date
WO2003079117A1 true WO2003079117A1 (en) 2003-09-25

Family

ID=28044730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/006041 WO2003079117A1 (en) 2002-03-11 2003-02-27 Full phase shifting mask in damascene process

Country Status (7)

Country Link
US (3) US6866971B2 (en)
EP (1) EP1483628B1 (en)
JP (1) JP4486364B2 (en)
KR (1) KR100739923B1 (en)
CN (1) CN100595681C (en)
AU (1) AU2003217789A1 (en)
WO (1) WO2003079117A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6866971B2 (en) * 2000-09-26 2005-03-15 Synopsys, Inc. Full phase shifting mask in damascene process
US6887633B2 (en) * 2002-02-08 2005-05-03 Chih-Hsien Nail Tang Resolution enhancing technology using phase assignment bridges
TWI237746B (en) * 2003-07-23 2005-08-11 Nanya Technology Corp Optical proximity correction method
US20050112474A1 (en) * 2003-11-20 2005-05-26 Micronic Laser Systems Ab Method involving a mask or a reticle
US7448012B1 (en) 2004-04-21 2008-11-04 Qi-De Qian Methods and system for improving integrated circuit layout
US7811720B2 (en) * 2004-05-10 2010-10-12 Taiwan Semiconductor Manufacturing Co., Ltd. Utilizing compensation features in photolithography for semiconductor device fabrication
US20070269749A1 (en) * 2006-05-18 2007-11-22 Richard Elliot Schenker Methods to reduce the minimum pitch in a pattern
WO2008089222A1 (en) * 2007-01-18 2008-07-24 Nikon Corporation Scanner based optical proximity correction system and method of use
US20090125871A1 (en) * 2007-11-14 2009-05-14 Aton Thomas J System and method for making photomasks
EP2443651B1 (en) * 2009-06-19 2015-08-12 KLA-Tencor Corporation Inspection systems and methods for detecting defects on extreme ultraviolet mask blanks
US8399157B2 (en) * 2010-12-23 2013-03-19 Intel Corporation Lithography mask having sub-resolution phased assist features
US9046761B2 (en) 2010-12-23 2015-06-02 Intel Corporation Lithography mask having sub-resolution phased assist features
US9099533B2 (en) * 2013-07-02 2015-08-04 International Business Machines Corporation Semiconductor device with distinct multiple-patterned conductive tracks on a same level
CN104917950B (en) * 2014-03-10 2018-10-12 联想(北京)有限公司 A kind of information processing method and electronic equipment
US9257277B2 (en) 2014-04-15 2016-02-09 Globalfoundries Singapore Pte. Ltd. Methods for extreme ultraviolet mask defect mitigation by multi-patterning
US9898572B2 (en) * 2016-02-17 2018-02-20 Globalfoundries Inc. Metal line layout based on line shifting
CN110824847B (en) * 2018-08-08 2023-07-04 长鑫存储技术有限公司 Etching method for improving overlay accuracy
KR20220143382A (en) 2021-04-16 2022-10-25 삼성전자주식회사 Integrated circuit chip comprising a gate electrode with an oblique cut surface, and manufacturing method of the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807649A (en) * 1996-10-31 1998-09-15 International Business Machines Corporation Lithographic patterning method and mask set therefor with light field trim mask
US5858580A (en) * 1997-09-17 1999-01-12 Numerical Technologies, Inc. Phase shifting circuit manufacture method and apparatus

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0690505B2 (en) 1985-09-20 1994-11-14 株式会社日立製作所 Photo mask
JP2650962B2 (en) 1988-05-11 1997-09-10 株式会社日立製作所 Exposure method, element forming method, and semiconductor element manufacturing method
JP2710967B2 (en) 1988-11-22 1998-02-10 株式会社日立製作所 Manufacturing method of integrated circuit device
DE69028871T2 (en) 1989-04-28 1997-02-27 Fujitsu Ltd Mask, manufacturing process and pattern production with such a mask
US5298365A (en) * 1990-03-20 1994-03-29 Hitachi, Ltd. Process for fabricating semiconductor integrated circuit device, and exposing system and mask inspecting method to be used in the process
EP0464492B1 (en) * 1990-06-21 1999-08-04 Matsushita Electronics Corporation A photomask used by photolithography and a process of producing the same
KR100256619B1 (en) 1991-07-12 2000-06-01 사와무라 시코 Method of forming resist pattern and photomask thereor
US5364716A (en) 1991-09-27 1994-11-15 Fujitsu Limited Pattern exposing method using phase shift and mask used therefor
JP3148770B2 (en) 1992-03-27 2001-03-26 日本電信電話株式会社 Photomask and mask pattern data processing method
US5472514A (en) * 1992-04-08 1995-12-05 Goodway Technologies Corporation Duct cleaning method
US5308741A (en) 1992-07-31 1994-05-03 Motorola, Inc. Lithographic method using double exposure techniques, mask position shifting and light phase shifting
US5302477A (en) 1992-08-21 1994-04-12 Intel Corporation Inverted phase-shifted reticle
US5538815A (en) 1992-09-14 1996-07-23 Kabushiki Kaisha Toshiba Method for designing phase-shifting masks with automatization capability
US5527645A (en) 1993-04-21 1996-06-18 Pati; Yagyensh C. Systematic method for production of phase-shifting photolithographic masks
JP3393926B2 (en) 1993-12-28 2003-04-07 株式会社東芝 Photomask design method and apparatus
GB2291219B (en) * 1994-07-05 1998-07-01 Nec Corp Photo-mask fabrication and use
US5573890A (en) 1994-07-18 1996-11-12 Advanced Micro Devices, Inc. Method of optical lithography using phase shift masking
US5537648A (en) 1994-08-15 1996-07-16 International Business Machines Corporation Geometric autogeneration of "hard" phase-shift designs for VLSI
US5472814A (en) 1994-11-17 1995-12-05 International Business Machines Corporation Orthogonally separated phase shifted and unphase shifted mask patterns for image improvement
US5565286A (en) 1994-11-17 1996-10-15 International Business Machines Corporation Combined attenuated-alternating phase shifting mask structure and fabrication methods therefor
KR0158904B1 (en) 1994-12-02 1999-02-01 김주용 Contact mask
US5523186A (en) 1994-12-16 1996-06-04 International Business Machines Corporation Split and cover technique for phase shifting photolithography
JP3273456B2 (en) 1995-02-24 2002-04-08 アルプス電気株式会社 Motor driven slide type variable resistor
US5595843A (en) 1995-03-30 1997-01-21 Intel Corporation Layout methodology, mask set, and patterning method for phase-shifting lithography
JP2638561B2 (en) 1995-05-10 1997-08-06 株式会社日立製作所 Mask formation method
US6185727B1 (en) 1995-12-12 2001-02-06 International Business Machines Corporation Design verification for asymmetric phase shift mask layouts
JP3518275B2 (en) 1996-09-06 2004-04-12 松下電器産業株式会社 Photomask and pattern forming method
US5994002A (en) 1996-09-06 1999-11-30 Matsushita Electric Industrial Co., Ltd. Photo mask and pattern forming method
AU4355397A (en) 1996-09-18 1998-04-14 Numerical Technologies, Inc. Phase shifting circuit manufacture method and apparatus
US6228539B1 (en) 1996-09-18 2001-05-08 Numerical Technologies, Inc. Phase shifting circuit manufacture method and apparatus
US5923562A (en) 1996-10-18 1999-07-13 International Business Machines Corporation Method for automatically eliminating three way intersection design conflicts in phase edge, phase shift designs
JPH10207038A (en) 1997-01-28 1998-08-07 Matsushita Electric Ind Co Ltd Reticle and pattern forming method
US5883813A (en) 1997-03-04 1999-03-16 International Business Machines Corporation Automatic generation of phase shift masks using net coloring
US5923566A (en) 1997-03-25 1999-07-13 International Business Machines Corporation Phase shifted design verification routine
US6057063A (en) 1997-04-14 2000-05-02 International Business Machines Corporation Phase shifted mask design system, phase shifted mask and VLSI circuit devices manufactured therewith
JP3101594B2 (en) 1997-11-06 2000-10-23 キヤノン株式会社 Exposure method and exposure apparatus
US6083275A (en) 1998-01-09 2000-07-04 International Business Machines Corporation Optimized phase shift design migration
JP3307313B2 (en) 1998-01-23 2002-07-24 ソニー株式会社 Pattern generation method and apparatus
JP2000112114A (en) * 1998-10-08 2000-04-21 Hitachi Ltd Semiconductor device and production of semiconductor device
WO2000025181A1 (en) * 1998-10-23 2000-05-04 Hitachi, Ltd. Method for fabricating semiconductor device and method for forming mask suitable therefor
US6013397A (en) * 1998-11-04 2000-01-11 United Microelectronics Corp. Method for automatically forming a phase shifting mask
US6130012A (en) 1999-01-13 2000-10-10 Advanced Micro Devices, Inc. Ion beam milling to generate custom reticles
US6139994A (en) 1999-06-25 2000-10-31 Broeke; Doug Van Den Use of intersecting subresolution features for microlithography
US6251549B1 (en) 1999-07-19 2001-06-26 Marc David Levenson Generic phase shift mask
US6335128B1 (en) 1999-09-28 2002-01-01 Nicolas Bailey Cobb Method and apparatus for determining phase shifts and trim masks for an integrated circuit
US20020024139A1 (en) * 2000-02-04 2002-02-28 Chan Simon S. Combined capping layer and ARC for CU interconnects
US6338922B1 (en) 2000-05-08 2002-01-15 International Business Machines Corporation Optimized alternating phase shifted mask design
US6503666B1 (en) 2000-07-05 2003-01-07 Numerical Technologies, Inc. Phase shift masking for complex patterns
US6681379B2 (en) 2000-07-05 2004-01-20 Numerical Technologies, Inc. Phase shifting design and layout for static random access memory
US6978436B2 (en) 2000-07-05 2005-12-20 Synopsys, Inc. Design data format and hierarchy management for phase processing
US6787271B2 (en) 2000-07-05 2004-09-07 Numerical Technologies, Inc. Design and layout of phase shifting photolithographic masks
US6733929B2 (en) 2000-07-05 2004-05-11 Numerical Technologies, Inc. Phase shift masking for complex patterns with proximity adjustments
US7028285B2 (en) 2000-07-05 2006-04-11 Synopsys, Inc. Standard cell design incorporating phase information
US6866971B2 (en) * 2000-09-26 2005-03-15 Synopsys, Inc. Full phase shifting mask in damascene process
US6901575B2 (en) 2000-10-25 2005-05-31 Numerical Technologies, Inc. Resolving phase-shift conflicts in layouts using weighted links between phase shifters
JP2004529378A (en) 2001-03-08 2004-09-24 ニューメリカル テクノロジーズ インコーポレイテッド Alternating phase shift masking for multi-level masking resolution
US6635393B2 (en) 2001-03-23 2003-10-21 Numerical Technologies, Inc. Blank for alternating PSM photomask with charge dissipation layer
US6573010B2 (en) 2001-04-03 2003-06-03 Numerical Technologies, Inc. Method and apparatus for reducing incidental exposure by using a phase shifter with a variable regulator
US6553560B2 (en) 2001-04-03 2003-04-22 Numerical Technologies, Inc. Alleviating line end shortening in transistor endcaps by extending phase shifters
US6566019B2 (en) 2001-04-03 2003-05-20 Numerical Technologies, Inc. Using double exposure effects during phase shifting to control line end shortening

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807649A (en) * 1996-10-31 1998-09-15 International Business Machines Corporation Lithographic patterning method and mask set therefor with light field trim mask
US5858580A (en) * 1997-09-17 1999-01-12 Numerical Technologies, Inc. Phase shifting circuit manufacture method and apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1483628A4 *

Also Published As

Publication number Publication date
US20080286664A1 (en) 2008-11-20
EP1483628A1 (en) 2004-12-08
JP4486364B2 (en) 2010-06-23
EP1483628B1 (en) 2012-03-21
KR20040105214A (en) 2004-12-14
US7659042B2 (en) 2010-02-09
CN100595681C (en) 2010-03-24
JP2005521084A (en) 2005-07-14
US20050123841A1 (en) 2005-06-09
US20030068566A1 (en) 2003-04-10
EP1483628A4 (en) 2006-09-13
KR100739923B1 (en) 2007-07-16
CN1639645A (en) 2005-07-13
US6866971B2 (en) 2005-03-15
AU2003217789A1 (en) 2003-09-29
US7534531B2 (en) 2009-05-19

Similar Documents

Publication Publication Date Title
US7534531B2 (en) Full phase shifting mask in damascene process
US7122281B2 (en) Critical dimension control using full phase and trim masks
US6338922B1 (en) Optimized alternating phase shifted mask design
US7036108B2 (en) Full sized scattering bar alt-PSM technique for IC manufacturing in sub-resolution era
US5827625A (en) Methods of designing a reticle and forming a semiconductor device therewith
US20050147927A1 (en) Patterning semiconductor layers using phase shifting and assist features
US5789117A (en) Transfer method for non-critical photoresist patterns
US7945869B2 (en) Mask and method for patterning a semiconductor wafer
US6660653B1 (en) Dual trench alternating phase shift mask fabrication
US20020182549A1 (en) Alternate exposure method for improving photolithography resolution
US8067133B2 (en) Phase shift mask with two-phase clear feature
US7033947B2 (en) Dual trench alternating phase shift mask fabrication
US20040013948A1 (en) Chromeless PSM with chrome assistant feature
US7445159B2 (en) Dual trench alternating phase shift mask fabrication
US6576376B1 (en) Tri-tone mask process for dense and isolated patterns
US6968528B2 (en) Photo reticles using channel assist features
Chen Photomask with interior nonprinting phase-shifting window for printing small post structures
US6617081B2 (en) Method for improving process window in semi-dense area by using phase shifter
Yang et al. Simulation and optimization of phase-shift masks for dense contact patterns with i-line illumination

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003713753

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003577058

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038053942

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020047014145

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003713753

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020047014145

Country of ref document: KR