WO2003079117A1 - Full phase shifting mask in damascene process - Google Patents
Full phase shifting mask in damascene process Download PDFInfo
- Publication number
- WO2003079117A1 WO2003079117A1 PCT/US2003/006041 US0306041W WO03079117A1 WO 2003079117 A1 WO2003079117 A1 WO 2003079117A1 US 0306041 W US0306041 W US 0306041W WO 03079117 A1 WO03079117 A1 WO 03079117A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shifters
- fpsm
- layout
- mask
- cut
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/26—Phase shift masks [PSM]; PSM blanks; Preparation thereof
- G03F1/30—Alternating PSM, e.g. Levenson-Shibuya PSM; Preparation thereof
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F9/00—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/68—Preparation processes not covered by groups G03F1/20 - G03F1/50
- G03F1/70—Adapting basic layout or design of masks to lithographic process requirements, e.g., second iteration correction of mask patterns for imaging
Definitions
- a full phase shifting mask for patterning a metal layer in an integrated circuit is described.
- the full phase shifting mask can be used with a damascene process, thereby allowing hard-to-etch materials, such as copper, to be used for the metal layer.
- a standard binary mask includes a patterned opaque
- a radiation (e.g. light) source is shone on the mask (wherein the term mask can also refer herein to a reticle) corresponding to that layer. This radiation passes through the transparent regions of the mask and is blocked by the opaque regions of the mask, thereby selectively exposing a photoresist layer on the wafer.
- the areas in the photoresist layer exposed to the radiation i.e. irradiated areas, are either soluble or insoluble in a specific solvent, called a developer. If the irradiated areas are soluble, then the photoresist is called a positive photoresist. In contrast, if the irradiated areas are insoluble, then the photoresist is called a negative photoresist.
- the underlying semiconductor layer no longer covered by photoresist can be removed by an anisotropic etch, thereby transferring the desired pattern onto the wafer. This process can be repeated for each layer of the integrated circuit design on the wafer.
- a conventional process for patterning a metal layer comprises depositing that metal layer on the wafer and then depositing a positive photoresist layer on the metal layer.
- the positive photoresist can then be exposed using a clear field binary mask (wherein the opaque pattern on the mask represents features in the layout) .
- etching can be performed to generate the desired pattern in the metal layer.
- a damascene process can be used to form a copper pattern.
- the damascene process can include forming an oxide layer on the wafer and then depositing a negative photoresist layer on the oxide layer.
- the negative photoresist can be exposed using the clear field binary mask. After exposure, the exposed portions of the oxide layer can be easily etched to form the desired pattern.
- copper can be deposited and planarized (e.g. using a CMP operation), thereby forming the desired pattern in copper.
- a type of phase shifting mask can be advantageously used in a damascene process.
- the damascene process can include the development of a positive photoresist, thereby ensuring optimal resolution of the metal pattern.
- the inherent qualities of a PSM and a positive photoresist facilitate the conversion of an original layout to a PSM layout .
- a mask set for patterning a metal layer in an integrated circuit is provided.
- the mask set can include a full phase shifting mask (FPSM) and a dark field trim mask.
- the FPSM includes a plurality of shifters, wherein the shifters define most features in the metal layer.
- the dark field trim mask can include at least a first cut.
- the FPSM can further include one or more assist shifters, sometimes also called assist bars or scattering bars. Assist shifters, which are very small and therefore do not print, nonetheless aid in printing resolution. Assist shifters can be placed on either side of isolated shifters, placed alongside isolated edges of one or more sets of densely packed shifters, and/or interspersed with a plurality of intermediate spaced shifters. In one embodiment, the FPSM and/or the trim mask can include other proximity corrections .
- proximity corrections could be provided by either rule-based optical proximity correction (OPC) or model-based OPC .
- OPC optical proximity correction
- model-based OPC optical proximity correction
- optical proximity correction is used herein it is used generically to refer to any type of proximity correction, e.g. resist, etch, micro-loading, etc.
- An exemplary technique of making a phase shifting mask is also provided.
- a layout for defining a plurality of features in a metal layer can be received.
- This layout can be converted, if necessary, so that most of the features in the layout are represented by shifters in the PSM (called an FPSM herein) .
- both critical and non-critical features can be represented by shifters in a one-to-one correspondence. If a phase conflict occurs in the converted layout, then a feature associated with the phase conflict can be cut, thereby creating two shifters. At this point, one of the two shifters can be changed to a different phase.
- the converted layout can then be transferred to the FPSM using a known mask writing process .
- the FPSM can be used for patterning a metal layer, such as copper, in a damascene process.
- An exemplary technique for patterning the metal layer is also provided.
- an oxide layer can be deposited on a wafer.
- a positive photoresist layer can be deposited on the oxide layer.
- the positive photoresist layer can be exposed with a full phase shifting mask (FPSM) and a trim mask.
- the FPSM includes a plurality of shifters, wherein the shifters represent most features in the metal layer.
- the trim mask is a dark field trim mask with at least one cut. This cut corresponds to a cut on the FPSM, wherein the cut on the FPSM resolved a phase conflict on the FPSM.
- the positive photoresist layer can be developed and the exposed portions of the oxide layer can be etched, thereby transferring the desired pattern to the oxide layer.
- the metal layer can be deposited on the wafer and planarized to substantially a top surface of the etched oxide layer. In this manner, the desired pattern has been transferred to the metal layer without etching of the metal .
- This damascene process is particularly useful for hard- to-etch metals, such as copper.
- Figure 1A illustrates a full phase shifting mask
- FPSM FPSM layout for forming three lines in a metal layer.
- Figure IB illustrates a trim layout that corresponds to the FPSM layout of Figure 1A. Specifically, the trim layout can eliminate extraneous features created by the FPSM layout.
- Figure 1C illustrates an aerial image after exposing two masks implementing the FPSM layout of Figure 1A and the trim layout of Figure IB.
- Figure 2A illustrates a FPSM layout including proximity corrections, wherein the modified FPSM layout can form three lines in a metal layer.
- Figure 2B illustrates a trim layout that corresponds to the FPSM layout of Figure 2A.
- Figure 2C illustrates a printed image after exposing masks implementing the FPSM layout of Figure 2A and the trim layout of Figure 2B .
- Figure 3A illustrates a FPSM layout including an isolated shifter and two assist shifters placed on either side of the isolated shifter.
- Figure 3B illustrates a FPSM layout including multiple densely spaced shifters with assist shifters placed at their periphery.
- Figure 3C illustrates a FPSM layout includes intermediate spaced (i.e. between isolated and densely spaced) shifters with interspersed assist shifters.
- Figure 3D illustrates a FPSM layout including shifters and assist shifters in an exemplary configuration.
- Figure 3E illustrates a FPSM layout in which multiple shifters in a common area can be cut to resolve a phase conflict .
- Figure 4 illustrates an exemplary technique of making an FPSM.
- Figure 5 illustrates an exemplary technique for patterning a metal layer with a FPSM.
- phase shifting mask can be advantageously used in a damascene process with positive photoresist.
- complementary phase shifters also called shifters
- the exposure radiation transmitted by one shifter is approximately 180 degrees out of phase with the exposure radiation transmitted by the other shifter. Therefore, rather than constructively interfering and merging into a single image, the projected images destructively interfere where their edges overlap, thereby creating a clear and very small low intensity image between the pair of shifters. This low intensity image generally represents a feature on the layout .
- the shifters can be used to print critical features of a layout. These critical features can be user-defined and could include the gates of transistors. In a standard process, this PSM can be used in conjunction with a clear field trim mask that defines other features of the layout .
- the phase shifters can be formed on a full phase shifting mask (FPSM) , which can define substantially all of the desired features of a layout for the metal layer.
- FPSM full phase shifting mask
- FIG. 1A illustrates a FPSM layout 100 that can be used in a damascene process for forming features in a metal layer.
- FPSM layout 100 includes shifters 101, 102, 103, and 104, wherein shifters 101 and 103 could provide 0 degree phase, whereas shifters 102 and 104 could provide 180 degree phase.
- the desired three line pattern is shown best in Figure IB by the dashed lines.
- shifters 101 and 103 could be 180 degree shifters, whereas shifters 102 and 104 could be 0 degree shifters. Moreover, shifters 101 and 103 could be 185 degree shifters, and shifters 102 and 104 could be 5 degree shifters. The important aspect is that adjacent shifters have a phase difference of approximately 180 degrees.
- a cut 105 can be provided, thereby resolving a potential phase conflict when assigning phase to the shifters of FPSM layout 100.
- cut 105 results in an unexposed region between phase shifter 102 and phase shifter 103.
- a trim layout 110 shown in Figure IB, can expose this remainder of the feature, i.e. by exposing the photoresist in that area.
- trim layout 110 can include a cut 111 (which is substantially the size of cut 105) to account for the adjacency of shifters 101 and 102 as well as the adjacency of shifters 103 and 104.
- trim layout 110 which includes the target layout (shown in dashed lines) for context, would actually include only cut 111 (shown in white) .
- the relationship between the width of the shifters and that of the printed lines can be 1-1. In other words, a 100 nm wide shifter can roughly define a 100 nm wide metal line. Note that proximity effects can affect this width. Therefore, appropriate correction to the shifter can be used to more closely approximate the desired line width.
- Figure 1C illustrates an aerial image 120 that could be formed by exposing a mask implementing FPSM layout 100 as well as a mask implementing trim layout 110.
- the trim mask was exposed to twice the energy of the FPSM (referenced as a 1:2 exposure ratio) .
- the FPSM was exposed to N mJ/cm 2
- the trim mask was exposed to 2N mJ/cm 2 .
- the exposure conditions for aerial image 120 were a wavelength ( ⁇ ) of 193 nm, a partial coherence ( ⁇ ) of 0.4, and a numerical aperture (NA) of 0.85.
- aerial image 120 indicates a low intensity
- the red portion indicates a high intensity
- the yellow portion indicates an intermediate intensity
- the high intensity correlates to a high exposure
- the low intensity correlates to a low exposure.
- the transition from high to low intensity is abrupt, thereby resulting in well- defined features.
- aerial image 120 illustrates the formation of three lines 121, 122, and 123 (which correspond to the target layout shown as dashed lines in Figure IB) .
- the predicted printed edge is shown as a black line in the aerial image.
- lines 121, 122, and 123 could represent exposed areas of an oxide layer following development of a positive photoresist layer. After etching these exposed areas, a copper layer could be deposited and planarized using the above-described damascene process, thereby forming three copper lines on the wafer.
- the damascene process can include the development of a positive photoresist, the printing resolution of the metal pattern can be optimized.
- cut and phase assignment described in reference to Figure 1A can be used on any region that includes a bend and tends to print large. In other words, the cut and phase assignment can be used on many corners of a FPSM layout.
- proximity corrections To further improve lithographic performance, various modifications can be made to a layout to compensate for various proximity effects . These modifications are called proximity corrections.
- One type of proximity correction called optical proximity correction (OPC) , applies systematic changes to geometries of the layout to improve the printability of a wafer pattern in response to a variety of proximity effects, e.g. etch, resist, micro-loading, other proximity effects, and/or combinations of proximity effects .
- OPC optical proximity correction
- Rule-based OPC can include rules to implement certain changes to the layout, thereby compensating for some lithographic distortions that occur when printing the features onto the wafer. For example, to compensate for line-end shortening, rule-based OPC can add a hammerhead to a line end. Additionally, to compensate for corner rounding, rule-based OPC can add (or subtract) serif shapes from outer (or inner) corners . These changes can form features on the wafer that are closer to the original intended layout .
- model-based OPC a real pattern transfer can be simulated (i.e. predicted) with a set of mathematical formulas (i.e. models) .
- model-based OPC the edges of a feature in a layout can be dissected into a plurality of segments, thereby allowing these segments to be individually moved to correct for proximity effects. The placement of the dissection points is determined by the feature shape, size, and/or position relative to other features .
- FIG. 2A illustrates an FPSM layout 200, similar to FPSM layout 100 but including several proximity corrections, which can be used in a damascene process.
- FPSM layout 100 includes shifters 201, 202, 203, and 204, wherein shifters 201 and 203 could provide 0 degree phase, whereas shifters 202 and 204 could provide 180 degree phase.
- shifters 201- 204 are formed in a dark field mask.
- a cut 205 can be provided, thereby resolving a potential phase conflict when assigning phase to the shifters of FPSM layout 200.
- a trim layout 210 can be provided, as shown in Figure 2B. Trim layout 210 includes a cut 211, which is substantially the size of cut 205, to account for the adjacency of shifters 201 and 202, shifters 201 and 204, as well as shifters 203 and 204. Note that cut 211 can include proximity corrections including edge modifications as well as one or more cuts therein.
- additional cuts on trim mask 210 can be used to provide critical dimension (CD) control.
- CD critical dimension
- Figure 2C illustrates an aerial image 220 that could be formed by exposing a mask implementing FPSM layout 200 as well as a mask implementing trim layout 210. Once again, the trim mask was exposed to twice the energy of the FPSM (referenced as a 1:2 exposure ratio) . To permit comparisons, the exposure conditions for aerial image 220 are identical to those used for aerial image 120, e.g.
- Standard OPC parameters which refer to the segment lengths after dissection, can be used for aerial image 220.
- the OPC parameters can include 20 nm for the FPSM mask and 40 nm for the trim mask.
- aerial image 220 As evidenced by the substantially red bands in aerial image 220, the transition from intermediate to low intensity is even more abrupt than in aerial image 120, thereby resulting in three extremely well defined features 221, 222, and 223.
- the resulting OPC image i.e. aerial image 220
- both aerial images 120 and 220 illustrate 100 nm features.
- the predicted printed edge is shown as a black line in the aerial image.
- Figures 1C and 2C are shown on the same page to illustrate the improvements provided by OPC .
- assist shifters (which because of their small size do not print, but nonetheless aid in printing resolution) can be used to define isolated, and semi-isolated metal lines.
- the phase of each metal line can be alternated to provide better feature definition and the semi-isolated metal lines on the end can receive assist shifters as well.
- assist shifters could be used to improve the printing of an isolated metal line.
- Figure 3A illustrates a FPSM layout 300 including an isolated metal line that will be defined using a phase shifter 301. By adding assist shifters 302 and 303, placed on either side of and out of phase with shifter 301, the isolated metal line can be defined more easily.
- Figure 3B illustrates a FPSM layout 310 including multiple densely packed metal lines that will be defined using shifters 312-316 (wherein adjacent shifters have opposite phase) .
- shifters 312-316 wherein adjacent shifters have opposite phase
- assist shifters can be used. Therefore, in this example, shifters 312 and 316 can have assist shifters 311 and 317, respectively, placed alongside their isolated edges to improve their printing. The assist shifters are out of phase with the phase of the features themselves .
- Figure 3C illustrates a FPSM layout 320 including intermediate spaced or semi-isolated (i.e. between isolated and densely packed) metal lines that will be defined by shifters
- phase of adjacent shifters/assist shifters have opposite phase.
- the configuration of the shifters including assist shifters (e.g. Figures 3A-3C) and determining phase assignment of those shifters can be a function of pitch in the layout as well as an exposure setting.
- Figure 3D illustrates an FPSM layout 330 including shifters 331 and 334 for printing metal lines in a U-shape configuration. As shown, all but one corner (cut 338) of the U will be defined on the phase shifting layer (with that corner defined by an opening, or cut, on the trim layout (not shown) ) . To improve printing of the features corresponding to those shifters, assist shifters 335, 336, and 337 can be added to FPSM layout 330. In one embodiment, although shifters 331 and 334 actually define the same feature, a cut 338 is placed to resolve a potential phase conflict between the U-shaped metal line and other features (not shown) . In this case, an associated dark field trim mask (not shown) could include an appropriate cut to expose the area corresponding to cut 338, c . f . Figure IB .
- Figure 3E illustrates a FPSM layout 350 including shifters 351, 352, 353, and 354, wherein all shifters correspond to individual features, e.g. two metal lines along side two shorter metal lines. Because of phase assignments made in other part of the layout (not shown) , phase conflicts are created between shifters 351 and 352 as well as between shifters 353 and 354. In one embodiment, these shifters can be cut in the areas designated by cut-lines 355 and 356. In that case, the upper portion of shifter 351 can be switched to a phase opposite that the lower portion. In a similar manner, the lower portion of shifter 354 can be switched to a phase opposite that the upper portion. In this case, an associated dark field trim mask could expose the areas where the cuts were made in shifters 351 and 354.
- FIG. 4 illustrates an exemplary technique 400 of making a FPSM and trim mask.
- a layout for defining a plurality of features in a metal layer can be received (e.g. the target or desired layout). This layout could be included in a GDS II file or other appropriate format.
- the layout can be converted, if necessary, so that substantially all of the features in the layout are defined by shifters in a FPSM layout.
- both critical and non-critical features can be represented by shifters in a one-to-one correspondence. This conversion can further include finding phase conflicts, cutting shifters as appropriate to resolve these phase conflicts, placing assist features as needed to improve printing resolution, and generating a trim mask layout based on the FPSM layout .
- the converted layout for defining a plurality of features in a metal layer can be received (e.g. the target or desired layout). This layout could be included in a GDS II file or other appropriate format.
- the layout can be converted, if necessary, so that substantially all of the features in the layout are defined by
- the mask set can be used for patterning a metal layer, such as copper, in a damascene process .
- FIG. 5 illustrates an exemplary technique 500 for patterning that metal layer.
- an oxide layer can be deposited on a wafer.
- a positive photoresist layer can be deposited on the oxide layer.
- the positive photoresist layer can be • exposed with a FPSM and a trim mask in step 503.
- the FPSM includes a plurality of shifters, wherein the shifters represent most features in the metal layer.
- the trim mask is a dark field trim mask with at least one cut. This cut corresponds to a cut on the FPSM, wherein the cut on the FPSM resolved a phase conflict on the FPSM.
- the positive photoresist layer can be developed.
- the oxide layer can be etched in step 505, thereby transferring the desired pattern to the oxide layer.
- the metal layer can be deposited on the wafer.
- the metal layer can be planarized to substantially a top surface of the etched oxide layer. In this manner, the desired pattern has been transferred to the metal layer without etching of the metal.
- This damascene process is particularly useful for hard-to-etch metals, such as copper .
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03713753A EP1483628B1 (en) | 2002-03-11 | 2003-02-27 | Full phase shifting mask in damascene process |
CN03805394A CN100595681C (en) | 2002-03-11 | 2003-02-27 | Full phase shifting mask in damascene process |
AT03713753T ATE550691T1 (en) | 2002-03-11 | 2003-02-27 | FULL PHASE SHIFT MASK IN A DAMASCENE PROCESS |
AU2003217789A AU2003217789A1 (en) | 2002-03-11 | 2003-02-27 | Full phase shifting mask in damascene process |
JP2003577058A JP4486364B2 (en) | 2002-03-11 | 2003-02-27 | All phase phase shift mask in damascene process |
KR1020047014145A KR100739923B1 (en) | 2002-03-11 | 2003-02-27 | Full phase shifting mask in damascene process |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US36367402P | 2002-03-11 | 2002-03-11 | |
US60/363,674 | 2002-03-11 | ||
US10/295,575 US6866971B2 (en) | 2000-09-26 | 2002-11-14 | Full phase shifting mask in damascene process |
US10/295,575 | 2002-11-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003079117A1 true WO2003079117A1 (en) | 2003-09-25 |
Family
ID=28044730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2003/006041 WO2003079117A1 (en) | 2002-03-11 | 2003-02-27 | Full phase shifting mask in damascene process |
Country Status (7)
Country | Link |
---|---|
US (3) | US6866971B2 (en) |
EP (1) | EP1483628B1 (en) |
JP (1) | JP4486364B2 (en) |
KR (1) | KR100739923B1 (en) |
CN (1) | CN100595681C (en) |
AU (1) | AU2003217789A1 (en) |
WO (1) | WO2003079117A1 (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6866971B2 (en) * | 2000-09-26 | 2005-03-15 | Synopsys, Inc. | Full phase shifting mask in damascene process |
US6887633B2 (en) * | 2002-02-08 | 2005-05-03 | Chih-Hsien Nail Tang | Resolution enhancing technology using phase assignment bridges |
TWI237746B (en) * | 2003-07-23 | 2005-08-11 | Nanya Technology Corp | Optical proximity correction method |
US20050112474A1 (en) * | 2003-11-20 | 2005-05-26 | Micronic Laser Systems Ab | Method involving a mask or a reticle |
US7448012B1 (en) | 2004-04-21 | 2008-11-04 | Qi-De Qian | Methods and system for improving integrated circuit layout |
US7811720B2 (en) * | 2004-05-10 | 2010-10-12 | Taiwan Semiconductor Manufacturing Co., Ltd. | Utilizing compensation features in photolithography for semiconductor device fabrication |
US20070269749A1 (en) * | 2006-05-18 | 2007-11-22 | Richard Elliot Schenker | Methods to reduce the minimum pitch in a pattern |
WO2008089222A1 (en) * | 2007-01-18 | 2008-07-24 | Nikon Corporation | Scanner based optical proximity correction system and method of use |
US20090125871A1 (en) * | 2007-11-14 | 2009-05-14 | Aton Thomas J | System and method for making photomasks |
EP2443651B1 (en) * | 2009-06-19 | 2015-08-12 | KLA-Tencor Corporation | Inspection systems and methods for detecting defects on extreme ultraviolet mask blanks |
US8399157B2 (en) * | 2010-12-23 | 2013-03-19 | Intel Corporation | Lithography mask having sub-resolution phased assist features |
US9046761B2 (en) | 2010-12-23 | 2015-06-02 | Intel Corporation | Lithography mask having sub-resolution phased assist features |
US9099533B2 (en) * | 2013-07-02 | 2015-08-04 | International Business Machines Corporation | Semiconductor device with distinct multiple-patterned conductive tracks on a same level |
CN104917950B (en) * | 2014-03-10 | 2018-10-12 | 联想(北京)有限公司 | A kind of information processing method and electronic equipment |
US9257277B2 (en) | 2014-04-15 | 2016-02-09 | Globalfoundries Singapore Pte. Ltd. | Methods for extreme ultraviolet mask defect mitigation by multi-patterning |
US9898572B2 (en) * | 2016-02-17 | 2018-02-20 | Globalfoundries Inc. | Metal line layout based on line shifting |
CN110824847B (en) * | 2018-08-08 | 2023-07-04 | 长鑫存储技术有限公司 | Etching method for improving overlay accuracy |
KR20220143382A (en) | 2021-04-16 | 2022-10-25 | 삼성전자주식회사 | Integrated circuit chip comprising a gate electrode with an oblique cut surface, and manufacturing method of the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5807649A (en) * | 1996-10-31 | 1998-09-15 | International Business Machines Corporation | Lithographic patterning method and mask set therefor with light field trim mask |
US5858580A (en) * | 1997-09-17 | 1999-01-12 | Numerical Technologies, Inc. | Phase shifting circuit manufacture method and apparatus |
Family Cites Families (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0690505B2 (en) | 1985-09-20 | 1994-11-14 | 株式会社日立製作所 | Photo mask |
JP2650962B2 (en) | 1988-05-11 | 1997-09-10 | 株式会社日立製作所 | Exposure method, element forming method, and semiconductor element manufacturing method |
JP2710967B2 (en) | 1988-11-22 | 1998-02-10 | 株式会社日立製作所 | Manufacturing method of integrated circuit device |
DE69028871T2 (en) | 1989-04-28 | 1997-02-27 | Fujitsu Ltd | Mask, manufacturing process and pattern production with such a mask |
US5298365A (en) * | 1990-03-20 | 1994-03-29 | Hitachi, Ltd. | Process for fabricating semiconductor integrated circuit device, and exposing system and mask inspecting method to be used in the process |
EP0464492B1 (en) * | 1990-06-21 | 1999-08-04 | Matsushita Electronics Corporation | A photomask used by photolithography and a process of producing the same |
KR100256619B1 (en) | 1991-07-12 | 2000-06-01 | 사와무라 시코 | Method of forming resist pattern and photomask thereor |
US5364716A (en) | 1991-09-27 | 1994-11-15 | Fujitsu Limited | Pattern exposing method using phase shift and mask used therefor |
JP3148770B2 (en) | 1992-03-27 | 2001-03-26 | 日本電信電話株式会社 | Photomask and mask pattern data processing method |
US5472514A (en) * | 1992-04-08 | 1995-12-05 | Goodway Technologies Corporation | Duct cleaning method |
US5308741A (en) | 1992-07-31 | 1994-05-03 | Motorola, Inc. | Lithographic method using double exposure techniques, mask position shifting and light phase shifting |
US5302477A (en) | 1992-08-21 | 1994-04-12 | Intel Corporation | Inverted phase-shifted reticle |
US5538815A (en) | 1992-09-14 | 1996-07-23 | Kabushiki Kaisha Toshiba | Method for designing phase-shifting masks with automatization capability |
US5527645A (en) | 1993-04-21 | 1996-06-18 | Pati; Yagyensh C. | Systematic method for production of phase-shifting photolithographic masks |
JP3393926B2 (en) | 1993-12-28 | 2003-04-07 | 株式会社東芝 | Photomask design method and apparatus |
GB2291219B (en) * | 1994-07-05 | 1998-07-01 | Nec Corp | Photo-mask fabrication and use |
US5573890A (en) | 1994-07-18 | 1996-11-12 | Advanced Micro Devices, Inc. | Method of optical lithography using phase shift masking |
US5537648A (en) | 1994-08-15 | 1996-07-16 | International Business Machines Corporation | Geometric autogeneration of "hard" phase-shift designs for VLSI |
US5472814A (en) | 1994-11-17 | 1995-12-05 | International Business Machines Corporation | Orthogonally separated phase shifted and unphase shifted mask patterns for image improvement |
US5565286A (en) | 1994-11-17 | 1996-10-15 | International Business Machines Corporation | Combined attenuated-alternating phase shifting mask structure and fabrication methods therefor |
KR0158904B1 (en) | 1994-12-02 | 1999-02-01 | 김주용 | Contact mask |
US5523186A (en) | 1994-12-16 | 1996-06-04 | International Business Machines Corporation | Split and cover technique for phase shifting photolithography |
JP3273456B2 (en) | 1995-02-24 | 2002-04-08 | アルプス電気株式会社 | Motor driven slide type variable resistor |
US5595843A (en) | 1995-03-30 | 1997-01-21 | Intel Corporation | Layout methodology, mask set, and patterning method for phase-shifting lithography |
JP2638561B2 (en) | 1995-05-10 | 1997-08-06 | 株式会社日立製作所 | Mask formation method |
US6185727B1 (en) | 1995-12-12 | 2001-02-06 | International Business Machines Corporation | Design verification for asymmetric phase shift mask layouts |
JP3518275B2 (en) | 1996-09-06 | 2004-04-12 | 松下電器産業株式会社 | Photomask and pattern forming method |
US5994002A (en) | 1996-09-06 | 1999-11-30 | Matsushita Electric Industrial Co., Ltd. | Photo mask and pattern forming method |
AU4355397A (en) | 1996-09-18 | 1998-04-14 | Numerical Technologies, Inc. | Phase shifting circuit manufacture method and apparatus |
US6228539B1 (en) | 1996-09-18 | 2001-05-08 | Numerical Technologies, Inc. | Phase shifting circuit manufacture method and apparatus |
US5923562A (en) | 1996-10-18 | 1999-07-13 | International Business Machines Corporation | Method for automatically eliminating three way intersection design conflicts in phase edge, phase shift designs |
JPH10207038A (en) | 1997-01-28 | 1998-08-07 | Matsushita Electric Ind Co Ltd | Reticle and pattern forming method |
US5883813A (en) | 1997-03-04 | 1999-03-16 | International Business Machines Corporation | Automatic generation of phase shift masks using net coloring |
US5923566A (en) | 1997-03-25 | 1999-07-13 | International Business Machines Corporation | Phase shifted design verification routine |
US6057063A (en) | 1997-04-14 | 2000-05-02 | International Business Machines Corporation | Phase shifted mask design system, phase shifted mask and VLSI circuit devices manufactured therewith |
JP3101594B2 (en) | 1997-11-06 | 2000-10-23 | キヤノン株式会社 | Exposure method and exposure apparatus |
US6083275A (en) | 1998-01-09 | 2000-07-04 | International Business Machines Corporation | Optimized phase shift design migration |
JP3307313B2 (en) | 1998-01-23 | 2002-07-24 | ソニー株式会社 | Pattern generation method and apparatus |
JP2000112114A (en) * | 1998-10-08 | 2000-04-21 | Hitachi Ltd | Semiconductor device and production of semiconductor device |
WO2000025181A1 (en) * | 1998-10-23 | 2000-05-04 | Hitachi, Ltd. | Method for fabricating semiconductor device and method for forming mask suitable therefor |
US6013397A (en) * | 1998-11-04 | 2000-01-11 | United Microelectronics Corp. | Method for automatically forming a phase shifting mask |
US6130012A (en) | 1999-01-13 | 2000-10-10 | Advanced Micro Devices, Inc. | Ion beam milling to generate custom reticles |
US6139994A (en) | 1999-06-25 | 2000-10-31 | Broeke; Doug Van Den | Use of intersecting subresolution features for microlithography |
US6251549B1 (en) | 1999-07-19 | 2001-06-26 | Marc David Levenson | Generic phase shift mask |
US6335128B1 (en) | 1999-09-28 | 2002-01-01 | Nicolas Bailey Cobb | Method and apparatus for determining phase shifts and trim masks for an integrated circuit |
US20020024139A1 (en) * | 2000-02-04 | 2002-02-28 | Chan Simon S. | Combined capping layer and ARC for CU interconnects |
US6338922B1 (en) | 2000-05-08 | 2002-01-15 | International Business Machines Corporation | Optimized alternating phase shifted mask design |
US6503666B1 (en) | 2000-07-05 | 2003-01-07 | Numerical Technologies, Inc. | Phase shift masking for complex patterns |
US6681379B2 (en) | 2000-07-05 | 2004-01-20 | Numerical Technologies, Inc. | Phase shifting design and layout for static random access memory |
US6978436B2 (en) | 2000-07-05 | 2005-12-20 | Synopsys, Inc. | Design data format and hierarchy management for phase processing |
US6787271B2 (en) | 2000-07-05 | 2004-09-07 | Numerical Technologies, Inc. | Design and layout of phase shifting photolithographic masks |
US6733929B2 (en) | 2000-07-05 | 2004-05-11 | Numerical Technologies, Inc. | Phase shift masking for complex patterns with proximity adjustments |
US7028285B2 (en) | 2000-07-05 | 2006-04-11 | Synopsys, Inc. | Standard cell design incorporating phase information |
US6866971B2 (en) * | 2000-09-26 | 2005-03-15 | Synopsys, Inc. | Full phase shifting mask in damascene process |
US6901575B2 (en) | 2000-10-25 | 2005-05-31 | Numerical Technologies, Inc. | Resolving phase-shift conflicts in layouts using weighted links between phase shifters |
JP2004529378A (en) | 2001-03-08 | 2004-09-24 | ニューメリカル テクノロジーズ インコーポレイテッド | Alternating phase shift masking for multi-level masking resolution |
US6635393B2 (en) | 2001-03-23 | 2003-10-21 | Numerical Technologies, Inc. | Blank for alternating PSM photomask with charge dissipation layer |
US6573010B2 (en) | 2001-04-03 | 2003-06-03 | Numerical Technologies, Inc. | Method and apparatus for reducing incidental exposure by using a phase shifter with a variable regulator |
US6553560B2 (en) | 2001-04-03 | 2003-04-22 | Numerical Technologies, Inc. | Alleviating line end shortening in transistor endcaps by extending phase shifters |
US6566019B2 (en) | 2001-04-03 | 2003-05-20 | Numerical Technologies, Inc. | Using double exposure effects during phase shifting to control line end shortening |
-
2002
- 2002-11-14 US US10/295,575 patent/US6866971B2/en not_active Expired - Lifetime
-
2003
- 2003-02-27 CN CN03805394A patent/CN100595681C/en not_active Expired - Lifetime
- 2003-02-27 JP JP2003577058A patent/JP4486364B2/en not_active Expired - Lifetime
- 2003-02-27 EP EP03713753A patent/EP1483628B1/en not_active Expired - Lifetime
- 2003-02-27 WO PCT/US2003/006041 patent/WO2003079117A1/en active Application Filing
- 2003-02-27 AU AU2003217789A patent/AU2003217789A1/en not_active Abandoned
- 2003-02-27 KR KR1020047014145A patent/KR100739923B1/en active IP Right Grant
-
2005
- 2005-01-13 US US11/035,788 patent/US7534531B2/en not_active Expired - Lifetime
-
2008
- 2008-07-31 US US12/184,215 patent/US7659042B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5807649A (en) * | 1996-10-31 | 1998-09-15 | International Business Machines Corporation | Lithographic patterning method and mask set therefor with light field trim mask |
US5858580A (en) * | 1997-09-17 | 1999-01-12 | Numerical Technologies, Inc. | Phase shifting circuit manufacture method and apparatus |
Non-Patent Citations (1)
Title |
---|
See also references of EP1483628A4 * |
Also Published As
Publication number | Publication date |
---|---|
US20080286664A1 (en) | 2008-11-20 |
EP1483628A1 (en) | 2004-12-08 |
JP4486364B2 (en) | 2010-06-23 |
EP1483628B1 (en) | 2012-03-21 |
KR20040105214A (en) | 2004-12-14 |
US7659042B2 (en) | 2010-02-09 |
CN100595681C (en) | 2010-03-24 |
JP2005521084A (en) | 2005-07-14 |
US20050123841A1 (en) | 2005-06-09 |
US20030068566A1 (en) | 2003-04-10 |
EP1483628A4 (en) | 2006-09-13 |
KR100739923B1 (en) | 2007-07-16 |
CN1639645A (en) | 2005-07-13 |
US6866971B2 (en) | 2005-03-15 |
AU2003217789A1 (en) | 2003-09-29 |
US7534531B2 (en) | 2009-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7534531B2 (en) | Full phase shifting mask in damascene process | |
US7122281B2 (en) | Critical dimension control using full phase and trim masks | |
US6338922B1 (en) | Optimized alternating phase shifted mask design | |
US7036108B2 (en) | Full sized scattering bar alt-PSM technique for IC manufacturing in sub-resolution era | |
US5827625A (en) | Methods of designing a reticle and forming a semiconductor device therewith | |
US20050147927A1 (en) | Patterning semiconductor layers using phase shifting and assist features | |
US5789117A (en) | Transfer method for non-critical photoresist patterns | |
US7945869B2 (en) | Mask and method for patterning a semiconductor wafer | |
US6660653B1 (en) | Dual trench alternating phase shift mask fabrication | |
US20020182549A1 (en) | Alternate exposure method for improving photolithography resolution | |
US8067133B2 (en) | Phase shift mask with two-phase clear feature | |
US7033947B2 (en) | Dual trench alternating phase shift mask fabrication | |
US20040013948A1 (en) | Chromeless PSM with chrome assistant feature | |
US7445159B2 (en) | Dual trench alternating phase shift mask fabrication | |
US6576376B1 (en) | Tri-tone mask process for dense and isolated patterns | |
US6968528B2 (en) | Photo reticles using channel assist features | |
Chen | Photomask with interior nonprinting phase-shifting window for printing small post structures | |
US6617081B2 (en) | Method for improving process window in semi-dense area by using phase shifter | |
Yang et al. | Simulation and optimization of phase-shift masks for dense contact patterns with i-line illumination |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2003713753 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003577058 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20038053942 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020047014145 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2003713753 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1020047014145 Country of ref document: KR |