WO2003079103A1 - Procédé de fabrication d'un modulateur optique - Google Patents
Procédé de fabrication d'un modulateur optique Download PDFInfo
- Publication number
- WO2003079103A1 WO2003079103A1 PCT/JP2003/003373 JP0303373W WO03079103A1 WO 2003079103 A1 WO2003079103 A1 WO 2003079103A1 JP 0303373 W JP0303373 W JP 0303373W WO 03079103 A1 WO03079103 A1 WO 03079103A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- thin portion
- manufacturing
- optical modulator
- optical
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/21—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour by interference
- G02F1/225—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour by interference in an optical waveguide structure
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/21—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour by interference
- G02F1/225—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour by interference in an optical waveguide structure
- G02F1/2255—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour by interference in an optical waveguide structure controlled by a high-frequency electromagnetic component in an electric waveguide structure
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2203/00—Function characteristic
- G02F2203/21—Thermal instability, i.e. DC drift, of an optical modulator; Arrangements or methods for the reduction thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49016—Antenna or wave energy "plumbing" making
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49082—Resistor making
- Y10T29/49085—Thermally variable
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
- Y10T29/49126—Assembling bases
Definitions
- the present invention relates to a method for manufacturing an optical modulator that can be suitably used for a high-speed, large-capacity optical fiber communication system or the like.
- FIG. 1 is a cross-sectional view showing an example of a conventional optical modulator.
- the optical modulator 10 shown in FIG. 1 includes a coplanar type (CPW) type modulation electrode for modulating light guided in an optical waveguide. That is, the optical modulator 10 is composed of a substrate 1 made of a lithium niobate X-cut plate, and a Mach-Zehnder optical waveguide 2 formed directly below the main surface IA of the substrate 1 by a titanium diffusion method or the like.
- a buffer layer 3 made of silicon oxide or the like formed on the main surface IA; a center electrode 4 and ground electrodes 5-1 and 5-2 formed on the buffer layer 3.
- FIG. 2 is a cross-sectional view showing another example of the conventional optical modulator.
- the optical modulator 20 shown in FIG. 2 includes a CPW modulation electrode for modulating light guided in the optical waveguide. That is, this optical modulator 20 is composed of a substrate 11 made of a Z-cut plate of lithium niobate and a Mach-Zehnder type formed directly below the main surface 11 A of the substrate 11 by a titanium diffusion method or the like.
- the buffer layers 3 and 13 are formed by the light guided in the optical waveguides 2 and 12 and the microwave applied to the modulation electrode. It is provided for the purpose of improving speed matching.
- the buffer layers 3 and 13 included on the substrates 1 and 11 cause a DC drift.
- the light guided through the optical waveguides 2 and 12 is applied to the light because the modulation signal is applied from the modulation electrode via the buffer layers 3 and 13.
- the substantial modulation signal voltage has been reduced. For this reason, it is necessary to apply a relatively high voltage to the modulation electrode in order to effectively drive the optical modulators 10 and 20, which is contrary to the demand for reducing the driving voltage. .
- the optical modulator 20 shown in FIG. 2 since the optical waveguides 12 are arranged asymmetrically with respect to the center electrode 14, the problem is that long-distance transmission cannot be performed due to the large size of the cap. There was.
- the present invention provides a method of manufacturing an optical modulator having a novel configuration that can achieve speed matching without having a buffer layer and does not cause the above-described problems. Disclosure of the invention
- the method of manufacturing an optical modulator according to the present invention includes a step of forming an optical waveguide directly below a main surface of a substrate made of a material having an electro-optical effect; and a step of guiding the inside of the optical waveguide on the main surface of the substrate.
- Forming a modulation electrode for modulating the waved light bonding the main surface of the substrate to the base substrate via the modulation electrode; and fixing the base substrate.
- the portion including the wave path is defined as a first thin portion, Making the portion adjacent to the thin portion a second thin portion thinner than the first thin portion; and after bonding the back surface of the substrate and the main surface of the support substrate, Separating the substrate. Production method) .
- the method of manufacturing an optical modulator according to the present invention may further include a step of forming an optical waveguide immediately below a main surface of a substrate made of a material having an electro-optical effect; Forming a modulation electrode for modulating light that propagates light; bonding the main surface of the substrate to a base substrate via the modulation electrode; and Performing a first machining process on the back surface of the substrate in a state in which the substrate is fixed, thereby reducing the thickness of the entire substrate, and a second machine for the rear surface of the thinned substrate.
- the method of manufacturing an optical modulator according to the present invention may further include a step of forming an optical waveguide immediately below a main surface of a substrate made of a material having an electro-optical effect; Forming a modulation electrode for modulating light guided through the substrate; bonding the main surface of the substrate to the base substrate via the modulation electrode; and fixing the base substrate. Performing a first machining process on the back surface of the substrate in a state in which the substrate is thinned, and performing a laser processing process on the back surface of the thinned substrate. A step of thinning a portion of the substrate including the optical waveguide; and performing a second machining process on the thinned portion of the substrate to include the optical waveguide of the substrate.
- the method for manufacturing an optical modulator according to the present invention comprises a material having an electro-optical effect. Forming an optical waveguide directly below the main surface of the substrate; forming a modulation electrode for modulating light guided in the optical waveguide on the main surface of the substrate; Bonding the main surface of the base substrate to the base substrate through the modulation electrode; and performing mechanical processing on the back surface of the substrate in a state in which the base substrate is fixed, thereby forming the entire substrate.
- Thinning the substrate performing a first laser processing on the rear surface of the thinned substrate, and thinning a portion of the substrate including the optical waveguide
- a second laser processing is performed on the thinned portion, a portion of the substrate including the optical waveguide is defined as a first thin portion, and a portion adjacent to the first thin portion is defined as a first thin portion.
- the second thinner than the first thin portion (Fourth manufacturing process) including a step of forming a thin portion, and a step of bonding the back surface of the substrate and a main surface of a support substrate and then peeling the base substrate from the substrate. Method) .
- the present inventors have succeeded in developing an optical modulator having a novel configuration that can achieve speed matching without having a buffer layer and can further reduce coupling loss when optical fibers are coupled. .
- FIG. 3 is a plan view showing an example of a novel optical modulator according to the manufacturing method of the present invention.
- FIG. 4 is a cross-sectional view of the optical modulator shown in FIG. 3 taken along line AA. It is.
- the optical modulator 30 shown in FIGS. 3 and 4 includes a thinned substrate 21 made of a material having an electro-optical effect, for example, lithium niobate, and a main surface 21 A side of the substrate 21. And a center electrode 24 and ground electrodes 25-1, 25-2 formed on the substrate 21.
- the center electrode 25 and the ground electrodes 25-1, 25-2 constitute a CPW modulation electrode for modulating light guided through the optical waveguide 22.
- a predetermined processing is performed on the back surface of the substrate 21 so that a first thin portion 26 is formed in a portion including the optical waveguide 22, and the first thin portion 26 is formed adjacent to the first thin portion 26. Then, a second thin portion 27 thinner than the first thin portion 26 is formed. That is, the end surface (back surface) of the first thin portion 26 is located immediately below the optical waveguide 22. As a result, the modulation signal from the modulation electrode seeps into the low dielectric portion (air) existing below the second thin portion 27, so that the speed matching can be achieved without forming a buffer layer. Since the condition can be satisfied and the modulation signal is efficiently applied to the optical waveguide 22, the driving voltage of the optical modulator 30 can be reduced.
- the thickness t 1 of the first thin portion 26 formed in the portion of the substrate 21 including the optical waveguide 22 is determined by the second thin portion formed adjacent to the first thin portion. Since the portion 27 is formed to be thicker than the thickness t2, it is possible to suppress the cross-sectional shape of the optical waveguide 22 from being flattened. Therefore, when light is input, it is possible to suppress a reduction in coupling loss with respect to a portion where the first and second thin portions 26 and 27 are not formed.
- the first thin portion 26 and the second thin portion 27 are preferably formed corresponding to the region P shown in FIG.
- This region P is a region where light guided through the optical waveguide 22 and the modulation signal from the modulation electrode substantially interact with each other.
- the optical waveguide 22 and the center electrode 24 and the ground electrode The area indicated by the broken line is substantially parallel to 25-1 and 25-2.
- the first thin portion 26 and the second thin portion 27 may include the region P and may be formed over the entire length of the substrate 21 along the optical waveguide 22.
- the supporting substrate 31 also made of lithium niobate or the like is attached to the back surface 21 B of the substrate 21.
- FIG. 5 is a cross-sectional view showing a modification of the optical modulator shown in FIGS.
- the optical modulator 40 shown in FIG. 5 basically has the same configuration as the optical modulator 30 shown in FIGS. 3 and 4, except that a groove 35 is formed in the support substrate 31 and the optical waveguide is formed. 2 2, the first thin portion 26, and the second thin portion 27 are positioned in the groove 35, so that the back surface 21 B of the substrate 21 and the main surface 31 of the support substrate 31 The difference is that A is pasted.
- the modulation signal from the tuning electrode is applied to the optical waveguide 22 more efficiently and intensively without leaking out of the substrate 21.
- the depth d of the groove 28 is 1 m or more, and preferably 10 m to 200 m / zm.
- the substrate 21 is made of a substrate material having a thickness on the order of mm, and the thickness Ts thereof is about 50. It is preferable to reduce the thickness of the sheet until it reaches m to 300 m.
- the thickness t1 of the first thin portion 26 is also extremely thin, about 15 m to 50 m, and the second thin portion t is also extremely thin, about 12.5 m or less.
- processing techniques for thinning and thinning have not been sufficiently established, and the manufacturing yield of such optical modulators has been extremely low.
- the present inventors have established a processing technique for realizing the above-described configuration, and have found a method for stably obtaining the optical modulators 30 and 40 as shown in FIGS. 3, 4, and 5.
- the first to fourth manufacturing methods described above that is, after the substrate material is attached to the base substrate, the base substrate is fixed, and the substrate is made thinner by predetermined machining. It has been found that the manufacturing yield of the optical modulator can be improved by performing the thinning by mechanical processing or laser processing.
- FIG. 1 is a cross-sectional view showing an example of a conventional optical modulator.
- FIG. 2 is a cross-sectional view showing another example of the conventional optical modulator.
- FIG. 3 is a plan view showing an example of the optical modulator obtained by the manufacturing method of the present invention.
- FIG. 4 is a cross-sectional view of the optical modulator shown in FIG. 3 taken along line AA.
- FIG. 5 is a plan view showing another example of the optical modulator obtained by the manufacturing method of the present invention.
- FIG. 6 is a process diagram showing a state where an optical waveguide is formed on a substrate.
- FIG. 7 is a process diagram showing a state in which a CPW modulation electrode is formed on a substrate.
- FIG. 8 is a process diagram showing a state in which the main surface of the substrate and the base substrate are bonded together via a thermoplastic resin, and the base substrate is fixed to a platen of a predetermined polishing processing machine with the thermoplastic resin or the like. is there.
- FIG. 9 is a process diagram showing a state where the back surface of the substrate is subjected to the second machining to be thinned and a thin portion is formed.
- FIG. 10 is a process diagram showing a state where third machining is performed on the thin portion to form a first thin portion and a second thin portion.
- FIG. 11 is a cross-sectional view showing a modified example of the optical modulator shown in FIGS. BEST MODE FOR CARRYING OUT THE INVENTION
- FIGS. 6 to 10 are cross-sectional views illustrating manufacturing steps of the manufacturing method according to the first embodiment.
- a plurality of optical modulators are simultaneously manufactured on a wafer (substrate) having a predetermined size.
- a wafer substrate
- one optical modulator manufactured on a wafer is used. A description will be given focusing on the modulator.
- the manufacturing method according to the first embodiment will be described. As shown in FIG. 5, after a predetermined mask pattern is formed on the main surface 21A of the substrate 21 made of a material having an electro-optical effect such as lithium niobate, titanium is formed immediately below the main surface 21A. A Mach-Zehnder type optical waveguide 22 is manufactured by a diffusion method or the like.
- a predetermined mask pattern is formed on the main surface 21 A of the substrate 21, and the center electrode 24 and the ground electrode are formed by using the plating method or the vapor deposition method in combination with the plating method.
- a CPW modulation electrode composed of 25-1 and 25-2 is fabricated.
- the thickness Te of the center electrode 24 and the ground electrodes 25-1, 25-2 is preferably set to 15 m to 50 m, and the width W of the center electrode 24 is preferably set to 5 m. m to 50 m. Thereby, the electrode loss of the modulation signal can be reduced.
- the gap G between the center electrode 25 and the ground electrodes 25_1 and 25-2 is preferably 25 m to 55 m. This makes it possible to effectively modulate light guided in the optical waveguide 22 while suppressing an increase in the drive voltage.
- the main surface 21 A of the substrate 21 and the base substrate 41 are bonded together with the thermoplastic resin 39 interposed therebetween, and the base substrate 41 is fixed to a surface plate of a predetermined polishing processing machine.
- the back surface 21 B of the substrate 21 is subjected to a polishing treatment as a first mechanical processing, and the substrate 21 is thinned to a thickness Ts.
- the thickness Ts of the substrate 21 is set to 30 m to 300 m. Polishing is performed by horizontal polishing, high-speed lapping and polishing (CMP), and the like.
- CMP high-speed lapping and polishing
- the back surface 21 B of the substrate 21 is subjected to a second machining to make it thinner, and a thin portion 28 is formed.
- a portion except for the portion including the optical waveguide 22 is subjected to third machining, and as shown in FIG.
- the first thin portion 26 is formed, and a second thin portion 27 adjacent to the first thin portion 26 and thinner than the first thin portion 26 is formed.
- portions other than the CPW electrode are non-processed portions (portions not subjected to machining or the like). By doing so, the first and second thin portions 26 and 27 are covered by the thick portion of the substrate, so that the mechanical strength can be maintained.
- the base substrate 41 is fixed on a surface plate of a grinding machine such as a micro grinder or sand blast with a thermoplastic resin or the like. Do.
- the thickness t1 of the first thin portion 26 formed as described above is preferably set to 5 / m to 30 m. This can prevent the optical waveguide 22 from being flattened, suppress an increase in coupling loss to the optical fiber, and guide the modulation electrode from the modulation electrode through the optical waveguide 22. It is possible to efficiently apply light to the light. Further, for the same reason, the width L of the first thin portion 26 is determined by the width W of the center electrode 24 and the gap G between the center electrode 24 and the ground electrodes 25-1 and 25-2. , (W + 2 im) and preferably (W + 2G) or less. New
- the thickness t2 of the second thin portion 27 is required to be thinner than the thickness t1 of the first thin portion. Specifically, when t1-t2 ⁇ 1 m, thus, the modulation signal from the modulation electrode can be efficiently applied to the light guided in the optical waveguide 22.
- the back surface 21 B of the substrate 21 and the main surface of the support substrate 31 are attached using a thermosetting resin such as an epoxy-based film, and light modulation as shown in FIGS. 3, 4, and 5 is performed.
- the containers 30 and 40 are made.
- a groove 35 is formed on the main surface 31 A side of the support substrate 31, and the optical waveguide 22, the first thin portion 26, The substrate 21 and the support substrate 31 are attached so that the second thin portion 27 is located in the groove 35.
- the base substrate 41 is peeled off from the substrate 21.
- the second machining and the third machining include the grinding using a micro grinder as described above.
- the outer peripheral blade (blade) of the micro grinder is deformed, and the grinding surface becomes uneven, and the thickness of the substrate varies. Therefore, it is preferable to perform the tooling process on the machined surface as needed during the above-mentioned grinding process to shape the shape of the outer peripheral edge.
- the shaping of the outer peripheral edge reflects the surface accuracy of the tooling substrate on the outer peripheral edge, so that, for example, the surface roughness or flatness satisfies a prescribed condition and is harder than the outer peripheral edge.
- it is a material.
- the grain size and shape of the abrasive grains constituting the outer peripheral blade to be used can be appropriately selected.
- the second thin portion 27 can be formed in a wedge shape by using a wedge-shaped blade in the second machining.
- the thickness of the wedge-shaped tip portion that is, the thickness of the thinnest portion is set to t1 described above.
- the mechanical strength of the substrate 21 and the optical modulator 3 can be reduced. 0 mechanical strength The degree can be increased.
- the assembly of the optical modulator 30 is basically manufactured according to the steps shown in FIGS. 6 to 10, but differs in the following points.
- the same machining as the above-described second machining is performed to produce a thin portion 28, and then the portion including the optical waveguide 22 of the thin portion 28
- the laser processing is performed on the portion excluding the first thin portion 26 as shown in FIG. 3 to form the first thin portion 26 including the optical waveguide 22.
- a second thin portion 27 adjacent to 26 and thinner than the first thin portion 26 is formed.
- the first and second thin portions are non-processed portions other than the CPW electrode.
- the laser processing can be performed using, for example, an excimer laser having a pulse width of 10 ns sec or less, for example, by setting the irradiation intensity to 1 mJ to 2 mJ.
- the first thin portion 26 and the second thin portion 27 can be formed with high accuracy in a relatively short time.
- the back surface 21B of the substrate 21 and the main surface 31A of the support substrate 31 are pasted together using a thermosetting resin such as an epoxy film. Then, optical modulators 30 and 40 as shown in FIG. 5 are manufactured.
- the machining used to form the thin-walled portion 28 shown in FIG. 9 is performed by attaching the base substrate 41 to a surface plate of a grinding machine such as a micro grinder or sand blast with a thermoplastic resin or the like. After fixing. The roughness and width of the blade used for grinding are appropriately selected and used.
- a grinding machine such as a micro grinder or sand blast with a thermoplastic resin or the like.
- this machining also includes grinding using a micro grinder or the like as described above. Therefore, it is preferable to perform a smoothing process on the machined surface as needed during the above-described grinding process to shape the shape of the outer peripheral edge.
- the dimensional characteristics required for the optical modulator 30 including the thinned substrate 21, the first thin portion 26, and the second thin portion 27 are the same as in the first manufacturing method. It is.
- a manufacturing method according to a third embodiment will be described. Also in the third embodiment, the assembly of the optical modulator 30 is basically manufactured according to the steps shown in FIGS. 6 to 10, but differs in the following points.
- the thin portion 28 shown in FIG. 9 is formed by using a laser processing instead of the above-described grinding.
- This laser processing can be performed by using, for example, an excimer laser or the like.
- the irradiation intensity is set to 1.0 JZ cm 2 to 8.0 OJZ cm 2 .
- the thin portion 28 can be formed with high accuracy in a relatively short time.
- the optical waveguide 22 is included as shown in FIG.
- a first thin portion 26 is formed in the portion, and a second thin portion 27 adjacent to the first thin portion 26 and thinner than the first thin portion 26 is formed. Also in this case, of the first thin portion, the end face directly below the optical waveguide 22 is a non-processed portion.
- This mechanical processing is also performed after the base substrate 31 is attached and fixed with a thermoplastic resin on a surface plate of a processing machine such as a micro grinder or sand blast.
- a processing machine such as a micro grinder or sand blast.
- the roughness and width of the blade used for grinding are appropriately selected and used.
- the second thin portion 27 can be formed in a wedge shape as shown in FIG.
- this machining also includes grinding using a micro grinder or the like, as described above. Therefore, it is preferable to perform a smoothing process on the machined surface as needed during the above-described grinding process to shape the shape of the outer peripheral blade (blade).
- the dimensional characteristics required for the optical modulator 30 including the thinned substrate 21, the first thin portion 26, and the second thin portion 27 are the same as in the first manufacturing method. I can do it. + Next, a manufacturing method according to the fourth embodiment will be described. Also in the fourth embodiment, basically, the key of the optical modulator 30 follows the steps shown in FIGS. A temple is made, but differs in the following points.
- the thin portion 28 shown in FIG. 10 is formed by using a first laser processing instead of the above-described grinding process, and the first thin portion 26 and the second thin portion 27 are formed by the second laser processing with respect to the thin portion 28. It is formed by laser processing of 2.
- the first laser processing uses, for example, an excimer laser to reduce the irradiation intensity.
- the thin portion 28 can be formed with high accuracy in a relatively short time.
- the second laser processing is performed by using an excimer laser having a pulse width of 1 Onsec or less and setting the irradiation intensity to lmJ to 2 mJ.
- the first thin portion 26 and the second thin portion 27 can be formed with high accuracy in a relatively short time.
- the dimensional characteristics required for the optical modulator 30 including the thinned substrate 21, the first thin portion 26, and the second thin portion 27 can be the same as in the case of the first manufacturing method. .
- an optical modulator as shown in FIGS. 3 and 4 was manufactured based on the first manufacturing method in accordance with the steps shown in FIGS.
- a Mach-Zehnder type optical waveguide 22 was formed on the main surface 21A side of the substrate 21 by a titanium diffusion method using a 0.5 mm thick X-cut plate of lithium niobate as the substrate 21.
- a modulation electrode of CPW was formed on the main surface 21A by using a plating method.
- the modulation electrode has a center electrode width W of 30 / im, a gap G between the center electrode 24 and the ground electrodes 25-1 and 25-2 of 40 m, an electrode thickness T e of 30 / xm, and a length of 4 / m. Omm.
- a base substrate 31 made of lithium niobate was bonded to a main surface 21A of the substrate 21 with a thermoplastic resin.
- the rear surface 21B of the substrate 21 was machined by using a # 6000 resin pound blade having a width of # 6000 and a width of 100 m to form a thin portion 28 as shown in FIG.
- the rotation speed of the blade is 12000 rpm, and in the thickness direction and in the plane direction (direction substantially parallel to the back surface of the substrate 21), it is 1 m from the substrate surface at a speed of 50 lmm / min in the substrate thickness direction. Grinding was performed, and processing was performed by repeating the operation of forming grooves at a speed of 20 mm / min in the horizontal direction (electrode length direction) from that position.
- the tooling process was performed as needed using a # 1500 whetstone every time machining was performed 100 m in the thickness direction.
- a second machining operation was performed on the thin portion 28 by using a resin bond blade of # 6000, width 100 zm, and as shown in FIG. Second, a thin portion 27 was formed.
- the width L of the first thin portion 26 was 90 / im
- the thickness t1 of the first thin portion 26 was 15 m
- the thickness t2 of the second thin portion 27 was 10 im. The thickness of these thin portions was measured with a shape measuring instrument.
- the back surface 21 B of the substrate 21 and the support substrate 31 made of lithium niobate and having a thickness of 0.3 mm are attached with an epoxy film, and the base substrate 41 is peeled off.
- the thus obtained assembly was cut into chips to obtain an optical modulator 30 as shown in FIGS.
- the optical fiber 30 was bonded and fixed to the thus obtained optical modulator 30 with a UV curable resin, and the S21 characteristics after package mounting were evaluated.
- the 16 dB band was above 40 GHz, and the microwave effective refractive index nm was 2.15.
- the —3 dB characteristic was above 40 GHz.
- the coupling loss was 5 dB.
- An optical modulator 30 was fabricated in the same manner as in Example 1 except that the second machining was performed using a wedge-shaped blade, and a wedge-shaped second thin portion 27 was formed as shown in FIG. Made.
- the thickness t2 of the second thin portion 27 was set to 10 m as in the first embodiment.
- the S21 characteristic, the optical response characteristic, and the coupling loss of the optical modulator 30 were the same as those in the first embodiment.
- Example 2 Same as in Example 1 except that the thin portion 28 was subjected to laser processing instead of the second machining, and the first thin portion 26 and the second thin portion 27 were formed in accordance with the second manufacturing method.
- an optical modulator 30 having the same dimensions was manufactured.
- the laser processing was performed using a KrF excimer laser with a frequency of 120 Hz at an irradiation intensity of 2 mJ and a scan speed of 300 mXsec. Further, the S21 characteristic, the optical response characteristic, and the coupling loss of the optical modulator 30 were the same as those in the first embodiment.
- the container 30 was produced.
- laser machining process using a K r F excimer laser frequency 195Hz, which is processed to the substrate a thickness of 100 m at an irradiation intensity 6. 8 J / cm 2, scan speed 18 ⁇ ⁇ / xm / sec, Processing was performed until the substrate thickness became 15 m at an irradiation intensity of 3.8 J / cm 2 and a scan speed of 1800 m / sec.
- the S21 characteristic, the optical response characteristic, and the coupling loss of the optical modulator 30 were the same as those in the first embodiment.
- a first laser processing is performed instead of the first machining to form a thin portion 28, and a second laser processing is performed on the thin portion 28 instead of the second machining,
- An optical modulator 30 having the same dimensions was manufactured in the same manner as in Example 1 except that the first thin portion 26 and the second thin portion 27 were formed according to the manufacturing method described in Example 1.
- the first laser processing was performed using a KrF excimer laser with a frequency of 195 Hz, processing at an irradiation intensity of 6.8 JZcm 2 and a scanning speed of 1800 mZsec until the substrate thickness became 100 zm.
- the substrate was processed at 8 JZcm 2 and a scan speed of 1800 mZsec until the substrate thickness became 15 m.
- the second laser processing was performed using a KrF excimer laser with a pulse width of 4 nsec and a frequency of 120 Hz.
- the irradiation was performed at an irradiation intensity of 2 mJ and a scan speed of 300 mZsec.
- the S21 characteristic, the optical response characteristic, and the coupling loss of the optical modulator 30 were the same as those in the first embodiment. (Example 6)
- an optical modulator 40 as shown in FIG. 5 was manufactured.
- the substrate 21 thus formed and a support substrate 31 having a groove 35 with a depth d of 0.05 mm and a width L 2 of 0.3 mm on the main surface side were bonded with an epoxy film.
- the bonding is performed so that the back surface 21B of the substrate 21 and the main surface 31A of the support substrate 31 are bonded so that the optical waveguide 22, the first thin portion 26, and the second thin portion 27 are located in the grooves 35.
- the bonding is performed so that the back surface 21B of the substrate 21 and the main surface 31A of the support substrate 31 are bonded so that the optical waveguide 22, the first thin portion 26, and the second thin portion 27 are located in the grooves 35.
- the assembly obtained in this manner was cut into chips to obtain an optical modulator 40 shown in FIG.
- An optical fiber was adhered and fixed to the optical modulator 40 thus obtained with a UV curable resin, and the S21 characteristics after package mounting were evaluated.
- the _ 6 dB band was above 40 GHz, and the microwave effective refractive index nm was 2.15.
- the ⁇ 3 dB characteristic was over 40 GHz.
- the coupling loss was 5 dB.
- the substrate 21 is made of a lithium niobate X-cut plate, but a Y-cut plate, a Z-cut plate, an off-cut plate, or the like may be used.
- a material having a known electrochemical effect such as lithium tantalate can be used.
- elements such as Mg, Zn, Sc, and In can be added to the substrate 21 to improve the light damage resistance.
- polishing and the like can be sequentially included as necessary.
- polishing and the like can be sequentially included as necessary.
- a proton exchange method or the like can be used in addition to the titanium diffusion method.
- the substrate can be thinned with high accuracy, and the first thin portion and the second thin portion are formed on the back surface of the thinned substrate. It can be formed stably and with high precision. As a result, velocity matching can be achieved without having a buffer layer, and an optical modulator excellent in coupling loss and the like can be manufactured.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Description
明 細 書 光変調器の製造方法 技術分野
本発明は、 高速で大容量の光ファイバ通信システムなどに好適に用いることが できる光変調器の製造方法に関する。 背景技術
近年、 高速で大容量の光ファイバ通信システムの進歩に伴い、 外部変調器 (外 部変調方式による光変調器) に代表されるように、 光導波路素子を用いた高速光 変調器が実用化され、 広く用いられるようになってきている。
図 1は、 従来の光変調器の一例を示す断面図である。 図 1に示す光変調器 1 0 は、 光導波路内を導波する光を変調するためのコプレナ一型 (C P W) の変調用 電極を具えている。 即ち、 この光変調器 1 0は、 ニオブ酸リチウムの Xカツ卜板 からなる基板 1と、 該基板 1の主面 I Aの直下にチタン拡散法などによって形成 されたマッハツェンダー型の光導波路 2と、 主面 I A上に形成された酸化珪素な どからなるバッファ層 3と、 このバッファ層 3上に形成された中心電極 4及び接 地電極 5— 1、 5— 2とを有する。
一方、 図 2は、 従来の光変調器の他の例を示す断面図である。 図 2に示す光変 調器 2 0は、 光導波路内を導波する光を変調するための C P W変調用電極を具え ている。 即ち、 この光変調器 2 0は、 ニオブ酸リチウムの Zカット板からなる基 板 1 1と、 この基板 1 1の主面 1 1 Aの直下に同じくチタン拡散法などによって 形成されたマッハツェンダー型の光導波路 1 2と、 主面 1 1 A上に形成された酸 化珪素などからなるバッファ層 1 3と、 このバッファ層 1 3上に形成された中心 電極 1 4及び接地電極 1 5— 1、 1 5— 2とを有する。
図 1及び図 2に示す光変調器 1 0及び 2 0において、 バッファ層 3及び 1 3は 光導波路 2及び 1 2内を導波する光と、 変調用電極に印加されるマイクロ波との
速度整合を向上させる目的などによって設けられる。
しかしながら、 図 1及び図 2に示す上述した従来の光変調器 1 0及び 2 0にお いて、 基板 1及び 1 1上に含まれるバッファ層 3及び 1 3は、 D Cドリフト発生 の原因となっていた。 さらに、 光導波路 2及び 1 2内を導波する光に対しては、 変調用電極からバッファ層 3及び 1 3を介して変調信号が印加されるために、 前 記光に対して印加される実質的な変調信号電圧が減少してしまっていた。 このた め、 光変調器 1 0及び 2 0を実効的に駆動させるために、 変調用電極に対しては 比較的高い電圧を印加する必要が生じ、 駆動電圧の低減化という要請に反してい た。
また、 図 2に示す光変調器 2 0においては、 中心電極 1 4に対して光導波路 1 2が非対称に配置されるために、 チヤープが大きくなつて長距離伝送を行なうこ とができないという問題があつた。
本発明は、 バッファ層を有することなく速度整合を図ることができ、 上述した 諸問題を生じることのない新規な構成の光変調器の製造方法を提供する。 発明の開示
本発明に係る光変調器の製造方法は、 電気光学効果を有する材料からなる基板 の主面直下に光導波路を形成する工程と、 前記基板の前記主面上に、 前記光導波 路内を導波する光を変調するための変調用電極を形成する工程と、 前記基板の前 記主面とベース基板とを、 前記変調用電極を介して貼り合せる工程と、 前記べ一 ス基板を固定した状態において、 前記基板の裏面に対して第 1の機械加工を施す ことにより、 前記基板の全体を薄板化する工程と、 薄板化された前記基板の前記 裏面に対して第 2の機械加工を施して、 前記基板のうち、 前記光導波路を含む部 分を薄板化する工程と、 前記基板の前記薄板化された部分に対して第 3の機械加 ェを施して、 前記基板のうち、 前記光導波路を含む部分を第 1の薄肉部分とし、 前記第 1の薄肉部分に隣接する部分を前記第 1の薄肉部分よりも薄い第 2の薄肉 部分とする工程と、 前記基板の前記裏面と支持基板の主面とを貼り合わせた後、 前記基板から前記べ一ス基板を剥離する工程とを含むことを特徴とする (第 1の
製造方法) 。
また、 本発明に係る光変調器の製造方法は、 電気光学効果を有する材料からな る基板の主面直下に光導波路を形成する工程と、 前記基板の前記主面上に、 前記 光導波路内を導波する光を変調するための変調用電極を形成する工程と、 前記基 板の前記主面とベース基板とを、 前記変調用電極を介して貼り合せる工程と、 前 記べ一ス基板を固定した状態において、 前記基板の裏面に対して第 1の機械加工 を施すことにより、 前記基板の全体を薄板化する工程と、 薄板化された前記基板 の前記裏面に対して第 2の機械加工を施して、 前記基板のうち、 前記光導波路を 含む部分を薄板化する工程と、 前記基板の前記薄板化された部分に対してレーザ 加工処理を施して、 前記基板のうち、 前記光導波路を含む部分を第 1の薄肉部分 とし、 前記第 1の薄肉部分に隣接する部分を前記第 1の薄肉部分よりも薄い第 2 の薄肉部分とする工程と、 前記基板の前記裏面と支持基板の主面とを貼り合わせ た後、 前記基板から前記べ一ス基板を剥離する工程とを含むことを特徴とする (第 2の製造方法) 。
また、 本発明に係る光変調器の製造方法は、 電気光学効果を有する材料からな る基板の主面直下に光導波路を形成する工程と、 前記基板の前記主面上に、 前記 光導波路内を導波する光を変調するための変調用電極を形成する工程と、 前記基 板の前記主面とベース基板とを、 前記変調用電極を介して貼り合せる工程と、 前 記ベース基板を固定した状態において、 前記基板の裏面に対して第 1の機械加工 を施すことにより、 前記基板の全体を薄板化する工程と、 薄板化された前記基板 の前記裏面に対してレーザ加工処理を施して、 前記基板のうち、 前記光導波路を 含む部分を薄板化する工程と、 前記基板の前記薄板化された部分に対して第 2の 機械加工を施して、 前記基板のうち、 前記光導波路を含む部分を第 1の薄肉部分 とし、 前記第 1の薄肉部分に隣接する部分を前記第 1の薄肉部分よりも薄い第 2 の薄肉部分とする工程と、 前記基板の前記裏面と支持基板の主面とを貼り合わせ た後、 前記基板から前記ベース基板を剥離する工程とを含むことを特徴とする (第 3の製造方法) 。
また、 本発明に係る光変調器の製造方法は、 電気光学効果を有する材料からな
る基板の主面直下に光導波路を形成する工程と、 前記基板の前記主面上に、 前記 光導波路内を導波する光を変調するための変調用電極を形成する工程と、 前記基 板の前記主面とベース基板とを、 前記変調用電極を介して貼り合せる工程と、 前 記ベース基板を固定した状態において、 前記基板の裏面に対して機械加工を施す ことにより、 前記基板の全体を薄板化する工程と、 薄板化された前記基板の前記 裏面に対して第 1のレーザ加工処理を施して、 前記基板のうち、 前記光導波路を 含む部分を薄板化する工程と、 前記基板の前記薄板化された部分に対して第 2の レーザ加工処理を施して、 前記基板のうち、 前記光導波路を含む部分を第 1の薄 肉部分とし、 前記第 1の薄肉部分に隣接する部分を前記第 1の薄肉部分よりも薄 い第 2の薄肉部分とする工程と、 前記基板の前記裏面と支持基板の主面とを貼り 合わせた後、 前記基板から前記べ一ス基板を剥離する工程とを含むことを特徴と する (第 4の製造方法) 。
本発明者らは、 バッファ層を有することなく速度整合を図ることのでき、 さら に光ファイバ一を結合した際の結合損失を低減することのできる新規な構成の光 変調器の開発に成功した。
図 3は、 本発明の製造方法に係る新規な光変調器の一例を示す平面図であり、 図 4は、 図 3に示す光変調器を A— A線に沿って切った場合の断面図である。 図 3及び図 4に示す光変調器 3 0は、 電気光学効果を有する材料、 例えばニオブ酸 リチウムなどから構成される薄板化された基板 2 1と、 この基板 2 1の主面 2 1 A側に形成されたマッハツェンダー型の光導波路 2 2と、 基板 2 1上に形成され た中心電極 2 4及び接地電極 2 5— 1、 2 5— 2とを有する。 中心電極 2 5及 び接地電極 2 5— 1、 2 5 - 2は、 光導波路 2 2中を導波する光を変調するため の C P W変調用電極を構成する。
さらに、 基板 2 1の裏面には所定の加工が施されることによって、 光導波路 2 2を含む部分において第 1の薄肉部分 2 6が形成され、 この第 1の薄肉部分 2 6 に隣接するようにして、 第 1の薄肉部分 2 6よりも薄い第 2の薄肉部分 2 7が形 成されている。 即ち、 光導波路 2 2の直下に第 1の薄肉部分 2 6の端面 (裏面) が位置する。
これによつて、 変調用電極からの変調信号が、 第 2の薄肉部分 2 7の下方に存 在する低誘電率部 (空気) にしみ出すため、 バッファ層を形成することなく、 速 度整合条件を満足でき、 さらに変調信号が光導波路 2 2に効率良く印加されるこ とから、 光変調器 3 0の駆動電圧を低減することができる。
また、 基板 2 1のうち、 光導波路 2 2を含む部分に形成されている第 1の薄肉 部分 2 6の厚み t 1を、 該第 1の薄肉部分と隣接して形成された第 2の薄肉部分 2 7の厚み t 2よりも厚く形成しているため、 光導波路 2 2の断面形状が偏平化 されるのを抑制することができる。 したがって、 光を入力した場合において、 第 1及び第 2の薄肉部分 2 6及び 2 7が形成されていない部分に対する結合損失の 低減を抑制することができる。
なお、 第 1の薄肉部分 2 6及び第 2の薄肉部分 2 7は、 図 3に示す領域 Pに対 応させて形成することが好ましい。 この領域 Pは、 光導波路 2 2内を導波する光 と変調用電極から変調信号とが実質的に相互作用する領域であって、 例えば、 光 導波路 2 2と中心電極 2 4及び接地電極 2 5— 1、 2 5 - 2とが略平行である破 線で示す領域である。 もちろん、 第 1の薄肉部分 2 6及び第 2の薄肉部分 2 7は、 領域 Pを含み、 かつ、 基板 2 1の光導波路 2 2に沿った長手方向の全体に亘つて 形成しても良い。
図 3及び図 4に示す光変調器 3 0においては、 基板 2 1が薄板化されていると とともに、 第 1の薄肉部分 2 6及び第 2の薄肉部分 2 7を有しているため、 機械 的強度が十分でない場合がある。 従って、 基板 2 1の裏面 2 1 Bに、 同じくニォ ブ酸リチウムなどからなる支持基板 3 1が貼り付けられている。
図 5は、 図 3及び図 4に示す光変調器の変形例を示す断面図である。 図 5に示 す光変調器 4 0は、 基本的に図 3及び図 4に示す光変調器 3 0と同一の構成を有 するが、 支持基板 3 1に溝部 3 5が形成され、 光導波路 2 2、 第 1の薄肉部分 2 6、 及び第 2の薄肉部分 2 7が溝部 3 5内に位置するようにして、 基板 2 1の裏 面 2 1 Bと支持基板 3 1の主面 3 1 Aとが貼り付けられている点で相違する。 図 5に示す光変調器 4 0によれば、 第 1の薄肉部分 2 6及び第 2の薄肉部分 2 7に加えて、 これらの下方において溝部 3 5に起因した空洞が存在するため、 変
調用電極からの変調信号は基板 2 1外へ漏洩することなく、 光導波路 2 2に対し てより集中的に効率よく印加されるようになる。 これにより、 変調信号の実効的 な印加電圧が増大し、 光変調器 4 0の駆動電圧を一層低減することができる。 な お、 溝部 2 8の深さ dは 1 m以上であり、 好ましくは 1 0 m〜2 0 0 /z mで ある。
図 3及び図 4に示す光変調器 3 0、 並びに図 5に示す光変調器 4 0においては、 基板 2 1を、 mmオーダの厚さの基板材料から、 その厚さ T sが約 5 0 m〜3 0 0 mとなるまで薄板化することが好ましい。 また、 第 1の薄肉部分 2 6の厚 さ t 1も約 1 5 m〜5 0 mと極めて薄く、 さらに、 第 2の薄肉部分 t も約 1 2 . 5 m以下と極めて薄い。 しかしながら、 薄板化及び薄肉化に対する加工 技術は十分に確立されておらず、 このような光変調器の製造歩留まりは極めて低 い状態にあった。
そこで、 本発明者らは、 上述した構成を実現する加工技術を確立し、 図 3及び 図 4、 並びに図 5に示すような光変調器 3 0及び 4 0を安定に得る方法を見出す ベく鋭意検討を行なった。 その結果、 上述した第 1の製造方法〜第 4の製造方法、 即ち、 基板材料をベース基板に貼り付けた後、 このベース基板を固定して基板の 薄板化を所定の機械加工で行ない、 さらに薄肉化を機械加工又はレーザ加工処理 で行うことにより、 光変調器の製造歩留まりを向上できることを見出したもので ある。 図面の簡単な説明
図 1は、 従来の光変調器の一例を示す断面図である。
図 2は、 従来の光変調器の他の例を示す断面図である。
図 3は、 本発明の製造方法により得た光変調器の一例を示す平面図である。 図 4は、 図 3に示す光変調器の A— A線に沿って切った場合を示す断面図であ る。
図 5は、 本発明の製造方法により得た光変調器の他の例を示す平面図である。 図 6は、 基板に光導波路を形成した状態を示す工程図である。
図 7は、 基板上に C P W変調用電極を形成した状態を示す工程図である。
図 8は、 基板の主面とベース基板とを熱可塑性樹脂を介して貼り合わせ、 ベ一 ス基板を所定の研磨処理機の定盤などに熱可塑性樹脂などで固定した状態を示す 工程図である。
図 9は、 基板の裏面に対して、 第 2の機械加工を施して薄板化し、 薄肉部分を 形成した状態を示す工程図である。
図 1 0は、 薄肉部分に対して第 3の機械加工を施して、 第 1の薄肉部分及び第 2の薄肉部分を形成した状態を示す工程図である。
図 1 1は、 図 3及び図 4に示す光変調器の変形例を示す断面図である。 発明を実施するための最良の形態
以下、 本発明に光変調器の製造方法の実施の形態例を図 6〜図 1 1を参照しな がら説明する。
図 6〜図 1 0は、 第 1の実施の形態に係る製造方法の製造工程を示す断面図で ある。 なお、 実際の製造工程においては、 所定の大きさを有するゥェ一ハ (基 板) 上に複数の光変調器を同時に作製するが、 以下の説明においては、 ゥエーハ 上に作製される 1つの変調器に着目して説明する。
最初に、 第 1の実施の形態に係る製造方法について説明する。 図 5に示すよう に、 ニオブ酸リチウムなどの電気光学効果を有する材料からなる基板 2 1の主面 2 1 A上に所定のマスクパターンを形成した後、 前記主面 2 1 Aの直下にチタン 拡散法などでマッハツェンダー型の光導波路 2 2を作製する。
次いで、 図 7に示すように、 基板 2 1の主面 2 1 A上に所定のマスクパターン を形成し、 メツキ法又は蒸着法とメツキ法とを併用することによって、 中心電極 2 4及び接地電極 2 5 - 1 , 2 5— 2から構成される C P W変調用電極を作製す る。
なお、 中心電極 2 4及び接地電極 2 5— 1、 2 5— 2の厚さ T eは、 好ましく は 1 5 m〜 5 0 mに設定し、 中心電極 2 4の幅 Wは、 好ましくは 5 m〜5 0 mに設定する。 これによつて、 変調信号の電極損失を低減することができる。
また、 中心電極 2 5と接地電極 2 5 _ 1及び 2 5— 2とのギャップ Gは、 2 5 m〜5 5 mであることが好ましい。 これによつて、 駆動電圧の増大を抑制しな がら、 光導波路 2 2内を導波する光に対する変調を効果的に行うことができる。 次いで、 図 8に示すように、 基板 2 1の主面 2 1 Aとベース基板 4 1とを熱可 塑性樹脂 3 9を介して貼り合わせ、 ベース基板 4 1を所定の研磨処理機の定盤な どに熱可塑性樹脂などで固定する。 次いで、 基板 2 1の裏面 2 1 Bに対して第 1 の機械加工としての研磨処理を施し、 基板 2 1を厚さ T sまで薄板化する。 なお、 上述したように、 基板 2 1の厚さ T sは 3 0 m〜3 0 0 mに設定する。 また、 研磨処理は、 横型研磨、 高速ラップゃポリツシング (C M P ) などによって行う。 次いで、 図 9に示すように、 基板 2 1の裏面 2 1 Bに対して、 第 2の機械加工 を施して薄板化し、 薄肉部分 2 8を形成する。 次いで、 薄肉部分 2 8のうち、 光 導波路 2 2を含む部分を除いた部分に対して第 3の機械加工を施して、 図 1 0に 示すように、 光導波路 2 2を含む部分に第 1の薄肉部分 2 6を形成すると共に、 この第 1の薄肉部分 2 6と隣接し、 かつ、 第 1の薄肉部分 2 6よりも薄い第 2の 薄肉部分 2 7を形成する。 前記第 1及び第 2の薄肉部分 2 6及び 2 7は、 C P W 電極以外の部分は非加工部分 (機械加工等が施されていない部分) とされている。 こうすることにより、 第 1及び第 2の薄肉部分 2 6及び 2 7が基板厚の厚い部分 に覆われるので機械的強度を保持することが可能となる。
前記第 1の機械加工及び前記第 2の機械加工を行うに際しては、 ベース基板 4 1をマイクログラインダ一やサンドブラストなどの研削加工機の定盤上に熱可塑 性樹脂などで貼り付けて固定した後に行なう。
また、 上述のようにして形成した第 1の薄肉部分 2 6の厚さ t 1は、 好ましく は 5 / m〜3 0 mに設定する。 これによつて、 光導波路 2 2の偏平化を防止す ることができ、 光ファイバ一に対する結合損失の増大を抑制するとともに、 変調 用電極からの変調用電極を光導波路 2 2内を導波する光に対して効率よく印加す ることができるようになる。 さらに、 同様の理由から、 第 1の薄肉部分 2 6の幅 Lは、 中心電極 2 4の幅 W、 中心電極 2 4と接地電極 2 5— 1及び 2 5— 2との ギャップ Gに対して、 (W+ 2 i m) 以上、 (W+ 2 G) 以下であることが好ま
しい。
さらに、 第 2の薄肉部分 2 7の厚さ t 2は、 第 1の薄肉部分の厚さ t 1よりも 薄いことが要求されるが、 具体的には、 t 1一 t 2≥1 mであることが好まし レ^ これによつて、 変調用電極からの変調信号を光導波路 2 2内を導波する光に 対して効率よく印加できるようになる。
次いで、 基板 2 1の裏面 2 1 Bと支持基板 3 1の主面とをエポキシ系フィルム などの熱硬化性樹脂を用いて貼り付け、 図 3及び図 4、 並びに図 5に示すような 光変調器 3 0及び 4 0を作製する。 図 5に示すような光変調器 4 0を作製する場 合は、 支持基板 3 1の主面 3 1 A側に溝部 3 5を形成し、 光導波路 2 2、 第 1の 薄肉部分 2 6、 及び第 2の薄肉部分 2 7が溝部 3 5内に位置するようにして、 基 板 2 1と支持基板 3 1とを貼り付ける。 その後、 ベース基板 4 1を基板 2 1から 剥離する。
また、 前記第 2の機械加工及び前記第 3の機械加工は、 上述したように、 マイ クログラインダ一などを用いた研削加工を含む。 前記マイクログラインダ一の外 周刃 (ブレード) が変形し、 研削加工面が凸凹になって基板厚みにバラツキが生 じてしまう。 したがって、 上述した研削処理中において加工面に対して随時ツル —イング処理を行ない、 前記外周刃の形状を整形することが好ましい。 この場合、 外周刃の整形には、 ツル一イング基板の面精度が外周刃に反映されるために、 例 えば表面粗さ、 あるいは平面度が規定の条件を満たし、 かつ、 外周刃よりも硬い 材料であることが好ましい。
なお、 前記第 2の機械加工及び前記第 3の機械加工において、 上述した研削加 ェを含む場合は、 使用する外周刃を構成する砥粒の粒度及び形状などについては 適宜に選択することができる。 例えば、 図 1 1に示すように、 第 2の機械加工に おいて楔型のブレードを用いることによって、 第 2の薄肉部分 2 7を楔型に形成 することもできる。 この場合は、 楔型に加工された先端部分の厚さ、 すなわち最 も薄い部分の厚さが上述した t 1となるようにする。 この場合は、 第 2の薄肉部 分 2 7を形成する際において、 基板 2 1へのクラックの発生を効果的に抑制する ことができるとともに、 基板 2 1の機械的強度、 並びに光変調器 3 0の機械的強
度を増大させることができる。
次に、 第 2の実施の形態に係る製造方法について説明する。 この第 2の実施の 形態においても、 基本的には図 6〜図 1 0に示す工程に従って光変調器 3 0のァ センプリを作製するが、 以下の点で異なる。
即ち、 まず、 図 9に示すように、 上述した第 2の機械加工と同様の機械加工を 施して、 薄肉部分 2 8を作製した後、 薄肉部分 2 8のうち、 光導波路 2 2を含む 部分を除いた部分に対してレ一ザ加工処理を施して、 図 3に示すように、 光導波 路 2 2を含む部分に第 1の薄肉部分 2 6を形成すると共に、 この第 1の薄肉部分 2 6と隣接し、 かつ、 第 1の薄肉部分 2 6よりも薄い第 2の薄肉部分 2 7を形成 する。 この場合も、 前記第 1および第 2の薄肉部分は、 C P W電極以外の部分は 非加工部分とされている。
前記レーザ加工処理は、 例えばパルス幅が 1 0 n s e c以下のエキシマレーザ などを用いることができ、 例えば照射強度を l m J〜2 m Jに設定して行う。 こ れによって、 比較的短時間で、 第 1の薄肉部分 2 6及び第 2の薄肉部分 2 7を高 精度に形成することができる。
その後は、 前述したようにして、 基板 2 1の裏面 2 1 Bと支持基板 3 1の主面 3 1 Aとをエポキシ系フィルムなどの熱硬化性樹脂を用いて貼り付け、 図 3及び 図 4並びに図 5に示すような光変調器 3 0及び 4 0を作製する。
また、 図 9に示す薄肉部分 2 8を形成する際に用いる機械加工は、 上述したよ うに、 ベース基板 4 1をマイクログラインダーやサンドブラストなどの研削加工 機の定盤上に熱可塑性樹脂などで貼り付けて固定した後に行なう。 なお、 研削の 際に使用するブレードの粗さ及び幅については適宜に選択して用いる。
さらに、 この機械加工においても、 上記同様に、 マイクログラインダーなどを 用いた研削加工を含む。 したがって、 上述した研削処理中において加工面に対し て随時ツル一イング処理を行ない、 前記外周刃の形状を整形することが好ましい。 なお、 薄板化された基板 2 1、 第 1の薄肉部分 2 6及び第 2の薄肉部分 2 7を 含む光変調器 3 0に対して要求される寸法特性は第 1の製造方法の場合と同じで ある。
次に、 第 3の実施の形態に係る製造方法について説明する。 この第 3の実施の 形態においても、 基本的には図 6〜図 1 0に示す工程に従って光変調器 3 0のァ センプリを作製するが、 以下の点で異なる。
即ち、 図 9に示す薄肉部分 2 8は、 上述した研削処理に代えてレ一ザ加工処理 を用いて形成する。 このレ一ザ加工処理は、 例えばエキシマレーザなどを用いこ とができ、 例えば照射強度を 1 . 0 J Z c m2〜8 . O J Z c m2に設定して行 う。 これによつて、 比較的短時間で、 薄肉部分 2 8を高精度に形成することがで さる。
次いで、 薄肉部分 2 8に対して、 第 1の実施の形態に係る製造方法における第 2の機械加工と同様の機械加工を行うことで、 図 1 0に示すように、 光導波路 2 2を含む部分に第 1の薄肉部分 2 6を形成すると共に、 この第 1の薄肉部分 2 6 と隣接し、 かづ、 第 1の薄肉部分 2 6よりも薄い第 2の薄肉部分 2 7を形成する。 この場合も、 前記第 1の薄肉部分のうち、 光導波路 2 2の直下の端面は非加工部 分とされている。
この機械加工おいても、 ベース基板 3 1をマイクログラインダーやサンドブラ ストなどの加工機の定盤上に熱可塑性樹脂で貼り付けて固定した後に行なう。 な お、 研削の際に使用するブレードの粗さ及び幅については適宜に選択して用いる。 例えば、 楔型のブレードを用いることによって、 第 2の薄肉部分 2 7を図 1 1に 示すように楔型に形成することができる。
さらに、 この機械加工においても、 上記同様に、 マイクログラインダ一などを 用いた研削加工を含む。 したがって、 上述した研削処理中において加工面に対し て随時ツル一イング処理を行ない、 前記外周刃 (ブレード) の形状を整形するこ とが好ましい。
なお、 薄板化された基板 2 1、 第 1の薄肉部分 2 6及び第 2の薄肉部分 2 7を 含む光変調器 3 0に対して要求される寸法特性は第 1の製造方法の場合と同じで める。 + 次に、 第 4の実施の形態に係る製造方法について説明する。 この第 4の実施の 形態においても、 基本的には図 6〜図 1 0に示す工程に従って光変調器 3 0のァ
センプリを作製するが、 以下の点で異なる。
即ち、 図 10に示す薄肉部分 28は、 上述した研削処理に代えて第 1のレーザ 加工処理を用いて形成し、 第 1の薄肉部分 26及び第 2の薄肉部分 27は、 薄肉 部分 28に対する第 2のレーザ加工処理によって形成する。
第 1のレーザ加工処理は、 例えばエキシマレ一ザなどを用い、 その照射強度を
1. 0 JZcm2〜8. 0 JZcm2に設定して行う。 これによつて、 比較的短 時間で、 薄肉部分 28を高精度に形成することができる。
さらに、 第 2のレーザ加工処理は、 パルス幅が 1 O n s e c以下のエキシマレ —ザなどを用い、 その照射強度を lm J〜2m Jに設定して行う。 これによつて、 第 1の薄肉部分 26及び第 2の薄肉部分 27を比較的短時間で高精度に形成する ことができる。
なお、 薄板化された基板 2 1、 第 1の薄肉部分 26及び第 2の薄肉部分 27を 含む光変調器 30に対して要求される寸法特性は第 1の製造方法の場合と同じで める。
(実施例 1 )
本実施例においては、 図 3及び図 4に示すような光変調器を、 図 6〜図 10に 示す工程に従い、 第 1の製造方法に基づいて作製した。 基板 21として厚さ 0. 5 mmのニオブ酸リチウムの Xカット板を用い、 チタン拡散法によって、 図 6に 示すように、 基板 21の主面 21 A側にマッハツェンダー型の光導波路 22を作 製した。 次いで、 図 7に示すように、 主面 21A上に、 メツキ法を用いて CPW の変調用電極を作製した。 該変調用電極は、 中心電極幅 Wが 30 /im、 中心電極 24と接地電極 25一 1及び 25-2とのギャップ Gが 40 m、 電極厚さ T e が 30 /xm、 長さが 4 Ommである。
次いで、 図 8に示すようにして、 基板 21の主面 21Aに、 ニオブ酸リチウム からなるベース基板 31を熱可塑性樹脂によって貼り合わせた。 その後、 基板 2 1の裏面 21 Bに橫型研磨、 高速ラップ、 及びポリッシング (CMP) を施して 研磨処理を行ない、 基板 21を厚さ T s = 100 mまで薄板化した。 な 、 基 板の厚さは形状測定器を用いて計測した。
次いで、 基板 21の裏面 21 Bに対して、 # 6000番、 幅 100 mの樹脂 ポンドブレードを使用することによって機械加工を施し、 図 9に示すように、 薄 肉部分 28を形成した。 なお、 ブレードの回転数は 12000 r pmとし、 厚さ 方向及び面方向 (基板 21の裏面に略平行な方向) においては、 基板厚み方向に 5 0. lmm/m i nの速度で基板表面から 1 m研削加工し、 その位置から水平 方向 (電極長方向) に 20mm/m i nの速度で溝加工を行なうという操作を繰 り返すことによつて加工を実施した。
なお、 第 1の機械加工中において、 厚さ方向に 100 m加工が進行する毎に # 1500の砥石を用いて随時ツル一イング処理を実施した。
0 次いで、 # 6000番、 幅 100 zmの樹脂ボンドブレ一ドを使用することに よって薄肉部分 28に対して第 2の機械加工を実施し、 図 10に示すように、 第 1の薄肉部分 26及び第 2に薄肉部分 27を形成した。 第 1の薄肉部分 26の幅 Lは 90 /imとし、 第 1の薄肉部分 26の厚さ t 1は 15 mとし、 第 2の薄肉 部分 27の厚さ t 2は 10 imとした。 なお、 これら薄肉部分の厚さは形状測定5 器によって計測した。
' 次いで、 基板 21の裏面 21 Bとニオブ酸リチウムからなる厚さ 0. 3mmの 支持基板 31とをエポキシ系フィルムで貼り付け、 ベース基板 41を剥離する。 次いで、 このようにして得たアセンブリをチップ状に切り出すことによって、 図 3及び図 5に示すような光変調器 30を得た。
0 このようにして得た光変調器 30に対して光ファイバ一を UV硬化樹脂によつ て接着固定し、 パッケージ実装後の S 21特性を評価した。 その結果一 6 dB帯 ' 域が 40 GHz以上であり、 マイクロ波実効屈折率 nmは 2. 15であった。 ま た、 光応答特性を評価した結果、 — 3 dB特性は 40 GHz以上であった。 さら に、 結合損失は 5 d Bであった。
5 (実施例 2 )
第 2の機械加工を楔型のブレードを用いて行ない、 図 1 1に示すような楔型の 第 2の薄肉部分 27を形成した以外は、 実施例 1と同様にして光変調器 30を作 製した。 なお、 第 2の薄肉部分 27の厚さ t 2は、 実施例 1同様に 10 mとし
た。 また、 光変調器 30の S 21特性、 光応答特性、 及び結合損失は実施例 1の 場合と同じであった。
(実施例 3 )
薄肉部分 28に対し、 第 2の機械加工に代えてレーザ加工処理を施し、 第 2の 製造方法に従って第 1の薄肉部分 26及び第 2の薄肉部分 27を形成した以外は、 実施例 1と同様にして同寸法の光変調器 30を作製した。 なお、 レーザ加工処理 は、 周波数 120Hzの K r Fエキシマレ一ザを用い、 照射強度 2m J、 スキヤ ン速度 300 mXs e cで実施した。 また、 光変調器 30の S 21特性、 光応 答特性、 及び結合損失は実施例 1の場合と同じであった。
(実施例 4)
基板 21の裏面 21 Bに対し、 第 1の機械加工に代えてレーザ加工処理を施し、 第 3の製造方法に従って薄肉部分 28を形成した以外は、 実施例 1と同様にして 同寸法の光変調器 30を作製した。 なお、 レーザ加工処理は、 周波数 195Hz の K r Fエキシマレーザを用い、 照射強度 6. 8 J /cm2, スキャン速度 18 Ο Ο /xm/s e cで基板厚みが 100 mとなるまで加工した後、 照射強度 3. 8 J/cm2、 スキャン速度 1800 m/s e cで基板厚みが 15 mとなる まで加工した。 また、 光変調器 30の S 21特性、 光応答特性、 及び結合損失は 実施例 1の場合と同じであった。
(実施例 5 )
第 1の機械加工に代えて第 1のレーザ加工処理を施して薄肉部分 28を形成し、 この薄肉部分 28に対し、 第 2の機械加工に代えて第 2のレーザ加工処理を施し、 第 4の製造方法に従って第 1の薄肉部分 26及び第 2の薄肉部分 27を形成した 以外は、 実施例 1と同様にして同寸法の光変調器 30を作製した。 なお、 第 1の レーザ加工処理は、 周波数 195Hzの K r Fエキシマレーザを用い、 照射強度 6. 8 JZcm2、 スキャン速度 1800 mZs e cで基板厚みが 100 zm となるまで加工した後、 照射強度 3. 8 JZcm2、 スキャン速度 1800 m Zs e cで基板厚みが 15 mとなるまで加工した。 また、 第 2のレーザ加工処 理は、 パルス幅 4n s e c、 周波数 120 H zの K r Fエキシマレーザを用い、
照射強度 2m J、 スキャン速度 300 ^mZs e cで実施した。 また、 光変調器 30の S 21特性、 光応答特性、 及び結合損失は実施例 1の場合と同じであった。 (実施例 6)
本実施例では、 図 5に示すような光変調器 40を作製した。 実施例 5と同様の 第 1のレ一ザ加工処理及び第 2のレーザ加工処理で、 薄肉部分 28、 第 1の薄肉 部分 26、 及び第 2の薄肉部分 27を同寸法に形成した後、 薄板化した基板 21 と、 主面側に深さ dが 0. 05mm、 幅 L 2が 0. 3 mmの溝部 35を有する支 持基板 31とをエポキシ系フィルムで貼り付けた。 なお、 貼り付けは、 光導波路 22、 第 1の薄肉部分 26、 及び第 2の薄肉部分 27が溝部 35内に位置するよ うに、 基板 21の裏面 21 Bと支持基板 31の主面 31 Aとを貼り付けた。
次いで、 このようにして得たァセンブリをチップ状に切り出すことによって、 図 5に示す光変調器 40を得た。 このようにして得た光変調器 40に対して光フ アイバーを UV硬化樹脂によって接着固定し、 パッケージ実装後の S 21特性を 評価した。 その結果、 _ 6 dB帯城が 40 GHz以上であり、 マイクロ波実効屈 折率 nmは 2. 15であった。 また、 光応答特性を評価した結果、 — 3 dB特性 は 40 GHz以上であった。 さらに、 結合損失は 5 d Bであった。
以上、 具体例を挙げながら発明の実施の形態に基づいて本発明を詳細に説明し てたが、 本発明は上記内容に限定されるものではなく、 本発明の範疇を逸脱しな い範囲において、 あらゆる変更や変形が可能である。
例えば、 基板 21は、 ニオブ酸リチウムの Xカット板から構成したが、 Yカツ ト板、 Zカット板、 及びオフカット板などを用いることもできる。 また、 ニオブ 酸リチウムに代えて、 タンタル酸リチウムなど公知の電気化学効果を有する材料 から構成することができる。 さらには、 基板 21には、 耐光損傷性を向上させる ベく、 Mg、 Zn、 S c、 及び I nなどの元素を添加することができる。
また、 上述した研削加工及びレーザ加工処理に加えて、 研磨加工などを必要に 応じて逐次含ませることができる。 さらに、 光導波路 22はチタン拡散法の他に、 プロトン交換法などを用いることもできる。
産業上の利用可能性
以上説明したように、 本発明によれば、 基板の薄板化を高精度に行なうことが できるとともに、 薄板化された基板の裏面に対して第 1の薄肉部分及ぴ第 2の薄 肉部分を安定して高精度に形成することができる。 これによつて、 バッファ層を 有することなく速度整合を図ることができ、 結合損失などにも優れた光変調器を 作製することができる。
Claims
1. 電気光学効果を有する材料からなる基板 (21) の主面 (21 A) 直下に光 導波路 (22) を形成する工程と、
前記基板 (21) の前記主面 (21 A) 上に、 前記光導波路 (22) 内を導波 する光を変調するための変調用電極を形成する工程と、
前記基板 (21) の前記主面 (2 1 A) とベース基板 (41) とを、 前記変調 用電極を介して貼り合せる工程と、
前記べ一ス基板 (41) を固定した状態において、 前記基板 (2 1) の裏面 (21 B) に対して第 1の機械加工を施すことにより、 前記基板 (21) の全体 を薄板化する工程と、
薄板化された前記基板 (21) の前記裏面 (21 B) に対して第 2の機械加工 を施して、 前記基板 (21) のうち、 前記光導波路 (22) を含む部分を薄板化 する工程と、
前記基板 (.21) の前記薄板化された部分に対して第 3の機械加工を施して、 前記基板 (2 1) のうち、 前記光導波路 (22) を含む部分を第 1の薄肉部分 (26) とし、 前記第 1の薄肉部分 (26) に隣接する部分を前記第 1の薄肉部 分 (26) よりも薄い第 2の薄肉部分 (27) とする工程と、
前記基板 (21) の前記裏面 (2 1 B) と支持基板 (31) の主面 (31 A) とを貼り合わせた後、 前記基板 (21) から前記ベース基板 (41) を剥離する 工程と、
を含むことを特徴とする光変調器の製造方法。
2. 請求項 1記載の光変調器の製造方法において、
前記第 2の機械加工及び前記第 3の機械加工の少なくとも一方は、 外周刃を用 いた研削加工を含むことを特徴とする光変調器の製造方法。
3. 請求項 2記載の光変調器の製造方法において、
前記外周刃を整形するためのツル一イング処理工程を含むことを特徴とする光 変調器の製造方法。
4. 電気光学効果を有する材料からなる基板 (21) の主面 (21A) 直下に光 導波路 (22) を形成する工程と、
前記基板 (21) の前記主面 (21 A) 上に、 前記光導波路 (22) 内を導波 する光を変調するための変調用電極を形成する工程と、
前記基板 (21) の前記主面 (21 A) とベース基板 (41) とを、 前記変調 用電極を介して貼り合せる工程と、
前記ベース基板 (41) を固定した状態において、 前記基板 (21) の裏面 (21 B) に対して第 1の機械加工を施すことにより、 前記基板 (21) の全体 を薄板化する工程と、
薄板化された前記基板 (21) の前記裏面 (21 B) に対して第 2の機械加工 を施して、 前記基板 (21) のうち、 前記光導波路 (22) を含む部分を薄板化 する工程と、
前記基板 (21) の前記薄板化された部分に対してレーザ加工処理を施して、 前記基板 (2 1) のうち、 前記光導波路 (22) を含む部分を第 1の薄肉部分 (26) とし、 前記第 1の薄肉部分 (26) に隣接する部分を前記第 1の薄肉部 分 (26) よりも薄い第 2の薄肉部分 (27) とする工程と、
前記基板 (21) の前記裏面 (21 B) と支持基板 (31) の主面とを貼り合 わせた後、 前記基板 (21) から前記べ一ス基板 (41) を剥離する工程と、 を含むことを特徴とする光変調器の製造方法。
5. 請求項 4記載の光変調器の製造方法において、
前記第 2の機械加工は、 外周刃を用いた研削加工を含むことを特徴とする光変 調器の製造方法。
6. 請求項 5記載の光変調器の製造方法において、
前記外周刃を整形するためのツル一イング処理工程を含むことを特徴とする光 変調器の製造方法。
7. 電気光学効果を有する材料からなる基板 (21) の主面 (21A) 直下に光 導波路 (22) を形成する工程と、
前記基板 (21) の前記主面 (21A) 上に、 前記光導波路 (22) 内を導波 する光を変調するための変調用電極を形成する工程と、
前記基板 (2 1) の前記主面 (21 A) とベース基板 (41) とを、 前記変調 用電極を介して貼り合せる工程と、
前記ベース基板 (41) を固定した状態において、 前記基板 (2 1) の裏面
(21 B) に対して第 1の機械加工を施すことにより、 前記基板 (21) の全体 を薄板化する工程と、
薄板化された前記基板 (21) の前記裏面 (21 B) に対してレーザ加工処理 を施して、 前記基板 (21) のうち、 前記光導波路 (22) を含む部分を薄板化 する工程と、
前記基板 (21) の前記薄板化された部分に対して第 2の機械加工を施して、 前記基板 (2 1) のうち、 前記光導波路 (22) を含む部分を第 1の薄肉部分 (26) とし、 前記第 1の薄肉部分 (26) に隣接する部分を前記第 1の薄肉部 分 (26) よりも薄い第 2の薄肉部分 (27) とする工程と、
前記基板 (21) の前記裏面 (21 B) と支持基板 (31) の主面 ( 31 A) とを貼り合わせた後、 前記基板 (21) から前記ベース基板 (41) を剥離する 工程と、
を含むことを特徴とする光変調器の製造方法。
8. 請求項 7記載の光変調器の製造方法において、
前記第 2の機械加工は、 外周刃を用いた研削加工を含むことを特徴とする光変 調器の製造方法。
9. 請求項 8記載の光変調器の製造方法において、
前記外周刃を整形するためのツル一イング処理工程を含むことを特徴とする光 変調器の製造方法。
10. 電気光学効果を有する材料からなる基板 (21) の主面 (21A) 直下に 光導波路 (22) を形成する工程と、
前記基板 (21) の前記主面 (2 1 A) 上に、 前記光導波路 (22) 内を導波 する光を変調するための変調用電極を形成する工程と、
前記基板 (21) の前記主面 (2 1 A) とベース基板 (41) とを、 前記変調 用電極を介して貼り合せる工程と、
前記ベース基板 (41) を固定した状態において、 前記基板 (2 1) の裏面 (21B) に対して機械加工を施すことにより、 前記基板 (21) の全体を薄板 化する工程と、
薄板化された前記基板 (21) の前記裏面 (21 B) に対して第 1のレーザ加 ェ処理を施して、 前記基板 (21) のうち、 前記光導波路 (22) を含む部分を 薄板化する工程と、
前記基板 (2 1) の前記薄板化された部分に対して第 2のレーザ加工処理を施 して、 前記基板 (21) のうち、 前記光導波路 (22) を含む部分を第 1の薄肉 部分 (26) とし、 前記第 1の薄肉部分 (26) に隣接する部分を前記第 1の薄 肉部分 (27) よりも薄い第 2の薄肉部分 (27) とする工程と、
前記基板 (21) の前記裏面と支持基板 (31) の主面 (31 A) とを貼り合 わせた後、 前記基板 (21) から前記ベース基板 (41) を剥離する工程と、 を含むことを特徴とする光変調器の製造方法。
1 1. 請求項 1〜 10のいずれか 1項に記載の光変調器の製造方法において、 前記支持基板 (31) は溝部 (35) を有し、
前記基板 (2 1) と前記支持基板 (3 1) との貼り合わせは、 前記光導波路 (22) 、 前記第 1の薄肉部分 (26) 及び前記第 2の薄肉部分 (27) が前記
溝部 (35)'内に位置するようにして行なうことを特徴とする光変調器の製造方 法。
12. 請求項 1〜1 1のいずれか 1項に記載の光変調器の製造方法において、 前記機械加工によって、 前記基板 (21) を厚さ 30 xm〜300 まで薄 板化することを特徴とする光変調器の製造方法。
13. 請求項 1〜 12のいずれか 1項に記載の光変調器の製造方法において、 前記第 1の薄肉部分 (26) の厚さが 5 /m〜 30 xmであることを特徴とす る光変調器の製造方法。
14. 請求項 1〜 13のいずれか 1項に記載の光変調器の製造方法において、 前記第 1の薄肉部分 (26) の厚さと前記第 2の薄肉部分 (27) との差が 1 m以上であることを特徴とする光変調器の製造方法。
15. 請求項 1〜 14のいずれか 1項に記載の光変調器の製造方法において、 前記変調用電極を構成する中心電極幅を W、 前記変調用電極を構成する電極間 距離を Gとしたとき、
前記第 1の薄肉部分 (26) の幅が、 (W+2 ^m) 以上、 (W+2 G) 以下 であることを特徴とする光変調器の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03710447A EP1486817B1 (en) | 2002-03-19 | 2003-03-19 | Method of manufacturing optical modulator |
DE60326941T DE60326941D1 (en) | 2002-03-19 | 2003-03-19 | Rs |
US10/942,562 US7290328B2 (en) | 2002-03-19 | 2004-09-16 | Method of manufacturing optical modulator |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002076216A JP3762320B2 (ja) | 2002-03-19 | 2002-03-19 | 光変調器の製造方法 |
JP2002-76216 | 2002-03-19 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/942,562 Continuation US7290328B2 (en) | 2002-03-19 | 2004-09-16 | Method of manufacturing optical modulator |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003079103A1 true WO2003079103A1 (fr) | 2003-09-25 |
Family
ID=28035425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2003/003373 WO2003079103A1 (fr) | 2002-03-19 | 2003-03-19 | Procédé de fabrication d'un modulateur optique |
Country Status (5)
Country | Link |
---|---|
US (1) | US7290328B2 (ja) |
EP (1) | EP1486817B1 (ja) |
JP (1) | JP3762320B2 (ja) |
DE (1) | DE60326941D1 (ja) |
WO (1) | WO2003079103A1 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4868763B2 (ja) * | 2005-03-31 | 2012-02-01 | 住友大阪セメント株式会社 | 光変調器 |
JP5092494B2 (ja) * | 2007-03-29 | 2012-12-05 | 住友大阪セメント株式会社 | 光導波路素子、及び光導波路素子の温度クロストーク抑止方法 |
JP5254855B2 (ja) | 2008-03-28 | 2013-08-07 | 日本碍子株式会社 | 進行波型光変調器 |
GB201015169D0 (en) * | 2010-09-13 | 2010-10-27 | Oclaro Technology Ltd | Electro-optic devices |
US10018888B2 (en) * | 2012-06-06 | 2018-07-10 | Eospace, Inc. | Advanced techniques for improving high-efficiency optical modulators |
JP6107868B2 (ja) * | 2015-03-31 | 2017-04-05 | 住友大阪セメント株式会社 | 光導波路素子 |
JP7334616B2 (ja) * | 2019-12-26 | 2023-08-29 | 住友大阪セメント株式会社 | 光導波路素子、光変調器、光変調モジュール、及び光送信装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1079257A2 (en) * | 1999-08-27 | 2001-02-28 | Ngk Insulators, Ltd. | Travelling wave optical modulator |
EP1245993A2 (en) | 2001-03-30 | 2002-10-02 | Ngk Insulators, Ltd. | Optical waveguide device and travelling-wave optical modulator |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2928129B2 (ja) * | 1995-03-29 | 1999-08-03 | 日本電気株式会社 | 光変調器及びその製造方法 |
US5749132A (en) * | 1995-08-30 | 1998-05-12 | Ramar Corporation | Method of fabrication an optical waveguide |
JP2001174765A (ja) * | 1999-12-15 | 2001-06-29 | Ngk Insulators Ltd | 進行波形光変調器 |
JP4587509B2 (ja) * | 1999-12-21 | 2010-11-24 | 住友大阪セメント株式会社 | 導波路型光変調器 |
-
2002
- 2002-03-19 JP JP2002076216A patent/JP3762320B2/ja not_active Expired - Fee Related
-
2003
- 2003-03-19 WO PCT/JP2003/003373 patent/WO2003079103A1/ja active Application Filing
- 2003-03-19 DE DE60326941T patent/DE60326941D1/de not_active Expired - Lifetime
- 2003-03-19 EP EP03710447A patent/EP1486817B1/en not_active Expired - Lifetime
-
2004
- 2004-09-16 US US10/942,562 patent/US7290328B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1079257A2 (en) * | 1999-08-27 | 2001-02-28 | Ngk Insulators, Ltd. | Travelling wave optical modulator |
EP1245993A2 (en) | 2001-03-30 | 2002-10-02 | Ngk Insulators, Ltd. | Optical waveguide device and travelling-wave optical modulator |
Non-Patent Citations (3)
Title |
---|
See also references of EP1486817A4 |
YOSHINORI KONDO ET AL.: "C-3-3 40Gb/s.2 8Vx-cut LiNbO3 uramizo tsuki hiraki henchoki", 2001 NEN THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS ELECTRONICS SOCIETY TAIKAI KOEN RONBUNSHU, vol. 2001, 29 August 2001 (2001-08-29), pages 113, XP002968813 * |
YOSHINORI KONDO ET AL.: "C-3-53 40Gb/s-yo X-cut LiNbO3 hikari henchoki module", 2002 NEN THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICTION ENGINEERS SOGO TAIKAI KOEN RONBUNSHU, vol. 2002, 7 March 2002 (2002-03-07), pages 185, XP002968812 * |
Also Published As
Publication number | Publication date |
---|---|
EP1486817A1 (en) | 2004-12-15 |
JP3762320B2 (ja) | 2006-04-05 |
JP2003270600A (ja) | 2003-09-25 |
EP1486817B1 (en) | 2009-04-01 |
US7290328B2 (en) | 2007-11-06 |
EP1486817A4 (en) | 2005-08-17 |
US20050039322A1 (en) | 2005-02-24 |
DE60326941D1 (en) | 2009-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6819851B2 (en) | Optical waveguide device and a travelling-wave optical modulator | |
JP4443011B2 (ja) | 進行波型光変調器 | |
US7035485B2 (en) | Optical waveguide device, and a travelling wave form optical modulator | |
JP4471520B2 (ja) | 進行波形光変調器 | |
US7382942B2 (en) | Optical waveguide devices | |
WO2005019913A1 (ja) | 光導波路デバイスおよび進行波形光変調器 | |
US9298025B2 (en) | Electrode structure for an optical waveguide substrate | |
JP3954251B2 (ja) | 進行波形光変調器 | |
JP2007101641A (ja) | 光変調器及びその製造方法 | |
JP2007272121A (ja) | 光素子 | |
JP2006284961A (ja) | 光変調器 | |
WO2003079103A1 (fr) | Procédé de fabrication d'un modulateur optique | |
US8233752B2 (en) | Curved optical waveguide in gap between electrodes device | |
WO2003079102A1 (fr) | Procede de fabrication de modulateur optique | |
JP2010085789A (ja) | 光導波路素子 | |
JP5254855B2 (ja) | 進行波型光変調器 | |
CN1839336A (zh) | 光波导器件以及行波型光学调制器 | |
WO2003079104A1 (fr) | Procede pour produire un modulateur optique | |
JP2004341147A (ja) | 光導波路デバイスおよび進行波形光変調器 | |
JP5494400B2 (ja) | 光導波路素子 | |
WO2020202606A1 (ja) | 光導波路素子 | |
JP2007079465A (ja) | 光制御素子及びその製造方法 | |
WO2024201864A1 (ja) | 光導波路素子とそれを用いた光変調デバイス並びに光送信装置 | |
JPH11352350A (ja) | 光導波路素子の製造方法 | |
US20240231134A1 (en) | Optical waveguide element, and optical modulation device and optical transmission apparatus which use same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 10942562 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003710447 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2003710447 Country of ref document: EP |