WO2003078832A1 - Transition zone in wind turbine blade - Google Patents
Transition zone in wind turbine blade Download PDFInfo
- Publication number
- WO2003078832A1 WO2003078832A1 PCT/DK2003/000184 DK0300184W WO03078832A1 WO 2003078832 A1 WO2003078832 A1 WO 2003078832A1 DK 0300184 W DK0300184 W DK 0300184W WO 03078832 A1 WO03078832 A1 WO 03078832A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fibres
- blade
- wind turbine
- fibre
- type
- Prior art date
Links
- 230000007704 transition Effects 0.000 title claims abstract description 59
- 229920002430 Fibre-reinforced plastic Polymers 0.000 claims abstract description 17
- 239000011151 fibre-reinforced plastic Substances 0.000 claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 claims abstract description 11
- 229920000642 polymer Polymers 0.000 claims abstract description 8
- 239000011159 matrix material Substances 0.000 claims abstract description 5
- 239000000835 fiber Substances 0.000 claims description 58
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 49
- 229910052799 carbon Inorganic materials 0.000 claims description 49
- 239000003365 glass fiber Substances 0.000 claims description 24
- 230000002787 reinforcement Effects 0.000 claims description 10
- 238000005728 strengthening Methods 0.000 claims description 5
- 230000007423 decrease Effects 0.000 claims description 2
- 239000000463 material Substances 0.000 description 10
- 229920003235 aromatic polyamide Polymers 0.000 description 5
- 239000002131 composite material Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000011152 fibreglass Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 244000025254 Cannabis sativa Species 0.000 description 3
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 3
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 3
- 235000009120 camo Nutrition 0.000 description 3
- 235000005607 chanvre indien Nutrition 0.000 description 3
- 238000013016 damping Methods 0.000 description 3
- 239000011487 hemp Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 241000208202 Linaceae Species 0.000 description 2
- 235000004431 Linum usitatissimum Nutrition 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229920000271 Kevlar® Polymers 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000009755 vacuum infusion Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
- F03D1/065—Rotors characterised by their construction elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/08—Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
- B29L2031/082—Blades, e.g. for helicopters
- B29L2031/085—Wind turbine blades
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the invention relates to a wind turbine blade according to the preamble of claim 1 and to a prefabricated transitional laminate according to the preamble to claim 13.
- Wind turbine blades are typically made by means of two blade shell halves of fibre- reinforced polymer. When moulded the two halves are glued together along the edges and via two bracings, which prior thereto have been glued to the inner face of one the blade shell halves. The other blade shell half is then arranged on top of bracings and glued thereto and along the edges.
- the blade shell halves per se are typically made by vacuum infusion, in which even- ly distributed fibres, rovings, which are fibre bundles, bands of rovings or mats, which may be felt mats of single-fibres or woven mats of fibre rovings, are layered in a mould part and cover by a vacuum bag.
- vacuum typically 80-90% in the cavity between the inner face of the mould part and the vacuum bag resin is sucked into and fills the cavity containing the fibre material.
- so-called distribution layers and distribution channels are often used between the vacuum bag and the fibre material.
- the used polymer is typically polyester or epoxy, and the fibre reinforcement is usually based on fibre glass. It is, however, also known to use carbon fibres which are stiffer than glass fibres, but have a smaller elongation at breakage than glass fibres. The carbon fibres may be added to obtain a higher degree of stiffness and/or a lower weight. It is thus possible to let a portion of the fibre reinforcement be formed of carbon fibres to reduce the weight of the blade without the blade loosing too much of its stiffness. Carbon fibres are, however, encumbered by the drawback of being sig- nif ⁇ cantly more expensive than glass fibres, which is one of the reasons why wind turbine blades of carbon fibre-reinforced polymer are not widely used. Other types of reinforcement fibres, eg aramid fibres (Kevlar®) and other types of plastic fibres, natural fibres, eg hemp fibres and flax fibres may also be used for the manufacture of wind turbine blades.
- Other types of reinforcement fibres eg
- US 6,287,122 discloses the manufacture of elongated composite products, wherein a variation in the stiffness of the product along its length is obtained by altering the fibre content or the angle orientation of braided fibres.
- US 5,520,532 discloses a mould part of fibre-reinforced polymer of a varying stiffness, said stiffness being obtained by varying the number of fibre mat layers.
- US 4,077,740 discloses a helicopter rotor blade of a fibre composite material, the stiffness of the blade varying when seen in longitudinal direction. This feature is obtained by varying the fibre orientation so as to obtain an enhanced vibration dampening.
- the stiffness of a wind turbine blade depends on the shell thickness, the cross-sectional geometry and the material.
- the cross-sectional dimensions of the wind turbine blade and the shell thickness vary in the longitudinal direction of the blade. Naturally, the largest cross-sectional dimensions are found at the blade root, where the blade cross-section often is substantially circular. Further along the blade, it adopts a more flat shape, which substantially corresponds to an ellipse.
- the outermost portion of the blade may furthermore be provided with an increased stiffness, whereby the risk of the blade deflecting so heavily that the blade tip hits the turbine tower is reduced. Problems with high dead load and insufficient stiffness have increased in recent years, as the length of wind turbine blades has increased continuously. This tendency seems to continue in the future.
- cellulosed-based fibres such as hemp fibres or flax fibres are potential materials for the reinforcement of wind turbine blades.
- the object of the invention is to provide a wind turbine blade of fibre-reinforced polymer including a first type of fibres of a first stiffness and a first elongation at breakage, and a second type of fibres of a different stiffness and a different elongation at breakage, in which areas of the blade may be optimised as regards strength, dead load and stiffness without being encumbered by adverse effects such as an abrupt change in the stiffness.
- the object is obtained in that the two types of fibres are thus distributed in the polymer matrix that the quantitative ratio of the two types of fibres varies continuously in the longitudinal direction of the blade.
- the expression “continuously” should be understood in a wide sense and thus also as covering “gradually” and “evenly”.
- the first fibre type may be glass fibres and the second type may be carbon fibres, whereby the wind turbine blade is shaped such that the amount of carbon fibres increases towards the tip of the blade.
- the weight is thus reduced in the outermost part, whereby the dead load moment is minimised.
- Less material and/or a smaller cross section is thus required at the inner- most portion of the blade and the load on the turbine hub is reduced.
- the dead load may be reduced by using carbon fibres in the outer end portion, whereby the dynamic loads on the blade shell and the blade root may also be reduced, said parts being particularly sensitive to dynamic loads.
- the dead load may be reduced by using carbon fibres in the outer end portion, whereby the dynamic loads on the blade shell and the blade root may also be reduced, said parts being particularly sensitive to dynamic loads.
- the stiffness as well as the natural frequencies may be varied.
- the stiffness and the natural frequencies may thus be optimised to the specific conditions.
- a comparatively stiff outer end portion and a comparatively less stiff inner end portion result in an advantageous deflection shape as regards aerodynamic damping, the damping depending on the integrated deflection along the blade during a vibration.
- An increased aerodynamic damping is advantageous in that the aerodynamic load thus is reduced.
- a blade according to the invention renders an optimum stiffness to costs ratio.
- the end of the wind turbine blade including the blade root may also be provided with a comparatively large amount of carbon fibres having a higher stiffness than glass fibres, whereby the cross-sectional dimensions of the blade root and consequently also the size of mounting flanges and the like can be reduced.
- the quantitative ratio may increase or decrease continuously from a first level to a second level.
- the quantitative ratio varies only in a transition zone of a length shorter than the length of the blade.
- the quantitative ratio may thus be varied in a limited area only, which may be advantageous for reasons of production.
- the transition zone is provided between a first and a second zone of a substantially uniform quantitative ratio.
- This transition zone may for instance have a length ranging between 0.5 and 1 metre. A length of up to 10 metres or even thereabove may, however, also be preferred.
- the first zone, which may include the blade root, may also contain a majority of glass fibres and the second zone, which may include the blade tip, may contain a majority of carbon fibres, whereby the transition zone is provided at a position in the centre of the blade.
- the blade may be divided into the transition zone including the blade root and an additional zone including the rest of the blade.
- the carbon fibre amount may thus increase steadily from the blade root to the posi- tion at which the additional zone begins, whereby the carbon fibre content remains substantially constant.
- the blade may be divided into the transition zone including the blade tip and an additional zone including the rest of the blade.
- the length of the zone including the blade tip may constitute 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85% or even 90% of the blade's entire length.
- fibres or fibre bundles of the first type of different lengths may extend from a first end of the transition zone and fibre or fibre bundles of the other type may extend from the opposite end of the transition zone, whereby a particularly smooth transition in stiffness may be obtained.
- the transition zone may be formed of a laminate of several fibre layers, in which each fibre layer has a boundary surface at a position in the longitudinal direction, the fibre layer including carbon fibres on one side of the boundary surface and glass fibres on the other side of the boundary face, the boundary surfaces of each fibre layer being displaced in relation to each other in the longitudinal direction of the blade.
- boundary surfaces may be serrated in a sectional view parallel to the fibre layers. An even smoother transition in the stiffness is thus obtained in the transition zone.
- the tips of the serrated boundary surfaces may be displaced in relation to each other in the transverse direction of the blade.
- the two types of fibres may be distributed in strengthening bands extending in the longitudinal direction of the blade, the remaining portions of the blade's cross section having a constant content of fibres of the first type and/or of the second type.
- the load-bearing parts of the blade are often made of such strengthening bands and the invention is naturally particularly suitable for such parts.
- the invention also relates to a prefabricated transitional shell blank for the manufacture of the shell of a wind turbine blade, said transitional shell blank being made of fibre-reinforced polymer including a first type of fibres of a first stiffness and a first elongation at breakage and a second type of fibres of a different stiffness and a dif- ferent elongation at breakage, and wherein when seen in a sectional view perpendicular to the longitudinal direction of the blade the quantitative ratio of the two types of fibres varies in the longitudinal direction of the blade, the two types of fibres being distributed in the polymer matrix and the quantitative ratio varying continuously in the longitudinal direction of the transitional shell blank.
- a prefabricated transitional shell blank makes the production of the wind turbine blades faster and simpler, as the transitional shell blank does not have to be made during the production of the wind turbine blade per se.
- the prefabricated transitional shell blank may be formed as a band for reinforcement of the areas of the blade shell forming the pressure and suction sides of the blade and being furthest spaced apart from the centre of the cross section.
- an existing wind turbine is to be provided with longer blades, this may be obtained by replacing the outermost portion of the blade by a transition zone including one or more transitional shell blanks and a carbon fibre tip.
- the weight of the blade is not or only slightly increased compared to the original blades made completely from glass-fibre-reinforced polymer.
- completely new blades may be made for an existing wind turbine or the outermost portion blades may be cut off and replaced by a carbon fibre tip with or without a transition zone.
- Fig. 1 shows a wind turbine with three blades
- Fig. 2 shows a wind turbine blade
- Fig. 3 shows a continuous variation of the quantitative ratio of two different fibre ty- pes according to a first embodiment of the invention
- Fig. 4 shows a continuous variation of the quantitative ratio of two different fibre types according to a second embodiment of the invention
- Fig. 5 shows a continuous variation of the quantitative ratio of two different fibre ty- pes according to a third embodiment of the invention.
- Fig. 6 shows diagrams illustrating how the quantitative ratio of two different fibre types may be varied in the longitudinal direction of the blade.
- Fig. 1 shows a modern wind turbine including a tower 12 with a hub 13 and three wind turbine blades 14 extending from the hub.
- Fig. 2 illustrates a wind turbine blade including a first zone 17 including the blade tip, said zone being reinforced substantially by carbon fibres.
- the blade further includes a second zone 15 being reinforced substantially by glass fibres.
- the first zone 17 extends into the second zone 15 via a transition zone 16 or transition area in which one type of fibres is gradually replaced by the other type of fibres.
- the first embodiment of the invention shown in Fig. 3 is a sectional view of a wind turbine blade shell in a transition area in which the quantitative ratio of two types of fibres with different properties changes gradually.
- the first type of fibres 1, eg carbon fibres extend from the left-hand side of the sectional view in form of bundles or single-fibres of different lengths.
- the other type of fibres 2, eg glass fibres is not visible in Fig. 3, but are complementary to the carbon fibres.
- the transition between the two types of fibres is thus diffuse such that a smooth transition is obtained from the part of the blade, which is reinforced substantially by carbon fibres, to the part of the blade, which is reinforced substantially by glass fibres 2.
- Fig. 4 illustrates a second embodiment in which fibre mats of non-woven fibres or knitted fibre bundles have been punched, whereby they are provided with serrations in one of their ends.
- Two mats based on different types of fibres in the same fibre layer have similarly shaped serrations and thus mesh with each other.
- the serrations of two stacked fibre layers may be displaced in relation to each other, as shown in Fig. 4, whereby a smooth transition is obtained from the stiffness in the area shown on the left-hand side to the stiffness in the area shown on the right-hand side.
- Fig. 4 is a diagrammatic view of two stacked carbon fibre layers 3, 4. Two corresponding glass fibre layers are provided in the area 5. As also shown in Fig.
- the tips 12 of the serrations 11 of the two carbon fibre layers 3, 4 are displaced in transverse direction to ensure a smooth stiffness transition.
- a transition zone between the area with carbon fibres and the area with glass fibres is thus determined by the length of the serrations. Accordingly the transition zone may vary according to need by either shortening or extending the length of the serrations.
- Fig. 5 shows a particularly simple provision of the transition zone between a first zone and a second zone.
- Fig. 5 is a diagrammatic view of four stacked fibre layers, in which the fibre layers 6 are formed of for instance carbon fibres and the fibre layers 7 are formed of glass fibres.
- Each fibre layer has a boundary surface 10, where the carbon fibres are replaced by glass fibres, a transition zone of some length being obtained, since each boundary face 10 is displaced in relation to the other faces.
- the length of the transition zone may of course be varied according to need by displacing the boundary faces more or less in relation to each other and/or by using more fibre layers.
- Fig. 6 is a diagrammatic view of the quantitative ratio of one type of fibres to the other type of fibres in the longitudinal direction of the blade.
- a first transition zone I and a second transition zone III both contain a constant quantitative ratio of the first type of fibres 8 to the second type of fibres 9.
- a transition zone II is provided between the two zones, the ratio of the second type of fibres 9 in said zone steadily increasing from the level in the first zone I to the level in the second zone III.
- Fig. 6a thus shows an embodiment, in which the first zone I is formed solely of fibres of the first type 8 and the second zone III is formed solely of fibres of the second type 9.
- FIG. 6b shows an embodiment, in which the first zone I is formed solely of fibres of the first type 8 and the second zone III includes a constant minority amount of the first type of fibres 9 and a constant majority amount of the second type of fibres 9.
- Fig. 6c shows an embodiment, in which the first zone I includes a constant majority amount of the first type of fibres 8 and a constant minority amount of the second type of fibres 9, and in which the second zone III is formed solely of the second type of fibres 9.
- Fig. 6d shows an embodiment, in which the first zone I includes a constant majority amount of the first type of fibres 9 and in which the second zone III includes a constant minority amount of the first type of fibres 8 and a constant ma- j ority amount of the second type of fibres 9.
- Fig. 6a thus diagrammatically illustrates a preferred embodiment of a wind turbine blade, wherein the first zone I is the outer end portion of the blade including the blade tip and wherein the second zone III is the inner end portion of the blade in- eluding the blade root.
- the portion of the blade including the blade tip may thus be formed solely of carbon fibres and the portion of the blade including the blade root may be formed solely of glass fibres.
- a position between the two ends of the blade may be a transition zone II, in which the carbon fibres and the glass fibres gradually substitute each other.
- This transition zone II may have a restricted length of for instance 0.5-1 metre.
- the blade may, however, also be formed according to the quantitative ratios shown in Figs. 6b-6d.
- the blade may also only include two zones, ie either the first zone I and the transition zone II or the transition zone II and the second zone III. Finally the blade may only include the transition zone II such that the amount of the one type of fibres for instance gradually increases in the entire length of the blade.
- a transition zone may be provided in the blade during the fibre lay-up per se in the mould parts. It is, however, also possible to use prefabricated transitional laminates produced according to the principles shown in Figs. 3, 4 and 5. Such prefabricated transitional laminates are advantageous for reasons of production in that the fibre lay-up process time is substantially the same as at the production of conventional wind turbine blades, in which the same material is used in the entire longitudinal direction of the blade.
- the frequency of broken fibres may thus be high but not critical, as they are surrounded by more compliant fibres. However, the broken fibres still contribute to reducing the deflection and thus the breakage of additional fibres.
- the gradual and even transition between the properties of the composite material based on the two different types of fibres is thus obtained by means of two factors.
- the first factor is the distribution of stiff and compliant fibres to obtain a smooth transition from the stiff to the compliant area.
- the second factor is the non-critical breakage which further smoothens the transition.
- An additional not shown embodiment of a wind turbine blade according to the invention may be obtained by means of a so-called spray-up process.
- a spray gun is used for the polymer material and a mixture of chopped fibres of the two types are ejected into a resin stream and sprayed into the mould.
- the intended transition zone may be obtained.
- the invention is not restricted to the above embodiments.
- other fibre types may be used for the manufacture of a wind turbine blade according to the invention.
- possible fibres include hemp fibres or other cellulose fibres such as aramid fibres and other plastic fibres.
- a wind turbine blade is possible, in which the end provided with the blade root is primarily made of glass-fibre-reinforced polymer and wherein a central portion of the blade is made of carbon fibre-reinforced polymer, while the blade tip is made of aramid fibre-reinforced polymer, the density of aramid fibres being even less than that of carbon fibres.
- a transition zone may thus be provided between the glass-fibre-reinforced portion and the carbon fibre-reinforced portion and between the carbon fibre-reinforced portion and the aramid fibre-reinforced portion.
- the strengthening beams and other internal strengthening members in the wind turbine blade may be made of polymers reinforced by different types of fibres, the quantitative ratio of one type to the other type varying continuously in the longitudinal direction of the blade.
- the advantages according to the invention are obtained especially in connection with the load-bearing parts.
- the load-bearing parts include inter alia the main laminates in form of longitudinal fibre-reinforced polymer bands extending in the areas of the suction and pressure sides of the blade shell being furthest from the centre of the blade cross section.
- the laminates bracing the blade in edgewise direction at the leading and trailing edges of the blade may also advantageously have a continuously varying quantitative ratio of the two types of fibres.
- the elongation at breakage for glass fibres is typically about 4.8%, while it typically ranges between 0.3% and 1.4% for carbon fibres.
- Young's Modulus of glass fibres is about 73,000 MPa, while the Modulus of carbon fibres (means modulus) typically is about 245,000 MPa.
- Carbon fibres are typically 3-4 times stiffer than glass fibres.
- the density of glass is about 2.54 g/cm 3 , while the density of carbon is about 1.75 g/cm
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Wind Motors (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES03711857T ES2401573T3 (en) | 2002-03-19 | 2003-03-19 | Transition zone in wind turbine blade |
AU2003218631A AU2003218631B2 (en) | 2002-03-19 | 2003-03-19 | Transition zone in wind turbine blade |
EP03711857A EP1485610B1 (en) | 2002-03-19 | 2003-03-19 | Transition zone in wind turbine blade |
CA2479604A CA2479604C (en) | 2002-03-19 | 2003-03-19 | Transition zone in a wind turbine blade |
DK03711857.7T DK1485610T3 (en) | 2002-03-19 | 2003-03-19 | Transition zone in wind turbine blade |
US10/508,385 US7364407B2 (en) | 2002-03-19 | 2003-03-19 | Transition zone in wind turbine blade |
NO20044400A NO333535B1 (en) | 2002-03-19 | 2004-10-18 | Transition zone in wind turbine blades. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DKPA200200425 | 2002-03-19 | ||
DK200200425A DK175275B1 (en) | 2002-03-19 | 2002-03-19 | Transition area in wind turbine blade |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003078832A1 true WO2003078832A1 (en) | 2003-09-25 |
Family
ID=27837992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DK2003/000184 WO2003078832A1 (en) | 2002-03-19 | 2003-03-19 | Transition zone in wind turbine blade |
Country Status (10)
Country | Link |
---|---|
US (1) | US7364407B2 (en) |
EP (1) | EP1485610B1 (en) |
CN (1) | CN1328500C (en) |
AU (1) | AU2003218631B2 (en) |
CA (1) | CA2479604C (en) |
DK (2) | DK175275B1 (en) |
ES (1) | ES2401573T3 (en) |
NO (1) | NO333535B1 (en) |
PL (1) | PL206772B1 (en) |
WO (1) | WO2003078832A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006002621A1 (en) * | 2004-06-30 | 2006-01-12 | Vestas Wind Systems A/S | Wind turbine blades made of two separate sections, and method of assembly |
DE102005014884B3 (en) * | 2005-04-01 | 2006-09-14 | Nordex Energy Gmbh | Rotor blade, for a wind turbine, is of a plastics material with fiber reinforcements of a different thermal expansion to alter the aerodynamic profile shape on a temperature change |
US7521105B2 (en) | 2003-03-06 | 2009-04-21 | Vestas Wind System A/S | Connection between composites with non-compatible properties and method for preparation |
WO2010061218A2 (en) * | 2008-11-28 | 2010-06-03 | Vestas Wind Systems A/S | Method of manufacturing a wind turbine rotor blade |
US20110135491A1 (en) * | 2009-11-23 | 2011-06-09 | Applied Nanostructured Solutions, Llc | Cnt-tailored composite land-based structures |
US8172539B2 (en) | 2010-06-17 | 2012-05-08 | General Electric Company | Wind turbine rotor blade joint |
EP2511477A1 (en) | 2011-04-11 | 2012-10-17 | LM Wind Power A/S | Wind turbine blade with transition region |
EP2543874A1 (en) | 2011-07-06 | 2013-01-09 | LM Wind Power A/S | A wind turbine blade |
WO2013010979A2 (en) | 2011-07-20 | 2013-01-24 | Lm Wind Power A/S | Wind turbine blade with transition region |
US8721829B2 (en) | 2004-08-13 | 2014-05-13 | Lm Glasfiber A/S | Method of cutting off laminate layers, eg a glass fibre or carbon-fibre laminate layer in the blade of a wind turbine |
US8999453B2 (en) | 2010-02-02 | 2015-04-07 | Applied Nanostructured Solutions, Llc | Carbon nanotube-infused fiber materials containing parallel-aligned carbon nanotubes, methods for production thereof, and composite materials derived therefrom |
US9017854B2 (en) | 2010-08-30 | 2015-04-28 | Applied Nanostructured Solutions, Llc | Structural energy storage assemblies and methods for production thereof |
WO2015114098A1 (en) | 2014-01-31 | 2015-08-06 | Lm Wp Patent Holding A/S | Wind turbine blade part manufactured in two steps |
US9297357B2 (en) | 2013-04-04 | 2016-03-29 | General Electric Company | Blade insert for a wind turbine rotor blade |
US9470205B2 (en) | 2013-03-13 | 2016-10-18 | Vestas Wind Systems A/S | Wind turbine blades with layered, multi-component spars, and associated systems and methods |
EP3093485A1 (en) * | 2015-05-11 | 2016-11-16 | Blade Dynamics Limited | A wind turbine blade |
US9506452B2 (en) | 2013-08-28 | 2016-11-29 | General Electric Company | Method for installing a shear web insert within a segmented rotor blade assembly |
FR3070425A1 (en) * | 2017-08-25 | 2019-03-01 | Safran Aircraft Engines | FLUID PROFILE ELEMENT OF A PROPULSIVE LAMINATE COMPOSITE ASSEMBLY |
Families Citing this family (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK175562B1 (en) * | 2002-03-19 | 2004-12-06 | Lm Glasfiber As | Wind turbine blade with carbon fiber tip |
WO2004078443A1 (en) * | 2003-03-06 | 2004-09-16 | Vestas Wind Systems A/S | Pre-form and method of preparing a pre-form |
EP1709416B1 (en) * | 2004-01-23 | 2018-03-07 | LM Wind Power International Technology II ApS | Device including a system adapted for use in temperature compensation of strain measurements in fibre-reinforced structures |
DK176418B1 (en) * | 2004-12-22 | 2008-01-21 | Lm Glasfiber As | Process for producing a fiber-reinforced part for a wind power plant |
US7802968B2 (en) * | 2005-07-29 | 2010-09-28 | General Electric Company | Methods and apparatus for reducing load in a rotor blade |
US7690895B2 (en) * | 2005-07-29 | 2010-04-06 | General Electric Company | Multi-piece passive load reducing blades and wind turbines using same |
US20080296906A1 (en) * | 2006-06-12 | 2008-12-04 | Daw Shien Scientific Research And Development, Inc. | Power generation system using wind turbines |
US20090249779A1 (en) * | 2006-06-12 | 2009-10-08 | Daw Shien Scientific Research & Development, Inc. | Efficient vapor (steam) engine/pump in a closed system used at low temperatures as a better stirling heat engine/refrigerator |
US20090211223A1 (en) * | 2008-02-22 | 2009-08-27 | James Shihfu Shiao | High efficient heat engine process using either water or liquefied gases for its working fluid at lower temperatures |
US20090044535A1 (en) * | 2006-06-12 | 2009-02-19 | Daw Shien Scientific Research And Development, Inc. | Efficient vapor (steam) engine/pump in a closed system used at low temperatures as a better stirling heat engine/refrigerator |
US7766620B2 (en) * | 2007-02-08 | 2010-08-03 | General Electricc Company | Rotor blade with a lightning protection unit, wind energy system having the same and a method for constructing a rotor blade |
US8752293B2 (en) * | 2007-12-07 | 2014-06-17 | The Boeing Company | Method of fabricating structures using composite modules and structures made thereby |
GB2451192B (en) * | 2008-07-18 | 2011-03-09 | Vestas Wind Sys As | Wind turbine blade |
US20100045037A1 (en) * | 2008-08-21 | 2010-02-25 | Daw Shien Scientific Research And Development, Inc. | Power generation system using wind turbines |
EP2328800A4 (en) * | 2008-09-08 | 2015-01-28 | Flodesign Wind Turbine Corp | Systems and methods for protecting a wind turbine in high wind conditions |
WO2010048370A1 (en) * | 2008-10-22 | 2010-04-29 | Vec Industries, L.L.C. | Wind turbine blade and method for manufacturing thereof |
EP2194278A1 (en) * | 2008-12-05 | 2010-06-09 | ECP Entwicklungsgesellschaft mbH | Fluid pump with a rotor |
CN102308083B (en) | 2008-12-05 | 2016-04-13 | 模组风能公司 | Efficient wind turbine blades, wind turbine blade |
US20100143142A1 (en) * | 2008-12-11 | 2010-06-10 | Afroz Akhtar | Sparcap system for wind turbine rotor blade and method of fabricating wind turbine rotor blade |
US7942637B2 (en) * | 2008-12-11 | 2011-05-17 | General Electric Company | Sparcap for wind turbine rotor blade and method of fabricating wind turbine rotor blade |
DK2391807T3 (en) * | 2009-01-27 | 2015-07-27 | Vestas Wind Sys As | TITLE BY wind turbine blade |
US7942640B2 (en) * | 2009-03-19 | 2011-05-17 | General Electric Company | Method and apparatus for use in protecting wind turbine blades from lightning damage |
US8461713B2 (en) * | 2009-06-22 | 2013-06-11 | Johann Quincy Sammy | Adaptive control ducted compound wind turbine |
US20110052404A1 (en) * | 2009-08-25 | 2011-03-03 | Zuteck Michael D | Swept blades with enhanced twist response |
US8702397B2 (en) * | 2009-12-01 | 2014-04-22 | General Electric Company | Systems and methods of assembling a rotor blade for use in a wind turbine |
US8066490B2 (en) * | 2009-12-21 | 2011-11-29 | General Electric Company | Wind turbine rotor blade |
US8142164B2 (en) * | 2009-12-31 | 2012-03-27 | General Electric Company | Rotor blade for use with a wind turbine and method for assembling rotor blade |
EP2407186A1 (en) | 2010-07-15 | 2012-01-18 | ECP Entwicklungsgesellschaft mbH | Rotor for a pump, produced with an initial elastic material |
DE102010039705B4 (en) * | 2010-08-24 | 2020-02-27 | Airbus Operations Gmbh | Structural element for an aircraft and spacecraft and method for producing such a structural element |
CN101956675B (en) * | 2010-10-28 | 2012-06-20 | 马可超 | Jet-propelled wind driven generator |
US9487290B2 (en) * | 2010-11-12 | 2016-11-08 | Textron Innovations Inc. | Composite rotor blade having weighted material for mass balancing |
US20110243736A1 (en) * | 2010-12-08 | 2011-10-06 | General Electric Company | Joint sleeve for a rotor blade assembly of a wind turbine |
EP2633302B1 (en) * | 2011-01-11 | 2014-09-10 | Siemens Aktiengesellschaft | Method for determining the fibre orientation in a rotor blade of a wind turbine having a number of fibres distributed in a laminate material |
GB201109412D0 (en) * | 2011-06-03 | 2011-07-20 | Blade Dynamics Ltd | A wind turbine rotor |
US10024301B2 (en) * | 2011-10-24 | 2018-07-17 | The Regents Of The University Of Michigan | Textile composite wind turbine blade |
WO2013084275A1 (en) * | 2011-12-09 | 2013-06-13 | Mitsubishi Heavy Industries, Ltd. | Method of manufacturing a wind turbine blade and a wind turbine blade |
WO2013084361A1 (en) | 2011-12-09 | 2013-06-13 | 三菱重工業株式会社 | Wind turbine blade |
FR2984418B1 (en) * | 2011-12-19 | 2014-01-24 | Valeol | METHOD OF DEFROSTING STRUCTURES OF COMPOSITE MATERIALS, ESPECIALLY BLADE OF A WINDMILL, ADAPTIVE COMPOSITION AND APPARATUS |
US20130177433A1 (en) * | 2012-01-11 | 2013-07-11 | General Electric Company | Multi-material retrofitted wind turbine rotor blade and methods for making the same |
US8602700B2 (en) | 2012-02-16 | 2013-12-10 | General Electric Company | Shipping fixture and method for transporting rotor blades |
IN2012DE00573A (en) * | 2012-02-29 | 2015-06-05 | Gen Electric | |
CN102817794B (en) * | 2012-08-24 | 2014-07-23 | 中国人民解放军国防科学技术大学 | Lengthenable large composite material wind power generation blade |
DK2815861T3 (en) | 2013-06-18 | 2017-01-02 | Nordex Energy Gmbh | Method and tool for making a chord segment for a rotor blade in a wind power plant |
US20160341177A1 (en) * | 2013-07-09 | 2016-11-24 | Vestas Wind Systems A/S | Wind turbine blade with sections that are joined together |
US9868536B2 (en) * | 2013-10-30 | 2018-01-16 | Goodrich Corporation | Electrical interconnects for ice protection systems |
EP2902620A1 (en) * | 2014-01-30 | 2015-08-05 | Siemens Aktiengesellschaft | Wind turbine blade with three parts each comprising a different material and method for manufacturing the same |
ES2861585T3 (en) * | 2014-01-31 | 2021-10-06 | Lm Wp Patent Holding As | Wind turbine blade with improved fiber transition |
ES2676269T3 (en) * | 2014-06-16 | 2018-07-18 | Lm Wind Power International Technology Ii Aps | A method to produce a continuous fiber reinforcing layer of individual fiber mats |
JP6602391B2 (en) * | 2015-04-03 | 2019-11-06 | ブライト ライト ストラクチャーズ エルエルシー | Apparatus and associated method for controllably cutting fibers |
US10690113B2 (en) | 2015-12-23 | 2020-06-23 | Lm Wp Patent Holding A/S | Wind turbine blades and related methods of manufacturing |
DK3184814T3 (en) * | 2015-12-23 | 2020-11-23 | Lm Wp Patent Holding As | WIND TURBE WINGS AND POTENTIAL COMPENSATION SYSTEMS |
US10450870B2 (en) | 2016-02-09 | 2019-10-22 | General Electric Company | Frangible gas turbine engine airfoil |
US10451030B2 (en) * | 2016-05-27 | 2019-10-22 | Blade Dynamics Limited | Wind turbine blade and a method of assembling a wind turbine blade and a spar cap connection piece |
EP3556409B1 (en) | 2016-10-25 | 2022-01-05 | Magenta Medical Ltd. | Ventricular assist device |
US10830206B2 (en) | 2017-02-03 | 2020-11-10 | General Electric Company | Methods for manufacturing wind turbine rotor blades and components thereof |
US11098691B2 (en) | 2017-02-03 | 2021-08-24 | General Electric Company | Methods for manufacturing wind turbine rotor blades and components thereof |
JP6993092B2 (en) * | 2017-03-27 | 2022-02-04 | 本田技研工業株式会社 | Fiber reinforced plastic products |
US10961982B2 (en) | 2017-11-07 | 2021-03-30 | General Electric Company | Method of joining blade sections using thermoplastics |
US10920745B2 (en) | 2017-11-21 | 2021-02-16 | General Electric Company | Wind turbine rotor blade components and methods of manufacturing the same |
US11248582B2 (en) | 2017-11-21 | 2022-02-15 | General Electric Company | Multiple material combinations for printed reinforcement structures of rotor blades |
US11668275B2 (en) * | 2017-11-21 | 2023-06-06 | General Electric Company | Methods for manufacturing an outer skin of a rotor blade |
US10865769B2 (en) | 2017-11-21 | 2020-12-15 | General Electric Company | Methods for manufacturing wind turbine rotor blade panels having printed grid structures |
US11390013B2 (en) | 2017-11-21 | 2022-07-19 | General Electric Company | Vacuum forming mold assembly and associated methods |
US10913216B2 (en) | 2017-11-21 | 2021-02-09 | General Electric Company | Methods for manufacturing wind turbine rotor blade panels having printed grid structures |
US10773464B2 (en) | 2017-11-21 | 2020-09-15 | General Electric Company | Method for manufacturing composite airfoils |
US11040503B2 (en) | 2017-11-21 | 2021-06-22 | General Electric Company | Apparatus for manufacturing composite airfoils |
US10821652B2 (en) | 2017-11-21 | 2020-11-03 | General Electric Company | Vacuum forming mold assembly and method for creating a vacuum forming mold assembly |
EP3854445A1 (en) | 2018-01-10 | 2021-07-28 | Magenta Medical Ltd. | Impeller for blood pump |
US10905808B2 (en) | 2018-01-10 | 2021-02-02 | Magenta Medical Ltd. | Drive cable for use with a blood pump |
US11035339B2 (en) | 2018-03-26 | 2021-06-15 | General Electric Company | Shear web assembly interconnected with additive manufactured components |
US10821696B2 (en) | 2018-03-26 | 2020-11-03 | General Electric Company | Methods for manufacturing flatback airfoils for wind turbine rotor blades |
US20210363961A1 (en) * | 2018-04-28 | 2021-11-25 | The Research Foundation For The State University Of New York | Flexible wind turbine blade with actively variable twist distribution |
US10830207B2 (en) * | 2018-08-28 | 2020-11-10 | General Electric Company | Spar configuration for jointed wind turbine rotor blades |
FR3087699B1 (en) * | 2018-10-30 | 2021-11-26 | Safran Aircraft Engines | HYBRIDIZATION OF THE FIBERS OF THE FIBER REINFORCEMENT OF A DAWN |
EP3894189B1 (en) | 2018-12-10 | 2023-09-27 | Vestas Wind Systems A/S | Wind turbine blade shear web, method of manufacture and wind turbine blade |
CN109760334B (en) * | 2019-01-22 | 2022-01-07 | 远景能源有限公司 | Anti-wrinkle prefabricated part and manufacturing method thereof |
EP4385556A3 (en) | 2019-01-24 | 2024-08-28 | Magenta Medical Ltd. | Ventricular assist device |
EP3712424B1 (en) * | 2019-03-21 | 2023-08-16 | Siemens Gamesa Renewable Energy A/S | Wind turbine blade and wind turbine |
US11131290B2 (en) * | 2019-06-25 | 2021-09-28 | General Electric Company | Scarf connection for a wind turbine rotor blade |
US11215054B2 (en) | 2019-10-30 | 2022-01-04 | Raytheon Technologies Corporation | Airfoil with encapsulating sheath |
US11466576B2 (en) * | 2019-11-04 | 2022-10-11 | Raytheon Technologies Corporation | Airfoil with continuous stiffness joint |
EP4039320A1 (en) | 2020-04-07 | 2022-08-10 | Magenta Medical Ltd. | Lateral blood-inlet openings |
CN114278493B (en) * | 2020-09-27 | 2023-10-27 | 上海电气风电集团股份有限公司 | Main beam structure, fan blade, processing method of fan blade and wind generating set |
CN114347503A (en) * | 2022-01-05 | 2022-04-15 | 泰山玻璃纤维有限公司 | Carbon-glass mixed pulling plate for wind power blade main beam |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4077740A (en) * | 1975-08-06 | 1978-03-07 | The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland | Helicopter rotor blades |
GB2164309A (en) * | 1984-09-11 | 1986-03-19 | Secr Defence | Helicopter rotor blades |
WO2000014405A1 (en) * | 1998-09-09 | 2000-03-16 | Lm Glasfiber A/S | Lightning protection for wind turbine blade |
DE20206942U1 (en) * | 2002-05-02 | 2002-08-08 | REpower Systems AG, 22335 Hamburg | Rotor blade for wind turbines |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1262704A (en) * | 1968-08-10 | 1972-02-02 | Messerschmitt Boelkow Blohm | Helicopter rotor blade |
US4000956A (en) * | 1975-12-22 | 1977-01-04 | General Electric Company | Impact resistant blade |
GB2012698B (en) | 1978-01-03 | 1982-02-10 | Secr Defence | Aerofoils |
US4533297A (en) | 1982-09-15 | 1985-08-06 | Bassett David A | Rotor system for horizontal axis wind turbines |
US4976587A (en) * | 1988-07-20 | 1990-12-11 | Dwr Wind Technologies Inc. | Composite wind turbine rotor blade and method for making same |
US4979587A (en) * | 1989-08-01 | 1990-12-25 | The Boeing Company | Jet engine noise suppressor |
US5108262A (en) * | 1990-03-23 | 1992-04-28 | The United States Of America As Represented By The Secretary Of The Navy | High damping flexible propeller/impleller |
US5140856A (en) | 1990-12-03 | 1992-08-25 | Dynamic Rotor Balancing, Inc. | In situ balancing of wind turbines |
US5520532A (en) | 1994-08-01 | 1996-05-28 | United Technologies Corporation | Molding assembly for forming airfoil structures |
FR2740380B1 (en) | 1995-10-30 | 1998-01-02 | Eurocopter France | METHOD FOR MANUFACTURING A VARIABLE PITCH BLADE FROM COMPOSITE MATERIAL FOR HELICOPTER ROTOR |
SG79227A1 (en) | 1998-04-17 | 2001-03-20 | Inst Materials Research & Eng | Fiber-reinforced composite product with graded stiffness |
NL1019957C2 (en) | 2002-02-13 | 2003-10-03 | Stork Fokker Aesp Bv | Laminated panel with discontinuous inner layer. |
CA2517956C (en) * | 2003-03-06 | 2008-07-08 | Vestas Wind Systems A/S | Connection between composites with non-compatible properties and method for preparation |
US7575417B2 (en) * | 2003-09-05 | 2009-08-18 | General Electric Company | Reinforced fan blade |
US7427189B2 (en) * | 2006-02-13 | 2008-09-23 | General Electric Company | Wind turbine rotor blade |
-
2002
- 2002-03-19 DK DK200200425A patent/DK175275B1/en not_active IP Right Cessation
-
2003
- 2003-03-19 WO PCT/DK2003/000184 patent/WO2003078832A1/en not_active Application Discontinuation
- 2003-03-19 AU AU2003218631A patent/AU2003218631B2/en not_active Expired
- 2003-03-19 ES ES03711857T patent/ES2401573T3/en not_active Expired - Lifetime
- 2003-03-19 CN CNB038064057A patent/CN1328500C/en not_active Expired - Lifetime
- 2003-03-19 EP EP03711857A patent/EP1485610B1/en not_active Revoked
- 2003-03-19 PL PL371010A patent/PL206772B1/en unknown
- 2003-03-19 DK DK03711857.7T patent/DK1485610T3/en active
- 2003-03-19 US US10/508,385 patent/US7364407B2/en not_active Expired - Lifetime
- 2003-03-19 CA CA2479604A patent/CA2479604C/en not_active Expired - Lifetime
-
2004
- 2004-10-18 NO NO20044400A patent/NO333535B1/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4077740A (en) * | 1975-08-06 | 1978-03-07 | The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland | Helicopter rotor blades |
GB2164309A (en) * | 1984-09-11 | 1986-03-19 | Secr Defence | Helicopter rotor blades |
WO2000014405A1 (en) * | 1998-09-09 | 2000-03-16 | Lm Glasfiber A/S | Lightning protection for wind turbine blade |
DE20206942U1 (en) * | 2002-05-02 | 2002-08-08 | REpower Systems AG, 22335 Hamburg | Rotor blade for wind turbines |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7521105B2 (en) | 2003-03-06 | 2009-04-21 | Vestas Wind System A/S | Connection between composites with non-compatible properties and method for preparation |
WO2006002621A1 (en) * | 2004-06-30 | 2006-01-12 | Vestas Wind Systems A/S | Wind turbine blades made of two separate sections, and method of assembly |
US8348622B2 (en) | 2004-06-30 | 2013-01-08 | Vestas Wind Systems A/S | Wind turbine blades made of two separate sections, and method of assembly |
CN102287322A (en) * | 2004-06-30 | 2011-12-21 | 维斯塔斯风力系统有限公司 | Wind turbine blade with two separate parts and assembly method of same |
EP1786617B2 (en) † | 2004-08-13 | 2019-04-17 | LM Wind Power A/S | A method of cutting off laminate layers, eg a glass-fibre or carbon-fibre laminate layer in the blade of a wind turbine |
US8721829B2 (en) | 2004-08-13 | 2014-05-13 | Lm Glasfiber A/S | Method of cutting off laminate layers, eg a glass fibre or carbon-fibre laminate layer in the blade of a wind turbine |
US9751277B2 (en) | 2004-08-13 | 2017-09-05 | Lm Glasfiber A/S | Method of cutting off laminate layers, eg a glass fibre or carbon-fibre laminate layer in the blade of a wind turbine |
DE102005014884B3 (en) * | 2005-04-01 | 2006-09-14 | Nordex Energy Gmbh | Rotor blade, for a wind turbine, is of a plastics material with fiber reinforcements of a different thermal expansion to alter the aerodynamic profile shape on a temperature change |
EP1707806A2 (en) | 2005-04-01 | 2006-10-04 | NORDEX ENERGY GmbH | Rotor blade for a wind turbine |
US8167543B2 (en) | 2008-11-28 | 2012-05-01 | Vestas Wind Systems A/S | Method of manufacturing a wind turbine rotor blade |
GB2478078A (en) * | 2008-11-28 | 2011-08-24 | Vestas Wind Sys As | Method of manufacturing a wind turbine rotor blade |
WO2010061218A3 (en) * | 2008-11-28 | 2010-10-14 | Vestas Wind Systems A/S | Method of manufacturing a wind turbine rotor blade |
WO2010061218A2 (en) * | 2008-11-28 | 2010-06-03 | Vestas Wind Systems A/S | Method of manufacturing a wind turbine rotor blade |
US20110135491A1 (en) * | 2009-11-23 | 2011-06-09 | Applied Nanostructured Solutions, Llc | Cnt-tailored composite land-based structures |
US8999453B2 (en) | 2010-02-02 | 2015-04-07 | Applied Nanostructured Solutions, Llc | Carbon nanotube-infused fiber materials containing parallel-aligned carbon nanotubes, methods for production thereof, and composite materials derived therefrom |
US8172539B2 (en) | 2010-06-17 | 2012-05-08 | General Electric Company | Wind turbine rotor blade joint |
US9017854B2 (en) | 2010-08-30 | 2015-04-28 | Applied Nanostructured Solutions, Llc | Structural energy storage assemblies and methods for production thereof |
US9907174B2 (en) | 2010-08-30 | 2018-02-27 | Applied Nanostructured Solutions, Llc | Structural energy storage assemblies and methods for production thereof |
US10487662B2 (en) | 2011-04-11 | 2019-11-26 | Lm Wp Patent Holding A/S | Wind turbine blade comprising metal fibres and a transition region |
WO2012140041A3 (en) * | 2011-04-11 | 2012-12-13 | Lm Wind Power A/S | A wind turbine blade comprising metal fibres and a transition region |
US9920630B2 (en) | 2011-04-11 | 2018-03-20 | Lm Wp Patent Holding A/S | Wind turbine blade with transition region |
WO2012140041A2 (en) | 2011-04-11 | 2012-10-18 | Lm Wind Power A/S | A wind turbine blade comprising metal fibres and a transition region |
EP2511477A1 (en) | 2011-04-11 | 2012-10-17 | LM Wind Power A/S | Wind turbine blade with transition region |
WO2013004805A1 (en) | 2011-07-06 | 2013-01-10 | Lm Wind Power A/S | A wind turbine blade |
EP2543874A1 (en) | 2011-07-06 | 2013-01-09 | LM Wind Power A/S | A wind turbine blade |
WO2013010979A3 (en) * | 2011-07-20 | 2013-04-04 | Lm Wind Power A/S | Wind turbine blade with transition region |
WO2013010979A2 (en) | 2011-07-20 | 2013-01-24 | Lm Wind Power A/S | Wind turbine blade with transition region |
US9470205B2 (en) | 2013-03-13 | 2016-10-18 | Vestas Wind Systems A/S | Wind turbine blades with layered, multi-component spars, and associated systems and methods |
US9297357B2 (en) | 2013-04-04 | 2016-03-29 | General Electric Company | Blade insert for a wind turbine rotor blade |
US9506452B2 (en) | 2013-08-28 | 2016-11-29 | General Electric Company | Method for installing a shear web insert within a segmented rotor blade assembly |
WO2015114098A1 (en) | 2014-01-31 | 2015-08-06 | Lm Wp Patent Holding A/S | Wind turbine blade part manufactured in two steps |
EP3093485A1 (en) * | 2015-05-11 | 2016-11-16 | Blade Dynamics Limited | A wind turbine blade |
US10184448B2 (en) | 2015-05-11 | 2019-01-22 | Blade Dynamics Limited | Wind turbine blade |
EP3093485B1 (en) | 2015-05-11 | 2019-10-30 | Blade Dynamics Limited | A wind turbine blade |
FR3070425A1 (en) * | 2017-08-25 | 2019-03-01 | Safran Aircraft Engines | FLUID PROFILE ELEMENT OF A PROPULSIVE LAMINATE COMPOSITE ASSEMBLY |
Also Published As
Publication number | Publication date |
---|---|
EP1485610A1 (en) | 2004-12-15 |
CN1328500C (en) | 2007-07-25 |
CA2479604C (en) | 2010-06-29 |
CN1643249A (en) | 2005-07-20 |
EP1485610B1 (en) | 2012-11-28 |
AU2003218631B2 (en) | 2009-01-08 |
DK200200425A (en) | 2003-09-20 |
ES2401573T3 (en) | 2013-04-22 |
DK1485610T3 (en) | 2013-03-11 |
US7364407B2 (en) | 2008-04-29 |
AU2003218631A1 (en) | 2003-09-29 |
PL371010A1 (en) | 2005-06-13 |
CA2479604A1 (en) | 2003-09-25 |
NO333535B1 (en) | 2013-07-01 |
PL206772B1 (en) | 2010-09-30 |
US20050180854A1 (en) | 2005-08-18 |
NO20044400L (en) | 2004-10-18 |
DK175275B1 (en) | 2004-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1485610B1 (en) | Transition zone in wind turbine blade | |
AU2003218632B2 (en) | Wind turbine blade with carbon fibre tip | |
EP2511477B1 (en) | Wind turbine blade with transition region | |
CN102187091B (en) | Wind turbine blade | |
US7427189B2 (en) | Wind turbine rotor blade | |
CN101749174B (en) | Method of fabricating wind turbine rotor blade and sparcap for wind turbine rotor blade | |
WO2013010979A2 (en) | Wind turbine blade with transition region | |
US20230182405A1 (en) | Pultruded bibre-reinforced strip for a reinforced structure, such as a spar cap | |
CN115485127A (en) | Wind turbine blade | |
EP4077914B1 (en) | Wind turbine blade | |
CN116412060B (en) | Web of blade and blade | |
NO331759B1 (en) | Wind turbine blade with carbon tip. | |
CN117581013A (en) | Blade for a wind turbine | |
CN102985683A (en) | New bamboo blade structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2695/DELNP/2004 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003711857 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2479604 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10508385 Country of ref document: US Ref document number: 2003218631 Country of ref document: AU Ref document number: 20038064057 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 2003711857 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: JP |