WO2003077440A1 - Adaptive antenna receiver and its receiving method - Google Patents
Adaptive antenna receiver and its receiving method Download PDFInfo
- Publication number
- WO2003077440A1 WO2003077440A1 PCT/JP2003/002798 JP0302798W WO03077440A1 WO 2003077440 A1 WO2003077440 A1 WO 2003077440A1 JP 0302798 W JP0302798 W JP 0302798W WO 03077440 A1 WO03077440 A1 WO 03077440A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- multiplying
- output
- antenna
- transmission line
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
- H04B7/0837—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
- H04B7/0842—Weighted combining
- H04B7/0848—Joint weighting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
- H04B1/7097—Interference-related aspects
- H04B1/711—Interference-related aspects the interference being multi-path interference
- H04B1/7115—Constructive combining of multi-path signals, i.e. RAKE receivers
- H04B1/712—Weighting of fingers for combining, e.g. amplitude control or phase rotation using an inner loop
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
- H04B7/0891—Space-time diversity
- H04B7/0897—Space-time diversity using beamforming per multi-path, e.g. to cope with different directions of arrival [DOA] at different multi-paths
Definitions
- the present invention relates to an adaptive antenna receiving apparatus and its receiving method.
- the present invention relates to an adaptive antenna receiving apparatus and method, and more particularly, to an adaptive antenna receiving method in which a CDMA transmission signal is received from a plurality of antenna elements constituting an adaptive antenna.
- CDMA adaptive antenna receivers used in the CDMA system include, for example, “TDL adaptive array antenna using spreading processing gain for spread spectrum multiple access” by Wang, Kono, and Imai. J. Vol. J 75-BII, No. 11, p. 815-825, 1992) and Tanaka, Miki, and Sawahashi, “Characteristics of Decision Feedback Coherent Adaptive Diversity in DS-CDMA” (The Institute of Electronics, Information and Communication Engineers, As described in the Technical Report of the Radio Communication Systems RCS 96-102, January 1996), adaptive control is performed by using the weight control error signal extracted after despreading in antenna weight control. The antenna directivity pattern that maximizes the received SIR (Signal to Interference Ratio) is used for interference cancellation.
- SIR Signal to Interference Ratio
- FIG. 1 is a configuration diagram showing an example of a conventional CDMA adaptive antenna receiving apparatus when a common error signal is used.
- the number of receive antennas is N (N is an integer of 2 or more), the number of multipaths is L (L is an integer of 1 or more), and the CDMA adaptive antenna reception for the kth user (k is an integer of 1 or more) The device will be described.
- this type of CDMA adaptive antenna receiving apparatus has a multiplicity of Ni receiving antennas 1-1 to 1—N and L paths for the kth user, as shown in FIG.
- the L signal processing means 30-1 to 30-L corresponding to each multipath have the same configuration, respectively, and include delay units 2-1 to 2-L and N despreading circuits 3-1-11-1 to 3—L—N and antenna weighting / synthesizing circuit 4-1-1-4L.
- the N receiving antennas 11-1 to 1-N are arranged close so that the respective received signals have a correlation.
- the delay units 2-1 to 2-L are configured to delay the signals received by the N receiving antennas 1-1 to 1-1N in accordance with each of the L multipaths.
- the received signals output from the delay units 2-1 to 2—L are despread by the despreading circuits 3-1 to 1-3—L1N, and then the antenna weighting and combining circuit 4—! 4 to L—Sent to MMSE control circuit 5.
- FIG. 4 is a block diagram showing a configuration of each of L to L.
- FIG. Each of the antenna weighting / synthesizing circuits 4-1 to 4-L has the same configuration, and the multiplier 13-:! ⁇ 13-N and adder 1.4.
- the configuration of the signal processing means 30-1 will be described below as an example.
- the antenna weighting / synthesizing circuit 4-1 receives the signal despread by the despreading circuits 3-1-1-3-1-N.
- the received signal is multiplied by the antenna weights generated by the MMSE control circuit 5 by the multipliers 13-1 to 13 -N in the antenna weighting and combining circuit 4-1, and further added by the adder 14. , Weighted synthesis, and sent to the adder 10 in FIG.
- the antenna weighting / synthesizing circuit 4-1 controls the amplitude and phase of the reception signals of the reception antennas 11-1 to 1-N so that the reception signal has a gain and the interference is suppressed so that the reception is performed. It forms the directionality of the array antenna.
- Rake combining is performed by adding the outputs of the antenna weighting and combining circuits 41 1 to 41 L by the adder 10, and the result is input to the subtractor 11.
- the subtracter 11 converts the output of the reference signal generation circuit 12 from the rake (RAKE) composite output of the adder 10.
- the common error signal is generated by subtraction, and the common error signal is sent to the MMSE control circuit 5.
- the MMSE control circuit 5 uses the common error signal obtained from the subtractor 11 and the antenna reception signal corresponding to each multipath output by the despreading circuits 3-1-1 to 3-L-N, The antenna weight is controlled so that the root mean square of the common error signal is minimized.
- an algorithm as fast as possible for example, an RLS (Recursive Least Square) algorithm can be used.
- the despread signals y k , l, n (m) received by the (l ⁇ N) th receiving antennas are given by the multipliers 13-1 to 13-N in the antenna weighting / synthesizing circuit 4-1-4-1 L
- the antenna weights generated by the MMSE control circuit 5 are multiplied, and weighted and combined by the adder 14.
- the antenna combined output z k i (m) of the first path for the k-th user is
- RAKE combining is performed by adding the outputs of the antenna weighting combining circuits 41 1 to 41 L by the adder 10 in FIG.
- the RLS (Recursive Least Square) algorithm used in the MMSE control circuit 5 controls the antenna weights so as to directly minimize the sum of squares of the exponential weighting error using all input samples up to the present.
- ⁇ is a weighting constant of 0 to ⁇ 1
- e k (m) is a common error obtained by subtracting the rake combined output of the adder 10 from the output of the reference signal generating circuit 12 by the subtractor 11. Represents a signal.
- the subtracter 11 subtracts the rake combined output of the adder 10 from the output of the reference signal generation circuit 12 to generate a common error signal, and outputs the common error signal to the MMSE control circuit 5.
- the correlation matrix R xxk is calculated by exponentially weighted time average based on the above equation (3).
- Rxxk, m) a R YX v (m— 1) + Xk (m) (m)
- X k (m) is a despreading circuit 3-1:! ⁇ 3—L—N It represents the despread signal vector of the output despread signal, where Xk (m) is defined as follows.
- k ( m ) [yk, i, i ( m ) 'yk, i, 2 (m), ..., yk'i'N ( m ),
- the adaptive update algorithm used in the MMSE control circuit 5 includes a common error signal e k (m) obtained from the subtractor 11 and the despreading circuit 3-1 1 1 to 3—L-N.
- the antenna weight is updated using the signal. In this process, the antenna weight is adaptively controlled based on the MMSE criterion so that the common error signal e k (m) is minimized.
- W k (m) represents the antenna weight vector of the antenna weight generated by the MMSE control circuit 5
- W3 ⁇ 4- (m) [Wk, i 1 (m), w3 ⁇ 4. > 1) 2 (m), ⁇ , Wk, i,] sr (m),
- Equations (8) and (9) must calculate the inverse matrix of the correlation matrix R xxk , so if the matrix is inverted using the matrix formula, R ⁇ i 1 becomes
- the first problem is that the amount of operation of the adaptive update algorithm used in the MMSE control circuit 5 becomes large. Since the amount of calculation is large, a processing load is applied to the calculation circuit. The reason is that since the common error signal is used, the adaptive update algorithm that controls the antenna weights so that the root mean square of the common error signal is minimized must calculate the (NXL) -order correlation matrix R xxk. Because it must be.
- the second problem is that the adaptive update algorithm used in the MMSE control circuit 5 follows the instantaneous transmission line fluctuation with the antenna weight, so that the characteristics deteriorate when the transmission line fluctuation is fast. is there. The reason is that when the fluctuation of the transmission line is fast, the weighting constant must be set small, and the effect of reducing noise is reduced. Disclosure of the invention
- An object of the present invention is to provide an adaptive antenna receiving apparatus and a receiving method thereof, in which the amount of operation of an adaptive updating algorithm for calculating an antenna weight coefficient is significantly reduced, and the processing load of an arithmetic circuit is reduced. .
- Another object of the present invention is to provide an adaptive antenna receiving device capable of improving characteristic degradation when transmission line fluctuation is fast and a method thereof.
- An adaptive antenna receiving apparatus comprises: despreading means for despreading a received signal from a plurality of antenna elements for each finger; multiplying a despread signal output from each of the despreading means by a weight coefficient.
- Weighting factor multiplying means channel distortion estimating means for estimating channel distortion based on each output from the weighting factor multiplying means, and complex conjugate means for generating each complex conjugate of the estimated channel distortion.
- Each of these complex conjugates is multiplied by each output from the weighting coefficient multiplying means to obtain transmission path distortion.
- Multiplying means for compensating for the above, combining means for adding the respective outputs of the multiplying means and performing rake combining, generating a common error signal between the combined output and the reference signal, and adding the common error signal to the transmission path.
- Error signal generating means for deriving by multiplying each of the distortions; and using each output of the error signal generating means and each of the despread signals, for each finger, the root mean square of the common error signal is minimized.
- Control means for controlling the weighting coefficient so that
- Another adaptive antenna receiving apparatus comprises: despreading means for performing despreading processing on received signals from a plurality of antenna elements for each finger; and weighting the despread signals output from the despreading means, respectively.
- Weight coefficient multiplying means for multiplying coefficients; transmission path distortion estimating means for estimating transmission path distortion based on each output from the weight coefficient multiplying means; and complex conjugate for generating each complex conjugate of the estimated transmission path distortion Means for multiplying each of the complex conjugates and each output from the weighting coefficient multiplying means to compensate for transmission line distortion; and Synthesizing means for multiplying each of the transmission line distortions and a reference signal; and using each output of the second multiplying means and each of the despread signals for each finger.
- the weight And a control means for controlling the coefficients.
- Still another adaptive antenna receiving apparatus includes: despreading means for performing despreading processing on received signals from a plurality of antenna elements for each finger; and a weighting factor for a despread signal output from the despreading means.
- Weighting factor multiplying means a channel distortion estimating means for estimating channel distortion based on each output from the weighting factor multiplying means, and a complex conjugate hand for generating each complex conjugate of the estimated channel distortion.
- a multiplying means for multiplying each of the complex conjugates and each output from the weighting coefficient multiplying means to compensate for transmission path distortion; a combining means for adding the respective outputs of the multiplying means to perform Rake combining; Error signal generating means for generating a common error signal between the combined output and the reference signal and multiplying the common error signal by each of the transmission line distortions to derive the common error signal; And control means for controlling the weighting coefficient so as to minimize the root mean square of the common error signal using each output of the error signal generation means and each of the despread signals.
- Another adaptive antenna receiving apparatus for receiving from a plurality of antenna elements.
- Despreading means for despreading the signal for each finger; weighting coefficient multiplying means for multiplying the despread signal output from the despreading means by a weighting coefficient; and Channel distortion estimating means for estimating channel distortion based on the output; complex conjugate means for generating each complex conjugate of the estimated channel distortion; and each complex conjugate and each output from the weight coefficient multiplying means.
- a first multiplication unit that compensates for transmission line distortion by multiplying each of the transmission line distortions; a combining unit that adds the outputs of the first multiplication unit to perform Rake combining; A second multiplying means for multiplying, and a control means provided in common to the fingers and controlling the weight coefficient using each output of the second multiplying means and each of the despread signals.
- the receiving method comprises: a despreading step of despreading a received signal from a plurality of antenna elements for each finger; and a weight for multiplying the despread signal output from the despreading step by a weight coefficient.
- a coefficient multiplying step a channel distortion estimating step of estimating a channel distortion based on each output from the weighting coefficient multiplying step; a step of generating each complex conjugate of the estimated channel distortion;
- a multiplication step for compensating for transmission line distortion by multiplying the output from the weighting coefficient multiplication step with each output from the weighting coefficient multiplication step;
- An error signal generating step of generating a common error signal with the signal and multiplying the common error signal by each of the transmission line distortions to derive the error signal;
- Another receiving method includes a despreading step for despreading a received signal from a plurality of antenna elements for each finger, and assigning a weight coefficient to the despread signal output from each of the despreading steps.
- Still another receiving method is a despreading step of despreading a received signal from a plurality of antenna elements for each finger, and weighting the despread signal output from the despreading step.
- a weighting coefficient multiplying step for multiplying the coefficients; a transmission path distortion estimating step for estimating transmission path distortion based on each output from the weighting coefficient multiplication step; and a step for generating each complex conjugate of the estimated transmission path distortion.
- Another receiving method includes a despreading step of despreading a received signal from a plurality of antenna elements for each finger, and assigning a weight coefficient to the despread signal output from each of the despreading steps.
- the adaptive update algorithm calculates the antenna weight using the N-order correlation matrix independently for each path, and calculates the (NXL) -order correlation matrix
- the antenna weight coefficient is controlled using the adaptive update algorithm so that the root mean square of the common error signal after rake combining is independently minimized for each finger.
- the function of compensating the transmission line distortion and the MMSE control circuit that generates the antenna weight are separated separately, so that the antenna weight generated by the MMSE control circuit is Without compensating for signal transmission path distortion, control can be performed to maximize the signal arrival direction and average SIR, and control can be performed to maximize instantaneous SIR by rake combining. Can be improved.
- FIG. 1 is a configuration diagram of an example for explaining a conventional technique.
- FIG. 2 is a diagram illustrating a configuration of an antenna weighting synthesis circuit.
- FIG. 3 is a configuration diagram of one embodiment of the present invention.
- FIG. 4 is a diagram illustrating the configuration of the antenna weighting and combining circuit.
- FIG. 5 is a diagram comparing B ER characteristics between the conventional example and the present invention.
- FIG. 6 is a configuration diagram of another embodiment of the present invention.
- FIG. 7 is a configuration diagram of still another embodiment of the present invention.
- FIG. 8 is a configuration diagram of another embodiment of the present invention.
- FIG. 9 is a configuration diagram of still another embodiment of the present invention.
- FIG. 10 is a configuration diagram of another embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
- FIG. 3 shows the present invention.
- FIG. 2 is a diagram showing a configuration of an embodiment of the present invention, and portions equivalent to those in FIG. 1 are denoted by the same reference numerals.
- the number of receiving antennas is N (N is an integer of 2 or more)
- the number of multipaths is L (L is an integer of 1 or more)
- the CD for the kth user k is an integer of 1 or more
- the MA adaptive antenna receiving device will be described.
- the C-DMA adaptive antenna receiving apparatus transmits L signals corresponding to multi-paths with N receiving antennas 1-1 to 1-N and L paths to the k-th user.
- Each of the signal processing means 20 0-1 to 20-L corresponding to each multipath has the same configuration, and includes delay units 2-1 to 2-L and N despreading circuits 3-1 to 1- 3—L—N, antenna weighting / synthesizing circuit 4-1 1 to 4-1 L, MMSE (Minimum Mean Square Error) control circuit 5-1 to 5—L, channel estimation circuit 6-1 Up to 6—L, complex conjugate circuit 7-1 to 7—L, multiplier 8— :! ⁇ 8-L, and a multiplier 91-1 ⁇ 9_L.
- the N receiving antennas 11-1 to 1-N are arranged close so that the respective received signals have a correlation.
- Delay devices 2 _ 1 to 2 — L is N receiving antennas
- each of the L antenna weighting / synthesizing circuits 4-1 to 4-L as shown in FIG. 4, a despreading circuit 3-1 to 3-1 to 3-1 ⁇ - ⁇
- the signal is multiplied by the antenna weights generated by the L MMSE control circuits 5-1 to 5-L in accordance with multipliers 13-1 to 13-N and added by the adder 14.
- the weights are combined and sent to the transmission path estimation circuits 6-1 to 6-L and multipliers 8-1 to 8-L in Fig. 3.
- the transmission path distortion is estimated using the output of the antenna weighting and combining circuit 4-1 to 4-1 L, and the estimation result is converted to a complex conjugate circuit 7- 1 to 7—L and multiplier 9-1 1 to 9-1 L are sent to L.
- the complex conjugate circuits 7-1 to 7-L generate complex conjugates of the transmission line distortion estimated by the transmission path estimation circuits 6-1 to 6-L.
- Complex conjugate circuit 71 The complex combination of transmission line distortion generated by 1-7-L is used by multipliers 8-1-1-8-L for antenna weighting and combining circuit 41 :! By multiplying the output of ⁇ 1 L, the transmission line distortion is compensated.
- the outputs of the multipliers 8-1 to 8 _L in which the transmission line distortion has been compensated are added by the adder 10 to perform rake combining and input to the subtractor 11.
- the function of compensating for the transmission line distortion is as follows.
- the update speed of the antenna weight by the adaptive update algorithm used in the MMSE control circuit 5-1 to 5-L Therefore, by separately separating the compensation function of the channel distortion, control is performed so that the instantaneous SIR is maximized by the rake combining by the adder 10.
- the antenna weights generated by the MMSE control circuits 5-1 to 5_L do not compensate for the transmission path distortion of the desired signal, but control so that the signal arrival direction and the average SIR are maximized. I do.
- the subtracter 11 subtracts the rake combined output of the adder 10 from the output of the reference signal generation circuit 12 to generate a common error signal.
- the common error signal is divided into L respective multipliers 9 — 1 ⁇ 9 ⁇ 1 L is multiplied by the transmission line distortion estimated by the transmission line estimation circuit 6 ⁇ 1 ⁇ 6 ⁇ L, and sent to each of the L MMSE control circuits 5-1-5 ⁇ L.
- the adaptive update algorithm used in each of the L MMSE control circuits 5-1 to 5-L uses a high-speed RLS (Recursive Least Square) algorithm, and is independent for each finger.
- RLS Recursive Least Square
- FIG. 3 is a configuration diagram showing a CDMA adaptive antenna receiving apparatus according to the present invention when a common error signal is used.
- the number of receiving antennas is N (N is an integer of 2 or more), the number of multipaths is L (L is an integer of 1 or more), and a CDMA adaptive antenna receiving device for the kth user (k is an integer of 1 or more) Will be described.
- the CDMA adaptive antenna receiving apparatus of the present invention supports multi-paths with N receiving antennas 11 1 to 11 N and L paths for the k-th user. It is composed of L signal processing means 20-1 to 20-L, an adder 10, a subtractor 11, and a reference signal generation circuit 12.
- the L signal processing means 20 0-1 to 20-L corresponding to each multipath have the same configuration, and include a delay device 2-1 to 2-L and N despreading circuits 3-1-1 to 3—L—N, antenna weighting / synthesizing circuit 4-1 1 to 4-L, MM SE control circuit 5-1 to 5—L, channel estimation circuit 6_1 to 6_L, complex conjugate circuit 7-1 to 7 — L and multipliers 8—1 to 8—L and 9—1 to 9—L.
- Each of the N receiving antennas 11 1 to 11 N receives a signal in which a desired signal and a plurality of interference signals are multiplexed, and is located close to each other so that the received signals are correlated.
- Delay device 2— :! 2 to L are distinguished from the 1st path to the Lth path by delaying the signals received by N reception antennas 1-1 to 1-N according to each of the L multipaths Is done.
- the received signals output from the delay units 2-1 to 2 _ L are despread by the despreading circuit 3-1 1 to 3 _ L-N, and then the antenna weighting and combining circuit 4-! ⁇ 4-L and MMSE control circuit 5-1 to 5-L are sent.
- FIG. 4 is a block diagram showing a configuration of the antenna weighting / synthesizing circuits 411 to 4-1L.
- Each of the antenna weighting / synthesizing circuits 4-1 to 4-L has the same configuration, and includes multipliers 13_1 to 13-N and an adder 14.
- the following description will be made taking the signal processing means 20-1 as an example.
- the received signal despread by the despreading circuit 3-1-1-3-1-N is converted into the MMSE control circuit by the multiplier 13-1-1-3-N
- the antenna weights generated in 5-1 are multiplied, added by an adder 14 and weighted and combined, and sent to the transmission path estimating circuit 6-1 and the multiplier 8-1 in FIG.
- the antenna weighting / synthesizing circuit 4-1 controls the amplitude and phase of the received signals of the receiving antennas 11-1 to 11-N to provide a gain to the desired signal, and to suppress the interference to receive the array antenna. To form a directivity.
- the transmission path estimation circuit 6-1 estimates the transmission path distortion using the output of the antenna weighting / synthesizing circuit 4-1 and sends the estimation result to the complex conjugate circuit 7-1 and the multiplier 9-1.
- the complex conjugate circuit 711 generates a complex conjugate of the transmission path distortion estimated by the transmission path estimation circuit 6-1.
- the complex conjugate of the transmission path distortion generated by the complex conjugate circuit 7-1 is multiplied by the output of the antenna weighting / synthesizing circuit 411 by the multiplier 8-1, thereby compensating the transmission path distortion.
- the outputs of the multipliers 8-1 to 8 _L whose transmission line distortion has been compensated are added by an adder 10 to perform rake combining, and input to a subtracter 11.
- the function of compensating for this transmission line distortion is based on the MMSE control circuit 5— :! In the update rate of the antenna weights by the adaptive update algorithm used in 5-L, it is not possible to compensate for the transmission path distortion in time. Control to maximize the instantaneous SIR. At this time, the MM SE control circuit 5— :! With the antenna weights generated by ⁇ 5-L, the transmission path distortion of the desired signal is not compensated, and the signal arrival direction and the average SIR are controlled to be maximum.
- the transmission path estimation circuits 6-1 to 6-L provided for the transmission path distortion compensation function are, for example, V o 1. J 72-BII, N o. 1, pp. 7-15, 1989, as described in the “16 QAM phasing distortion compensation scheme for land mobile communications”
- V o 1 J 72-BII, N o. 1, pp. 7-15, 1989
- the antenna weight updating circuit 4-1 to 4—L cannot update the antenna weight in the MM SE control circuit 5-1 to 5—L in time.
- Each output has a large phase difference with each other.
- a function for compensating for transmission line distortion specifically, a transmission line estimation circuit 6-1 to 6-L and a complex conjugate circuit 7-1 to 7-L are further provided to provide a transmission path fluctuation.
- the function of compensating for the transmission line distortion is used to control the phase difference between each finger output to be small, perform accurate rake combining, and maximize the instantaneous SIR by rake combining. It is. If the transmission line fluctuation is slow,? ⁇ 1 ⁇ 3 £ Control circuit 5 _ 1-5-L In order to keep up with the update speed of the antenna weight sufficiently, the phase difference of each output of the antenna weighting and combining circuit 4-1-4-1 L is controlled to be sufficiently small. Therefore, there is no need to have a function of compensating for transmission line distortion, but it is clear that it may be.
- the present invention provides a solid line 1 shown in FIG.
- the BER Bit Error Rate
- the horizontal axis is Eb / No (signal power to noise power ratio) per bit of data symbol.
- the faster the fluctuation of the transmission line the more the characteristic deteriorates as indicated by the one-dot chain line 200.
- the subtracter 11 subtracts the rake combined output of the adder 10 from the output of the reference signal generation circuit 12 to generate a common error signal.
- the common error signal is divided into L respective multipliers 9 one:! 9L is multiplied by the transmission path distortion estimated by the transmission path estimation circuits 6-1 to 6-L and sent to the L MMSE control circuits 5-1 to 5-L.
- a common error signal multiplied by the transmission line distortion and a despreading circuit 3-1 to 1-3 are applied to the multipliers 9_1 to 9-L.
- Antenna weight is controlled so that the root mean square of the common error signal is minimized using the antenna reception signals corresponding to each multipath output by L ⁇ N.
- the adaptive update algorithm used in each of the L MMSE control circuits 5-1 to 5_L is independently controlled for each finger using the RLS (Recursive Least Square) algorithm, which is a fast algorithm.
- RLS Recursive Least Square
- Nth order correlation matrix -Use an algorithm that controls the weight.
- xk, i (m) [ y k, i, i (m), yk, i, 2 (m),, yk, l, N (m)] T
- T represents transposition
- the antenna weight is adaptively controlled based on the MMSE criterion so that the common error signal e k (m) is minimized.
- W k) 1 (m) W k> 1 (m-1) + Tk'lRxxk'r 1 (m-1) Xk, l (m) e k> 1 * (m)
- wk ' ⁇ (m) [Wk, i , i (m), Wk, i, 2 (m), ⁇ , Wk, i, N r
- equations (16) and (17) must calculate the inverse matrix of the correlation matrix R xxkil , both equations (13) and (14) can be used to reduce the computational complexity of this inverse matrix calculation. Inverting the edges using the matrix formula gives Is
- the multipath signal is separated by the spreading code, and the correlation between each finger is almost eliminated. Therefore, each finger independently calculates the antenna weight using the Nth-order correlation matrix RLS (Recursive Least Square) Algorithm and
- NXL This is equivalent to the RLS (Recursive Least Square) algorithm that calculates the next correlation matrix.
- RLS Recursive Least Square
- R 1] L is the autocorrelation matrix of finger 1
- R22 is the autocorrelation matrix of finger 2
- R 12 is the cross correlation matrix of finger 1 and finger 2
- R 21 is the cross correlation of finger 1 and finger 1
- Each represents a correlation matrix.
- W (m) is the weight vector of finger 1 and finger 2 of the m symbol
- W T (m) is the weight vector of finger 1 of the m symbol
- W 2 (m) is the finger of the m symbol.
- Weight vector X (m) is the despread signal vector of finger 1 and finger 1 of the mth symbol
- d (m) is the despread signal vector of finger 1 of the mth symbol
- X 2 (m ) Represents the despread signal vector of the m-th symbol's finger 1-2
- E (m) is multiplied by the transmission path distortion of the finger m-1 and the transmission path distortion h 2 of finger 2. Each represents a common error signal.
- the optimal weights obtained in circuit 5 are equivalent.
- W is the weight vector of finger 1 and finger 1
- W x is the weight vector of finger 1
- W 2 is the weight vector of finger 2
- S is the correlation vector of finger 1 and finger 2
- Si is The correlation vector of finger 1 and S 2 represent the correlation vector of finger 2 respectively.
- the function of compensating for the transmission line distortion and the MM SE control circuit 5-1 to 5-L for generating the antenna weight are separated from each other so that the MM SE control circuit 5—
- the antenna weights generated by 1 to 5—L do not compensate for the transmission path distortion of the desired signal, but control so that the signal arrival direction and the average SIR are maximized.
- Rake combining by adder 10 Can be controlled to maximize the instantaneous SIR.
- FIG. 6 is a configuration diagram showing another embodiment of the present invention. 6, the same components as those in FIG. 3 are indicated by the same reference numerals.
- the difference between the configuration shown in FIG. 6 and the configuration shown in FIG. 3 is that a decision unit 15 that decides the symbol data of the rake combined output that is the output of the adder 10, and that the decision output and the reference signal generation circuit 1 That is, a switch 16 provided between the second output and the second output is added.
- a decision unit 15 that decides the symbol data of the rake combined output that is the output of the adder 10
- a switch 16 provided between the second output and the second output
- the rake combined output of the adder 10 is input to the decision unit 15, and the output of the decision unit 15 is not only output as the reception symbol of the k-th user, but also the reference signal during reception other than the known pilot signal. It is also sent to Switch 16 because it is used as The reference signal generation circuit 12 generates a known pilot signal, and the switch 16 selects the output of the reference signal generation circuit 12 when receiving a pilot signal. 15 Select the output of the receive symbol of 5 and send it to the subtractor 11. As a result, the subtractor 11 uses not only the output of the reference signal generation circuit 12 but also the output of the decision unit 15 to calculate a common error signal, and each of the L MMSE control circuits 5-1 to 5—Adaptive update used in L
- This embodiment has a new effect that the antenna weight of the adaptive update algorithm used in each of the L MMSE control circuits 5-1 to 5-L can be converged more quickly.
- FIG. 7 shows another CDMA adaptive antenna receiving apparatus of the present invention when this SMI algorithm is used as an adaptive update algorithm used in each of the L MMSE control circuits 5-1 to 5-L.
- a subtractor for calculating a common error signal by subtracting the rake combined output of the adder 10 from the output of the reference signal generation circuit 12 is removed, and a signal output from the reference signal generation circuit 12 is used instead of the common error signal.
- the reference signal multiplied by the transmission line distortion and the despreading circuit 3-1-1-1 to The antenna weight is controlled using the antenna reception signals corresponding to each multipath output by 3-LN.
- R X xk, l (m) ⁇ R xx k, l (m-1)
- the antenna weights generated by the L MMSE control circuits 5_1 to 5-L are:
- the MM SE control circuit that compensates for the transmission line distortion and generates the antenna weight 5— :! -5-L is separated separately, so that the antenna weights generated by the MMSE control circuits 5-1-5-L do not compensate for the transmission path distortion of the desired signal. Control can be performed to maximize the instantaneous SIR by the rake combining by the adder 10, and the same effect can be obtained that can improve the characteristic deterioration. can do.
- FIG. 8 is a configuration diagram showing another CDMA adaptive antenna receiving apparatus of the present invention when an RLS (Recursive Least Square) algorithm is used as an adaptive updating algorithm used in one MMSE control circuit 5.
- Another configuration of the CDMA adaptive antenna receiving apparatus according to the present invention is a transmission channel estimating circuit having a function of compensating for channel distortion to signal processing means 30-1 to 30-L of the conventional CDMA adaptive antenna receiving apparatus. 6-1 to 6-L, complex function circuit 7-1 to 7-L and multipliers 8-1 to 8_L, 9-1 to 9-L are further provided.
- the L signal processing means 25-1 to 25-L corresponding to each multipath are provided with a delay device 2— :! ⁇ 2—L, N despreading circuits 3-1—1 to 3—L—N, antenna weighting synthesis circuit 41 :! 4 _L, channel estimation circuit 6-1-6 _L, complex conjugate circuit 7-1-7-L and multipliers 8-1-8 -L, 9-1-9-L .
- the function of compensating for the transmission line distortion and the MM SE control circuit 5 that generates the antenna weight are separated separately, so that the antenna weight generated by the MM SE control circuit 5 is different.
- Without compensating for the transmission line distortion of the desired signal controlling to maximize the signal arrival direction and average SIR, and controlling to maximize the instantaneous SIR by rake combining by the adder 10. It is possible to improve the characteristic deterioration.
- FIG. 9 is a configuration diagram showing another CDMA adaptive antenna receiving apparatus of the present invention when an RLS (Recursive Least Square) algorithm is used as an adaptive updating algorithm used in one MMSE control circuit 5.
- a determinator 15 is provided at the rake combined output of the calorie calculator 10, and a switch 16 is provided between the output of the determinator 15 and the output of the reference signal generation circuit 12.
- the signal processing means 25-1 to 25-L include a transmission path estimation circuit 6 _ 1 to 6 _L, a complex conjugate circuit 7-1 to 7 _L, and a Containers 8-1 to 8-L, 9-1 to 9-1 L are provided.
- the subtractor 11 calculates the common error signal using not only the output of the reference signal generation circuit 12 but also the output of the decision unit 15, and calculates the antenna weight of the adaptive update algorithm used in the MMSE control circuit 5.
- the function of compensating for the transmission line distortion and the MMSE control circuit 5 that generates the antenna weight are separated separately, so that the antenna weight generated by the MMSE control circuit 5 is: Control to maximize signal arrival direction and average SIR without compensating for transmission path distortion of desired signal, and to maximize instantaneous SIR by rake combining by adder 10 And characteristic deterioration can be improved.
- This embodiment has a new effect that the antenna weight of the adaptive update algorithm used in the MMSE control circuit 5 can be converged more quickly.
- FIG. 10 is a configuration diagram showing another CDMA adaptive antenna receiving apparatus of the present invention when the SMI algorithm is used as the adaptive update algorithm used in one MMSE control circuit 5.
- the signal processing means 25-1 to 25-L have a transmission path estimating circuit 6-1 to 6-L, a complex conjugate circuit 7-1 to 7-1 L and a multiplier 8 _, which are functions for compensating for transmission path distortion. 1-8-L, 9-1-9-L are provided.
- the function of compensating for the transmission line distortion and the MMSE control circuit 5 that generates the antenna weight are separated separately, and the antenna generated by the MMSE control circuit 5 is separated.
- the weight does not compensate for the transmission path distortion of the desired signal, but controls so that the arrival direction of the signal and the average SIR are maximized, and maximizes the instantaneous SIR by rake combining by the adder 10. It can be controlled, and the characteristic deterioration can be improved.
- the present invention can be applied to an adaptive antenna receiver other than the CDMA system.
- an adaptive updating algorithm is used independently for each finger so that the root mean square of the common error signal after rake combining is minimized.
- the weight coefficient is controlled, it can be used in all MMSE control circuits.
- the amount of operation of the adaptive update algorithm used can be greatly reduced from (NL) 2 to N2L, which has the effect of reducing the processing load on the arithmetic circuit.
- the function of compensating for the transmission line distortion and the MMSE control circuit for generating the antenna weight are separated separately, so that the antenna generated by the MMSE control circuit is separated.
- the weight does not compensate for the transmission path distortion of the desired signal, but can be controlled to maximize the signal arrival direction and average SIR, and to control the instantaneous SIR by rake combining.
- characteristic deterioration can be improved.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Radio Transmission System (AREA)
Abstract
An adaptive antenna receiver having an arithmetic unit the load on which is lightened by greatly reducing the computational complex of an adaptive update algorithm for calculating the antenna weighting factor. The antenna weight is controlled by allowing each finger to independently use an adaptive update algorithm so that the mean square of the common error signal after Rake combining is minimum, thus greatly reducing the computational complexity. If the transmission line fluctuation is quick, the function of compensating the transmission line distortion is separated from MMSE control circuits (5-1 to 5-L) for generating the antenna weight. The transmission line distortion of a desired signal is not compensated by using the antenna weight generated by the adaptive update algorithm, and control is so made that the direction of arrival of the signal and the average SIR may be maximum and that the instantaneous SIR may be maximum by Rake combining. Therefore, the characteristic degradation is reduced.
Description
適応ァンテナ受信装置及びその受信方法 技術分野 TECHNICAL FIELD The present invention relates to an adaptive antenna receiving apparatus and its receiving method.
本発明は適応アンテナ受信装置及びその方法に関し、 特に CDMA方式の送 信信号を、 適応ァンテナを構成する複数のアンテナ素子から受信するようにし た適応アンテナ受信方式に関するものである。 背景技術 The present invention relates to an adaptive antenna receiving apparatus and method, and more particularly, to an adaptive antenna receiving method in which a CDMA transmission signal is received from a plurality of antenna elements constituting an adaptive antenna. Background art
CDMA (Code Division Multiple Access :符号分割多元接続) 方式は、 加 入者容量を大幅に増大させることができる無線伝送方式として注目されている。 従来、 CDMA方式で使用される CDMA適応アンテナ受信装置は、 例えば、 王、 河野、 今井による 「スペクトル拡散多元接続のための拡散処理利得を用い た TDLァダプティブアレーアンテナ」 (電子情報通信学会論文誌 Vo l. J 75 -B I I , No. 11, p . 815 - 825, 1992) および田中、 三木、 佐和橋による 「DS— CDMAにおける判定帰還型コヒーレン卜適応ダ ィバーシチの特性」 (電子情報通信学会、 無線通信システム研究会技術報告書 RCS 96- 102, 1996年 1 1月) に記載されているように、 アンテナ 重み制御の際、 逆拡散後に抽出した重み制御誤差信号を用いることで、 適応制 御において受信 S I R (Signal to Interference Ratio:希望波信号電力対干渉波 信号電力比) を最大にするアンテナ指向性パターンを形成し、 干渉除去に用い られている。 The CDMA (Code Division Multiple Access) system is attracting attention as a wireless transmission system that can greatly increase the subscriber capacity. Conventionally, CDMA adaptive antenna receivers used in the CDMA system include, for example, “TDL adaptive array antenna using spreading processing gain for spread spectrum multiple access” by Wang, Kono, and Imai. J. Vol. J 75-BII, No. 11, p. 815-825, 1992) and Tanaka, Miki, and Sawahashi, “Characteristics of Decision Feedback Coherent Adaptive Diversity in DS-CDMA” (The Institute of Electronics, Information and Communication Engineers, As described in the Technical Report of the Radio Communication Systems RCS 96-102, January 1996), adaptive control is performed by using the weight control error signal extracted after despreading in antenna weight control. The antenna directivity pattern that maximizes the received SIR (Signal to Interference Ratio) is used for interference cancellation.
図 1 は共通誤差信号を用いた場合の従来の CDMA適応アンテナ受信装置の 一例を示す構成図である。 受信アンテナの数を N (Nは 2以上の整数)、 マルチ パスの数を L (Lは 1以上の整数) とし、 第 kユーザ (kは 1以上の整数) に 対する C DM A適応アンテナ受信装置について説明する。 FIG. 1 is a configuration diagram showing an example of a conventional CDMA adaptive antenna receiving apparatus when a common error signal is used. The number of receive antennas is N (N is an integer of 2 or more), the number of multipaths is L (L is an integer of 1 or more), and the CDMA adaptive antenna reception for the kth user (k is an integer of 1 or more) The device will be described.
従来、 この種の CDMA適応アンテナ受信装置は、 図 1に示されるように、 第 kユーザに対して、 Niの受信アンテナ 1一 1〜1— N、 パス数 Lのマルチ
パスに対応した L個の信号処理手段 3 0— 1〜3 0—L、 MM S E (Minimum Mean Square Error :最小平均 2乗誤差) 制御回路 5、 加算器 1 0、 減算器 1 1および参照信号生成回路 1 2で構成されている。 各マルチパスに対応した L 個の信号処理手段 3 0— 1〜3 0— Lはそれぞれ同一構成であり、 遅延器 2― 1〜2— L、 N個の逆拡散回路 3— 1一 1〜3— L— Nおよびアンテナ重み付 け合成回路 4一 1〜4—Lで構成されている。 Conventionally, this type of CDMA adaptive antenna receiving apparatus has a multiplicity of Ni receiving antennas 1-1 to 1—N and L paths for the kth user, as shown in FIG. L signal processing means 30 0 to 1 30 to L corresponding to paths, MMSE (Minimum Mean Square Error) control circuit 5, adder 10, subtractor 11, and reference signal It is composed of a generation circuit 12. The L signal processing means 30-1 to 30-L corresponding to each multipath have the same configuration, respectively, and include delay units 2-1 to 2-L and N despreading circuits 3-1-11-1 to 3—L—N and antenna weighting / synthesizing circuit 4-1-1-4L.
N個の受信アンテナ 1一 1 ~ 1— Nは、 それぞれの受信信号が相関を有する ように近接して配置されている。 遅延器 2— 1〜 2— Lは N個の受信アンテナ 1― 1〜 1一 Nで受信した信号を L個のそれぞれのマルチパスに対応して遅延 させることによって、 第 1パスから第 Lパスまでに区別される。 遅延器 2—1 〜 2— Lから出力された受信信号は逆拡散回路 3— 1— 1〜3— L一 Nにより 逆拡散された後、 アンテナ重み付け合成回路 4—:!〜 4— Lと MM S E制御回 路 5に送られる。 The N receiving antennas 11-1 to 1-N are arranged close so that the respective received signals have a correlation. The delay units 2-1 to 2-L are configured to delay the signals received by the N receiving antennas 1-1 to 1-1N in accordance with each of the L multipaths. Are distinguished by The received signals output from the delay units 2-1 to 2—L are despread by the despreading circuits 3-1 to 1-3—L1N, and then the antenna weighting and combining circuit 4—! 4 to L—Sent to MMSE control circuit 5.
図 2はァンテナ重み付け合成回路 4一:!〜 4一 Lの各々の構成を示すプロッ ク図である。 アンテナ重み付け合成回路 4— 1〜4一 Lの各々は、 それぞれ同 一構成であり、 乗算器 1 3 - :!〜 1 3 - Nおよび加算器 1. 4で構成されている。 説明を簡単にするために、 以下は、 信号処理手段 3 0— 1を例にとりその構成 を説明する。 Figure 2 shows the antenna weighting synthesis circuit. 4 is a block diagram showing a configuration of each of L to L. FIG. Each of the antenna weighting / synthesizing circuits 4-1 to 4-L has the same configuration, and the multiplier 13-:! ~ 13-N and adder 1.4. For the sake of simplicity, the configuration of the signal processing means 30-1 will be described below as an example.
ァンテナ重み付け合成回路 4— 1は、 逆拡散回路 3— 1— 1〜3— 1— Nに より逆拡散された信号を受信する。 アンテナ重み付け合成回路 4— 1内の乗算 器 1 3— 1〜1 3— Nにより、 前記受信信号が MM S E制御回路 5で生成した アンテナ重みで乗算され、 更に、 加算器 1 4により加算されて、 重み付け合成 が行われ、 図 1の加算器 1 0に送られる。 アンテナ重み付け合成回路 4—1は、 受信アンテナ 1一 1〜 1—Nの受信信号の振幅及び位相を制御することで、 希 望信号に利得を有し且つ干渉を抑圧して受信するように、 アレーアンテナの指 向性を形成する。 The antenna weighting / synthesizing circuit 4-1 receives the signal despread by the despreading circuits 3-1-1-3-1-N. The received signal is multiplied by the antenna weights generated by the MMSE control circuit 5 by the multipliers 13-1 to 13 -N in the antenna weighting and combining circuit 4-1, and further added by the adder 14. , Weighted synthesis, and sent to the adder 10 in FIG. The antenna weighting / synthesizing circuit 4-1 controls the amplitude and phase of the reception signals of the reception antennas 11-1 to 1-N so that the reception signal has a gain and the interference is suppressed so that the reception is performed. It forms the directionality of the array antenna.
加算器 1 0によりアンテナ重み付け合成回路 4一 1〜4一 Lの出力を加算す ることにより、 レイク合成が行われ、 減算器 1 1に入力される。 減算器 1 1は 参照信号生成回路 1 2の出力から加算器 1 0のレイク (R AK E) 合成出力を
減算して共通誤差信号を生成し、 この共通誤差信号を MM S E制御回路 5に送 る。 MMSE制御回路 5では、 減算器 11から得られる共通誤差信号と逆拡散 回路 3— 1— 1〜3—L— Nにより出力されたそれぞれのマルチパスに対応し たアンテナ受信信号とを用いて、 共通誤差信号の 2乗平均が最小となるように アンテナ重みを制御する。 ここで、 MMSE制御回路 5で使用される適応更新 アルゴリズムは瞬時の伝送路変動もアンテナ重みで追従させるため、 なるべく 高速なアルゴリズム、 例えば RLS (Recursive Least Square) アルゴリズム を用いることができる。 Rake combining is performed by adding the outputs of the antenna weighting and combining circuits 41 1 to 41 L by the adder 10, and the result is input to the subtractor 11. The subtracter 11 converts the output of the reference signal generation circuit 12 from the rake (RAKE) composite output of the adder 10. The common error signal is generated by subtraction, and the common error signal is sent to the MMSE control circuit 5. The MMSE control circuit 5 uses the common error signal obtained from the subtractor 11 and the antenna reception signal corresponding to each multipath output by the despreading circuits 3-1-1 to 3-L-N, The antenna weight is controlled so that the root mean square of the common error signal is minimized. Here, since the adaptive update algorithm used in the MMSE control circuit 5 also makes the instantaneous transmission line fluctuation follow the antenna weight, an algorithm as fast as possible, for example, an RLS (Recursive Least Square) algorithm can be used.
第 kユーザに対する 1 (1 = 1〜L) 番目のマルチパス伝搬路を通って受信 された mシンポル目の (シンボル周期を Tとすると時刻 mT) 信号の処理動作 について説明すると、 n (n=l〜N) 番目の受信アンテナで受信された逆拡 散信号 yk,l,n (m) は、 アンテナ重み付け合成回路 4一 1〜4一 L内の乗算器 13— 1〜13— Nにより MM S E制御回路 5で生成されたアンテナ重みが乗 算され、 加算器 14により重み付け合成される。 The processing operation of the mth symbol (time mT when the symbol period is T) received through the 1 (1 = 1 to L) multipath channel for the kth user will be described as follows. The despread signals y k , l, n (m) received by the (l ~ N) th receiving antennas are given by the multipliers 13-1 to 13-N in the antenna weighting / synthesizing circuit 4-1-4-1 L The antenna weights generated by the MMSE control circuit 5 are multiplied, and weighted and combined by the adder 14.
n番目の受信アンテナのアンテナ重みを wk,l5n (m) とすると、 k番目のュ 一ザに対する 1番目のパスのアンテナ合成出力 zki (m) は、 Assuming that the antenna weight of the n-th receiving antenna is w k , l5n (m), the antenna combined output z k i (m) of the first path for the k-th user is
N N
zk,l{m) = ム. Yk, n(m)wk,£,n *(m) (1) zk, l (m) = m. Yk, n (m) w k , £ , n * (m) (1)
n=1 ' n = 1 '
と表される。 ここで、 *は複素共役を表している (以下同じ)。 It is expressed as Here, * represents a complex conjugate (the same applies hereinafter).
図 1の加算器 10によりアンテナ重み付け合成回路 4一 1〜4一 Lの出力を 加算することにより、 レイク (RAKE) 合成が行われる。 k番目のュ一ザに 対するレイク合成出力 zk (m) は、 i ) = II z n (m) (2) RAKE combining is performed by adding the outputs of the antenna weighting combining circuits 41 1 to 41 L by the adder 10 in FIG. The rake composite output z k (m) for the kth user is i) = II zn (m) (2)
£=1 ' と表され、 このレイク合成出力 zk (m) が減算器 1 1に入力される c
MMSE制御回路 5で使用される R L S (Recursive Least Square) ァルゴ リズムは現時点までの全ての入力サンプルを用いて、 指数重み付け誤差の 2乗 和を直接最小化するようにアンテナ重みを制御する。 ここで、 指数重み付け誤 差の 2乗和は、
と表される。 ここで、 ο;は 0く ≤1の重み付け定数であり、 ek (m) は減算 器 1 1により参照信号生成回路 12の出力から加算器 10のレイク合成出力を 減算して得られる共通誤差信号を表している。 £ = 1 ', and this rake composite output z k (m) is input to the subtracter 1 1 c The RLS (Recursive Least Square) algorithm used in the MMSE control circuit 5 controls the antenna weights so as to directly minimize the sum of squares of the exponential weighting error using all input samples up to the present. Where the sum of squares of the exponential weighted error is It is expressed as Here, ο; is a weighting constant of 0 to ≤1, and e k (m) is a common error obtained by subtracting the rake combined output of the adder 10 from the output of the reference signal generating circuit 12 by the subtractor 11. Represents a signal.
減算器 1 1により参照信号生成回路 12の出力から加算器 10のレイク合成 出力を減算して共通誤差信号を生成し、 この共通誤差信号を MM S E制御回路 5へ出力する。 共通誤差信号 ek (m) は、 ek(m) = Zk(m)_ Z m) (4) The subtracter 11 subtracts the rake combined output of the adder 10 from the output of the reference signal generation circuit 12 to generate a common error signal, and outputs the common error signal to the MMSE control circuit 5. The common error signal e k (m) is e k (m) = Zk (m) _ Z m) (4)
( Zk(m)は k番目のユーザに対する参照信号とする ) (Z k (m) is the reference signal for the k-th user.)
のように表される。 It is represented as
RLS (Recursive Least Square) アルゴリズムにおいては、 上記式 (3) に基づいて指数重み付けの時間平均により、 相関行列 Rxxk を、 In the RLS (Recursive Least Square) algorithm, the correlation matrix R xxk is calculated by exponentially weighted time average based on the above equation (3).
Rxxk (0) =<5U (m=0) …… (5) Rxxk (0) = <5U (m = 0) …… (5)
Rxxk 、m) = a RYXv (m— 1) +Xk (m) (m) Rxxk, m) = a R YX v (m— 1) + Xk (m) (m)
(m= 1 , 2, 3, ······ ) …… (6) (m = 1, 2, 3, ...) ... (6)
と計算する。 ただし、 (5は正定数、 Hは複素共役転置、 Uは単位行列をそれぞ れ表している。 また、 Xk (m) は逆拡散回路 3— 1—:!〜 3—L— Nにより出 力された逆拡散信号の逆拡散信号ベクトルを表している。 Xk (m) は次式のよ うに定義される。Is calculated. Where (5 is a positive constant, H is a complex conjugate transpose, and U is an identity matrix. X k (m) is a despreading circuit 3-1:! ~ 3—L—N It represents the despread signal vector of the output despread signal, where Xk (m) is defined as follows.
k (m) = [yk,i,i (m)' yk,i,2 (m), ···, yk'i'N (m), k ( m ) = [yk, i, i ( m ) 'yk, i, 2 (m), ..., yk'i'N ( m ),
Yk.2,1 (m), k,2,2 (m), ···' Vk,2,N (m),
yk'L'l (m), Yk,L,2 (m), ···, Yk,L,N (m)] T Yk.2,1 ( m ), k, 2,2 ( m ), ... 'Vk, 2, N (m), yk'L'l (m), Yk, L, 2 (m), ..., Yk, L, N (m)] T
…… (7) ここで、 Tは転置を表している (以下同じ)。 …… (7) where T represents transpose (the same applies hereinafter).
MMSE制御回路 5で使用される適応更新アルゴリズムは、 減算器 1 1から 得られる共通誤差信号 ek (m) と、 逆拡散回路 3— 1一 1〜3— L—Nにより 出力されたアンテナ受信信号とを用いて、 アンテナ重みを更新する。 この処理 において、 アンテナ重みは共通誤差信号 ek (m) が最小となるように MMSE 基準により適応的に制御され、 アンテナ重みの更新式は、 The adaptive update algorithm used in the MMSE control circuit 5 includes a common error signal e k (m) obtained from the subtractor 11 and the despreading circuit 3-1 1 1 to 3—L-N. The antenna weight is updated using the signal. In this process, the antenna weight is adaptively controlled based on the MMSE criterion so that the common error signal e k (m) is minimized.
Wk (m) =Wk (m— 1) W k (m) = W k (m— 1)
+ Tk Rxxk"1 Xk (m) ek* (m) ······ (8) + Tk Rxxk " 1 Xk (m) ek * (m) (8)
1 1
(9) a +X k(m) R^Cm-DX k(m) と表される。 (9) expressed as a + X k (m) R ^ Cm-DX k (m).
ここで、 Wk (m) は MMSE制御回路 5で生成されるアンテナ重みのアンテ ナ重みべクトルを表しており、 Here, W k (m) represents the antenna weight vector of the antenna weight generated by the MMSE control circuit 5, and
W¾- (m) = [Wk,i 1 (m), w¾.>1)2 (m), ···, Wk,i,]sr (m), W¾- (m) = [Wk, i 1 (m), w¾. > 1) 2 (m), ···, Wk, i,] sr (m),
wk,2,l (m), Wk,2,2 (m), ·'·, wk?2,N (m), wk,L,l (m), wk;L;2 (m), ···, wk,L,N (m)] Twk, 2, l (m), Wk, 2,2 (m), · '·, w k? 2 , N (m), wk, L, l (m), w k; L; 2 (m) , ···, w k , L , N (m)] T
…… (10) のように定義される。 ...... Defined as (10).
式 (8)、 式 (9) は相関行列 Rxxk の逆行列を計算しなければならないの で、 行列公式を用いて逆行列化すると、 R^i 1は、 Equations (8) and (9) must calculate the inverse matrix of the correlation matrix R xxk , so if the matrix is inverted using the matrix formula, R ^ i 1 becomes
Rxxk"1 (0)
(m=0) …… (11)
R"xxk(m) ^ xxk (m-1 )—' Rxxk " 1 (0) (m = 0) …… (11) R "xxk (m) ^ xxk (m-1) — '
a^+ a X k mi R xxi^Cm-DX^dn) (m= 1 , 2 , 3 ,……) a ^ + a X k mi R xxi ^ Cm-DX ^ dn) (m = 1, 2, 3, ……)
(12) と表される。 (12).
しかし、 この従来技術は次のような問題点がある。 第 1の問題点は、 MM S E制御回路 5で使用される適応更新アルゴリズムの演算量が大規模になること である。 演算量が大規模なため演算回路に処理負荷がかかる。 その理由は、 共 通誤差信号を用いているため、 共通誤差信号の 2乗平均が最小となるようにァ ンテナ重みを制御する適応更新アルゴリズムは(N X L)次の相関行列 Rxxkを 計算しなければならないからである。 However, this conventional technique has the following problems. The first problem is that the amount of operation of the adaptive update algorithm used in the MMSE control circuit 5 becomes large. Since the amount of calculation is large, a processing load is applied to the calculation circuit. The reason is that since the common error signal is used, the adaptive update algorithm that controls the antenna weights so that the root mean square of the common error signal is minimized must calculate the (NXL) -order correlation matrix R xxk. Because it must be.
第 2の問題点は、 MM S E制御回路 5で使用される適応更新アルゴリズムは、 瞬時の伝送路変動もアンテナ重みで追従させるため、 伝送路変動が速い場合に は特性が劣化する、 ということである。 その理由は、 伝送路変動が速い場合に は、 重み付け定数を小さく設定する必要があり、 それにより雑音の低減効果が 小さくなるからである。 発明の開示 The second problem is that the adaptive update algorithm used in the MMSE control circuit 5 follows the instantaneous transmission line fluctuation with the antenna weight, so that the characteristics deteriorate when the transmission line fluctuation is fast. is there. The reason is that when the fluctuation of the transmission line is fast, the weighting constant must be set small, and the effect of reducing noise is reduced. Disclosure of the invention
本発明の目的は、 アンテナ重み係数を算出するための適応更新アルゴリズム の演算量の大幅な削減を図って、 演算回路の処理負荷を軽くした適応アンテナ 受信装置及びその受信方法を提供することである。 An object of the present invention is to provide an adaptive antenna receiving apparatus and a receiving method thereof, in which the amount of operation of an adaptive updating algorithm for calculating an antenna weight coefficient is significantly reduced, and the processing load of an arithmetic circuit is reduced. .
本発明の他の目的は、 伝送路変動が速い場合における特性劣化を改善するこ とが可能な適応アンテナ受信 g置及びその方法を提供することである。 Another object of the present invention is to provide an adaptive antenna receiving device capable of improving characteristic degradation when transmission line fluctuation is fast and a method thereof.
本発明による適応アンテナ受信装置は、 複数のアンテナ素子からの受信信号 を各フィンガー毎に逆拡散処理する逆拡散手段と、 前記逆拡散手段からそれぞ れ出力される逆拡散信号に重み係数を乗算する重み係数乗算手段と、 前記重み 係数乗算手段からの各出力に基づき伝送路歪みを推定する伝送路歪み推定手段 と、 これら推定された伝送路歪みの各複素共役を生成する複素共役手段と、 こ れら各複素共役と前記重み係数乗算手段からの各出力とを乗算して伝送路歪み
を補償する乗算手段と、 前記乗算手段の各出力を加算してレイク合成する合成 手段と、 この合成後の出力と参照信号との共通誤差信号を生成してこの共通誤 差信号に前記伝送路歪みの各々を乗算して導出する誤差信号生成手段と、 前記 誤差信号生成手段の各出力と前記逆拡散信号の各々とを用いて各フィンガー毎 に、 前記共通誤差信号の 2乗平均が最小となるように前記重み係数を制御する 制御手段とを含む。 An adaptive antenna receiving apparatus according to the present invention comprises: despreading means for despreading a received signal from a plurality of antenna elements for each finger; multiplying a despread signal output from each of the despreading means by a weight coefficient. Weighting factor multiplying means, channel distortion estimating means for estimating channel distortion based on each output from the weighting factor multiplying means, and complex conjugate means for generating each complex conjugate of the estimated channel distortion. Each of these complex conjugates is multiplied by each output from the weighting coefficient multiplying means to obtain transmission path distortion. Multiplying means for compensating for the above, combining means for adding the respective outputs of the multiplying means and performing rake combining, generating a common error signal between the combined output and the reference signal, and adding the common error signal to the transmission path. Error signal generating means for deriving by multiplying each of the distortions; and using each output of the error signal generating means and each of the despread signals, for each finger, the root mean square of the common error signal is minimized. Control means for controlling the weighting coefficient so that
本発明による他の適応アンテナ受信装置は、 複数のアンテナ素子からの受信 信号を各フィンガー毎に逆拡散処理する逆拡散手段と、 前記逆拡散手段からそ れぞれ出力される逆拡散信号に重み係数を乗算する重み係数乗算手段と、 前記 重み係数乗算手段からの各出力に基づき伝送路歪みを推定する伝送路歪み推定 手段と、 これら推定された伝送路歪みの各複素共役を生成する複素共役手段と、 これら各複素共役と前記重み係数乗算手段からの各出力とを乗算して伝送路歪 みを補償する第一の乗算手段と、 前記第一の乗算手段の各出力を加算してレイ ク合成する合成手段と、 前記伝送路歪みの各々と参照信号とを乗算する第二の 乗算手段と、 前記第二の乗算手段の各出力と前記逆拡散信号の各々とを用いて 各フィンガー毎に、 前記重み係数を制御する制御手段とを含む。 Another adaptive antenna receiving apparatus according to the present invention comprises: despreading means for performing despreading processing on received signals from a plurality of antenna elements for each finger; and weighting the despread signals output from the despreading means, respectively. Weight coefficient multiplying means for multiplying coefficients; transmission path distortion estimating means for estimating transmission path distortion based on each output from the weight coefficient multiplying means; and complex conjugate for generating each complex conjugate of the estimated transmission path distortion Means for multiplying each of the complex conjugates and each output from the weighting coefficient multiplying means to compensate for transmission line distortion; and Synthesizing means for multiplying each of the transmission line distortions and a reference signal; and using each output of the second multiplying means and each of the despread signals for each finger. The weight And a control means for controlling the coefficients.
本発明による更に他の適応アンテナ受信装置は、 複数のアンテナ素子からの 受信信号を各フィンガー毎に逆拡散処理する逆拡散手段と、 前記逆拡散手段か らそれぞれ出力される逆拡散信号に重み係数を乗算する重み係数乗算手段と、 前記重み係数乗算手段からの各出力に基づき伝送路歪みを推定する伝送路歪み 推定手段と、 これら推定された伝送路歪みの各複素共役を生成する複素共役手 段と、 これら各複素共役と前記重み係数乗算手段からの各出力とを乗算して伝 送路歪みを補償する乗算手段と、 前記乗算手段の各出力を加算してレイク合成 する合成手段と、 この合成後の出力と参照信号との共通誤差信号を生成してこ の共通誤差信号に前記伝送路歪みの各々を乗算して導出する誤差信号生成手段 と、 前記フィンガーに共通して設けられ、 前記誤差信号生成手段の各出力と前 記逆拡散信号の各々とを用いて前記共通誤差信号の 2乗平均が最小となるよう に前記重み係数を制御する制御手段とを含む。 Still another adaptive antenna receiving apparatus according to the present invention includes: despreading means for performing despreading processing on received signals from a plurality of antenna elements for each finger; and a weighting factor for a despread signal output from the despreading means. Weighting factor multiplying means, a channel distortion estimating means for estimating channel distortion based on each output from the weighting factor multiplying means, and a complex conjugate hand for generating each complex conjugate of the estimated channel distortion. A multiplying means for multiplying each of the complex conjugates and each output from the weighting coefficient multiplying means to compensate for transmission path distortion; a combining means for adding the respective outputs of the multiplying means to perform Rake combining; Error signal generating means for generating a common error signal between the combined output and the reference signal and multiplying the common error signal by each of the transmission line distortions to derive the common error signal; And control means for controlling the weighting coefficient so as to minimize the root mean square of the common error signal using each output of the error signal generation means and each of the despread signals.
本発明による別の適応アンテナ受信装置は、 複数のアンテナ素子からの受信
信号を各フィンガー毎に逆拡散処理する逆拡散手段と、 前記逆拡散手段からそ れぞれ出力される逆拡散信号に重み係数を乗算する重み係数乗算手段と、 前記 重み係数乗算手段からの各出力に基づき伝送路歪みを推定する伝送路歪み推定 手段と、 これら推定された伝送路歪みの各複素共役を生成する複素共役手段と、 これら各複素共役と前記重み係数乗算手段からの各出力とを乗算して伝送路歪 みを補償する第一の乗算手段と、 前記第一の乗算手段の各出力を加算してレイ ク合成する合成手段と、 前記伝送路歪みの各々と参照信号とを乗算する第二の 乗算手段と、 前記フィンガーに共通に設けられ、 前記第二の乗算手段の各出力 と前記逆拡散信号の各々とを用いて、 前記重み係数を制御する制御手段とを含 む。 Another adaptive antenna receiving apparatus according to the present invention is provided for receiving from a plurality of antenna elements. Despreading means for despreading the signal for each finger; weighting coefficient multiplying means for multiplying the despread signal output from the despreading means by a weighting coefficient; and Channel distortion estimating means for estimating channel distortion based on the output; complex conjugate means for generating each complex conjugate of the estimated channel distortion; and each complex conjugate and each output from the weight coefficient multiplying means. A first multiplication unit that compensates for transmission line distortion by multiplying each of the transmission line distortions; a combining unit that adds the outputs of the first multiplication unit to perform Rake combining; A second multiplying means for multiplying, and a control means provided in common to the fingers and controlling the weight coefficient using each output of the second multiplying means and each of the despread signals. .
本発明による受信方法は、 複数のアンテナ素子からの受信信号を各フィンガ —毎に逆拡散処理する逆拡散ステップと、 この逆拡散ステップからそれぞれ出 力される逆拡散信号に重み係数を乗算する重み係数乗算ステップと、 この重み 係数乗算ステップからの各出力に基づき伝送路歪みを推定する伝送路歪み推定 ステップと、 これら推定された伝送路歪みの各複素共役を生成するステップと、 これら各複素共役と前記重み係数乗算ステップからの各出力とを乗算して伝送 路歪みを補償する乗算ステップと、 この乗算ステップの各出力を加算してレイ ク合成する合成ステップと、 この合成後の出力と参照信号との共通誤差信号を 生成してこの共通誤差信号に前記伝送路歪みの各々を乗算して導出する誤差信 号生成ステップと、 前記誤差信号生成ステップの各出力と前記逆拡散信号の 各々とを用いて各フィンガー毎に、 前記共通誤差信号の 2乗平均が最小となる ように前記重み係数を制御する制御ステツプとを含む。 The receiving method according to the present invention comprises: a despreading step of despreading a received signal from a plurality of antenna elements for each finger; and a weight for multiplying the despread signal output from the despreading step by a weight coefficient. A coefficient multiplying step; a channel distortion estimating step of estimating a channel distortion based on each output from the weighting coefficient multiplying step; a step of generating each complex conjugate of the estimated channel distortion; A multiplication step for compensating for transmission line distortion by multiplying the output from the weighting coefficient multiplication step with each output from the weighting coefficient multiplication step; An error signal generating step of generating a common error signal with the signal and multiplying the common error signal by each of the transmission line distortions to derive the error signal; A control step of controlling the weighting coefficient such that the root mean square of the common error signal is minimized for each finger using each output of the signal generation step and each of the despread signals.
本発明による他の受信方法は、 複数のアンテナ素子からの受信信号を各フィ ンガー毎に逆拡散処理する逆拡散ステツプと、 この逆拡散ステップからそれぞ れ出力される逆拡散信号に重み係数を乗算する重み係数乗算ステップと、 この 重み係数乗算ステツプからの各出力に基づき伝送路歪みを推定する伝送路歪み 推定ステップと、 これら推定された伝送路歪みの各複素共役を生成するステツ プと、 これら各複素共役と前記重み係数乗算ステップからの各出力とを乗算し て伝送路歪みを補償する第一の乗算ステップと、 この第一の乗算ステップの各
出力を加算してレイク合成する合成ステップと、 前記伝送路歪みの各々と参照 信号とを乗算する第二の乗算ステップと、 この第二の乗算ステップの各出力と 前記逆拡散信号の各々とを用いて各フィンガ一毎に、 前記重み係数を制御する 制御ステップとを含む。 Another receiving method according to the present invention includes a despreading step for despreading a received signal from a plurality of antenna elements for each finger, and assigning a weight coefficient to the despread signal output from each of the despreading steps. A weighting factor multiplying step for multiplying, a channel distortion estimating step for estimating a channel distortion based on each output from the weighting factor multiplication step, and a step for generating each complex conjugate of the estimated channel distortion. A first multiplication step of multiplying each of these complex conjugates and each output from the weight coefficient multiplication step to compensate for transmission line distortion; A combining step of rake combining by adding outputs, a second multiplying step of multiplying each of the transmission path distortions by a reference signal, and each output of the second multiplying step and each of the despread signals. And controlling the weighting coefficient for each finger using the control method.
本発明による更に他の受信方法は、 複数のアンテナ素子からの受信信号を各 フィンガ一毎に逆拡散処理する逆拡散ステップと、 この逆拡散ステップからそ れぞれ出力される逆拡散信号に重み係数を乗算する重み係数乗算ステップと、 この重み係数乗算ステツプからの各出力に基づき伝送路歪みを推定する伝送路 歪み推定ステップと、 これら推定された伝送路歪みの各複素共役を生成するス テツプと、 これら各複素共役と前記重み係数乗算ステップからの各出力とを乗 算して伝送路歪みを補償する乗算ステップと、 この乗算ステップの各出力を加 算してレイク合成する合成ステップと、 この合成後の出力と参照信号との共通 誤差信号を生成してこの共通誤差信号に前記伝送路歪みの各々を乗算して導出 する誤差信号生成ステップと、 前記フィンガーに共通して設けられ、 前記誤差 信号生成ステップの各出力と前記逆拡散信号の各々とを用いて前記共通誤差信 号の 2乗平均が最小となるように前記重み係数を制御する制御ステップとを含 む。 Still another receiving method according to the present invention is a despreading step of despreading a received signal from a plurality of antenna elements for each finger, and weighting the despread signal output from the despreading step. A weighting coefficient multiplying step for multiplying the coefficients; a transmission path distortion estimating step for estimating transmission path distortion based on each output from the weighting coefficient multiplication step; and a step for generating each complex conjugate of the estimated transmission path distortion. A multiplication step of multiplying each of these complex conjugates and each output from the weight coefficient multiplication step to compensate for transmission line distortion; a combining step of adding the respective outputs of the multiplication step to perform rake combining; An error signal generating step of generating a common error signal between the combined output and the reference signal, and multiplying the common error signal by each of the transmission path distortions to derive the error signal; A control which is provided in common with the fingers and controls the weighting coefficient so as to minimize the root mean square of the common error signal using each output of the error signal generation step and each of the despread signals. Step.
本発明による別の受信方法は、 複数のアンテナ素子からの受信信号を各フィ ンガー毎に逆拡散処理する逆拡散ステツプと、 この逆拡散ステップからそれぞ れ出力される逆拡散信号に重み係数を乗算する重み係数乗算ステップと、 この 重み係数乗算ステップからの各出力に基づき伝送路歪みを推定する伝送路歪み 推定ステップと、 これら推定された伝送路歪みの各複素共役を生成するステツ プと、 これら各複素共役と前記重み係数乗算ステップからの各出力とを乗算し て伝送路歪みを補償する第一の乗算ステップと、 この第一の乗算ステップの各 出力を加算してレイク合成する合成ステップと、 前記伝送路歪みの各々と参照 信号とを乗算する第二の乗算ステップと、 前記フィンガーに共通に設けられ、 前記第二の乗算ステップの各出力と前記逆拡散信号の各々とを用いて、 前記重 み係数を制御する制御ステップとを含む。 Another receiving method according to the present invention includes a despreading step of despreading a received signal from a plurality of antenna elements for each finger, and assigning a weight coefficient to the despread signal output from each of the despreading steps. A weighting factor multiplying step of multiplying, a channel distortion estimating step of estimating channel distortion based on each output from the weighting factor multiplying step, and a step of generating each complex conjugate of the estimated channel distortion. A first multiplication step of multiplying each of the complex conjugates and each output from the weighting coefficient multiplication step to compensate for transmission line distortion, and a synthesis step of adding the respective outputs of the first multiplication step and performing rake synthesis A second multiplication step of multiplying each of the transmission line distortions by a reference signal; and a second multiplication step provided common to the fingers; By using the respective force and the despread signal, and a control step of controlling the weighting coefficients.
本発明の作用を述べる。 共通誤差信号を用いた複数パスを分離することがで
きる適応アンテナ受信装置において、 各パス間の相関がなければ、 各パスで独 立に N次の相関行列を用いてアンテナ重みを計算する適応更新アルゴリズムと、 (N X L ) 次の相関行列を計算する適応更新アルゴリズムとは等価であり、 よ つて、 各フィンガーで独立にレイク合成後の共通誤差信号の 2乗平均が最小と なるように、 適応更新アルゴリズムを用いてアンテナ重み係数を制御する構成 とする。 これにより、 全ての MM S E制御回路で使用される適応更新アルゴリ ズムの演算量を (N L ) から N2Lに比例するように大幅に削減でき、 演算 回路の処理負荷を軽減することができる。 The operation of the present invention will be described. It is possible to separate multiple paths using a common error signal. If there is no correlation between the paths, the adaptive update algorithm calculates the antenna weight using the N-order correlation matrix independently for each path, and calculates the (NXL) -order correlation matrix This is equivalent to the adaptive update algorithm, and therefore the antenna weight coefficient is controlled using the adaptive update algorithm so that the root mean square of the common error signal after rake combining is independently minimized for each finger. . As a result, the amount of operation of the adaptive update algorithm used in all MMSE control circuits can be greatly reduced from (NL) to N2L, and the processing load on the operation circuit can be reduced.
更に、 伝送路変動が速い場合には、 伝送路歪みを補償する機能とアンテナ重 みを生成する MM S E制御回路とを別に分離することで、 MM S E制御回路で 生成されるアンテナ重みでは、 希望信号の伝送路歪みの補償は行わず、 信号の 到来方向および平均的な S I Rが最大になるように制御し、 レイク合成により 瞬時の S I Rを最大にするように制御することができ、 特性劣化を改善するこ とができる。 図面の簡単な説明 Furthermore, when the transmission line fluctuation is fast, the function of compensating the transmission line distortion and the MMSE control circuit that generates the antenna weight are separated separately, so that the antenna weight generated by the MMSE control circuit is Without compensating for signal transmission path distortion, control can be performed to maximize the signal arrival direction and average SIR, and control can be performed to maximize instantaneous SIR by rake combining. Can be improved. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 従来技術を説明するための一例の構成図である。 FIG. 1 is a configuration diagram of an example for explaining a conventional technique.
図 2は、 アンテナ重み付け合成回路の構成を示す図である。 FIG. 2 is a diagram illustrating a configuration of an antenna weighting synthesis circuit.
図 3は、 本発明の一実施例の構成図である。 FIG. 3 is a configuration diagram of one embodiment of the present invention.
図 4は、 アンテナ重み付け合成回路の構成を示す図である。 FIG. 4 is a diagram illustrating the configuration of the antenna weighting and combining circuit.
図 5は、 ·従来例と本発明との B E R特性を比較した図である。 FIG. 5 is a diagram comparing B ER characteristics between the conventional example and the present invention.
図 6は、 本発明の他の実施例の構成図である。 FIG. 6 is a configuration diagram of another embodiment of the present invention.
図 7は、 本発明の更に他の実施例の構成図である。 FIG. 7 is a configuration diagram of still another embodiment of the present invention.
図 8は、 本発明の別の実施例の構成図である。 FIG. 8 is a configuration diagram of another embodiment of the present invention.
図 9は、 本発明の更に別の実施例の構成図である。 FIG. 9 is a configuration diagram of still another embodiment of the present invention.
図 1 0は、 本発明の他の実施例の構成図である。 発明を実施するための最良の形態 FIG. 10 is a configuration diagram of another embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下に図面を参照して本発明の実施例につき詳細に説明する。 図 3は本発明
の一実施例の構成を示す図であり、 図 1と同等部分は同一符号にて示している。 図 3において、 受信アンテナの数を N (Nは 2以上の整数)、 マルチパスの数を L (Lは 1以上の整数) とし、 第 kュ一ザ (kは 1以上の整数) に対する C D MA適応アンテナ受信装置について説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 3 shows the present invention. FIG. 2 is a diagram showing a configuration of an embodiment of the present invention, and portions equivalent to those in FIG. 1 are denoted by the same reference numerals. In Fig. 3, the number of receiving antennas is N (N is an integer of 2 or more), the number of multipaths is L (L is an integer of 1 or more), and the CD for the kth user (k is an integer of 1 or more) The MA adaptive antenna receiving device will be described.
C DMA適応アンテナ受信装置は、 図 3 に示されるように、 第 kユーザに対 して、 N個の受信アンテナ 1— 1〜 1—N、 パス数 Lのマルチパスに対応した L個の信号処理手段 2 0 _ 1〜2 0 _ L、 加算器 1 0、 減算器 1 1および参照 信号生成回路 1 2で構成されている。 各マルチパスに対応したし個の信号処理 手段 2 0— 1〜2 0—Lはそれぞれ同一構成であり、 遅延器 2— 1〜2— L、 N個の逆拡散回路 3— 1 _ 1〜3— L— N、 アンテナ重み付け合成回路 4一 1 〜4一 L、 MM S E (Minimum Mean Square Error :最小平均 2乗誤差) 制 御回路 5— 1〜5— L、 伝送路推定回路 6— 1〜6— L、 複素共役回路 7— 1 〜7—L、 乗算器 8— :!〜 8— L、 及び乗算器 9一 1〜9 _ Lで構成されてい る。 As shown in Fig. 3, the C-DMA adaptive antenna receiving apparatus transmits L signals corresponding to multi-paths with N receiving antennas 1-1 to 1-N and L paths to the k-th user. Processing means 20 _ 1 to 20 _L, adder 10, subtracter 11, and reference signal generation circuit 12. Each of the signal processing means 20 0-1 to 20-L corresponding to each multipath has the same configuration, and includes delay units 2-1 to 2-L and N despreading circuits 3-1 to 1- 3—L—N, antenna weighting / synthesizing circuit 4-1 1 to 4-1 L, MMSE (Minimum Mean Square Error) control circuit 5-1 to 5—L, channel estimation circuit 6-1 Up to 6—L, complex conjugate circuit 7-1 to 7—L, multiplier 8— :! ~ 8-L, and a multiplier 91-1 ~ 9_L.
N個の受信アンテナ 1一 1〜 1— Nは、 それぞれの受信信号が相関を有する ように近接して配置されている。 遅延器 2 _ 1〜2— Lは N個の受信アンテナ The N receiving antennas 11-1 to 1-N are arranged close so that the respective received signals have a correlation. Delay devices 2 _ 1 to 2 — L is N receiving antennas
1 - 1 - 1—Nで受信した信号を L個のそれぞれのマルチパスに対応して遅延 させることにより、 第 1パスから第 Lパスまでに区別される。 遅延器 2— 1〜By delaying the signal received at 1-1-1-N in accordance with each of the L multipaths, the signals are distinguished from the first path to the Lth path. Delay device 2— 1 to
2— Lから出力された受信信号は逆拡散回路 3— 1—:!〜 3— L— Nにより逆 拡散された後、 アンテナ重み付け合成回路 4一 1〜 4 _ Lと MM S E制御回路 5一 1〜5— Lに送られる。 2—Received signal output from L is despreading circuit 3-1— :! After being despread by LN, they are sent to the antenna weighting / synthesizing circuit 41-1 to 4_L and the MMSE control circuit 51 to 1-5-L.
L個のそれぞれのアンテナ重み付け合成回路 4一 1〜4— Lでは、 図 4に示 すように、 逆拡散回路 3— 1 _ 1〜3—1^ー^^こょり逆拡散された受信信号は、 乗算器 1 3— 1〜1 3—NにょりL個のそれぞれのMM S E制御回路5— 1〜 5— Lで生成されたアンテナ重みが乗算され、 加算器 1 4により加算されて重 み付け合成され、 図 3の伝送路推定回路 6— 1〜 6— Lと乗算器 8— 1〜 8— Lに送られる。 In each of the L antenna weighting / synthesizing circuits 4-1 to 4-L, as shown in FIG. 4, a despreading circuit 3-1 to 3-1 to 3-1 ^-^^ The signal is multiplied by the antenna weights generated by the L MMSE control circuits 5-1 to 5-L in accordance with multipliers 13-1 to 13-N and added by the adder 14. The weights are combined and sent to the transmission path estimation circuits 6-1 to 6-L and multipliers 8-1 to 8-L in Fig. 3.
伝送路推定回路 6 - 1〜6— Lでは、 ァンテナ重み付け合成回路 4一 1〜 4 一 Lの出力を用いて伝送路歪みが推定され、 その推定結果が複素共役回路 7—
1〜 7— Lと乗算器 9一 1〜 9一 Lに送られる。 複素共役回路 7— 1〜 7— L では、 伝送路推定回路 6— 1〜 6— Lにより推定された伝送路歪みの複素共役 が生成される。 複素共役回路 7 1〜7— Lで生成された伝送路歪みの複素共 役が、 乗算器 8— 1〜8— Lにより、 アンテナ重み付け合成回路 4一:!〜 4一 Lの出力に乗算されることにより、 伝送路歪みが補償される。 In the transmission path estimation circuit 6-1 to 6-L, the transmission path distortion is estimated using the output of the antenna weighting and combining circuit 4-1 to 4-1 L, and the estimation result is converted to a complex conjugate circuit 7- 1 to 7—L and multiplier 9-1 1 to 9-1 L are sent to L. The complex conjugate circuits 7-1 to 7-L generate complex conjugates of the transmission line distortion estimated by the transmission path estimation circuits 6-1 to 6-L. Complex conjugate circuit 71 The complex combination of transmission line distortion generated by 1-7-L is used by multipliers 8-1-1-8-L for antenna weighting and combining circuit 41 :! By multiplying the output of ~ 1 L, the transmission line distortion is compensated.
伝送路歪みが補償された乗算器 8— 1〜8 _ Lの出力は、 加算器 1 0により 加算されることにより、 レイク合成が行われ、 減算器 1 1に入力される。 この 伝送路歪みを補償する機能は、 伝送路変動が速い場合には、 MM S E制御回路 5— 1〜5— Lで使用される適応更新アルゴリズムによるアンテナ重みの更新 速度では、 伝送路歪みの補償が間に合わないため、 伝送路歪みの補償機能を別 に分離することで、 加算器 1 0によるレイク合成により瞬時の S I Rを最大に するように制御する。 このとき、 MM S E制御回路 5— 1〜5 _ Lで生成され るアンテナ重みでは、 希望信号の伝送路歪みの補償は行わず、 信号の到来方向 および平均的な S I Rが最大になるように制御する。 The outputs of the multipliers 8-1 to 8 _L in which the transmission line distortion has been compensated are added by the adder 10 to perform rake combining and input to the subtractor 11. The function of compensating for the transmission line distortion is as follows. When the transmission line fluctuation is fast, the update speed of the antenna weight by the adaptive update algorithm used in the MMSE control circuit 5-1 to 5-L Therefore, by separately separating the compensation function of the channel distortion, control is performed so that the instantaneous SIR is maximized by the rake combining by the adder 10. At this time, the antenna weights generated by the MMSE control circuits 5-1 to 5_L do not compensate for the transmission path distortion of the desired signal, but control so that the signal arrival direction and the average SIR are maximized. I do.
減算器 1 1では、 参照信号生成回路 1 2の出力から加算器 1 0のレイク合成 出力が減算されて共通誤差信号が生成され、 この共通誤差信号は、 L個のそれ ぞれの乗算器 9— 1〜9一 Lにより、 伝送路推定回路 6— 1〜6— Lにより推 定した伝送路歪みが乗算され、 L個のそれぞれの MM S E制御回路 5— 1〜 5 —Lに送られる。 L個のそれぞれの MM S E制御回路 5 _ 1〜5—Lでは、 乗 算器 9 - 1〜 9一 Lにより、 伝送路歪みが乗じられた共通誤差信号と逆拡散回 路 3— 1— 1〜3— L一 Nにより出力されたそれぞれのマルチパスに対応した ァンテナ受信信号とを用いて、 共通誤差信号の 2乗平均が最小となるようにァ ンテナ重みの制御が行われる。 The subtracter 11 subtracts the rake combined output of the adder 10 from the output of the reference signal generation circuit 12 to generate a common error signal. The common error signal is divided into L respective multipliers 9 — 1−9−1 L is multiplied by the transmission line distortion estimated by the transmission line estimation circuit 6−1−6−L, and sent to each of the L MMSE control circuits 5-1-5−L. In each of the L MMSE control circuits 5_1 to 5—L, a multiplier 9-1 to 9—1L and a common error signal multiplied by the transmission line distortion and a despreading circuit 3—1-1—1 33—Using antenna received signals corresponding to each multipath output by L1-N, the antenna weight is controlled so that the root mean square of the common error signal is minimized.
ここで、 L個のそれぞれの MM S E制御回路 5— 1〜5—Lで使用される適 応更新アルゴリズムは、 高速なアルゴリズムである R L S (Recursive Least Square) アルゴリズムを用いて、 各フィンガーで独立に N次の相関行列を用い てァンテナ重みを制御するァルゴリズムを用いることにより、 演算量を大幅に 削減でき、 処理負荷を軽減することができる。 Here, the adaptive update algorithm used in each of the L MMSE control circuits 5-1 to 5-L uses a high-speed RLS (Recursive Least Square) algorithm, and is independent for each finger. By using an algorithm that controls antenna weights using an N-order correlation matrix, the amount of computation can be greatly reduced, and the processing load can be reduced.
本発明の実施例の構成について、 図 3および図 4を参照して、 より詳細に説
明する。 図 3は共通誤差信号を用いた場合の本発明における C D MA適応アン テナ受信装置を示す構成図である。 受信アンテナの数を N (Nは 2以上の整数)、 マルチパスの数を L (Lは 1以上の整数) とし、 第 kユーザ (kは 1以上の整 数) に対する C DMA適応アンテナ受信装置について説明する。 The configuration of the embodiment of the present invention will be described in more detail with reference to FIGS. I will tell. FIG. 3 is a configuration diagram showing a CDMA adaptive antenna receiving apparatus according to the present invention when a common error signal is used. The number of receiving antennas is N (N is an integer of 2 or more), the number of multipaths is L (L is an integer of 1 or more), and a CDMA adaptive antenna receiving device for the kth user (k is an integer of 1 or more) Will be described.
本発明の C D MA適応アンテナ受信装置は、 図 3に示されるように、 第 kュ 一ザに対して、 N個の受信アンテナ 1一 1〜1一 N、 パス数 Lのマルチパスに 対応した L個の信号処理手段 2 0— 1〜2 0— L、 加算器 1 0、 減算器 1 1お よび参照信号生成回路 1 2で構成されている。 As shown in FIG. 3, the CDMA adaptive antenna receiving apparatus of the present invention supports multi-paths with N receiving antennas 11 1 to 11 N and L paths for the k-th user. It is composed of L signal processing means 20-1 to 20-L, an adder 10, a subtractor 11, and a reference signal generation circuit 12.
各マルチパスに対応した L個の信号処理手段 2 0— 1〜2 0— Lはそれぞれ 同一構成であり、 遅延器 2— 1〜2— L、 N個の逆拡散回路 3— 1— 1〜3— L— N、 アンテナ重み付け合成回路 4一 1〜4一 L、 MM S E制御回路 5— 1 〜5— L、 伝送路推定回路 6 _ 1〜6 _ L、 複素共役回路 7—1〜 7— Lおよ び乗算器 8— 1〜8— L、 9— 1〜9— Lで構成されている。 The L signal processing means 20 0-1 to 20-L corresponding to each multipath have the same configuration, and include a delay device 2-1 to 2-L and N despreading circuits 3-1-1 to 3—L—N, antenna weighting / synthesizing circuit 4-1 1 to 4-L, MM SE control circuit 5-1 to 5—L, channel estimation circuit 6_1 to 6_L, complex conjugate circuit 7-1 to 7 — L and multipliers 8—1 to 8—L and 9—1 to 9—L.
N個のそれぞれの受信アンテナ 1一 1〜 1一 Nは、 希望波信号および複数の 干渉信号が多重化されている信号を受信し、 それぞれの受信信号が相関を有す るように近接して配置されている。 遅延器 2— :!〜 2— Lは N個の受信アンテ ナ 1— 1〜 1—Nで受信した信号を L個のそれぞれのマルチパスに対応して遅 延させることにより、 第 1パスから第 Lパスまでに区別される。 遅延器 2— 1 〜2 _ Lから出力された受信信号は逆拡散回路 3— 1一 1〜3 _ L— Nにより 逆拡散された後、 アンテナ重み付け合成回路 4一:!〜 4一 Lと MM S E制御回 路 5— 1〜5— Lに送られる。 Each of the N receiving antennas 11 1 to 11 N receives a signal in which a desired signal and a plurality of interference signals are multiplexed, and is located close to each other so that the received signals are correlated. Are located. Delay device 2— :! 2 to L are distinguished from the 1st path to the Lth path by delaying the signals received by N reception antennas 1-1 to 1-N according to each of the L multipaths Is done. The received signals output from the delay units 2-1 to 2 _ L are despread by the despreading circuit 3-1 1 to 3 _ L-N, and then the antenna weighting and combining circuit 4-! ~ 4-L and MMSE control circuit 5-1 to 5-L are sent.
図 4は、 アンテナ重み付け合成回路 4一 1〜4一 Lの構成を示すブロック図 である。 アンテナ重み付け合成回路 4一 1〜4一 Lはそれぞれ同一構成であり、 乗算器 1 3 _ 1〜1 3— Nおよび加算器 1 4で構成されている。 説明を簡単に するために、 以下は、 信号処理手段 2 0— 1を例にとり説明する。 アンテナ重 み付け合成回路 4一 1では、 逆拡散回路 3— 1— 1〜 3— 1一 Nにより逆拡散 された受信信号は、 乗算器 1 3— 1〜1 3— Nにより MM S E制御回路 5— 1 で生成されたアンテナ重みが乗算され、 加算器 1 4により加算されて重み付け 合成され、 図 3の伝送路推定回路 6— 1と乗算器 8— 1とに送られる。
アンテナ重み付け合成回路 4一 1は、 受信アンテナ 1一 1〜 1一 Nの受信信 号の振幅、 位相を制御することで希望信号に利得を有し、 干渉を抑圧して受信 するようにアレーアンテナの指向性を形成する。 伝送路推定回路 6— 1では、 アンテナ重み付け合成回路 4一 1の出力を用いて、 伝送路歪みが推定され、 そ の推定結果が複素共役回路 7— 1と乗算器 9— 1とに送られる。 複素共役回路 7一 1では、 伝送路推定回路 6— 1により推定された伝送路歪みの複素共役が 生成されるものである。 FIG. 4 is a block diagram showing a configuration of the antenna weighting / synthesizing circuits 411 to 4-1L. Each of the antenna weighting / synthesizing circuits 4-1 to 4-L has the same configuration, and includes multipliers 13_1 to 13-N and an adder 14. In order to simplify the description, the following description will be made taking the signal processing means 20-1 as an example. In the antenna weighting / synthesizing circuit 4-1, the received signal despread by the despreading circuit 3-1-1-3-1-N is converted into the MMSE control circuit by the multiplier 13-1-1-3-N The antenna weights generated in 5-1 are multiplied, added by an adder 14 and weighted and combined, and sent to the transmission path estimating circuit 6-1 and the multiplier 8-1 in FIG. The antenna weighting / synthesizing circuit 4-1 controls the amplitude and phase of the received signals of the receiving antennas 11-1 to 11-N to provide a gain to the desired signal, and to suppress the interference to receive the array antenna. To form a directivity. The transmission path estimation circuit 6-1 estimates the transmission path distortion using the output of the antenna weighting / synthesizing circuit 4-1 and sends the estimation result to the complex conjugate circuit 7-1 and the multiplier 9-1. . The complex conjugate circuit 711 generates a complex conjugate of the transmission path distortion estimated by the transmission path estimation circuit 6-1.
複素共役回路 7 - 1で生成された伝送路歪みの複素共役は、 乗算器 8 - 1に より、 アンテナ重み付け合成回路 4一 1の出力に乗算されることにより、 伝送 路歪みが補償される。 伝送路歪みが補償された乗算器 8— 1〜 8 _ Lの出力は、 加算器 1 0により加算されてレイク合成が行われ、 減算器 1 1に入力される。 この伝送路歪みを補償する機能は、 伝送路変動が速い場合には、 MM S E制 御回路 5—:!〜 5—Lで使用される適応更新アルゴリズムによるアンテナ重み の更新速度では、 伝送路歪みの補償が間に合わないため、 伝送路歪みの補償機 能を別に分離することで、 加算器 1 0によるレイク合成により瞬時の S I Rを 最大にするように制御する。 このとき、 MM S E制御回路 5—:!〜 5— Lで生 成されるアンテナ重みでは、 希望信号の伝送路歪みの補償は行わず、 信号の到 来方向および平均的な S I Rが最大になるように制御する。 The complex conjugate of the transmission path distortion generated by the complex conjugate circuit 7-1 is multiplied by the output of the antenna weighting / synthesizing circuit 411 by the multiplier 8-1, thereby compensating the transmission path distortion. The outputs of the multipliers 8-1 to 8 _L whose transmission line distortion has been compensated are added by an adder 10 to perform rake combining, and input to a subtracter 11. The function of compensating for this transmission line distortion is based on the MMSE control circuit 5— :! In the update rate of the antenna weights by the adaptive update algorithm used in 5-L, it is not possible to compensate for the transmission path distortion in time. Control to maximize the instantaneous SIR. At this time, the MM SE control circuit 5— :! With the antenna weights generated by ~ 5-L, the transmission path distortion of the desired signal is not compensated, and the signal arrival direction and the average SIR are controlled to be maximum.
なお、 伝送路歪みの補償機能のために設けられている伝送路推定回路 6— 1 〜 6— Lは、 例えば、 電子情報通信学会論文誌の V o 1 . J 7 2 - B I I , N o . 1 , p p . 7 - 1 5 , 1 9 8 9、 「陸上移動通信用 1 6 QAMのフエ一ジン グ歪み補償方式」 (三瓶) に開示されているように、 定期的に挿入された既知の シンポルから伝送路歪みの特性を推定し、 その時系列を内挿することによって、 全シンポルの伝送路推定を行う構成の、 周知のものを用いることができる。 前述したように、 伝送路変動が速い場合には、 MM S E制御回路 5— 1〜 5 —Lでのアンテナ重みの更新速度が間に合わないために、 アンテナ重み付け合 成回路 4— 1〜4— Lの各出力は、 互いに位相差が大きくなつている。 このた め、 位相差が大きい出力をレイク合成のための加算器 1 0へ、 図 1に示した従 来構成のように供給しても、 正確なレイク合成は不可能であり、 よってレイク
合成により瞬時の S I Rを最大にすることは困難である。 The transmission path estimation circuits 6-1 to 6-L provided for the transmission path distortion compensation function are, for example, V o 1. J 72-BII, N o. 1, pp. 7-15, 1989, as described in the “16 QAM phasing distortion compensation scheme for land mobile communications” By estimating the characteristics of the transmission line distortion from the symbols and interpolating the time series thereof, a known configuration in which the transmission lines of all the symbols are estimated can be used. As described above, when the transmission line fluctuation is fast, the antenna weight updating circuit 4-1 to 4—L cannot update the antenna weight in the MM SE control circuit 5-1 to 5—L in time. Each output has a large phase difference with each other. For this reason, even if an output having a large phase difference is supplied to the adder 10 for rake combining as in the conventional configuration shown in FIG. 1, accurate rake combining is not possible. It is difficult to maximize the instantaneous SIR by combining.
そこで、 本発明では、 伝送路歪みを補償する機能、 具体的には、 伝送路推定 回路 6— 1〜 6— L及び複素共役回路 7— 1〜 7— Lを更に設けて、 伝送路変 動が速い場合には、 この伝送路歪みを補償する機能により、 各フィンガー出力 の互いの位相差を小さく制御して、 正確なレイク合成を行ってレイク合成によ り瞬時の S I Rを最大にするようにしているのである。 なお、 伝送路変動が遅 い場合には、 ?^1^ 3 £制御回路5 _ 1〜5—Lでのアンテナ重みの更新速度で 十分間に合うために、 ァンテナ重み付け合成回路 4— 1〜 4一 Lの各出力の位 相差は十分小さく制御されるので、 伝送路歪みを補償する機能はなくても良い が、 あっても良いことは明白である。 Therefore, in the present invention, a function for compensating for transmission line distortion, specifically, a transmission line estimation circuit 6-1 to 6-L and a complex conjugate circuit 7-1 to 7-L are further provided to provide a transmission path fluctuation. When the speed is fast, the function of compensating for the transmission line distortion is used to control the phase difference between each finger output to be small, perform accurate rake combining, and maximize the instantaneous SIR by rake combining. It is. If the transmission line fluctuation is slow,? ^ 1 ^ 3 £ Control circuit 5 _ 1-5-L In order to keep up with the update speed of the antenna weight sufficiently, the phase difference of each output of the antenna weighting and combining circuit 4-1-4-1 L is controlled to be sufficiently small. Therefore, there is no need to have a function of compensating for transmission line distortion, but it is clear that it may be.
このように、 伝送路歪みを補償する機能を別に設けて、 伝送路変動が速い場 合にレイク合成により瞬時の S I Rを最大にするように制御することにより、 本発明では、 図 5の実線 1 0 0の B E R (Bit Error Rate) 特性に示すように、 伝送路変動の速さに無関係に良好な特性を示す。 図 5において、 横軸は、 デー 夕シンポル 1ビット当たりの Eb /No (信号電力対雑音電力比) である。 図 1に示した従来例では、 伝送路変動が速くなればなるほど、 その特性は一点鎖 線 2 0 0で示すように次第に悪化することになる。 As described above, by separately providing a function for compensating for the transmission line distortion and controlling the instantaneous SIR by rake combining when the transmission line fluctuation is fast, the present invention provides a solid line 1 shown in FIG. As shown in the BER (Bit Error Rate) characteristic of 00, good characteristics are exhibited regardless of the speed of transmission line fluctuation. In Fig. 5, the horizontal axis is Eb / No (signal power to noise power ratio) per bit of data symbol. In the conventional example shown in FIG. 1, the faster the fluctuation of the transmission line, the more the characteristic deteriorates as indicated by the one-dot chain line 200.
減算器 1 1では、 参照信号生成回路 1 2の出力から加算器 1 0のレイク合成 出力が減算されて共通誤差信号が生成され、 この共通誤差信号は、 L個のそれ ぞれの乗算器 9一:!〜 9一 Lにより、 伝送路推定回路 6— 1〜6— Lにより推 定された伝送路歪みと乗算され、 L個のそれぞれの MM S E制御回路 5— 1〜 5— Lに送られる。 L個のそれぞれの MM S E制御回路 5— 1〜5— Lでは、 乗算器 9 _ 1〜9ー にょり、 伝送路歪みが乗じられた共通誤差信号と逆拡散 回路 3— 1一 1〜3— L— Nにより出力されたそれぞれのマルチパスに対応し たァンテナ受信信号とを用いて、 共通誤差信号の 2乗平均が最小となるように アンテナ重みが制御される。 The subtracter 11 subtracts the rake combined output of the adder 10 from the output of the reference signal generation circuit 12 to generate a common error signal. The common error signal is divided into L respective multipliers 9 one:! 9L is multiplied by the transmission path distortion estimated by the transmission path estimation circuits 6-1 to 6-L and sent to the L MMSE control circuits 5-1 to 5-L. In each of the L MMSE control circuits 5-1 to 5-L, a common error signal multiplied by the transmission line distortion and a despreading circuit 3-1 to 1-3 are applied to the multipliers 9_1 to 9-L. — Antenna weight is controlled so that the root mean square of the common error signal is minimized using the antenna reception signals corresponding to each multipath output by L−N.
ここで、 L個のそれぞれの MM S E制御回路 5— 1〜5 _ Lで使用される適 応更新アルゴリズムは、 高速なァルゴリズムである R L S (Recursive Least Square) アルゴリズムを用いて、 各フィンガーで独立に N次の相関行列を用い
-重みを制御するァルゴリズムを用いる。 Here, the adaptive update algorithm used in each of the L MMSE control circuits 5-1 to 5_L is independently controlled for each finger using the RLS (Recursive Least Square) algorithm, which is a fast algorithm. Using the Nth order correlation matrix -Use an algorithm that controls the weight.
本発明の実施例の動作について、 図 3および図 4を参照して説明する。 ここ では、 特に L個のそれぞれの MMS E制御回路 5— 1〜5— Lで使用される R LS (Recursive Least Square) アルゴリズムについて説明する。 第 kュ一ザ に対する 1 ( 1 =:!〜 L) 番目のマルチパス伝搬路を通って受信された mシン ポル目の (シンポル周期を Tとすると時刻 mT) 信号の処理動作について説明 する。 The operation of the embodiment of the present invention will be described with reference to FIGS. Here, the RLS (Recursive Least Square) algorithm used in each of the L MMS E control circuits 5-1 to 5-L will be described. The processing operation of the mth symbol (time mT when the symbol period is T) signal received through the first (1 = :! to L) th multipath channel for the kth user will be described.
本発明の L個のそれぞれの MMS E制御回路 5—:!〜 5— Lで使用される R LS (Recursive Least Square) アルゴリズムは、 次式のように相関行列、 Rxxk,i (0) '=δυ (m=0) "…- (13) Each of the L MMS E control circuits of the present invention 5— :! The R LS (Recursive Least Square) algorithm used in L is the correlation matrix, R xx k, i (0) '= δυ (m = 0) "…-(13)
Rxxk,l (m) = a xxk,l (m— 1) +Xk,l (m) Xk)iH (m) (m= 1, 2, 3, ……) …… (14) Rxxk, l (m) = a xx k, l (m- 1) + Xk, l (m) X k) i H (m) (m = 1, 2, 3, ......) ...... (14)
が計算される。 ただし、 <5は正定数、 Hは複素共役転置、 Uは単位行列、 は 0<«≤ 1の重み付け定数をそれぞれ表している。 Is calculated. Where <5 is a positive constant, H is a complex conjugate transpose, U is a unit matrix, and is a weighting constant of 0 <«≤1.
また、 Xk)1 (m) は 1番目のマルチパスに対応した逆拡散回路 3— 1― 1 〜3— 1— N (1 =1〜L) により出力された逆拡散信号の逆拡散信号べクト ルを表しており、 X k) 1 (m) is the despread signal of the despread signal output by the despreading circuit 3-1-1-1 to 3-1-N (1 = 1 to L) corresponding to the first multipath Represents the vector,
xk,i (m) = [yk,i,i (m), yk,i,2 (m), , yk,l,N (m)] T xk, i (m) = [ y k, i, i (m), yk, i, 2 (m),, yk, l, N (m)] T
…… (15) …… (15)
のように定義される。 ここで、 Tは転置を表している。 Is defined as Here, T represents transposition.
L個のそれぞれの MMS E制御回路 5—:!〜 5—Lで使用される RL S (Recursive Least Square) アルゴリズムは、 乗算器 9— 1〜9一 Lにより、 伝送路歪み hk,i が乗算された共通誤差信号 ekJ (m) (=hk)1 ek (m)) と、 マルチパスに対応した逆拡散回路 3— 1— 1〜3_ 1— N (1 = 1〜L) により出力されたそれぞれのアンテナ受信信号を用いて、 アンテナ重みを更新 する。 Each of the L MMS E control circuits 5— :! RL S (Recursive Least Square) algorithm used in ~ 5-L is by the multiplier 9 1-9 one L, channel distortion h k, a common error signal i is multiplied e kJ (m) (= h k) 1 e k (m)) and the respective antenna reception signals output by the despreading circuit 3-1-1-1 to 3_1-N (1 = 1 to L) corresponding to multipath. Update antenna weights.
この処理において、 アンテナ重みは共通誤差信号 ek (m) が最小となるよ うに MMSE基準により適応的に制御され、 アンテナ重みの更新式は、 In this process, the antenna weight is adaptively controlled based on the MMSE criterion so that the common error signal e k (m) is minimized.
Wk)1 (m) =Wk>1 (m- 1) +
Tk'lRxxk'r1 (m— 1) Xk,l (m) ek>1* (m) W k) 1 (m) = W k> 1 (m-1) + Tk'lRxxk'r 1 (m-1) Xk, l (m) e k> 1 * (m)
ここで、 Wk>1 (m) は 1番目のマルチパスに対応した MMSE制御回路 5— 1 (1 = 1〜L) で生成されるアンテナ重みのアンテナ重みベクトルを表して おり、 Here, W k> 1 (m) represents the antenna weight vector of the antenna weight generated by the MMSE control circuit 5-1 (1 = 1 to L) corresponding to the first multipath,
wk'〗 (m) = [Wk,i,i (m), Wk,i,2 (m), ···, Wk,i,N r wk '〗 (m) = [Wk, i , i (m), Wk, i, 2 (m), ···, Wk, i, N r
…… (18) のように定義される。 ... Defined as (18).
式 (16)、 式 (17) は相関行列 Rxxkil の逆行列を計算しなければならな いので、 この逆行列計算の演算量を軽減するために式 (13)、 式 (14) の両 辺を、 行列公式を用いて逆行列化すると、
は、 Since equations (16) and (17) must calculate the inverse matrix of the correlation matrix R xxkil , both equations (13) and (14) can be used to reduce the computational complexity of this inverse matrix calculation. Inverting the edges using the matrix formula gives Is
Rxxkユ -1 (0) = δ-lU (m=0) "…- (19) R xxk you -1 (0) = δ-lU (m = 0) "…-(19)
(ΓΠ = 1'2,3,·"··'' ) (20) と表される。 (ΓΠ = 1'2,3, "" ") (20)
CDMA方式では、 拡散符号によりマルチパス信号は分離され、 各フィンガ —間の相関はほぼなくなるので、 各フィンガ一で独立に N次の相関行列を用い てァンテナ重みを計算する R L S (Recursive Least Square) アルゴリズムと、 In the CDMA system, the multipath signal is separated by the spreading code, and the correlation between each finger is almost eliminated. Therefore, each finger independently calculates the antenna weight using the Nth-order correlation matrix RLS (Recursive Least Square) Algorithm and
(NXL) 次の相関行列を計算する RLS (Recursive Least Square) ァルゴ リズムとは等価となる。 以下に、 本発明の CDMA適応アンテナ受信装置にお ける L個のそれぞれの MM SE制御回^ 5— 1〜5— Lで使用される RL S(NXL) This is equivalent to the RLS (Recursive Least Square) algorithm that calculates the next correlation matrix. In the following, the RL S used in each of the L MM SE control circuits 5-1 to 5-L in the CDMA adaptive antenna receiving apparatus of the present invention is described.
(Recursive Least Square) アルゴリズムと、 従来の C DM A適応アンテナ受
信装置における 1つの MM S E制御回路 5で使用される R L S (Recursive Least Square) アルゴリズムとが等価であることを証明する。 (Recursive Least Square) algorithm and conventional CDMA adaptive antenna It proves that it is equivalent to the RLS (Recursive Least Square) algorithm used in one MMSE control circuit 5 in the communication device.
ここで、 説明を簡単にするためにマルチパスの数を 2、 すなわち 2フィンガ 一の場合を考える。 従来の C D MA適応アンテナ受信装置において全てのフィ ンガーに対して共通誤差信号を用いた場合の相関行列 Rxxを分割行列で表すと、 Here, for the sake of simplicity, consider the case where the number of multipaths is 2, that is, two fingers. When the correlation matrix Rxx in the case where a common error signal is used for all fingers in the conventional CDMA adaptive antenna receiver is represented by a division matrix,
Rii R12 Rii R12
R XX (21 ) R XX (21)
R21 R22 と表される。 Expressed as R 21 R22.
ここで、 R 1]Lはフィンガー 1の自己相関行列、 R22はフィンガー 2の自己相 関行列、 R 12はフィンガー 1とフィンガー 2の相互相関行列、 R21はフィンガ 一 2とフィンガ一 1の相互相関行列をそれぞれ表している。 Where R 1] L is the autocorrelation matrix of finger 1, R22 is the autocorrelation matrix of finger 2, R 12 is the cross correlation matrix of finger 1 and finger 2, R 21 is the cross correlation of finger 1 and finger 1 Each represents a correlation matrix.
C DMA方式では、 逆拡散動作で分離された各パスはほぼ無相関となるので、 各フィンガー間の相関 R 12= R21= 0とすることができる。 従って、 相関行列 xは、 In the CDMA system, since the paths separated by the despreading operation are almost uncorrelated, the correlation between the fingers can be set to R 12 = R 21 = 0. Therefore, the correlation matrix x is
Rii 0 Rii 0
R (22) R (22)
XX XX
0 R2ク 0 R 2
のように表される。 It is represented as
そして、 対角成分のみを有した相関行列 Rxyの逆行列 は、
Then, the inverse matrix of the correlation matrix R xy having only diagonal components is
のように表される。 It is represented as
従来の CDMA適応アンテナ受信装置において、 1つの MMS E制御回路 5 ですベてのフィンガ一に対して共通誤差信号 e (m) を用いた場合の RLS In the conventional CDMA adaptive antenna receiver, RLS when one MMS E control circuit 5 uses a common error signal e (m) for all fingers
(Recursive Least Square) アルゴリズムは、 次式のように表される。 The (Recursive Least Square) algorithm is expressed by the following equation.
W (m) =W (m— 1) + r Rxx'1 (m- 1) X (m) E* (m) … (24) W (m) = [Wi (m), W2 (m)] T …… (25)W (m) = W (m— 1) + r Rxx ' 1 (m-1) X (m) E * (m)… (24) W (m) = [Wi (m), W 2 (m) ] T ...... (25)
X (m) = [Xi (m), X2 (m)] T …… (26) ただし、 X (m) = [Xi (m), X 2 (m)] T …… (26)
r:/m.-ihie(m): フィンガー 1 r: / m .-i hie ( m ) : finger 1
h2e(m):フィンガー 2 とする。 h 2 e (m): Finger 2
ここで、 W (m) は mシンポル目のフィンガ一 1とフィンガー 2のウェイト ベクトル、 WT (m) は mシンボル目のフィンガー 1のウェイトべクトル、 W 2 (m) は mシンポル目のフィンガー 2のウェイトべクトル、 X (m) は mシン ポル目のフィンガー 1とフィンガ一2の逆拡散信号ベクトル、 ェ (m) は mシ ンポル目のフィンガー 1の逆拡散信号ベクトル、 X2 (m) は mシンボル目のフ ィンガ一 2の逆拡散信号べク卜ルを表し、 E (m) は mシンポル目のフィンガ —1の伝送路歪み およびフィンガー 2の伝送路歪み h2が乗じられた共通 誤差信号をそれぞれ表している。 Where W (m) is the weight vector of finger 1 and finger 2 of the m symbol, W T (m) is the weight vector of finger 1 of the m symbol, and W 2 (m) is the finger of the m symbol. Weight vector, X (m) is the despread signal vector of finger 1 and finger 1 of the mth symbol, and d (m) is the despread signal vector of finger 1 of the mth symbol, X 2 (m ) Represents the despread signal vector of the m-th symbol's finger 1-2, and E (m) is multiplied by the transmission path distortion of the finger m-1 and the transmission path distortion h 2 of finger 2. Each represents a common error signal.
+ r + r
W2(m) W2(m-1) R22(m-1)X2(m)h2 e(m)_ W 2 (m) W 2 (m-1) R 22 (m-1) X 2 (m) h2 e ( m ) _
.(27) . (27)
となる。 この式は、 各フィンガ一間の相関がなければ、 (NXL) 次の相関行列 から計算した RLS (Recursive Least Square) アルゴリズムと各フィンガー で独立に N次の相関行列から計算した RLS (Recursive Least Square) アル ゴリズムは等価であることを示している。 Becomes If there is no correlation between the fingers, the RLS (Recursive Least Square) algorithm calculated from the (NXL) -order correlation matrix and the RLS (Recursive Least Square) calculated from the N-order correlation matrix independently for each finger ) Algorithms are equivalent.
次に、 本発明の CDMA適応アンテナ受信装置における L個のそれぞれの M MS E制御回路 5—:!〜 5—Lで得られる最適ウェイ卜と従来の CDMA適応 アンテナ受信装置における 1つの MM SE制御回路 5で得られる最適ウェイト は等価であることを証明する。 Next, each of the L M MSE control circuits 5— :! to 5—L in the CDMA adaptive antenna receiving apparatus of the present invention and one MMSE control in the conventional CDMA adaptive antenna receiving apparatus. We prove that the optimal weights obtained in circuit 5 are equivalent.
W= [Wi W2 ] T (29) W = [Wi W 2 ] T (29)
s2 ] T (30) s 2 ] T (30)
となる。 Becomes
ここで、 Wはフィンガー 1とフィンガ一 2のウェイトべクトル、 Wx はフィ ンガー 1のウェイトベクトル、 W2 はフィンガー 2のウェイトベクトルを表し、 Sはフィンガー 1とフィンガー 2の相関ベクトル、 Si はフィンガー 1の相関 ベクトル、 S2 はフィンガー 2の相関ベクトルをそれぞれ表している。 Where W is the weight vector of finger 1 and finger 1, W x is the weight vector of finger 1, W 2 is the weight vector of finger 2, S is the correlation vector of finger 1 and finger 2, Si is The correlation vector of finger 1 and S 2 represent the correlation vector of finger 2 respectively.
上式は、 各フィンガー間の相関がなければ、 (NXL) 次の相関行列から計算 した最適ウェイ卜と各フィンガーで独立に N次の相関行列から計算した最適ゥ エイトは等価であることを示している。 ここでは説明を簡単にするために 2フ ィンガーの場合を考えたが、 任意のフィンガ一数に対しても証明が成立するこ とは明らかである。
このように、 相関行列の各パスの相互相関はほぼ無相関になることを利用す ることにより、 一つの (N X L ) 次の相関行列を L個の N次の相関行列に次数 を落とすことにより演算量を (N L ) 2 から N2Lに比例するように大幅に削 減することができ、 演算回路の処理負荷を軽減することができる。 The above equation shows that if there is no correlation between the fingers, the optimal weight calculated from the (NXL) -order correlation matrix and the optimal weight calculated independently from the N-order correlation matrix for each finger are equivalent. ing. Here, we consider the case of two fingers for simplicity of explanation, but it is clear that the proof holds for any number of fingers. In this way, by using the fact that the cross-correlation of each path of the correlation matrix becomes almost uncorrelated, the order of one (NXL) -order correlation matrix is reduced to L N-order correlation matrices. The amount of calculation can be greatly reduced from (NL) 2 to N2L, and the processing load on the calculation circuit can be reduced.
また、 伝送路変動が速い場合には、 伝送路歪みを補償する機能とアンテナ重 みを生成する MM S E制御回路 5— 1〜5— Lとを別に分離することで、 MM S E制御回路 5— 1〜5— Lで生成されるアンテナ重みでは、 希望信号の伝送 路歪みの補償は行わず、 信号の到来方向および平均的な S I Rが最大になるよ うに制御し、 加算器 1 0によるレイク合成により瞬時の S I Rを最大にするよ うに制御することができる。 これにより、 従来のような MM S E制御回路 5で 使用される適応更新アルゴリズムにおいて、 伝送路変動もアンテナ重みで追従 させることにより生じる雑音の低減効果が小さくなり、 特性が劣化するという 問題を改善することができる。 In addition, when the transmission line fluctuation is fast, the function of compensating for the transmission line distortion and the MM SE control circuit 5-1 to 5-L for generating the antenna weight are separated from each other so that the MM SE control circuit 5— The antenna weights generated by 1 to 5—L do not compensate for the transmission path distortion of the desired signal, but control so that the signal arrival direction and the average SIR are maximized. Rake combining by adder 10 Can be controlled to maximize the instantaneous SIR. As a result, in the conventional adaptive update algorithm used in the MMSE control circuit 5, the effect of reducing the noise caused by following the transmission path variation with the antenna weight is reduced, and the problem of deteriorating characteristics is improved. be able to.
図 6は本発明の他の実施例を示す構成図である。 図 6において図 3と同等部 分は同一符号にて示している。 図 6に示す構成と図 3に示す構成との相異は、 加算器 1 0の出力であるレイク合成出力のシンポルデータの判定をなす判定器 1 5と、 この判定出力と参照信号生成回路 1 2の出力との間に設けられたスィ ツチ 1 6が追加されていることである。 以下、 図 6に示す構成と図 3に示す構 成との相異につき説明する。 FIG. 6 is a configuration diagram showing another embodiment of the present invention. 6, the same components as those in FIG. 3 are indicated by the same reference numerals. The difference between the configuration shown in FIG. 6 and the configuration shown in FIG. 3 is that a decision unit 15 that decides the symbol data of the rake combined output that is the output of the adder 10, and that the decision output and the reference signal generation circuit 1 That is, a switch 16 provided between the second output and the second output is added. Hereinafter, differences between the configuration shown in FIG. 6 and the configuration shown in FIG. 3 will be described.
判定器 1 5に加算器 1 0のレイク合成出力が入力され、 判定器 1 5の出力は 第 kユーザの受信シンポルとして出力されるだけでなく、 既知のパイロット信 号以外の受信時も参照信号として使用されるため、 スィッチ 1 6にも送られる。 参照信号生成回路 1 2は既知のパイ口ット信号を生成し、 スィッチ 1 6は、 パ ィロット信号受信時には、 参照信号生成回路 1 2の出力を選択し、 パイロット 信号以外の受信時には、 判定器 1 5の受信シンポルの出力を選択して, 減算器 1 1に送る。 これにより、 減算器 1 1は参照信号生成回路 1 2の出力だけでな く、 判定器 1 5の出力も利用して共通誤差信号を計算し、 L個のそれぞれの M M S E制御回路 5— 1〜5— Lで使用される適応更新 The rake combined output of the adder 10 is input to the decision unit 15, and the output of the decision unit 15 is not only output as the reception symbol of the k-th user, but also the reference signal during reception other than the known pilot signal. It is also sent to Switch 16 because it is used as The reference signal generation circuit 12 generates a known pilot signal, and the switch 16 selects the output of the reference signal generation circuit 12 when receiving a pilot signal. 15 Select the output of the receive symbol of 5 and send it to the subtractor 11. As a result, the subtractor 11 uses not only the output of the reference signal generation circuit 12 but also the output of the decision unit 15 to calculate a common error signal, and each of the L MMSE control circuits 5-1 to 5—Adaptive update used in L
重みをより高速に収束させることができる。
この実施例では、 L個のそれぞれの MMSE制御回路 5— 1〜5— Lで使用 される適応更新アルゴリズムのアンテナ重みを、 より高速に収束させることが できるという新たな効果を有する。 Weights can converge more quickly. This embodiment has a new effect that the antenna weight of the adaptive update algorithm used in each of the L MMSE control circuits 5-1 to 5-L can be converged more quickly.
L個のそれぞれの MM S E制御回路 5— 1〜 5— Lで使用される適応更新ァ ルゴリズムにおいて、 他の高速なアルゴリズムである SM I (Sample Matrix Inversion) アルゴリズムを適用しても、 同様な効果を発揮することができる。 図 7は L個のそれぞれの MM S E制御回路 5— 1〜 5— Lで使用される適応更 新アルゴリズムとして、 この SM Iアルゴリズムを用いたときの、 本発明の他 の CDMA適応アンテナ受信装置を示す構成図である。 In the adaptive update algorithm used in each of the L MM SE control circuits 5-1 to 5-L, similar effects can be obtained by applying another high-speed algorithm, the SMI (Sample Matrix Inversion) algorithm. Can be demonstrated. FIG. 7 shows another CDMA adaptive antenna receiving apparatus of the present invention when this SMI algorithm is used as an adaptive update algorithm used in each of the L MMSE control circuits 5-1 to 5-L. FIG.
参照信号生成回路 12の出力から加算器 10のレイク合成出力を減算して共 通誤差信号を計算する減算器が除かれ、 共通誤差信号の代わりに、 参照信号生 成回路 12から出力される信号に、 L個のそれぞれの乗算器 9— 1〜9 _Lに より、 伝送路推定回路 6— 1〜6— Lにより推定した伝送路歪みを乗算し; L 個のそれぞれの MM SE制御回路 5— 1〜5— Lに送る。 L個のそれぞれの M MS E制御回路 5— 1〜5— Lでは、 乗算器 9一 1〜9一 Lにより、 伝送路歪 みが乗じられた参照信号と逆拡散回路 3— 1— 1〜3— L— Nにより出力され たそれぞれのマルチパスに対応したアンテナ受信信号とを用いてアンテナ重み が制御される。 A subtractor for calculating a common error signal by subtracting the rake combined output of the adder 10 from the output of the reference signal generation circuit 12 is removed, and a signal output from the reference signal generation circuit 12 is used instead of the common error signal. Is multiplied by a transmission path estimation circuit 6-1 through 6_L by the L multipliers 9-1 through 9_L, respectively; L each of the MMSE control circuits 5— 1 to 5—Send to L. In each of the L MMSE control circuits 5-1 to 5-L, the reference signal multiplied by the transmission line distortion and the despreading circuit 3-1-1-1-1 to The antenna weight is controlled using the antenna reception signals corresponding to each multipath output by 3-LN.
第 kユーザに対する 1 ( 1 = 1〜L) 番目のマルチパス伝搬路を通って受信 された mシンポル目の (シンポル周期を Tとすると時刻 mTの) 信号の処理動 作について説明する。 L個のそれぞれの MM S E制御回路 5—;!〜 5—Lで使 用される SMIアルゴリズムは、 次式のように相関行列 Rxxkj を計算する。 The processing operation of the signal of the mth symbol (the time mT when the symbol period is T) received through the first (1 = 1 to L) multipath channel for the kth user will be described. The SMI algorithm used in each of the L MMSE control circuits 5—;! To 5—L calculates the correlation matrix R xxk j as in the following equation.
Rxxkj (1) =Xk,l (1) Xk,lH (1) (m=l) …… (31) R xxk j (1) = Xk, l (1) Xk, l H (1) (m = l) …… (31)
RXxk,l (m) = β Rxxk,l (m- 1) R X xk, l (m) = β R xx k, l (m-1)
+ ( 1— ^ ) Xk;i (m) XkjiH (m) + (1— ^) X k; i (m) X kj iH ( m )
(m=2, 3, …… ) …… (32) ここで、 j3は 0<ι8<1の条件を満たす忘却係数であり、 RLS (Recursive (m = 2, 3, ……) …… (32) where j3 is a forgetting factor satisfying the condition 0 <ι8 <1, and RLS (Recursive
Least Square) アルゴリズムで使用される重み付け定数 αと同様な特徴を有す る。 また、 次式のように相関ベクトル Skj を計算する。
sk, i) = Xi (i) 2k*(i) ( ) · —― -- (33)
Least Square) It has the same characteristics as the weighting constant α used in the algorithm. Also, calculate the correlation vector Skj as follows. s k , i) = Xi (i) 2 k * (i) ()
(m= 2,3,……) (34) (m = 2,3, ……) (34)
(但し、参照信号生成回路 の出力を 2k(m)とする) 従って、 L個のそれぞれの MM SE制御回路 5 _ 1〜5—Lで生成されるァ ンテナ重みは、 (However, the output of the reference signal generation circuit is assumed to be 2 k (m).) Therefore, the antenna weights generated by the L MMSE control circuits 5_1 to 5-L are:
Wk)i (m) =Rxxk)r1 (m) Sk>1 (m) …… (35) となる。 この式 (35) は相関行列 Rxxkji の逆行列を計算しなければならな いので、 この逆行列計算の演算量を軽減するために式 (32) の両辺を行列公 式を用いて逆行列化すると、 Rxxk 1は、 W k) i (m) = R xx k ) r 1 (m) S k> 1 (m) ... (35) Since equation (35) must calculate the inverse of the correlation matrix R xxk ji, both sides of equation (32) are inversely calculated using a matrix formula in order to reduce the computational complexity of this inverse matrix calculation. Matrixized, Rxxk 1 is
(m= 2,3,……〉 --— -—— (36) のように表される。 (m = 2,3, ……〉 --- ---- (36)
L個のそれぞれの MM S E制御回路 5— 1~5— Lで使用される適応更新ァ ルゴリズムにおいて S Mlアルゴリズムを適用しても、 相関行列の各パスの相 互相関はほぼ無相関になるので、 一つの (NXL) 次の相関行列を L個の N次 の相関行列に次数を落とすことにより演算量を (NL) 2 から N2Lに比例す るように大幅に削減でき、 演算回路の処理負荷を軽減することができる。 Even if the S Ml algorithm is applied to the adaptive update algorithm used in each of the L MMSE control circuits 5-1 to 5-L, the cross-correlation of each path in the correlation matrix becomes almost uncorrelated. By reducing the order of one (NXL) -order correlation matrix to L N-order correlation matrices, the amount of computation can be significantly reduced from (NL) 2 to N2L, and the processing load on the computation circuit Can be reduced.
また、 伝送路変動が速い場合には、 伝送路歪みを補償する機能とアンテナ重 みを生成する MM SE制御回路 5—:!〜 5— Lとを別に分離することで、 MM SE制御回路 5— 1〜5—Lで生成されるアンテナ重みでは、 希望信号の伝送 路歪みの補償は行わず、 信号の到来方向および平均的な S I Rが最大になるよ うに制御し、 加算器 10によるレイク合成により瞬時の S I Rを最大にするよ うに制御することができ、 特性劣化を改善することができる同様な効果を発揮
することができる。 In addition, when the transmission line fluctuation is fast, the MM SE control circuit that compensates for the transmission line distortion and generates the antenna weight 5— :! -5-L is separated separately, so that the antenna weights generated by the MMSE control circuits 5-1-5-L do not compensate for the transmission path distortion of the desired signal. Control can be performed to maximize the instantaneous SIR by the rake combining by the adder 10, and the same effect can be obtained that can improve the characteristic deterioration. can do.
図 8は一つの MM S E制御回路 5で使用される適応更新アルゴリズムとして R L S (Recursive Least Square) アルゴリズムを用いたときの、 本発明の他 の C D MA適応アンテナ受信装置を示す構成図である。 本発明の他の C D MA 適応ァンテナ受信装置の構成は、 従来の C D M A適応ァンテナ受信装置の信号 処理手段 3 0— 1〜3 0— Lに伝送路歪みを補償する機能である伝送路推定回 路 6— 1〜6— L、 複素^役回路 7— 1〜 7— Lおよび乗算器 8— 1〜 8 _ L、 9— 1〜9— Lが更に設けられている。 FIG. 8 is a configuration diagram showing another CDMA adaptive antenna receiving apparatus of the present invention when an RLS (Recursive Least Square) algorithm is used as an adaptive updating algorithm used in one MMSE control circuit 5. Another configuration of the CDMA adaptive antenna receiving apparatus according to the present invention is a transmission channel estimating circuit having a function of compensating for channel distortion to signal processing means 30-1 to 30-L of the conventional CDMA adaptive antenna receiving apparatus. 6-1 to 6-L, complex function circuit 7-1 to 7-L and multipliers 8-1 to 8_L, 9-1 to 9-L are further provided.
従って、 各マルチパスに対応した L個の信号処理手段 2 5— 1〜2 5— Lは、 遅延器 2—:!〜 2— L、 N個の逆拡散回路 3— 1— 1〜3— L— N、 アンテナ 重み付け合成回路 4一 :!〜 4 _ L、 伝送路推定回路 6— 1〜6 _ L、 複素共役 回路 7— 1〜7— Lおよび乗算器 8— 1〜8— L、 9一 1〜9— Lで構成され ている。 これにより、 伝送路変動が速い場合には、 伝送路歪みを補償する機能 とアンテナ重みを生成する MM S E制御回路 5とを別に分離することで、 MM S E制御回路 5で生成されるアンテナ重みでは、 希望信号の伝送路歪みの補償 は行わず、 信号の到来方向および平均的な S I Rが最大になるように制御し、 加算器 1 0によるレイク合成により瞬時の S I Rを最大にするように制御する ことができ、 特性劣化を改善することができる。 Therefore, the L signal processing means 25-1 to 25-L corresponding to each multipath are provided with a delay device 2— :! ~ 2—L, N despreading circuits 3-1—1 to 3—L—N, antenna weighting synthesis circuit 41 :! 4 _L, channel estimation circuit 6-1-6 _L, complex conjugate circuit 7-1-7-L and multipliers 8-1-8 -L, 9-1-9-L . Thus, when the transmission line fluctuation is fast, the function of compensating for the transmission line distortion and the MM SE control circuit 5 that generates the antenna weight are separated separately, so that the antenna weight generated by the MM SE control circuit 5 is different. , Without compensating for the transmission line distortion of the desired signal, controlling to maximize the signal arrival direction and average SIR, and controlling to maximize the instantaneous SIR by rake combining by the adder 10. It is possible to improve the characteristic deterioration.
図 9は一つの MM S E制御回路 5で使用される適応更新アルゴリズムとして R L S (Recursive Least Square) アルゴリズムを用いたときの、 本発明の他 の C D MA適応アンテナ受信装置を示す構成図である。 図 9を参照すると、 カロ 算器 1 0のレイク合成出力に判定器 1 5と、 判定器 1 5の出力と参照信号生成 回路 1 2の出力との間に、 スィッチ 1 6が設けられている。 また、 信号処理手 段 2 5— 1〜2 5— Lには伝送路歪みを補償する機能である伝送路推定回路 6 _ 1〜6 _ L、 複素共役回路 7— 1〜7 _ Lおよび乗算器 8— 1〜8— L、 9 — 1〜9一 Lが設けられている。 FIG. 9 is a configuration diagram showing another CDMA adaptive antenna receiving apparatus of the present invention when an RLS (Recursive Least Square) algorithm is used as an adaptive updating algorithm used in one MMSE control circuit 5. Referring to FIG. 9, a determinator 15 is provided at the rake combined output of the calorie calculator 10, and a switch 16 is provided between the output of the determinator 15 and the output of the reference signal generation circuit 12. . In addition, the signal processing means 25-1 to 25-L include a transmission path estimation circuit 6 _ 1 to 6 _L, a complex conjugate circuit 7-1 to 7 _L, and a Containers 8-1 to 8-L, 9-1 to 9-1 L are provided.
これにより、 減算器 1 1は参照信号生成回路 1 2の出力だけでなく判定器 1 5の出力も利用して共通誤差信号を計算し、 M M S E制御回路 5で使用される 適応更新アルゴリズムのアンテナ重みをより高速に収束させることができる。
また、 伝送路変動が速い場合には、 伝送路歪みを補償する機能とアンテナ重み を生成する MM S E制御回路 5とを別に分離することで、 MM S E制御回路 5 で生成されるアンテナ重みでは、 希望信号の伝送路歪みの補償は行わず、 信号 の到来方向および平均的な S I Rが最大になるように制御し、 加算器 1 0によ るレイク合成により瞬時の S I Rを最大にするように制御することができ、 特 性劣化を改善することができる。 この実施例は、 MM S E制御回路 5で使用さ れる適応更新アルゴリズムのアンテナ重みをより高速に収束させることができ るという新たな効果を有する。 As a result, the subtractor 11 calculates the common error signal using not only the output of the reference signal generation circuit 12 but also the output of the decision unit 15, and calculates the antenna weight of the adaptive update algorithm used in the MMSE control circuit 5. Can be converged more quickly. Also, when the transmission line fluctuation is fast, the function of compensating for the transmission line distortion and the MMSE control circuit 5 that generates the antenna weight are separated separately, so that the antenna weight generated by the MMSE control circuit 5 is: Control to maximize signal arrival direction and average SIR without compensating for transmission path distortion of desired signal, and to maximize instantaneous SIR by rake combining by adder 10 And characteristic deterioration can be improved. This embodiment has a new effect that the antenna weight of the adaptive update algorithm used in the MMSE control circuit 5 can be converged more quickly.
図 1 0は一つの MM S E制御回路 5で使用される適応更新アルゴリズムとし て S M Iアルゴリズムを用いたときの、 本発明の他の C D MA適応アンテナ受 信装置を示す構成図である。 信号処理手段 2 5— 1〜2 5— Lには伝送路歪み を補償する機能である伝送路推定回路 6— 1〜 6— L、 複素共役回路 7— 1〜 7一 Lおよび乗算器 8 _ 1〜8—L、 9— 1〜 9— Lが設けられている。 FIG. 10 is a configuration diagram showing another CDMA adaptive antenna receiving apparatus of the present invention when the SMI algorithm is used as the adaptive update algorithm used in one MMSE control circuit 5. The signal processing means 25-1 to 25-L have a transmission path estimating circuit 6-1 to 6-L, a complex conjugate circuit 7-1 to 7-1 L and a multiplier 8 _, which are functions for compensating for transmission path distortion. 1-8-L, 9-1-9-L are provided.
これにより、 伝送路変動が速い場合には、 伝送路歪みを補償する機能とアン テナ重みを生成する MM S E制御回路 5とを別に分離することで、 MM S E制 御回路 5で生成されるアンテナ重みでは、 希望信号の伝送路歪みの補償は行わ ず、 信号の到来方向および平均的な S I Rが最大になるように制御し、 加算器 1 0によるレイク合成により瞬時の S I Rを最大にするように制御することが でき、 特性劣化を改善することができる。 As a result, when the transmission line fluctuation is fast, the function of compensating for the transmission line distortion and the MMSE control circuit 5 that generates the antenna weight are separated separately, and the antenna generated by the MMSE control circuit 5 is separated. The weight does not compensate for the transmission path distortion of the desired signal, but controls so that the arrival direction of the signal and the average SIR are maximized, and maximizes the instantaneous SIR by rake combining by the adder 10. It can be controlled, and the characteristic deterioration can be improved.
上記の実施例では、 C D M A方式を基本に記述したが、 T D MA (Time Division Multiple Access :時間分割多元接続) 方式や、 F DMA (Frequency Division Multiple Access:周波数分割多元接続) 方式でも、 複数到来波を分離 することができるので、 C D MA方式以外の適応アンテナ受信装置にも本発明 は適用可能である。 産業上の利用の可能性 Although the above embodiment has been described based on the CDMA system, the TDMA (Time Division Multiple Access) system and the FDMA (Frequency Division Multiple Access) system can also be used for multiple arriving waves. Therefore, the present invention can be applied to an adaptive antenna receiver other than the CDMA system. Industrial applicability
以上述べたように、 本発明によれば、 各フィンガーで独立に、 レイク合成後 の共通誤差信号の 2乗平均が最小となるように、 適応更新アルゴリズムを用い As described above, according to the present invention, an adaptive updating algorithm is used independently for each finger so that the root mean square of the common error signal after rake combining is minimized.
-重み係数を制御する構成としたので、 全ての MM S E制御回路で使
用される適応更新アルゴリズムの演算量を (N L) 2 から N2Lに比例するよ うに大幅に削減可能となって、 演算回路の処理負荷を軽減できるという効果が める。 -Since the weight coefficient is controlled, it can be used in all MMSE control circuits. The amount of operation of the adaptive update algorithm used can be greatly reduced from (NL) 2 to N2L, which has the effect of reducing the processing load on the arithmetic circuit.
また、 本発明によれば、 伝送路変動が速い場合には、 伝送路歪みを補償する 機能とアンテナ重みを生成する MM S E制御回路とを別に分離することで、 M M S E制御回路で生成されるアンテナ重みでは希望信号の伝送路歪みの補償は 行わず、 信号の到来方向および平均的な S I Rが最大になるように制御し、 レ イク合成により瞬時の S I Rを最大にするように制御することができ、 特性劣 化を改善することができるという効果がある。
Further, according to the present invention, when the transmission line fluctuation is fast, the function of compensating for the transmission line distortion and the MMSE control circuit for generating the antenna weight are separated separately, so that the antenna generated by the MMSE control circuit is separated. The weight does not compensate for the transmission path distortion of the desired signal, but can be controlled to maximize the signal arrival direction and average SIR, and to control the instantaneous SIR by rake combining. However, there is an effect that characteristic deterioration can be improved.
Claims
1 . 適応アンテナを構成する複数のアンテナ素子により送信信号を受信する ようにした適応ァンテナ受信装置であつて、 1. An adaptive antenna receiving apparatus configured to receive a transmission signal by a plurality of antenna elements constituting an adaptive antenna,
前記複数のアンテナ素子からの受信信号を各フィンガー毎に逆拡散処理する 逆拡散手段と、 Despreading means for despreading the received signals from the plurality of antenna elements for each finger,
前記逆拡散手段からそれぞれ出力される逆拡散信号に重み係数を乗算する重 み係数乗算手段と、 Weight coefficient multiplying means for multiplying the despread signal output from the despreading means by a weight coefficient,
前記重み係数乗算手段からの各出力に基づき伝送路歪みを推定する伝送路歪 み推定手段と、 Transmission line distortion estimating means for estimating transmission line distortion based on each output from the weight coefficient multiplying means,
前記推定された伝送路歪みの各複素共役を生成する複素共役手段と、 前記各複素共役と前記重み係数乗算手段からの各出力とを乗算して伝送路歪 みを補償する乗算手段と、 Complex conjugate means for generating each complex conjugate of the estimated transmission path distortion; multiplication means for multiplying each of the complex conjugates and each output from the weight coefficient multiplying means to compensate for the transmission path distortion;
前記乗算手段の各出力を加算してレイク合成する合成手段と、 Combining means for rake combining by adding the outputs of the multiplying means,
前記レイク合成後の出力と参照信号との共通誤差信号を生成してこの共通誤 差信号に前記伝送路歪みの各々を乗算して導出する誤差信号生成手段と、 前記誤差信号生成手段の各出力と前記逆拡散信号の各々とを用いて、 前記共 通誤差信号の 2乗平均が最小となるように前記重み係数を制御する制御手段と を含む適応ァンテナ受信装置。 Error signal generating means for generating a common error signal between the output after the rake combining and the reference signal, multiplying the common error signal by each of the transmission line distortions, and deriving each output of the error signal generating means Control means for controlling the weighting coefficient so as to minimize the root mean square of the common error signal using the despread signal and each of the despread signals.
2 . 前記制御手段は前記各フィンガー毎に設けられ、 前記各フィンガー毎に 前記重み係数を制御する請求項 1記載の適応アンテナ受信装置。 2. The adaptive antenna receiving apparatus according to claim 1, wherein the control means is provided for each of the fingers, and controls the weight coefficient for each of the fingers.
3 . 前記制御手段は前記各フィンガ一に共通に設けられ、 前記各フィンガー に共通に前記重み係数を制御する請求項 1記載の適応アンテナ受信装置。 3. The adaptive antenna receiving apparatus according to claim 1, wherein the control means is provided commonly to each of the fingers, and controls the weight coefficient commonly to each of the fingers.
4 . 前記制御手段は、 前記重み係数を制御するための適応更新アルゴリズム として、 R L S (Recursive Least Square) アルゴリズムを使用した請求項 1 記載の適応ァンテナ受信装置。
4. The adaptive antenna receiving apparatus according to claim 1, wherein the control means uses an RLS (Recursive Least Square) algorithm as an adaptive updating algorithm for controlling the weight coefficient.
5 . 前記合成手段の出力のデータ判定をなす判定手段と、 この判定手段の判 定出力と前記参照信号とを選択的に切替えるスイツチ手段とを更に含み、 5. It further includes: a determination unit that performs data determination of an output of the combining unit; and a switch unit that selectively switches between the determination output of the determination unit and the reference signal.
前記判定手段が前記受信信号をパイロット信号と判断した場合には、 前 記スィツチ手段は前記参照信号を選択して前記誤差信号生成手段へ入力し、 前 記判定手段が前記受信信号を前記パイロット信号以外のデータ信号と判断した 場合には、 前記スィツチ手段は前記判定出力を選択して前記誤差信号生成手段 へ入力する請求項 1記載の適応アンテナ受信装置。 When the determining means determines that the received signal is a pilot signal, the switching means selects the reference signal and inputs it to the error signal generating means, and the determining means converts the received signal to the pilot signal. 2. The adaptive antenna receiving apparatus according to claim 1, wherein when it is determined that the data signal is other than the data signal, the switch means selects the determination output and inputs the selected output to the error signal generating means.
6 . 適応アンテナを構成する複数のアンテナ素子により送信信号を受信する ようにした適応ァンテナ受信装置であって、 6. An adaptive antenna receiving apparatus configured to receive a transmission signal by a plurality of antenna elements constituting an adaptive antenna,
前記複数のアンテナ素子からの受信信号を各フィンガー毎に逆拡散処理する 逆拡散手段と、 Despreading means for despreading the received signals from the plurality of antenna elements for each finger,
前記逆拡散手段からそれぞれ出力される逆拡散信号に重み係数を乗算する重 み係数乗算手段と、 Weight coefficient multiplying means for multiplying the despread signal output from the despreading means by a weight coefficient,
前記重み係数乗算手段からの各出力に基づき伝送路歪みを推定する伝送路歪 み推定手段と、 Transmission line distortion estimating means for estimating transmission line distortion based on each output from the weight coefficient multiplying means,
前記推定された伝送路歪みの各複素共役を生成する複素共役手段と、 前記各複素共役と前記重み係数乗算手段からの各出力とを乗算して伝送路歪 みを補償する第一の乗算手段と、 Complex conjugate means for generating each complex conjugate of the estimated transmission line distortion; first multiplication means for multiplying each of the complex conjugates and each output from the weight coefficient multiplying means to compensate for the transmission line distortion When,
前記第一の乗算手段の各出力を加算してレイク合成する合成手段と、 . 前記伝送路歪みの各々と参照信号とを乗算する第二の乗算手段と、 Combining means for performing rake combining by adding the outputs of the first multiplying means; second multiplying means for multiplying each of the transmission path distortions by a reference signal;
前記第二の乗算手段の各出力と前記逆拡散信号の各々とを用いて、 前記重み 係数を制御する制御手段とを含む適応アンテナ受信装置。 An adaptive antenna receiving apparatus comprising: control means for controlling the weighting coefficient using each output of the second multiplying means and each of the despread signals.
7 . 前記制御手段は前記各フィンガー毎に設けられ、 前記各フィンガー毎に 前記重み係数を制御する請求項 6記載の適応ァンテナ受信装置。 7. The adaptive antenna receiving apparatus according to claim 6, wherein the control means is provided for each of the fingers, and controls the weight coefficient for each of the fingers.
8 . 前記制御手段は前記各フィンガーに共通に設けられ、 前記各フィンガー
に共通に前記重み係数を制御する請求項 6記載の適応アンテナ受信装置。 8. The control means is provided commonly to each of the fingers, and each of the fingers is 7. The adaptive antenna receiving device according to claim 6, wherein the weighting factor is controlled in common to the antennas.
9 . 前記制御手段は、 前記重み係数を制御するための適応更新アルゴリズム として、 S M I (Sample Matrix Inversion) アルゴリズムを使用した請求項 6 記載の適応ァンテナ受信装置。 9. The adaptive antenna receiving apparatus according to claim 6, wherein the control means uses an SMI (Sample Matrix Inversion) algorithm as an adaptive updating algorithm for controlling the weight coefficient.
1 0 . 適応アンテナを構成する複数のアンテナ素子により送信信号を受信する ようにした適応アンテナ受信装置における受信方法であって、 10. A receiving method in an adaptive antenna receiving apparatus configured to receive a transmission signal by a plurality of antenna elements forming an adaptive antenna,
前記複数のアンテナ素子からの受信信号を各フィンガ一毎に逆拡散処理し、 各フィンガー毎に各逆拡散信号を生成する逆拡散ステップと、 A despreading step of despreading the received signals from the plurality of antenna elements for each finger, and generating a despread signal for each finger;
前記逆拡散信号に重み係数を乗算し、 各乗算出力を生成する重み係数乗算ス 前記各乗算出力に基づき各伝送路歪みを推定する伝送路歪み推定: 前記推定された各伝送路歪みの各複素共役を生成するステップと、 前記各複素共役と前記各乗算出力の各々とを乗算して各伝送路歪みを補償す 前記伝送路歪みを補償した各乗算出力を加算してレイク合成する合成ステツ プと、 A weighting factor multiplying unit that multiplies the despread signal by a weighting factor to generate each multiplication output. Channel distortion estimation for estimating each channel distortion based on each of the multiplication outputs: Each complex of the estimated channel distortion estimated A step of generating a conjugate; and a step of multiplying each of the complex conjugates and each of the multiplied outputs to compensate for each of the transmission line distortions. When,
前記合成の出力と参照信号との共通誤差信号を生成して、 該共通誤差信号に 前記伝送路歪みの各々を乗算して、 各誤差信号を生成する誤差信号生成ステツ プと、 An error signal generating step of generating a common error signal between the output of the synthesis and a reference signal, multiplying the common error signal by each of the transmission line distortions, and generating each error signal;
前記各誤差信号と前記逆拡散信号の各々とを用いて、 前記共通誤差信号の 2 乗平均が最小となるように前記重み係数を制御する制御ステツプとを含む受信 方法。 A control step of controlling the weight coefficient so as to minimize the root mean square of the common error signal using each of the error signals and each of the despread signals.
1 1 . 前記制御ステップは、 前記各フィンガー毎に行われ、 前記各フィンガ 一毎に前記重み係数を制御する請求項 1 0記載の受信方法。 11. The receiving method according to claim 10, wherein the control step is performed for each of the fingers, and the weight coefficient is controlled for each of the fingers.
1 2 . 前記制御ステップは、 前記各フィンガーに共通に行われ、 前記各フィ
ンガーに共通に前記重み係数を制御する請求項 1 0記載の受信方法。 12. The control step is performed in common for each of the fingers, and 10. The receiving method according to claim 10, wherein the weight coefficient is controlled in common for the lingers.
1 3 . 前記制御ステップは、 前記重み係数を制御するための適応更新アルゴ リズムとして、 R L S (Recursive Least Square) ァルゴリズムを使用した請 求項 1 0記載の受信方法。 13. The receiving method according to claim 10, wherein the control step uses an RLS (Recursive Least Square) algorithm as an adaptive updating algorithm for controlling the weighting coefficient.
1 4 . 前記合成ステップの出力のデータ判定をなす判定二 1 4. Judgment 2 which makes data judgment of the output of the above-mentioned synthesis step
前記受信信号が前記パイ口ット信号の場合には前記参照信号を選択し、 前記受信信号が前記パイロッ卜信号以外のデータ信号の場合には前記判定ステ ップの判定出力を選択する選択ステップを、 前記誤差信号生成ステップの前に 更に含む請求項 1 0記載の受信方法。 A selection step of selecting the reference signal when the received signal is the pilot signal, and selecting a determination output of the determination step when the received signal is a data signal other than the pilot signal; 10. The receiving method according to claim 10, further comprising: before the error signal generating step.
1 5 . 適応アンテナを構成する複数のアンテナ素子により送信信号を受信す るようにした適応ァンテナ受信装置における受信方法であつて、 15. A receiving method in an adaptive antenna receiving apparatus configured to receive a transmission signal by a plurality of antenna elements constituting an adaptive antenna,
前記複数のァンテナ素子からの受信信号を各フィンガー毎に逆拡散処理し、 各フィンガー毎に各逆拡散信号を生成する逆拡散ステップと、 Despreading a received signal from the plurality of antenna elements for each finger to generate a despread signal for each finger;
前記逆拡散信号に重み係数を乗算し、 各乗算出力を生成する重み係数乗算ス テツプと、 A weighting factor multiplication step for multiplying the despread signal by a weighting factor to generate each multiplication output;
前記各乗算出力に基づき各伝送路歪みを推定する伝送路歪み推定ステップと、 前記推定された各伝送路歪みの各複素共役を生成するステップと、 A channel distortion estimation step of estimating each channel distortion based on each of the multiplied outputs, and a step of generating each complex conjugate of the estimated channel distortion,
前記各複素共役と前記各乗算出力の各々とを乗算して各伝送路歪みを補償す る第一の乗算ステップと、 A first multiplication step of multiplying each of the complex conjugates and each of the multiplication outputs to compensate for each transmission line distortion;
前記第一の乗算ステップによる各乗算出力を加算してレイク合成する合成ス テツフと、 A synthesizing step for performing rake synthesis by adding the multiplied outputs from the first multiplying step;
前記各伝送路歪みと参照信号とを乗算する第二の乗算ステップと、 A second multiplication step of multiplying each of the transmission path distortions and a reference signal,
前記第二の乗算ステップによる各乗算出力と前記各逆拡散信号とを用いて、 前記重み係数を制御する制御ステップとを含む受信方法。 A control step of controlling the weighting coefficient using each of the multiplied outputs in the second multiplying step and each of the despread signals.
1 6 . 前記制御ステップは、 前記各フィンガー毎に行われ、 前記各フィンガ
一毎に前記重み係数を制御する請求項 1 5記載の受信方法。 16. The control step is performed for each of the fingers, and each of the fingers is 16. The receiving method according to claim 15, wherein the weighting coefficient is controlled for each one.
17. 前記制御ステップは、 前記各フィンガーに共通に行われ、 前記各フィ ンガーに共通に前記重み係数を制御する請求項 1 5記載の受信方法。 17. The receiving method according to claim 15, wherein the control step is performed commonly for each of the fingers, and the weight coefficient is controlled commonly for each of the fingers.
18. 前記制御ステップは、 前記重み係数を制御するための適応更新アルゴ リズムとして、 SMI (Sample Matrix Inversion) アルゴリズムを使用した請 求項 1 5記載の受信方法。
18. The receiving method according to claim 15, wherein the control step uses an SMI (Sample Matrix Inversion) algorithm as an adaptive update algorithm for controlling the weight coefficient.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2003211887A AU2003211887A1 (en) | 2002-03-13 | 2003-03-10 | Adaptive antenna receiver and its receiving method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002068177A JP2003273774A (en) | 2002-03-13 | 2002-03-13 | Adaptive antenna receiver and method thereof |
JP2002-68177 | 2002-03-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003077440A1 true WO2003077440A1 (en) | 2003-09-18 |
Family
ID=27800295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2003/002798 WO2003077440A1 (en) | 2002-03-13 | 2003-03-10 | Adaptive antenna receiver and its receiving method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2003273774A (en) |
AU (1) | AU2003211887A1 (en) |
WO (1) | WO2003077440A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100369390C (en) * | 2004-07-22 | 2008-02-13 | 中兴通讯股份有限公司 | Method of receiving radio transmission by multiple antenna array |
CN108226887A (en) * | 2018-01-23 | 2018-06-29 | 哈尔滨工程大学 | A kind of waterborne target rescue method for estimating state in the case of observed quantity transient loss |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100349383C (en) * | 2004-04-14 | 2007-11-14 | 华为技术有限公司 | Method and device for evaluating channels |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1155216A (en) * | 1997-08-05 | 1999-02-26 | Nec Corp | Cdma adaptive receiving device |
JP2002026787A (en) * | 2000-07-10 | 2002-01-25 | Yrp Mobile Telecommunications Key Tech Res Lab Co Ltd | Wireless receiver |
EP1182728A2 (en) * | 2000-08-25 | 2002-02-27 | Nec Corporation | Adaptive antenna reception apparatus |
-
2002
- 2002-03-13 JP JP2002068177A patent/JP2003273774A/en active Pending
-
2003
- 2003-03-10 WO PCT/JP2003/002798 patent/WO2003077440A1/en active Application Filing
- 2003-03-10 AU AU2003211887A patent/AU2003211887A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1155216A (en) * | 1997-08-05 | 1999-02-26 | Nec Corp | Cdma adaptive receiving device |
JP2002026787A (en) * | 2000-07-10 | 2002-01-25 | Yrp Mobile Telecommunications Key Tech Res Lab Co Ltd | Wireless receiver |
EP1182728A2 (en) * | 2000-08-25 | 2002-02-27 | Nec Corporation | Adaptive antenna reception apparatus |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100369390C (en) * | 2004-07-22 | 2008-02-13 | 中兴通讯股份有限公司 | Method of receiving radio transmission by multiple antenna array |
CN108226887A (en) * | 2018-01-23 | 2018-06-29 | 哈尔滨工程大学 | A kind of waterborne target rescue method for estimating state in the case of observed quantity transient loss |
CN108226887B (en) * | 2018-01-23 | 2021-06-01 | 哈尔滨工程大学 | Water surface target rescue state estimation method under condition of transient observation loss |
Also Published As
Publication number | Publication date |
---|---|
JP2003273774A (en) | 2003-09-26 |
AU2003211887A1 (en) | 2003-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3092798B2 (en) | Adaptive transceiver | |
JP4847874B2 (en) | Multi-user adaptive array receiver and method | |
JP4703185B2 (en) | Array receiver with subarray selection, method of using the same, and reception system incorporating the same | |
JP3406831B2 (en) | Array antenna system for wireless base station | |
KR100474156B1 (en) | Adaptive antenna reception apparatus using reception signals by arrays antennas | |
JP3591581B2 (en) | Adaptive antenna receiver | |
JP3619729B2 (en) | Radio receiving apparatus and radio receiving method | |
JP2002368652A (en) | Adaptive antenna receiver | |
JP2002094318A (en) | Method and device for extracting signal in radio communication system | |
KR100413136B1 (en) | Adaptive array antenna receiving apparatus | |
US6665286B1 (en) | Adaptive receiving device removing interference from users and multi-paths by antenna directivity control | |
EP1468501A1 (en) | A method for 2d rake combining in a code devision multiple access system | |
WO2005091517A1 (en) | Method and system for channel estimation, related receiver and computer program product | |
KR101073821B1 (en) | A method of receiver processing of CDMA signals in a CDMA system | |
WO2005001992A1 (en) | Adaptive antenna reception method and device | |
CN1167218C (en) | Receiver structure applying intelligent antenna and combined detection in radio communication system and its algorithm | |
US6317611B1 (en) | Communication device with adaptive antenna | |
JP3328930B2 (en) | Adaptive receiver | |
JP3601598B2 (en) | Adaptive antenna receiver | |
JP4359778B2 (en) | Adaptive antenna receiver with good directional beam reception quality from the initial stage | |
WO2001037448A1 (en) | Base station device and radio receiving method | |
WO2003077440A1 (en) | Adaptive antenna receiver and its receiving method | |
JP2002204192A (en) | Method and apparatus for receiving | |
JP3960888B2 (en) | Signal separation method and receiving apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CA CN KR NO SG US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): DE ES FI FR GB IT NL SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |