WO2003077363A1 - Antenna cover - Google Patents

Antenna cover Download PDF

Info

Publication number
WO2003077363A1
WO2003077363A1 PCT/JP2003/002895 JP0302895W WO03077363A1 WO 2003077363 A1 WO2003077363 A1 WO 2003077363A1 JP 0302895 W JP0302895 W JP 0302895W WO 03077363 A1 WO03077363 A1 WO 03077363A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna cover
sheet
resin
group
cover according
Prior art date
Application number
PCT/JP2003/002895
Other languages
French (fr)
Japanese (ja)
Inventor
Katsusada Tokuhira
Yasuhiko Sawada
Hiroyuki Yoshimoto
Shunji Kasai
Shinichi Yano
Sigehito Sagisaka
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to JP2003575459A priority Critical patent/JPWO2003077363A1/en
Publication of WO2003077363A1 publication Critical patent/WO2003077363A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome

Definitions

  • the present invention relates to an antenna cover. More specifically, it relates to an antenna cover of an antenna used for a mobile phone base station and the like. Background art
  • Mobile phone base station antennas are installed on the roofs of high-rise buildings such as condominiums in urban areas.
  • the antenna elements are formed by etching copper foil on both sides of a low dielectric loss resin substrate. .
  • a cyanate resin is used in terms of moldability, adhesiveness, and price.
  • the electrical properties, tan ⁇ 5 is about 1 0 3, life is said to be 1 five years.
  • the antenna since the antenna is installed outdoors, it is exposed to rain, snow, dust and the like. In particular, if water adheres to the antenna, there is a problem that transmission loss due to water occurs and diffusion of electromagnetic waves occurs.
  • antennas used outdoors are protected by antenna covers.
  • the antenna cover is required to have excellent electric characteristics such as low dielectric constant and low ta ⁇ ⁇ .
  • An object of the present invention is to solve the above-mentioned problems, and to provide an antenna cover having excellent electric characteristics such as low dielectric constant and low t an. Disclosure of the invention
  • the present invention relates to an antenna cover comprising a polytetrafluoroethylene-based resin sheet, wherein the polytetrafluoroethylene-based resin has a dielectric loss tangent calculated by the following condition (1): 2.0 X 1
  • the present invention relates to an antenna cover which is a polytetrafluoroethylene resin of 0 to 4 or less.
  • Polytetrafluoroethylene resin powder is compression-molded into a cylindrical shape.
  • a 0.5 mm-thick sheet cut out of the cylinder is heated and baked at 38 ° C. for 5 minutes in a hot-air circulation type electric furnace. Then, it is allowed to cool to room temperature at a cooling rate of 60 ° CZ time to prepare a sample sheet. (Dielectric loss tangent measurement method)
  • R s Effective surface resistance ( ⁇ ) taking into account the surface roughness of the conductor cavity
  • the dielectric loss tangent is preferably 1. It 5 0 X 1 0- 4 below.
  • the standard specific gravity of the polytetrafluoroethylene resin is preferably 2.192 or more.
  • the specific gravity of the sheet is preferably 2.192 or more.
  • the sheet is preferably unfired or has a crystal conversion of 90% or less.
  • the terminal group of the polytetrafluoroethylene resin is preferably fluorinated.
  • a metal foil is adhered to the sheet by heat fusion. After the surface treatment of the sheet, it is preferable to heat-bond the sheet.
  • the sheet and the metal foil are each formed of at least one resin adhesive selected from the group consisting of an epoxy resin, a phenol resin, and a silane resin; and Z or a hydroxyl group, a carboxylic acid group, a carboxylate, a carboxyester group. It is preferable that the adhesive be applied via a fluorine-containing ethylenic polymer having at least one functional group selected from the group consisting of epoxy group and epoxy group.
  • the sheet and the metal foil are adhered via a resin adhesive after the sheet is subjected to a surface treatment.
  • the surface treatment includes (a) discharge treatment in an inert gas atmosphere containing an organic compound having a functional group, (mouth) excimer laser irradiation, (c) plasma treatment, or (ii) chemical treatment using metallic sodium. It is preferable that the etching process be performed.
  • the present invention has a dielectric loss tangent at 1 2 GH z measured in (A) above condition (1) is at 1. 5 X 1 0- 4 or less, Ru der standard specific gravity of 2.1 9 2 or more poly tetrafluoropropoxy O b ethylene-based resin powder, and Roh or (B) 3 8 0 melt viscosity at ° C is less than 1 0 6 Boise polytetramethylene full O Roe Chile emission resin powder composition comprising 1 0% by weight or more
  • the present invention relates to an antenna cover in which a metal foil is adhered to at least one surface of a sheet made of an object.
  • the composition comprises a cyanate resin.
  • the terminal group of the polytetrafluoroethylene resin is preferably fluorinated.
  • the metal foil is preferably a stainless steel foil or an aluminum foil.
  • the sheet and the metal foil are each formed of at least one resin adhesive selected from the group consisting of an epoxy resin, a phenol resin, and a silicate resin, and z or a hydroxyl group, a hydroxyl group, a carboxylate, and a carboxy ester. It is preferable that the adhesive be applied via a fluorine-containing ethylenic polymer having at least one functional group selected from the group consisting of a group and an epoxy group. It is preferable that the sheet is formed and then obtained by bonding a metal foil. It is preferable that the sheet and the metal foil are adhered and then formed by heat treatment.
  • the present invention comprises a sheet using a polytetrafluoroethylene resin
  • FIG. 1 is a diagram showing an example of an antenna cover according to the present invention.
  • (A) is a perspective view
  • (b) is a cross-sectional view taken along line AA.
  • FIG. 2 is a diagram showing an example of the antenna cover of the present invention.
  • (A) is a perspective view
  • (b) is a cross-sectional view taken along line BB.
  • FIG. 3 is a diagram showing an example of the antenna cover of the present invention.
  • (A) is a perspective view, and (b) is a cross-sectional view taken along line C-C.
  • FIG. 4 is a diagram showing an example of the antenna cover of the present invention. This is an example in which the antenna element and the reflector are directly coated. BEST MODE FOR CARRYING OUT THE INVENTION
  • the polytetrafluoroethylene resin (hereinafter referred to as a PTFE resin) used in the present invention is a homopolymer of tetrafluoroethylene (TFE) or tetrafluoroethylene 99.9 to 99.9. 9.9 9 9 9 mol% and the formula ( I):
  • X, Y and z are the same or different and are all hydrogen atoms or fluorine atoms, n is an integer of 1 to 5).
  • Rf 1 is a perfluoroalkyl group having 1 to 3 carbon atoms, wherein at least one monomer selected from the group consisting of perfluoro (alkyl biether)
  • a modified polytetrafluoroethylene having a modification amount of 0.1% by weight or less as a copolymer with 0.1 mol% is preferred.
  • fluorofluorin represented by the above formula (I) examples include, for example, verfluoroolefin such as hexafluoropropylene (hereinafter abbreviated as HFP); and fluorofluorin such as perfluorobutylethylene. And so on. Of these, HFP is preferred because of its excellent electrical properties.
  • the perfluoro (alkyl vinyl ether) represented by the formula (II) includes perfluoro (methyl vinyl ether) (hereinafter abbreviated as PMVE), perfluoro (ethyl vinyl ether) (hereinafter abbreviated as PEVE), Perfluoro (propyl vinyl ether) (hereinafter abbreviated as PP VE). Of these, PMVE is preferred because of its excellent electrical properties.
  • Examples of the shape of the PTFE resin used in the present invention include molding powders, fine powders, and aqueous dispersions.
  • the fine powder is obtained by emulsion-dispersion polymerization using a polymerization initiator in the presence of an emulsifier, particularly a fluorinated emulsifier.
  • an emulsifier particularly a fluorinated emulsifier.
  • the amount of the polymerization initiator must be reduced. Increasing, adding a chain transfer agent, adding a modified monomer, etc. are adopted.
  • polymerization initiator examples include ammonium persulfate (APS) and disuccinic acid peroxide (DSP), and examples of the chain transfer agent include hydrocarbons such as hydrogen, methane, and ethane.
  • APS ammonium persulfate
  • DSP disuccinic acid peroxide
  • chain transfer agent examples include hydrocarbons such as hydrogen, methane, and ethane.
  • the method of emulsion polymerization is not particularly limited, and a known method may be used.
  • the colloid-secondary particles obtained by the emulsion polymerization method into a core-shell structure, moldability, particularly paste extrudability, can be improved.
  • the core-shell structure for example, a core composed of a homopolymer of PTFE and a shell composed of a modified PTFE is preferred in terms of good paste extrusion moldability.
  • the molding powder is obtained by suspension polymerization using a polymerization initiator in the presence of a dispersant.
  • polymerization initiator examples include persulfates and sulfites, and for example, ammonium persulfate and the like.
  • the suspension polymerization method is not particularly limited, and a known method may be used.
  • the aqueous dispersion obtained by the emulsion polymerization can be used as it is, but a surfactant is added in order to increase the concentration of the fluoropolymer and improve the stability. And then concentrated to a polymer solids concentration of 40 to 70% by weight using a layer separation concentration method or a membrane separation concentration method, and then purified water, ammonia water and polyoxyethylene alkyl ether. It is preferable to add a tellurium-based surfactant and dilute the solution to 30 to 65% by weight.
  • R is a linear or branched alkyl group having 5 to 18 carbon atoms, preferably 10 to 16 carbon atoms, and A is 5 to 20 oxyethylene groups and Which is a polyoxyalkylene chain having 0 to 6 pyrene groups).
  • alkyl group R include decyl, lauryl, tridecyl, cetyl, stearyl and the like, and may be linear or branched.
  • R is an alkyl group having 10 to 16 carbon atoms and polyoxyalkylene chain, because of its excellent surface activity, water solubility, and availability.
  • a polyoxyalkylene alkyl ether surfactant comprising from 15 to 15 oxyethylene groups and 0 to 3 oxypropylene groups is preferred.
  • a raw material for producing this surfactant a natural or synthetic higher alcohol may be used, but it is preferable that it does not contain any alkylphenols.
  • the addition amount of the polyoxyalkylene alkyl ether-based surfactant is preferably 3 to 20 parts per 100 parts by weight of the PTFE-based resin (hereinafter, referred to as “parts”).
  • pure water, a water-soluble solvent, or various types of hydrocarbon-based surfactants not containing alkylphenol may be appropriately added, and a fluorine-based surfactant or a silicon-based surfactant may be used as a repelling agent.
  • the viscosity may be adjusted by adding an activator, or by using a thickener, a rheology control agent, or a salt containing various water-soluble electrolytes.
  • the standard specific gravity of the PTFE-based resin is preferably at least 2.192. More preferably, it is at least 2.200.
  • the upper limit is 2.300, preferably 2.280.
  • PTFE resin with a standard specific gravity of 2.300 is completely crystallized and does not actually exist. That is, the PTFE-based resin used in the present invention preferably has a high degree of crystallinity. If the standard specific gravity is smaller than 2.192, the crystallinity tends to be low, and the t an ⁇ 5 of the sheet tends to be high, or the formability tends to be poor. On the other hand, if the standard specific gravity is high, there is a problem in that the mechanical strength decreases.
  • the standard specific gravity was measured at a temperature of 25 ° C. In this method, the density of the sample (ps) is determined from the difference between the weight of the sample in air (W1) and the weight of the sample in water (W2).
  • the molecular weight of the PTFE resin satisfying the standard specific gravity is considered to be 5,000,000 or less, and in the present invention, such a low molecular weight PTFE resin is preferably used.
  • the terminal unstable group by subjecting the PTFE-based resin to a fluorination treatment by contacting the PTFE resin with a fluorine radical source.
  • a fluorination treatment by contacting the PTFE resin with a fluorine radical source.
  • the reaction temperature of the fluorination treatment is preferably from 100 to 250 ° C, more preferably from 110 to 200 ° C. If the reaction temperature is lower than 100 ° C, the reaction rate tends to be slow. If the reaction temperature exceeds 250 ° C, the PTFE resins tend to fuse or decompose and volatilize.
  • fluorine radical source in addition to fluorine gas, halogenated fluorides such as C 1 F, C 1 F 3 Br F 3 and IF 3 ; rare gases such as Xe F 2 , Xe F 4 and Kr F 2 Compounds that are gaseous at the above-mentioned reaction temperature, such as nitrogen-containing fluorine compounds such as NF 3 and NF 2 . Among them, fluorine gas is most preferable in terms of handling properties and price.
  • Perform fluorination treatment using fluorine gas In this case, the PTFE resin is brought into contact with fluorine gas at 110 to 250 ° C for 1 to 10 hours.
  • the reaction temperature is 180 to 230 ° C.
  • the reaction time is preferably 2 to 5 hours.
  • the reaction pressure may be about 0.1 to 1 MPa, preferably atmospheric pressure.
  • the fluorine gas may be pure fluorine gas, or may be diluted with an inert gas such as a nitrogen gas, an argon gas or a helium gas to a concentration of 5 to 25% by volume, preferably 7 to 20% by volume.
  • the addition amount of the fluorine radical source varies depending on the reaction temperature, reaction time, type of the fluorine radical source, etc., but is preferably 0.01 to 1 part in terms of fluorine atoms, based on 100 parts of the PTFE-based resin. . More preferably, it is 0.1 to 0.5 part.
  • the fluorination of the raw material PTFE tends to be insufficient. Also, if the amount of the fluorine radical source exceeds 1 part, the effect of fluorination does not improve and tends to be uneconomical.
  • any apparatus that can sufficiently perform solid-at-a-time contact can be used without any problem.
  • Specific examples include a fluidized bed type and a tray type solid-batch contact reactor.
  • 1 t an, at 2 GHz [delta] is 2. 0 X 1 0- 4 indicates less, and preferably 1. is 5 X 1 0- 4 below.
  • tan 3 exceeds 2.
  • OX 1 0 one 4 the dielectric loss of the antenna cover (power loss) is increased.
  • a sample is prepared and measured under the following condition (1).
  • Polytetrafluoroethylene is compression molded into a cylindrical shape.
  • a 0.5 mm-thick sheet cut from this cylinder was heated at 380 ° C for 5 minutes in a hot air circulation type electric furnace. Heat and bake. Then, let it cool to room temperature at a cooling rate of 60 ° C / hr.
  • the PTFE resin is an aqueous dispersion
  • the resonance frequency changes depending on the sample, and the The value of the resonance frequency is about 11.74 GHz for a 500-meter thick PTFE sample, where tan (5 is used for the unsampled resonance frequency.
  • F! Upper frequency (Hz) where the attenuation from the resonance point is 3 dB
  • F 2 Lower frequency (Hz) at which the attenuation from the resonance point is 3 dB
  • the PTFE-based resin sheet used for the antenna cover of the present invention includes not only a sheet having a thickness of 200 m or more, but also a film having a thickness of less than 200 m.
  • an antenna cover in which a sheet made of PTFE-based resin is located away from the antenna element or the reflector, or an antenna in which a sheet made of PTFE-based resin is directly coated on the antenna element and the reflector refers to a cover.
  • the three-dimensional shape is not particularly limited, such as a cylindrical shape, a polygonal shape, and a conical shape.
  • the thickness of the antenna cover is not particularly limited, but is preferably 1 to 6 mm. If it is smaller than 1 mm, mechanical strength tends to be insufficient.
  • the thickness of the antenna cover is preferably 5 to 50 / m. If the film thickness is less than, the water repellency tends to decrease. If the film thickness exceeds 50 m, cracks are generated, water seeps, and the water repellency tends to decrease.
  • the antenna cover of the present invention comprises the PTFE-based resin sheet,
  • the weight is preferably at least 2.192. More preferably, it is at least 2.200.
  • the upper limit is 2.300, preferably 2.280. If the specific gravity is less than 2.192, the crystallinity will be low, t an ⁇ 5 will be high, and the formability will be poor. On the other hand, if the standard specific gravity is high, there is a problem in that the mechanical strength decreases.
  • the sheet preferably contains 20% by weight or more, and more preferably 70% by weight or more of the PTFE-based resin having a standard specific gravity of 2.192 or more.
  • the present invention is prepared by (A) The condition (1), measured 12 GHz to definitive t an, [delta] is 1. is a 5 X 10- 4 or less, the standard specific gravity 2. is the 192 or more Boritetora Fluoroethylene-based resin powder, and / or ( ⁇ ) 38 O: Melt viscosity at 38 O: is less than 10 6 % by volume. More particularly, the present invention relates to an antenna cover having a metal foil adhered to one side.
  • the polytetramethylene full O b ethylene resin powder (A), the condition (1) in work made, t an, S is the measured 12 GHz 1. is a 5X 10 4 or less, preferably, 1. 0 X 10- 4 It is as follows. Outside this range, dielectric loss tends to increase.
  • polytetramethylene full O b ethylene resin powder (B) is contact Keru melt viscosity 380 ° C is 10 6 Boise less, preferably 10 5 Boise below. If the melt viscosity exceeds 10 6 boise, the dielectric loss tends to increase during fabrication under slow cooling conditions.
  • the slow cooling condition may be such that, for example, the cooling rate after firing is lower than 60 ° C./hour.
  • the polytetrafluoroethylene-based resin powder (A) and / or the polytetrafluoroethylene-based resin powder (B) is 10% by weight of the sheet. More preferably, it is preferable to contain more than 30% by weight. If the content of the polytetrafluoroethylene resin powder is less than 10% by weight, the effect of reducing the dielectric loss tends to be hardly obtained.
  • composition in terms of low dielectric loss tangent at slow cooling molding preferably comprises a melt viscosity 1 0 6 Boise following PTFE resin, in view further of low loss, end groups are fluorinated It is preferable to include a polytetrafluoroethylene resin.
  • the present invention also relates to an antenna cover using a sheet made of a PTFE resin.
  • the PTFE-based resin used in the present invention cannot be melt-processed, it is molded by a molding method such as a press molding method, an extrusion method such as sheet or tube (pipe) extrusion, or a compression molding method.
  • the obtained molded product is usually subsequently fired.
  • the firing temperature is suitably from 360 to 400 ° C.
  • the above-mentioned baking may not be performed, and the baking may be partially performed to a crystal conversion ratio of 90% or less. Unsintered and semi-sintered with a crystal conversion ratio of 90% or less tend to reduce dielectric loss.
  • a sheet-like molded body made of a PTFE-based resin is obtained by pressing, paste extrusion, skiving, or the like.
  • the antenna cover of the present invention can be obtained by forming the obtained flat molded body into a three-dimensional shape by hot pressing or tube extrusion.
  • the antenna element and the antenna reflector are spray-coated with a water-soluble dispersion to obtain a 3 to 20 After drying for a minute, baking is preferably performed.
  • An appropriate firing temperature is 360 to 400 ° C.
  • the antenna cover used in the present invention thus obtained has excellent electrical characteristics in the microwave region (3 to 30 GHz), particularly in the high frequency region. 10_ 4 or less, preferably 1. 5 0 X 1 0 one 4 below. t an, ⁇ 5 is more than 2. 0 X 1 0- 4, there is a tendency that the dielectric loss increases.
  • Antenna covers and their peripheral devices are required to keep transmission loss low. Then, the transmission loss is obtained by the following equation.
  • ta eta [delta] of the antenna cover of the present invention 1. is reduced to 50 X 1 0 one 4 or less, it is possible to significantly reduce the transmission loss. Further, since the antenna cover of the present invention is made of a fluororesin, it repels moisture such as rain and snow. As a result, the center frequency of the transmitting and receiving antennas is less likely to shift due to moisture, and stable receiving and transmitting performance can be obtained.
  • a metal foil is adhered to at least one surface of the sheet from the viewpoint of fixing.
  • the thickness of the metal foil is not particularly limited, but is preferably 0.05 to 1.0 Omm.
  • the metal foil be bonded to the sheet surface by heat fusion after the surface treatment of the sheet or without the surface treatment.
  • the metal foil may have at least one selected from the group consisting of an epoxy resin, a phenol resin, and a cyanate resin on the sheet surface after or without surface treatment of the sheet.
  • Fluorinated ethylenic polymer having at least one functional group selected from the group consisting of a resin binder, and z or a hydroxyl group, a hydroxyl group, a carboxylate, a carboxylester group, and an epoxy group. It is preferable that they are adhered through a gap.
  • the three types of adhesives composed of the epoxy resin, the phenolic resin, and the skeleton resin and the fluorine-containing ethylenic polymer having a functional group may be used alone, but two or more types may be used, and two or more layers may be used. May be used as an adhesive layer.
  • a two-layer adhesive layer composed of a fluorine-containing ethylenic polymer layer having a functional group and an epoxy resin layer may be used.
  • one layer of a resin adhesive one layer of a fluorinated ethylene polymer having a functional group, or two layers of a resin adhesive and a fluorinated ethylene polymer having a functional group are used. It means that it is adhered through.
  • the point of easy adhesion and the strength of adhesion to metal is possible because the adhesive strength does not decrease even under severe temperature changes or high temperatures.
  • the fluorocarbon resin has a main chain, it has excellent weather resistance, has a long outdoor life, and is unlikely to cause dielectric loss.
  • Hydroxy group, carboxyl group, carboxylate, carboxylate group and epoxy group Preferred is a fluorine-containing ethylenic polymer having at least one functional group selected from the group consisting of:
  • the functional group-containing fluoroethylenic polymer includes: (a) a functional group having at least one type of functional group selected from the group consisting of a hydroxyl group, a hydroxyl group, a carboxylate, a hydroxyl group, and an epoxy group; And (b) a fluorine-containing ethylenic monomer having no functional group. It is preferably a copolymer with at least one of the monomers.
  • the content of the component (a) is preferably 0.05 to 30 mol%.
  • the type, shape, purpose, application, required adhesive strength, adhesive form, and adhesive method of the substrate to be bonded are described. Although it is appropriately selected depending on the difference between them, it is more preferably 0. 05 to 20 mol%, particularly preferably 0.1 to 10 mol%. When the content is less than 0.05 mol%, it is difficult to obtain sufficient adhesion to other base materials, and peeling due to chemical permeation or temperature change is caused.
  • the content exceeds 30 mol%, the heat resistance is reduced, and peeling, coloring, foaming, and elution are likely to occur due to poor adhesion, coloring and foaming at the time of processing at high temperatures, and decomposition during use at high temperatures.
  • X and X 1 are the same or different and are each a hydrogen atom or a fluorine atom
  • Y is — CH 2 OH, monoCOOH, carboxylate, carboxyester group or epoxy group
  • a divalent fluorinated alkylene group having 1 to 40 carbon atoms, a divalent fluorinated oxyalkylene group having 1 to 40 carbon atoms, a fluorinated alkylene group containing a 1 to 40 carbon ether group, or 1 to 40 carbon atoms Represents a fluorine-containing oxyalkylene group containing 40 ether groups
  • CF 2 CF-R f 3 _CH 2 ⁇ H (2)
  • is a divalent fluorine-containing alkylene group or a OR f 4 (R f 4 is a divalent fluorine-containing alkylene group or an ether having a carbon number of 1 to 40 1 to 40 carbon atoms from 1 to 40 carbon atoms A divalent fluorine-containing alkylene group containing a bond)],
  • one R f 5 is a divalent fluorinated alkylene group having 1 to 39 carbon atoms or Represents a divalent fluorinated alkylene group having an ether bond having 1 to 39 carbon atoms]
  • R f 6 is a divalent fluorine-containing alkylene group having 1 to 39 carbon atoms, or an ⁇ _R f 7 (R f 7 is a divalent fluorine-containing alkylene group having 1 to 39 carbon atoms, or Or a divalent alkylene group containing an ether bond having 1 to 39 carbon atoms)]
  • R f 7 is a divalent fluorine-containing alkylene group having 1 to 39 carbon atoms, or Or a divalent alkylene group containing an ether bond having 1 to 39 carbon atoms
  • represents a divalent fluorine-containing alkylene group having 1 to 40 carbon atoms
  • X and X 1 are the same or different and are each a hydrogen atom or a fluorine atom
  • Y 1 is a hydrogen atom
  • R f 9 is a carbon atom.
  • one COOY 1 is preferably —COOH, one COONH 4 , one COONa, -COOK, one COOL i, _COOZn, one COOAl, one COOMg, one COOCa, and the like.
  • Examples of the fluorine-containing ethylenic monomer having no functional group (b) include tetrafluoroethylene or tetrafluoroethylene of 85 to 99.7 mol%.
  • R f 1Q is CF 3 or OR 11 (R 1 is a perfluoroalkyl group having 1 to 5 carbon atoms)
  • a mixed monomer of 0.3 to 15 mol%.
  • a surface treatment such as a sodium etching, a plasma treatment, an excimer laser treatment, and a discharge treatment, and then the epoxy resin is applied.
  • the coating amounts of the fluorine-containing ethylenic polymer having a functional group and the adhesive are not particularly limited, but are preferably 0.004 to 0.04 g Zcm 2 . If it is less than 0.004 g / cm 2 , the adhesive strength tends to be insufficient. If it exceeds 0.04 g Z cm 2 , the transmission loss tends to increase. Further, an adhesive in a film form may be applied to the sheet in advance. At this time, the thickness of the film is preferably in the range of 0.2 to 0.2 mm. If it is smaller than 0.02 mm, the adhesive strength tends to be insufficient. If it exceeds 0.2 mm, transmission loss tends to increase.
  • the form of the adhesive is not limited to a film, but may be used as a powder or a dispersion.
  • the surface treatment may be performed in the following manner from the viewpoint of adhesive strength: (a) discharge treatment in an inert gas atmosphere containing an organic compound having a functional group, (mouth) excimer laser irradiation, (8) plasma treatment, or ( 2) Chemical etching using metallic sodium is preferred.
  • the antenna cover of the present invention can be bonded to an antenna, a metal reflector, or the like with the adhesive.
  • FIGS. 1-10 An example of the antenna cover of the present invention is shown in FIGS.
  • a metal reflector 2 to which an antenna 3 is bonded is bonded to an antenna cover 1 via an adhesive 4.
  • the entire metal reflector is protected by the antenna cover of the present invention.
  • the sheet may be formed and then the metal foil may be bonded, or the sheet and the metal foil may be bonded and then heat-treated.
  • the three sides surrounding the antenna 3 and the upper part are protected by the antenna cover 1.
  • the other side is a metal reflector 2 to which the antenna 3 is joined.
  • the antenna cover 1 and the metal reflector 2 are adhered by an adhesive 4.
  • the antenna 3 and the hemispherical metal reflector 2 joined to the antenna 3 are coated with the antenna cover 1.
  • the raw material containing polytetrafluoroethylene finer is compression molded into a cylindrical shape.
  • a sheet with a thickness of 0.5 mm cut from this cylinder is circulated with hot air. Bake at 38 O for 5 minutes in an electric furnace. Then, it is allowed to cool to room temperature at a cooling rate of 60 ° C / hour to produce a sample sheet.
  • the PTFE resin is an aqueous dispurgeon, it must be heated at 8 before compression molding to evaporate the water and form a powder. (t an (5 measurement methods)
  • Wi —xs r xe ri xL rx X Un XJi XJn 1+
  • H. Vacuum permeability (HZm)
  • Example 1 17% by weight of Isopar G (manufactured by Etsuso Chemical Co., Ltd.) as an extrusion aid was mixed with the same PTFE fine powder as in Example 1.
  • the extruder was used to form a pipe with an outer diameter of 120 mm and an inner diameter of 116 mm.
  • the pipe was flattened by a flat press at room temperature and dried at 100 ° C. for 10 minutes. Then, the extruder was heated at 250 ° C. for 10 minutes in a dryer to remove the extrusion aid, and a film having a thickness of 1.7 mm was obtained.
  • the resulting film was pressed with a hot plate press at 360 ° C. at a pressure of 50 kgZcm 3 for 10 minutes.
  • Standard specific gravity of 2.1 7 the condition (1) as measured by the tan ⁇ 5 is 1.
  • 9 X 1 0- 4 of the PTFE fine powder (Daikin Industries, Ltd., TFE homopolymer, trade name: Polyflon F 104), and the melt viscosity (380 ° C, 7 kg load, nozzle diameter 10 mm ⁇ ) is 350,000 Voids PTFE Fine Powder I (manufactured by Daikin Industries, Ltd., TFE polymer, trade name: Lubron L-1 2) )
  • Were mixed in a room temperature air at a weight ratio of 8: 2 Were mixed in a room temperature air at a weight ratio of 8: 2, and compression-molded into a cylindrical shape by a compression molding machine.
  • the molded product was fired and heated in a hot air circulation type electric furnace at 380 for 60 minutes, gradually cooled to 270 ° C. at a cooling rate of 1 ° C.Z, and allowed to cool to room temperature.
  • a sheet (film) having a thickness of 2 mm was cut out from the cylinder.
  • An antenna cover (2 mm thick) was obtained from the obtained film in the same manner as in Example 1. Measurement of the t an, [delta], is 1. 4X 10- 4, specific gravity, 2. was 22.
  • Standard specific gravity of 2. is 25, the condition (1) was measured at a t an ⁇ is 1. 4 ⁇ 10- 4 of the PTFE fine powder (Daikin Industries, Ltd., TF ⁇ -based polymer, trade name: LeBron L- 2 ) was placed in an electric furnace and brought into contact with a fluorine radical source (fluorine gas) at 200 ° C under atmospheric pressure for 5 hours to obtain a fluorinated PTFE fine powder.
  • a fluorine radical source fluorine gas
  • a PTFE fine powder having a standard specific gravity of 2.17 manufactured by Daikin Industries, Ltd., TFE homopolymer, trade name: BORIFLON F104
  • the fluorinated PTFE fine powder in a weight ratio of 9: 1 They were mixed in room temperature air and compression-molded into a cylindrical shape using a compression molding machine.
  • the molded product was heated and fired at 380 ° C. for 60 minutes in a hot-air circulation electric furnace, gradually cooled to 270 ° C. at a cooling rate of lZ hours, and allowed to cool to room temperature.
  • a 1.5 mm-thick sheet (film) was cut out from the cylinder, and an antenna cover (1.5 mm in thickness) was obtained in the same manner as in Example 1.
  • tan (5 were measured, 1. a 3 X 10_ 4, specific gravity, 2. was 25.
  • An antenna cover (thickness 1) was prepared in the same manner as in Example 1 except that PTFE fine powder 1 (standardized specific gravity: 2.17, TFE homopolymer, manufactured by Daikin Industries, Ltd., trade name: Polyflon F104) was used. .5mm). Measurement of the ta eta [delta], 1. a 6 X 10_ 4, specific gravity, 2.19 Met.
  • Aqueous dispurgeon (manufactured by Daikin Industries, Ltd., trade name: D-2, solid content standard specific gravity: 2.22) was heated at 80 ° C to evaporate water to form a padder, and the conditions (1 ) in was 1. 7 X 10- 4 was measured tan ⁇ 5. This aqueous dispurgeon is spray-coated on an antenna reflector, dried for 30 minutes, baked at 38 O for 30 minutes, gradually cooled to 27 at a cooling rate of 1 ° C / min, and allowed to cool to room temperature. An antenna reflector with an antenna cover (20 m thick) was obtained. When the ta ⁇ ⁇ of the sheet was measured, it was 1.0 ⁇ 10-4, and the specific gravity was 2.26.
  • the powder was used as a substitute for t an ⁇ of a sheet produced by the following method.
  • the powder obtained by evaporating the water is compression-molded into a cylindrical shape, a sheet having a thickness of 0.5 mm is cut out, and then calcined at 380 ° C for 5 minutes.
  • the sheet was slowly cooled down to, and allowed to cool to room temperature to prepare a sheet.

Abstract

An antenna cover prepared from a polytetrafluoroethylene based resin sheet, wherein the polytetrafluoroethylene based resin exhibits a dilelctric loss tangent as measured by a porcedure and under conditions specified in the specification of 2.0 X 10-4 or less, preferably 1.50 X 10-4 or less. The polytetrafluoroethylene based resin preferably has a standard specific gravity of 2.192 or more. The polytetrafluoroethylene based resin has excellent electric characteristics, and thus the antenna cover exhibits a low dielctric loss even in a high frequency region.

Description

明 糸田 書 アンテナカバ一 技術分野  Akira Itoda Antenna cover Technical field
本発明は、 アンテナカバーに関する。 詳細には、 携帯電話基地局などに 使用されるアンテナのアンテナカバーに関する。 背景技術  The present invention relates to an antenna cover. More specifically, it relates to an antenna cover of an antenna used for a mobile phone base station and the like. Background art
携帯電話基地局アンテナは、 都市部ではマンションなど高層建築物の屋 上に設置されており、 低誘電損失樹脂基板の両面に銅箔を貼り付けてエツ チングされたアンテナ素子部により形成されている。  Mobile phone base station antennas are installed on the roofs of high-rise buildings such as condominiums in urban areas.The antenna elements are formed by etching copper foil on both sides of a low dielectric loss resin substrate. .
現在、 この携帯電話は第 2世代から第 3世代へと移行中である。 第 2世 代携帯電話では:!〜 2 GH z、 第 3世代では 2〜4 GH z、 さらに第 4世 代では 5〜 8 GH zの周波数領域が使用されており、 高周波ほど絶縁体の 誘電正接 (以下、 t a n (5と称す) による誘電損失 (電力ロス) が大きく なる。 さらに、 アンテナ素子の樹脂基板には数百ワットの電力がかかるた め、 t a n 5がおおむね 1 . 5 X 1 0— 4以下のレベルの低誘電損失材料 を使用する必要がある。 そして、 この誘電損失を低下させるためにインピ —ダンスを入出力にあわせる必要があり、 低誘電率であることも求められ る。 Currently, this mobile phone is transitioning from the second generation to the third generation. On 2nd generation mobile phones :! The frequency range is 2 to 4 GHz, the third generation uses 2 to 4 GHz, and the fourth generation uses 5 to 8 GHz.The higher the frequency, the higher the dielectric loss tangent of the insulator (hereafter referred to as tan (5 ) dielectric loss (power loss) is increased by. Furthermore, because the resin substrate of the antenna elements hundreds watts of power is applied, tan 5 is approximately 1.5 low dielectric loss of X 1 0- 4 following levels It is necessary to use materials, and to reduce this dielectric loss, the impedance must be adjusted to the input and output, and a low dielectric constant is also required.
前記樹脂基板材料として、 従来、 成形性、 接着性および価格の点でシァ ネート樹脂が使用されている。 この電気特性は、 t a n <5が約 1 0— 3で あり、 耐用年数は 1 5年であるといわれている。 Conventionally, as the resin substrate material, a cyanate resin is used in terms of moldability, adhesiveness, and price. The electrical properties, tan <5 is about 1 0 3, life is said to be 1 five years.
また、 シァネー卜樹脂基板の両面に銅箔を接着する場合、 基板を表面処 理する、 非フッ素樹脂接着剤を使用する、 あるいは、 これらを併用する方 法があげられる。 しかし、 これらの方法には、 工程が複雑で生産効率が悪 い、 初期接着強度は得られるが、 温度変化や高温下での接着強度低下が大 きく、 最高 8 0 °Cから最低零下数 までと温度変化の大きい屋外でのアン テナ素子に用いられた場合には剥離が生じる、 非フッ素樹脂接着剤を用い た場合、 風雨、 直射日光にさらされるため剥離が生じたり、 誘電損失が発 生するなどの問題がある。 When bonding copper foil to both surfaces of a sinate resin substrate, the surface treatment of the substrate, the use of a non-fluorine resin adhesive, or a combination of these Law. However, these methods have complicated processes and poor production efficiency, and can provide initial bond strength, but have a large change in temperature and bond strength at high temperatures, and range from a maximum of 80 ° C to a minimum of zero. When used for outdoor antenna elements with large temperature changes, peeling occurs.When non-fluorine resin adhesive is used, peeling occurs due to exposure to wind, rain, and direct sunlight, and dielectric loss occurs. Problems.
ところで、 前記アンテナは、 屋外に設置されているために、 雨、 雪、 塵 などにさらされる。 とくに水分が、 アンテナに付着すると、 水による透過 損失が発生し、 また電磁波伝搬に拡散が生じるという問題がある。  By the way, since the antenna is installed outdoors, it is exposed to rain, snow, dust and the like. In particular, if water adheres to the antenna, there is a problem that transmission loss due to water occurs and diffusion of electromagnetic waves occurs.
そこで、 屋外で使用されるアンテナは、 アンテナカバーにより保護され ている。 そして、 同様に前記アンテナカバーにも、 低誘電率、 低 t a η δ といつた優れた電気特性が求められる。  Therefore, antennas used outdoors are protected by antenna covers. Similarly, the antenna cover is required to have excellent electric characteristics such as low dielectric constant and low ta η δ.
本発明は、 前記課題を解決するものであり、 低誘電率、 低 t a n とい つた優れた電気特性をもつアンテナカバ一を提供することを目的とする。 発明の開示  An object of the present invention is to solve the above-mentioned problems, and to provide an antenna cover having excellent electric characteristics such as low dielectric constant and low t an. Disclosure of the invention
すなわち本発明は、 ポリテトラフルォロエチレン系樹脂シートからなる アンテナカバーであって、 該ポリテトラフルォロエチレン系樹脂は下記条 件 (1 ) によって算出される誘電正接が 2 . 0 X 1 0— 4以下のポリテト ラフルォロエチレン系樹脂であるアンテナカバーに関する。 That is, the present invention relates to an antenna cover comprising a polytetrafluoroethylene-based resin sheet, wherein the polytetrafluoroethylene-based resin has a dielectric loss tangent calculated by the following condition (1): 2.0 X 1 The present invention relates to an antenna cover which is a polytetrafluoroethylene resin of 0 to 4 or less.
条件 ( 1 ) Condition 1 )
(シートの作製条件)  (Sheet preparation conditions)
ポリテトラフルォロエチレン系樹脂粉末を円柱状に圧縮成形する。 この 円柱から切出した厚さ 0 . 5 mmのシートを熱風循環式電気炉で 3 8 0 °C にて 5分間加熱焼成する。 ついで 6 0 °CZ時間の冷却速度で常温にまで放 冷してサンプルシートを作製する。 (誘電正接測定方法) Polytetrafluoroethylene resin powder is compression-molded into a cylindrical shape. A 0.5 mm-thick sheet cut out of the cylinder is heated and baked at 38 ° C. for 5 minutes in a hot-air circulation type electric furnace. Then, it is allowed to cool to room temperature at a cooling rate of 60 ° CZ time to prepare a sample sheet. (Dielectric loss tangent measurement method)
一 L 2  One L 2
ネットワークアナライザーを使用し、 空洞共振器により前記サンプルシ ートの共振周波数および Q値の変化を 2 2〜2 5 °Cにて測定し、 1 2 GH zにおける誘電正接を次式にしたがって算出する。  Using a network analyzer, measure the change in the resonance frequency and Q value of the sample sheet with a cavity resonator at 22 to 25 ° C, and calculate the dielectric loss tangent at 12 GHz according to the following equation. .
t a η δ = (1/Qu) X { 1 + (Wノ λ^) } - (Ρ ο/ω ν )
Figure imgf000004_0001
ta η δ = (1 / Qu) X {1 + (W no λ ^)}-(Ρ ο / ω ν)
Figure imgf000004_0001
XtanX= (L/2M) YcosY  XtanX = (L / 2M) YcosY
X xた„ X x
0 —k r  0 —k r
Y^M k0 2-k/ ko =— c Y ^ M k 0 2 -k / ko = — c
3.8317 3.8317
k =  k =
D/2  D / 2
Q.. = i— - / 20) Q .. = i—-/ 20)
Q = Q =
1 F -  1 F-
Figure imgf000004_0002
Figure imgf000004_0002
P =P +P +P
Figure imgf000005_0001
式中の記号はつぎのものである。
P = P + P + P
Figure imgf000005_0001
The symbols in the formula are as follows.
D:空洞共振器直径 (mm) D: Cavity resonator diameter (mm)
M :空洞共振器片側長さ (mm) M: One side length of cavity resonator (mm)
L :サンプル長さ (mm) L: Sample length (mm)
c :光速 (mZ s ) c: Speed of light (mZ s)
I d :減衰量 (dB)  I d: Attenuation (dB)
F。:共振周波数 (H z ) F. : Resonant frequency (H z)
Fx:共振点からの減衰量が 3 dBである上側周波数 (Hz) F x : Upper frequency (Hz) at which the attenuation from the resonance point is 3 dB
F2:共振点からの減衰量が 3 dBである下側周波数 (Hz) F 2 : Lower frequency (Hz) at which the attenuation from the resonance point is 3 dB
ε。:真空の誘電率 (H/m)  ε. : Dielectric constant of vacuum (H / m)
ε r:サンプルの比誘電率ε r : dielectric constant of sample
o:真空の透磁率 (HZm)  o: Magnetic permeability of vacuum (HZm)
R s :導体空洞の表面粗さも考慮した実効表面抵抗 (Ω)  R s: Effective surface resistance (Ω) taking into account the surface roughness of the conductor cavity
J 0: - 0. 40 2 7 5 9  J 0:-0.40 2 7 5 9
J!: 3. 8 3 1 7 1  J! : 3. 8 3 1 7 1
前記誘電正接は、 1. 5 0 X 1 0— 4以下であることが好ましい。 The dielectric loss tangent is preferably 1. It 5 0 X 1 0- 4 below.
前記ポリテトラフルォロエチレン系樹脂の標準比重は、 2. 1 9 2以上 であることが好ましい。  The standard specific gravity of the polytetrafluoroethylene resin is preferably 2.192 or more.
前記シートの比重は、 2. 1 9 2以上であることが好ましい。 前記シートは、 未焼成または結晶転化率が 9 0 %以下であることが好ま しい。 The specific gravity of the sheet is preferably 2.192 or more. The sheet is preferably unfired or has a crystal conversion of 90% or less.
前記ポリテトラフルォロエチレン系樹脂の末端基はフッ素化されている ことが好ましい。  The terminal group of the polytetrafluoroethylene resin is preferably fluorinated.
前記シートに金属箔は熱融着により接着されてなることが好ましい。 前記シートを表面処理したのち、 熱融着することが好ましい。  It is preferable that a metal foil is adhered to the sheet by heat fusion. After the surface treatment of the sheet, it is preferable to heat-bond the sheet.
前記シートと金属箔とが、 エポキシ樹脂、 フエノール樹脂およびシァネ 一卜樹脂からなる群より選ばれた少なくとも 1種の樹脂接着剤、 および Z またはヒドロキシル基、 力ルポキシル基、 カルボン酸塩、 カルポキシルェ ステル基およびエポキシ基からなる群より選ばれた少なくとも 1種の官能 基を有する含フッ素エチレン性重合体を介して接着されることが好ましい。 前記シートと金属箔とが、 シートを表面処理したのち、 樹脂接着剤を介 して接着されること力好ましい。  The sheet and the metal foil are each formed of at least one resin adhesive selected from the group consisting of an epoxy resin, a phenol resin, and a silane resin; and Z or a hydroxyl group, a carboxylic acid group, a carboxylate, a carboxyester group. It is preferable that the adhesive be applied via a fluorine-containing ethylenic polymer having at least one functional group selected from the group consisting of epoxy group and epoxy group. Preferably, the sheet and the metal foil are adhered via a resin adhesive after the sheet is subjected to a surface treatment.
前記表面処理は、 (ィ) 官能基を有する有機化合物を含む不活性ガス雰 囲気中での放電処理、 (口) エキシマレーザ照射、 (ハ) プラズマ処理、 または (二) 金属ナトリウムを用いた化学的エッチング処理であることが 好ましい。  The surface treatment includes (a) discharge treatment in an inert gas atmosphere containing an organic compound having a functional group, (mouth) excimer laser irradiation, (c) plasma treatment, or (ii) chemical treatment using metallic sodium. It is preferable that the etching process be performed.
また、 本発明は、 (A) 前記条件 (1 ) で測定した 1 2 GH zにおける 誘電正接が 1 . 5 X 1 0— 4以下であり、 標準比重が 2 . 1 9 2以上であ るポリテトラフルォロエチレン系樹脂粉末、 およびノまたは (B ) 3 8 0 °Cにおける溶融粘度が 1 0 6ボイズ以下であるポリテトラフルォロェチレ ン系樹脂粉末を、 1 0重量%以上含む組成物からなるシートの少なくとも 片面に金属箔を接着されてなるアンテナカバーに関する。 Further, the present invention has a dielectric loss tangent at 1 2 GH z measured in (A) above condition (1) is at 1. 5 X 1 0- 4 or less, Ru der standard specific gravity of 2.1 9 2 or more poly tetrafluoropropoxy O b ethylene-based resin powder, and Roh or (B) 3 8 0 melt viscosity at ° C is less than 1 0 6 Boise polytetramethylene full O Roe Chile emission resin powder composition comprising 1 0% by weight or more The present invention relates to an antenna cover in which a metal foil is adhered to at least one surface of a sheet made of an object.
前記組成物はシァネート樹脂を含むことが好ましい。  Preferably, the composition comprises a cyanate resin.
前記ポリテ卜ラフルォロエチレン系樹脂の末端基はフッ素化されている ことが好ましい。 前記金属箔はステンレス箔またはアルミニウム箔であることが好ましい。 前記シートと金属箔とが、 エポキシ樹脂、 フエノール樹脂およびシァネ ート榭脂からなる群より選ばれた少なくとも 1種の樹脂接着剤、 および z またはヒドロキシル基、 力ルポキシル基、 カルボン酸塩、 カルポキシルェ ステル基およびエポキシ基からなる群より選ばれた少なくとも 1種の官能 基を有する含フッ素エチレン性重合体を介して接着されることが好ましレ、。 前記シートを成形したのち、 金属箔を接着して得られることが好ましい。 前記シートと金属箔とを接着したのち、 熱処理により成形して得られる ことが好ましい。 The terminal group of the polytetrafluoroethylene resin is preferably fluorinated. The metal foil is preferably a stainless steel foil or an aluminum foil. The sheet and the metal foil are each formed of at least one resin adhesive selected from the group consisting of an epoxy resin, a phenol resin, and a silicate resin, and z or a hydroxyl group, a hydroxyl group, a carboxylate, and a carboxy ester. It is preferable that the adhesive be applied via a fluorine-containing ethylenic polymer having at least one functional group selected from the group consisting of a group and an epoxy group. It is preferable that the sheet is formed and then obtained by bonding a metal foil. It is preferable that the sheet and the metal foil are adhered and then formed by heat treatment.
本発明は、 ポリテトラフルォロエチレン系樹脂を用いたシートからなる  The present invention comprises a sheet using a polytetrafluoroethylene resin
-に関する。 図面の簡単な説明  -About. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明のアンテナカバ一の一例を示す図である。 (a ) は斜視 図、 (b ) は A— A線による断面図である。  FIG. 1 is a diagram showing an example of an antenna cover according to the present invention. (A) is a perspective view, and (b) is a cross-sectional view taken along line AA.
図 2は、 本発明のアンテナカバーの一例を示す図である。 (a ) は斜視 図、 (b ) は B— B線による断面図である。  FIG. 2 is a diagram showing an example of the antenna cover of the present invention. (A) is a perspective view, and (b) is a cross-sectional view taken along line BB.
図 3は、 本発明のアンテナカバーの一例を示す図である。 (a ) は斜視 図、 (b ) は C一 C線による断面図である。  FIG. 3 is a diagram showing an example of the antenna cover of the present invention. (A) is a perspective view, and (b) is a cross-sectional view taken along line C-C.
図 4は、 本発明のアンテナカバーの一例を示す図である。 アンテナ素子 部分、 反射板に直接コーティングした例である。 発明を実施するための最良の形態  FIG. 4 is a diagram showing an example of the antenna cover of the present invention. This is an example in which the antenna element and the reflector are directly coated. BEST MODE FOR CARRYING OUT THE INVENTION
本発明で使用されるポリテトラフルォロエチレン系樹脂 (以下、 P T F E系樹脂と称す) は、 テトラフルォロエチレン (T F E) の単独重合体、 またはテトラフルォロエチレン 9 9 . 9〜9 9 . 9 9 9 9モル%と、 式 ( I) : The polytetrafluoroethylene resin (hereinafter referred to as a PTFE resin) used in the present invention is a homopolymer of tetrafluoroethylene (TFE) or tetrafluoroethylene 99.9 to 99.9. 9.9 9 9 9 mol% and the formula ( I):
CX2 = CY (CF2) nZ (I) CX 2 = CY (CF 2 ) n Z (I)
(式中、 X、 Yおよび zは同じかまたは異なりいずれも水素原子またはフ ッ素原子、 nは 1〜5の整数) で示されるフルォロォレフインおよび式 ( (Wherein, X, Y and z are the same or different and are all hydrogen atoms or fluorine atoms, n is an integer of 1 to 5).
II) : II):
CF2 = CF-ORf 1 (II) CF 2 = CF-OR f 1 (II)
(式中、 Rf1は炭素数 1〜3のパ一フルォロアルキル基) で示されるパ 一フルォロ (アルキルビエルェ一テル) よりなる群から選ばれた少なくと も 1種のモノマ一 0. 0001〜0. 1モル%との共重合体である変性量 0. 1重量%以下の変性ポリテトラフルォロエチレンであることが好まし い。 Wherein Rf 1 is a perfluoroalkyl group having 1 to 3 carbon atoms, wherein at least one monomer selected from the group consisting of perfluoro (alkyl biether) A modified polytetrafluoroethylene having a modification amount of 0.1% by weight or less as a copolymer with 0.1 mol% is preferred.
前記式 (I) で示されるフルォロォレフィンとしては、 たとえばへキサ フルォロプロピレン (以下、 HFPと略す) などのバーフルォロォレフィ ン;パーフルォロブチルエチレンなどのフルォロォレフィンなどがあげら れる。 これらのうちでは電気特性に優れる点から、 HFPが好ましい。 また、 前記式 (II) で示されるパーフルォロ (アルキルビニルエーテル ) としては、 パ一フルォロ (メチルビニルエーテル) (以下、 PMVEと 略す) 、 パ一フルォロ (ェチルビニルエーテル) (以下、 P EVEと略す ) 、 パーフルォロ (プロピルビニルエーテル) (以下、 P P VEと略す) があげられる。 これらのうちでは電気特性に優れる点から、 PMVEが好 ましい。  Examples of the fluorofluorin represented by the above formula (I) include, for example, verfluoroolefin such as hexafluoropropylene (hereinafter abbreviated as HFP); and fluorofluorin such as perfluorobutylethylene. And so on. Of these, HFP is preferred because of its excellent electrical properties. The perfluoro (alkyl vinyl ether) represented by the formula (II) includes perfluoro (methyl vinyl ether) (hereinafter abbreviated as PMVE), perfluoro (ethyl vinyl ether) (hereinafter abbreviated as PEVE), Perfluoro (propyl vinyl ether) (hereinafter abbreviated as PP VE). Of these, PMVE is preferred because of its excellent electrical properties.
本発明で使用する P T F E系樹脂の形状としては、 モ一ルディングパゥ ダ—、 ファインパウダー、 水性ディスパージョンなどがあげられる。  Examples of the shape of the PTFE resin used in the present invention include molding powders, fine powders, and aqueous dispersions.
前記ファインパウダーは、 乳化剤、 特に含フッ素系の乳化剤の存在下に 重合開始剤を用いて乳化分散重合することにより得られる。 乳化重合にお いて、 得られる重合体の分子量を低分子量化するには、 重合開始剤の量を 増やす、 連鎖移動剤を添加する、 変性モノマーの添加などの方法が採用さ れる。 The fine powder is obtained by emulsion-dispersion polymerization using a polymerization initiator in the presence of an emulsifier, particularly a fluorinated emulsifier. In emulsion polymerization, in order to reduce the molecular weight of the obtained polymer, the amount of the polymerization initiator must be reduced. Increasing, adding a chain transfer agent, adding a modified monomer, etc. are adopted.
重合開始剤としては、 たとえば過硫酸アンモニゥム (A P S ) 、 ジコハ ク酸パーオキサイド (D S P) などが、 連鎖移動剤としてはたとえば水素、 メタン、 ェタンなどの炭化水素などがあげられる。  Examples of the polymerization initiator include ammonium persulfate (APS) and disuccinic acid peroxide (DSP), and examples of the chain transfer agent include hydrocarbons such as hydrogen, methane, and ethane.
乳化重合の方法としては、 特に限定されず公知の方法でよい。  The method of emulsion polymerization is not particularly limited, and a known method may be used.
さらに乳化重合法で得られるコロイドー次粒子を芯一殻構造とすること により、 成形性、 とりわけペースト押出成形性を向上させることもできる。 芯一殻構造としては、 たとえば芯を T F Eの単独重合体で構成し、 殻を変 性 P T F Eで構成したものが、 ペース卜押出成形性が良好な点から好まし い。  Further, by forming the colloid-secondary particles obtained by the emulsion polymerization method into a core-shell structure, moldability, particularly paste extrudability, can be improved. As the core-shell structure, for example, a core composed of a homopolymer of PTFE and a shell composed of a modified PTFE is preferred in terms of good paste extrusion moldability.
前記モールディングパウダ一は、 分散剤の存在下に重合開始剤を用いて 懸濁重合して得られる。  The molding powder is obtained by suspension polymerization using a polymerization initiator in the presence of a dispersant.
重合開始剤としては、 過硫酸塩、 亜硫酸塩などをあげることができ、 例 えば、 過硫酸ァンモニゥムなどをあげることができる。  Examples of the polymerization initiator include persulfates and sulfites, and for example, ammonium persulfate and the like.
懸濁重合の方法としては、 特に限定されず公知の方法でよい。  The suspension polymerization method is not particularly limited, and a known method may be used.
前記水性ディスパ一ジョンとしては、 前記乳化重合にて得られた水性分 散液をそのまま使用できるが、 含フッ素重合体の濃度を高め、 かつ安定性 を向上させるために、 界面活性剤を添加して安定化させたのち、 層分離濃 縮法や膜分離濃縮法などにより重合体固形分濃度を 4 0〜7 0重量%にま で濃縮し、 ついで純水、 アンモニア水とポリオキシエチレンアルキルエー テル系界面活性剤を加えて、 3 0〜6 5重量%に希釈することが好ましレ^ 使用する界面活性剤としては、 式:  As the aqueous dispersion, the aqueous dispersion obtained by the emulsion polymerization can be used as it is, but a surfactant is added in order to increase the concentration of the fluoropolymer and improve the stability. And then concentrated to a polymer solids concentration of 40 to 70% by weight using a layer separation concentration method or a membrane separation concentration method, and then purified water, ammonia water and polyoxyethylene alkyl ether. It is preferable to add a tellurium-based surfactant and dilute the solution to 30 to 65% by weight.
R - O - A - H R-O-A-H
(式中、 Rは直線状または分岐鎖状の炭素数 5〜1 8、 好ましくは 1 0〜 1 6のアルキル基、 Aはォキシエチレン基を 5〜2 0個およびォキシプロ ピレン基を 0〜 6個有するポリォキシアルキレン鎖である) で示されるポ リオキシアルキレンアルキルェ一テル系界面活性剤が好ましい。 アルキル 基 Rとしては、 デシル、 ラウリル、 トリデシル、 セチル、 ステアリルなど が例示でき、 直鎖状でも分岐鎖状でもよい。 特に、 界面活性能が優れてい る点、 水溶性である点、 入手が容易である点から、 Rが炭素数 10〜16 のアルキル基で、 ポリオキシアルキレン鎖が?〜 15個のォキシエチレン 基と 0〜 3個のォキシプロピレン基とからなるポリオキシアルキレンアル キルエーテル系界面活性剤が好ましい。 この界面活性剤の製造原料は、 天 然または合成した高級アルコールを使用してもよいが、 アルキルフエノー ル類を全く含まないことが好ましい。 (Wherein, R is a linear or branched alkyl group having 5 to 18 carbon atoms, preferably 10 to 16 carbon atoms, and A is 5 to 20 oxyethylene groups and Which is a polyoxyalkylene chain having 0 to 6 pyrene groups). Examples of the alkyl group R include decyl, lauryl, tridecyl, cetyl, stearyl and the like, and may be linear or branched. In particular, R is an alkyl group having 10 to 16 carbon atoms and polyoxyalkylene chain, because of its excellent surface activity, water solubility, and availability. A polyoxyalkylene alkyl ether surfactant comprising from 15 to 15 oxyethylene groups and 0 to 3 oxypropylene groups is preferred. As a raw material for producing this surfactant, a natural or synthetic higher alcohol may be used, but it is preferable that it does not contain any alkylphenols.
ポリォキシアルキレンアルキルエーテル系界面活性剤の添加量は、 P T FE系樹脂 100重量部 (以下、 「部」 という) あたり 3〜20部である ことが好ましい。  The addition amount of the polyoxyalkylene alkyl ether-based surfactant is preferably 3 to 20 parts per 100 parts by weight of the PTFE-based resin (hereinafter, referred to as “parts”).
なお、 希釈のために、 純水や水溶性溶剤、 アルキルフエノールを含まな い炭化水素系の各種界面活性剤などを適宜添加してもよいし、 レペリング 剤としてフッ素系界面活性剤やシリコン系界面活性剤を加えたり、 増粘剤、 レオロジーコントロール剤、 各種水溶性電解質を含む塩類などで粘度調整 してもよい。  For dilution, pure water, a water-soluble solvent, or various types of hydrocarbon-based surfactants not containing alkylphenol may be appropriately added, and a fluorine-based surfactant or a silicon-based surfactant may be used as a repelling agent. The viscosity may be adjusted by adding an activator, or by using a thickener, a rheology control agent, or a salt containing various water-soluble electrolytes.
PTFE系樹脂の標準比重は、 2. 192以上であることが好ましい。 より好ましくは 2. 200以上である。 また、 その上限は、 2. 300、 好ましくは 2. 280である。 標準比重が 2. 300の PTFE系樹脂は、 完全に結晶化されており、 現実には存在しない。 すなわち本発明で用いる PTFE系樹脂は、 高結晶化度のものであることが好ましい。 標準比重が 2. 192より小さいと、 結晶化度が低くなり、 シートの t an <5が高く なったり、 成形加工性に劣る傾向にある。 一方、 標準比重が高いと機械的 強度が低下する点で問題がある。 なお、 前記標準比重は、 温度 25 °Cの条 件下、 空気中のサンプル重量 (W1) と水中でのサンプル重量 (W2) の 差から、 サンプルの密度 (p s) を求める方法で、 下記の式で表される。 The standard specific gravity of the PTFE-based resin is preferably at least 2.192. More preferably, it is at least 2.200. The upper limit is 2.300, preferably 2.280. PTFE resin with a standard specific gravity of 2.300 is completely crystallized and does not actually exist. That is, the PTFE-based resin used in the present invention preferably has a high degree of crystallinity. If the standard specific gravity is smaller than 2.192, the crystallinity tends to be low, and the t an <5 of the sheet tends to be high, or the formability tends to be poor. On the other hand, if the standard specific gravity is high, there is a problem in that the mechanical strength decreases. The standard specific gravity was measured at a temperature of 25 ° C. In this method, the density of the sample (ps) is determined from the difference between the weight of the sample in air (W1) and the weight of the sample in water (W2).
W, X pw W, X p w
Ps=  Ps =
w1-w2 ps :サンプルの密度 (gZcm3) ' w 1 -w 2 p s : Sample density (gZcm 3 ) '
pw:水の密度 (g/cm3) p w : Water density (g / cm 3 )
W :空気中でのサンプル重量 (g)  W: Sample weight in air (g)
W2:水中でのサンプル重量 (g) W 2 : Sample weight in water (g)
前記標準比重を満たす PTFE系樹脂の分子量は、 500万以下である と考えられ、 本発明では、 このような低分子量の PTFE系樹脂が好まし く使用される。  The molecular weight of the PTFE resin satisfying the standard specific gravity is considered to be 5,000,000 or less, and in the present invention, such a low molecular weight PTFE resin is preferably used.
また、 前記 PTFE系樹脂をフッ素ラジカル源と接触させることにより フッ素化処理して、 末端不安定基を安定化することが好ましい。 前記末端 不安定基をフッ素化すると、 熱安定性だけでなく、 加工特性、 t an <5な どの高周波特性も改善される。 さらに、 それから得られるアンテナカバー の高周波特性および機械的特性も改善される。  Further, it is preferable to stabilize the terminal unstable group by subjecting the PTFE-based resin to a fluorination treatment by contacting the PTFE resin with a fluorine radical source. When the terminal labile group is fluorinated, not only thermal stability but also processing characteristics and high-frequency characteristics such as t an <5 are improved. Furthermore, the high-frequency and mechanical properties of the antenna cover obtained therefrom are also improved.
フッ素化処理の反応温度は、 100〜 250 °Cであることが好ましく、 より好ましくは、 110〜200°Cである。 反応温度が 100°Cより低い と、 反応速度が遅くなる傾向にある。 反応温度が 250°Cをこえると、 P TFE系樹脂同士が融着したり分解揮散する傾向にある。  The reaction temperature of the fluorination treatment is preferably from 100 to 250 ° C, more preferably from 110 to 200 ° C. If the reaction temperature is lower than 100 ° C, the reaction rate tends to be slow. If the reaction temperature exceeds 250 ° C, the PTFE resins tend to fuse or decompose and volatilize.
フッ素ラジカル源としては、 フッ素ガスのほか、 C 1 F、 C 1 F3 B r F3、 I F3などのハロゲン化フッ化物; Xe F2、 X e F4、 K r F2な どの希ガスのフッ化物; NF3、 N F 2などの含窒素フッ素化合物など前 記反応温度でガス状の化合物があげられる。 なかでも、 取扱い性、 価格の 点からフッ素ガスが最も好ましい。 フッ素ガスを用いてフッ素化処理をす る場合、 PTFE系樹脂を 1 1 0〜2 5 0°Cにて、 フッ素ガスと 1〜1 0 時間接触させる。 好ましくは、 反応温度 1 8 0〜2 3 0°Cである。 また反 応時間は、 2〜 5時間であること力 S好ましい。 反応圧力は 0. 1〜1MP a程度でよく、 好ましくは大気圧である。 フッ素ガスは純粋なフッ素ガス でもよく、 また窒素ガス、 アルゴンガス、 ヘリゥムガスなどの不活性ガス で 5〜2 5容量%、 好ましくは 7〜2 0容量%に希釈して使用してもよい。 フッ素ラジカル源の添加量は、 反応温度や反応時間、 フッ素ラジカル源 の種類などによって異なるが、 フッ素原子に換算して、 PTFE系樹脂 1 0 0部に対し、 0. 0 1〜1部が好ましい。 より好ましくは 0. 1〜0. 5部である。 フッ素ラジカル源の添加量が 0. 0 1部より少ないと、 原料 PTFEのフッ素化が不充分となる傾向にある。 またフッ素ラジカル源の 添加量が 1部をこえても、 フッ素化の効果は向上せず、 不経済となる傾向 にある。 As a fluorine radical source, in addition to fluorine gas, halogenated fluorides such as C 1 F, C 1 F 3 Br F 3 and IF 3 ; rare gases such as Xe F 2 , Xe F 4 and Kr F 2 Compounds that are gaseous at the above-mentioned reaction temperature, such as nitrogen-containing fluorine compounds such as NF 3 and NF 2 . Among them, fluorine gas is most preferable in terms of handling properties and price. Perform fluorination treatment using fluorine gas In this case, the PTFE resin is brought into contact with fluorine gas at 110 to 250 ° C for 1 to 10 hours. Preferably, the reaction temperature is 180 to 230 ° C. The reaction time is preferably 2 to 5 hours. The reaction pressure may be about 0.1 to 1 MPa, preferably atmospheric pressure. The fluorine gas may be pure fluorine gas, or may be diluted with an inert gas such as a nitrogen gas, an argon gas or a helium gas to a concentration of 5 to 25% by volume, preferably 7 to 20% by volume. The addition amount of the fluorine radical source varies depending on the reaction temperature, reaction time, type of the fluorine radical source, etc., but is preferably 0.01 to 1 part in terms of fluorine atoms, based on 100 parts of the PTFE-based resin. . More preferably, it is 0.1 to 0.5 part. When the addition amount of the fluorine radical source is less than 0.01 part, the fluorination of the raw material PTFE tends to be insufficient. Also, if the amount of the fluorine radical source exceeds 1 part, the effect of fluorination does not improve and tends to be uneconomical.
フッ素化処理に使用する反応装置としては、 固一気接触を充分に行なう ことができる装置であれば問題なく使用できる。 具体的には流動床型、 棚 段型の固一気接触反応装置があげられる。  As a reaction apparatus used for the fluorination treatment, any apparatus that can sufficiently perform solid-at-a-time contact can be used without any problem. Specific examples include a fluidized bed type and a tray type solid-batch contact reactor.
本発明で使用される PTFE系樹脂は、 1 2 GHzでの t an δが 2. 0 X 1 0— 4以下を示し、 1. 5 X 1 0— 4以下であることが好ましい。 t a n 3が 2. O X 1 0一4をこえると、 アンテナカバーの誘電損失 (電力 ロス) が大きくなる。 PTFE resin used in the present invention, 1 t an, at 2 GHz [delta] is 2. 0 X 1 0- 4 indicates less, and preferably 1. is 5 X 1 0- 4 below. When tan 3 exceeds 2. OX 1 0 one 4, the dielectric loss of the antenna cover (power loss) is increased.
また、 本発明における t an (5測定方法は、 以下の条件 (1) でサンプ ルを作製し、 測定する。  In the method of measuring t an (5) in the present invention, a sample is prepared and measured under the following condition (1).
条件 (1) Condition 1)
(シートの作製条件)  (Sheet preparation conditions)
ボリテトラフルォロエチレンを円柱状に圧縮成形する。 この円柱から切 出した厚さ 0. 5 mmのシートを熱風循環式電気炉で 3 8 0°Cにて 5分間 加熱焼成する。 ついで 60°C/時間の冷却速度で常温にまで放冷してサン 一 2 Polytetrafluoroethylene is compression molded into a cylindrical shape. A 0.5 mm-thick sheet cut from this cylinder was heated at 380 ° C for 5 minutes in a hot air circulation type electric furnace. Heat and bake. Then, let it cool to room temperature at a cooling rate of 60 ° C / hr.
プルシートを作製する。 Make a pull sheet.
ただし、 PTFE樹脂が水性ディスパ一ジョンである場合は、 圧縮成形 前に、 80°Cにて o加 2熱して、 水分を蒸発させてパウダー状にしてからシ一 ト成形する。 2  However, if the PTFE resin is an aqueous dispersion, heat it at 80 ° C for 2 hours to evaporate water to form a powder before compression molding, and then perform sheet molding. Two
(t an δ測定方法)  (T an δ measurement method)
ネットヮ一クアナライザ一 (ヒューレットパッカード社製、 HP 851 0 C) を使用し、 空洞共振器により前記作製されたフィルムの共振周波数 および Q値の変化を 22〜25 °Cにて測定し、 12 GHzにおける t an (5を次式にしたがって算出する。 次式は、 埼玉大学工学部の小林禧夫氏お よび佐藤純也氏が開発された計算式 (小林禧夫、 佐藤純也 「誘電体平板材 料のマイク口波複素誘電率測定」 信学技報、 MW87— 7、 1 987年 5 月号) にしたがっている。 ただし、 12 GHzの空洞共振器にサンプルを 揷入すると、 サンプルにより共振周波数が変化し、 12GHzよりも低く なる。 その共振周波数の値は、 PTFE 500 m厚のサンプルでおよそ 1 1. 74 GHzである。 この場合、 無サンプル状態での共振周波数をも つて t a n (5を表記する。  Using a network analyzer (Hewlett-Packard, HP 8510C), measure the change in the resonance frequency and Q value of the film produced above with a cavity resonator at 22 to 25 ° C and 12 GHz Is calculated according to the following formula. The following formula is a formula developed by Yoshio Kobayashi and Junya Sato of the Faculty of Engineering of Saitama University (Kio Kobayashi, Junya Sato “Microphone opening of dielectric flat material” Wave complex permittivity measurement ”, IEICE Technical Report, MW87-7, May 1987. However, when a sample is introduced into a 12 GHz cavity resonator, the resonance frequency changes depending on the sample, and the The value of the resonance frequency is about 11.74 GHz for a 500-meter thick PTFE sample, where tan (5 is used for the unsampled resonance frequency.
t a n (5= (1/Qu) X {1 + (W2/Wx) } - (P c / ω\Ν x)
Figure imgf000013_0001
tan (5 = (1 / Qu) X {1 + (W 2 / W x ))-(P c / ω \ Ν x )
Figure imgf000013_0001
XtanX= (L/2M) YcosY  XtanX = (L / 2M) YcosY
L  L
Y = M-Jk0 2-kr 2 k0 = Y = M-Jk 0 2 -k r 2 k 0 =
c r 3.8317 c r 3.8317
k =  k =
'· D/2  '· D / 2
Qr Q r
Q„ =  Q „=
1一 io(一 /20) 1 one io ( 1/20)
^ F -F ^ F -F
1 2  1 2
1 2 フ フ 9 / sin W1 =-xsr χε0 χ∑χπχτσ x μ0 xj^ XJ x 1+
Figure imgf000014_0001
1 2 huff 9 / sin W 1 = -xs r χε 0 χ∑χπχτσ x μ 0 xj ^ XJ x 1+
Figure imgf000014_0001
P =P i +P 2 +P 3  P = P i + P 2 + P 3
r つ 、 x-/ r02 r, x- / r 0 2
Figure imgf000014_0002
Figure imgf000014_0002
ただし、 式中の記号はつぎのものである。 Where the symbols in the equation are as follows.
D:空洞共振器直径 (mm)  D: Cavity resonator diameter (mm)
M:空洞共振器片側長さ (mm)  M: One side length of cavity resonator (mm)
L :サンプル長さ (mm)  L: Sample length (mm)
c :光速 (mZ s ) c: Speed of light (mZ s)
I d :減衰量 (dB)  I d: Attenuation (dB)
F 0:共振周波数 (H z )  F 0: resonance frequency (H z)
F!:共振点からの減衰量が 3 d Bである上側周波数 (H z ) F2:共振点からの減衰量が 3 dBである下側周波数 (Hz) F! : Upper frequency (Hz) where the attenuation from the resonance point is 3 dB F 2 : Lower frequency (Hz) at which the attenuation from the resonance point is 3 dB
ε。:真空の誘電率 (H/m) ε. : Dielectric constant of vacuum (H / m)
ε r:サンプルの比誘電率ε r : dielectric constant of sample
0:真空の透磁率 (H/m)  0: Permeability of vacuum (H / m)
Rs :導体空洞の表面粗さも考慮した実効表面抵抗 (Ω)  Rs: Effective surface resistance (Ω) considering the surface roughness of the conductor cavity
J Q :— 0. 402759 J Q : — 0.402759
J x: 3. 83171 J x : 3.83171
本発明のアンテナカバーに使用される PTFE系樹脂からなるシートと しては、 厚さ 200 m以上のシート状のものだけでなく、 200 未 満のフィルム状のものも含む。  The PTFE-based resin sheet used for the antenna cover of the present invention includes not only a sheet having a thickness of 200 m or more, but also a film having a thickness of less than 200 m.
本発明のアンテナカバーとしては、 PTFE系樹脂からなるシートがァ ンテナ素子または反射板から離れて位置するアンテナカバ一や、 PTFE 系樹脂からなるシートをアンテナ素子および反射板に直接コーティングし ているアンテナカバーをさすものである。  As the antenna cover of the present invention, an antenna cover in which a sheet made of PTFE-based resin is located away from the antenna element or the reflector, or an antenna in which a sheet made of PTFE-based resin is directly coated on the antenna element and the reflector It refers to a cover.
PTFE系樹脂からなるシートがァンテナ素子または反射板から離れて 位置するアンテナカバーである場合、 その立体形状は、 円筒形、 多角形、 円錐形など、 とくに限定されない。  When the sheet made of the PTFE-based resin is an antenna cover located away from the antenna element or the reflector, the three-dimensional shape is not particularly limited, such as a cylindrical shape, a polygonal shape, and a conical shape.
前記アンテナカバ一の厚さは、 特に限定されないが、 1〜 6mmである ことが好ましい。 1mmより小さいと、 機械的な強度不足となる傾向にあ る。  The thickness of the antenna cover is not particularly limited, but is preferably 1 to 6 mm. If it is smaller than 1 mm, mechanical strength tends to be insufficient.
また、 P T F E系樹脂からなるシートによりァンテナ素子および反射板 を直接コーティングしているアンテナカバーである場合には、 そのアンテ ナカバーの厚さは、 5〜50 / mであることが好ましい。 膜厚が、 未満であると、 撥水性が低下する傾向にあり、 50 mをこえるとクラッ クが発生して水がしみ込み、 撥水性が低下する傾向にある。  In the case of an antenna cover in which the antenna element and the reflection plate are directly coated with a sheet made of PTFE-based resin, the thickness of the antenna cover is preferably 5 to 50 / m. If the film thickness is less than, the water repellency tends to decrease. If the film thickness exceeds 50 m, cracks are generated, water seeps, and the water repellency tends to decrease.
本発明のアンテナカバーは、 前記 PTFE系樹脂のシートからなり、 比 重が 2. 192以上であることが好ましい。 より好ましくは 2. 200以 上である。 また、 その上限は、 2. 300、 好ましくは 2. 280である。 比重が 2. 192より小さいと、 結晶化度が低くなり、 t an <5が高くな つたり、 成形加工性に劣る。 一方、 標準比重が高いと機械的強度が低下す る点で問題がある。 The antenna cover of the present invention comprises the PTFE-based resin sheet, The weight is preferably at least 2.192. More preferably, it is at least 2.200. The upper limit is 2.300, preferably 2.280. If the specific gravity is less than 2.192, the crystallinity will be low, t an <5 will be high, and the formability will be poor. On the other hand, if the standard specific gravity is high, there is a problem in that the mechanical strength decreases.
比重が 2. 192以上のシートを得るには、 標準比重が 2. 192以上 である前記 PTFE系樹脂を 20重量%以上、 さらには 70重量%以上含 んでいることが好ましい。  In order to obtain a sheet having a specific gravity of 2.192 or more, the sheet preferably contains 20% by weight or more, and more preferably 70% by weight or more of the PTFE-based resin having a standard specific gravity of 2.192 or more.
また、 本発明は、 (A) 前記条件 (1) で作製、 測定した 12 GHzに おける t an δが 1. 5 X 10—4以下であり、 標準比重が 2. 192以 上であるボリテトラフルォロェチレン系樹脂粉末、 および/または (Β) 38 O :における溶融粘度が 106ボイズ以下であるポリテトラフルォロ エチレン系樹脂粉末を、 10重量%以上含む組成物からなるシートの少な くとも片面に金属箔が接着されているアンテナカバーに関する。 Further, the present invention is prepared by (A) The condition (1), measured 12 GHz to definitive t an, [delta] is 1. is a 5 X 10- 4 or less, the standard specific gravity 2. is the 192 or more Boritetora Fluoroethylene-based resin powder, and / or (Β) 38 O: Melt viscosity at 38 O: is less than 10 6 % by volume. More particularly, the present invention relates to an antenna cover having a metal foil adhered to one side.
前記ポリテトラフルォロエチレン系樹脂粉末 (A) は、 条件 (1) で作 製、 測定した 12GHzにおける t an Sが 1. 5X 10 4以下であり、 好ましくは、 1. 0 X 10—4以下である。 この範囲をはずれると、 誘電 損失が大きくなる傾向にある。 The polytetramethylene full O b ethylene resin powder (A), the condition (1) in work made, t an, S is the measured 12 GHz 1. is a 5X 10 4 or less, preferably, 1. 0 X 10- 4 It is as follows. Outside this range, dielectric loss tends to increase.
また、 ポリテトラフルォロエチレン系樹脂粉末 (B) は、 380°Cにお ける溶融粘度が 106ボイズ以下であり、 105ボイズ以下であることが 好ましい。 溶融粘度が 106ボイズをこえると、 徐冷条件での作製時に誘 電損失が大きくなる傾向にある。 Further, polytetramethylene full O b ethylene resin powder (B) is contact Keru melt viscosity 380 ° C is 10 6 Boise less, preferably 10 5 Boise below. If the melt viscosity exceeds 10 6 boise, the dielectric loss tends to increase during fabrication under slow cooling conditions.
ここで、 徐冷条件は、 例えば、 焼成後の冷却速度が、 60°C/時間より 小さくすることができる。  Here, the slow cooling condition may be such that, for example, the cooling rate after firing is lower than 60 ° C./hour.
また、 前記ポリテトラフルォロェチレン系榭脂粉末 (A) および/また はポリテトラフルォロエチレン系樹脂粉末 (B) は、 シートの 10重量% 以上含み、 3 0重量%以上含むことが好ましい。 前記ポリテトラフルォロ エチレン系樹脂粉末が 1 0重量%より少ないと、 誘電損失が小さくなる効 果が得られにくい傾向にある。 The polytetrafluoroethylene-based resin powder (A) and / or the polytetrafluoroethylene-based resin powder (B) is 10% by weight of the sheet. More preferably, it is preferable to contain more than 30% by weight. If the content of the polytetrafluoroethylene resin powder is less than 10% by weight, the effect of reducing the dielectric loss tends to be hardly obtained.
前記組成物は、 徐冷成形時の誘電正接の低さの点から、 溶融粘度が 1 0 6ボイズ以下の P T F E系樹脂を含むことが好ましく、 さらに低損失の点 から、 末端基がフッ素化されているポリテトラフルォロエチレン系樹脂を 含むことが好ましい。 The composition, in terms of low dielectric loss tangent at slow cooling molding preferably comprises a melt viscosity 1 0 6 Boise following PTFE resin, in view further of low loss, end groups are fluorinated It is preferable to include a polytetrafluoroethylene resin.
また、 本発明は、 P T F E系樹脂からなるシートを用いたアンテナカバ 一に関する。  The present invention also relates to an antenna cover using a sheet made of a PTFE resin.
本発明で使用される P T F E系樹脂は溶融加工できないため、 プレス成 形法、 シートまたはチューブ (パイプ) 押出などの押出成形法、 圧縮成形 法などの成形法によって成形加工する。  Since the PTFE-based resin used in the present invention cannot be melt-processed, it is molded by a molding method such as a press molding method, an extrusion method such as sheet or tube (pipe) extrusion, or a compression molding method.
得られた成形物は、 通常、 続いて焼成される。 焼成温度は 3 6 0〜4 0 0 °Cが適当である。  The obtained molded product is usually subsequently fired. The firing temperature is suitably from 360 to 400 ° C.
また、 前記焼成を行わなくてもよく、 また結晶転化率 9 0 %以下に半焼 成化してもよい。 未焼成および結晶転化率 9 0 %以下の半焼成化すること で、 誘電損失が下がる傾向にある。  In addition, the above-mentioned baking may not be performed, and the baking may be partially performed to a crystal conversion ratio of 90% or less. Unsintered and semi-sintered with a crystal conversion ratio of 90% or less tend to reduce dielectric loss.
その後、 プレス処理、 ペースト押出し、 あるいはスカイブなどにより、 P T F E系樹脂からなるシート状の成形体が得られる。 そして、 得られた 平面成形体を熱プレスまたはチューブ押出しなどにより、 立体形状として、 本発明のアンテナカバ一を得ることができる。  Thereafter, a sheet-like molded body made of a PTFE-based resin is obtained by pressing, paste extrusion, skiving, or the like. Then, the antenna cover of the present invention can be obtained by forming the obtained flat molded body into a three-dimensional shape by hot pressing or tube extrusion.
また、 P T F E系樹脂からなるシ一トによりァンテナ素子および反射板 を直接コーティングしているアンテナカバーである場合、 アンテナ素子お よびアンテナ反射板に水溶性デイスパージョンをスプレーコートし、 3〜 2 0分間乾燥したのち、 焼成をおこなうことが好ましい。 焼成温 は 3 6 0〜4 0 0 °Cが適当である。 かくして得られる本発明で使用されるアンテナカバーは、 マイクロ波領 域 (3〜30GHz) 、 特に高周波領域における電気特性に優れたもので あり、 セ & 11 <5は120^12で2. 0 X 10_4以下、 好ましくは 1. 5 0 X 1 0一4以下である。 t an <5が、 2. 0 X 1 0— 4をこえると、 誘電 損失が増加する傾向にある。 In the case of an antenna cover in which the antenna element and the reflector are directly coated with a sheet made of a PTFE-based resin, the antenna element and the antenna reflector are spray-coated with a water-soluble dispersion to obtain a 3 to 20 After drying for a minute, baking is preferably performed. An appropriate firing temperature is 360 to 400 ° C. The antenna cover used in the present invention thus obtained has excellent electrical characteristics in the microwave region (3 to 30 GHz), particularly in the high frequency region. 10_ 4 or less, preferably 1. 5 0 X 1 0 one 4 below. t an, <5 is more than 2. 0 X 1 0- 4, there is a tendency that the dielectric loss increases.
アンテナカバ一およびその周辺機器には、 伝送損失を小さく抑えること が求められている。 そして、 その伝送損失は、 以下の式により求められる。  Antenna covers and their peripheral devices are required to keep transmission loss low. Then, the transmission loss is obtained by the following equation.
伝送損失-導体損 +誘電体損 (ad)  Transmission loss-conductor loss + dielectric loss (ad)
ここで誘電体損 (ad) は、  Where the dielectric loss (ad) is
誘電体損 (cud) =  Dielectric loss (cud) =
27.3X (周波数) Z. (光速) ΧΛ (誘電率) X t an (5 で表される。 誘電体損は t an δに比例しており、 アンテナの伝送損失低 減のためには、 t an δの低減による効果が大きいことがわかる。  27.3X (Frequency) Z. (Speed of light) ΧΛ (Dielectric constant) X t an (Represented by 5. The dielectric loss is proportional to t an δ. To reduce the transmission loss of the antenna, t It can be seen that the effect of reducing an δ is great.
したがって、 本発明のアンテナカバーの t a η δが 1. 50 X 1 0一4 以下に低減されているので、 伝送損失を大きく低減することができる。 また、 本発明のアンテナカバーは、 フッ素系樹脂からなるため、 雨や雪 などの水分をはじく。 そのため、 水分によるアンテナの受発信中心周波数 のずれが生じにくくなり、 安定した受発信性能が得られる。 Therefore, since ta eta [delta] of the antenna cover of the present invention: 1. is reduced to 50 X 1 0 one 4 or less, it is possible to significantly reduce the transmission loss. Further, since the antenna cover of the present invention is made of a fluororesin, it repels moisture such as rain and snow. As a result, the center frequency of the transmitting and receiving antennas is less likely to shift due to moisture, and stable receiving and transmitting performance can be obtained.
本発明のアンテナカバーは、 固定の点から、 前記シートの少なくとも片 面に金属箔が接着されていることが好ましい。  In the antenna cover of the present invention, it is preferable that a metal foil is adhered to at least one surface of the sheet from the viewpoint of fixing.
前記金属箔としては、 腐食防止の点から、 ステンレス箔、 アルミニウム 箔などが好ましい。 金属箔の厚さは、 特に限定されないが、 0. 05〜1 . Ommであることが好ましい。  As the metal foil, stainless steel foil, aluminum foil and the like are preferable from the viewpoint of corrosion prevention. The thickness of the metal foil is not particularly limited, but is preferably 0.05 to 1.0 Omm.
前記金属箔は、 接着強度の点から、 前記シートを表面処理したのち、 あ るいは表面処理せずに、 シート表面に熱融着により接着されてなることが 好ましい。 また、 接着強度の点から、 前記金属箔は、 前記シートを表面処理したの ち、 あるいは表面処理せずに、 シート表面にエポキシ樹脂、 フエノール樹 脂およびシァネート樹脂からなる群より選ばれた少なくとも 1種の樹脂接 着剤、 および zまたはヒドロキシル基、 力ルポキシル基、 カルボン酸塩、 カルボキシルエステル基およびエポキシ基からなる群より選ばれた少なく とも 1種の官能基を有する含フッ素エチレン性重合体を介して接着される ことが好ましい。 From the viewpoint of adhesive strength, it is preferable that the metal foil be bonded to the sheet surface by heat fusion after the surface treatment of the sheet or without the surface treatment. Further, from the viewpoint of adhesive strength, the metal foil may have at least one selected from the group consisting of an epoxy resin, a phenol resin, and a cyanate resin on the sheet surface after or without surface treatment of the sheet. Fluorinated ethylenic polymer having at least one functional group selected from the group consisting of a resin binder, and z or a hydroxyl group, a hydroxyl group, a carboxylate, a carboxylester group, and an epoxy group. It is preferable that they are adhered through a gap.
前記エポキシ樹脂、 フエノール樹脂およびシァネ一ト樹脂からなる 3種 の接着剤と官能基を有する含フッ素エチレン性重合体は、 それぞれ単独で 用いてもよいが、 2種以上を用いて、 2層以上の接着層としてもよい。 例 えば、 官能基を有する含フッ素エチレン性重合体層とエポキシ樹脂層から なる 2層の接着層などをあげられる。  The three types of adhesives composed of the epoxy resin, the phenolic resin, and the skeleton resin and the fluorine-containing ethylenic polymer having a functional group may be used alone, but two or more types may be used, and two or more layers may be used. May be used as an adhesive layer. For example, a two-layer adhesive layer composed of a fluorine-containing ethylenic polymer layer having a functional group and an epoxy resin layer may be used.
前記接着方法としては、 樹脂接着剤の 1層、 官能基を有する含フッ素ェ チレン性重合体の 1層、 または樹脂接着剤と官能基を有する含フッ素ェチ レン性重合体からなる 2層を介して接着されることをさす。  As the bonding method, one layer of a resin adhesive, one layer of a fluorinated ethylene polymer having a functional group, or two layers of a resin adhesive and a fluorinated ethylene polymer having a functional group are used. It means that it is adhered through.
これらの中でも、 容易に接着できる点、 金属との接着強度について、 初 期接着力だけでなく、 激しい温度変化や高温下においても接着強度が低下 しないため、 熱処理を伴う後加工が可能である点、 フッ素樹脂が主鎖であ るため耐候性に優れ、 屋外での寿命が長い点、 および誘電損失が発生しに くい点で、 ヒドロキシル基、 カルボキシル基、 カルボン酸塩、 カルボキシ ルエステル基およびエポキシ基からなる群より選ばれた少なくとも 1種の 官能基を有する含フッ素エチレン性重合体が好ましい。  Among these, the point of easy adhesion and the strength of adhesion to metal, not only the initial adhesive strength but also the post-processing with heat treatment is possible because the adhesive strength does not decrease even under severe temperature changes or high temperatures. Since the fluorocarbon resin has a main chain, it has excellent weather resistance, has a long outdoor life, and is unlikely to cause dielectric loss.Hydroxy group, carboxyl group, carboxylate, carboxylate group and epoxy group Preferred is a fluorine-containing ethylenic polymer having at least one functional group selected from the group consisting of:
前記官能基含有フッ素エチレン性重合体は、 (a ) ヒドロキシル基、 力 ルポキシル基、 カルボン酸塩、 力ルポキシルエステル基およびエポキシ基 からなる群より選ばれた少なくとも 1種の官能基を有する官能基含有含フ ッ素エチレン性単量体と (b ) 該官能基を有さない含フッ素エチレン性単 量体のうちの少なくとも 1種との共重合体であることが好ましい。 The functional group-containing fluoroethylenic polymer includes: (a) a functional group having at least one type of functional group selected from the group consisting of a hydroxyl group, a hydroxyl group, a carboxylate, a hydroxyl group, and an epoxy group; And (b) a fluorine-containing ethylenic monomer having no functional group. It is preferably a copolymer with at least one of the monomers.
前記 (a) 成分の含有率は、 0. 05〜30モル%が好ましく、 接着さ れる基材の種類、 形状、 接着の目的、 用途、 必要とされる接着力、 接着剤 の形態と接着方法などの違いにより適宜選択されるが、 より好ましくは 0 • 05〜20モル%、 とくに好ましくは 0. 1〜10モル%である。 前記 含有率が 0. 05モル%未満であると他の基材との接着性が充分得られに くく、 薬品の浸透や温度変化などによる剥離などをおこしゃすい。 また、 30モル%を超えると耐熱性を低下させ、 高温での加工時の接着不良や着 色や発泡、 高温での使用時の分解による、 剥離や着色 ·発泡、 溶出などを 起こしやすい。  The content of the component (a) is preferably 0.05 to 30 mol%. The type, shape, purpose, application, required adhesive strength, adhesive form, and adhesive method of the substrate to be bonded are described. Although it is appropriately selected depending on the difference between them, it is more preferably 0. 05 to 20 mol%, particularly preferably 0.1 to 10 mol%. When the content is less than 0.05 mol%, it is difficult to obtain sufficient adhesion to other base materials, and peeling due to chemical permeation or temperature change is caused. On the other hand, if the content exceeds 30 mol%, the heat resistance is reduced, and peeling, coloring, foaming, and elution are likely to occur due to poor adhesion, coloring and foaming at the time of processing at high temperatures, and decomposition during use at high temperatures.
前記官能基含有含フッ素エチレン性重合体 (a) としては、  As the functional group-containing fluorine-containing ethylenic polymer (a),
CX^CX1 - Rf 2 - Y (1) CX ^ CX 1 -R f 2 -Y (1)
(式中、 Xおよび X1は同じかまたは異なりいずれも水素原子またはフッ 素原子、 Yは— CH2OH、 一 COOH、 カルボン酸塩、 カルボキシエス テル基またはエポキシ基、 尺^は炭素数1〜40の 2価の含フッ素アル キレン基、 炭素数 1〜40の 2価の含フッ素ォキシアルキレン基、 炭素数 1〜40のェ一テル基を含む含フッ素アルキレン基、 または炭素数 1〜4 0のエーテル基を含む含フッ素ォキシアルキレン基を表わす) (Where X and X 1 are the same or different and are each a hydrogen atom or a fluorine atom, Y is — CH 2 OH, monoCOOH, carboxylate, carboxyester group or epoxy group, and A divalent fluorinated alkylene group having 1 to 40 carbon atoms, a divalent fluorinated oxyalkylene group having 1 to 40 carbon atoms, a fluorinated alkylene group containing a 1 to 40 carbon ether group, or 1 to 40 carbon atoms Represents a fluorine-containing oxyalkylene group containing 40 ether groups)
で示される少なくとも 1種の単量体があげられる。 より具体的には、 CF2 = CF - Rf 3_CH2〇H (2) And at least one monomer represented by More specifically, CF 2 = CF-R f 3 _CH 2 〇H (2)
[式中、 ^は炭素数1〜40の 2価の含フッ素アルキレン基または一 ORf 4 (Rf 4は炭素数 1〜40の 2価の含フッ素アルキレン基または炭 素数 1〜40のエーテル結合を含む 2価の含フッ素アルキレン基) を表わ す] 、 Wherein ^ is a divalent fluorine-containing alkylene group or a OR f 4 (R f 4 is a divalent fluorine-containing alkylene group or an ether having a carbon number of 1 to 40 1 to 40 carbon atoms from 1 to 40 carbon atoms A divalent fluorine-containing alkylene group containing a bond)],
CF2 = CFCF2-ORf 5-CH2OH (3) CF 2 = CFCF 2 -OR f 5 -CH 2 OH (3)
[式中、 一 Rf 5は炭素数 1〜39の 2価の含フッ素アルキレン基または 炭素数 1〜 39のエーテル結合を含む 2価の含フッ素アルキレン基を表わ す] 、 [In the formula, one R f 5 is a divalent fluorinated alkylene group having 1 to 39 carbon atoms or Represents a divalent fluorinated alkylene group having an ether bond having 1 to 39 carbon atoms],
CH2=CFCF2 - Rf 6 - CH2OH (4) CH 2 = CFCF 2 -R f 6 -CH 2 OH (4)
[式中、 一 Rf 6は炭素数 1〜39の 2価の含フッ素アルキレン基、 また は一〇Rf 7 (Rf 7は炭素数 1〜39の 2価の含フッ素アルキレン基、 ま たは炭素数 1〜39のエーテル結合を含む 2価のアルキレン基) を表わす ] 、 または [Wherein one R f 6 is a divalent fluorine-containing alkylene group having 1 to 39 carbon atoms, or an 〇_R f 7 (R f 7 is a divalent fluorine-containing alkylene group having 1 to 39 carbon atoms, or Or a divalent alkylene group containing an ether bond having 1 to 39 carbon atoms)], or
CH2 = CH- f 8-CH2OH (5) CH 2 = CH- f 8 -CH 2 OH (5)
[式中、 ^は炭素数1〜40の 2価の含フッ素アルキレン基を表わす ] 、  [Wherein, ^ represents a divalent fluorine-containing alkylene group having 1 to 40 carbon atoms],
CX^CX1— Rf 9— COOY1 (6) CX ^ CX 1 — R f 9 — COOY 1 (6)
(X、 X1は同じかまたは異なりいずれも水素原子またはフッ素原子、 Y 1は水素原子、 NH4もしくは I、 II、 III、 IVa、 VIII類元素から選ばれ る金属原子、 Rf 9は炭素数 1〜40の 2価の含フッ素アルキレン基、 炭 素数 1〜40の 2価の含フッ素ォキシアルキレン基、 または炭素数 1〜4 0のエーテル結合を有する 2価の含フッ素アルキレン基を表わす) で示さ れる少なくとも 1種の単量体があげられる。 前記一 COOY1は、 より具 体的には、 — C〇OH、 一 COONH4、 一 COONa、 -COOK, 一 COOL i , _COOZn、 一 COOA l、 一 COOMg、 一 COOCa などが好ましくあげられる。 (X and X 1 are the same or different and are each a hydrogen atom or a fluorine atom, Y 1 is a hydrogen atom, NH 4 or a metal atom selected from the group consisting of I, II, III, IVa and VIII, and R f 9 is a carbon atom. Represents a divalent fluorinated alkylene group having 1 to 40 carbon atoms, a divalent fluorinated oxyalkylene group having 1 to 40 carbon atoms, or a divalent fluorinated alkylene group having 1 to 40 carbon atoms having an ether bond. At least one kind of monomer represented by the formula: More specifically, one COOY 1 is preferably —COOH, one COONH 4 , one COONa, -COOK, one COOL i, _COOZn, one COOAl, one COOMg, one COOCa, and the like.
前記官能基を有さない含フッ素エチレン性単量体 (b) としては、 テト ラフルォロエチレン、 または、 テトラフルォロエチレン 85〜99. 7モ ル%と  Examples of the fluorine-containing ethylenic monomer having no functional group (b) include tetrafluoroethylene or tetrafluoroethylene of 85 to 99.7 mol%.
CF2 = CF-Rf 10 (7) CF 2 = CF-R f 10 (7)
(式中、 Rf 1Qは CF3または OR 11 (R 1は炭素数 1〜5のパーフル ォロアルキル基) ) で示される単量体 0 . 3〜 1 5モル%との混合単量体などがあげられる。 また、 エポキシ樹脂を使用する場合は、 前記シートをナトリウムエッチ ング、 プラズマ処理、 エキシマレ一ザ処理、 放電処理などの表面処理した のち、 エポキシ樹脂を付与することが好ましい。 (Where R f 1Q is CF 3 or OR 11 (R 1 is a perfluoroalkyl group having 1 to 5 carbon atoms)) And a mixed monomer of 0.3 to 15 mol%. When an epoxy resin is used, it is preferable that the sheet is subjected to a surface treatment such as a sodium etching, a plasma treatment, an excimer laser treatment, and a discharge treatment, and then the epoxy resin is applied.
前記官能基を有する含フッ素エチレン性重合体、 および接着剤の塗布量 は特に限定されないが、 0 . 0 0 4〜0 . 0 4 g Z c m2であることが好 ましい。 0 . 0 0 4 g / c m2よりすくないと、 接着強度不足となる傾向 にある。 0 . 0 4 g Z c m2をこえると、 伝送損失が増える傾向にある。 また、 あらかじめフィルム状にした接着剤を前記シートに付与してもよい。 このとき、 前記フィルムの厚さは、 0 . 0 2〜0 . 2 mmであることが好 ましい。 0 . 0 2 mmより小さいと、 接着強度不足となる傾向にある。 0 . 2 mmをこえると、 伝送損失が増える傾向にある。 The coating amounts of the fluorine-containing ethylenic polymer having a functional group and the adhesive are not particularly limited, but are preferably 0.004 to 0.04 g Zcm 2 . If it is less than 0.004 g / cm 2 , the adhesive strength tends to be insufficient. If it exceeds 0.04 g Z cm 2 , the transmission loss tends to increase. Further, an adhesive in a film form may be applied to the sheet in advance. At this time, the thickness of the film is preferably in the range of 0.2 to 0.2 mm. If it is smaller than 0.02 mm, the adhesive strength tends to be insufficient. If it exceeds 0.2 mm, transmission loss tends to increase.
また、 接着剤の形態としては、 フィルム状に限られるものではなく、 粉 体、 分散液としても使用できる。  The form of the adhesive is not limited to a film, but may be used as a powder or a dispersion.
また、 前記表面処理は、 接着強度の点から、 (ィ) 官能基を有する有機 化合物を含む不活性ガス雰囲気中での放電処理、 (口) エキシマレーザ照 射、 (八) プラズマ処理、 または (二) 金属ナトリウムを用いた化学的ェ ッチング処理であること力 S好ましい。  In addition, the surface treatment may be performed in the following manner from the viewpoint of adhesive strength: (a) discharge treatment in an inert gas atmosphere containing an organic compound having a functional group, (mouth) excimer laser irradiation, (8) plasma treatment, or ( 2) Chemical etching using metallic sodium is preferred.
本発明のアンテナカバ一は、 前記接着剤によりアンテナや金属製の反射 板などと接着することができる。  The antenna cover of the present invention can be bonded to an antenna, a metal reflector, or the like with the adhesive.
本発明のアンテナカバーの一例を図 1〜 4に示す。  An example of the antenna cover of the present invention is shown in FIGS.
図 1では、 アンテナ 3が接合された金属製反射板 2が、 接着剤 4を介し てアンテナカバ一 1と接着されている。 なお、 前記金属製反射板は、 本発 明のアンテナカバーによって全体が保護されている。 また、 前記シートに 金属箔を接着する場合、 前記シートを成形したのち、 金属箔を接着もよい し、 前記シートと金属箔とを接着したのち、 熱処理により成形してもよい。 図 2では、 アンテナ 3を囲む 3辺をおよび上部をアンテナカバー 1によ り保護している。 他の 1辺は、 アンテナ 3が接合された金属製反射板 2で ある。 アンテナカバー 1と金属製反射板 2とは、 接着剤 4により接着され ている。 In FIG. 1, a metal reflector 2 to which an antenna 3 is bonded is bonded to an antenna cover 1 via an adhesive 4. The entire metal reflector is protected by the antenna cover of the present invention. When a metal foil is bonded to the sheet, the sheet may be formed and then the metal foil may be bonded, or the sheet and the metal foil may be bonded and then heat-treated. In FIG. 2, the three sides surrounding the antenna 3 and the upper part are protected by the antenna cover 1. The other side is a metal reflector 2 to which the antenna 3 is joined. The antenna cover 1 and the metal reflector 2 are adhered by an adhesive 4.
図 3では、 アンテナ 3が接合された半球状の金属製反射板 2と、 円錐状 のアンテナカバー 1とが、 接着剤 4により接着されている。  In FIG. 3, the hemispherical metal reflector 2 to which the antenna 3 is joined and the conical antenna cover 1 are adhered by an adhesive 4.
図 4では、 ァンテナ 3およびァンテナに接合された半球状の金属製反射 板 2が、 アンテナカバー 1によりコーティングされている。  In FIG. 4, the antenna 3 and the hemispherical metal reflector 2 joined to the antenna 3 are coated with the antenna cover 1.
つぎに、 本発明を実施例に基づいてさらに具体的に説明するが、 本発明 はこれらのみに限定されない。  Next, the present invention will be described more specifically based on examples, but the present invention is not limited thereto.
なお、 本発明の実施例で測定した各物性値はつぎの方法で測定したもの である。  The physical properties measured in the examples of the present invention were measured by the following methods.
(標準比重)  (Standard specific gravity)
ASTM D4895-89にしたがって作製されたサンプルを用い、 水置換法によって測定する。  It is measured by a water displacement method using a sample prepared according to ASTM D4895-89.
W1一 W2 ps :サンプルの密度 (gZcm3) W 1 – W 2 p s : Sample density (gZcm 3 )
pw:水の密度 (g/cm3) p w : Water density (g / cm 3 )
Wx :空気中でのサンプル重量 (g) W x : Sample weight in air (g)
W2:水中でのサンプル重量 (g) W 2 : Sample weight in water (g)
(誘電率および誘電正接) (Dielectric constant and dissipation factor)
(シートの作製条件)  (Sheet preparation conditions)
ポリテトラフルォロエチレンファインパ を含む原料を円柱状に圧 縮成形する。 この円柱から切出した厚さ 0, 5 mmのシートを熱風循環式 電気炉で 38 O にて 5分間加熱焼成する。 ついで 60°C/時間の冷却速 度で常温にまで放冷してサンプルシートを作製する。 The raw material containing polytetrafluoroethylene finer is compression molded into a cylindrical shape. A sheet with a thickness of 0.5 mm cut from this cylinder is circulated with hot air. Bake at 38 O for 5 minutes in an electric furnace. Then, it is allowed to cool to room temperature at a cooling rate of 60 ° C / hour to produce a sample sheet.
また、 PTFE樹脂が水性ディスパージヨンである場合は、 圧縮成形前 に、 8 にて加熱して、 水分を蒸発させてパウダー状にする必要がある。 (t an (5測定方法)  If the PTFE resin is an aqueous dispurgeon, it must be heated at 8 before compression molding to evaporate the water and form a powder. (t an (5 measurement methods)
ネットワークアナライザー (ヒューレットパッカード社製、 HP 851 0 C) を使用し、 空洞共振器により前記作製されたシートの共振周波数お よび Q値の変化を 22〜 25 °Cにて測定し、 12 GH zにおける t a n (5 を次式にしたがって算出する。  Using a network analyzer (Hewlett-Packard Co., HP 8510C), the change in the resonance frequency and the Q value of the sheet prepared above was measured at 22 to 25 ° C with a cavity resonator, and measured at 12 GHz. tan (5 is calculated according to the following equation.
t a n (5 = (1/Qu) X {1+ (Ψ21) } - (Ρ ο/ω\ν1)
Figure imgf000024_0001
tan (5 = (1 / Qu) X {1+ (Ψ 2 / Ψ 1 ))-(Ρ ο / ω \ ν 1 )
Figure imgf000024_0001
XtanX= (L/2M) YcosY
Figure imgf000024_0002
XtanX = (L / 2M) YcosY
Figure imgf000024_0002
Y = M k0 2-kr 2 k0 = Y = M k 0 2 -k r 2 k 0 =
c  c
= 2rFn k = 3.8317 = 2rF n k = 3.8317
D/2  D / 2
Qr Q r
Q "., = ΐ_ιο(_ίίί/20) Q "., = Ϊ́_ιο (_ίίί / 20)
Q = Q =
F' -F jrr 1 r 2 2 T 2 r 2 Sin 'F '-F jrr 1 r 2 2 T 2 r 2 Sin '
Wi =—xsr xeri xL rx X Un XJi XJn 1+ Wi = —xs r xe ri xL rx X Un XJi XJn 1+
1 8 7 υ υυ [ 2Χ χ 0 xJi χ JQ
Figure imgf000025_0001
1 8 7 υ υυ [2Χ χ 0 xJi χ JQ
Figure imgf000025_0001
P = P + P +P 3
Figure imgf000025_0002
P = P + P + P 3
Figure imgf000025_0002
1 ( -cosXヽ D し sin2Y\ 1 (-cosX ヽ D then sin2Y \
=— x xR5x— χ χπχ 1 x  = — X xR5x— χ χπχ 1 x
1 2 sinY 2 2Y
Figure imgf000025_0003
Figure imgf000025_0004
1 2 sinY 2 2Y
Figure imgf000025_0003
Figure imgf000025_0004
ただし、 式中の記号はつぎのものである。 Where the symbols in the equation are as follows.
D:空洞共振器直径 (mm)  D: Cavity resonator diameter (mm)
M:空洞共振器片側長さ (mm)  M: One side length of cavity resonator (mm)
L:サンプル長さ (mm)  L: Sample length (mm)
c :光速 (mZ s ) c: Speed of light (mZ s)
I d:減衰量 (dB)  Id: Attenuation (dB)
F 0:共振周波数 (H z )  F 0: resonance frequency (H z)
F!:共振点からの減衰量が 3 d Bである上側周波数 (H z ) F 2:共振点からの減衰量が 3 d Bである下側周波数 (H z ) ε 0:真空の誘電率 (H/m) F! : Upper frequency (H z) where attenuation from resonance point is 3 dB F 2 : Lower frequency (H z) where attenuation from resonance point is 3 dB ε 0: Dielectric constant of vacuum (H / m)
ε r:サンプルの比誘電率 ε r : dielectric constant of sample
H。:真空の透磁率 (HZm) H. : Vacuum permeability (HZm)
R s :導体空洞の表面粗さも考慮した実効表面抵抗 (Ω)  R s: Effective surface resistance (Ω) considering surface roughness of conductor cavity
J。:—0. 40 2 7 5 9 J. : -0. 40 2 7 5 9
J!: 3. 8 3 1 7 1 実施例 1 J! : 3. 8 3 1 7 1 Example 1
標準比重が 2. 216、 12 GHzでの誘電率が 2. 12、 条件 ( 1 ) で測定した t an (5が 1. 1 0 X 1 0一4の P T F Eファインパウダ一 ( TFE/HFP= 99. 9970/0. 0030 (モル比) 、 連鎖移動剤 :ェタン) を圧縮成形機により円柱状に圧縮成形し、 熱風循環式電気炉で 380^にて 60分間加熱焼成し、 冷却速度 1°C/時間にて 270°Cにま で徐冷した。 その後、 常温にまで放冷した前記円柱から、 2 mm厚のシ一 卜を切り出し、 アンテナカバー (厚さ 2mm) を得た。 t a n 6を測定し たところ、 1. I X 1 0一4であり、 比重は、 2. 24であった。 Dielectric constant at a standard specific gravity. 2. 216, 12 GHz is 2.12, the condition (1) is t an, (5 measured at 1. 1 0 X 1 0 one 4 of the PTFE fine powder one (TFE / HFP = 99 9970/0. 0030 (molar ratio), chain transfer agent: ethane) is compression-molded into a cylindrical shape by a compression molding machine, heated and baked in a hot-air circulation electric furnace at 380 ^ for 60 minutes, and the cooling rate is 1 ° C Then, the sheet was gradually cooled to 270 ° C./hour, and then a 2 mm-thick sheet was cut out from the cylinder cooled to room temperature to obtain an antenna cover (2 mm in thickness). was measured, 1. a IX 1 0 one 4, specific gravity, 2. was 24.
実施例 2 Example 2
実施例 1同様の P T F Eファインパウダーに、 押出し助剤としてァイソ パー G (エツソ化学株式会社製) を 17重量%の割合で混合した。 これを、 押出し成形機により、 外径 φ 120mm、 内径 1 16 mmのパイプを成 形した。 前記パイプを、 常温の平面プレスにて平面化し、 1 00°Cで 10 分間の乾燥した。 ついで、 乾燥機にて 250°Cで 10分間加熱して、 押出 し助剤を除去し、 厚さ 1. 7 mmのフィルムを得た。 得られたフィルムを 360°Cの熱板プレスで 50 k gZcm3の圧力にて、 10分間加圧した。 ついで、 冷却速度 1°C/時間にて 270°Cにまで徐冷、 常温にまで放冷し アンテナカバー (厚さ 1. 7mm) を得た。 t a n (5を測定したところ、 0. 5 X 10— 5であり、 比重は、 2. 26であった。 17% by weight of Isopar G (manufactured by Etsuso Chemical Co., Ltd.) as an extrusion aid was mixed with the same PTFE fine powder as in Example 1. The extruder was used to form a pipe with an outer diameter of 120 mm and an inner diameter of 116 mm. The pipe was flattened by a flat press at room temperature and dried at 100 ° C. for 10 minutes. Then, the extruder was heated at 250 ° C. for 10 minutes in a dryer to remove the extrusion aid, and a film having a thickness of 1.7 mm was obtained. The resulting film was pressed with a hot plate press at 360 ° C. at a pressure of 50 kgZcm 3 for 10 minutes. Then, it was gradually cooled to 270 ° C at a cooling rate of 1 ° C / hour and allowed to cool to room temperature to obtain an antenna cover (1.7 mm thick). tan (5 was measured, 0.5 is a 5 X 10- 5, specific gravity, 2. was 26.
実施例 3 Example 3
標準比重が 2. 1 7であり、 条件 ( 1 ) で測定した t a n <5が 1. 9 X 1 0— 4の PTFEファインパウダー (ダイキン工業株式会社製、 TFE 単独重合体、 商品名:ポリフロン F 104) と、 溶融粘度 (380°C、 7 kg荷重、 ノズル径 1 0mm Φ) が 35万ボイズ PTFEファインパウダ 一 (ダイキン工業株式会社製、 TFE系重合体、 商品名:ルブロン L一 2 ) とを、 8 : 2の重量比で、 常温空気中で混合し、 圧縮成形機により円柱 状に圧縮成形した。 前記成形物を熱風循環式電気炉で 380でにて 60分 間加熱焼成し、 冷却速度 1°CZ時間にて 270°Cにまで徐冷、 常温にまで 放冷した。 この円柱から厚さ 2 mmのシート (フィルム) を切り出した。 得られたフィルムから、 実施例 1同様にしてアンテナカバー (厚さ 2 mm ) を得た。 t an δを測定したところ、 1. 4X 10— 4であり、 比重は、 2. 22であった。 Standard specific gravity of 2.1 7, the condition (1) as measured by the tan <5 is 1. 9 X 1 0- 4 of the PTFE fine powder (Daikin Industries, Ltd., TFE homopolymer, trade name: Polyflon F 104), and the melt viscosity (380 ° C, 7 kg load, nozzle diameter 10 mm Φ) is 350,000 Voids PTFE Fine Powder I (manufactured by Daikin Industries, Ltd., TFE polymer, trade name: Lubron L-1 2) ) Were mixed in a room temperature air at a weight ratio of 8: 2, and compression-molded into a cylindrical shape by a compression molding machine. The molded product was fired and heated in a hot air circulation type electric furnace at 380 for 60 minutes, gradually cooled to 270 ° C. at a cooling rate of 1 ° C.Z, and allowed to cool to room temperature. A sheet (film) having a thickness of 2 mm was cut out from the cylinder. An antenna cover (2 mm thick) was obtained from the obtained film in the same manner as in Example 1. Measurement of the t an, [delta], is 1. 4X 10- 4, specific gravity, 2. was 22.
実施例 4 Example 4
標準比重が 2. 25であり、 条件 (1) で測定した t an δが 1. 4Χ 10— 4の PTFEファインパウダー (ダイキン工業株式会社製、 TF Ε 系重合体、 商品名:ルブロン L— 2) を電気炉内に入れ、 200°Cにてフ ッ素ラジカル源 (フッ素ガス) に大気圧、 5時間の条件下で接触させ、 フ ッ素化 PTFEファインパウダ一を得た。 標準比重が 2. 17である PT FEファインパウダー (ダイキン工業株式会社製、 TFE単独重合体、 商 品名:ボリフロン F 104) と、 前記フッ素化 P T F Eフアインパゥダ一 とを、 9 : 1の重量比で、 常温空気中で混合し、 圧縮成形機により円柱状 に圧縮成形した。 前記成形物を熱風循環式電気炉で 380°Cにて 60分間 加熱焼成し、 冷却速度 l Z時間にて 270 Cにまで徐冷、 常温にまで放 冷した。 この円柱から厚さ 1. 5mmのシート (フィルム) を切り出し、 実施例 1同様にしてアンテナカバー (厚さ 1. 5 mm) を得た。 t a n (5 を測定したところ、 1. 3 X 10_4であり、 比重は、 2. 25であった。 実施例 5 Standard specific gravity of 2. is 25, the condition (1) was measured at a t an δ is 1. 4Χ 10- 4 of the PTFE fine powder (Daikin Industries, Ltd., TF Ε-based polymer, trade name: LeBron L- 2 ) Was placed in an electric furnace and brought into contact with a fluorine radical source (fluorine gas) at 200 ° C under atmospheric pressure for 5 hours to obtain a fluorinated PTFE fine powder. A PTFE fine powder having a standard specific gravity of 2.17 (manufactured by Daikin Industries, Ltd., TFE homopolymer, trade name: BORIFLON F104) and the fluorinated PTFE fine powder in a weight ratio of 9: 1, They were mixed in room temperature air and compression-molded into a cylindrical shape using a compression molding machine. The molded product was heated and fired at 380 ° C. for 60 minutes in a hot-air circulation electric furnace, gradually cooled to 270 ° C. at a cooling rate of lZ hours, and allowed to cool to room temperature. A 1.5 mm-thick sheet (film) was cut out from the cylinder, and an antenna cover (1.5 mm in thickness) was obtained in the same manner as in Example 1. tan (5 were measured, 1. a 3 X 10_ 4, specific gravity, 2. was 25. Example 5
標準比重が 2. 17である PTFEファインパウダ一 (ダイキン工業株 式会社製、 TFE単独重合体、 商品名:ポリフロン F 104) を使用した こと以外は実施例 1同様にしてアンテナカバー (厚さ 1. 5mm) を得た。 t a η δを測定したところ、 1. 6 X 10_4であり、 比重は、 2. 19 であった。 An antenna cover (thickness 1) was prepared in the same manner as in Example 1 except that PTFE fine powder 1 (standardized specific gravity: 2.17, TFE homopolymer, manufactured by Daikin Industries, Ltd., trade name: Polyflon F104) was used. .5mm). Measurement of the ta eta [delta], 1. a 6 X 10_ 4, specific gravity, 2.19 Met.
実施例 6 Example 6
水性ディスパージヨン (ダイキン工業株式会社製、 商品名: D— 2、 固 形分標準比重: 2. 22) を 80°Cにて加熱して、 水分を蒸発させてパゥ ダー状にし、 条件 (1) で t a n <5を測定したところ 1. 7 X 10- 4で あった。 この水性ディスパージヨンを、 アンテナ反射板にスプレーコート し、 30分間乾燥した後、 38 O 30分間焼成を行なって、 1°C/分の 冷却速度で 27 まで徐冷、 常温にまで放冷し、 アンテナカバー (厚さ 20 m) が形成されているァンテナ反射板を得た。 シートの t a η δを 測定したところ、 1. 0X 10—4であり、 比重は、 2. 26であった。 ただし、 このアンテナカバ一は、 剥離することが困難であるため、 前記 パウダ一を用いて、 下記方法により作製したシートの t an δで代用した。 前記水分を蒸発させたパウダーを円柱状に圧縮成形して、 厚さ 0. 5m mのシートを切り出したのち、 380°C 5分間焼成を行なって、 冷却速度 1°CZ時間にて 270°Cにまで徐冷、 常温にまで放冷し、 シートを作製し た。 産業上の利用可能性 Aqueous dispurgeon (manufactured by Daikin Industries, Ltd., trade name: D-2, solid content standard specific gravity: 2.22) was heated at 80 ° C to evaporate water to form a padder, and the conditions (1 ) in was 1. 7 X 10- 4 was measured tan <5. This aqueous dispurgeon is spray-coated on an antenna reflector, dried for 30 minutes, baked at 38 O for 30 minutes, gradually cooled to 27 at a cooling rate of 1 ° C / min, and allowed to cool to room temperature. An antenna reflector with an antenna cover (20 m thick) was obtained. When the ta η δ of the sheet was measured, it was 1.0 × 10-4, and the specific gravity was 2.26. However, since the antenna cover was difficult to peel off, the powder was used as a substitute for t an δ of a sheet produced by the following method. The powder obtained by evaporating the water is compression-molded into a cylindrical shape, a sheet having a thickness of 0.5 mm is cut out, and then calcined at 380 ° C for 5 minutes. The sheet was slowly cooled down to, and allowed to cool to room temperature to prepare a sheet. Industrial applicability
本発明によれば、 特定の条件で測定した 12GHzにおける t a η δが 2. 0 X 10— 4以下である PTFE系樹脂を使用することにより、 優れ た低誘電損失のアンテナカバーを得ることができる。 また、 水分をはじく ため、 安定したァンテナ受発信性能を得ることができる。 According to the present invention, by using it ta eta [delta] in 12GHz measured at specific conditions 2. 0 X 10- 4 or less is PTFE-based resin, it is possible to obtain an antenna cover excellent low dielectric loss . Also, since it repels water, stable antenna reception / transmission performance can be obtained.

Claims

言青求の範囲 一 2 Scope of word blue 1
1. ポリテトラフルォロエチレン系樹脂シートからなるアンテナカバーで あって、 該ポリ oテ 2 トラフルォロエチレン系樹脂は下記条件 (1) によつ て算出される誘電正た接が 2. 0 X 1 0— 4以下のポリテトラフルォロェ 1. An antenna cover made of a polytetrafluoroethylene resin sheet, wherein the polytetrafluoroethylene resin has a dielectric tangent calculated according to the following condition (1): 0 X 10 0—Polytetrafluorene of 4 or less
2  Two
チレン系樹脂であるアンテナカバ一。  Antenna cover made of styrene resin.
条件 (1)  Condition 1)
(シートの作製条件)  (Sheet preparation conditions)
ポリテ卜ラフルォロェチレン系樹脂粉末を円柱状に圧縮成形する。 こ の円柱から切出した厚さ 0. 5 mmのシートを熱風循環式電気炉で 38 0°Cにて 5分間加熱焼成する。 ついで 60°C/時間の冷却速度で常温に まで放冷してサンプルシートを作製する。  The polytetrafluoroethylene resin powder is compression-molded into a cylindrical shape. A 0.5 mm thick sheet cut from this cylinder is heated and fired at 380 ° C for 5 minutes in a hot air circulation type electric furnace. Then, let it cool to room temperature at a cooling rate of 60 ° C / hour to prepare a sample sheet.
(誘電正接測定方法)  (Dielectric loss tangent measurement method)
ネットワークアナライザ一を使用し、 空洞共振器により前記サンプル シートの共振周波数および Q値の変化を 22〜25 °Cにて測定し、 12 GHzにおける誘電正接を次式にしたがって算出する。  Using a network analyzer, change the resonance frequency and Q value of the sample sheet with a cavity resonator at 22 to 25 ° C, and calculate the dielectric loss tangent at 12 GHz according to the following equation.
t an δ= (1/Qu) X { 1 + (W2/Wx) } 一 (P c/ωΨ,)
Figure imgf000029_0001
t an δ = (1 / Qu) X {1 + (W 2 / W x )} one (P c / ωΨ,)
Figure imgf000029_0001
XtanX= (L/2M) YcosY  XtanX = (L / 2M) YcosY
L  L
Y=M k0 2-kr 2 k 0 m = 2rdF Y = M k 0 2 -k r 2 k 0 m = 2rdF
, 3.8317  , 3.8317
k =  k =
'· D/2  '· D / 2
Q  Q
Q u„ = i一 lo (- ,20) Q u „= i-i lo (-, 20 )
Q = ^ Q = ^
L F -  L F-
Figure imgf000030_0001
Figure imgf000030_0001
P C =P 1 +P 2 +P 3 P C = P 1 + P 2 + P 3
D . し sinX\ ( f、 x2、4 τ 2 D. Then sinX \ (f, x2, 4 τ 2
Pt =— xRsx ~ xLx rx 1- X JrPt = — xRsx ~ xLx rx 1- X Jr
2 2 22 2 2
Figure imgf000030_0002
式中の記号はつぎのものである t
Figure imgf000030_0002
Symbols in the formula are those of the following t
D:空洞共振器直径 (mm) D: Cavity resonator diameter (mm)
M:空洞共振器片側長さ (mm) M: One side length of cavity resonator (mm)
L :サンプル長さ (mm) L: Sample length (mm)
c :光速 (m/ s )  c: Speed of light (m / s)
I d :減衰量 (dB)  I d: Attenuation (dB)
F 0:共振周波数 (H z ) Fx :共振点からの減衰量が 3 dBである上側周波数 (Hz) F 0: resonance frequency (H z) F x : Upper frequency (Hz) at which the attenuation from the resonance point is 3 dB
F 2:共振点からの減衰量が 3 d Bである下側周波数 (H z ) F 2 : Lower frequency (Hz) at which the attenuation from the resonance point is 3 dB
ε。:真空の誘電率 (H/m)  ε. : Dielectric constant of vacuum (H / m)
ε r:サンプルの比誘電率 ε r : dielectric constant of sample
0:真空の透磁率 (H/m)  0: Magnetic permeability of vacuum (H / m)
R s :導体空洞の表面粗さも考慮した実効表面抵抗 (Ω)  R s: Effective surface resistance (Ω) taking into account the surface roughness of the conductor cavity
:ー0. 402759  : ー 0.402759
J!: 3. 83171  J! : 3.83171
2. 前記誘電正接が、 1. 50 X 10一4以下である請求の範囲第 1項記 2. The dielectric loss tangent, 1. claims is 50 X 10 one 4 below first Kouki
3. 前記ポリテトラフルォロエチレン系樹脂の標準比重が、 2. 192以 上である請求の範囲第 1項記載のァンテナカバ一。 3. The antenna of claim 1, wherein the polytetrafluoroethylene resin has a standard specific gravity of 2.192 or more.
4. 前記シートの比重が、 2. 192以上である請求の範囲第 1項記載の アンテナカバー。  4. The antenna cover according to claim 1, wherein the specific gravity of the sheet is 2.192 or more.
5. 前記シートが、 未焼成または結晶転化率が 90%以下である請求の範 囲第 1項記載のアンテナカバ一。  5. The antenna cover according to claim 1, wherein the sheet is unfired or has a crystal conversion ratio of 90% or less.
6. 前記ポリテ卜ラフルォロエチレン系樹脂の末端基がフッ素化されてい る請求の範囲第 1項記載のアンテナカバー。  6. The antenna cover according to claim 1, wherein a terminal group of the polytetrafluoroethylene resin is fluorinated.
7. 前記シートに金属箔が熱融着により接着されてなる請求の範囲第 1項  7. The claim 1 wherein a metal foil is bonded to the sheet by heat fusion.
8. 前記シートを表面処理したのち、 熱融着する請求の範囲第 7項記載の アンテナカバー。 8. The antenna cover according to claim 7, wherein the sheet is subjected to a surface treatment and then heat-sealed.
9. 前記シートと金属箔とが、 エポキシ樹脂、 フエノール樹脂およびシァ ネート樹脂からなる群より選ばれた少なくとも 1種の樹脂接着剤、 およ び zまたはヒドロキシル基、 力ルポキシル基、 カルボン酸塩、 カルポキ シルエステル基およびエポキシ基からなる群より選ばれた少なくとも 1 種の官能基を有する含フッ素エチレン性重合体を介して接着される請求 の範囲第 1項記載のアンテナカバー。 9. The sheet and the metal foil are each formed of at least one resin adhesive selected from the group consisting of an epoxy resin, a phenol resin and a cyanate resin, and z or a hydroxyl group, a hydroxyl group, a carboxylate, At least one selected from the group consisting of a carboxyl ester group and an epoxy group 2. The antenna cover according to claim 1, wherein the antenna cover is bonded via a fluorine-containing ethylenic polymer having a kind of functional group.
10. 前記シートを表面処理したのち、 接着される請求の範囲第 9項記載の 10. The method according to claim 9, wherein the sheet is surface-treated and then bonded.
11. 前記表面処理が、 (ィ) 官能基を有する有機化合物を含む不活性ガス 雰囲気中での放電処理、 (口) エキシマレ一ザ照射、 (八) プラズマ処 理、 または (二) 金属ナトリウムを用いた化学的エッチング処理である 請求の範囲第 8項記載のアンテナカバ一。 11. The surface treatment may be performed by (a) discharge treatment in an inert gas atmosphere containing an organic compound having a functional group, (mouth) excimer laser irradiation, (8) plasma treatment, or (2) metal sodium. 9. The antenna cover according to claim 8, which is a chemical etching process used.
12. 前記表面処理が、 (ィ) 官能基を有する有機化合物を含む不活性ガス 雰囲気中での放電処理、 (口) エキシマレ一ザ照射、 (八) プラズマ処 理、 または (二) 金属ナトリウムを用いた化学的エッチング処理である 請求の範囲第 1 0項記載のアンテナカバー。  12. The surface treatment may be performed by (a) discharge treatment in an inert gas atmosphere containing an organic compound having a functional group, (mouth) excimer laser irradiation, (8) plasma treatment, or (2) metal sodium. The antenna cover according to claim 10, wherein the antenna cover is a chemical etching process used.
13. (A) 前記条件 (1 ) で測定した 1 2 GH zにおける誘電正接が 1 .  13. (A) The dielectric loss tangent at 12 GHz measured under the condition (1) is 1.
5 X 1 0 _ 4以下であり、 標準比重が 2 . 1 9 2以上であるポリテトラ フルォロエチレン系樹脂粉末、 および/または (B) 3 8 0 °Cにおける 溶融粘度が 1 0 6ボイズ以下であるポリテトラフルォロエチレン系樹脂 粉末を、 1 0重量%以上含む組成物からなるシートの少なくとも片面に 金属箔を接着されてなるアンテナカバー。 5 X 1 is 0 _ 4 below, poly standard specific gravity of 2.1 at 9 more polytetra Furuoroechiren resin powder, and / or (B) the melt viscosity at 3 8 0 ° C is less than 1 0 6 Boys An antenna cover in which a metal foil is adhered to at least one surface of a sheet made of a composition containing 10% by weight or more of a tetrafluoroethylene resin powder.
14. 前記組成物がシァネート樹脂を含む請求の範囲第 1 3項記載のアンテ ナカバー。  14. The antenna cover according to claim 13, wherein the composition contains a cyanate resin.
15. 前記ポリテトラフルォロエチレン系樹脂の末端基がフッ素化されてい る請求の範囲第 1 3項記載のアンテナカバ一。  15. The antenna cover according to claim 13, wherein a terminal group of said polytetrafluoroethylene resin is fluorinated.
16. 前記金属箔がステンレス箔またはアルミニウム箔である請求の範囲第 1 3項記載のアンテナカバー。  16. The antenna cover according to claim 13, wherein said metal foil is a stainless steel foil or an aluminum foil.
17. 前記シートと金属箔とが、 エポキシ樹脂、 フエノール樹脂およびシァ ネート樹脂からなる群より選ばれた少なくとも 1種の樹脂接着剤、 およ び zまたはヒドロキシル基、 カルボキシル基、 カルボン酸塩、 カルボキ シルエステル基およびエポキシ基からなる群より選ばれた少なくとも 1 種の官能基を有する含フッ素エチレン性重合体を介して接着される請求 の範囲第 1 3項記載のアンテナカバー。 17. the sheet and the metal foil are at least one resin adhesive selected from the group consisting of an epoxy resin, a phenol resin, and a cyanate resin; and And z or a hydroxyl group, a carboxyl group, a carboxylate, a carboxyl ester group, and a fluorine-containing ethylenic polymer having at least one functional group selected from the group consisting of an epoxy group. An antenna cover according to item 13.
18. 前記シートを成形したのち、 金属箔を接着して得られる請求の範囲第 1項記載のアンテナカバ一。  18. The antenna cover according to claim 1, wherein the antenna cover is obtained by bonding a metal foil after forming the sheet.
19. 前記シートを成形したのち、 金属箔を接着して得られる請求の範囲第 1 3項記載のアンテナカバ一。  19. The antenna cover according to claim 13, which is obtained by forming the sheet and bonding a metal foil thereto.
20. 前記シートと金属箔とを接着したのち、 熱処理により成形して得られ る請求の範囲第 1項記載のアンテナカバ一。  20. The antenna cover according to claim 1, wherein the antenna cover is obtained by bonding the sheet and a metal foil and then performing a heat treatment.
21. 前記シートと金属箔とを接着したのち、 熱処理により成形して得られ る請求の範囲第 1 3項記載のアンテナカバ一。  21. The antenna cover according to claim 13, which is obtained by bonding the sheet and a metal foil and then performing a heat treatment.
22. ボリテトラフルォロエチレン系樹脂を用いたシートからなるアンテナ カバー。  22. Antenna cover made of sheet using polytetrafluoroethylene resin.
PCT/JP2003/002895 2002-03-13 2003-03-12 Antenna cover WO2003077363A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003575459A JPWO2003077363A1 (en) 2002-03-13 2003-03-12 Antenna cover

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002069268 2002-03-13
JP2002-69268 2002-03-13

Publications (1)

Publication Number Publication Date
WO2003077363A1 true WO2003077363A1 (en) 2003-09-18

Family

ID=27800316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/002895 WO2003077363A1 (en) 2002-03-13 2003-03-12 Antenna cover

Country Status (2)

Country Link
JP (1) JPWO2003077363A1 (en)
WO (1) WO2003077363A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003273630A (en) * 2002-03-13 2003-09-26 Daikin Ind Ltd Antenna element
JP2009242710A (en) * 2008-03-31 2009-10-22 Daikin Ind Ltd Molded body of polytetrafluoroethylene, mixed powder and method for producing molded body
JP2010013520A (en) * 2008-07-02 2010-01-21 Daikin Ind Ltd Molded item of polytetrafluoroethylene, mixed powder, and manufacturing method of molded item
WO2016159314A1 (en) * 2015-03-31 2016-10-06 ダイキン工業株式会社 Dielectric waveguide line
CN108481763A (en) * 2018-03-27 2018-09-04 中国人民解放军国防科技大学 Broadband wave-transmitting low-dielectric radome material and rapid preparation method thereof
CN112004610A (en) * 2018-04-26 2020-11-27 Agc株式会社 Method for producing laminate, and laminate
JPWO2019156071A1 (en) * 2018-02-07 2020-12-03 ダイキン工業株式会社 Method for Producing Composition Containing Low Molecular Weight Polytetrafluoroethylene

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08181531A (en) * 1994-12-26 1996-07-12 Toyo Commun Equip Co Ltd Slot coupling microstrip antenna with radome
JPH11181128A (en) * 1997-12-24 1999-07-06 Hitachi Cable Ltd Light-transmitting low-refractive-index fluororesin molding
JP2001196841A (en) * 2000-01-07 2001-07-19 Anritsu Corp Planar antenna

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08181531A (en) * 1994-12-26 1996-07-12 Toyo Commun Equip Co Ltd Slot coupling microstrip antenna with radome
JPH11181128A (en) * 1997-12-24 1999-07-06 Hitachi Cable Ltd Light-transmitting low-refractive-index fluororesin molding
JP2001196841A (en) * 2000-01-07 2001-07-19 Anritsu Corp Planar antenna

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003273630A (en) * 2002-03-13 2003-09-26 Daikin Ind Ltd Antenna element
JP2009242710A (en) * 2008-03-31 2009-10-22 Daikin Ind Ltd Molded body of polytetrafluoroethylene, mixed powder and method for producing molded body
JP2010013520A (en) * 2008-07-02 2010-01-21 Daikin Ind Ltd Molded item of polytetrafluoroethylene, mixed powder, and manufacturing method of molded item
WO2016159314A1 (en) * 2015-03-31 2016-10-06 ダイキン工業株式会社 Dielectric waveguide line
JPWO2019156071A1 (en) * 2018-02-07 2020-12-03 ダイキン工業株式会社 Method for Producing Composition Containing Low Molecular Weight Polytetrafluoroethylene
JP7324148B2 (en) 2018-02-07 2023-08-09 ダイキン工業株式会社 Method for producing composition containing low-molecular-weight polytetrafluoroethylene
US11739205B2 (en) 2018-02-07 2023-08-29 Daikin Industries, Ltd. Method for producing composition containing low molecular weight polytetrafluoroethylene
CN108481763A (en) * 2018-03-27 2018-09-04 中国人民解放军国防科技大学 Broadband wave-transmitting low-dielectric radome material and rapid preparation method thereof
CN112004610A (en) * 2018-04-26 2020-11-27 Agc株式会社 Method for producing laminate, and laminate

Also Published As

Publication number Publication date
JPWO2003077363A1 (en) 2005-07-07

Similar Documents

Publication Publication Date Title
WO2005097847A1 (en) Modified polytetrafluoroethylene powder and method for producing tetrafluoroethylene polymer
EP3909758A1 (en) Fluororesin composition, fluororesin sheet, multilayer body and substrate for circuits
JP4651486B2 (en) Fluoropolymer aqueous dispersion
KR20170039080A (en) Resin powder, method for producing same, complex, molded article, method for producing ceramic molded article, metal laminated plate, print substrate, and prepreg
TW201900742A (en) Fluororesin film and laminate, and method for producing hot laminate
CN113348208B (en) Dispersion liquid
CN110024492A (en) High frequency printed circuit board substrate
WO2003077363A1 (en) Antenna cover
WO2019235439A1 (en) Liquid dispersion, production method for resin-including metal foil, and production method for printed board
WO2002012392A1 (en) Tetrafluoroethylene based resin molding material excellent in high frequency electric characteristics
WO2020158604A1 (en) Laminate, method for producing same, method for producing composite laminate, and method for producing polymer film
JP4459140B2 (en) Polytetrafluoroethylene aqueous dispersion
US7387834B2 (en) Polytetrafluoroethylene fine powder of particular specific standard gravity, polytetrafluoroethylene formed article prepared from the same and method for preparation of the same
JP7174305B2 (en) Fluorine resin film, copper-clad laminate and substrate for circuit
JP2020070401A (en) Dispersion liquid
JP2003273630A (en) Antenna element
KR20230010621A (en) Method for producing a laminate having a layer containing a thermally meltable tetrafluoroethylene-based polymer
JP2020083990A (en) Manufacturing method of composite, and composite
TW202309181A (en) Fluoropolymer compositions comprising uncrosslinked fluoropolymer suitable for copper and electronic telecommunications articles
WO2020171024A1 (en) Laminate, and method for producing laminate
TW202328241A (en) Core shell fluoropolymers with functional groups suitable for copper and electronic telecommunications articles
TW202309208A (en) Fluoropolymer compositions comprising amorphous fluoropolymer and crystalline fluoropolymer suitable for copper and electronic telecommunications articles
TW202311407A (en) Electronic telecommunications articles and compositions comprising fluorinated curing agents
WO2022234364A1 (en) Fluoropolymer compositions comprising fluoropolymer with polymerized unsaturated fluorinated alkyl ether suitable for copper and electronic telecommunications articles
TW202140649A (en) Method for producing surface-modified tetrafluoroethylene-based polymer, method for producing modified powder, liquid composition, method for producing modified molded article, and modified molded article

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2003575459

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase