WO2003077333A1 - Power storing element-use electrode, power storing element, power storing method - Google Patents

Power storing element-use electrode, power storing element, power storing method Download PDF

Info

Publication number
WO2003077333A1
WO2003077333A1 PCT/JP2003/002776 JP0302776W WO03077333A1 WO 2003077333 A1 WO2003077333 A1 WO 2003077333A1 JP 0302776 W JP0302776 W JP 0302776W WO 03077333 A1 WO03077333 A1 WO 03077333A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
electrode
diamond
carbon
electrolyte
Prior art date
Application number
PCT/JP2003/002776
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Fujishima
Mikiko Yoshimura
Kensuke Honda
Original Assignee
Akira Fujishima
Mikiko Yoshimura
Kensuke Honda
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akira Fujishima, Mikiko Yoshimura, Kensuke Honda filed Critical Akira Fujishima
Priority to AU2003211869A priority Critical patent/AU2003211869A1/en
Publication of WO2003077333A1 publication Critical patent/WO2003077333A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • Electrode for power storage unit, power storage unit, and power storage method
  • the present invention relates to a negative electrode for a power storage having both functions as a secondary battery and an electric double layer capacity, a power storage using the same, and a power storage method.
  • Lithium-ion secondary batteries are charged and discharged by the movement of lithium ions between the positive and negative electrodes, causing lithium ions to be charged and discharged at both electrodes. Next battery.
  • Such a lithium ion secondary battery has advantages such as high energy density, long life, and high voltage.
  • Graphite, amorphous carbon, metal oxides, metal sulfides, and the like are known as negative electrode materials for lithium ion secondary batteries.
  • carbon nanotubes which are attracting attention as a new material, are capable of lithium ion (Li + ) incorporation between tube and tube layers.
  • the carbon nanotube interlayer is 3.4A, which is larger than the graphite interlayer (3.35A), but the carbon nanotube is a closed layer, Li + is hard to enter, and it has been thought that the hysteresis of charge / discharge becomes large.
  • lithium ion incineration progresses not only between interlayers but also between voids formed by carbon nanotubes, exceeding the theoretical capacity of graphite (372 mA hg 1 ). It has been reported that high capacity is developed.
  • Japanese Patent Application Laid-Open No. 5-266690 discloses a lithium secondary battery having an improved initial capacity, using a carbon nanotube formed with a rubber-based adhesive as a negative electrode.
  • Electric double-layer capacitors have attracted attention in recent years as large-capacity and excellent small backup power supplies, replacing conventional battery power supplies.
  • the electric double layer capacity the movement of electrolyte ions in the solution and the desorption on the electrode surface only occur with charge and discharge. This is different from a secondary battery that involves a chemical reaction.
  • Activated carbon, polyacene, and other porous carbon materials are used as the negative electrode material for the electric double layer capacity.
  • Activated carbon, polyacene, and other porous carbon materials are used as the negative electrode material for the electric double layer capacity.
  • Diamond is inherently the resistivity is an insulating material of about 1 0 1 3 ⁇ cm, obtaining conductivity by de one-flop traces impure product.
  • This conductive diamond is expected to have various uses. One of them is utilization as an electrode for electrochemical use. When conductive diamond is viewed as an electrode for electrochemical use, it has the excellent features of having a wide potential window and extremely low background current. In addition, it is physically and chemically stable and has excellent durability. Electrodes having a conductive diamond (preferably a thin film thereof) have been commonly referred to as diamond electrodes.
  • the present inventors have now found that a certain type of electrode can simultaneously function not only as a negative electrode of a secondary battery but also as an electric double layer capacity in the same electrolytic solution. More specifically, by constructing a secondary battery system using a carbon nanotube grown on a conductive diamond substrate as the negative electrode, it not only functions as the negative electrode of the secondary battery, but also the electric double layer capacity. It was found that the function of evening can be expressed simultaneously in the same electrolyte. We also found that the output density and energy density of the system can be arbitrarily set by changing the amount of carbon nanotubes supported. The present invention is based on these findings.
  • the present invention provides a negative electrode for a power storage, which has both functions as a secondary battery and an electric double layer capacity, and whose output density and energy density can be arbitrarily set, and a power storage using the same. Its purpose is to provide power storage methods.
  • the pork storage according to the present invention comprises:
  • Said electrode as a negative electrode
  • the power storage method according to the present invention includes:
  • the conductive material On the negative electrode, the conductive material generates an in-charge of cations in an electrolytic solution, but the conductive base material does not generate an in-charge of cations. Applying a negative voltage
  • FIG. 1 is a sectional view showing an example of the electrode of the present invention.
  • FIG. 2 is a cross-sectional view showing another example of the electrode of the present invention.
  • FIG. 3 is a cross-sectional view illustrating an example of the power storage unit of the present invention.
  • FIG. 4 is a scanning electron microscope (SEM) image of the surface of Sample 1 obtained in Example 1.
  • FIG. 5 is a cyclic voltammogram measured for samples 1 to 3 in Example 2.
  • FIG. 6 is a diagram showing the relationship between the output density and the energy density measured for samples 1 to 4 in Example 3.
  • FIG. 7 shows the relationship between the number of cycles and the discharge capacity measured for Sample 1 in Example 4.
  • FIG. 1 shows an example of the electrode of the present invention.
  • the electrode 1 according to the present invention includes a conductive substrate 2 and a conductive substance 3.
  • a conductive wire 4 is connected to the conductive base material 2 so as to be electrically connectable.
  • the conductive material 3 is carried on the surface of the conductive substrate 2.
  • Conductive substance 3 is a lithium ion or other positive ion It has a possible gap, and by applying a negative voltage exceeding a certain level to the electrodes, the cations are accumulated in the gap by the in-situ curation. Thus, it functions as the negative electrode of the secondary battery. At this time, there is no generation of cation in the conductive substrate 2.
  • the conductive base material 2 does not originally have a gap in which cations can be subjected to in-situ curing, or even if it has such a gap, no in-situ radiation occurs under the above-mentioned applied voltage.
  • the conductive substance 3 is supported on the conductive substrate 2 so as to have a gap that allows contact between the conductive substrate 2 and the electrolytic solution. Therefore, the electrolyte ions in the electrolyte move and are arranged on the surface of the conductive substrate 2 to form a so-called electric double layer, and as a result, it also has a function as an electric double layer capacity.
  • the negative electrode for a power storage device of the present invention exhibits its function as a secondary battery and an electric double layer capacitor.
  • the function as an electric double layer capacity by the conductive base material is considered to contribute particularly to the improvement of the power density of the power storage unit.
  • the function as a secondary battery using a conductive substance is considered to particularly contribute to the improvement of the energy density of the power storage device. Therefore, by changing the amount of the conductive substance carried on the conductive substrate, the output density and the energy density of the power storage device can be freely set according to the application. That is, when the energy density is more important than the output density, the amount of the conductive substance carried on the conductive substrate can be increased, and more cations can be accumulated in the conductive substance.
  • the conductive base material has conductivity, and even if a negative voltage that causes in-situ curation of a cation such as lithium ion in the conductive material is applied to the electrode, the conductive base material may be a cation.
  • the one which does not cause the above-mentioned currencies can be used.
  • Preferred examples of the conductive substrate include conductive diamond, glassy carbon, conductive diamond-like carbon, and conductive amorphous carbon.
  • conductive diamond is used as the conductive substrate.
  • Diamond is inherently a good insulator. However, by adding a Group 3 or Group 5 impurity, the semiconductor or metal becomes conductive.
  • diamond exhibiting semiconductor-metal-like conductivity is used as an electrode.
  • Conductive diamond is a material that has a wide potential window with respect to other carbon and metal electrodes and exhibits a small residual current density, and has the advantage that lithium ion incineration does not progress.
  • the diamond electrode described in JP-A-2001-21521 can be used.
  • the details are as follows.
  • Substances added to impart conductivity to diamond include Group 3 and 5 elements as described above, more preferably boron, nitrogen, and phosphorus, and most preferably boron or nitrogen. .
  • Amount of substance to be added pressure to impart the conductivity may be suitably determined within the range that can impart conductivity to diamond, for example, 1 X 10- 2 ⁇ 10_ about 6 Omega cm conductivity Is preferably added in such an amount that gives Generally, the amount of the substance added to impart this conductivity is controlled by the amount added in the conductive diamond manufacturing process.
  • a conductive diamond thin film is formed on a support, and a conductive wire is further connected to the conductive diamond thin film to form a conductive substrate.
  • a support e.g., single crystal silicon
  • the thickness of the conductive diamond thin film is not particularly limited, but is preferably about l to 100 m, more preferably about 5 to 50 // m.
  • the conductive diamond thin film is preferably produced by a chemical vapor deposition method.
  • Chemical vapor deposition is a method of synthesizing a substance by chemically reacting gaseous raw materials in the gas phase, and is similar to CVD (Chemical Vapor Deposition). Commonly called. This method is widely used in the semiconductor manufacturing process, and can be used for the production of the conductive diamond thin film of the present invention with appropriate modification.
  • Chemical vapor synthesis of diamond is performed by using a mixture of hydrogen and a carbon-containing gas such as methane as a raw material gas, exciting it with an excitation source, supplying it to a support, and depositing it.
  • a carbon-containing gas such as methane
  • Excitation sources include hot filament, microwave, high frequency, DC glow discharge, DC arc discharge, and combustion flame. It is also possible to adjust the nucleation density by combining a plurality of them, and to enlarge and uniform the area.
  • C As a raw material, many types that contain a carbon, decomposition by the excitation source is excited, C, activated carbon, such as C 2, and CH, such as CH 2, CH 3, C 2 H 2 Compounds that generate hydrocarbon radicals are available.
  • C activated carbon
  • CH such as CH 2, CH 3, C 2 H 2
  • Preferable specific examples include CH 4 , C 2 H 2, C 2 H 4 , CioHi 6 CO, CF 4 as a gas, CH 3 OH, C 2 H 5 OHS (CH 3 ) 2 CO as a liquid, and graphite and fullerene as a solid.
  • the addition of a substance that imparts conductivity to diamond is performed, for example, by placing a disk of the added substance in the system, exciting it in the same way as the carbon source material, and introducing the added substance into the carbon gas phase.
  • the method can be carried out by adding an additive substance to a carbon source in advance, introducing the additive substance into the system together with the carbon source, exciting with an excitation source, and introducing the additive substance into the carbon gas phase. According to a preferred embodiment of the present invention, the latter method is preferred.
  • the amount is generally about 10 to 12,000 ppm, and preferably about 1,000 to about L ppm.
  • the production of the conductive diamond thin film is preferably performed by a plasma chemical vapor deposition method.
  • This plasma-enhanced chemical vapor synthesis method has the advantage that the activation energy for causing a chemical reaction is large and the reaction is fast. In addition, this method produces chemical species that do not exist at high thermodynamic temperatures. Thus, a reaction at a low temperature becomes possible.
  • Several reports have already been made on the production of conductive diamond thin films by the plasma chemical vapor deposition method, including some of the present inventors (see, for example, Yano et al., J. Electrochem. Soc., 145 (1998). 1870), it is preferable to carry out according to the method described in these reports.
  • the conductive substrate is porous at least on its surface.
  • the substrate surface is porous, its specific surface area increases. Therefore, more charges can be collected, and as a result, the electric double layer capacity increases and the dischargeable time becomes longer. It is also considered that the marginal dischargeable current increases and the marginal output increases.
  • the surface of the base material be made porous by forming pores having the same arrangement as the mask by plasma etching using anodized alumina as a mask. According to this method, it is possible to obtain a conductive substrate in which pores are regularly formed in a honeycomb shape.
  • Such a processing method can be performed, for example, based on the method disclosed in JP-A-2000-13993.
  • FIG. 2 is a sectional view of the electrode 11 of this embodiment.
  • the electrode 11 has a conductive substance 13 supported on a conductive base material 12 in which pores are regularly formed in a honeycomb shape.
  • the conductive material 13 is formed regardless of the inside and outside of the pore, but the conductive material 13 can be supported only in the pore.
  • a conductive wire 14 is connected to the conductive base material 12 via a coating, and is electrically connectable.
  • a porous support can be coated with a conductive diamond or the like to form a conductive substrate having a porous surface.
  • Preferred examples of the porous support in this case include a tungsten mesh, a molybdenum mesh, and a silicon substrate having a surface provided with pores.
  • the conductive base material includes a conductive diamond powder and a binder, so that the conductive base material surface is made porous.
  • Binders that can be used in the present invention include conductive diamond on a support without substantially affecting the electrical properties of the conductive diamond.
  • the resin is not limited as long as it can be fixed and molded. Preferred examples include resin, and specific examples thereof include Nafion 66 (manufactured by DuPont), Nafion 77 (manufactured by DuPont), and Teflon 7 J (manufactured by DuPont) and the like.
  • the preferable addition amount of the binder is 30% by weight or less, more preferably 20% by weight or less, and further preferably 5 to 15% by weight based on the whole conductive substrate.
  • the conductive diamond powder has a preferable mass average particle diameter of 1 to 1000 nm, more preferably 5 to 50 Onm, and further preferably 10 to 10 Onm.
  • the conductive electrode according to the above preferred embodiment can be obtained as a paste-like solid by kneading conductive diamond powder with a binder, for example.
  • the pore diameter on the porous substrate surface is preferably lnm-100 Onm, more preferably 400-50 Onm.
  • the depth of the pores is preferably 1 to 5 m, more preferably 1 to 2 / m.
  • the preferred interval between the holes is 1.2 nm to 12 ° 0 nm, more preferably 100 ⁇ ! ⁇ 500 nm.
  • the conductive material in the present invention has conductivity, and ensures a gap capable of intercalating cations such as lithium ions in the electrolytic solution and a contact between the conductive substrate and the electrolytic solution. Can be used.
  • Preferred examples of the conductive material include carbon nanotubes, graphite, activated carbon, carbon fiber, mesocarbon microbeads, and the like.
  • a carbon nanotube is used as the conductive substance.
  • Carbon nanotubes are seamless coaxial cylinders of hexagonal mesh sheets of carbon atoms, and their diameters are on the order of nanometers, ranging from 1 to 50 nm.
  • Carbon nanotubes produce lithium ion incursion at a constant negative voltage. It is thought that this intercalation occurs not only between the carbon nanotube layers but also in the voids formed by the carbon nanotubes. Therefore, according to this carbon nanotube, a high capacity far exceeding the theoretical capacity between the graphite layers (C 6 Li; 372 mAhg 1 ) can be realized.
  • carbon nanotubes have a cylindrical structure, a certain amount of Even if it is supported in a large amount, a sufficient gap can be provided on the surface of the conductive substrate for ensuring contact with the electrolytic solution. Therefore, the secondary battery function by the carbon nanotube can be exhibited while securing the electric double layer capacity function of the conductive base material.
  • the loading of carbon nanotubes on the conductive substrate can be carried out according to a known method, and is described in G. Che, BB Lakshmi, C. R. Martin, and ER Fisher, Chem. Mater., 10 (1998) 260 , And S. Huang, L. Dai, and AWH Mau, J. Phys.
  • Chem. B, 103 (1999) 4223 and the like can be carried out by using iron fine particles as a catalyst and growing by phtalocyanine as a carbon source by gas phase synthesis.
  • the substrate is immersed in an iron nitrate solution to adhere the iron particles, and thermally reduced in a hydrogen atmosphere (eg, 580 ° C).
  • Gas phase synthesis can be performed by decomposing phthalocyanine into carbon atoms at a temperature of about 900 ° C. and growing carbon nanotubes from fine iron particles on a conductive diamond substrate.
  • the amount of the conductive substance to be carried can be appropriately determined according to the output density and the energy density required for power storage applications. That is, when the energy density is more important than the output density, the amount of the conductive substance carried on the conductive substrate can be increased, and more cations can be accumulated in the conductive substance. On the other hand, when the output density is more important than the energy density, the amount of the conductive substance carried on the conductive substrate is reduced, and the gap for ensuring the contact between the conductive substrate and the electrolyte is increased. As a result, more charges can be stored in the conductive base material.
  • the power storage body used in the power storage method of the present invention may have a configuration of a general lithium ion secondary battery except that the electrode of the present invention is used as a negative electrode. That is, in the method according to the present invention, an electrode of the present invention as a negative electrode and a counter electrode as a positive electrode are prepared, and these electrodes are immersed in an electrolytic solution. Of the cation, but the conductive substrate has a cation Apply no negative voltage to the negative electrode. It is preferable to select such a voltage by considering the result of the cyclic voltammogram measurement of the negative electrode.
  • Figure 3 shows a schematic representation of this system. That is, the power storage unit 21 according to the present invention includes the electrode 22 of the present invention as a negative electrode, the counter electrode 23 as a positive electrode, and an electrolytic solution 24 in which the negative electrode and the positive electrode are immersed.
  • the electrolytic solution used in the present invention comprises an electrolyte containing a cation capable of being converted into a conductive substance.
  • Preferred cations are lithium ions, preferred examples of the electrolyte in the case of this, lithium perchlorate (L i C 1 0, L i CF 3 SOKL i PFL i A s F 6 , and the like.
  • the solvent of the electrolytic solution used in the method may be any of an aqueous solvent and a non-aqueous solvent, but it is preferable to use a non-aqueous organic solvent.
  • Solvents have a wider potential window than aqueous solvents, which can significantly improve both power density and energy density
  • non-aqueous solvents include tetrahydrofuran, ethylene carbonate, propylene carbonate, oxolane, lactone lactone, and acetonitrile.
  • amide solvents such as dimethylformamide, and propylene carbonate. Masui.
  • a liquid in which lithium perchlorate is dissolved in propylene power is used as the electrolytic solution.
  • Preferable examples of the counter electrode (positive electrode) in the present invention include cobalt / nickel oxide, manganese oxide, transition metal oxide, and transition metal sulfide.
  • a microwave plasma CVD apparatus (ASTeX Corp., Wobum, MA). Obtained da
  • the surface of the diamond thin film was polished to a surface roughness of 1 nm or less.
  • the surface of the diamond thin film was masked with anodized alumina, and holes were formed in a honeycomb shape by oxygen plasma etching.
  • Anodized alumina was produced by holding the aluminum plate after electropolishing at a constant potential of 195 V in 0.5 M phosphoric acid for 5 minutes.
  • Oxygen plasma etching was performed using a plasma etching apparatus (SAMC0, BP-1) at an oxygen pressure of 20 Pa and an output of 150 W for 30 minutes.
  • the resulting diamond film to 24.8 mM Fe (N0 3) 3 (Wako Pure Chemical Industr ies, Ltd.) and impregnated overnight I ethanol solution was deposited iron particles.
  • This diamond thin film was placed downstream of an electric furnace (Ohkurariken Co., Ltd.), and phthalocyanine (Aldrich) as a carbon source was placed upstream of the electric furnace. In this electric furnace, under a hydrogen atmosphere (Takachiho Co., Ltd., 99.99 I, 30 ra ), it is heated at 580 ° C for 3 hours to thermally reduce iron ions on the diamond thin film to fine iron particles. I let it.
  • a sample 2 was obtained in the same manner as the sample 1 except that the surface polishing and the oxygen plasma etching were not performed.
  • Sample 4 was obtained in the same manner as in Sample 1, except that no carbon nanotube was formed.
  • the surface of the obtained sample 1 was observed using a scanning electron microscope (SEM, JE0L Model JSM-5400 LV). The result was as shown in FIG.
  • Example 2 Measuring cyclic voltammograms
  • Non-aqueous electrolyte 1 M LiC10 ( / PC (Kishida Chemistry Co., Ltd.)
  • Non-aqueous electrolyte 1 M LiC10 ( / PC (Kishida Chemistry Co., Ltd.)
  • Samples 1 and 2 carrying carbon nanotubes had significantly higher energy density and power density than Samples 3 and 4 not carrying carbon nanotubes.
  • Sample 1 in which carbon nanotubes are supported on a honeycomb-processed diamond electrode has a two-fold increase in output and 4.9 times higher than Sample 2 in which carbon nanotubes are supported on an unprocessed diamond electrode. A two-fold increase in energy density was observed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

A negative electrode having both functions as a secondary battery and an electric double-layer capacitor, and permitting free settings of an output density and an energy density. The electrode comprises a conductive substrate, and a conductive material carried on the surface of the conductive substrate and having a gap allowing the intercalation of cations in an electrolyte and a gap allowing contact between the conductive substrate and the electrolyte, wherein no intercalation of cations occurs in the conductive substrate to allow charges to be stored even if a negative voltage that causes the intercalation of cations in the conductive material is applied to the electrode in the electrolyte.

Description

明 細 書 電力貯蔵体用電極、 電力貯蔵体、 および電力貯蔵方法  Description Electrode for power storage unit, power storage unit, and power storage method
[発明の背景] [Background of the Invention]
発明の分野  Field of the invention
本発明は、 二次電池および電気二重層キャパシ夕としての機能を併せ持つ電力 貯蔵体用の負電極、 それを用いた電力貯蔵体および電力貯蔵方法に関する。  The present invention relates to a negative electrode for a power storage having both functions as a secondary battery and an electric double layer capacity, a power storage using the same, and a power storage method.
背.景技術  Profile technology
リチウムイオン二次電池は、 リチウムイオンが正負両極間を移動して、 両極に おいてリチウムイオンがィン夕ーカレ一シヨンおよび脱ィン夕一カレ一シヨンを 生じることによって充放電が行われる二次電池である。 このようなリチウムィォ ン二次電池は、 高エネルギー密度、 長寿命、 高電圧等の利点を有している。 リチ ゥムイオン二次電池の負極材料としては、 黒鉛、 無定型炭素、 金属酸化物、 金属 硫化物等が知られている。  Lithium-ion secondary batteries are charged and discharged by the movement of lithium ions between the positive and negative electrodes, causing lithium ions to be charged and discharged at both electrodes. Next battery. Such a lithium ion secondary battery has advantages such as high energy density, long life, and high voltage. Graphite, amorphous carbon, metal oxides, metal sulfides, and the like are known as negative electrode materials for lithium ion secondary batteries.
近年新素材として注目されるカーボンナノチューブ (CNT) は、 チューブ - チ ュ一ブ層間にリチウムイオン (Li+ ) のイン夕一カレ一シヨンが可能であること が報告されている。 カーボンナノチューブ層間は 3.4Aとグラフアイ ト層間 ( 3.35A ) に対し大きいが、 カーボンナノチューブは閉じた層であり、 Li+ は入 りにく く、 充放電のヒステリシスが大きくなると考えられてきた。 しかし、 近年、 層間だけでなく、 力一ボンナノチューブ同士が作る空隙にもリチウムイオンのィ ン夕一カレーシヨンが進行することが報告され、 グラフアイ トの理論容量 (372 mA h g 1) を上回る高容量が発現することが報告されている。 In recent years, it has been reported that carbon nanotubes (CNT), which are attracting attention as a new material, are capable of lithium ion (Li + ) incorporation between tube and tube layers. The carbon nanotube interlayer is 3.4A, which is larger than the graphite interlayer (3.35A), but the carbon nanotube is a closed layer, Li + is hard to enter, and it has been thought that the hysteresis of charge / discharge becomes large. However, in recent years, it has been reported that lithium ion incineration progresses not only between interlayers but also between voids formed by carbon nanotubes, exceeding the theoretical capacity of graphite (372 mA hg 1 ). It has been reported that high capacity is developed.
特開平 5— 2 6 6 8 9 0号公報には、 カーボンナノチューブをゴム系の粘着剤 で成形したものを負極として用いた、 初期容量が向上されたリチウム二次電池が 開示されている。  Japanese Patent Application Laid-Open No. 5-266690 discloses a lithium secondary battery having an improved initial capacity, using a carbon nanotube formed with a rubber-based adhesive as a negative electrode.
電気二重層キャパシ夕は、 従来の電池電源に代わって、 大容量を有し、 かつ優 れた小型バックアツプ電源として近年注目されている。 電気二重層キャパシ夕で は充放電に伴って電解質イオンの溶液内移動と電極表面への脱吸着が起こるのみ であり、 この点で化学反応を伴う二次電池とは異なる。 電気二重層キャパシ夕の 負極材料としては、 活性炭、 ポリアセン等の多孔質炭素材料が用いられている。 ところで、 従来、 活性炭、 ポリアセン等の多孔質炭素材料を電気二重層キャパ シ夕として機能させる場合には、 リチウムイオンを含まない電解液が使用されて いる。 その一方、 従来、 これらの多孔質炭素材料をリチウムイオン二次電池用と して使用する場合には、 リチウムイオン含有電解液が使用されている。 すなわち、 従来の多孔質炭素材料では、 リチウムィォン含有電解液という共通の電解液中で 電気二重層キャパシ夕としての機能と、 リチウムイオン二次電池としての機能を 同時に発現させることは困難であった。 Electric double-layer capacitors have attracted attention in recent years as large-capacity and excellent small backup power supplies, replacing conventional battery power supplies. In the electric double layer capacity, the movement of electrolyte ions in the solution and the desorption on the electrode surface only occur with charge and discharge. This is different from a secondary battery that involves a chemical reaction. Activated carbon, polyacene, and other porous carbon materials are used as the negative electrode material for the electric double layer capacity. By the way, conventionally, when a porous carbon material such as activated carbon and polyacene is allowed to function as an electric double layer capacity, an electrolyte solution containing no lithium ions has been used. On the other hand, conventionally, when these porous carbon materials are used for a lithium ion secondary battery, a lithium ion-containing electrolyte is used. In other words, it was difficult for conventional porous carbon materials to simultaneously exhibit the function as an electric double layer capacity and the function as a lithium ion secondary battery in a common electrolyte called lithium ion-containing electrolyte. .
ダイヤモンドは本来抵抗率が 1 0 1 3 Ω c m程度の絶縁材料であるが、 微量不純 物のド一プにより導電性を獲得する。 この導電性ダイヤモンドには、 種々の用途 が期待されている。 その一つに電気化学用の電極としての利用がある。 導電性と されたダイヤモンドを電気化学用の電極として見ると、 広い電位窓を有し、 かつ バックグラウンド電流が極めて小さいという優れた特長を有する。 さらに、 物理 的、 化学的に安定であり、 耐久性に優れるとの特長もまた有する。 導電性ダイヤ モンド (好ましくはその薄膜) を有する電極は、 ダイヤモンド電極と一般的に呼 ばれるに至っている。 Diamond is inherently the resistivity is an insulating material of about 1 0 1 3 Ω cm, obtaining conductivity by de one-flop traces impure product. This conductive diamond is expected to have various uses. One of them is utilization as an electrode for electrochemical use. When conductive diamond is viewed as an electrode for electrochemical use, it has the excellent features of having a wide potential window and extremely low background current. In addition, it is physically and chemically stable and has excellent durability. Electrodes having a conductive diamond (preferably a thin film thereof) have been commonly referred to as diamond electrodes.
ダイヤモンド電極に関する先駆的研究は Iwakiらによって行われた (Iwaki et al ., Nuclear Instruments and Methods, 209-210, 1129( 1983)) 。 彼らは、 ァ ルゴンゃ窒素イオンを打ち込んで表面導電性を付与した単結晶ダイヤモンドの電 気伝導材料としての性質を研究したものである。 同時に、 電解質溶液中における サイクリックボル夕モグラムも示した。 その後、 ホットフイラメントを用いて気 相合成した多結晶ダイヤモンド電極の特性が報告されている (Pleskov et al., J. Electroanal. Chem. , 228, 19(1993)) 。  Pioneering work on diamond electrodes was performed by Iwaki et al. (Iwaki et al., Nuclear Instruments and Methods, 209-210, 1129 (1983)). They studied the properties of single-crystal diamond with surface conductivity imparted by implanting argon-nitrogen ions as an electrically conductive material. At the same time, a cyclic voltammogram in the electrolyte solution was also shown. Subsequently, the characteristics of polycrystalline diamond electrodes synthesized by gas phase using hot filament have been reported (Pleskov et al., J. Electroanal. Chem., 228, 19 (1993)).
本発明者らの一部は、 気相合成したダイヤモンド電極を用いて、 窒素酸化物の 還元について先に報告した (Tenne et al ., J. Electroanal . Chem. , 347, 409 ( 1993) ) 。 この研究では、 ドーパントとしてホウ素を導入した p型半導体ダイヤ モンドを電極として使用した。 その後、 ダイヤモンド電極としては、 ホウ素をド —パントとする p型半導体またはより導電性の高い金属様導電性ダイヤモンドの 利用が主流となるに至る。 1 9 9 0年代に入って、 ダイヤモンド電極の研究が複 数のグループにより行われ、 1 9 9 5年以降は、 より大面積のダイヤモンド薄膜 が得られるプラズマ C V D ( P C V D ) 装置を用いて得られたダイヤモンド電極 の研究が、 電気化学分野にも散見されるに至っている。 Some of the present inventors have previously reported the reduction of nitrogen oxides using a diamond electrode synthesized in a gas phase (Tenne et al., J. Electroanal. Chem., 347, 409 (1993)). In this study, a p-type semiconductor diamond doped with boron as a dopant was used as the electrode. Then, as a diamond electrode, a p-type semiconductor using boron as a dopant or a more conductive metal-like conductive diamond Usage has become mainstream. In the 1990s, diamond electrode research was conducted by several groups, and from 1995 onwards, plasma electrodeposition (PCVD) equipment was used to obtain larger diamond thin films. Research on diamond electrodes has also been seen in the electrochemical field.
[発明の概要] [Summary of the Invention]
本発明者らは、 今般、 ある種の電極が二次電池の負極としての機能のみならず、 電気二重層キャパシ夕としての機能も同一電解液中で同時に発現できるとの知見 を得た。 より具体的には、 導電性ダイヤモンド基板上にカーボンナノチューブを 成長させたものを負極として用いて二次電池系を構築することにより、 二次電池 の負極としての機能のみならず、 電気二重層キャパシ夕としての機能も同一電解 液中で同時に発現できるとの知見を得た。 また、 カーボンナノチューブの担持量 を変化させることにより、 系の出力密度およびエネルギー密度をそれそれ任意に 設定できるとの知見も得た。 本発明はこれらの知見に基づくものである。  The present inventors have now found that a certain type of electrode can simultaneously function not only as a negative electrode of a secondary battery but also as an electric double layer capacity in the same electrolytic solution. More specifically, by constructing a secondary battery system using a carbon nanotube grown on a conductive diamond substrate as the negative electrode, it not only functions as the negative electrode of the secondary battery, but also the electric double layer capacity. It was found that the function of evening can be expressed simultaneously in the same electrolyte. We also found that the output density and energy density of the system can be arbitrarily set by changing the amount of carbon nanotubes supported. The present invention is based on these findings.
従って、 本発明は、 二次電池および電気二重層キャパシ夕としての機能を併せ 持ち、 出力密度およびエネルギー密度をそれそれ任意に設定可能な電力貯蔵体用 の負電極、 それを用いた電力貯蔵体および電力貯蔵方法の提供をその目的として いる。  Therefore, the present invention provides a negative electrode for a power storage, which has both functions as a secondary battery and an electric double layer capacity, and whose output density and energy density can be arbitrarily set, and a power storage using the same. Its purpose is to provide power storage methods.
そして、 本発明による電力貯蔵体用電極は、  And the electrode for power storage according to the present invention,
導電性基材と、  A conductive substrate;
該導電性基材の表面に担持されてなり、 電解液中の陽イオンのィン夕ーカレ一 シヨンが可能な間隙および前記導電性基材と前記電解液との接触を可能とする間 隙を有する導電性物質とを備えてなり、  A gap which is supported on the surface of the conductive substrate and allows for the incorporation of cations in the electrolyte and a gap which allows contact between the conductive substrate and the electrolyte. Having a conductive material having
前記電解液中において、 前記導電性物質に前記陽イオンのィン夕一カレーショ ンを生じる負電圧を該電極に印加した場合であっても、 前記導電性基材には陽ィ オンのィン夕一カレーシヨンが生じることなく電荷が蓄積されるものである。 また、 本発明による霉カ貯蔵体は、  In the electrolytic solution, even when a negative voltage that causes the cation of the cation to be applied to the conductive material is applied to the electrode, the conductive substrate has a positive ion. The electric charge is accumulated without causing the evening curling. In addition, the pork storage according to the present invention comprises:
負極としての上記電極と、  Said electrode as a negative electrode,
正極としての対電極と 前記負極および正極が浸漬される電解液と With the counter electrode as the positive electrode An electrolyte in which the negative electrode and the positive electrode are immersed;
を備えてなる。 Is provided.
さらに、 本発明による電力貯蔵方法は、  Further, the power storage method according to the present invention includes:
負極としての上記電極と、 正極としての対電極とを用意し、  Prepare the above electrode as a negative electrode and a counter electrode as a positive electrode,
該電極および対電極を電解液に浸漬し、  Immersing the electrode and the counter electrode in an electrolytic solution,
前記負電極に、 前記導電性物質には電解液中の陽イオンのイン夕一カレ一ショ ンを生じるが、 前記導電性基材には陽イオンのィン夕一カレ一シヨンが生じない、 負電圧を印加すること  On the negative electrode, the conductive material generates an in-charge of cations in an electrolytic solution, but the conductive base material does not generate an in-charge of cations. Applying a negative voltage
を含んでなる。 Comprising.
[図面の簡単な説明] [Brief description of drawings]
図 1は、 本発明の電極の一例を示す断面図である。  FIG. 1 is a sectional view showing an example of the electrode of the present invention.
図 2は、 本発明の電極の他の一例を示す断面図である。  FIG. 2 is a cross-sectional view showing another example of the electrode of the present invention.
図 3は、 本発明の電力貯蔵体の一例を示す断面図である。  FIG. 3 is a cross-sectional view illustrating an example of the power storage unit of the present invention.
図 4は、 例 1において得られた試料 1の表面の走査型電子顕微鏡 (S E M) 画 像である。  FIG. 4 is a scanning electron microscope (SEM) image of the surface of Sample 1 obtained in Example 1.
図 5は、 例 2において、 試料 1〜3について測定されたサイクリックボル夕モ グラムである。  FIG. 5 is a cyclic voltammogram measured for samples 1 to 3 in Example 2.
図 6は、 例 3において、 試料 1〜4について測定された出力密度およびエネル ギ一密度の関係を示す図である。  FIG. 6 is a diagram showing the relationship between the output density and the energy density measured for samples 1 to 4 in Example 3.
図 7は、 例 4において、 試料 1について測定された、 サイクル数と放電容量と の関係である。  FIG. 7 shows the relationship between the number of cycles and the discharge capacity measured for Sample 1 in Example 4.
[発明の具体的説明] [Specific description of the invention]
電力貯蔵体用電極  Electrodes for power storage
図 1に本発明の電極の一例を示す。 本発明による電極 1は、 導電性基材 2と、 導電性物質 3とを含んでなる。 導電性基材 2には、 導線 4が連結され、 電気的に 接続可能とされる。 この導電性基材 2の表面に導電性物質 3が担持される。 導電 性物質 3は、 電解液中のリチウムイオン等の陽イオンのィン夕一力レーシヨンが 可能な間隙を有しており、 一定以上の負電圧を電極に印加することにより、 陽ィ オンがイン夕一カレ一シヨンにより間隙内に蓄積される。 こうして、 二次電池の 負極として機能する。 このとき、 導電性基材 2には陽イオンのイン夕一カレ一シ ヨンが生じることはない。 導電性基材 2は、 陽イオンがイン夕一カレーシヨン可 能な間隙をもともと有しないか、 もしくはそれを有しているとしても上記印加電 圧下ではィン夕一力レーシヨンが起こらない。 導電性物質 3は、 導電性基材 2と 電解液との接触を可能とする間隙を有するように導電性基材 2上に担持されてい る。 従って、 導電性基材 2の表面には電解液中の電解質イオンが移動して配列し、 いわゆる電気二重層を形成し、 その結果、 電気二重層キャパシ夕としての機能も 有する。 FIG. 1 shows an example of the electrode of the present invention. The electrode 1 according to the present invention includes a conductive substrate 2 and a conductive substance 3. A conductive wire 4 is connected to the conductive base material 2 so as to be electrically connectable. The conductive material 3 is carried on the surface of the conductive substrate 2. Conductive substance 3 is a lithium ion or other positive ion It has a possible gap, and by applying a negative voltage exceeding a certain level to the electrodes, the cations are accumulated in the gap by the in-situ curation. Thus, it functions as the negative electrode of the secondary battery. At this time, there is no generation of cation in the conductive substrate 2. The conductive base material 2 does not originally have a gap in which cations can be subjected to in-situ curing, or even if it has such a gap, no in-situ radiation occurs under the above-mentioned applied voltage. The conductive substance 3 is supported on the conductive substrate 2 so as to have a gap that allows contact between the conductive substrate 2 and the electrolytic solution. Therefore, the electrolyte ions in the electrolyte move and are arranged on the surface of the conductive substrate 2 to form a so-called electric double layer, and as a result, it also has a function as an electric double layer capacity.
このように、 本発明の電力貯蔵体用の負電極は、 二次電池および電気二重層キ ャパシ夕としてその機能を発現する。 導電性基材による電気二重層キャパシ夕と しての機能は、 電力貯蔵体の出力密度の向上に特に寄与するものと考えられる。 また、 導電性物質による二次電池としての機能は、 電力貯蔵体のエネルギー密度 の向上に特に寄与するものと考えられる。 したがって、 導電性基材に対する導電 性物質の担持量を変化させることにより、 用途に応じて、 電力貯蔵体の出力密度 およびエネルギー密度を自在に設定することができる。 すなわち、 出力密度より もエネルギー密度を重視する場合には、 導電性基材に対する導電性物質の担持量 を多くして、 導電性物質により多くの陽イオンを蓄積させることができる。 一方、 エネルギー密度よりも出力密度を重視する場合には、 導電性基材に対する導電性 物質の担持量を少なくして、 導電性基材と電解液との接触を確保するための間隙 をより多く確保して、 導電性基材により多くの電荷を蓄積させることができる。 本発明において導電性基材は、 導電性を有し、 かつ導電性物質にリチウムィォ ン等の陽イオンのィン夕一カレーシヨンを生じる負電圧を該電極に印加した場合 であっても陽イオンのィン夕一カレ一シヨンが生じないものが使用可能である。 導電性基材の好ましい例としては、 導電性ダイヤモンド、 グラッシ一力一ボン、 導電性ダイヤモンドライク力一ボン、 および導電性アモルファスカーボンが挙げ られる。 本発明の好ましい態様によれば、 導電性基材として導電性ダイヤモンドを用い る。 ダイヤモンドは本来優れた絶縁体である。 しかしながら、 3族や 5族の不純 物を添加することによって、 半導体〜金属様の導電性を示すようになる。 本発明 にあっては、 半導体〜金属様の導電性を示すダイヤモンドを電極として使用する。 導電性ダイヤモンドは、 他の炭素および金属電極に対して広い電位窓を有し、 小 さい残余電流密度を示す材料であり、 リチウムイオンのィン夕一力レーシヨンが 進行しないという利点がある。 As described above, the negative electrode for a power storage device of the present invention exhibits its function as a secondary battery and an electric double layer capacitor. The function as an electric double layer capacity by the conductive base material is considered to contribute particularly to the improvement of the power density of the power storage unit. In addition, the function as a secondary battery using a conductive substance is considered to particularly contribute to the improvement of the energy density of the power storage device. Therefore, by changing the amount of the conductive substance carried on the conductive substrate, the output density and the energy density of the power storage device can be freely set according to the application. That is, when the energy density is more important than the output density, the amount of the conductive substance carried on the conductive substrate can be increased, and more cations can be accumulated in the conductive substance. On the other hand, when the output density is more important than the energy density, the amount of the conductive substance carried on the conductive substrate is reduced, and the gap for ensuring the contact between the conductive substrate and the electrolyte is increased. As a result, more charges can be stored in the conductive substrate. In the present invention, the conductive base material has conductivity, and even if a negative voltage that causes in-situ curation of a cation such as lithium ion in the conductive material is applied to the electrode, the conductive base material may be a cation. The one which does not cause the above-mentioned currencies can be used. Preferred examples of the conductive substrate include conductive diamond, glassy carbon, conductive diamond-like carbon, and conductive amorphous carbon. According to a preferred embodiment of the present invention, conductive diamond is used as the conductive substrate. Diamond is inherently a good insulator. However, by adding a Group 3 or Group 5 impurity, the semiconductor or metal becomes conductive. In the present invention, diamond exhibiting semiconductor-metal-like conductivity is used as an electrode. Conductive diamond is a material that has a wide potential window with respect to other carbon and metal electrodes and exhibits a small residual current density, and has the advantage that lithium ion incineration does not progress.
本発明においてダイヤモンド電極は、 特開 2001— 21521号公報に記載 のものを利用することができる。 その内容を説明すれば以下の通りです。  In the present invention, the diamond electrode described in JP-A-2001-21521 can be used. The details are as follows.
ダイヤモンドに導電性を付与するために添加される物質としては、 上記の通り 3族および 5族の元素が挙げられ、 さらに好ましくはホウ素、 窒素、 リンが挙げ られ、 最も好ましくはホウ素または窒素である。 この導電性を付与するために添 加される物質の添加量は、 ダイヤモンドに導電性を付与できる範囲で適宜決定さ れてよいが、 例えば 1 X 10— 2〜 10_6Ω cm程度の導電性を与える量添加され ることが好ましい。 この導電性を付与するために添加される物質の添加量は、 導 電性ダイャモンドの製造工程における添加量により制御されることが一般的であ o Substances added to impart conductivity to diamond include Group 3 and 5 elements as described above, more preferably boron, nitrogen, and phosphorus, and most preferably boron or nitrogen. . Amount of substance to be added pressure to impart the conductivity, may be suitably determined within the range that can impart conductivity to diamond, for example, 1 X 10- 2 ~ 10_ about 6 Omega cm conductivity Is preferably added in such an amount that gives Generally, the amount of the substance added to impart this conductivity is controlled by the amount added in the conductive diamond manufacturing process.
本発明の好ましい態様によれば、 支持体上に導線性ダイヤモンドの薄膜を形成 し、 さらにこの導電性ダイヤモンド薄膜に、 導線を接続させ、 導電性基材とする ことが好ましい。 支持体としては、 S i (例えば、 単結晶シリコン) 、 Mo、 W、 Nb、 T i、 F e、 Au、 N i、 C o、 A 1203、 S i C;、 S i3N4、 Z r 02、 MgO、 黒鉛、 単結晶ダイヤモンド、 cBN、 石英ガラス等が挙げられ、 特に単 結晶シリコン、 Mo、 W、 Nb、 T i、 S i C;、 単結晶ダイヤモンドの利用が好 ましい。 According to a preferred embodiment of the present invention, it is preferable that a conductive diamond thin film is formed on a support, and a conductive wire is further connected to the conductive diamond thin film to form a conductive substrate. As the support, S i (e.g., single crystal silicon), Mo, W, Nb, T i, F e, Au, N i, C o, A 1 2 0 3, S i C ;, S i 3 N 4, Z r 0 2, MgO , graphite, single crystal diamond, cBN, quartz glass and the like, in particular monocrystalline silicon, Mo, W, Nb, T i, the use of S i C ;, single crystal diamond good Good.
導電性ダイヤモンド薄膜の厚さは、 特に限定されないが、 l〜100 m程度 の厚さが好ましく、 より好ましくは 5〜50//m程度である。  The thickness of the conductive diamond thin film is not particularly limited, but is preferably about l to 100 m, more preferably about 5 to 50 // m.
本発明の好ましい態様によれば、 導電性ダイヤモンド薄膜は、 化学気相成長法 により好ましく製造される。 化学気相成長法とは、 気相中で気体原料を化学反応 させて物質を合成する方法であり、 CVD (Chemical Vapor Deposition )法と 一般に呼ばれる。 この方法は、 半導体製造プロセスにおいて広く利用されており、 本発明における導電性ダイヤモンド薄膜の製造にも合目的的な改変のもと利用可 能である。 According to a preferred embodiment of the present invention, the conductive diamond thin film is preferably produced by a chemical vapor deposition method. Chemical vapor deposition is a method of synthesizing a substance by chemically reacting gaseous raw materials in the gas phase, and is similar to CVD (Chemical Vapor Deposition). Commonly called. This method is widely used in the semiconductor manufacturing process, and can be used for the production of the conductive diamond thin film of the present invention with appropriate modification.
ダイヤモンドの化学気相合成は、 メタンなどの含炭素気体と水素を混合したも のを原料気体として、 それを励起源により励起させ、 支持体上に供給して堆積さ せることにより行われる。  Chemical vapor synthesis of diamond is performed by using a mixture of hydrogen and a carbon-containing gas such as methane as a raw material gas, exciting it with an excitation source, supplying it to a support, and depositing it.
励起源としては、 熱フィラメント、 マイクロ波、 高周波、 直流グロ一放電、 直 流アーク放電、 燃焼炎などが挙げられる。 また、 これらを複数組み合わせて核生 成密度を調整したり、 大面積化や均一化を図ることも可能である。  Excitation sources include hot filament, microwave, high frequency, DC glow discharge, DC arc discharge, and combustion flame. It is also possible to adjust the nucleation density by combining a plurality of them, and to enlarge and uniform the area.
原料としては、 炭素の含まれている多くの種類の、 励起源により分解、 励起さ れて、 C、 C 2などの活性な炭素、 および CH、 CH2、 CH3、 C2H2などの炭 化水素ラジカルを生じさせる化合物を利用可能である。 好ましい具体例としては、 気体として CH4、 C2H2, C2H4, CioHi6 CO, CF4、 液体として CH3 OH、 C2H5O HS (CH3) 2CO、 固体として黒鉛、 フラーレンなどが挙げら れる。 As a raw material, many types that contain a carbon, decomposition by the excitation source is excited, C, activated carbon, such as C 2, and CH, such as CH 2, CH 3, C 2 H 2 Compounds that generate hydrocarbon radicals are available. Preferable specific examples include CH 4 , C 2 H 2, C 2 H 4 , CioHi 6 CO, CF 4 as a gas, CH 3 OH, C 2 H 5 OHS (CH 3 ) 2 CO as a liquid, and graphite and fullerene as a solid.
気相合成法にあって、 ダイヤモンドに導電性を付与する物質の添加は、 例えば 添加物質のディスクを系内に置き、 炭素源原料と同様に励起させ、 炭素気相に添 加物質を導入する方法、 炭素源に予め添加物質を添加し、 系内に炭素源と共に導 入し、 励起源により励起し、 炭素気相に添加物質を導入する方法等により行うこ とが出来る。 本発明の好ましい態様によれば、 後者の方法が好ましい。 とりわけ、 炭素源としてアセトン、 メタノールなどの液体を用いる場合、 これに酸化ボロン (B 203) を溶解してボロン源とする方法が、 ボロンの濃度の制御が容易で、 か つ簡便であることから好ましい。 例えば、 気相合成法にあって、 炭素源にホウ素 を添加する場合、 10〜12, 00 Oppm程度が一般的であり、 また 1, 00 0〜: L 0, 00 Oppm程度が好ましい。 In the gas phase synthesis method, the addition of a substance that imparts conductivity to diamond is performed, for example, by placing a disk of the added substance in the system, exciting it in the same way as the carbon source material, and introducing the added substance into the carbon gas phase. The method can be carried out by adding an additive substance to a carbon source in advance, introducing the additive substance into the system together with the carbon source, exciting with an excitation source, and introducing the additive substance into the carbon gas phase. According to a preferred embodiment of the present invention, the latter method is preferred. Especially, when using acetone, a liquid such as methanol as a carbon source, a method of dissolving the boron oxide (B 2 0 3) and boron source thereto, it is easy to control the concentration of boron, which is either One convenient This is preferred. For example, in the case of adding boron to a carbon source in a gas phase synthesis method, the amount is generally about 10 to 12,000 ppm, and preferably about 1,000 to about L ppm.
本発明の好ましい態様によれば、 導電性ダイヤモンド薄膜の製造はプラズマ化 学気相合成法により行われることが好ましい。 このプラズマ化学気相合成法は、 化学反応を引き起こす活性化エネルギーが大きく、 反応が速いとの利点を有する。 さらに、 この方法によれば、 熱力学的に高温で ¾ければ存在しない化学種を生成 して、 低い温度での反応が可能となる。 プラズマ化学気相合成法による導電性ダ ィャモンド薄膜の製造は、 本発明者らの一部を含めいくつかの報告が既にあり (例えば、 Yano et al., J. Electrochem. Soc ., 145( 1998) 1870) 、 これら報 告に記載の方法に従って行うことが好ましい。 According to a preferred embodiment of the present invention, the production of the conductive diamond thin film is preferably performed by a plasma chemical vapor deposition method. This plasma-enhanced chemical vapor synthesis method has the advantage that the activation energy for causing a chemical reaction is large and the reaction is fast. In addition, this method produces chemical species that do not exist at high thermodynamic temperatures. Thus, a reaction at a low temperature becomes possible. Several reports have already been made on the production of conductive diamond thin films by the plasma chemical vapor deposition method, including some of the present inventors (see, for example, Yano et al., J. Electrochem. Soc., 145 (1998). 1870), it is preferable to carry out according to the method described in these reports.
本発明の好ましい態様によれば、 導電性基材が少なくともその表面において多 孔質であるのが好ましい。 基材表面が多孔質であると、 その比表面積が大きくな る。 したがって、 より多くの電荷を集めることができ、 その結果、 電気二重層容 量が増大して、 放電可能時間が長くなる。 また、 限界放電可能電流が増加して、 限界出力が増加されるものと考えられる。  According to a preferred embodiment of the present invention, it is preferable that the conductive substrate is porous at least on its surface. When the substrate surface is porous, its specific surface area increases. Therefore, more charges can be collected, and as a result, the electric double layer capacity increases and the dischargeable time becomes longer. It is also considered that the marginal dischargeable current increases and the marginal output increases.
本発明の好ましい態様によれば、 基材表面の多孔質化が、 陽極酸化アルミナを マスクとして用いたプラズマエッチング処理により、 マスクと同一配列の細孔を 形成することにより行われるのが好ましい。 この方法によれば、 細孔がハニカム 状に規則的に形成された導電性基材を得ることが可能である。 このような処理方 法は、 例えば特開 2 0 0 0 - 1 3 9 3号に開示される方法に基づいて行うことが できる。  According to a preferred embodiment of the present invention, it is preferable that the surface of the base material be made porous by forming pores having the same arrangement as the mask by plasma etching using anodized alumina as a mask. According to this method, it is possible to obtain a conductive substrate in which pores are regularly formed in a honeycomb shape. Such a processing method can be performed, for example, based on the method disclosed in JP-A-2000-13993.
この態様の電極を図 2に示す。 図 2は、 この態様の電極 1 1の断面図である。 図 2に示されるように、 電極 1 1は、 ハニカム状に細孔が規則的に形成された導 電性基材 1 2の上に導電性物質 1 3が担持されてなる。 導電性物質 1 3は、 細孔 の内外を問わず形成されているが、 細孔内にのみ導電性物質 1 3を担持させるこ ともできる。 導電性基材 1 2には、 導線 1 4がコーティングを介して連結され、 電気的に接続可能とされる。  The electrode of this embodiment is shown in FIG. FIG. 2 is a sectional view of the electrode 11 of this embodiment. As shown in FIG. 2, the electrode 11 has a conductive substance 13 supported on a conductive base material 12 in which pores are regularly formed in a honeycomb shape. The conductive material 13 is formed regardless of the inside and outside of the pore, but the conductive material 13 can be supported only in the pore. A conductive wire 14 is connected to the conductive base material 12 via a coating, and is electrically connectable.
また、 本発明の別の好ましい態様によれば、 多孔質の支持体上に導電性ダイヤ モンド等を被覆して、 多孔質表面の導電性基材とすることもできる。 この場合の 多孔質支持体の好ましい例としては、 タングステンメッシュ、 モリブデンメヅシ ュ、 表面に細孔を施されたシリコン基板等が挙げられる。  Further, according to another preferred embodiment of the present invention, a porous support can be coated with a conductive diamond or the like to form a conductive substrate having a porous surface. Preferred examples of the porous support in this case include a tungsten mesh, a molybdenum mesh, and a silicon substrate having a surface provided with pores.
さらに、 本発明の別の好ましい態様によれば、 導電性基材が導電性ダイヤモン ドの粉末とバインダ一とを含んでなることにより、 導電性基材表面が多孔質化さ れてなるのが好ましい。 本発明において使用可能なバインダーは、 導電性ダイヤ モンドの電気的特性に実質的に影響を与えずに支持体上に導電性ダイヤモンドを 固定し、 また成形可能なものであれば限定されないが、 好ましい例としては樹脂 が挙げられ、 その具体例としては、 ナフイオン 66 (デュポン社製) 、 ナフィォ ン 77 (デュポン社製) 、 テフロン 7— J (デュポン社製) などが挙げられる。 バインダーの好ましい添加量は、 導電性基材全体に対して 30重量%以下、 より 好ましくは 20重量%以下、 さらに好ましくは 5〜15重量%である。 また、 導 電性ダイヤモンド粉末の好ましい質量平均粒径は 1〜 1000 nm、 より好まし くは 5〜50 Onmであり、 さらに好ましくは 10〜10 Onmである。 上記好 ましい態様による導電性電極は、 例えば、 導電性ダイヤモンド粉末をバインダー と混練することにより、 ペースト状の固形物として得ることができる。 Further, according to another preferred embodiment of the present invention, the conductive base material includes a conductive diamond powder and a binder, so that the conductive base material surface is made porous. preferable. Binders that can be used in the present invention include conductive diamond on a support without substantially affecting the electrical properties of the conductive diamond. The resin is not limited as long as it can be fixed and molded. Preferred examples include resin, and specific examples thereof include Nafion 66 (manufactured by DuPont), Nafion 77 (manufactured by DuPont), and Teflon 7 J (manufactured by DuPont) and the like. The preferable addition amount of the binder is 30% by weight or less, more preferably 20% by weight or less, and further preferably 5 to 15% by weight based on the whole conductive substrate. The conductive diamond powder has a preferable mass average particle diameter of 1 to 1000 nm, more preferably 5 to 50 Onm, and further preferably 10 to 10 Onm. The conductive electrode according to the above preferred embodiment can be obtained as a paste-like solid by kneading conductive diamond powder with a binder, for example.
本発明の好ましい態様によれば、 多孔質の基材表面における細孔径は、 lnm -100 Onmが好ましく、 より好ましくは 400〜 50 Onmである。 好まし ぃ孔の深さは、 l~5 mであり、 より好ましくは 1〜2 /mである。 好ましい 孔の間隔は、 1. 2 nm~ 12◦ 0 nmであり、 より好ましくは 100 ηπ!〜 500 nmである。 本発明における導電性物質は、 導電性を有し、 かつ電解液中のリチウムイオン 等の陽イオンのインターカレーシヨンが可能な間隙および前記導電性基材と前記 電解液との接触を確保するための間隙を有するものが使用可能である。 導電性物 質の好ましい例としては、 カーボンナノチューブ、 グラフアイ ト、 活性炭、 力一 ボンファイバ一、 メソカーボンマイクロビーズ等が挙げられる。  According to a preferred embodiment of the present invention, the pore diameter on the porous substrate surface is preferably lnm-100 Onm, more preferably 400-50 Onm. The depth of the pores is preferably 1 to 5 m, more preferably 1 to 2 / m. The preferred interval between the holes is 1.2 nm to 12 ° 0 nm, more preferably 100 ηπ! ~ 500 nm. The conductive material in the present invention has conductivity, and ensures a gap capable of intercalating cations such as lithium ions in the electrolytic solution and a contact between the conductive substrate and the electrolytic solution. Can be used. Preferred examples of the conductive material include carbon nanotubes, graphite, activated carbon, carbon fiber, mesocarbon microbeads, and the like.
本発明の好ましい態様によれば、 この導電性物質としてカーボンナノチューブ を用いる。 力一ボンナノチューブは、 炭素原子の六角網面のシートの継ぎ目のな い同軸円筒であり、 その直径が 1〜50 nmとナノメ一トルオーダーのものであ る。 カーボンナノチューブは、 一定の負電圧でリチウムイオンのイン夕一カレ一 シヨンが生じる。 このインターカレ一シヨンは、 力一ボンナノチューブ層間のみ ならず、 力一ボンナノチューブ同士が作る空隙においても生じると考えられ る。 したがって、 この力一ボンナノチューブによれば、 黒鉛層間の理論容量 (C6L i ; 372 mA h g1) をはるかに上回る高容量を実現することができる。 ま た、 カーボンナノチューブは円筒状構造であるため、 導電性基材上にある程度の 量担持させても導電性基材表面には電解液との接触を確保するための間隙を十分 に持たせることができる。 したがって、 導電性基材の電気二重層キャパシ夕機能 を確保しながら、 力一ボンナノチューブによる二次電池機能を発現させることが できる。 According to a preferred embodiment of the present invention, a carbon nanotube is used as the conductive substance. Carbon nanotubes are seamless coaxial cylinders of hexagonal mesh sheets of carbon atoms, and their diameters are on the order of nanometers, ranging from 1 to 50 nm. Carbon nanotubes produce lithium ion incursion at a constant negative voltage. It is thought that this intercalation occurs not only between the carbon nanotube layers but also in the voids formed by the carbon nanotubes. Therefore, according to this carbon nanotube, a high capacity far exceeding the theoretical capacity between the graphite layers (C 6 Li; 372 mAhg 1 ) can be realized. In addition, since carbon nanotubes have a cylindrical structure, a certain amount of Even if it is supported in a large amount, a sufficient gap can be provided on the surface of the conductive substrate for ensuring contact with the electrolytic solution. Therefore, the secondary battery function by the carbon nanotube can be exhibited while securing the electric double layer capacity function of the conductive base material.
導電性基材上へのカーボンナノチューブの担持は、 公知の方法に従って行うこ とができ、 G. Che, B. B. Lakshmi , C . R. Martin, and E. R. Fisher, Chem. Mater. , 10 ( 1998) 260、 および S. Huang, L. Dai, and A. W. H. Mau, J. Phys. The loading of carbon nanotubes on the conductive substrate can be carried out according to a known method, and is described in G. Che, BB Lakshmi, C. R. Martin, and ER Fisher, Chem. Mater., 10 (1998) 260 , And S. Huang, L. Dai, and AWH Mau, J. Phys.
Chem. B, 103 ( 1999) 4223等を参照することができる。 例えば、 触媒として鉄 微粒子を使用し、 フタロシアニンを炭素源として気相合成により成長させること により行うことができる。 例えば、 鉄微粒子の導電性ダイヤモンド基材への担持 は、 基材を硝酸鉄工夕ノール溶液に浸潰して鉄微粒子を付着し、 これを水素雰囲 気下で熱的還元 (例えば 5 8 0 °C ) することにより行うことができる。 また、 気 相合成は、 フタロシアニンを約 9 0 0 °Cの温度で炭素原子に分解し、 導電性ダイ ャモンド基材上の鉄微粒子よりカーボンナノチューブとして成長させることによ り行うことができる。 Chem. B, 103 (1999) 4223 and the like. For example, it can be carried out by using iron fine particles as a catalyst and growing by phtalocyanine as a carbon source by gas phase synthesis. For example, to support iron fine particles on a conductive diamond substrate, the substrate is immersed in an iron nitrate solution to adhere the iron particles, and thermally reduced in a hydrogen atmosphere (eg, 580 ° C). C). Gas phase synthesis can be performed by decomposing phthalocyanine into carbon atoms at a temperature of about 900 ° C. and growing carbon nanotubes from fine iron particles on a conductive diamond substrate.
本発明において導電性物質の担持量は、 電力貯蔵体用途において必要とされる 出力密度およびエネルギー密度に応じて適宜決定することができる。 すなわち、 出力密度よりもエネルギー密度を重視する場合には、 導電性基材に対する導電性 物質の担持量を多くして、 導電性物質により多くの陽イオンを蓄積させることが できる。 一方、 エネルギー密度よりも出力密度を重視する場合には、 導電性基材 に対する導電性物質の担持量を少なくして、 導電性基材と電解液との接触を確保 するための間隙をより多く確保して、 導電性基材により多くの電荷を蓄積させる ことができる。  In the present invention, the amount of the conductive substance to be carried can be appropriately determined according to the output density and the energy density required for power storage applications. That is, when the energy density is more important than the output density, the amount of the conductive substance carried on the conductive substrate can be increased, and more cations can be accumulated in the conductive substance. On the other hand, when the output density is more important than the energy density, the amount of the conductive substance carried on the conductive substrate is reduced, and the gap for ensuring the contact between the conductive substrate and the electrolyte is increased. As a result, more charges can be stored in the conductive base material.
電力貯蔵体および電力貯蔵方法  Power storage unit and power storage method
本発明の電力貯蔵方法に用いる電力貯蔵体は、 負極として本発明の電極を用い ること以外は、 一般的なリチウムイオン二次電池の構成であることができる。 す なわち、 本発明による方法にあっては、 負極としての本発明の電極と、 正極とし ての対電極とを用意し、 これら電極を電解液に浸潰し、 導電性物質には電解液中 の陽イオンのィン夕ーカレ一シヨンを生じるが、 前記導電性基材には陽イオンの イン夕一カレ一シヨンが生じない、 負電圧を負極に印加する。 このような電圧の 選定は、 負電極のサイクリックボル夕モグラム測定の結果を考慮することにより 行われるのが好ましい。 この系を模式的に表せば図 3の通りとなる。 すなわち、 本発明による電力貯蔵体 2 1は、 負極としての本発明の電極 2 2と、 正極として の対電極 2 3と、 負極および正極が浸漬される電解液 2 4とを備えてなる。 The power storage body used in the power storage method of the present invention may have a configuration of a general lithium ion secondary battery except that the electrode of the present invention is used as a negative electrode. That is, in the method according to the present invention, an electrode of the present invention as a negative electrode and a counter electrode as a positive electrode are prepared, and these electrodes are immersed in an electrolytic solution. Of the cation, but the conductive substrate has a cation Apply no negative voltage to the negative electrode. It is preferable to select such a voltage by considering the result of the cyclic voltammogram measurement of the negative electrode. Figure 3 shows a schematic representation of this system. That is, the power storage unit 21 according to the present invention includes the electrode 22 of the present invention as a negative electrode, the counter electrode 23 as a positive electrode, and an electrolytic solution 24 in which the negative electrode and the positive electrode are immersed.
本発明に用いる電解液は、 導電性物質にィン夕一カレ一シヨン可能な陽イオン を含有する電解質を含んでなる。 好ましい陽イオンはリチウムイオンであり、 こ の場合の好ましい電解質の例としては、 過塩素酸リチウム (L i C 1 0 、 L i C F 3 S O K L i P F L i A s F 6等が挙げられる。 本発明に用いる電解液 の溶媒は、 水性溶媒および非水性溶媒のいずれであってもよいが、 非水性の有機 溶媒を用いるのが好ましい。 多孔処理された導電性ダイヤモンド基材を使用する 場合、 非水性溶媒は水性溶媒よりも広い電位窓を有するため、 出力密度およびェ ネルギー密度ともに顕著に向上できる。 非水性溶媒の例としては、 テトラヒドロ フラン、 エチレンカーボネート、 プロピレンカーボネート、 ォキソラン、 プチ口 ラク トン、 ァセトニトリル等の二トリル系溶媒、 およびジメチルホルムアミ ド等 のアミ ド系溶媒が挙げられるが、 プロピレンカーボネートが好ましい。 The electrolytic solution used in the present invention comprises an electrolyte containing a cation capable of being converted into a conductive substance. Preferred cations are lithium ions, preferred examples of the electrolyte in the case of this, lithium perchlorate (L i C 1 0, L i CF 3 SOKL i PFL i A s F 6 , and the like. The present invention The solvent of the electrolytic solution used in the method may be any of an aqueous solvent and a non-aqueous solvent, but it is preferable to use a non-aqueous organic solvent. Solvents have a wider potential window than aqueous solvents, which can significantly improve both power density and energy density Examples of non-aqueous solvents include tetrahydrofuran, ethylene carbonate, propylene carbonate, oxolane, lactone lactone, and acetonitrile. And amide solvents such as dimethylformamide, and propylene carbonate. Masui.
本発明の好ましい態様によれば、 過塩素酸リチウムをプロピレン力一ボネ一ト に溶解させた液を電解液とするのが好ましい。  According to a preferred embodiment of the present invention, it is preferable that a liquid in which lithium perchlorate is dissolved in propylene power is used as the electrolytic solution.
本発明において対電極 (正極) の好ましい例としては、 コバルト /ニッケル酸 化物、 マンガン酸化物、 遷移金属系酸化物、 および遷移金属系硫化物が挙げられ o  Preferable examples of the counter electrode (positive electrode) in the present invention include cobalt / nickel oxide, manganese oxide, transition metal oxide, and transition metal sulfide.
[実 施 例] [Example]
以下の実施例によって本発明をさらに詳細に説明するが、 本発明はこれら実施 例に限定されるものではない。  The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
例 1 :電極の作製  Example 1: Making electrodes
公知の方法に従い、 導電性 n型シリコン ( 1 1 1 ) 面上に、 ホウ素を高濃度 ( 1 0, 0 0 0 ppm、 B / C比) で導入したダイヤモンド薄膜を、 マイクロ波プ ラズマ C V D装置 (ASTeX Corp. , Wobum, MA) を用いて形成した。 得られたダ ィャモンド薄膜の表面を表面研磨して、 表面粗さを 1 nm以下にした。 ダイヤモ ンド薄膜の表面を陽極酸化アルミナでマスキングし、 酸素プラズマエッチングに よりハニカム状に孔を形成した。 陽極酸化アルミナは、 電解研磨後のアルミニゥ ム板を、 0.5 M 燐酸中で 5 分、 195 V 定電位に保持することにより作製された。 酸素プラズマエッチングは、 プラズマェヅチング装置 (SAMC0, BP- 1 ) を使用し、 酸素圧力 20 Pa、 出力 150 W で 30 分行った。 According to a known method, a diamond thin film in which boron is introduced at a high concentration (10,000 ppm, B / C ratio) is deposited on a conductive n-type silicon (111) surface by a microwave plasma CVD apparatus. (ASTeX Corp., Wobum, MA). Obtained da The surface of the diamond thin film was polished to a surface roughness of 1 nm or less. The surface of the diamond thin film was masked with anodized alumina, and holes were formed in a honeycomb shape by oxygen plasma etching. Anodized alumina was produced by holding the aluminum plate after electropolishing at a constant potential of 195 V in 0.5 M phosphoric acid for 5 minutes. Oxygen plasma etching was performed using a plasma etching apparatus (SAMC0, BP-1) at an oxygen pressure of 20 Pa and an output of 150 W for 30 minutes.
得られたダイヤモンド薄膜を 24.8 mM Fe(N03)3 (Wako Pure Chemical Industr ies, Ltd. ) I エタノール溶液に一晩浸透させて、 鉄微粒子を付着させた。 この ダイヤモンド薄膜を電気炉 (Ohkurariken Co. , Ltd. )の下流に配置し、 電気炉の 上流に炭素源としてのフタロシアニン (Aldrich) を配置した。 この電気炉にお いて、 水素雰囲気下 (Takachiho Co. , Ltd. , 99.99 I, 30 ra)、 580 °Cで 3 時 間加熱して、 ダイヤモンド薄膜上の鉄イオンを熱的に鉄微粒子へ還元させた。 そ の後、 電気炉内にアルゴン (Takachiho Co. , Ltd. , 99.95 % 21 sra) を加えた。 電気炉およびその上流を 900 °Cで 2 時間加熱することにより、 鉄微粒子上に力 一ボンナノチューブを気相合成により成長させた。 こうして、 導電性ダイヤモン ド薄膜上にカーボンナノチューブが担持された試料 1を得た。 The resulting diamond film to 24.8 mM Fe (N0 3) 3 (Wako Pure Chemical Industr ies, Ltd.) and impregnated overnight I ethanol solution was deposited iron particles. This diamond thin film was placed downstream of an electric furnace (Ohkurariken Co., Ltd.), and phthalocyanine (Aldrich) as a carbon source was placed upstream of the electric furnace. In this electric furnace, under a hydrogen atmosphere (Takachiho Co., Ltd., 99.99 I, 30 ra ), it is heated at 580 ° C for 3 hours to thermally reduce iron ions on the diamond thin film to fine iron particles. I let it. Then, argon (Takachiho Co., Ltd., 99.95% 21 sra ) was added into the electric furnace. By heating the electric furnace and its upstream at 900 ° C for 2 hours, carbon nanotubes were grown on iron fine particles by gas phase synthesis. Thus, Sample 1 in which carbon nanotubes were supported on a conductive diamond thin film was obtained.
また、 表面研磨および酸素プラズマエッチングを行わなかったこと以外は試料 1と同様にして、 試料 2を得た。  A sample 2 was obtained in the same manner as the sample 1 except that the surface polishing and the oxygen plasma etching were not performed.
さらに、 比較のため、 表面研磨、 酸素プラズマエッチング、 およびカーボンナ ノチューブの形成が行われていない、 未処理のダイヤモンド薄膜を試料 3として 用 した。  For comparison, an untreated diamond thin film that had not been subjected to surface polishing, oxygen plasma etching, and carbon nanotube formation was used as Sample 3.
また、 比較のため、 カーボンナノチューブの形成を行わなかったこと以外は試 料 1と同様にして、 試料 4を得た。  For comparison, Sample 4 was obtained in the same manner as in Sample 1, except that no carbon nanotube was formed.
得られた試料 1について走査型電子顕微鏡 (SEM, JE0L Model JSM-5400 LV) を使用して、 表面を観察した。 その結果は、 図 4に示される通りであった。  The surface of the obtained sample 1 was observed using a scanning electron microscope (SEM, JE0L Model JSM-5400 LV). The result was as shown in FIG.
例 2 :サイクリックボル夕モグラムの測定  Example 2: Measuring cyclic voltammograms
例 1で得られた試料 1〜3について、 ポテンシォス夕ヅ ト (Hokuto Denko Res earch, model HZ- 3000) を用いてサイクリックボル夕モグラムを測定した。 サイ クリックボル夕モグラムの測定は、 以下の条件で行った。 電位走査速度: 0.3 mV s"1 For the samples 1 to 3 obtained in Example 1, cyclic voltammograms were measured using a potentiometer (Hokuto Denko Research, model HZ-3000). Cyclic voltammograms were measured under the following conditions. Potential scanning speed: 0.3 mV s " 1
測定温度:室温  Measurement temperature: room temperature
作用電極:試料 1〜3 (0 リングをジョイントとして使用し、 ガラスセルの底 に固定した)  Working electrode: Samples 1-3 (fixed to the bottom of the glass cell using the 0 ring as a joint)
対電極: グラッシ一力—ボン電極  Counter electrode: Glassy force-bon electrode
参照電極: Ag/Ag+ (BAS Co. , Ltd. ) Reference electrode: Ag / Ag + (BAS Co., Ltd.)
非水電解液: 1 M LiC10(/PC (Kishida Chemistry Co. , Ltd. ) Non-aqueous electrolyte: 1 M LiC10 ( / PC (Kishida Chemistry Co., Ltd.)
上記測定において使用したセル、 フラスコ等のガラス容器は、 Mi l l i-Q 水 (Millipore)を用いて洗浄した後、 乾燥機で一晩乾燥させてから使用した。  Glass containers such as cells and flasks used in the above measurements were washed with Milli-Q water (Millipore) and dried overnight in a dryer before use.
得られた結果は、 図 5に示される通りであった。 図 5に示されるように、 力一 ボンナノチューブが担持されていない試料 3においては、 _ 3 . 3 ~- 0 . 2 V (対 A g /A g + ) の電位においてリチウムのィン夕一カレ一シヨンによる還元 電流が確認されなかった。 これに対し、 未加工のダイヤモンド電極にカーボンナ ノチューブが担持されてなる試料 2では、 リチウムのイン夕一カレーシヨンによ る還元電流が確認された。 さらに、 ハニカム加工されたダイヤモンド電極に力一 ボンナノチューブが担持されてなる試料 1では、 リチウムのィン夕一カレ一ショ ンによる還元電流が試料 2と比べて約 2倍にまで増大されることが確認された。  The results obtained were as shown in FIG. As shown in FIG. 5, in sample 3 in which carbon nanotubes were not supported, lithium indium was charged at a potential of _3.3 to -0.2 V (vs. Ag / Ag +). No reduction current due to curry was observed. On the other hand, in Sample 2 in which a carbon nanotube was carried on an unprocessed diamond electrode, a reduction current due to lithium in-carnation was confirmed. Furthermore, in Sample 1 in which carbon nanotubes are supported on a honeycomb-processed diamond electrode, the reduction current due to lithium incineration is increased to about twice that in Sample 2. Was confirmed.
例 3 :出力密度およびエネルギー密度の測定  Example 3: Power density and energy density measurement
例 1で得られた試料 1〜4について、 ポテンシォス夕ヅト (Hokuto Denko Res earch, model HZ- 3000) を用いて定電流放電特性を測定した。 この測定は、 以下 の条件で行った。  The constant current discharge characteristics of the samples 1 to 4 obtained in Example 1 were measured using a potentiometer (Hokuto Denko Research, model HZ-3000). This measurement was performed under the following conditions.
測定温度:室温  Measurement temperature: room temperature
作用電極:試料 1〜3 (0 リングをジョイントとして使用し、 ガラスセルの底 に固定した)  Working electrode: Samples 1-3 (fixed to the bottom of the glass cell using the 0 ring as a joint)
対電極: グラッシ一力一ボン電極  Counter electrode: Glass electrode
参照電極: Ag/Ag+ (BAS Co. , Ltd. ) Reference electrode: Ag / Ag + (BAS Co., Ltd.)
非水電解液: 1 M LiC10(/PC (Kishida Chemistry Co. , Ltd. ) Non-aqueous electrolyte: 1 M LiC10 ( / PC (Kishida Chemistry Co., Ltd.)
上記測定において使用したセル、 フラスコ等のガラス容器は、 Milli-Q水 (Mi l lipore)を用いて洗浄した後、 乾燥機で一晩乾燥させてから使用した。 得られた放電特性の結果より、 出力 P a»e およびエネルギー密度 E を、 それ それ、 P .»e = average (V) * I および E = ∑ ( V * I * Δ t ) を用いて算出 し」。 The glass containers such as cells and flasks used in the above measurements were washed with Milli-Q water (Mil lipore) and then dried overnight in a dryer before use. From the results of the obtained discharge characteristics, the output P a »e and the energy density E are calculated using P.» E = average (V) * I and E = ∑ (V * I * Δt) "
得られた結果は、 図 6に示される通りであった。 図 6に示されるように、 力一 ボンナノチューブが担持される試料 1および 2は、 カーボンナノチューブが担持 されていない試料 3および 4と比べて、 著しくエネルギー密度および出力密度が 高いことが確認された。 また、 ハニカム加工されたダイヤモンド電極にカーボン ナノチューブが担持されてなる試料 1では、 未加工のダイヤモンド電極にカーボ ンナノチューブが担持されてなる試料 2と比べて、 2倍の出力増加、 および 4 . 9倍のエネルギー密度増加が確認された。  The results obtained were as shown in FIG. As shown in Fig. 6, it was confirmed that Samples 1 and 2 carrying carbon nanotubes had significantly higher energy density and power density than Samples 3 and 4 not carrying carbon nanotubes. . Sample 1 in which carbon nanotubes are supported on a honeycomb-processed diamond electrode has a two-fold increase in output and 4.9 times higher than Sample 2 in which carbon nanotubes are supported on an unprocessed diamond electrode. A two-fold increase in energy density was observed.
例 4 :連続使用による耐久性試験  Example 4: Durability test by continuous use
試料 1を用いて、 充電電流 2 4 / A、 放電電流 2 4 Aで定電流充放電サイク ルを行い、 サイクル数に対する放電可能容量の推移を観察した。 得られた結果は、 図 7に示される通りであった。 図 7において、 横軸がサイクル数 ( 1サイクル: 約 4時間、 1日 6サイクル可能) であり、 縦軸が放電可能容量である。 この結果 から次のことが分かる。 すなわち、 放電開始後、 約 1 0サイクルまで放電可能容 量は増加し、 その後、 約 8 9 4 mA h g— 1と一定値を維持した。 放電開始直後の 容量の増加は、 電極の電解液に対するなじみと考えられる。 8 5サイクル (連続 測定時 2時間に相当) までの測定において、 電極の劣化は観察されなかった。 し たがって、 連続使用に対する耐久性に優れており、 長期作動信頼性の高い電極が 得られることが確認された。 Using sample 1, a constant current charge / discharge cycle was performed at a charge current of 24 / A and a discharge current of 24A, and the transition of dischargeable capacity with respect to the number of cycles was observed. The results obtained were as shown in FIG. In Fig. 7, the horizontal axis is the number of cycles (1 cycle: about 4 hours, 6 cycles per day are possible), and the vertical axis is the dischargeable capacity. The following can be seen from these results. In other words, after the start of discharge, the dischargeable capacity increased until about 10 cycles, and thereafter maintained a constant value of about 89.4 mA hg- 1 . The increase in capacity immediately after the start of discharge is considered familiar to the electrolyte of the electrode. No electrode deterioration was observed in the measurement up to 85 cycles (corresponding to 2 hours during continuous measurement). Therefore, it was confirmed that an electrode having excellent durability for continuous use and high reliability for long-term operation was obtained.

Claims

請 求 の 範 囲 The scope of the claims
1 . 電力貯蔵体用電極であって、 1. An electrode for a power storage body,
導電性基材と、  A conductive substrate;
該導電性基材の表面に担持されてなり、 電解液中の陽イオンのイン夕一カレ一 ションが可能な間隙および前記導電性基材と前記電解液との接触を可能とする間 隙を有する導電性物質とを備えてなり、  A gap which is supported on the surface of the conductive base material and allows the cations in the electrolytic solution to be absorbed and a gap which enables the conductive base material to come into contact with the electrolytic solution are formed. Having a conductive material having
前記電解液中において、 前記導電性物質に前記陽イオンのイン夕一カレーショ ンを生じる負電圧を該電極に印加した場合であっても、 前記導電性基材には陽ィ オンのィン夕一カレーシヨンが生じることなく電荷が蓄積される、 電極。  In the electrolytic solution, even when a negative voltage that causes in-situ cation of the cation to the conductive material is applied to the electrode, the conductive base material is applied to the conductive substrate. An electrode where charge is stored without curtailment.
2 . 前記導電性基材が、 導電性ダイヤモンド、 グラッシ一カーボン、 導電性 ダイヤモンドライクカーボン、 および導電性ァモルファスカーボンからなる群か ら選択される、 請求項 1に記載の電極。  2. The electrode according to claim 1, wherein the conductive substrate is selected from the group consisting of conductive diamond, glassy carbon, conductive diamond-like carbon, and conductive amorphous carbon.
3 . 前記導電性基材が導電性ダイヤモンドである、 請求項 1に記載の電極。 3. The electrode according to claim 1, wherein the conductive substrate is a conductive diamond.
4 . 前記導電性物質が、 カーボンナノチューブ、 グラフアイ ト、 活性炭、 力 —ボンファイバ一、 およびメソ力一ボンマイクロビーズからなる群から選択され る、 請求項 1〜 3のいずれか一項に記載の電極。 4. The method according to any one of claims 1 to 3, wherein the conductive substance is selected from the group consisting of carbon nanotubes, graphite, activated carbon, carbon fiber, and meso-carbon microbeads. Electrodes.
5 . 前記導電性物質がカーボンナノチューブである、 請求項 1〜3のいずれ か一項に記載の電極。  5. The electrode according to any one of claims 1 to 3, wherein the conductive substance is a carbon nanotube.
6 . 前記電解液中の陽イオンがリチウムイオンである、 請求項 1〜 5のいず れか一項に記載の電極。  6. The electrode according to any one of claims 1 to 5, wherein the cation in the electrolyte is a lithium ion.
7 . 前記導電性基材が導電性ダイヤモンドであり、 前記導電性物質がカーボ ンナノチューブであり、 前記電解液中の陽イオンがリチウムイオンである、 請求 項 1に記載の電極。  7. The electrode according to claim 1, wherein the conductive substrate is a conductive diamond, the conductive substance is a carbon nanotube, and a cation in the electrolyte is a lithium ion.
8 . 前記導電性基材が多孔質表面を有するものである、 請求項 1〜 7のいず れか一項に記載の電極。  8. The electrode according to any one of claims 1 to 7, wherein the conductive substrate has a porous surface.
9 . 前記多孔質表面の少なくともその孔内に前記導電性物質が担持されてな る、 請求項 8に記載の電極。  9. The electrode according to claim 8, wherein the conductive material is carried at least in pores of the porous surface.
1 0 . 前記導電性基材が、 導電性ダイヤモンドの粉末と、 バインダ一とを含ん でなる、 請求項 8または 9に記載の電極。 10. The conductive base material includes a conductive diamond powder and a binder. The electrode according to claim 8, wherein the electrode comprises:
11. 負極としての請求項 1〜10のいずれか一項に記載の電極と、 正極としての対電極と  11. The electrode according to any one of claims 1 to 10 as a negative electrode, and a counter electrode as a positive electrode.
前記負極および正極が浸漬される電解液と  An electrolyte in which the negative electrode and the positive electrode are immersed;
を備えてなる電力貯蔵体。 , A power store comprising: ,
12. 前記電解液が、 L i C IO Li CF3S03、 L iPF5、 および Li A s からなる群から選択される一種以上の電解質を非水性溶媒に溶解させた 液である、 請求項 1 1に記載の電力貯蔵体。 12. The electrolyte is a L i C IO Li CF 3 S0 3, L iPF 5, and a solution prepared by dissolving one or more electrolytes in a non-aqueous solvent selected from the group consisting of Li A s, claim 11. The power storage device according to item 1.
13. 前記非水性溶媒が、 テトラヒドロフラン、 エチレンカーボネート、 プ ロピレンカーボネート、 ォキソラン、 プチロラクトン、 二トリル系溶媒およびァ ミ ド系溶媒からなる群から選択される一種以上である、 請求項 12に記載の電力 貯蔵体。  13. The electric power according to claim 12, wherein the non-aqueous solvent is at least one selected from the group consisting of tetrahydrofuran, ethylene carbonate, propylene carbonate, oxolane, ptirolactone, nitrile solvent and amide solvent. Storage.
14. 前記電解液が、 過塩素酸リチウムのプロピレンカーボネート溶液であ る、 請求項 11に記載の電力貯蔵体。  14. The power storage unit according to claim 11, wherein the electrolyte is a solution of lithium perchlorate in propylene carbonate.
15. 負極としての請求項 1〜10のいずれか一項に記載の電極と、 正極と しての対電極とを用意し、  15. Prepare an electrode according to any one of claims 1 to 10 as a negative electrode, and a counter electrode as a positive electrode,
該電極およぴ対電極を電解液に浸潰し、  Immersing the electrode and the counter electrode in an electrolytic solution,
前記負電極に、 前記導電性物質には電解液中の陽イオンのィン夕一カレ一ショ ンを生じるが、 前記導電性基材には陽イオンのィン夕一カレ一シヨンが生じない、 負電圧を印加すること  On the negative electrode, the conductive material causes cation migration in the electrolytic solution, but the conductive base material does not generate cation migration. , Applying a negative voltage
を含んでなる、 電力貯蔵方法。 A power storage method.
16. その表面に力一ボンナノチューブが担持された、 導電性ダイヤモンド。 16. Conductive diamond with carbon nanotubes supported on its surface.
17. 前記導電性ダイヤモンドが多孔質表面を有するものである、 請求項 1 6に記載の導電性ダイヤモンド。 17. The conductive diamond according to claim 16, wherein the conductive diamond has a porous surface.
18. 前記多孔質表面の少なくともその孔内に前記カーボンナノチューブが' 担持されてなる、 請求項 16または 17に記載の導電性ダイヤモンド。  18. The conductive diamond according to claim 16, wherein the carbon nanotube is supported on at least the pores of the porous surface.
PCT/JP2003/002776 2002-03-08 2003-03-10 Power storing element-use electrode, power storing element, power storing method WO2003077333A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003211869A AU2003211869A1 (en) 2002-03-08 2003-03-10 Power storing element-use electrode, power storing element, power storing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002063747A JP2005293850A (en) 2002-03-08 2002-03-08 Electrode for stationary energy storage, stationary energy storage, and stationary energy storage method
JP2002-63747 2002-03-08

Publications (1)

Publication Number Publication Date
WO2003077333A1 true WO2003077333A1 (en) 2003-09-18

Family

ID=27800203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/002776 WO2003077333A1 (en) 2002-03-08 2003-03-10 Power storing element-use electrode, power storing element, power storing method

Country Status (3)

Country Link
JP (1) JP2005293850A (en)
AU (1) AU2003211869A1 (en)
WO (1) WO2003077333A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1947220A1 (en) * 2005-10-19 2008-07-23 Central Japan Railway Company Process for producing diamond having structure of acicular projection array disposed on surface thereof, diamond material, electrode and electronic device
US7923151B2 (en) 2003-09-18 2011-04-12 Commonwealth Scientific And Industrial Research Organisation High performance energy storage devices
US9203116B2 (en) 2006-12-12 2015-12-01 Commonwealth Scientific And Industrial Research Organisation Energy storage device
WO2016089700A1 (en) 2014-12-03 2016-06-09 Coulombic, Inc. Electrodes and electrochemical devices and methods of making electrodes and electrochemical devices
US9401508B2 (en) 2009-08-27 2016-07-26 Commonwealth Scientific And Industrial Research Organisation Electrical storage device and electrode thereof
US9450232B2 (en) 2009-04-23 2016-09-20 Commonwealth Scientific And Industrial Research Organisation Process for producing negative plate for lead storage battery, and lead storage battery
US9508493B2 (en) 2009-08-27 2016-11-29 The Furukawa Battery Co., Ltd. Hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9524831B2 (en) 2009-08-27 2016-12-20 The Furukawa Battery Co., Ltd. Method for producing hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9666860B2 (en) 2007-03-20 2017-05-30 Commonwealth Scientific And Industrial Research Organisation Optimised energy storage device having capacitor material on lead based negative electrode
US9812703B2 (en) 2010-12-21 2017-11-07 Commonwealth Scientific And Industrial Research Organisation Electrode and electrical storage device for lead-acid system
CN110112013A (en) * 2019-05-28 2019-08-09 北京工业大学 A kind of preparation method of carbon micro-nano spherical structure and supercapacitor
CN112349962A (en) * 2019-08-08 2021-02-09 宁德时代新能源科技股份有限公司 Lithium ion battery
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
US11633785B2 (en) 2019-04-30 2023-04-25 6K Inc. Mechanically alloyed powder feedstock
US11717886B2 (en) 2019-11-18 2023-08-08 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
US11839919B2 (en) 2015-12-16 2023-12-12 6K Inc. Spheroidal dehydrogenated metals and metal alloy particles
US11855278B2 (en) 2020-06-25 2023-12-26 6K, Inc. Microcomposite alloy structure
US11919071B2 (en) 2020-10-30 2024-03-05 6K Inc. Systems and methods for synthesis of spheroidized metal powders
US11963287B2 (en) 2020-09-24 2024-04-16 6K Inc. Systems, devices, and methods for starting plasma

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4808444B2 (en) * 2005-07-06 2011-11-02 中部電力株式会社 Electric double layer capacitor and manufacturing method thereof
JP2010135316A (en) * 2008-11-10 2010-06-17 Equos Research Co Ltd Current collector and battery
DE102010001632A1 (en) * 2009-12-23 2011-06-30 Robert Bosch GmbH, 70469 Lithium cell with improved cathode structure and manufacturing method thereof
JP2012238448A (en) * 2011-05-11 2012-12-06 Sony Corp Secondary battery, method for manufacturing secondary battery, positive electrode for secondary battery, method for manufacturing positive electrode for secondary battery, battery pack, electronic device, electric vehicle, electrical power system, and power supply for power storage

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08310897A (en) * 1995-05-16 1996-11-26 Sumitomo Electric Ind Ltd Fullerene single crystal wafer and its production
JPH09270227A (en) * 1996-03-29 1997-10-14 Canon Inc Electric field electron emitting element, and manufacture of it
JPH1111917A (en) * 1997-06-18 1999-01-19 Canon Inc Production of carbon nanotube
JP2000031462A (en) * 1998-03-27 2000-01-28 Canon Inc Nano-structure and manufacture thereof, electron emission element and manufacture of carbon nano-tube device
JP2001266850A (en) * 2000-03-17 2001-09-28 Kazuo Horikirigawa Lithium ion secondary battery and its manufacturing method
JP2002542582A (en) * 1999-04-21 2002-12-10 テルコーディア テクノロジーズ インコーポレイテッド Rechargeable hybrid battery / supercapacitor system
JP2003077466A (en) * 2001-08-31 2003-03-14 Mitsubishi Heavy Ind Ltd Manufacturing method of non-aqueous electric energy storage unit and its electrode active substance
JP2003112050A (en) * 2001-10-05 2003-04-15 Japan Science & Technology Corp Method for manufacturing catalytic carbon nanofiber by decomposition of hydrocarbon and catalyst
JP2003146631A (en) * 2001-11-12 2003-05-21 Japan Science & Technology Corp Method for manufacturing functional nanomaterial using endothermic reaction

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08310897A (en) * 1995-05-16 1996-11-26 Sumitomo Electric Ind Ltd Fullerene single crystal wafer and its production
JPH09270227A (en) * 1996-03-29 1997-10-14 Canon Inc Electric field electron emitting element, and manufacture of it
JPH1111917A (en) * 1997-06-18 1999-01-19 Canon Inc Production of carbon nanotube
JP2000031462A (en) * 1998-03-27 2000-01-28 Canon Inc Nano-structure and manufacture thereof, electron emission element and manufacture of carbon nano-tube device
JP2002542582A (en) * 1999-04-21 2002-12-10 テルコーディア テクノロジーズ インコーポレイテッド Rechargeable hybrid battery / supercapacitor system
JP2001266850A (en) * 2000-03-17 2001-09-28 Kazuo Horikirigawa Lithium ion secondary battery and its manufacturing method
JP2003077466A (en) * 2001-08-31 2003-03-14 Mitsubishi Heavy Ind Ltd Manufacturing method of non-aqueous electric energy storage unit and its electrode active substance
JP2003112050A (en) * 2001-10-05 2003-04-15 Japan Science & Technology Corp Method for manufacturing catalytic carbon nanofiber by decomposition of hydrocarbon and catalyst
JP2003146631A (en) * 2001-11-12 2003-05-21 Japan Science & Technology Corp Method for manufacturing functional nanomaterial using endothermic reaction

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANDRZEJ BADZIAN ET AL.: "prependicularly stacked graphite nanotubes", CARBON, vol. 38, 2000, pages 1507 - 1509, XP002152131 *
HISAHIRO ANDO: "Diamond -Yuki bunshi no kagaku ketsugo jotai to seigyo", TANITSU BUNSHI, GENSHI LEVEL NO HANNO SEIGYO DAI 6 KAI SYMPOSIUM- 2KI TEAM KENKYU SEIKA HOKOKU KOEN YOSHISHU, 29 January 2002 (2002-01-29), pages 1 - 10, XP002970086 *
SARANGI D. ET AL.: "Carbon nanotubes and nanostructures grown from diamond-like carbon and polyethylene", APPL. PHYS. A, vol. 73, 2001, pages 765 - 768, XP002970087 *
TOMOO IWATA ET AL.: "Sanka ruthenium tanji carbon denkyoku gii denki kagaku capacotor", ELECTROCHEMISTRY, vol. 69, no. 3, 5 March 2001 (2001-03-05), pages 177 - 181, XP002970085 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7923151B2 (en) 2003-09-18 2011-04-12 Commonwealth Scientific And Industrial Research Organisation High performance energy storage devices
US8232006B2 (en) 2003-09-18 2012-07-31 Commonwealth Scientific And Industrial Research Organisation High performance energy storage devices
EP1947220A4 (en) * 2005-10-19 2009-08-12 Tokai Ryokaku Tetsudo Kk Process for producing diamond having structure of acicular projection array disposed on surface thereof, diamond material, electrode and electronic device
EP1947220A1 (en) * 2005-10-19 2008-07-23 Central Japan Railway Company Process for producing diamond having structure of acicular projection array disposed on surface thereof, diamond material, electrode and electronic device
US9203116B2 (en) 2006-12-12 2015-12-01 Commonwealth Scientific And Industrial Research Organisation Energy storage device
US9666860B2 (en) 2007-03-20 2017-05-30 Commonwealth Scientific And Industrial Research Organisation Optimised energy storage device having capacitor material on lead based negative electrode
US9450232B2 (en) 2009-04-23 2016-09-20 Commonwealth Scientific And Industrial Research Organisation Process for producing negative plate for lead storage battery, and lead storage battery
US9401508B2 (en) 2009-08-27 2016-07-26 Commonwealth Scientific And Industrial Research Organisation Electrical storage device and electrode thereof
US9508493B2 (en) 2009-08-27 2016-11-29 The Furukawa Battery Co., Ltd. Hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9524831B2 (en) 2009-08-27 2016-12-20 The Furukawa Battery Co., Ltd. Method for producing hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9812703B2 (en) 2010-12-21 2017-11-07 Commonwealth Scientific And Industrial Research Organisation Electrode and electrical storage device for lead-acid system
WO2016089700A1 (en) 2014-12-03 2016-06-09 Coulombic, Inc. Electrodes and electrochemical devices and methods of making electrodes and electrochemical devices
US9831503B2 (en) 2014-12-03 2017-11-28 Coulombic, Inc. Electrodes and electrochemical devices and methods of making electrodes and electrochemical devices
EP3227945A4 (en) * 2014-12-03 2018-07-11 Coulombic, Inc. Electrodes and electrochemical devices and methods of making electrodes and electrochemical devices
CN107210452A (en) * 2014-12-03 2017-09-26 库仑比克公司 The method of electrode and electrochemical device and manufacture electrode and electrochemical device
US11839919B2 (en) 2015-12-16 2023-12-12 6K Inc. Spheroidal dehydrogenated metals and metal alloy particles
US11633785B2 (en) 2019-04-30 2023-04-25 6K Inc. Mechanically alloyed powder feedstock
CN110112013A (en) * 2019-05-28 2019-08-09 北京工业大学 A kind of preparation method of carbon micro-nano spherical structure and supercapacitor
CN112349962B (en) * 2019-08-08 2021-11-09 宁德时代新能源科技股份有限公司 Lithium ion battery
CN112349962A (en) * 2019-08-08 2021-02-09 宁德时代新能源科技股份有限公司 Lithium ion battery
US11717886B2 (en) 2019-11-18 2023-08-08 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
US11855278B2 (en) 2020-06-25 2023-12-26 6K, Inc. Microcomposite alloy structure
US11963287B2 (en) 2020-09-24 2024-04-16 6K Inc. Systems, devices, and methods for starting plasma
US11919071B2 (en) 2020-10-30 2024-03-05 6K Inc. Systems and methods for synthesis of spheroidized metal powders

Also Published As

Publication number Publication date
JP2005293850A (en) 2005-10-20
AU2003211869A1 (en) 2003-09-22

Similar Documents

Publication Publication Date Title
WO2003077333A1 (en) Power storing element-use electrode, power storing element, power storing method
Mirghni et al. A high energy density asymmetric supercapacitor utilizing a nickel phosphate/graphene foam composite as the cathode and carbonized iron cations adsorbed onto polyaniline as the anode
Liu et al. Hierarchical NiS/N-doped carbon composite hollow spheres with excellent supercapacitor performance
Cao et al. Core–shell structural PANI-derived carbon@ Co–Ni LDH electrode for high-performance asymmetric supercapacitors
KR101817260B1 (en) Graphene-nanomaterial composite, electrode and electric device including the graphene-nanomaterial composite, and method of manufacturing the graphene-nanomaterial composite
KR101036164B1 (en) composite electrode and method for manufacturing the same
JP3444786B2 (en) Lithium secondary battery
US8278010B2 (en) Carbon nanotube electrode comprising sulfur or metal nanoparticles as a binder and process for preparing the same
Zhang et al. Synthesis of novel bimetallic nickel cobalt telluride nanotubes on nickel foam for high-performance hybrid supercapacitors
KR101634288B1 (en) Composite, carbon composite using the composite, electrode, lithium battery, field emission device, biosensor, and semiconductor device including the same
CN108649190A (en) Vertical graphene with three-dimensional porous array structure/titanium niobium oxygen/sulphur carbon composite and its preparation method and application
EP1706911A1 (en) Carbon nanotube or carbon nanofiber electrode comprising sulfur or metal nanoparticles as a binder and process for preparing the same
Chen et al. Electrodeposited nickel aluminum-layered double hydroxide on Co 3 O 4 as binder-free electrode for supercapacitor
Deokate et al. Energy storage potential of sprayed α-MoO 3 thin films
She et al. Structural engineering of S-doped Co/N/C mesoporous nanorods via the Ostwald ripening-assisted template method for oxygen reduction reaction and Li-ion batteries
KR20160031107A (en) Manufacturing method of secondary batteries using Si-CNFs based on Co-Cu catalysts
Dakshana et al. Electrochemical investigation of hydrothermally induced MnCo2S4 nanoparticles as an electrode material for high performance supercapacitors
Liu et al. Simplified fast synthesis of strong-coupling composite supercapacitor materials by one-step bipolar pulse electrodeposition
KR100806678B1 (en) The fabrication method of carbon nanotube?metal oxide nanocomposite electrode
KR20180108330A (en) Synthesis method of Silicon-reduced Graphene oxide composite and manufacturing method of Lithium Secondary Batteries using it as anode materials
Li et al. MoS2 modified TiN nanotube arrays for advanced supercapacitors electrode
KR101060288B1 (en) composite electrode and method for manufacturing the same
JPH01307157A (en) Manufacture of electrode for battery
JP7133599B2 (en) Method for producing hetero-element-doped porous carbon body, and hetero-element-doped porous carbon body produced thereby
Ishii et al. Single-walled carbon nanotubes as a reducing agent for the synthesis of a Prussian blue-based composite: a quartz crystal microbalance study

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP