WO2003076760A2 - Steerable soil penetration system - Google Patents
Steerable soil penetration system Download PDFInfo
- Publication number
- WO2003076760A2 WO2003076760A2 PCT/EP2003/001744 EP0301744W WO03076760A2 WO 2003076760 A2 WO2003076760 A2 WO 2003076760A2 EP 0301744 W EP0301744 W EP 0301744W WO 03076760 A2 WO03076760 A2 WO 03076760A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tubing
- penetration
- steerable
- hole
- soil
- Prior art date
Links
- 230000035515 penetration Effects 0.000 title claims abstract description 115
- 239000002689 soil Substances 0.000 title claims abstract description 42
- 238000000034 method Methods 0.000 claims abstract description 29
- 230000008569 process Effects 0.000 claims abstract description 15
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 14
- 230000007246 mechanism Effects 0.000 claims description 19
- 239000012530 fluid Substances 0.000 claims description 7
- 230000001939 inductive effect Effects 0.000 claims description 7
- 230000003287 optical effect Effects 0.000 claims description 6
- 230000035939 shock Effects 0.000 claims description 6
- 230000009471 action Effects 0.000 claims description 4
- 230000006835 compression Effects 0.000 claims description 4
- 238000007906 compression Methods 0.000 claims description 4
- 239000000835 fiber Substances 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 230000003252 repetitive effect Effects 0.000 claims description 3
- 238000004891 communication Methods 0.000 claims description 2
- 230000002708 enhancing effect Effects 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- 230000001050 lubricating effect Effects 0.000 claims description 2
- 239000004927 clay Substances 0.000 claims 1
- 239000004020 conductor Substances 0.000 claims 1
- 230000007423 decrease Effects 0.000 claims 1
- 239000002245 particle Substances 0.000 claims 1
- 230000010287 polarization Effects 0.000 claims 1
- 238000005086 pumping Methods 0.000 claims 1
- 230000001965 increasing effect Effects 0.000 abstract description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 239000000110 cooling liquid Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000006903 response to temperature Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000011359 shock absorbing material Substances 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010399 three-hybrid screening Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B7/00—Special methods or apparatus for drilling
- E21B7/28—Enlarging drilled holes, e.g. by counterboring
- E21B7/30—Enlarging drilled holes, e.g. by counterboring without earth removal
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B17/00—Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
- E21B17/20—Flexible or articulated drilling pipes, e.g. flexible or articulated rods, pipes or cables
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B7/00—Special methods or apparatus for drilling
- E21B7/04—Directional drilling
- E21B7/06—Deflecting the direction of boreholes
- E21B7/067—Deflecting the direction of boreholes with means for locking sections of a pipe or of a guide for a shaft in angular relation, e.g. adjustable bent sub
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B7/00—Special methods or apparatus for drilling
- E21B7/20—Driving or forcing casings or pipes into boreholes, e.g. sinking; Simultaneously drilling and casing boreholes
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B7/00—Special methods or apparatus for drilling
- E21B7/26—Drilling without earth removal, e.g. with self-propelled burrowing devices
- E21B7/267—Drilling devices with senders, e.g. radio-transmitters for position of drilling tool
Definitions
- the invention relates to a steerable soil penetration system and method.
- Such a system is known from US patent No. 5,163,520.
- a steerable penetration head is pivotally connected to a string of tubulars that are interconnected by screw thread connectors and that are pushed in a substantially horizontal direction through a shallow subsurface soil layer by a hydraulic ram, which is mounted in a trench or pit.
- the ram pushes the tubing string and associated penetration head through the soil and when the last tubing section has been substantially inserted into the created hole the ram is pulled back whereupon a new tubing section is added to the tubular string which is then pushed into the hole, which sequence of adding a new tubing section to the string and inserting it into the hole is continued until the penetration head has reached its target.
- the aforementioned US. patent 5,878,825 discloses a steerable penetration head, which is rotatably connected to a chain of short and rigid tubular elements that are interconnected by joints that are rotatable about a single axis.
- the chain of rigid tubular elements is pushed into the hole pierced by the steerable penetration head by an injector formed by a hydraulic piston assembly at the bottom of an injector pitch.
- Disadvantages of this known steerable soil penetration system are that the chain of rigid tubular elements interconnected by joints is complex, wear-prone, expensive and prone to buckling into a zig-zag configuration within the pierced hole, thereby significantly increasing the wall friction and inhibiting the penetration process. In addition, it requires a trench or pit.
- An object of the present invention is to alleviate the disadvantages of this and other known soil penetration systems.
- a further object of the present invention is to provide a system and method for creating a hole in a subsurface formation, wherein a small diameter pilot hole is pierced into the formation which pilot hole is subsequently expanded to an encased larger diameter hole in which one or more fibre optical, electrical and/or other cables and/or fluid transportation conduits are inserted, or which hole may serve as a subsurface fluid transportation and/or drainage conduit.
- a further object of the present invention is to provide a cost effective system and method for creating a grid of shallow holes in a subsurface formation in urban and other areas, in which holes strings of geophones and/or fibre optical sensing devices can be permanently inserted for monitoring seismic reflections and/or other geophysical effects during an extensive period of time, with a minimum impact on the environment at the earth surface.
- a further objective of the present invention is to provide a system and a method for creating a hole in a subsurface formation to accommodate transmission systems such as tubes, pipes, hoses, cables, rods and bars or hole preservation systems such as conduits, ducts and casings or which can be used as a pilot or guidance hole for reaming or otherwise enlarging the hole.
- a steerable soil penetration system comprising a steerable penetration head which is connected to an elongate flexible tubing such that the orientation of the penetration head can be varied relative to the tubing and means for injecting the elongate flexible tubing into the hole pierced by the penetration head and for inducing the penetration head to extend the hole in a desired direction.
- the steerable penetration head in the system according to the invention is configured to penetrate the soil without the action of rotating cutters which means that the penetration head does not form a rotary drill bit which cuts away the soil ahead of the bit and which then produces drill cuttings that are to be removed from the borehole via an annulus surrounding the drill string.
- the annulus between the tubular string and borehole wall can be narrow, which is of benefit to the accuracy in which the system is steerable.
- the means for injecting the tubing into the pierced hole comprises a tubing injector assembly, which pushes the tubing into, the pierced hole to provide thrust to the penetration head.
- the tubing preferably has an outer diameter, which is more than 80%, and more preferably more than 90%, of the largest outer width of the steerable penetration head.
- the flexible tubing is provided with conduits and/or electric cables for supplying power to the steerable penetration head.
- the flexible tubing can be equipped with electrical cables or optical fibres for data communication to and from the steerable penetration head.
- said conduits, cables and fibres can be embedded in the wall of the flexible tubing.
- a suitable composite flexible tubing with electrical power cables embedded in the wall is disclosed in International patent application WO 0175263.
- the flexible tubing may be a coilable steel tubing which may consist of a pair of coaxial steel tubulars wherein the electrical or other power and or transmission cables extend through the annular space between the inner and outer tubular.
- the elongate flexible tubing surrounded by a narrow annulus also serves as a hole lining which protects the hole against caving-in throughout and optionally also after completion of the hole piercing process.
- the elongate flexible tubing remains in the pierced hole to serve as a permanent hole lining and may be circumferentially expanded by inflation and/or an expansion device such as a mandrel or tractor to increase the internal width of the hole lining and optionally of the hole itself.
- the elongate flexible tubing may be equipped with a staggered pattern of relatively weak spots and/or openings, which break open and/or widen up to reduce the forces required to circumferentially expand the tubing wall.
- the elongate flexible tubing is a steel tubular in which a staggered array of longitudinal slots is present, which slots traverse at least part of the wall in a radial direction.
- the slots may be filled with an elastomeric or other plugging agent which remains intact when the hole is being pierced, which agent is configured to break, rip, dissolve or otherwise losses its sealing function by e.g. mechanical and/or chemical disintegration when the tubing is circumferentially and/or radially expanded after completion of the piercing process.
- the steerable penetration head and/or flexible tubing may be provided with one or more repetitive shock generating, vibration and/or pulsating devices for enhancing the penetration rate of the penetration head through the soil in particular during a final phase of the hole piercing process. Also a vibration and/or shock generating device can be provided to reduce friction of the flexible tubing in the hole. Both these devices can be powered through said conduits or cables.
- the steerable penetration head comprises a sensor for detecting obstacles ahead of the penetration head, which sensor is connected to a steering mechanism that is capable of changing the orientation of the penetration head relative to the tubing such that the penetration head follows a curved trajectory to avoid detected obstacles.
- the steering mechanism preferably allows to steer the penetration head along a predetermined trajectory through the soil and to return to said predetermined trajectory after the penetration head has deviated form said trajectory to avoid a detected obstacle.
- the steerable penetration head may comprise a sensor and a real time positioning device for detecting the position of the head relative to a known fixed point.
- the steering system and the positioning system may interact and make it possible to follow the preset trajectory.
- the steerable penetration head comprises a tapered nose section having a central axis that can be pivoted in any direction relative to a longitudinal axis of the tubing by the steering mechanism.
- the tapered 'nose section may be connected to the tubing by a bendable tubular steering section, which can be induced by the steering mechanism to alternatingly obtain a straight or a curved shape.
- Said bendable tubular steering section may comprise memory metal, bimetallic, or technical ceramic (PZT) components which deform in response to temperature variations or to electrical voltage and one or more heating elements or electrical sources that are configured to vary the temperature or voltage of said components such that the bendable tubular section either obtains a straight or a curved shape.
- PZT technical ceramic
- the bendable tubular steering section may either bend proportional or in an on/off non- proportional mode.
- the bendable tubular steering section comprises at least three circumferentially spaced segments that are individually heated or cooled such that the lengths of the segments will vary and that the bendable tubular section either obtains a straight or a curved shape.
- the bendable tubular steering section is at one side weakened by perforations, slits or otherwise such that it will bend in a predetermined direction under the axial compression force exerted by the elongate flexible tubing and a stiff sleeve is movably arranged adjacent to the bendable tubular section such that the sleeve can be moved within or around the bendable tubular section to force the section into a substantially straight position and which can be retrieved from the bendable tubular to induce the bendable tubular section to bend under the axial compression force exerted by the elongate flexible tubing.
- the steerable penetration head may comprise a nose section which holds jetting nozzles which are geared to produce a hole in soft soil, hard soil and rock through which the elongated flexible tube is pushed in.
- the jetting devices can be actuated independently and produce enough radial trust to bend the head assembly in the desired direction.
- the elongated flexible tube will also hold tubes through which jetting fluids is moved to the penetration head and the jetting nozzles and cables for controlling the nozzles.
- the method according to the invention for piercing an at least partially horizontal hole in a subsurface formation with a steerable soil penetration system comprises the step of exerting a thrust force to a steerable penetration head which compacts the surrounding soil substantially in the absence of rotating cutters by an elongate flexible tubing and/or downhole propulsion means thereby inducing the penetration head to extend the hole in a desired direction.
- At least part of the elongate flexible tubing is left behind in the pierced hole to serve as a permanent hole liner and at least part of the elongate flexible tubing may be circumferentially expanded after completion of the piercing process such that the expanding tubing radially expands the pierced hole to a larger internal width.
- the expansion process may create a predetermined pattern or track in the permanent hole liner, which could be used by the expansion device or tractor to propel itself forward.
- Fig. 1 is schematic longitudinal sectional view of a shallow hole, which is being pierced into a subsurface formation by a steerable hole penetration system according to the invention
- Fig. 2 is a schematic longitudinal sectional view of the thus pierced hole in which an elongate flexible tubing is circumferentially expanded to increase the internal width of the hole;
- Fig. 3 is a more detailed longitudinal sectional view of the penetration head of the steerable hole penetration system shown in Fig. 1.
- a steerable hole penetration system comprising a steerable penetration head 1, which is rotatably and pivotably connected to an elongate flexible tubing 2 by a steering mechanism 3.
- the tubing 2 is unreeled from a reeling drum 4 at the earth surface and pushed into the hole pierced by the penetration head 1 by a tubing injector assembly 6.
- Adjacent to the tubing injector assembly 6 a tubing guide pipe 7 is screwed in an inclined position into the topsoil. Alternatively said guide pipe 7 may be hammered or drilled into the topsoil.
- the guide pipe 7 safeguards a stable and pressure tight launch pad for the flexible tubing 2 into the hole.
- the steering mechanism 3 is configured to orient the penetration head 1 either in a substantially aligned or in a slightly misaligned direction relative to the elongate flexible tube 2 in which case either substantially straight or slightly curved hole sections will be pierced.
- Fig. 3 shows in more detail the penetration head 1 and steering mechanism 3 of the steerable hole penetration system of Fig. 1.
- the steering mechanism 3 comprises a first tubular section 3A which is rotatably connected to a proximal end 2A of the elongate tubing 2 by a first hollow shaft 30 which is at one end connected to a first electrical motor and gear mechanism (not shown) inside the orientation control unit 31 and at another end to the first tubular section 3A by means of a series of radial spacers 32.
- the steering mechanism 3 furthermore comprises a second tubular section 3B which is rotatably connected to a slant proximal end 3C of the first tubular section 3A by a second hollow shaft 33 which co-axially surrounds the first hollow shaft 30 and which is at one end connected to a second electrical motor and gear mechanism (not shown) inside the orientation control unit 31 and at another end to the second tubular section 3B by means of a series of radial spacers 34.
- the steering mechanism 3 may be made of a composite shock absorbing material and/or comprise one or more shock absorbers (not shown) .
- a central opening 36 is present in which an umbilical electrical cable bundle 37 is secured by means of a series of spacers 38.
- the central opening 35 also serves as a fluid injection conduit through which a lubricating and cooling liquid is injected into an annular space 40 between the elongate tubing 2 and the inner wall 41 of the pierced hole as illustrated by arrows 42.
- a lubricating and cooling liquid is injected at low speed into the annular space 40 in order to inhibit creation of wash outs of the pierced hole by jetting action.
- the penetration head 1 is at least during an initial stage of the piercing process pushed forward through the subsurface formation 8 by the thrust exerted by the tubing 2, thereby compacting and/or pushing aside the formation in the immediate vicinity of the penetration head 1.
- the penetration head 1 is vibrated in an axial and/or radial direction relative to the tubing 2 and steering mechanism 3 by means of a hammer 44 and anvil 45 assembly which are vibrated relative to the second tubular section 3B and relative to each other by means of an electromagnetic linear motor 46 and which receives electric power from the electric power cable bundle 37 via a inductive coupling 47.
- the inductive coupling 47 also provides electric power to an electronic sensing and control unit 48 which senses acoustic reflections of the impacts exerted by the penetration head 1 to the formation 8 in order to identify any obstacles within the formation 8 ahead of the penetration head 1.
- the inductive coupling 47 and electrical umbilical cable bundle 37 serves as bidirectional power and signal transmission umbilical between an electrical power and control unit (not shown) at the earth surface and the downhole electronic sensing and control unit 48 within the penetration head 1.
- the penetration head 1 comprises a tapered main section in which a cylindrical nose section 1A is inserted such that the penetration head 1 is substantially rotational symmetrical to the central axis 35 of the penetration system.
- the penetration head 1 may have a frontal surface that permanently has a slant orientation relative the central axis 35 such that the penetration head 1 will create a curved hole in which case the steering mechanism 3 may comprise a single rotatable section 3A only, or comprise an array of three circumferentially spaced, for example a bi-metallic, memory or electrically activated metal, or voltage responsive PZT ceramic segments (not shown) which may individually contract away from or expand against the inner wall 41 to steer the penetration head 1 such that it follows a predetermined trajectory or circumvents any subsurface obstacles 50 detected by the downhole sensing and control unit 48 and subsequently returns to said predetermined course as indicated by the dotted line 51 in Fig. 1.
- the steering system may comprise a set of three hybrid bi-metallic and hydraulic
- Fig. 2. shows how after completion of the piercing process the elongate flexible tubing 2 is circumferentially expanded by an expansion device 55, which is pulled through the tubing 2 by winding a cable 56 around a drum 57.
- An electrical cable 59 and a flexible fluid transportation conduit 58 are simultaneously pulled into the expanded tubing 2 by the expansion device 55.
- the expansion device 55 may comprise an expansion mandrel and/or rollers and a traction unit (not shown) , which propels the device 55 forward through the tubing 2.
- the tubing may comprise a staggered array of weak spots, which open up or expand during the expansion process.
- the traction unit may comprise spikes, which penetrate through the thus created openings to generate a sufficient thrust to the expansion device 55 such that the tubing is expanded and the borehole width is simultaneously increased by the expanding tubing 2.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Mechanical Engineering (AREA)
- Earth Drilling (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2003227025A AU2003227025A1 (en) | 2002-03-08 | 2003-03-07 | Steerable soil penetration system |
EP03743813A EP1483475A2 (en) | 2002-03-08 | 2003-03-07 | Steerable soil penetration system |
US10/506,829 US7347282B2 (en) | 2002-03-08 | 2003-03-07 | Steerable soil penetration system |
CA002478442A CA2478442A1 (en) | 2002-03-08 | 2003-03-07 | Steerable soil penetration system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP02075911 | 2002-03-08 | ||
EP02075911.4 | 2002-03-08 |
Publications (4)
Publication Number | Publication Date |
---|---|
WO2003076760A2 true WO2003076760A2 (en) | 2003-09-18 |
WO2003076760A3 WO2003076760A3 (en) | 2004-04-08 |
WO2003076760A9 WO2003076760A9 (en) | 2004-10-28 |
WO2003076760A8 WO2003076760A8 (en) | 2005-05-26 |
Family
ID=27798849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2003/001744 WO2003076760A2 (en) | 2002-03-08 | 2003-03-07 | Steerable soil penetration system |
Country Status (5)
Country | Link |
---|---|
US (1) | US7347282B2 (en) |
EP (1) | EP1483475A2 (en) |
AU (1) | AU2003227025A1 (en) |
CA (1) | CA2478442A1 (en) |
WO (1) | WO2003076760A2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL2002143C (en) * | 2008-10-28 | 2010-04-29 | Van Leeuwen Harmelen Bv Geb | PIPE PRESSURE DEVICE WITH ENDLESS TRANSPORT BODIES FOR USE DURING A HORIZONTALLY DRILL DRILL PROCESS. |
GB2483675A (en) * | 2010-09-16 | 2012-03-21 | Bruce Arnold Tunget | Shock absorbing conductor orientation housing |
WO2014074774A1 (en) * | 2012-11-12 | 2014-05-15 | Aps Technology, Inc. | Rotary steerable drilling apparatus |
WO2016037183A1 (en) * | 2014-09-05 | 2016-03-10 | Baker Hughes Incorporated | Extended reach methods for multistage fracturing systems |
US10113363B2 (en) | 2014-11-07 | 2018-10-30 | Aps Technology, Inc. | System and related methods for control of a directional drilling operation |
US10174600B2 (en) | 2014-09-05 | 2019-01-08 | Baker Hughes, A Ge Company, Llc | Real-time extended-reach monitoring and optimization method for coiled tubing operations |
US10233700B2 (en) | 2015-03-31 | 2019-03-19 | Aps Technology, Inc. | Downhole drilling motor with an adjustment assembly |
US10337250B2 (en) | 2014-02-03 | 2019-07-02 | Aps Technology, Inc. | System, apparatus and method for guiding a drill bit based on forces applied to a drill bit, and drilling methods related to same |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1703073A1 (en) * | 2005-03-17 | 2006-09-20 | Services Pétroliers Schlumberger | Methods and apparatus for moving equipment along a borehole |
DE102005021216A1 (en) * | 2005-05-07 | 2006-11-09 | Kögler, Rüdiger, Dr.-Ing. | Methods and devices for trenchless laying of pipelines |
EP2330524A3 (en) * | 2005-05-10 | 2012-07-11 | CareFusion 303, Inc. | Medication safety system featuring a multiplexed RFID interrogator panel |
US7481282B2 (en) * | 2005-05-13 | 2009-01-27 | Weatherford/Lamb, Inc. | Flow operated orienter |
GB2456421B (en) * | 2008-01-17 | 2012-02-22 | Weatherford Lamb | Flow operated orienter |
US10436350B1 (en) * | 2018-05-08 | 2019-10-08 | Mohammad R Ehsani | Trenchless pipe-laying |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3818996A (en) * | 1972-10-10 | 1974-06-25 | Sun Oil Co | Repulsing clays on drill bits |
US4646277A (en) * | 1985-04-12 | 1987-02-24 | Gas Research Institute | Control for guiding a boring tool |
US4856600A (en) * | 1986-05-22 | 1989-08-15 | Flowmole Corporation | Technique for providing an underground tunnel utilizing a powered boring device |
US4955439A (en) * | 1987-11-02 | 1990-09-11 | Underground Technologies | Self-propelled subsoil penetrating tool system |
EP0395167A1 (en) * | 1989-04-28 | 1990-10-31 | Nik Smet | Device and method for making a borehole in the ground |
WO1991011646A1 (en) * | 1990-01-24 | 1991-08-08 | Johnson Howard E | Utility tunneling method and apparatus |
US5303202A (en) * | 1993-09-01 | 1994-04-12 | Carroll Paul E | Method for detecting breaks in geophone cables for seismic data acquisition system |
US5322391A (en) * | 1992-09-01 | 1994-06-21 | Foster-Miller, Inc. | Guided mole |
EP0806543A1 (en) * | 1996-05-07 | 1997-11-12 | GEISERT ENGINEERING GmbH | Drilling apparatus for percussive drilling |
US5850884A (en) * | 1994-04-21 | 1998-12-22 | Aberdeen University | Moling apparatus |
WO2000046484A1 (en) * | 1999-02-01 | 2000-08-10 | Shell Internationale Research Maatschappij B.V. | Method for creating secondary sidetracks in a well system |
US20010023614A1 (en) * | 1997-05-02 | 2001-09-27 | Paulo Tubel | Monitoring of downhole parameters and tools utilizing fiber optics |
US20020000332A1 (en) * | 2000-06-30 | 2002-01-03 | S&S Trust | Shallow depth, coiled tubing horizontal drilling system |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3422631A (en) * | 1966-11-16 | 1969-01-21 | Daniel Silverman | Method and apparatus for driving and lining an underground conduit |
US3465834A (en) * | 1968-03-18 | 1969-09-09 | Bell Telephone Labor Inc | Guided subterranean penetrator systems |
US3797586A (en) * | 1971-12-20 | 1974-03-19 | Bell Telephone Labor Inc | Mole with decoupled nose and body |
US4306626A (en) * | 1980-05-21 | 1981-12-22 | Duke John W | Hydraulic earth boring machine |
US4694913A (en) * | 1986-05-16 | 1987-09-22 | Gas Research Institute | Guided earth boring tool |
DE3829628A1 (en) * | 1988-09-01 | 1990-03-15 | Schmidt Paul | RAMM DRILLING DEVICE FOR THE TRENCHLESS LAYING OF SUPPLY LINES |
US4945999A (en) * | 1989-04-06 | 1990-08-07 | The Charles Machine Works, Inc. | Directional rod pusher |
US5070948A (en) * | 1989-04-06 | 1991-12-10 | The Charles Machine Works, Inc. | Directional rod pusher |
US5163520A (en) * | 1991-01-28 | 1992-11-17 | Lag Steering Systems | Apparatus and method for steering a pipe jacking head |
US5305631A (en) * | 1992-06-16 | 1994-04-26 | Corrocon, Inc. | Cathodic protection and leak detection process and apparatus |
JP3153128B2 (en) * | 1996-06-13 | 2001-04-03 | 株式会社クボタ | Propulsion body |
US5878825A (en) * | 1996-07-03 | 1999-03-09 | Kubota Corporation | Underground propelling method |
EP1143104A1 (en) | 2000-04-03 | 2001-10-10 | Airborne Development B.V. | A composite tube with embedded power conductors |
-
2003
- 2003-03-07 US US10/506,829 patent/US7347282B2/en not_active Expired - Fee Related
- 2003-03-07 AU AU2003227025A patent/AU2003227025A1/en not_active Abandoned
- 2003-03-07 CA CA002478442A patent/CA2478442A1/en not_active Abandoned
- 2003-03-07 EP EP03743813A patent/EP1483475A2/en not_active Withdrawn
- 2003-03-07 WO PCT/EP2003/001744 patent/WO2003076760A2/en not_active Application Discontinuation
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3818996A (en) * | 1972-10-10 | 1974-06-25 | Sun Oil Co | Repulsing clays on drill bits |
US4646277A (en) * | 1985-04-12 | 1987-02-24 | Gas Research Institute | Control for guiding a boring tool |
US4856600A (en) * | 1986-05-22 | 1989-08-15 | Flowmole Corporation | Technique for providing an underground tunnel utilizing a powered boring device |
US4955439A (en) * | 1987-11-02 | 1990-09-11 | Underground Technologies | Self-propelled subsoil penetrating tool system |
EP0395167A1 (en) * | 1989-04-28 | 1990-10-31 | Nik Smet | Device and method for making a borehole in the ground |
WO1991011646A1 (en) * | 1990-01-24 | 1991-08-08 | Johnson Howard E | Utility tunneling method and apparatus |
US5322391A (en) * | 1992-09-01 | 1994-06-21 | Foster-Miller, Inc. | Guided mole |
US5303202A (en) * | 1993-09-01 | 1994-04-12 | Carroll Paul E | Method for detecting breaks in geophone cables for seismic data acquisition system |
US5850884A (en) * | 1994-04-21 | 1998-12-22 | Aberdeen University | Moling apparatus |
EP0806543A1 (en) * | 1996-05-07 | 1997-11-12 | GEISERT ENGINEERING GmbH | Drilling apparatus for percussive drilling |
US20010023614A1 (en) * | 1997-05-02 | 2001-09-27 | Paulo Tubel | Monitoring of downhole parameters and tools utilizing fiber optics |
WO2000046484A1 (en) * | 1999-02-01 | 2000-08-10 | Shell Internationale Research Maatschappij B.V. | Method for creating secondary sidetracks in a well system |
US20020000332A1 (en) * | 2000-06-30 | 2002-01-03 | S&S Trust | Shallow depth, coiled tubing horizontal drilling system |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL2002143C (en) * | 2008-10-28 | 2010-04-29 | Van Leeuwen Harmelen Bv Geb | PIPE PRESSURE DEVICE WITH ENDLESS TRANSPORT BODIES FOR USE DURING A HORIZONTALLY DRILL DRILL PROCESS. |
EP2192259A1 (en) * | 2008-10-28 | 2010-06-02 | Gebr. van Leeuwen Harmelen B.V. | Pipeline pressure device with endless conveyor members for use during a horizontal directional drilling process |
GB2483675A (en) * | 2010-09-16 | 2012-03-21 | Bruce Arnold Tunget | Shock absorbing conductor orientation housing |
WO2014074774A1 (en) * | 2012-11-12 | 2014-05-15 | Aps Technology, Inc. | Rotary steerable drilling apparatus |
US9500031B2 (en) | 2012-11-12 | 2016-11-22 | Aps Technology, Inc. | Rotary steerable drilling apparatus |
US10337250B2 (en) | 2014-02-03 | 2019-07-02 | Aps Technology, Inc. | System, apparatus and method for guiding a drill bit based on forces applied to a drill bit, and drilling methods related to same |
WO2016037183A1 (en) * | 2014-09-05 | 2016-03-10 | Baker Hughes Incorporated | Extended reach methods for multistage fracturing systems |
US10174600B2 (en) | 2014-09-05 | 2019-01-08 | Baker Hughes, A Ge Company, Llc | Real-time extended-reach monitoring and optimization method for coiled tubing operations |
US10113363B2 (en) | 2014-11-07 | 2018-10-30 | Aps Technology, Inc. | System and related methods for control of a directional drilling operation |
US10233700B2 (en) | 2015-03-31 | 2019-03-19 | Aps Technology, Inc. | Downhole drilling motor with an adjustment assembly |
Also Published As
Publication number | Publication date |
---|---|
WO2003076760A8 (en) | 2005-05-26 |
AU2003227025A1 (en) | 2003-09-22 |
US7347282B2 (en) | 2008-03-25 |
EP1483475A2 (en) | 2004-12-08 |
US20050161261A1 (en) | 2005-07-28 |
WO2003076760A9 (en) | 2004-10-28 |
CA2478442A1 (en) | 2003-09-18 |
WO2003076760A3 (en) | 2004-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8596386B2 (en) | System and method for drilling and completing lateral boreholes | |
US8813844B2 (en) | System and method for drilling lateral boreholes | |
US7347282B2 (en) | Steerable soil penetration system | |
JP5307403B2 (en) | U-tube installation method and installation device for underground heat exchange | |
AU2019253829B2 (en) | System and method for laying underground cables or underground lines in the ground near the surface | |
US7370710B2 (en) | Erectable arm assembly for use in boreholes | |
CA1244000A (en) | Guided earth boring tool | |
CA1258262A (en) | Apparatus and method for forming an anlarged underground arcuate bore and installing a conduit therein | |
RU2392390C2 (en) | Trenchless pipe driving method | |
EP0695390B1 (en) | Drilling kick-off device | |
US20030070841A1 (en) | Shallow depth, coiled tubing horizontal drilling system | |
CA2292639C (en) | An erectable arm assembly for use in boreholes | |
JP7010751B2 (en) | How to bury a geothermal heat exchanger | |
JP3447631B2 (en) | Non-drilling pipe burial method | |
JP4967103B2 (en) | Underground construction method for synthetic resin pipes | |
JP2616933B2 (en) | Land drilling tools and drilling methods | |
AU2004201696B2 (en) | An erectable arm assembly for use in boreholes | |
JP3519829B2 (en) | Underground pipe peripheral friction reduction method | |
RU2156847C2 (en) | Process of formation of horizontal holes | |
JPH08261361A (en) | Underground laying method for buried pipe | |
RU2186191C2 (en) | Reamer of horizontal holes | |
JPH1193573A (en) | Hole widening method of underground excavation hole | |
EA040106B1 (en) | DEVICE AND METHOD FOR PERFORING A WELL FORMATION | |
AU7750898A (en) | An erectable arm assembly for use in boreholes | |
JPH08165891A (en) | Simple jacking device for buried pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2003743813 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2478442 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003227025 Country of ref document: AU |
|
COP | Corrected version of pamphlet |
Free format text: PAGES 1/2-2/2, DRAWINGS, REPLACED BY CORRECT PAGES 1/2-2/2 |
|
WWP | Wipo information: published in national office |
Ref document number: 2003743813 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10506829 Country of ref document: US |
|
CFP | Corrected version of a pamphlet front page | ||
CR1 | Correction of entry in section i |
Free format text: IN PCT GAZETTE 38/2003 UNDER (72, 75) REPLACE "BEITS, MICHAEL, JOHN" BY "BETTS, MICHAEL, JOHN" |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2003743813 Country of ref document: EP |