WO2003075974A1 - Artificial digestive tract - Google Patents

Artificial digestive tract Download PDF

Info

Publication number
WO2003075974A1
WO2003075974A1 PCT/JP2003/002896 JP0302896W WO03075974A1 WO 2003075974 A1 WO2003075974 A1 WO 2003075974A1 JP 0302896 W JP0302896 W JP 0302896W WO 03075974 A1 WO03075974 A1 WO 03075974A1
Authority
WO
WIPO (PCT)
Prior art keywords
artificial
layer
collagen
base layer
digestive tract
Prior art date
Application number
PCT/JP2003/002896
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiko Shimizu
Tatsuo Nakamura
Yoshio Hori
Original Assignee
Tapic International Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tapic International Co., Ltd. filed Critical Tapic International Co., Ltd.
Priority to AU2003213326A priority Critical patent/AU2003213326A1/en
Publication of WO2003075974A1 publication Critical patent/WO2003075974A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/24Collagen

Definitions

  • the present invention relates to a substitute organ capable of restoring the function of the gastrointestinal tract by replenishing a defect in the artificial gastrointestinal tract, particularly the esophagus, stomach, small intestine, large intestine, and bile duct.
  • the reconstruction range is naturally limited, and if the defect site is widespread, reconstruction is performed using other gastrointestinal tracts, such as the stomach tract, small intestine, and large intestine. Because of this, surgical procedures (skin incision, thoracotomy, laparotomy, etc.) are required outside the original surgical field, making surgery more invasive.
  • the function of the papillary sphincter is due to the fact that the biliary tract is directly connected to the small intestine without the intervention of the fur nipple.
  • complications such as reflux of the contents of the small intestine into the biliary tract and ascending cholangitis due to bacterial infection resulting therefrom may be present.
  • the present invention has been made to improve such a situation, and does not impose a great burden on the patient, has no supply problems, and can be used clinically safely.
  • the purpose is to provide.
  • the present invention relates to an artificial gastrointestinal tract, comprising a layer 20 made of gelled collagen, which contains at least one of nutrients, growth stimulating factors, differentiation inducing factors, antibiotics, and antifungal agents. It is characterized by having a layer 30 made of a biodegradable and absorbable material on the outer surface.
  • the layer made of gelled collagen (hereinafter referred to as a base layer) is a solution in which a basic buffer is added to a cold collagen hydrochloride solution, the cold collagen hydrochloride solution is neutralized, and heated to 37 ° C.
  • the collagen solution loses its fluidity and solidifies, specifically, an agar-like, elastic, uniform hydrated gel with a certain hardness and shape, and the collagen molecules are They are connected to each other to form a three-dimensional network structure, and the space is filled with liquid such as water.
  • This layer serves as a scaffold for self-tissue regeneration (hereinafter, referred to as a collagen matrix or simply as a matrix), and at the same time directly and self-regenerates a self-tissue containing at least one kind contained therein.
  • it also functions as a functional material capable of locally retaining a substance that supports indirectly, for example, a nutrient substance, a growth stimulating factor, a differentiation inducing factor, an antibiotic, an antifungal agent, or the like for a desired period of time.
  • the self-organizing tissue regeneration supporting substance converts a plurality of species into a single base layer. They may be contained, or each layer of the base layer composed of a plurality of layers may contain a different one. Further, as a form to be contained, the base layer may be entirely contained, or a part thereof may be contained therein and a part thereof may be contained on the surface thereof.
  • FIG. 1 is a longitudinal sectional view schematically showing the wall structure of an artificial digestive tract (tubular) of the present invention.
  • FIG. 2 is a diagram showing the state of angiogenesis in a regenerated tissue in Test Example 3 and Comparative Test Example 3.
  • telopeptide which is an antigen group in the collagen molecule, is reliably removed, and the antigenicity is almost eliminated.
  • the origin of these collagens is not particularly limited, and type I collagen obtained by extracting and purifying from skin, bone, cartilage, tendons, organs, and the like of animals such as sea lions, pigs, night egrets, sheep, lignaroos, birds, and fish Alternatively, a mixture of type I collagen and type III collagen can be used. In some cases, human recombinant collagen may be used.
  • the thickness of the base layer is 5 to 20 s, preferably 5 mm. If the thickness is more than 20 mm, it is difficult to sew locally, and if it is less than 5 mm, the layer absorbs too quickly and cannot maintain its shape until the self-organization has been regenerated From.
  • the constituent materials of the layer 30 (hereinafter referred to as the outer layer) made of a biodegradable and absorbable material include polyglycolic acid, polylactic acid, a copolymer of glycolic acid and lactic acid, and lactate and ⁇ -force prolactone. And polydioxanone, and a copolymer of dalicholate and trimethylene monoponate.
  • the outer layer prevents the collagen matrix from dissipating due to physical external forces such as friction until the self-tissue regenerates, and a barrier that prevents excessive invasion of inflammatory cells such as fibroblasts and macrophages into the collagen matrix. It also plays a role and provides the collagen matrix with an optimal environment for self-tissue regeneration and differentiation.
  • this layer prevents the contraction of the base layer during the process of self-tissue regeneration, contributes to improved suturing at the time of surgery, and suppresses the occurrence of wrinkles due to tearing or bending of the collagen matrix. I can do it.
  • this layer 30 is a nonwoven sheet or tube.
  • this non-woven sheet is usually formed by fibrosis (melt spinning) of the material, stretching ⁇ knitting (tubular knitting), non-woven fabric (folding of the knitted material and needle punching) ⁇ consolidation (hot pressing). It is manufactured through each operation (the tube may be obtained by molding the sheet thus manufactured into a cylindrical shape).
  • the artificial digestive tract of the present invention may further have a layer 40 (hereinafter, referred to as an inner layer) made of a material having digestive juice resistance on the inner surface of the base layer 20.
  • a layer 40 (hereinafter, referred to as an inner layer) made of a material having digestive juice resistance on the inner surface of the base layer 20.
  • a material having digestive juice resistance a silicone tube (commonly used as a silicone tent in the medical field) and a silicone sheet can be cited.
  • This layer functions as a septum for isolating the lumen (or inner surface) of the collagen matrix from contact with food or digestive fluid, and keeps the lumen in a predetermined shape until the self-tissue is regenerated. (Accordingly, this material is required to have not only digestive juice resistance but also appropriate stiffness. Note that this layer 40 is removed after self-tissue regeneration). Therefore, this layer is assembled together with the base layer 20 and the outer layer 30 from the stage of distribution as a product. It may be in a combined form or combined with
  • the collagen hydrochloride solution is added. To neutral.
  • a basic buffer sodium hydrogen carbonate and HEPES dissolved in sodium hydroxide
  • a predetermined amount of a self-tissue regeneration supporting substance is dissolved in the collagen neutral solution with stirring.
  • self-tissue regeneration supporting substances include nutrient substances such as amino acids, bimin, glucose, electrolytes, etc .; growth stimulating factors and differentiation inducing factors such as basic and acidic fibroblast growth factor (bFGF), vascular Endothelial cell growth factor (VEGF), steroids, retinoic acid and the like; prophylactic agents for infections, for example, antibiotics, antifungal agents and the like.
  • bFGF basic and acidic fibroblast growth factor
  • VEGF vascular Endothelial cell growth factor
  • steroids retinoic acid and the like
  • prophylactic agents for infections for example, antibiotics, antifungal agents and the like.
  • Two or more of these self-tissue regeneration supporting substances may be used as desired.
  • fibroblasts, epithelial cells, muscle cells and their stem cells (such as mesenchymal stem cells) collected from their own digestive tract, skin, and oral cavity may
  • a sheet-shaped outer layer material is laid on the bottom of a bat capable of horizontally storing the biodegradable and absorbable material (hereinafter referred to as the outer layer material) constituting the outer layer 30, and the self-prepared therein is prepared by the above operation.
  • a predetermined amount of a neutral solution of collagen containing a tissue regeneration supporting substance (in some cases, further containing the autologous cells and / or their stem cells) is poured, and then the collagen neutral solution is poured at about 37 ° C. Heat to C to gel the neutral collagen solution.
  • a material integrally having the base layer 20 made of gelled collagen on the upper surface of the outer layer 30 is formed.
  • the surface thereof that is, the surface in contact with the base layer 20 be subjected to treatment such as plasma discharge and ozone irradiation. This is because the material is given hydrophilicity and can be integrated with the base layer.
  • the base layer 20 having the outer layer 30 on the sheet shape obtained in the previous step is wound around the inner layer 40 having a predetermined diameter, for example, the outer surface of a silicone tube, and stitched into a tubular shape (surgical thread) By using this, a human gastrointestinal tract consisting of the inner layer 40—the base layer 20—the outer layer 30 is produced. Further operations such as storage in a container for market distribution and sterilization may be performed according to a conventional method.
  • the method for producing an artificial digestive tract of the present invention has been described using the method using the sheet-like base layer 20 and the outer layer 30.
  • the artificial digestive tract can also be produced using a tube-like outer layer material.
  • the collagen solution may be poured in the above step (3) as follows.
  • the outer layer material may be attached to the inner wall surface of the tube as a mold before pouring, or the outer layer material itself may be used as a tube as a mold.
  • the surface of the outer layer material in contact with the base layer 20 is subjected to a hydrophilic treatment such as plasma discharge or ozone irradiation. is there.
  • a hydrophilic treatment such as plasma discharge or ozone irradiation. is there.
  • the tubular outer layer material is provided on the outside thereof. What is necessary is just to cover on the outer surface of the base layer 20.
  • the base layer 20 is required to have a function capable of retaining the self-tissue regeneration supporting substance contained therein for a desired period.
  • a simple method of verifying the function is exemplified by a fluorescent marker bead (a brand name of Bebson's Dickinson's Caribrite bead; trade name.
  • the bead is made of polymethyl methacrylate having a diameter of 6 m).
  • the base layer containing 10, 000 Zml-substrates is placed in PBS with gentle stirring, and the residual ratio of beads in the substratum is checked at predetermined intervals. The method is illustrated. If the remaining ratio of the beads remains at a predetermined level even after a predetermined elapsed time. If it has, the base layer is determined to have the desired self-tissue regeneration supporting substance holding function.
  • the base layer has the function of holding the self-tissue regeneration supporting substance, it is formed in the base layer at the initial stage of contact with PBS under in vitro conditions in which the gelled collagen as the base layer constituent material is not water-soluble. Because it does not occur other than the release of the beads through the physical channels that would be performed.
  • the base layer of the artificial gastrointestinal tract of the present invention shows a residual rate of 80% or more even after 24 hours.
  • the base layer composed of microfibrillated collagen in which the beads were introduced by impregnating the bead suspension with the same amount as the base layer composed of gelled collagen
  • 5 hours At the time of the survey, the surviving rate is less than 20%.
  • Test example 1 artificial small intestine 1
  • the neutral collagen solution contains 100 ⁇ m / ml of penicillin as an antibiotic, 100 g / ml of streptomycin and 0.25 g / ml of amphotericin B as an antifungal agent (where ml is , Which is that of a neutral collagen solution).
  • a sheet made of Gunze's PGA nonwoven fabric with an area density of 30 to 35 g / m 2 , a fineness of about 2.5 denier, and a thickness of 0.15 orchid (the surface was previously irradiated with plasma. Is placed almost flat, and the neutral collagen solution is poured into the vat. Then, the neutral collagen solution is poured at about 37 ° C. for 10 minutes. After heating, an outer layer 30 having a base layer 20 (thickness: about 5 mm) made of gelled collagen formed thereon was obtained.
  • the outer layer with the base layer was wound around the outer periphery of the silicone tube so that the base layer 20 was on the inside, and the ends were sewn together to apply the artificial digestive tract of the present invention to the small intestine defect.
  • One end of the previously cut small intestine that is, the end on the stomach side, communicates with the lumen of the autologous small intestine at the anal side from the suture portion between the artificial digestive tract and the autologous small intestine. (The junction between the artificial digestive tract and the autologous small intestine is shown in the figure).
  • a tube made of PGA non-woven fabric on the inner surface of a tube (tube made of Teflon R. Inner diameter: about 52IM) in which a silicone tube (inner diameter: 10 bandages, thickness: 0.5I1) is arranged almost concentrically in the inner cavity. (Danze surface density: 30-35 g / m 2 , fineness: about 2.5 denier, thickness: 0.15 thigh
  • a sheet of PGA non-woven fabric is formed into a tube with an inner diameter of about 52 mm.
  • a molded product—one end surface corresponding to the longitudinal direction of the tube is stitched with surgical thread and its surface is made hydrophilic by plasma irradiation), and a tube made of PGA nonwoven fabric is attached to the inner surface.
  • the small intestine of a 9 to 15 kg beagle dog weighing 8 to 15 kg was cut, and the anal end of the cut small intestine was joined to a jejunocutaneous fistula that formed an ostomy, and the small intestine was placed on the anal side.
  • the bandits infiltrated the artificial gastrointestinal tract (the base layer-equivalent portion 20 'with autologous blood before application). It was confirmed that the various trophic factors contained in the blood further promoted the regeneration of autologous tissue. (The same applies to the following.) Replace both ends of the inner layer 40 of the artificial gastrointestinal tract with each end of the autologous small intestine after resection, and the inner layer and the autologous small intestine overlap by about 5 bands.
  • the artificial gastrointestinal tract of the present invention (more precisely, the inner layer of the sheet) is sewn from the mucous membrane side of the stomach (using 3-0 proline suture), and then the defective portion is tested.
  • the outer layer 30 size: 40 IM X 4 O mm
  • the base layer faces and contacts the inner layer.
  • An artificial gastrointestinal tract (exactly a sheet) was applied by covering the serosal side as described above and suturing its end to the anterior wall (using 3-0 proline suture).
  • the artificial gastrointestinal tract (to be more precise, the inner layer of a sheet) is sewn from the mucous membrane side of the stomach, and then the defective part is put on the silicone sheet 40 ( Thickness: 1.0 dragon, size: 50 mmX 50 iMi) is sewn from the mucous membrane side of the stomach (using a 3-0 proline suture), and the defect is made of microfibrillated collagen Outer layer 30 with base layer equivalent part 20 ′ formed on it.
  • An artificial gastrointestinal tract (exactly a sheet shape) was applied by stitching to the front wall (using 3-0 proline suture) (where the same conditions as in Test Example 2 were applied to the test animal). The same antibiotics and antifungals were administered). In addition, in this artificial gastrointestinal tract, autologous blood was infiltrated into the base layer equivalent part 20 'before application.
  • the silicone sheet was removed endoscopically. Observation with a gastrointestinal endoscope revealed regeneration of the autologous stomach wall. Histological observation confirmed that the regenerated stomach wall had submucosal tissue consisting mainly of connective tissue. Three months after the operation, regeneration of the mucosal layer was observed on the layer of regenerated submucosa (histological observation).
  • the artificial gastrointestinal tract of the present invention does not require a special treatment, such as freezing, freeze-drying, and even heat dehydration crosslinking, for the collagen constituting the base layer 20 as in the conventional example. It was found that the shape was maintained, and the tissue regeneration ability equivalent to that of the conventional example was exhibited even without performing autologous blood infiltration into the base layer.
  • Test example 3 artificial esophagus 1
  • the inner layer (inner diameter: 15 mm, thickness: 0.5 recitation) was inserted into each end of the esophagus (the overlap between the artificial gastrointestinal tract and the esophagus was approximately 5 mm), and a single knot suture was performed between the esophagus and the autoesophagus with 3-0 proline suture. .
  • the outer layer 30 with the base layer 20 prepared in Test Example 1 so that the base layer 20 is on the outer periphery of the silicone tube (however, the neutral collagen solution before gelation used in this test example includes:
  • the artificial gastrointestinal tract of the present invention was applied to the esophageal defect by wrapping a wound around which the basic fibroblast growth stimulating factor 1b FGF- was added in an amount of 1 gZml, and sewn the ends together.
  • the mode of connection with the autoesophagus is the same as in Test Example 1).
  • a method for incorporating bFGF into the portion corresponding to the base layer is to drop bFGF (concentration: 10 ⁇ g / ml) dissolved in PBS onto the portion corresponding to the base layer so as to have a volume of 1 gZml—corresponding to the portion corresponding to the base layer. Then, it was left to stand at room temperature for 1 hour.
  • Test example 4 artificial esophagus 3)
  • the oral submucosa minced into 5mm square was added to the DM E (Dulbecco 's modified eagle ) medium 20ml plus 10% ⁇ shea fetal serum and cultured in flasks 80cm 2 (37 ° (: under 5% C_ ⁇ 2).
  • the medium was changed every 2-3 days, increasing only adherent cells Proliferate (suspended cells are eliminated from the system when the medium is changed).
  • the grown adherent cells are passaged as necessary, and used when the required number of cells has been obtained.
  • the collected oral mucosa was placed in dispase (3 OU / ml) at 4 ° C overnight to detach only the epithelial cells, and this was placed in a 0.25% trypsin solution (37 ° C).
  • the cells thus obtained are cultured in an 8 Ocm 2 collagen-coated flask together with 20 ml of a bloodless medium for human keratinocytes manufactured by Gibco (37 ° C, 5% C% 2 ).
  • the medium is replaced every 2-3 days, and only adherent cells are grown (suspended cells are eliminated from the system when the medium is replaced).
  • the grown adherent cells are passaged as necessary, and used when the required number of cells has been obtained.
  • Test Example 5 An animal experiment was performed in the same manner as in Test Example 3 except that an artificial digestive tract containing no basic fibroblast growth stimulating factor—bFGF— was used in the base layer 20 of the artificial digestive tract. One month after the operation (when the silicon tube was removed), the number of new blood vessels in the regenerated tissue was 51 soil 6.6Z field-microscope. Test example 5 (artificial esophagus 5)
  • GC is composed of gel collagen
  • SC is microfibrous collagen
  • the self-tissue regeneration-guided artificial gastrointestinal tract (composite consisting of inner layer, base layer, and outer layer) that regenerates the defect has been described, but the scaffolding function and support function for self-tissue regeneration are the artificial gastrointestinal tract. Since it is provided by a composite consisting of a base layer and an outer layer, the composite consisting of the base layer and the outer layer is applied so as to cover the periphery of the anastomotic portion during gastrointestinal surgery. It can be used as a gastrointestinal anastomosis cover material that has the function of inducing the wound healing ability inherent in the living body and inducing angiogenesis. The invention's effect
  • the artificial gastrointestinal tract of the present invention can be stably supplied without being influenced by the source thereof, and after application in a living body, remains until the autologous digestive tract regenerates, thereby exhibiting the action of promoting regeneration of self-tissue. However, it gradually decomposes and absorbs and replaces the self-tissue, so it can be used safely without inflammation. Also, since the regenerating tissue is the autologous digestive tract, there is no need to take immunosuppressive drugs as in transplantation, and there is no fear of rejection. Furthermore, since it induces regeneration of the autologous gastrointestinal tract, it is extremely useful for treating people who have lost a large amount of gastrointestinal tract due to short bowel syndrome or various diseases for which there was no conventional treatment.
  • the base layer constituting the artificial gastrointestinal tract of the present invention can be prepared by a simpler operation than a conventional artificial gastrointestinal tract, and since these operations do not include operations in a high-temperature atmosphere, Even a substance which is weak to heat or a chemical substance can be used as a self-organization regeneration supporting substance contained in the base layer without lowering its activity or survival rate.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Chemical & Material Sciences (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)

Abstract

It is intended to provide an artificial digestive tract which would not impose any serious burden to a patient, is free from any problems in supply and can be safely used for clinical purposes. An artificial digestive tract characterized by having a layer 30 made of a bioabsorbable material on the outer face of a layer 20 made of a gelled collagen containing at least one member selected from among nutrients, proliferation stimulants, differentiation inducers, antibiotics and antifungal agents.

Description

明 細 書  Specification
人工消化管 技術分野 Artificial digestive tract technical field
本発明は、 人工消化管、 特に食道、 胃、 小腸、 大腸、 胆管の欠損部位を補填す ることによって、 消化管の機能を再建し得る代用臓器に関する。 背景技術  The present invention relates to a substitute organ capable of restoring the function of the gastrointestinal tract by replenishing a defect in the artificial gastrointestinal tract, particularly the esophagus, stomach, small intestine, large intestine, and bile duct. Background art
各種疾患、 外傷、 あるいは手術の術式によって、 消化管が損傷したり、 あるい は切除した場合に、 当該部位を再建する必要があるが、 可能であれば、 直接再鏠 合が行われる。  If the gastrointestinal tract is damaged or removed due to various diseases, trauma, or surgical procedures, the site needs to be reconstructed, but if possible, direct fusion is performed.
しかしながら、 その再建範囲には自ずと限界があり、 欠損部位が広範囲に渡る 場合には、 他の消化管、 例えば胃管、 小腸、 大腸等を用いて再建が行われるが、 これらの再建臓器の採取のために本来の術野の外に外科的処置 (皮膚切開、 開胸 術、 開腹術等) が必要になるなど、 侵襲の大きな手術となりやすい。  However, the reconstruction range is naturally limited, and if the defect site is widespread, reconstruction is performed using other gastrointestinal tracts, such as the stomach tract, small intestine, and large intestine. Because of this, surgical procedures (skin incision, thoracotomy, laparotomy, etc.) are required outside the original surgical field, making surgery more invasive.
また、 短腸症候群などのように多量の消化管を各種疾患にて失った場合には、 再建に利用し得る消化管がもう残っていないため、 このような他の消化管を再建 に利用することが不可能であり、 栄養吸収障害のために命を失ったり、 在宅の中 心静脈栄養下での生活を余儀なくされる等の問題がある。  When a large amount of gastrointestinal tract is lost due to various diseases such as short bowel syndrome, there is no longer any gastrointestinal tract that can be used for reconstruction. It is impossible to do so, and there are problems such as loss of life due to malnutrition and the need to live at home under cardiovascular nutrition.
更に、 小腸を用いた胆管空腸吻合術等の胆道変更を伴う胆道再建術では、 胆道 系がファー夕一乳頭部を介さずに胆管と小腸とが直接連結されるため、 乳頭括約 筋の機能が失われる結果、 小腸内容物の胆道内への逆流や、 そのことから派生す る細菌感染による上行性胆管炎などの合併症を併発することがある。  In addition, in biliary reconstruction with biliary tract alteration, such as biliary jejunostomy using the small intestine, the function of the papillary sphincter is due to the fact that the biliary tract is directly connected to the small intestine without the intervention of the fur nipple. As a result, complications such as reflux of the contents of the small intestine into the biliary tract and ascending cholangitis due to bacterial infection resulting therefrom may be present.
尚、 これまでに合成高分子からなるチューブを用いた多くの人工消化管が試み られてきたが、 これらは生体にとっては異物であるため、 いずれも一定期間後に 生体から拒絶され、 成果を上げるに至っていない。  Many artificial gastrointestinal tracts using tubes made of synthetic polymers have been tried so far, but since these are foreign substances to the living body, they are all rejected from the living body after a certain period of time, and Not reached.
また、 小腸に関し臓器移植も試みられているが、 消化管はその内腔を食べ物が 通過し直接外界と接する部分であるので、 腎臓や肝臓等の移植とは異なり、 免疫 抑制の調節が困難であり未だ一般的ではない。 その上、 移植医療には、 拒絶反応 を避けるために免疫抑制剤の投与を一生涯続けなければならないという問題や、 臓器を提供するドナーの存在が不可欠であるという問題が常につきまとつている。 特に、 ドナー不足は深刻な問題である。 Attempts have also been made to transplant organs for the small intestine, but since the gastrointestinal tract is the part where food passes through and directly contacts the outside world, it is difficult to regulate immunosuppression, unlike kidney and liver transplants. Not yet common. Moreover, transplantation medicine has rejection The problem of having to administer immunosuppressive drugs for a lifetime to avoid infection and the problem of having an organ donor is essential. In particular, the shortage of donors is a serious problem.
これらの問題を解決すべく、 生体への適用後、 自己の組織と置換 '吸収されて しまう生体内分解吸収性材料からなる自己再生誘導型の人工消化管も試みられて いる (特開 2 0 0 1— 3 4 0 4 4 6号公報参照) ものの、 基層の作製工程が複雑 であり、 また自己組織の再生速度が遅く、 一部に消化管の狭窄が観察されるなど、 その実用性に改良の余地を未だ有するものであった。 発明の開示  In order to solve these problems, a self-regeneration-guided artificial gastrointestinal tract made of a biodegradable and absorbable material, which is replaced and absorbed by its own tissue after application to a living body, has also been attempted (Japanese Patent Application Laid-Open No. 20-210). However, the production process of the base layer is complicated, the regeneration speed of the self-tissue is slow, and the stenosis of the digestive tract is partially observed. There was still room for improvement. Disclosure of the invention
本発明は、 このような状況を改善すべくなされたものであって、 患者に多大な 負担を強いず、 且つ、 供給上の問題がなく、 しかも臨床的に安全に使用し得る人 ェ消化管を提供することを目的とする。  The present invention has been made to improve such a situation, and does not impose a great burden on the patient, has no supply problems, and can be used clinically safely. The purpose is to provide.
本発明は、 人工消化管であって、 その中に栄養物質、 増殖刺激因子、 分化誘導 因子、 抗生物質、 抗真菌剤の少なくとも 1種を含有してなるゲル化コラーゲンか らなる層 2 0の外面に生体内分解吸収性材料からなる層 3 0を有することを特徴 とする。  The present invention relates to an artificial gastrointestinal tract, comprising a layer 20 made of gelled collagen, which contains at least one of nutrients, growth stimulating factors, differentiation inducing factors, antibiotics, and antifungal agents. It is characterized by having a layer 30 made of a biodegradable and absorbable material on the outer surface.
ここで、 ゲル化コラーゲンからなる層 (以下、 基層という) とは、 冷コラーゲ ン塩酸溶液に塩基性バッファーを加えて、 該冷コラーゲン塩酸溶液を中性化し、 3 7 °Cに加温することによりゲル化したコラ一ゲン溶液からなる層を意味する。 要するに、 コラ一ゲン溶液が流動性を失って固化した状態、 具体的には、 寒天状 に、 一定の堅さと形をもった弾性のある一様なハイド口ゲルであって、 コラーゲ ン分子が互いにつながりあって立体網目構造をとり、 その空間を水などの液体が 満たしている状態にあるものである。 尚、 この層は、 自己組織再生のための足場 (以下、 コラーゲンマトリックス又は単に、 マトリックスという) となるもので あると同時に、 その中に少なくとも 1種含有せしめてなる自己組織再生を直接的 及び Z又は間接的に支援する物質、 例えば栄養物質、 増殖刺激因子、 分化誘導因 子、 抗生物質、 抗真菌剤等を局所に所望の期間保持し得る機能材としても働くも のである。 ここで、 該自己組織再生支援物質は、 複数種のそれらを単一の基層に 含有せしめてもいいし、 また複数の層からなる基層の各層にそれぞれ別個のもの を含有せしめてもよい。 更に、 含有せしめる形態としては、 該基層中にすべて含 有せしめてもよいし、 また一部をその中に、 そして一部をその表面に含有せしめ てもよレヽ。 ― Here, the layer made of gelled collagen (hereinafter referred to as a base layer) is a solution in which a basic buffer is added to a cold collagen hydrochloride solution, the cold collagen hydrochloride solution is neutralized, and heated to 37 ° C. Means a layer composed of a collagen solution gelled by In short, the collagen solution loses its fluidity and solidifies, specifically, an agar-like, elastic, uniform hydrated gel with a certain hardness and shape, and the collagen molecules are They are connected to each other to form a three-dimensional network structure, and the space is filled with liquid such as water. This layer serves as a scaffold for self-tissue regeneration (hereinafter, referred to as a collagen matrix or simply as a matrix), and at the same time directly and self-regenerates a self-tissue containing at least one kind contained therein. Alternatively, it also functions as a functional material capable of locally retaining a substance that supports indirectly, for example, a nutrient substance, a growth stimulating factor, a differentiation inducing factor, an antibiotic, an antifungal agent, or the like for a desired period of time. Here, the self-organizing tissue regeneration supporting substance converts a plurality of species into a single base layer. They may be contained, or each layer of the base layer composed of a plurality of layers may contain a different one. Further, as a form to be contained, the base layer may be entirely contained, or a part thereof may be contained therein and a part thereof may be contained on the surface thereof. ―
'図面の簡単な説明 'Brief description of the drawings
図 1は本発明の人工消化管 (チューブ状) の壁構造を模式的に示した縦断面図 である。  FIG. 1 is a longitudinal sectional view schematically showing the wall structure of an artificial digestive tract (tubular) of the present invention.
図 2は試験例 3及び比較試験例 3における再生組織中の血管新生状況を示す図 である。  FIG. 2 is a diagram showing the state of angiogenesis in a regenerated tissue in Test Example 3 and Comparative Test Example 3.
ここで各符号は、  Where each code is
2 0 ゲル化コラーゲンからなる層 (基層)  20 Layer consisting of gelled collagen (base layer)
2 0 ' 微細線維化コラーゲンからなる層 (基層相当部分)  20 'Layer composed of microfibrillated collagen (base layer equivalent part)
3 0 生体内分解吸収性材料からなる層 (外層)  30 Layer made of biodegradable and absorbable material (outer layer)
4 0 消化液耐性を有する材料からなる層 (内層)  40 0 Layer made of digestive juice-resistant material (inner layer)
を、 それぞれ表わす。 発明を実施するための最良の形態 , Respectively. BEST MODE FOR CARRYING OUT THE INVENTION
基層を構成するコラーゲンの原料としては、 従来から用いられている各種のコ ラーゲン、 例えば中性可溶化コラーゲン、 酸可溶化コラーゲン、 アルカリ可溶化 コラーゲン、 酵素可溶化コラーゲンを使用することができるが、 酵素、 例えばべ プシン、 トリプシン、 キモトリブシン、 パパイン、 プロナーゼなどによって処理 した酵素可溶化コラーゲンが好ましい。 コラーゲン分子中の抗原基であるテロべ プチドが確実に除去されて抗原性がほとんどなくなるからである。  As a raw material of the collagen constituting the base layer, various types of conventionally used collagens such as neutral solubilized collagen, acid solubilized collagen, alkali solubilized collagen, and enzyme solubilized collagen can be used. Enzyme-solubilized collagen treated with enzymes, such as, for example, bepsin, trypsin, chymotrypsin, papain, pronase, is preferred. This is because telopeptide, which is an antigen group in the collagen molecule, is reliably removed, and the antigenicity is almost eliminated.
これらコラーゲンの由来は特に限定されず、 ゥシ、 ブタ、 ゥサギ、 ヒッジ、 力 ンガルー、 鳥、 魚などの動物の皮、 骨、 軟骨、 腱、 臓器などから抽出 '精製して 得られる I型コラーゲン、 又は I型コラーゲンと III型コラーゲンの混合物を用 いることができる。 場合によっては、 ヒ ト遺伝子組換えコラーゲンを用いてもよ レ、。 尚、 この基層の厚さは、 5 〜 2 0讓、 好ましくは 5 mmである。 厚さが 2 0 mm を超えると、 局所へ縫着することが困難であり、 5 mm未満であると、 この層の 分解吸収が早過ぎて、 自己組織が再生し終わるまでその形状が維持されないから である。 The origin of these collagens is not particularly limited, and type I collagen obtained by extracting and purifying from skin, bone, cartilage, tendons, organs, and the like of animals such as sea lions, pigs, night egrets, sheep, lignaroos, birds, and fish Alternatively, a mixture of type I collagen and type III collagen can be used. In some cases, human recombinant collagen may be used. The thickness of the base layer is 5 to 20 s, preferably 5 mm. If the thickness is more than 20 mm, it is difficult to sew locally, and if it is less than 5 mm, the layer absorbs too quickly and cannot maintain its shape until the self-organization has been regenerated From.
一方、 生体内分解吸収性材料からなる層 3 0 (以下、 外層という) の構成材料 としては、 ポリグリコール酸、 ポリ乳酸、 グリコール酸と乳酸との共重合体、 乳 酸と ε —力プロラクトンとの共重合体、 ポリジォキサノン、 及びダリコール酸と トリメチレン力一ポネートとの共重合体が挙げられる。 尚、 外層は、 自己組織が 再生するまで摩擦などの物理的外力によるコラーゲンマトリックスの散逸を防止 すると共に、 コラーゲンマトリックス中への線維芽細胞やマクロファージ等の炎 症細胞の過剰な侵入を防ぐバリヤの役目も果たし、 自己組織の再生、 分化が起る ための最適な環境をコラーゲンマトリックスに与えるものである。 更に、 この層 の存在は、 自己組織再生の過程における基層の収縮を防止するとともに、 手術時 の縫合性の向上にも資するし、 コラーゲンマトリックスが裂けたり、 たわみ等に よるしわの発生をも抑止し得る。  On the other hand, the constituent materials of the layer 30 (hereinafter referred to as the outer layer) made of a biodegradable and absorbable material include polyglycolic acid, polylactic acid, a copolymer of glycolic acid and lactic acid, and lactate and ε-force prolactone. And polydioxanone, and a copolymer of dalicholate and trimethylene monoponate. The outer layer prevents the collagen matrix from dissipating due to physical external forces such as friction until the self-tissue regenerates, and a barrier that prevents excessive invasion of inflammatory cells such as fibroblasts and macrophages into the collagen matrix. It also plays a role and provides the collagen matrix with an optimal environment for self-tissue regeneration and differentiation. In addition, the presence of this layer prevents the contraction of the base layer during the process of self-tissue regeneration, contributes to improved suturing at the time of surgery, and suppresses the occurrence of wrinkles due to tearing or bending of the collagen matrix. I can do it.
この層 3 0の具体的な使用形態は、 不織布状のシート又はチューブである。 尚、 この不織布状のシートは、 通常、 該材料の線維化 (溶融紡糸) —延伸→編 成 (筒編み) —不織布化 (該編成したものを折りたたんでニードルパンチング) →圧密 (熱プレス) の各操作を経て作製される (該チュ一ブは、 このようにして 作製された該シートを筒状に成形することによって得ればよい)。  A specific use form of this layer 30 is a nonwoven sheet or tube. In addition, this non-woven sheet is usually formed by fibrosis (melt spinning) of the material, stretching → knitting (tubular knitting), non-woven fabric (folding of the knitted material and needle punching) → consolidation (hot pressing). It is manufactured through each operation (the tube may be obtained by molding the sheet thus manufactured into a cylindrical shape).
本発明の人工消化管は、 基層 2 0の内面に、 消化液耐性を有する材料からなる 層 4 0 (以下、 内層という) を更に有するものであってもよい。 ここで、 消化液 耐性を有する材料としては、 シリコーンチューブ (医療分野では、 シリコ一ンス テントとしてよく使われている) やシリコーンシートが挙げられる。 尚、 この層 は、 自己組織が再生するまでの間、 コラーゲンマトリックスの内腔 (又は内面) を食物や消化液との接触から隔離する隔壁の役目を果たすと共に、 該内腔を所定 形状に保持する働きをする (したがって、 この材料には消化液耐性とともに適度 な剛性も要求される。 尚、 この層 4 0は自己組織再生後に抜去する)。 したがつ て、 この層は、 商品として流通する段階から基層 2 0及び外層 3 0と一緒に組み 合わせた形態であってもよいし、 患者に適用する前に前 2者と組み合わせてもよ い。 The artificial digestive tract of the present invention may further have a layer 40 (hereinafter, referred to as an inner layer) made of a material having digestive juice resistance on the inner surface of the base layer 20. Here, as a material having digestive juice resistance, a silicone tube (commonly used as a silicone tent in the medical field) and a silicone sheet can be cited. This layer functions as a septum for isolating the lumen (or inner surface) of the collagen matrix from contact with food or digestive fluid, and keeps the lumen in a predetermined shape until the self-tissue is regenerated. (Accordingly, this material is required to have not only digestive juice resistance but also appropriate stiffness. Note that this layer 40 is removed after self-tissue regeneration). Therefore, this layer is assembled together with the base layer 20 and the outer layer 30 from the stage of distribution as a product. It may be in a combined form or combined with the first two before applying to the patient.
次に人工消化管の作り方であるが、 一般的には以下のようにして行なえばよい。 Next, how to make an artificial gastrointestinal tract is generally performed as follows.
( 1 ) コラーゲン中性溶液の準備 (1) Preparation of neutral collagen solution
冷コラーゲンの約 1 N塩酸溶液 (pH=約 3、 コラーゲン濃度:好ましくは約 About 1 N hydrochloric acid solution of cold collagen (pH = about 3, collagen concentration: preferably about
0 . 5〜3重量%、 特に好ましくは約 0 . 5〜 1重量%) に塩基性バッファ一 (炭酸水素ナトリゥム及び H E P E Sを水酸化ナトリゥムに溶解せしめたもの) を加えることによって、 該コラーゲン塩酸溶液を中性にする。 By adding a basic buffer (sodium hydrogen carbonate and HEPES dissolved in sodium hydroxide) to 0.5 to 3% by weight, particularly preferably about 0.5 to 1% by weight, the collagen hydrochloride solution is added. To neutral.
( 2 ) 自己組織再生支援物質の導入  (2) Introduction of self-organizing regeneration support substances
該コラーゲン中性溶液中に所定量の自己組織再生支援物質を撹拌下に溶かし込 む。 ここで、 自己組織再生支援物質としては、 栄養物質、 例えばアミノ酸、 ビ夕 ミン、 グルコース、 電解質等;増殖刺激因子や分化誘導因子、 例えば塩基性及び 酸性線維芽細胞増殖因子 (b F G F )、 血管内皮細胞増殖因子 (V E G F )、 ステ ロイド、 レチノイン酸等;感染予防薬、 例えば抗生物質、 抗真菌剤等が挙げられ る。 これらの自己組織再生支援物質は、 所望により 2種以上用いてもよい。 場合 によっては更に、 自己の消化管や皮膚、 口腔内から採取した線維芽細胞、 上皮細 胞、 筋肉細胞及びこれらの幹細胞 (間葉系幹細胞など) を加えてもよい。  A predetermined amount of a self-tissue regeneration supporting substance is dissolved in the collagen neutral solution with stirring. Here, self-tissue regeneration supporting substances include nutrient substances such as amino acids, bimin, glucose, electrolytes, etc .; growth stimulating factors and differentiation inducing factors such as basic and acidic fibroblast growth factor (bFGF), vascular Endothelial cell growth factor (VEGF), steroids, retinoic acid and the like; prophylactic agents for infections, for example, antibiotics, antifungal agents and the like. Two or more of these self-tissue regeneration supporting substances may be used as desired. In some cases, fibroblasts, epithelial cells, muscle cells and their stem cells (such as mesenchymal stem cells) collected from their own digestive tract, skin, and oral cavity may be added.
( 3 ) 基層 2 0の形成  (3) Formation of base layer 20
外層 3 0を構成する生体内分解吸収性材料 (以下、 外層材という) を水平に収 容し得るバットの底面に、 シート状の外層材を敷き、 そこへ前記操作で準備した その中に自己組織再生支援物質 (場合によっては、 前記の自己細胞及び/又はそ れらの幹細胞を更に含む) を含むコラーゲン中性溶液の所定量を注ぎ込み、 次い で該コラーゲン中性溶液を約 3 7 °Cに加温し、 該コラーゲン中性溶液をゲル化さ せる。 加温後 1 0分程度で外層 3 0の上面にゲル化コラーゲンからなる基層 2 0を一体的に有する材料が形成される。 ここで、 該外層材の適用に先立ち、 そ の表面、 すなわち基層 2 0と接する側の表面に、 プラズマ放電、 オゾン照射など の処理を行っておくことが好ましい。 該材料に親水性が付与され基層との一体化 がはかれるからである。  A sheet-shaped outer layer material is laid on the bottom of a bat capable of horizontally storing the biodegradable and absorbable material (hereinafter referred to as the outer layer material) constituting the outer layer 30, and the self-prepared therein is prepared by the above operation. A predetermined amount of a neutral solution of collagen containing a tissue regeneration supporting substance (in some cases, further containing the autologous cells and / or their stem cells) is poured, and then the collagen neutral solution is poured at about 37 ° C. Heat to C to gel the neutral collagen solution. In about 10 minutes after the heating, a material integrally having the base layer 20 made of gelled collagen on the upper surface of the outer layer 30 is formed. Here, prior to the application of the outer layer material, it is preferable that the surface thereof, that is, the surface in contact with the base layer 20 be subjected to treatment such as plasma discharge and ozone irradiation. This is because the material is given hydrophilicity and can be integrated with the base layer.
( 4 ) 内層の適用 先の工程で得られたシート状の、 その上に外層 3 0を有する基層 2 0を、 所定 の径を有する内層 4 0、 例えばシリコーンチューブの外面に巻き付け、 筒状に縫 合する (手術糸を使用) ことによって内層 4 0—基層 2 0—外層 3 0からなる人 ェ消化管が作製される。 尚、 更なる操作、 例えば市場流通のための容器への収容 や滅菌は常法に従って行えばよい。 (4) Application of inner layer The base layer 20 having the outer layer 30 on the sheet shape obtained in the previous step is wound around the inner layer 40 having a predetermined diameter, for example, the outer surface of a silicone tube, and stitched into a tubular shape (surgical thread) By using this, a human gastrointestinal tract consisting of the inner layer 40—the base layer 20—the outer layer 30 is produced. Further operations such as storage in a container for market distribution and sterilization may be performed according to a conventional method.
以上、 本発明の人工消化管の製造方法を、 シート状の基層 2 0及び外層 3 0を 用いる方法にて説明してきたが、 チューブ状の外層材を用いて作製することもで きる。 その場合には、 前記の工程 (3 ) におけるコラーゲン溶液の注ぎ込みを以 下のように行えばよい。  As described above, the method for producing an artificial digestive tract of the present invention has been described using the method using the sheet-like base layer 20 and the outer layer 30. However, the artificial digestive tract can also be produced using a tube-like outer layer material. In that case, the collagen solution may be poured in the above step (3) as follows.
『基層 2 0の外径に相当する内径を有するチューブ—型材としてのチューブであ る一内に基層 2 0の内径に相当する外径を有する棒状体 (内層 4 0を構成する材 料からなるチューブを使用することが便利である) を配し、 該棒状体と該型材と してのチューブとの間の空所に所定量のその中に自己組織再生支援物質 (場合に よっては、 前記の自己細胞及び/又はそれらの幹細胞を更に含む) を含むコラー ゲン中性溶液を注ぎ込む。 ここで、 外層材は、 流し込みの前に型材としての チューブの内壁面に添設するか、 又は該外層材自身を型材としてのチューブとし て用いればよい。 尚、 該外層材の適用に先立ち、 該外層材の基層 2 0と接する側 の表面に、 プラズマ放電、 オゾン照射などの親水化処理を行っておくことが好ま しいこと、 この変法でも同様である。 また、 外層材は、 前記の変法でチューブ状 の基層 2 0が形成された後 (正確には、 基層 2 0となるコラーゲンをゲル化させ た後)、 その外側にチューブ状の外層材を基層 2 0の外面にかぶせればよい。 本発明の消化管においては、 基層 2 0が、 その中に含有せしめられた自己組織 再生支援物質を所望の期間その中に保持し得る機能を有していることが求められ る。 その機能の簡便なる検証法であるが、 蛍光マーカ一ビーズ (ベクソン ' ディッキンソン社製キヤリブライトビーズ一商品名—が例示される。 尚、 該ビ一 ズは 6 m の直径を有するポリメチルメタクリレートからなるビーズである) を 1 0 , 0 0 0個 Zml—基層その中に含有せしめた基層を P B S中に緩やかな撹拌 下に留置し、 所定の経過時間毎に該基層中ビーズの残存率を調べる方法が例示さ れる。 もし、 所定の経過時間後においても該ビーズの残存率が所定のレベルを維 持しているならば、 該基層は所望の該自己組織再生支援物質保持機能を有してい る、 と判定される。 該基層が該自己組織再生支援物質保持機能を有しているなら ば、 該基層構成材料としてのゲル化コラーゲンが水可溶性とならない in vitro 条件においては、 P B Sとの接触初期に該基層中に形成されるであろう物理的な 水路を介した該ビーズの放出以外起らないからである。 因みに、 本願発明の人工 消化管の基層は、 24時間経過後においても 80 %以上の残存率を示すものであ る。 尚、 微細線維化コラーゲンからなる基層 (該ビーズ懸濁液をそれに含浸せし めることによって該ビーズを導入したもの。 その存在量は、 ゲル化コラーゲンか らなる基層に同じ) では、 5時間経過時点ですでに 20%以下の残存率しか示さ ない。 試験例 “Tube having an inner diameter corresponding to the outer diameter of the base layer 20-a tube as a mold material, and a rod-shaped body having an outer diameter corresponding to the inner diameter of the base layer 20 (consisting of the material constituting the inner layer 40) It is convenient to use a tube), and a predetermined amount of a self-tissue regeneration supporting substance (in some cases, the above-mentioned substance) is placed in a space between the rod-shaped body and the tube as the mold. (Including further autologous cells and / or their stem cells). Here, the outer layer material may be attached to the inner wall surface of the tube as a mold before pouring, or the outer layer material itself may be used as a tube as a mold. Prior to application of the outer layer material, it is preferable that the surface of the outer layer material in contact with the base layer 20 is subjected to a hydrophilic treatment such as plasma discharge or ozone irradiation. is there. In addition, after the tubular base layer 20 is formed by the above-mentioned modification (to be precise, after the collagen which becomes the base layer 20 is gelled), the tubular outer layer material is provided on the outside thereof. What is necessary is just to cover on the outer surface of the base layer 20. In the gastrointestinal tract of the present invention, the base layer 20 is required to have a function capable of retaining the self-tissue regeneration supporting substance contained therein for a desired period. A simple method of verifying the function is exemplified by a fluorescent marker bead (a brand name of Bebson's Dickinson's Caribrite bead; trade name. The bead is made of polymethyl methacrylate having a diameter of 6 m). The base layer containing 10, 000 Zml-substrates is placed in PBS with gentle stirring, and the residual ratio of beads in the substratum is checked at predetermined intervals. The method is illustrated. If the remaining ratio of the beads remains at a predetermined level even after a predetermined elapsed time. If it has, the base layer is determined to have the desired self-tissue regeneration supporting substance holding function. If the base layer has the function of holding the self-tissue regeneration supporting substance, it is formed in the base layer at the initial stage of contact with PBS under in vitro conditions in which the gelled collagen as the base layer constituent material is not water-soluble. Because it does not occur other than the release of the beads through the physical channels that would be performed. Incidentally, the base layer of the artificial gastrointestinal tract of the present invention shows a residual rate of 80% or more even after 24 hours. In addition, in the base layer composed of microfibrillated collagen (in which the beads were introduced by impregnating the bead suspension with the same amount as the base layer composed of gelled collagen), 5 hours At the time of the survey, the surviving rate is less than 20%. Test example
試験例 1 (人工小腸一 1) Test example 1 (artificial small intestine 1)
酵素可溶化コラーゲンの塩酸溶液 (pH= 3. 0、 コラーゲン濃度 =0. 5重 量%)、 5倍濃度の Du 1 b e c c o改変 E a g 1 e培地、 塩基性バッファー Hydrochloric acid solution of enzyme-solubilized collagen (pH = 3.0, collagen concentration = 0.5% by weight), 5-fold concentrated Du1becco modified Eag1e medium, basic buffer
(N aHC03: 2. 2 g、 HEPES : 4. 8 gを 0. 05MNaOHに溶か して 100ml としたもの) を 7 : 2 : 1 (容量比) の割合で混合することによ り中性コラ一ゲン溶液を得た。 尚、 該中性コラーゲン溶液には、 感染予防として、 抗生物質のぺニシリン: 100単位 Zml、 ストレプトマイシン: 100 g/ml 及び抗真菌剤のアンフォテリシン B : 0. 25 g/ml (ここで、 ml は中性コ ラーゲン溶液のそれである) を添加した。 (N aHC0 3: 2. 2 g , HEPES: 4. by melt-in the 8 g 0. 05MNaOH those with 100ml) of 7: 2: 1 in Ri by the mixing in a ratio of (volume ratio) An aqueous collagen solution was obtained. In order to prevent infection, the neutral collagen solution contains 100 μm / ml of penicillin as an antibiotic, 100 g / ml of streptomycin and 0.25 g / ml of amphotericin B as an antifungal agent (where ml is , Which is that of a neutral collagen solution).
その底に、 グンゼ社製の面密度: 30〜35g/m2、 繊度:約 2. 5デニール、 厚み: 0. 1 5蘭 の P GA不織布からなるシート (予めその表面をプラズマ照 射にて親水化したもの。 外層 30を構成する外層材である) をほぼ平らに載置し、 該バット内に前記の中性コラーゲン溶液を流し込み、 次いで該中性コラーゲン溶 液を約 37°CX 10分間加温し、 ゲル化コラーゲンからなる基層 20 (厚み:約 5mm) をその上に形成せしめた外層 30を得た。 On the bottom, a sheet made of Gunze's PGA nonwoven fabric with an area density of 30 to 35 g / m 2 , a fineness of about 2.5 denier, and a thickness of 0.15 orchid (the surface was previously irradiated with plasma. Is placed almost flat, and the neutral collagen solution is poured into the vat. Then, the neutral collagen solution is poured at about 37 ° C. for 10 minutes. After heating, an outer layer 30 having a base layer 20 (thickness: about 5 mm) made of gelled collagen formed thereon was obtained.
8〜1 5kg のビーグル犬 (9頭) の小腸を切断、 該切断された小腸の肛門側 の端部を、 人工肛門を形成した空腸皮膚瘻に接合した上で該肛門側の小腸 50mm を切除し、 シリコーンチューブ 40、 すなわち内層 (内径: Ι Οιηιικ 厚み: 0. 5匪) の両端を切除後の自己小腸の各端部にそれぞれ内挿 (人工消化管と自 己小腸とのォ一バーラップは約 5 nun) し、 自己小腸との間を 3— 0プローリン縫 合糸にて単結節縫合した。 該シリコーンチューブの外周に基層 20が内側となる よう前記の基層付き外層を巻き付け、 その端を縫いあわせることによって本発明 の人工消化管を小腸欠損部に適用した。 尚、 先に切断された小腸の一方の端部、 すなわち胃側の端部は、 人工消化管と自己小腸との肛門側縫合部より肛門側にお いて自己小腸にそれらの内腔が連通するように接合した (人工消化管と自己小腸 との接合態様を図 に示す)。 Cut the small intestine of an 8- to 15-kg beagle dog (nine dogs), join the cut end of the cut small intestine on the anal side to the jejunal cutaneous fistula that formed the colostomy, and then cut the small intestine 50 mm on the anal side The silicone tube 40, that is, the inner layer (inner diameter: Ι Οιηιικ thickness: 0.5 marauder), is inserted into each end of the autologous small intestine after the excision (one of the artificial digestive tract and autologous small intestine). The burlap was about 5 nun), and a single knot was sutured with the autologous small intestine using 3-0 proline suture. The outer layer with the base layer was wound around the outer periphery of the silicone tube so that the base layer 20 was on the inside, and the ends were sewn together to apply the artificial digestive tract of the present invention to the small intestine defect. One end of the previously cut small intestine, that is, the end on the stomach side, communicates with the lumen of the autologous small intestine at the anal side from the suture portion between the artificial digestive tract and the autologous small intestine. (The junction between the artificial digestive tract and the autologous small intestine is shown in the figure).
術後 1ヶ月で、 該シリコーンチューブを内視鏡的に抜去した。 消化管内視鏡で の観察にて、 内腔を保った自己小腸の再生を認めた。 また、 再生の進行に伴うゲ ル化コラーゲンからなる基層 20の収縮も認められなかった。 組織学的観察にて、 再生した小腸壁は主に結合組織からなる粘膜下組織をもっていることを確認した。 術後 3ヶ月では、 再生した粘膜下組織の層の上に粘膜層の再生を認めた (組織学 的観察)。 比較試験例一 1 (人工小腸一 2)  One month after the operation, the silicone tube was removed endoscopically. Observation with a gastrointestinal endoscope revealed regeneration of the autologous small intestine maintaining the lumen. In addition, shrinkage of the base layer 20 made of gelled collagen with the progress of regeneration was not observed. Histological observation confirmed that the regenerated small intestinal wall had submucosal tissue consisting mainly of connective tissue. Three months after surgery, regeneration of the mucosal layer was observed on the layer of regenerated submucosa (histological observation). Comparative test example 1 (artificial small intestine 2)
シリコーンチューブ (内径: 10匪、 厚み: 0. 5I 1) をその内腔にほぼ同心 に配したチューブ (型材としてのチューブ。 テフロン R製。 内径:約 52IM) の 内面に PG A不織布からなるチューブ (ダンゼ社製の面密度: 30〜35g/m2、 繊度:約 2. 5デニール、 厚み: 0. 15腿 の P GA不織布からなるシ一トを 内径が約 52mm となるように筒状に成形したもの—チューブの長手方向に相当 する端面同士を手術糸で縫合一であって、 その表面をプラズマ照射にて親水化し たもの) を添設し、 その内面に PGA不織布からなるチューブが添設された型材 としてのチューブと該シリコーンチューブとの間の空所に酵素可溶化したコラー ゲンの塩酸溶液 (pH=3. 0、 コラーゲン濃度 =1. 0重量%) を導入し、 次い で、 該導入されたコラーゲン塩酸溶液を凍結 (約— 20t:x 24Hr) した後、 真 空下、 凍結乾燥 (約一 80°CX24Hr) し、 そして真空下、 熱脱水架橋処理 (約 130°CX 24Hr) に付し、 シリコーンチューブ、 すなわち内層 40と微細線維 化コラーゲンからなる基層相当部分 2 0 ' と P G A不織布からなるチューブ、 す なわち外層 3 0とからなる複合体である人工消化管を得た。 A tube made of PGA non-woven fabric on the inner surface of a tube (tube made of Teflon R. Inner diameter: about 52IM) in which a silicone tube (inner diameter: 10 bandages, thickness: 0.5I1) is arranged almost concentrically in the inner cavity. (Danze surface density: 30-35 g / m 2 , fineness: about 2.5 denier, thickness: 0.15 thigh A sheet of PGA non-woven fabric is formed into a tube with an inner diameter of about 52 mm. A molded product—one end surface corresponding to the longitudinal direction of the tube is stitched with surgical thread and its surface is made hydrophilic by plasma irradiation), and a tube made of PGA nonwoven fabric is attached to the inner surface. An enzyme-solubilized collagen solution of collagen (pH = 3.0, collagen concentration = 1.0% by weight) was introduced into the space between the tube and the silicone tube. Freeze the introduced collagen hydrochloride solution (about -20t: x 24Hr), lyophilized in vacuum (about 80 ° CX24Hr), and subjected to thermal dehydration cross-linking treatment (about 130 ° CX24Hr) under vacuum, silicone tube, inner layer 40 and fine fibers An artificial gastrointestinal tract was obtained, which was a composite comprising a base layer equivalent portion 20 'made of activated collagen and a tube made of a PGA nonwoven fabric, that is, an outer layer 30.
8 〜 1 5 kg のビーグル犬 (9頭) の小腸を切断、 該切断された小腸の肛門側 の端部を、 人工肛門を形成した空腸皮膚瘻に接合した上で該肛門側の小腸 5 0匪 を前記の人工消化管 (その適用前に、 基層相当部分 2 0 ' に自己血液を浸潤させ た。 血液中に含まれる自己の各種栄養因子によって、 自己組織の再生が更に促進 されることを期待した処置である。 以下、 同様) にて置換した (人工消化管の内 層 4 0の両端を、 切除後の自己小腸の各端部に、 該内層と該自己小腸とが約 5匪 オーバ—ラップするようにそれぞれ内挿し、 外層 3 0をその上に有する基層相当 部分 2 0 ' の両端を該自己小腸の各端部とを当接せしめた後、 該自己小腸と該人 ェ消化管とを 3— 0プロ一リン縫合糸にて単結節縫合した。 人工消化管と自己小 腸との接合態様は、 実質的に試験例 1の人工消化管に同じ。 ここで、 該被検動物 には試験例 1と同一条件となるよう同種の抗生物質及び抗真菌剤を投与した)。 尚、 先に切断された小腸の一方の端部、 すなわち胃側の端部は、 人工消化管と自 己小腸との肛門側縫合部より肛門側において自己小腸にそれらの内腔が連通する ように接合した。  The small intestine of a 9 to 15 kg beagle dog weighing 8 to 15 kg was cut, and the anal end of the cut small intestine was joined to a jejunocutaneous fistula that formed an ostomy, and the small intestine was placed on the anal side. Before the application, the bandits infiltrated the artificial gastrointestinal tract (the base layer-equivalent portion 20 'with autologous blood before application). It was confirmed that the various trophic factors contained in the blood further promoted the regeneration of autologous tissue. (The same applies to the following.) Replace both ends of the inner layer 40 of the artificial gastrointestinal tract with each end of the autologous small intestine after resection, and the inner layer and the autologous small intestine overlap by about 5 bands. After inserting both ends of the base layer-equivalent portion 20 ′ having the outer layer 30 thereon so as to wrap them, the ends of the autologous small intestine are brought into contact with each end of the autologous small intestine, and then the autologous small intestine and the human digestive tract And a single knot suture with 3-0 proline suture. In substantially the artificial gut of Test Example 1 the same. Here, to antibiotics and antifungal agents of the same type such that the same conditions as in Test Example 1 to said test animal). One end of the previously cut small intestine, that is, the end on the stomach side, is designed so that their lumen communicates with the autologous small intestine on the anal side of the artificial gastrointestinal tract and the autologous small intestine. Joined.
術後 1ヶ月で、 シリコーンチューブを内視鏡的に抜去した。 消化管内視鏡での 観察にて、 内腔を保った自己小腸の再生を認めた。 組織学的観察にて、 再生した 小腸壁は主に結合組織からなる粘膜下組織をもっていることを確認した。 術後 3ヶ月では、 再生した粘膜下組織の層の上に粘膜層の再生を認めた (組織学的観 察)。 試験例 2 (人工胃— 1 )  One month after the operation, the silicone tube was removed endoscopically. Observation with a gastrointestinal endoscope showed regeneration of the autologous small intestine maintaining the lumen. Histological observation confirmed that the regenerated small intestinal wall had submucosal tissue consisting mainly of connective tissue. Three months after the operation, regeneration of the mucosal layer was observed on the layer of regenerated submucosa (histological observation). Test example 2 (artificial stomach-1)
8〜 1 5 kg のビーグル犬 (3頭) の胃体部の前壁を 4 0腿 X 4 0腿切除し、 当該欠損部分にシリコーンシート 4 0 (厚み: 1 . 0 mm、 大きさ : 5 0 mm X The anterior wall of the stomach of 40 beagle dogs (3 animals) weighing 8 to 15 kg was resected at 40 thighs x 40 thighs, and a silicone sheet 40 (thickness: 1.0 mm, size: 5) was cut at the defect. 0 mm X
5 0匪。 最終的に本発明の人工消化管—正確にはシート状—の内層となる) を胃 の粘膜側より縫着し (3— 0プロ一リン縫合糸を使用)、 次いで当該欠損部分を 試験例 1で準備したゲル化コラーゲンからなる基層 2 0をその上に形成せしめた 外層 3 0 (大きさ: 4 0 IM X 4 O mm) にて、 該基層が該内層と対向 ·接触するよ うに漿膜側から被覆し、 その端を該前壁と縫い合わせる (3— 0プロ一リン縫合 糸を使用) ことによって人工消化管 (正確にはシート状) を適用した。 5 0 Marauders. Finally, the artificial gastrointestinal tract of the present invention (more precisely, the inner layer of the sheet) is sewn from the mucous membrane side of the stomach (using 3-0 proline suture), and then the defective portion is tested. In the outer layer 30 (size: 40 IM X 4 O mm) on which the base layer 20 made of the gelled collagen prepared in 1 is formed, the base layer faces and contacts the inner layer. An artificial gastrointestinal tract (exactly a sheet) was applied by covering the serosal side as described above and suturing its end to the anterior wall (using 3-0 proline suture).
術後 1ヶ月で、 シリコーンシートを内視鏡的に抜去した。 消化管内視鏡での観 察にて、 自己胃壁の再生を認めた。 また、 再生の進行に伴うゲル化コラーゲンか らなる基層 2 0の収縮も認められなかった。 組織学的観察にて、 再生した胃壁は 主に結合組織からなる粘膜下組織をもっていることを確認した。 術後 3ヶ月では、 再生した粘膜下組織の層の上に粘膜層の再生を認めた (組織学的観察)。 比較試験例 2 (人工胃— 2 )  One month after the operation, the silicone sheet was removed endoscopically. Observation with a gastrointestinal endoscope revealed regeneration of the autologous stomach wall. Also, no shrinkage of the base layer 20 made of gelled collagen with the progress of regeneration was observed. Histological observation confirmed that the regenerated stomach wall had submucosal tissue consisting mainly of connective tissue. Three months after the operation, regeneration of the mucosal layer was observed on the regenerated submucosal tissue layer (histological observation). Comparative test example 2 (artificial stomach—2)
8 〜 1 5 kg のビーグル犬 (3頭) の胃体部の前壁を 4 O mmX 4 O mm切除し、 当該欠損部分にシリコーンシ一ト 4 0 (厚み: 1 . 0廳、 大きさ : 5 O mm X 5 0應。 最終的に人工消化管一正確にはシート状一の内層となる) を胃の粘膜側 より縫着し、 次いで当該欠損部分を当該部分にシリコ一ンシート 4 0 (厚み: 1 . 0龍、 大きさ: 5 0 mmX 5 0 iMi) を胃の粘膜側より縫着し (3 — 0プローリ ン縫合糸を使用)、 次いで当該欠損部分を、 微細線維化コラーゲンからなる基層 相当部分 2 0 ' をその上に形成せしめた外層 3 0 ( P GA不織布からなるチュー プに代え P G A不織布からなる 4 0讓 X 4 0 mm のシート 3 0を用い、 型材とし てのチューブに代え該 P G A不織布からなるシートをその底にほぼ平らに載置 - 収容し得るバットに収容し、 該型材の内腔にほぼ同心に配したシリコーンチュー ブを用いないことを除き比較試験例 1と同様にして作製すればよい) にて、 該基 層相当部分が該内層と対向 ·接触するように漿膜側から被覆し、 その端を該前壁 と縫い合わせる (3— 0プローリン縫合糸を使用) ことによって人工消化管 (正 確にはシート状) を適用した (ここで、 該被検動物には試験例 2と同一条件とな るよう同種の抗生物質及び抗真菌剤を投与した)。 尚、 この人工消化管において は、 その適用前に、 基層相当部分 2 0 ' に自己血液を浸潤させた。  The anterior wall of the stomach of 4 to 8 kg of beagle dogs (3 dogs) weighing 4 to 15 kg was resected by 4 O mm X 4 O mm, and a silicone sheet 40 (thickness: 1.0 hall, size: 5 O mm X 50 mm. The artificial gastrointestinal tract (to be more precise, the inner layer of a sheet) is sewn from the mucous membrane side of the stomach, and then the defective part is put on the silicone sheet 40 ( Thickness: 1.0 dragon, size: 50 mmX 50 iMi) is sewn from the mucous membrane side of the stomach (using a 3-0 proline suture), and the defect is made of microfibrillated collagen Outer layer 30 with base layer equivalent part 20 ′ formed on it. (Instead of a tube made of PGA non-woven fabric, use a sheet 30 of 40 mm X 40 mm made of PGA non-woven fabric to form a tube as a mold. Instead, the sheet made of the PGA non-woven fabric is placed almost flat on the bottom-stored in a bat that can be stored, and placed almost concentrically in the cavity of the mold. In the same manner as in Comparative Test Example 1 except that a silicone tube was not used), the portion corresponding to the base layer was coated from the serosa side so that the portion corresponding to the inner layer was opposed to and contacted with the inner layer. An artificial gastrointestinal tract (exactly a sheet shape) was applied by stitching to the front wall (using 3-0 proline suture) (where the same conditions as in Test Example 2 were applied to the test animal). The same antibiotics and antifungals were administered). In addition, in this artificial gastrointestinal tract, autologous blood was infiltrated into the base layer equivalent part 20 'before application.
術後 1ヶ月で、 シリコーンシ一卜を内視鏡的に抜去した。 消化管内視鏡での観 察にて、 自己胃壁の再生を認めた。 組織学的観察にて、 再生した胃壁は主に結合 組織からなる粘膜下組織をもっていることを確認した。 術後 3ヶ月では、 再生し た粘膜下組織の層の上に粘膜層の再生を認めた (組織学的観察)。 上記の通り、 本発明の人工消化管は、 従来例のように基層 2 0を構成するコ ラーゲンに特殊な処理、 例えば凍結、 凍結乾燥、 更には熱脱水架橋等の処理を加 えなくてもその形状が保持されており、 更に該基層への自己血液浸潤を施さなく ても従来例と同等の組織再生能を発揮することがわかった。 試験例 3 (人工食道一 1 ) One month after the operation, the silicone sheet was removed endoscopically. Observation with a gastrointestinal endoscope revealed regeneration of the autologous stomach wall. Histological observation confirmed that the regenerated stomach wall had submucosal tissue consisting mainly of connective tissue. Three months after the operation, regeneration of the mucosal layer was observed on the layer of regenerated submucosa (histological observation). As described above, the artificial gastrointestinal tract of the present invention does not require a special treatment, such as freezing, freeze-drying, and even heat dehydration crosslinking, for the collagen constituting the base layer 20 as in the conventional example. It was found that the shape was maintained, and the tissue regeneration ability equivalent to that of the conventional example was exhibited even without performing autologous blood infiltration into the base layer. Test example 3 (artificial esophagus 1)
8〜 1 5 kg のビーグル犬 (3頭) の顏部食道を約 5 0 mm切除し、 シリコーン チューブ 4 0、 すなわち内層 (内径: 1 5 ΙΜ、 厚み: 0 . 5誦) の両端を切除後 の自己食道の各端部にそれぞれ内挿 (人工消化管と自己食道とのオーバ一ラップ は約 5 mm) し、 自己食道との間を 3— 0プロ一リン縫合糸にて単結節縫合した。 該シリコーンチューブの外周に基層 2 0が内側となるよう試験例 1で準備された 基層 2 0付き外層 3 0 (但し、 本試験例にて用いたゲル化前の中性コラーゲン溶 液には、 塩基性線維芽細胞増殖刺激因子一 b F G F—が 1 gZml 添加されたも のである) を巻き付け、 その端を縫いあわせることによって本発明の人工消化管 を食道欠損部に適用した (人工消化管と自己食道との接合態様は試験例 1に同 じ)。  After removing about 50 mm of the facial esophagus of three 8-beagle dogs (3 dogs), after excision of both ends of the silicone tube 40, the inner layer (inner diameter: 15 mm, thickness: 0.5 recitation) Was inserted into each end of the esophagus (the overlap between the artificial gastrointestinal tract and the esophagus was approximately 5 mm), and a single knot suture was performed between the esophagus and the autoesophagus with 3-0 proline suture. . The outer layer 30 with the base layer 20 prepared in Test Example 1 so that the base layer 20 is on the outer periphery of the silicone tube (however, the neutral collagen solution before gelation used in this test example includes: The artificial gastrointestinal tract of the present invention was applied to the esophageal defect by wrapping a wound around which the basic fibroblast growth stimulating factor 1b FGF- was added in an amount of 1 gZml, and sewn the ends together. The mode of connection with the autoesophagus is the same as in Test Example 1).
術後 1ヶ月で、 該シリコーンチューブを内視鏡的に抜去した。 消化管内視鏡で の観察にて、 内腔を保った自己食道の再生を認めた。 また、 再生の進行に伴うゲ ル化コラーゲンからなる基層 2 0の収縮も認められなかった。 組織学的観察にて、 再生した食道は主に結合組織からなる粘膜下組織をもっていることを確認すると 共に、 再生組織中に多数の毛細血管の新生を認めた (9 7 ± 1 7 . 0 /視野—顕 微鏡)。 尚、 この血管新生数は、 抗第八因子抗体を用いた免疫組織染色にて染め て観察された顕微鏡の視野当たりの新生血管数で表わしたものである (以下、 同 様)。 術後 3ヶ月では、 再生した粘膜下組織の層の上に粘膜層の再生を認めた (組織学的観察)。 比較試験例 3 (人工食道— 2 )  One month after the operation, the silicone tube was removed endoscopically. Gastrointestinal endoscopy showed regeneration of the autologous esophagus while maintaining the lumen. In addition, shrinkage of the base layer 20 made of gelled collagen with the progress of regeneration was not observed. Histological observation confirmed that the regenerated esophagus had submucosal tissue consisting mainly of connective tissue, and that a large number of capillaries were newly formed in the regenerated tissue (97 ± 17.0 / Field of view-microscope). The number of angiogenesis is represented by the number of new blood vessels per visual field of a microscope observed by immunohistochemical staining using an anti-factor VIII antibody (the same applies hereinafter). Three months after the operation, regeneration of the mucosal layer was observed on the regenerated submucosa layer (histological observation). Comparative Test Example 3 (Artificial Esophagus—2)
8〜 1 5 kgのビーグル犬 (3頭) の頸部食道を約 5 0 mm切除し、 当該部分を、 シリコーンチューブ 4 0の内径を 1 5腿 のものにしたこと及び P G A不織布か らなるチューブ 30の径をシリコーンチューブの拡径に対応した径 (基層相当部 分 20' の厚み: 20匪 は変わらず) にしたこと、 微細線維化コラーゲンから なる基層相当部分 20 ' に試験例 3と同一条件 (動物実験開始時) となるよう塩 基性線維芽細胞増殖刺激因子一 b F G F—が包含されたものであることを除き比 較試験例 1と同様にして得た人工消化管にて補填した (人工消化管と自己食道と の接合態様は試験例 3と同様)。 尚、 該基層相当部分へ bFGFを包含せしむる 方法は、 PBSに溶解した bFGF (濃度: 10 ^g/ml) を 1 gZml—基層相 当部分の容量となるように該基層相当部分に滴らすことで含浸させ、 それを 1時 間室温下放置することによつた。 Approximately 50 mm of the cervical esophagus of 8 to 15 kg beagle dogs (3 dogs) was excised, and the portion was changed to a silicone tube 40 with an inner diameter of 15 thighs and a PGA nonwoven fabric. The diameter of the tube 30 was adjusted to the diameter corresponding to the diameter of the silicone tube (the thickness of the base layer equivalent part 20 ': the thickness of the 20 layer remained unchanged), and the test example was applied to the base layer equivalent part 20' made of microfibrillated collagen. Artificial gastrointestinal tract obtained in the same manner as in Comparative Test Example 1, except that basic fibroblast growth stimulating factor-b FGF— was included so that the same conditions as at 3 (at the start of the animal experiment) were used. (The junction between the artificial digestive tract and the autologous esophagus was the same as in Test Example 3). In addition, a method for incorporating bFGF into the portion corresponding to the base layer is to drop bFGF (concentration: 10 ^ g / ml) dissolved in PBS onto the portion corresponding to the base layer so as to have a volume of 1 gZml—corresponding to the portion corresponding to the base layer. Then, it was left to stand at room temperature for 1 hour.
術後 1ヶ月で、 シリコーンチューブを内視鏡的に抜去した。 消化管内視鏡での 観察にて、 内腔を保った自己食道の再生を認めた。 組織学的観察にて、 再生した 食道壁は主に結合組織からなる粘膜下組織をもっていることを確認した。 尚、 こ の時点での再生組織中の新生血管数は 17 ±2.. 6Z視野一顕微鏡であった。 術 後 3ヶ月では、 再生した粘膜下組織の層の上に粘膜層の再生を認めた (組織学的  One month after the operation, the silicone tube was removed endoscopically. Gastrointestinal endoscopy showed regeneration of the autologous esophagus while maintaining the lumen. Histological observation confirmed that the regenerated esophageal wall had submucosal tissue consisting mainly of connective tissue. The number of new blood vessels in the regenerated tissue at this time was 17 ± 2.6. Three months after the operation, regeneration of the mucosal layer was observed on the regenerated submucosal tissue layer (histological examination).
試験例 4 (人工食道一 3) Test example 4 (artificial esophagus 3)
ゲル化前の中性コラーゲン溶液に自己の口腔内粘膜から採取し体外で増殖させ た線維芽細胞を 1 00, 000個 Zml 添加したこと、 及び人工消化管の基層 20の内腔側表面に自己の口腔内粘膜から採取し体外で増殖させた上皮細胞を 1000個 Zcm2の割合で付着させた (具体的には、 該基層を該上皮細胞の増殖 培地内に一晩放置した) ものを使用したことを除き、 試験例 3と同様にして動物 実験を実施した。 尚、 線維芽細胞及び上皮細胞の培養は下記の要領に従って行つ た (以下、 同様)。 100,000 Zml of fibroblasts collected from their own oral mucosa and proliferated outside the body were added to the neutral collagen solution before gelation, and the luminal surface of the base layer 20 of the artificial digestive tract was added to the neutral collagen solution. Epithelial cells collected from the oral mucosa and grown outside the body adhered at a rate of 1000 cells / cm 2 (specifically, the base layer was left overnight in a growth medium for the epithelial cells). An animal experiment was performed in the same manner as in Test Example 3 except that the experiment was performed. The fibroblasts and epithelial cells were cultured according to the following procedure (the same applies hereinafter).
1) 線維芽細胞 1) fibroblast
口腔内粘膜下組織を 5mm角に細切し、 を 10%ゥシ胎児血清を加えた DM E (Dulbecco' s modified eagle) 培地 20ml に加え、 80cm2のフラスコで培 養する (37° (:、 5%C〇2下)。 2~3日毎に培地を交換し、 付着細胞のみを増 殖させていく (浮遊系細胞は、 培地の交換時に系外に排除される)。 増殖した付 着系細胞を、 必要に応じて継代し、 所要個数の細胞が得られた時点で使用する。 The oral submucosa minced into 5mm square, was added to the DM E (Dulbecco 's modified eagle ) medium 20ml plus 10% © shea fetal serum and cultured in flasks 80cm 2 (37 ° (: under 5% C_〇 2). the medium was changed every 2-3 days, increasing only adherent cells Proliferate (suspended cells are eliminated from the system when the medium is changed). The grown adherent cells are passaged as necessary, and used when the required number of cells has been obtained.
2) 上皮細胞  2) epithelial cells
採取した口腔内粘膜をディスパ一ゼ (3 OU/ml) 中に 4°Cで一晩留置し て上皮細胞のみを剥離させ、 これを 0. 2 5%トリプシン溶液 (37°C) 中で The collected oral mucosa was placed in dispase (3 OU / ml) at 4 ° C overnight to detach only the epithelial cells, and this was placed in a 0.25% trypsin solution (37 ° C).
15分間振盪して、 個々の細胞をばらばらの状態に解離させる。 こうして得られ た細胞をギブコ社製ヒト角化細胞用無血培地 20ml と共に 8 Ocm 2のコラーゲ ンコートフラスコにて培養する (37°C、 5%C〇2下)。 2〜3日毎に培地を交 換し、 付着細胞のみを増殖させていく (浮遊系細胞は、 培地の交換時に系外に排 除される)。 増殖した付着系細胞を、 必要に応じて継代し、 所要個数の細胞が得 られた時点で使用する。 Shake for 15 minutes to dissociate the individual cells into pieces. The cells thus obtained are cultured in an 8 Ocm 2 collagen-coated flask together with 20 ml of a bloodless medium for human keratinocytes manufactured by Gibco (37 ° C, 5% C% 2 ). The medium is replaced every 2-3 days, and only adherent cells are grown (suspended cells are eliminated from the system when the medium is replaced). The grown adherent cells are passaged as necessary, and used when the required number of cells has been obtained.
術後 1ヶ月で、 シリコーンチューブを内視鏡的に抜去した。 消化管内視鏡での 観察にて、 内腔を保った自己食道の再生を認めた。 組織学的観察にて、 再生した 食道壁は、 粘膜下組織のみならず上皮、 すなわち粘膜層をもっていることを確認 した。 尚、 この時点での再生組織中の新生血管数は 103± 14. 8ノ視野ー顕 微鏡であった。 比較試験例 4 (人工食道一 4)  One month after the operation, the silicone tube was removed endoscopically. Gastrointestinal endoscopy showed regeneration of the autologous esophagus while maintaining the lumen. Histological observation confirmed that the regenerated esophageal wall had not only the submucosa but also the epithelium, that is, the mucosal layer. The number of new blood vessels in the regenerated tissue at this time was 103 ± 14.8 fields / microscope. Comparative Test Example 4 (Artificial Esophagus 4)
人工消化管の基層 20中に塩基性線維芽細胞増殖刺激因子— b F GF—を含ま ない人工消化管を使用したことを除き試験例 3と同様にして動物実験を実施した。 術後 1ヶ月時点 (シリコ一ンチューブ抜去時) での再生組織中の新生血管数は 51土 6. 6Z視野—顕微鏡であった。 試験例 5 (人工食道一 5)  An animal experiment was performed in the same manner as in Test Example 3 except that an artificial digestive tract containing no basic fibroblast growth stimulating factor—bFGF— was used in the base layer 20 of the artificial digestive tract. One month after the operation (when the silicon tube was removed), the number of new blood vessels in the regenerated tissue was 51 soil 6.6Z field-microscope. Test example 5 (artificial esophagus 5)
人工消化管の基層 20中に塩基性線維芽細胞増殖刺激因子— b F G F—を含ま ない人工消化管を使用したことを除き試験例 4と同様にして動物実験を実施した。 術後 1ヶ月時点 (シリコーンチューブ抜去時) での再生組織中の新生血管数は 14±2. 9 Z視野一顕微鏡であった。 比較試験例 5 (人工食道一 6) An animal experiment was performed in the same manner as in Test Example 4 except that an artificial digestive tract containing no basic fibroblast growth stimulating factor—bFGF—in the base layer 20 of the artificial digestive tract was used. One month after the operation (when the silicone tube was removed), the number of new blood vessels in the regenerated tissue was 14 ± 2.9 Z-field-one microscope. Comparative test example 5 (artificial esophagus 6)
微細線維化コラーゲンからなる基層相当部分 20' に塩基性線維芽細胞増殖刺 激因子—bFGF—を包含せしめていない人工消化管を使用したことを除き比較 試験例 3と同様にして動物実験を実施した。 術後 1ヶ月時点 (シリコーンチュー ブ抜去時) での再生組織中の新生血管数は 15 ± 1. 8ノ視野一顕微鏡であった。 人工食道に関し、 術後 1ヶ月時点での再生組織中新生血管数の観察結果を下表 に纏めて示す。  Animal experiments were performed in the same manner as in Comparative Test Example 3 except that an artificial digestive tract that did not include basic fibroblast growth stimulating factor-bFGF-was used in the base layer equivalent part 20 'composed of microfibrillar collagen. did. One month after the operation (when the silicone tube was removed), the number of new blood vessels in the regenerated tissue was 15 ± 1.8 fields per microscope. For the artificial esophagus, the results of observation of the number of new blood vessels in the regenerated tissue at one month after the operation are summarized in the table below.
〔表 1〕 〔table 1〕
Figure imgf000016_0001
注) * 1 : GCはゲル化コラ一ゲンからなることを、 SCは微細線維化コ
Figure imgf000016_0001
Note) * 1: GC is composed of gel collagen, SC is microfibrous collagen
ラーゲンからなることを示す。  Indicates that it consists of Lagen.
* 2 : bFGF及び細胞の欄の記号は、 基層中にそれらを含む (+ ) 力、 含まない (一) かを示す。 同表に示す通り、 基層 20又は基層相当部分 20' に塩基性線維芽細胞増殖刺 激因子一 bFGF—を同じように包含せしめたにもかかわらず、 本発明の人工消 化管 (試験例 3) は、 従来の人工消化管 (比較試験例 3) に比し、 再生組織中に 有意に多くの新生血管が認められ、 その効果がきわめて高いことがわかる。 図 2に試験例 3と比較試験例 3における各組織の状況を示す (上図が比較試験例 3のそれ、 下図が試験例 3のそれである。 尚、 図中、 黒く染まつている楕円状の ものが新生血管一下図の方がより鮮明一である)。  * 2: The symbols in the columns of bFGF and cells indicate whether (+) force is contained or not (one) in the base layer. As shown in the table, although the basic fibroblast proliferation stimulating factor-bFGF— was similarly contained in the base layer 20 or the base layer equivalent portion 20 ′, the artificial digestion tube of the present invention (Test Example 3) was used. ) Shows significantly more new blood vessels in the regenerated tissue than the conventional artificial gastrointestinal tract (Comparative Test Example 3), indicating that the effect is extremely high. Fig. 2 shows the state of each tissue in Test Example 3 and Comparative Test Example 3 (the upper figure is that of Comparative Test Example 3, and the lower figure is that of Test Example 3. In the figure, the elliptical shape with black dyeing is shown) The one in the lower part of the figure is clearer.)
また、 再生した消化管の狭窄についてであるが、 基層又は基層相当部分に自己 細胞と b F G Fの両方を含有せしめた例において、 本発明の群の方が従来のそれ に比しその頻度及び程度がより軽微になっていることを消化管内視鏡による観察 にて確認されている。 Regarding the stenosis of the regenerated gastrointestinal tract, In the case of containing both cells and bFGF, it was confirmed by gastrointestinal endoscopy that the frequency and extent of the group of the present invention were smaller than those of the conventional group. I have.
これまで、 欠損部を再生する自己組織再生誘導型の人工消化管 (内層—基層— 外層とからなる複合体) について述べてきたが、 自己組織再生のための足場機能 及び支援機能は人工消化管を構成する基層と外層とからなる複合体にてもたらさ れるもの故、 この基層と外層とからなる複合体は、 消化管手術の際に、 その吻合 部の周りを覆うように適用することによって、 生体の本来持っている創傷治癒能 力を高め、 血管新生を誘導する機能を合わせ持った消化管吻合部カバー材として 用いることができる。 発明の効果  The self-tissue regeneration-guided artificial gastrointestinal tract (composite consisting of inner layer, base layer, and outer layer) that regenerates the defect has been described, but the scaffolding function and support function for self-tissue regeneration are the artificial gastrointestinal tract. Since it is provided by a composite consisting of a base layer and an outer layer, the composite consisting of the base layer and the outer layer is applied so as to cover the periphery of the anastomotic portion during gastrointestinal surgery. It can be used as a gastrointestinal anastomosis cover material that has the function of inducing the wound healing ability inherent in the living body and inducing angiogenesis. The invention's effect
本発明の人工消化管は、 その供給源に左右されることなく安定して供給可能で あり、 生体内適用後、 自己消化管が再生するまで残存して自己組織の再生促進作 用を示す一方、 徐々に分解吸収され自己組織と置換するので、 炎症を起こすこと なく安全に使用することができる。 また、 再生する組織が自己消化管であるため、 移植のように免疫抑制剤を服用する必要がなく、 拒絶反応の心配もない。 更に、 新たに自己消化管の再生を誘導するため、 従来治療法のなかった短腸症候群や各 種疾患にて大量に消化管を失った人々への治療にも極めて有用であり、 更には従 来不可能であったファータ一乳頭部を通過する胆道再建術を可能にするので、 胆 道変更術によつて上行性胆管炎などに悩まされていた多くの患者にとつて福音と なる。 また、 再建用の腸管の採取が不要となるので、 無用な皮膚切開を減らし、 手術の侵襲を小さくすることで患者の手術に伴う苦痛を軽減することができる。 更に、 本発明の人工消化管を構成する基層は従来の人工消化管に比しより簡単な 操作にて作製可能であり、 またそれらの操作には高温雰囲気での操作が含まれて いないので、 該基層中に含有せしめられる自己組織再生支援物質として熱や化学 物質に弱いものでもその活性や生存率を低下させることなく使用することができ る。  The artificial gastrointestinal tract of the present invention can be stably supplied without being influenced by the source thereof, and after application in a living body, remains until the autologous digestive tract regenerates, thereby exhibiting the action of promoting regeneration of self-tissue. However, it gradually decomposes and absorbs and replaces the self-tissue, so it can be used safely without inflammation. Also, since the regenerating tissue is the autologous digestive tract, there is no need to take immunosuppressive drugs as in transplantation, and there is no fear of rejection. Furthermore, since it induces regeneration of the autologous gastrointestinal tract, it is extremely useful for treating people who have lost a large amount of gastrointestinal tract due to short bowel syndrome or various diseases for which there was no conventional treatment. It enables the reconstruction of biliary tracts that pass through the papilla of Fata, which was previously impossible, and is a gospel for many patients who have suffered from ascending cholangitis due to biliary tract alterations. In addition, since it is not necessary to collect the intestinal tract for reconstruction, unnecessary skin incisions can be reduced, and the invasiveness of the operation can be reduced, thereby reducing the pain associated with the patient's operation. Furthermore, the base layer constituting the artificial gastrointestinal tract of the present invention can be prepared by a simpler operation than a conventional artificial gastrointestinal tract, and since these operations do not include operations in a high-temperature atmosphere, Even a substance which is weak to heat or a chemical substance can be used as a self-organization regeneration supporting substance contained in the base layer without lowering its activity or survival rate.

Claims

請 求 の 範 囲 The scope of the claims
1 . その中に栄養物質、 増殖刺激因子、 分化誘導因子、 抗生物質、 抗真菌剤 の少なくとも 1種を含有してなるゲル化コラーゲンからなる層の外面に生体 内分解吸収性材料からなる層を有する人工消化管。 1. A layer made of biodegradable and absorptive material is formed on the outer surface of a layer made of gelled collagen containing at least one of nutrients, growth stimulating factors, differentiation inducing factors, antibiotics, and antifungal agents. Having an artificial digestive tract.
2 . 前記のゲル化コラーゲンからなる層の内面に、 消化液耐性を有する材料 からなる層を更に有する請求項 1に記載の人工消化管。  2. The artificial digestive tract according to claim 1, further comprising a layer made of a material having digestive juice resistance on the inner surface of the layer made of the gelled collagen.
3 . 前記の生体内分解吸収性材料が、 ポリダリコール酸、 ポリ乳酸、 ダリ コール酸と乳酸との共重合体、 乳酸と ε —力プロラクトンとの共重合体、 ポ リジォキサノン、 及びダリコール酸とトリメチレンカーボネートとの共重合 体の群から選択される材料からなる不織布状材料である、 請求項 1又は 2に 記載の人工消化管。  3. The biodegradable and absorbable material is polydaricholic acid, polylactic acid, a copolymer of dalicholic acid and lactic acid, a copolymer of lactic acid and ε-force prolactone, polydixanone, and a mixture of dalicholic acid and trilic acid. The artificial gastrointestinal tract according to claim 1 or 2, wherein the artificial digestive tract is a nonwoven fabric material made of a material selected from the group of copolymers with methylene carbonate.
4. 前記の生体内分解吸収性材料の面密度が 3 0〜3 5 g/Vである請求項 3に記載の人工消化管。  4. The artificial digestive tract according to claim 3, wherein the biodegradable absorbent material has an areal density of 30 to 35 g / V.
5 . 前記の消化液耐性を有する材料が、 シリコーン樹脂からなる管状物又は 膜状物である請求項 1又は 2に記載の人工消化管。  5. The artificial gastrointestinal tract according to claim 1, wherein the material having digestive juice resistance is a tubular material or a film-like material made of a silicone resin.
6 . 前記のゲル化コラーゲンからなる層が、 8 0 %以上のビーズ残存率 ( 2 4時間経過時点) を有するものである請求項 1乃至 5の何れか 1項に記 載の人工消化管。  6. The artificial gastrointestinal tract according to any one of claims 1 to 5, wherein the layer made of the gelled collagen has a bead retention rate of 80% or more (at the time of 24 hours).
PCT/JP2003/002896 2002-03-12 2003-03-12 Artificial digestive tract WO2003075974A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003213326A AU2003213326A1 (en) 2002-03-12 2003-03-12 Artificial digestive tract

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002066914 2002-03-12
JP2002-66914 2002-03-12

Publications (1)

Publication Number Publication Date
WO2003075974A1 true WO2003075974A1 (en) 2003-09-18

Family

ID=27800261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/002896 WO2003075974A1 (en) 2002-03-12 2003-03-12 Artificial digestive tract

Country Status (3)

Country Link
AU (1) AU2003213326A1 (en)
TW (1) TW200304837A (en)
WO (1) WO2003075974A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4544516A (en) * 1982-07-28 1985-10-01 Battelle Development Corporation Collagen orientation
JPH02109569A (en) * 1988-10-19 1990-04-23 Nippon Ham Kk Artificial gullet
WO2000059558A1 (en) * 1999-04-01 2000-10-12 Boston Scientific Corporation Intraluminal lining
JP2001340446A (en) * 2000-03-27 2001-12-11 Yoshihiko Shimizu Artificial alimentary canal
WO2001093880A1 (en) * 2000-06-05 2001-12-13 Yale University Production and use of microvessels in a fibronectin-containing gel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4544516A (en) * 1982-07-28 1985-10-01 Battelle Development Corporation Collagen orientation
JPH02109569A (en) * 1988-10-19 1990-04-23 Nippon Ham Kk Artificial gullet
WO2000059558A1 (en) * 1999-04-01 2000-10-12 Boston Scientific Corporation Intraluminal lining
JP2001340446A (en) * 2000-03-27 2001-12-11 Yoshihiko Shimizu Artificial alimentary canal
WO2001093880A1 (en) * 2000-06-05 2001-12-13 Yale University Production and use of microvessels in a fibronectin-containing gel

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MICHIO SATO ET AL.: "An artificial esophagus consisting of cultured human esophageal epithelial cells, polyglycolic acid mesh and collagen", ASAIO JOURNAL, vol. 40, no. 3, 1994, pages M389 - M392, XP000498227 *
MICHIO SATO ET AL.: "Artificial esophagus", MATERIALS SCIENCE FORUM, vol. 250, 1997, pages 105 - 114, XP002970073 *

Also Published As

Publication number Publication date
AU2003213326A1 (en) 2003-09-22
TW200304837A (en) 2003-10-16

Similar Documents

Publication Publication Date Title
US8535719B2 (en) Biohybrid elastomeric scaffolds and methods of use thereof
Jia et al. Urethral tissue regeneration using collagen scaffold modified with collagen binding VEGF in a beagle model
US7084082B1 (en) Collagen material and its production process
JP4624800B2 (en) Engineering-designed framework for promoting cell growth
JP7472051B2 (en) Powder composition for generating crosslinked protein foam and method of use thereof - Patents.com
AU2011341420B2 (en) Tissue engineered blood vessels
CN103200973B (en) Devices and methods for treating fistulae and other bodily openings and passageways
Xie et al. Evaluation of stretched electrospun silk fibroin matrices seeded with urothelial cells for urethra reconstruction
JP6172471B2 (en) Segmented ε-caprolactone rich poly (ε-caprolactone-co-p-dioxane) copolymer and devices derived therefrom for medical use
US20140356331A1 (en) Injectable cns-derived ecm for tissue reconstruction
US20080081362A1 (en) Multilayered Composite for Organ Augmentation and Repair
US9901659B2 (en) Wet-electrospun biodegradable scaffold and uses therefor
Jensen et al. Biomimetic and synthetic esophageal tissue engineering
CN114377204A (en) Bioerodible coverings and uses thereof
US20110035023A1 (en) Prosthesis for promoting the in vivo reconstruction of a hollow organ or a portion of a hollow organ
CN107802890A (en) Bioengineered tissue constructs and its preparation and application
BRPI0916557A2 (en) frameworks of tissue derived from the extracellular matrix of the pre-stomach
JP2011519616A (en) Blood vessels by tissue engineering
KR20080065606A (en) A method for cell implantation
JP2010519996A (en) Mesh with ECM
US20090136553A1 (en) Triggerably dissolvable hollow fibers for controlled delivery
Chen et al. Bladder acellular matrix conjugated with basic fibroblast growth factor for bladder regeneration
JPH06292716A (en) Medical material
KR102048418B1 (en) Artificial esophagus formed by 3d printing and reinforced with omentum-cultured and manufacturing method thereof
CN107050529B (en) A kind of uterine cavity built-in object, preparation method and applications

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP