WO2003074864A1 - Injection pump, and fuel feed device of diesel engine with the injection pump - Google Patents

Injection pump, and fuel feed device of diesel engine with the injection pump Download PDF

Info

Publication number
WO2003074864A1
WO2003074864A1 PCT/JP2003/002561 JP0302561W WO03074864A1 WO 2003074864 A1 WO2003074864 A1 WO 2003074864A1 JP 0302561 W JP0302561 W JP 0302561W WO 03074864 A1 WO03074864 A1 WO 03074864A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
plunger
sleeve
injection pump
injection
Prior art date
Application number
PCT/JP2003/002561
Other languages
French (fr)
Japanese (ja)
Inventor
Toshifumi Noda
Yukihiro Hayasaka
Original Assignee
Bosch Automotive Systems Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bosch Automotive Systems Corporation filed Critical Bosch Automotive Systems Corporation
Priority to AU2003213382A priority Critical patent/AU2003213382A1/en
Publication of WO2003074864A1 publication Critical patent/WO2003074864A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M41/00Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor
    • F02M41/08Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined
    • F02M41/14Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined rotary distributor supporting pump pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/24Varying fuel delivery in quantity or timing with constant-length-stroke pistons having variable effective portion of stroke
    • F02M59/26Varying fuel delivery in quantity or timing with constant-length-stroke pistons having variable effective portion of stroke caused by movements of pistons relative to their cylinders
    • F02M59/265Varying fuel delivery in quantity or timing with constant-length-stroke pistons having variable effective portion of stroke caused by movements of pistons relative to their cylinders characterised by the arrangement or form of spill port of spill contour on the piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/24Varying fuel delivery in quantity or timing with constant-length-stroke pistons having variable effective portion of stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/24Varying fuel delivery in quantity or timing with constant-length-stroke pistons having variable effective portion of stroke
    • F02M59/243Varying fuel delivery in quantity or timing with constant-length-stroke pistons having variable effective portion of stroke caused by movement of cylinders relative to their pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/24Varying fuel delivery in quantity or timing with constant-length-stroke pistons having variable effective portion of stroke
    • F02M59/26Varying fuel delivery in quantity or timing with constant-length-stroke pistons having variable effective portion of stroke caused by movements of pistons relative to their cylinders

Definitions

  • the invention relates to an injection pump, and a fuel supply system for a diesel engine provided with the injection pump.
  • the present invention relates to an injection pump for a fuel supply device for a diesel engine, and a fuel supply device for a diesel engine equipped with the injection pump.
  • DME dimethyl ether
  • a typical diesel fuel injection device includes an injection pump that supplies a desired amount of fuel to each fuel injection nozzle disposed in each cylinder of the diesel fuel.
  • a fuel tank for storing fuel is connected to the exhaust pump, and during operation of the diesel engine, fuel from the fuel tank is supplied to the oil reservoir of the exhaust pump by a feed pump.
  • the ink jet pump pumps a desired amount of fuel from the oil reservoir from each injection pump element connected to each fuel injection nozzle.
  • the amount of fuel pumped from the injection pump element is controlled by the injection pump element. It is determined by the effective stroke length of the plunger of the ment.
  • the effective stroke length of the plunger is changed by rotating the plunger left and right by adjusting the position of the control rack, whereby the amount of fuel pumped from each injection pump element to each fuel injection nozzle. Is adjusted.
  • the position of the control rack is adjusted by the governor provided in the injection pump.
  • governors control the rotational speed of a diesel engine by adjusting the position of a control rack.
  • Structures include a mechanical governor that uses the centrifugal force of a weight and signals from various sensors. It can be broadly divided into two types: an electronic governor that calculates the position of the control rack electronically using a control unit.
  • the density (kg / m 3 ) and volume elastic modulus (NZmm 2 ) of fuels such as light oil change depending on the temperature. Therefore, due to the difference in the temperature of the fuel, the amount of fuel injected from the injection pump to each fuel injection nozzle is different even for the same effective stroke length. Therefore, there is a possibility that the rotational speed of the diesel engine may be higher or lower than a desired rotational speed depending on the temperature of the fuel. Therefore, it is necessary to adjust the position of the control rack according to the fuel temperature, that is, to correct the control rack position based on the fuel temperature.
  • the electronic governor can electronically control the position of the control rack by calculating signals from various sensors in the control unit.
  • the mechanical governor adjusts the position of the control rack by an automatic adjustment mechanism using the centrifugal force of the weight, so it is difficult to fine-tune the position of the control rack according to the fuel temperature.
  • the rate of change in density (kg / rn 3 ) and bulk modulus (N / mm 2 ) due to temperature is particularly large as compared to light oil fuel, so the effect of fuel temperature change It is particularly susceptible to Therefore, in a conventional diesel engine using light oil fuel, In the DME fuel diesel engine, the change in the rotation speed due to the temperature change that can be ignored in the range of may be too large to be ignored.
  • the present invention has been made in view of such a situation, and an object of the present invention is to make a fine adjustment of an effective stroke length of a plunger without adjusting a position of a control rack by a governor. To provide a cushion pump.
  • a plunger which moves up and down by engaging an oil reservoir to which fuel in a fuel tank is supplied and a camshaft which is rotated by transmitting rotation of a drive shaft of a diesel engine.
  • a plunger barrel having a hydraulic chamber for sucking and compressing the fuel from the oil reservoir by raising the plunger; and a delivery disposed in the hydraulic chamber, the valve being opened by the pressure of the fuel in the hydraulic chamber.
  • An injection having a valve, and sending a predetermined amount of the fuel from the delivery valve to an injection pipe communicating with the fuel injection nozzle of the diesel engine at a predetermined timing by moving the plunger up and down.
  • An injection pump of the diesel engine fuel supply device comprising: a pump element; and the injection pump pump.
  • the plunger includes a sleeve having a substantially cylindrical shape, which is vertically movable in the oil reservoir with the plunger installed, and a sleeve position adjusting means for vertically moving the sleeve.
  • the stroke position of the plunger at which the communication between the hydraulic chamber and the oil reservoir by the plunger port is interrupted is the injection start position of the effective stroke of the plunger.
  • a sleeve port for communicating between an inner peripheral surface of the through hole provided and an outer peripheral surface facing the oil reservoir, wherein the hydraulic pressure formed on the outer peripheral surface of the plunger during a rising stroke of the plunger;
  • a stroke position of the plunger at which the notch communicating with the chamber and the sleeve port communicate with each other is an injection end position of an effective stroke of the plunger.
  • the plunger is provided with a sleeve that is vertically movable within the oil reservoir with the plunger installed, and the sleeve port formed in the sleeve and the plunger communicating with the hydraulic chamber are provided.
  • the stroke position of the plunger communicating with the notch of the plunger becomes the injection end position of the effective stroke of the plunger. Therefore, the injection end position of the effective stroke of the plunger changes depending on the position of the sleeve.
  • the injection start position of the effective stroke of the plunger is the stroke position of the plunger where the communication between the hydraulic chamber and the oil reservoir is interrupted by the plunger port, so the effective stroke of the plunger is injected even if the position of the sleeve changes. The starting position does not change.
  • the injection end position of the effective stroke of the plunger is adjusted by adjusting the position of the sleeve by the sleeve position adjusting means.
  • the fine adjustment of the effective stroke length of the plunger can be performed without adjusting the position of the control rack by the governor.
  • the fuel in the oil reservoir is A fuel temperature sensor for detecting a temperature, and a position of the sleeve adjusted by the sleeve position adjusting means in accordance with the temperature of the fuel detected by the fuel temperature sensor, and an injection end position of the effective stroke of the plunger.
  • An injection pump comprising: an injection end position control means for adjusting pressure.
  • the oil sump detected by the fuel temperature sensor by the injection end position control means is provided. Since the injection end position of the effective stroke of the plunger can be adjusted according to the temperature of the fuel in the room, the effective stroke of the plunger according to the temperature of the fuel can be adjusted even for an injection pump equipped with a mechanical governor. The effect of fine adjustment of the row length can be obtained.
  • the invention according to a third aspect of the present invention is the invention according to the first or second aspect, wherein the sleeve position adjusting means is configured to energize a drive signal corresponding to a desired position of the sleeve, whereby the sleeve is adjusted.
  • the sleeve position can be detected by the sleeve position detection sensor, it is possible to control a drive signal to be supplied to the sleeve drive unit so that the sleeve moves to a desired position while checking the sleeve position. Therefore, the sleeve position can be adjusted more accurately.
  • the sleeve position can be more accurately adjusted.
  • the effect that the effective stroke length of the plunger can be adjusted more accurately.
  • An invention according to a fourth aspect of the present invention is a fuel supply device for a diesel engine including the injection pump according to any one of the first to third aspects. According to the fuel supply device for a diesel engine according to the fourth aspect of the present invention, in the fuel supply device for a diesel engine, the operation and effect according to any one of the above-described first to third aspects of the present invention are obtained. be able to.
  • a fifth aspect of the present invention is the fuel supply device for a diesel engine according to the fourth aspect, wherein a DME (dimethyl ether) fuel is used as the fuel.
  • a DME dimethyl ether
  • the rate of change in density (kg / m 3 ) and bulk modulus (NZmm 2 ) with temperature is particularly large in DME fuel as compared to light oil fuel. Therefore, according to the fuel supply device of the diesel engine according to the fifth aspect of the present invention, the DME fuel is supplied to the fuel supply device of the diesel engine using DME fuel as the fuel by the operation and effect according to the fourth aspect. There is an operational effect that the effective stroke length of the plunger according to the temperature of the plunger can be corrected properly without adjusting the position of the control rack by the governor.
  • FIG. 1 is a system configuration diagram showing a schematic configuration of a DME fuel supply device for a diesel engine according to the present invention.
  • FI G.2 shows the state where the plunger stroke position of the injection pump element is at the fuel injection start position of the effective stroke. It is a diagram, and FI G.2 (b) is an enlarged view of a part of it.
  • FIG. 3 shows a state in which the stroke position of the plunger of the injection pump element is at the fuel injection start and end positions of the effective stroke, and FIG. 3 (a) is a cross-sectional view of a main part. And FIG. 3 (b) is an enlarged view of a part.
  • FIG. 4 shows a state in which the sleeve is at a different position in FIG. 2, FIG.
  • FIG. 4 (a) is a cross-sectional view of a main part
  • FIG. 4 (b) is a sectional view of FIG. It is an enlarged view of a part
  • FIG. 5 schematically shows the difference in the effective stroke length of the plunger due to the difference in the position of the sleeve.
  • FI G.6 (a) shows the state where the sleeve is near the notch
  • FIG. 6 (b) shows the state where the sleeve is near the hydraulic chamber.
  • FIG. 1 is a system configuration diagram showing a schematic configuration of a DME fuel supply device for a diesel engine according to the present invention.
  • the DME fuel supply device 100 that supplies DME fuel to the diesel engine 200 includes the injection pump 1 according to the present invention.
  • the injection pump 1 includes the same number of injection pump elements 2 as the number of cylinders 31 of the diesel engine 200.
  • the feed pump 5 pressurizes the DME fuel stored in the fuel tank 4 to a predetermined pressure and sends it to the feed pipe 52.
  • the DME fuel outlet of the fuel tank 4 is provided below the level of the DME fuel in the fuel tank 4, and the feed pump 5 is arranged near the DME fuel outlet of the fuel tank 4. .
  • the DME fuel sent to the feed pipe 52 is filtered by the filter 51 and sent to the injection pump 1 via the three-way solenoid valve 71.
  • the three-way solenoid valve 71 is in the ON state during the injection state (during operation of the diesel engine 200), and communicates in the direction of the arrow indicated by the symbol A.
  • the DME fuel outlet of the fuel tank 4 is provided below the level of the DME fuel in the fuel tank 4, and the feed pump 5 is connected to the DME fuel of the fuel tank 4. Since the DME fuel is disposed near the feed port of the fuel and the DME fuel is delivered to the injection pump 1, a decrease in the pressure in the fuel tank 4 can be reduced. Thus, it is possible to reduce the risk that the DME fuel in the fuel tank 4 is vaporized due to a decrease in the pressure in the fuel tank 4.
  • the cam chamber (not shown) in the injection pump 1 is a dedicated lubrication system separated from the lubrication system of the diesel engine 200.
  • the oil separator 6 is installed in the cam chamber in the injection pump 1.
  • the lubricating oil in the cam chamber containing the leaked DME fuel is separated into DME fuel and lubricating oil, and the lubricating oil is returned to the cam chamber.
  • the DME fuel separated in the oil separator 6 is sent to the compressor 61 driven by the cam in the cam chamber via the check valve 62 for preventing the pressure in the cam chamber from dropping below the atmospheric pressure. After being pressurized by 61, it is returned to the fuel tank 4 via the check valve 63 and the cooler 41.
  • the check valve 63 is provided to prevent the DME fuel from flowing back from the fuel tank 4 to the cam chamber when the diesel engine 200 is stopped.
  • the cam chamber of the injection pump 1 is a dedicated lubrication system separated from the lubrication system of the diesel engine 200, the DME fuel leaked from the injection pump element 2 to the cam chamber is There is no risk of entering the lubrication system of diesel engine 200.
  • the DME fuel that has entered the lubrication system of the diesel engine 200 is vaporized, and the danger that the vaporized DME fuel enters the crank chamber of the engine and ignites can be eliminated.
  • the oil separator 6 disposed in the cam chamber separates the DME fuel from the lubricating oil mixed with the DME fuel, and the separated DME fuel is sent out to the fuel tank 4 by the compressor 61. It is possible to prevent a decrease in lubrication performance of lubricating oil due to mixing of fuel. As a result, it is possible to prevent the performance of the injection pump 1 from deteriorating due to the deterioration of the lubricating performance of the lubricating oil. Further, since the compressor 61 is driven by the cam in the cam chamber, there is no need for a drive source such as an electric motor and the like, thereby enabling the injection pump 1 to save more power.
  • the DME fuel that overflowed from the injection pump 1 passed through the overflow fuel pipe 8 and returned to the fuel tank 4 via the check valve 91 that determines the pressure of the overflow fuel and the cooler 41. It is.
  • DME fuel that overflows from each fuel injection nozzle 32 passes through the overflow fuel pipe 9, passes through the check valve 91 that determines the pressure of the overflow fuel, and the fuel tank through the cooler 41. Returned to 4.
  • the DME fuel supply device 100 removes the DME fuel remaining in the oil reservoir (not shown) in the injection pump 1, the overflow fuel pipe 8, and the overflow fuel pipe 9.
  • the “residual fuel recovery means” for recovery to the fuel tank 4 it includes a gas turbine 7, a three-way solenoid valve 71, and a two-way solenoid valve 72.
  • Vasbilet 7 has an inlet 7a, an outlet 7b, and an inlet 7c.
  • the inlet 7a and the outlet 7b are in straight communication with each other, and the inlet 7c is branched in a substantially vertical direction from a communication path between the inlet 7a and the outlet 7b.
  • the outlet side of the communication passage (communication direction indicated by the arrow B) is connected to the inlet 7a, and is connected to the fuel tank 4 through the cooler 41.
  • Exit 7b is connected to the route.
  • the intake port 7c is connected to the two-way solenoid valve 72 which is in the OFF state during the injection state (during operation of the diesel engine 200).
  • the three-way solenoid valve 71 is turned off to form a communication path in the direction indicated by the arrow B, and the two-way solenoid valve 72 is turned on.
  • the communication between the overflow fuel pipe 8 and the overflow fuel pipe 9 and the suction port 7c of the assembler 7 is made (in the direction of the arrow indicated by the symbol C). Therefore, the DME fuel sent from the feed pump 5 is not sent to the injection pump 1 but sent to the gas turbine 7, exits from the inlet 7 a to the outlet 7 b, returns to the fuel tank 4 via the cooler 41, It is sent out again from feed pump 5 to Aspire 7. In other words, the DME fuel liquid circulates through the aspirator 7.
  • the DME fuel remaining in the oil reservoir, the overflow fuel pipe 8, and the overflow fuel pipe 9 in the injection pump 1 is caused by the flow of the DME fuel liquid flowing through the inlet 7a and the outlet 7b.
  • the fuel is sucked from the suction port 7 c and collected in the fuel tank 4.
  • the residual fuel recovery means uses the feed pump 5 as a drive source to suck the DME fuel from the oil reservoir, the overflow fuel pipe 8, and the overflow fuel pipe 9 through the assembler 7. Since it is configured to recover fuel to the fuel tank 4, there is no need to provide a new pump for recovering residual fuel.
  • FIG. 2 shows the injection pump element 2 according to the present invention, and shows a state where the stroke position of the plunger is the fuel injection start position of the effective stroke.
  • FIG.2 (a) is a cross-sectional view of the main part, and FIG.2 (b) is a partially enlarged view.
  • the delivery valve holder 21 has a shape having a delivery valve installation hole 211 and is fixed to the base of the injection pump 1.
  • the injection valve is connected to the fuel liquid outlet 212 that communicates with the delivery valve 3 is connected.
  • a delivery valve 23 is provided in the delivery valve installation hole 2 1 1 so as to be able to reciprocate, and the delivery valve 23 is provided integrally with the delivery valve holder 21 by a delivery spring 22.
  • the delivery valve seat 24 is biased.
  • the plunger barrel 25 is provided integrally with the delivery valve seat 24 and has a hydraulic pressure chamber 25 a communicating with the delivery valve seat 24.
  • a plunger 26 is reciprocally movable in the hydraulic chamber 25 a, and an upper end surface 26 a thereof faces the delivery valve 23.
  • a communication hole 262 communicating with the upper end surface 26a is formed substantially at the center. Further, the plunger 26 is formed with a plunger port 261, which communicates the communication hole 26 2 with the outer peripheral surface of the plunger 26. That is, the hydraulic chamber 25 a and the plunger port 26 1 communicate with each other through the communication hole 26 2. Further, the plunger 26 is formed with a notch 2 63 which is obtained by cutting a part of the outer peripheral surface of the plunger 26 diagonally. The notch 2 63 communicates with the communication hole 2 62.
  • the plunger 26 In the vicinity where the outer peripheral surface of the plunger 26 faces the oil reservoir 11, the plunger 26 The sleeve 12 is disposed in a state where the sleeve 12 is installed.
  • the sleeve 12 has a sleeve port 121 communicating the inner peripheral surface of the hole in which the plunger 26 is provided and the outer peripheral surface facing the oil reservoir 11.
  • the sleeve 12 is disposed so as to be able to move up and down while the inner peripheral surface of the hole in which the plunger 26 is provided is in sliding contact with the plunger 26.
  • the notch 2 63 is cut off from the oil reservoir 11 by the inner peripheral surface of the sleeve 12 at a position below the sleeve port 1 2 1. I have.
  • the injection pump 1 is provided with a sleeve actuator 65 (FIG. 1) as “sleep position adjusting means” for adjusting the position of the sleeve 12 by moving the sleeve 12 up and down.
  • the sleeve actuator 65 is electronically controlled by the control unit 15 and is energized with a drive signal corresponding to the desired position of the sleeve 12 to move the sleeve 12 to the desired position.
  • a sleeve position detection sensor for detecting the position of the sleeve 12.
  • the sleeve actuator 65 is a well-known electromagnetic coil actuator that energizes an electromagnetic coil wound around the core to generate a magnetic field in the core, and the magnetic force of the magnetic field causes the magnetic field to generate a magnetic field. It is to rotate. Then, by the rotation of the mouth, the sleeve driving member 13 provided in each injection pump element 2 is rotated to move the sleeve 12 up and down.
  • the position of the sleeve 12 can be detected by the sleeve position detection sensor, power is supplied to the sleeve driving unit so that the sleeve 12 moves to a desired position while checking the position of the sleeve 12. Since the drive signal can be controlled, the position of the sleeve 12 can be adjusted more accurately, so that the effective stroke length of the plunger 26 can be adjusted more accurately.
  • FIG. 3 shows the injection pump element 2 according to the present invention, wherein the stroke position of the plunger 26 is the end position of the fuel injection of the effective stroke.
  • FIG. FIG. 3 (a) is a cross-sectional view of a main part, and FIG. 3 (b) is a partially enlarged view.
  • the fluid pressure of the DME fuel fluid in the fluid pressure chamber 25 a rises, thereby causing the delivery valve 23 to deliver.
  • the delivery valve 23 is brought into the valved state.
  • the DME fuel in the hydraulic chamber 25a is pressure-fed to the fuel injection nozzle 3 2 from the fuel liquid outlet 2 12 via the delivery valve installation hole 2 1 1 via the injection pipe 3 and the injection pipe 3. .
  • the plunger 26 is further raised, and is shut off from the oil reservoir 11 by the inner peripheral surface of the sleeve 12 at a position below the sleeve port 12 1 at a position where the effective stroke of the plunger 26 starts fuel injection.
  • the notch 2 63 that was connected communicates with the sleeve port 1 2 1.
  • the hydraulic chamber 25 a communicates with the sleeve port 12 1 through the communication hole 26 2 and the notch 26 3, so that the DME fuel in the hydraulic chamber 25 a
  • the oil flows into the oil reservoir 11 via the sleeve port 12 1. Therefore, the hydraulic pressure of the DME fuel in the hydraulic chamber 25a decreases, and the stroke position of the plunger 26 becomes the fuel injection end position of the effective stroke of the plunger 26.
  • the notch 2 63 is formed obliquely with respect to the same vertical direction of the plunger 26 in order to rotate the diesel engine 200 at a desired rotational speed.
  • the plunger 26 of each injection pump element 2 is engaged with a control rack (not shown), and is arranged so as to be rotatable in the circumferential direction depending on the position of the control rack.
  • the mechanical governor 64 FOG. 1
  • the plunger 26 rotates in the circumferential direction, and the notch 26 3 communicates with the sleeve port 1 21.
  • the stroke position of the plunger 16 changes. Therefore, adjust the position of the control rack. This changes the effective stroke length of the plunger 26, thereby adjusting the amount of DME fuel pumped to the fuel injection nozzles 32 to rotate the diesel engine 200 at the desired speed. Can be.
  • FIG.4 shows the injection pump element 2 according to the present invention, and shows a state in which the stroke position of the plunger 26 is at the fuel injection start position of the effective stroke.
  • FIG.4 (a) is a cross-sectional view of a main part
  • FIG. 4 (b) is a partially enlarged view.
  • FIG. 5 shows the injection pump element 2 according to the present invention, and shows a state where the stroke position of the plunger 26 is the fuel injection end position of the effective stroke.
  • FIG.5 (a) is a cross-sectional view of the main part
  • FIG.5 (b) is a partially enlarged view.
  • the injection pump element 2 shown in FIG. 4 and FI G.5 differs from the injection pump element 2 shown in FIG. 2 and FIG. 3 in that the position of the sleeve 12 is different.
  • the sleeve 12 is raised by the sleeve driving member 13 of the sleeve actuary 65. Therefore, the fuel injection start position of the effective stroke of the plunger 26 does not change compared to the state shown in FI G.2 and FI G.3, but the fuel injection end position is shifted upward. In other words, it is far from the notch 263. Therefore, the effective stroke length of the plunger 26 becomes longer, and accordingly, the amount of DME fuel that is pumped to the fuel injection nozzle 32 through the injection pipe 3 increases.
  • FIG. 6 schematically shows the difference in the effective stroke length of the plunger 26 due to the difference in the position of the sleeve 12.
  • FIG. 6 (a) shows a state where the sleeve 12 is located near the notch 263 of the plunger 26, and
  • FIG. 6 (b) shows a state where the sleeve 12 is located near the hydraulic chamber 25a. Indicated that it is located in Things.
  • the state shown in FIG. 6 (a) is a state in which the sleeve 12 is located near the notch 2 63, that is, the sleeve 12 is in the position shown in FIG. 2 and FIG.
  • the fuel injection start position of the plunger 26 in which the plunger port 26 1 is isolated from the oil reservoir 11 does not change depending on the position of the sleeve 12.
  • the sleeve 1 2 is located near the notch 26 3, that is, the stroke length from the fuel injection start position of the plunger 26 to the communication between the sleeve port 1 2 1 and the notch 2 63 ( The sign E 1) is short. Therefore, the effective stroke length (symbol S 1) of the plunger 26 from the fuel injection start position to the fuel injection end position becomes shorter.
  • the sleeve 12 is located closer to the hydraulic chamber 25a, that is, the sleeve 12 is at the position shown in FIG. 4 and FIG. State.
  • the fuel injection start position of the plunger 26 where the plunger port 26 1 is cut off from the oil reservoir 11 does not change depending on the position of the sleeve 12.
  • the sleeve 12 is located near the hydraulic chamber 25 a, that is, the stroke length from the fuel injection start position of the plunger 26 to the communication between the sleeve port 1 2 1 and the notch 26 3. (Sign E 2) is long. Therefore, the effective stroke length (symbol S 2) of the plunger 26 from the fuel injection start position to the fuel injection end position becomes longer.
  • the injection end position of the effective stroke of the plunger 26 can be adjusted, so that the effective stroke length of the plunger 26 can be adjusted. Can be fine-tuned without having to adjust the position of the control rack with the mechanical governor 64 o
  • a fuel temperature for detecting the temperature of the DME fuel in the oil sump 11 is provided in the sump 11.
  • Sensor 14 is provided.
  • the rate of change in density (kg / m 3 ) and bulk modulus (N / mm 2 ) with temperature is particularly large in DME fuel compared to light oil fuel. Especially vulnerable. Therefore, the change in the rotational speed due to the temperature change that could be neglected to some extent in the conventional diesel fuel would be so large as to be not negligible in the diesel engine 200 with DME fuel. There is a fear.
  • the sleeve 12 is moved up and down by the sleeve heater 65.
  • the injection end position of the effective stroke of the plunger 26 can be adjusted in accordance with the temperature of the DME fuel in the oil reservoir 11 detected by the fuel temperature sensor 14, so that the power governor can be adjusted.
  • the effective stroke length of the plunger 26 can be finely adjusted in accordance with the temperature of the DME fuel even in the injection pump 1 equipped with 64.c Note that the present invention is not limited to the above-described embodiment. It is needless to say that various modifications are possible within the scope of the invention described in the scope of the present invention, and they are also included in the scope of the present invention.
  • an injection pump capable of finely adjusting the effective stroke length of a plunger without adjusting the position of a control rack by a governor.
  • This injection pump can be suitably used, for example, as an injection pump in a fuel supply system of Dzerjenjin.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

An injection pump, wherein a sleeve (12) is disposed near an area where the outer peripheral surface of a plunger (26) faces an oil reserving chamber (11) in the inserted state onto the plunger, a sleeve port (121) allowing the inner peripheral surface of a hole in which the plunger is inserted to communicate with the outer peripheral surface of the sleeve facing the oil reserving chamber (11) is formed in the sleeve, and a sleeve actuator (65) vertically moves the sleeve by rotating sleeve drive members (13) disposed in injection pump elements (2), whereby the stroke position of the plunger (26) where a cutout (263) cut off from the oil reserving chamber by the inner peripheral surface of the sleeve (12) at a position lower than the sleeve port is allowed to communicate with the sleeve port becomes a fuel injection termination position of an effective stroke.

Description

明 細 書 ィンジェクシヨンポンプ、 及び該ィンジェクシヨンポンプを備えたディーゼルェ ンジンの燃料供給装置 技術分野  TECHNICAL FIELD The invention relates to an injection pump, and a fuel supply system for a diesel engine provided with the injection pump.
本発明は、 ディーゼルエンジンの燃料供給装置のインジェクションポンプ、 及 び該ィンジェクシヨンポンプを備えたディーゼルエンジンの燃料供給装置に関す る  The present invention relates to an injection pump for a fuel supply device for a diesel engine, and a fuel supply device for a diesel engine equipped with the injection pump.
背景技術 Background art
軽油を燃料とした内燃機関として公知のディ一セルエンジンは、 トラックゃバ ス、 乗用車等において、 一般的に広く普及している。 また、 近年ディーゼルェン ジンによる大気汚染対策として、 軽油の代わりに排気がクリーンな D M E (ジメ チルエーテル) を燃料とするものが注目されている。 D M E燃料は、 従来の燃料 である軽油と違って液化ガス燃料である。 つまり、 軽油と比較して沸点温度が低 く、 大気圧下で軽油が常温において液体であるのに対して、 D M Eは、 常温にお いて気体となる性質を有している。  2. Description of the Related Art A diesel engine known as an internal combustion engine using light oil as fuel is generally widely used in truck buses, passenger cars and the like. In recent years, as a measure against air pollution by diesel engines, fuels using DME (dimethyl ether), which has clean exhaust gas, instead of light oil, have been attracting attention. DME fuel is a liquefied gas fuel unlike light oil, which is a conventional fuel. In other words, DME has a property that it has a lower boiling point temperature than gas oil and is liquid at room temperature under atmospheric pressure, whereas DME becomes gas at room temperature.
一般的なディ一ゼルェンジンの燃料噴射装置は、 ディ一ゼルェンジンの各シリ ンダに配設されている各燃料噴射ノズルへ所望の量の燃料を供給するインジェク シヨンポンプを備えている。 ィンジ工クシヨンポンプには燃料が貯留されている 燃料タンクが接続されており、 ディーゼルエンジンの運転時には、 フィードボン プによつて燃料夕ンクの燃料がィンジヱクシヨンボンプの油溜室へ供給される。 ィンジ工クシヨンポンプは、 各燃料噴射ノズルに連結されている各ィンジェクシ ヨンポンプエレメントから油溜室の燃料を所望の量だけ圧送する。 インジェクシ ョンポンプエレメントから圧送される燃料の量は、 ィンジェクシヨンポンプエレ メントのプランジャの有効ストロ一ク長によって決定される。 プランジャの有効 ストローク長は、 コントロールラックの位置が調節されることでプランジャが左 右に回転することによって変化し、 それによつて、 各インジェクションポンプェ レメントから各燃料噴射ノズルに圧送される燃料の量が調節される。 A typical diesel fuel injection device includes an injection pump that supplies a desired amount of fuel to each fuel injection nozzle disposed in each cylinder of the diesel fuel. A fuel tank for storing fuel is connected to the exhaust pump, and during operation of the diesel engine, fuel from the fuel tank is supplied to the oil reservoir of the exhaust pump by a feed pump. You. The ink jet pump pumps a desired amount of fuel from the oil reservoir from each injection pump element connected to each fuel injection nozzle. The amount of fuel pumped from the injection pump element is controlled by the injection pump element. It is determined by the effective stroke length of the plunger of the ment. The effective stroke length of the plunger is changed by rotating the plunger left and right by adjusting the position of the control rack, whereby the amount of fuel pumped from each injection pump element to each fuel injection nozzle. Is adjusted.
コントロールラックの位置は、 ィンジェクシヨンポンプに配設されているガバ ナによって調節される。 一般的にガバナは、 コントロールラックの位置を調節す ることによってディーゼルエンジンの回転数を制御するものであり、構造的には、 錘の遠心力を利用したメカニカルガバナと、 各種センサからの信号をコン卜ロー ルユニットにて演算してコントロールラックの位置を電子制御する電子ガバナと の 2種類に大別することができる。  The position of the control rack is adjusted by the governor provided in the injection pump. In general, governors control the rotational speed of a diesel engine by adjusting the position of a control rack.Structures include a mechanical governor that uses the centrifugal force of a weight and signals from various sensors. It can be broadly divided into two types: an electronic governor that calculates the position of the control rack electronically using a control unit.
ところで、 軽油等の燃料は、 温度によって、 その密度 (k g/m3 ) や体積弾 性率 (NZmm2 ) が変化する。 そのため、 燃料の温度が異なることによって、 同じ有効ストローク長でもインジヱクシヨンポンプから各燃料噴射ノズルへ圧送 される燃料噴射量が異なることになつてしまう。 したがって、 ディーゼルェンジ ンの回転数が燃料の温度によって、 所望の回転数より多くなったり少なくなつた りする虞が生じる。 そこで、 燃料の温度に応じてコントロールラックの位置を調 節する、 つまり燃料の温度によるコントロールラック位置の補正が必要になる。 前述したように、 電子ガバナは、 各種センサからの信号をコントロールユニット にて演算してコントロールラックの位置を電子制御することが可能である。 By the way, the density (kg / m 3 ) and volume elastic modulus (NZmm 2 ) of fuels such as light oil change depending on the temperature. Therefore, due to the difference in the temperature of the fuel, the amount of fuel injected from the injection pump to each fuel injection nozzle is different even for the same effective stroke length. Therefore, there is a possibility that the rotational speed of the diesel engine may be higher or lower than a desired rotational speed depending on the temperature of the fuel. Therefore, it is necessary to adjust the position of the control rack according to the fuel temperature, that is, to correct the control rack position based on the fuel temperature. As described above, the electronic governor can electronically control the position of the control rack by calculating signals from various sensors in the control unit.
しかしながら、 メカニカルガバナは、 錘の遠心力を利用した自動調節機構によ つてコントロールラックの位置を調節するので、 燃料の温度に応じてコントロー ルラックの位置を微調節するといつたことができない。 また、 前述した D M E燃 料は、密度(k g/rn3 )や体積弾性率(N/mm2 )の温度による変化の割合が、 軽油燃料と比較して特に大きいので、 燃料の温度変化の影響を特に受けやすいと 言える。 そのため、 従来の軽油燃料のディーゼルエンジンにおいては、 ある程度 の範囲で無視することができた温度変化による回転数の変化は、 D M E燃料のデ ィ一ゼルェンジンにおいては、 無視できない程度に大きなものとなってしまう虞 がある。 したがって、 メカニカルガパナを搭載したインジェクションポンプにお いては、 燃料の温度変化に対応して各燃料噴射ノズルからの燃料噴射量を調節す ることができないという問題が生じ、 さらには、 D M E燃料のディーゼルェンジ ンの燃料噴射装置にメカニカルガバナを搭載することができないという問題が生 じてしまう。 However, the mechanical governor adjusts the position of the control rack by an automatic adjustment mechanism using the centrifugal force of the weight, so it is difficult to fine-tune the position of the control rack according to the fuel temperature. In the DME fuel described above, the rate of change in density (kg / rn 3 ) and bulk modulus (N / mm 2 ) due to temperature is particularly large as compared to light oil fuel, so the effect of fuel temperature change It is particularly susceptible to Therefore, in a conventional diesel engine using light oil fuel, In the DME fuel diesel engine, the change in the rotation speed due to the temperature change that can be ignored in the range of may be too large to be ignored. Therefore, in the case of an injection pump equipped with a mechanical governor, there is a problem that the fuel injection amount from each fuel injection nozzle cannot be adjusted in response to a change in fuel temperature. A problem arises in that the mechanical governor cannot be mounted on the diesel engine fuel injection device.
本発明は、 このような状況に鑑み成されたものであり、 その課題は、 プランジ ャの有効ストローク長の微調節を、 ガバナによってコントロールラックの位置を 調節することなく行うことが可能なィンジ工クシヨンポンプを提供することにあ る。  SUMMARY OF THE INVENTION The present invention has been made in view of such a situation, and an object of the present invention is to make a fine adjustment of an effective stroke length of a plunger without adjusting a position of a control rack by a governor. To provide a cushion pump.
発明の開示 Disclosure of the invention
本発明の第 1の態様は、 燃料タンク内の燃料が供給される油溜室と、 ディ一ゼ ルエンジンの駆動軸の回転が伝達されて回転するカムシャフトと係合して上下動 するプランジャ、 該プランジャの上昇によって前記油溜室から前記燃料を吸入し て圧縮する液圧室を有するプランジャバレル、 及び前記液圧室に配設され、 該液 圧室の燃料の圧力によって開弁するデリバリバルブを有し、 前記プランジャの上 下動によって所定のタイミングで所定の量だけ前記燃料を前記デリバリバルブか ら前記デイーゼルエンジンの燃料噴射ノズルに連通しているインジェクションパ イブへ送出するィンジェクシヨンポンプエレメン卜とを備えた前記ディーゼルェ ンジンの燃料供給装置のィンジェクシヨンポンプであって、 前記ィンジェクショ ンポンプエレメントは、 前記プランジャが揷設された状態で前記油溜室内に上下 動可能に配設された略円筒形状を成すスリーブと、 該スリーブを上下動させるス リーブ位置調節手段とを備え、 前記プランジャは、 前記液圧室に面した上端部と 前記油溜室とを連通させるプランジャポートを有し、 前記プランジャの上昇行程 において、 前記プランジャポートによる前記液圧室と前記油溜室との連通が遮断 される前記プランジャのストロ一ク位置が、 前記プランジャの有効ストロークの 噴射始まり位置となり、 前記スリーブは、 前記プランジャが揷設される貫通孔の 内周面と前記油溜室に面した外周面との間を連通させるスリーブポートを有し、 前記プランジャの上昇行程において、 前記プランジャの外周面に形成された前記 液圧室に連通している切り欠きと前記スリーブポートとが連通する前記プランジ ャのストロ一ク位置が前記プランジャの有効ストロークの噴射終わり位置となる、 ことを特徴としたィンジェクシヨンポンプである。 According to a first aspect of the present invention, there is provided a plunger which moves up and down by engaging an oil reservoir to which fuel in a fuel tank is supplied and a camshaft which is rotated by transmitting rotation of a drive shaft of a diesel engine. A plunger barrel having a hydraulic chamber for sucking and compressing the fuel from the oil reservoir by raising the plunger; and a delivery disposed in the hydraulic chamber, the valve being opened by the pressure of the fuel in the hydraulic chamber. An injection having a valve, and sending a predetermined amount of the fuel from the delivery valve to an injection pipe communicating with the fuel injection nozzle of the diesel engine at a predetermined timing by moving the plunger up and down. An injection pump of the diesel engine fuel supply device, comprising: a pump element; and the injection pump pump. The plunger includes a sleeve having a substantially cylindrical shape, which is vertically movable in the oil reservoir with the plunger installed, and a sleeve position adjusting means for vertically moving the sleeve. Has a plunger port for communicating an upper end portion facing the hydraulic chamber and the oil reservoir, and the plunger ascending stroke The stroke position of the plunger at which the communication between the hydraulic chamber and the oil reservoir by the plunger port is interrupted is the injection start position of the effective stroke of the plunger. A sleeve port for communicating between an inner peripheral surface of the through hole provided and an outer peripheral surface facing the oil reservoir, wherein the hydraulic pressure formed on the outer peripheral surface of the plunger during a rising stroke of the plunger; A stroke position of the plunger at which the notch communicating with the chamber and the sleeve port communicate with each other is an injection end position of an effective stroke of the plunger.
このように、 プランジャが揷設された状態で油溜室内に上下動可能に配設され たスリーブを備えており、 そのスリーブに形成されているスリーブポートと、 液 圧室に連通しているプランジャの切り欠きとが連通するプランジャのストローク 位置が、 プランジャの有効ストロークの噴射終わり位置となるので、 スリーブの 位置によって、 プランジャの有効ストロークの噴射終わり位置が変化することに なる。 また、 プランジャの有効ストロークの噴射始まり位置は、 プランジャポー トによる液圧室と油溜室との連通が遮断されるプランジャのストローク位置なの で、 スリーブの位置が変わってもプランジャの有効ストロークの噴射始まり位置 は変わらない。 したがって、 スリーブ位置調節手段にてスリーブの位置を調節す ることによって、 プランジャの有効ストロークの噴射終わり位置を調節すること ができ、それによつて、プランジャの有効ストローク長を調節することができる。 これにより、 本発明の第 1の態様に係るインジヱクシヨンポンプによれば、 ス リーブ位置調節手段にてスリーブの位置を調節することによって、 プランジャの 有効ストロ一クの噴射終わり位置を調節することができるので、 プランジャの有 効ストロ一ク長の微調節を、 ガバナによってコントロールラックの位置を調節す ることなく行うことができるという作用効果が得られる。  As described above, the plunger is provided with a sleeve that is vertically movable within the oil reservoir with the plunger installed, and the sleeve port formed in the sleeve and the plunger communicating with the hydraulic chamber are provided. The stroke position of the plunger communicating with the notch of the plunger becomes the injection end position of the effective stroke of the plunger. Therefore, the injection end position of the effective stroke of the plunger changes depending on the position of the sleeve. Also, the injection start position of the effective stroke of the plunger is the stroke position of the plunger where the communication between the hydraulic chamber and the oil reservoir is interrupted by the plunger port, so the effective stroke of the plunger is injected even if the position of the sleeve changes. The starting position does not change. Therefore, by adjusting the position of the sleeve by the sleeve position adjusting means, it is possible to adjust the injection end position of the effective stroke of the plunger, thereby adjusting the effective stroke length of the plunger. Thus, according to the injection pump of the first aspect of the present invention, the injection end position of the effective stroke of the plunger is adjusted by adjusting the position of the sleeve by the sleeve position adjusting means. As a result, the fine adjustment of the effective stroke length of the plunger can be performed without adjusting the position of the control rack by the governor.
本発明の第 2の態様は、 前記第 1の態様において、 前記油溜室内の前記燃料の 温度を検出する燃料温度センサと、 前記燃料温度センサにて検出した前記燃料の 温度に応じて、 前記スリーブの位置を前記スリーブ位置調節手段にて調節して前 記プランジャの有効ストロークの噴射終わり位置を調節する噴射終わり位置制御 手段を備える、 ことを特徴としたインジヱクシヨンポンプである。 According to a second aspect of the present invention, in the first aspect, the fuel in the oil reservoir is A fuel temperature sensor for detecting a temperature, and a position of the sleeve adjusted by the sleeve position adjusting means in accordance with the temperature of the fuel detected by the fuel temperature sensor, and an injection end position of the effective stroke of the plunger. An injection pump comprising: an injection end position control means for adjusting pressure.
これにより、 本発明の第 2の態様に係るインジヱクシヨンポンプによれば、 前 記第 1の態様による作用効果に加えて、 噴射終わり位置制御手段によって、 燃料 温度センサにて検出した油溜室内の燃料の温度に応じてブランジャの有効スト口 ークの噴射終わり位置を調節することができるので、 メカニカルガバナを搭載し たィンジェクシヨンポンプにおいても燃料の温度に応じてプランジャの有効スト ローク長の微調節を行うことができるという作用効果が得られる。  Thus, according to the injection pump of the second aspect of the present invention, in addition to the operation and effect of the first aspect, the oil sump detected by the fuel temperature sensor by the injection end position control means is provided. Since the injection end position of the effective stroke of the plunger can be adjusted according to the temperature of the fuel in the room, the effective stroke of the plunger according to the temperature of the fuel can be adjusted even for an injection pump equipped with a mechanical governor. The effect of fine adjustment of the row length can be obtained.
本発明の第 3の態様に係る発明は、 前記第 1または第 2の態様において、 前記 スリーブ位置調節手段は、 所望の前記スリーブの位置に対応した駆動信号を通電 することによって、 前記スリ一ブを所望の位置へ移動させるスリーブ駆動部と、 前記スリーブの位置を検出するスリーブ位置検出センサとを有している、 ことを 特徴としたィンジェクシヨンポンプである。  The invention according to a third aspect of the present invention is the invention according to the first or second aspect, wherein the sleeve position adjusting means is configured to energize a drive signal corresponding to a desired position of the sleeve, whereby the sleeve is adjusted. A sleeve drive unit for moving the sleeve to a desired position, and a sleeve position detection sensor for detecting the position of the sleeve.
スリ一ブ位置検出センサによってスリーブの位置を検出することができるので、 スリーブの位置を確認しながらスリーブが所望の位置へ移動するようにスリーブ 駆動部へ通電する駆動信号を制御することができる。 したがって、 より正確にス リ一ブ位置の調節を行うことができる。  Since the sleeve position can be detected by the sleeve position detection sensor, it is possible to control a drive signal to be supplied to the sleeve drive unit so that the sleeve moves to a desired position while checking the sleeve position. Therefore, the sleeve position can be adjusted more accurately.
これにより、 本発明の第 3の態様に係るインジェクションポンプによれば、 前 記第 1の態様または第 2の態様による作用効果に加えて、 より正確にスリーブ位 置の調節を行うことができるので、 より正確なプランジャの有効ストロ一ク長の 調節が可能になるという作用効果が得られる。  Thus, according to the injection pump according to the third aspect of the present invention, in addition to the operation and effect according to the first aspect or the second aspect, the sleeve position can be more accurately adjusted. However, it is possible to obtain the effect that the effective stroke length of the plunger can be adjusted more accurately.
本発明の第 4の態様に係る発明は、 前記第 1〜第 3の態様のいずれか 1の態様 のィンジェクシヨンポンプを備えたディーゼルエンジンの燃料供給装置である。 本発明の第 4の態様に係るディーゼルエンジンの燃料供給装置によれば、 ディ ーゼルエンジンの燃料供給装置において、 前述した本発明の第 1〜第 3の態様の いずれか 1の態様による作用効果を得ることができる。 An invention according to a fourth aspect of the present invention is a fuel supply device for a diesel engine including the injection pump according to any one of the first to third aspects. According to the fuel supply device for a diesel engine according to the fourth aspect of the present invention, in the fuel supply device for a diesel engine, the operation and effect according to any one of the above-described first to third aspects of the present invention are obtained. be able to.
本発明の第 5の態様は、前記第 4の態様において、 DME (ジメチルエーテル) 燃料を前記燃料とする、 ことを特徴としたディーゼルエンジンの燃料供給装置で ある。  A fifth aspect of the present invention is the fuel supply device for a diesel engine according to the fourth aspect, wherein a DME (dimethyl ether) fuel is used as the fuel.
前述したように、 DME燃料は、 密度(kg/m3)や体積弾性率(NZmm2) の温度による変化の割合が、 軽油燃料と比較して特に大きい。 したがって、 本発 明の第 5の態様に係るディ一ゼルェンジンの燃料供給装置によれば、 前記第 4の 態様による作用効果によって、 DME燃料を燃料としたディーゼルエンジンの燃 料供給装置において、 DME燃料の温度に応じたプランジャの有効ストローク長 の補正を、 ガバナによってコントロールラックの位置を調節することなく適正に 行うことができるという作用効果が得られる。 As described above, the rate of change in density (kg / m 3 ) and bulk modulus (NZmm 2 ) with temperature is particularly large in DME fuel as compared to light oil fuel. Therefore, according to the fuel supply device of the diesel engine according to the fifth aspect of the present invention, the DME fuel is supplied to the fuel supply device of the diesel engine using DME fuel as the fuel by the operation and effect according to the fourth aspect. There is an operational effect that the effective stroke length of the plunger according to the temperature of the plunger can be corrected properly without adjusting the position of the control rack by the governor.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
FIG.1は、本発明に係るディーゼルエンジンの DME燃料供給装置の概略構 成を示したシステム構成図である。 F I G.2は、ィンジェクシヨンポンプエレメ ントのプランジャのストローク位置が有効ストロークの燃料噴射始まり位置にな つている状態を示したものであり、 F I G.2 (a)は、 要部断面図であり、 F I G.2 (b) は、 その一部を拡大して示したものである。 FIG.3は、 インジェ クシヨンポンプエレメン卜のプランジャのストローク位置が有効ストロークの燃 料噴射始終わり位置になっている状態を示したものであり、 FIG.3 (a) は、 要部断面図であり、 FIG.3 (b) は、 その一部を拡大して示したものである。 FIG.4は、 FIG.2において、 スリーブが異なる位置にある状態を示したも のであり、 F I G.4 (a) は、 要部断面図であり、 F I G.4 (b) は、 その一 部を拡大して示したものである。 FIG.5は、 FIG.3において、 スリーブが 異なる位置にある状態を示したものであり、 FIG.5 (a)は、 要部断面図であ り、 FIG.5 (b) は、 その一部を拡大して示したものである。 FIG.6は、 スリ一ブの位置の違いによるプランジャの有効ストローク長の違いを模式的に示 したものである。 F I G.6 (a)は、 スリーブが切り欠き寄りにある状態を示し ており、 FIG.6 (b)は、 スリーブが液圧室寄りにある状態を示したものであ ο FIG. 1 is a system configuration diagram showing a schematic configuration of a DME fuel supply device for a diesel engine according to the present invention. FI G.2 shows the state where the plunger stroke position of the injection pump element is at the fuel injection start position of the effective stroke. It is a diagram, and FI G.2 (b) is an enlarged view of a part of it. FIG. 3 shows a state in which the stroke position of the plunger of the injection pump element is at the fuel injection start and end positions of the effective stroke, and FIG. 3 (a) is a cross-sectional view of a main part. And FIG. 3 (b) is an enlarged view of a part. FIG. 4 shows a state in which the sleeve is at a different position in FIG. 2, FIG. 4 (a) is a cross-sectional view of a main part, and FIG. 4 (b) is a sectional view of FIG. It is an enlarged view of a part. In FIG.5, the sleeve in FIG.3 FIG. 5 (a) is a cross-sectional view of a main part, and FIG. 5 (b) is an enlarged view of a part thereof. FIG. 6 schematically shows the difference in the effective stroke length of the plunger due to the difference in the position of the sleeve. FI G.6 (a) shows the state where the sleeve is near the notch, and FIG. 6 (b) shows the state where the sleeve is near the hydraulic chamber.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の一実施の形態を図面に基づいて説明する。  Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
まず、 ディーゼルエンジンの燃料供給装置の概略構成について、 DME燃料を 燃料としたディーゼルエンジンの DME燃料供給装置を例に説明する。  First, the schematic structure of a diesel engine fuel supply system will be described using a DME fuel supply system for a diesel engine using DME fuel as an example.
F IG.1は、本発明に係るディーゼルエンジンの DME燃料供給装置の概略構 成を示したシステム構成図である。  FIG. 1 is a system configuration diagram showing a schematic configuration of a DME fuel supply device for a diesel engine according to the present invention.
ディーゼルエンジン 200に DME燃料を供給する DME燃料供給装置 100 は、 本発明に係るインジェクションポンプ 1を備えている。 インジェクションポ ンプ 1は、 ディーゼルエンジン 200が有するシリンダ 31の数と同じ数のイン ジェクシヨンポンプエレメント 2を備えている。 フィードポンプ 5は、 燃料タン ク 4に貯留されている DM E燃料を、 所定の圧力に加圧してフィードパイプ 52 へ送出する。 燃料タンク 4の DME燃料送出口は、 燃料タンク 4内の DME燃料 の液面より下に設けられており、 フィードポンプ 5は、 燃料タンク 4の DME燃 料の送出口近傍に配設されている。 フィードパイプ 52へ送出された DME燃料 は、 フィル夕 51でろ過され、 3方電磁弁 71を介してインジェクションポンプ 1へ送出される。 3方電磁弁 71は、 噴射状態時 (ディーゼルエンジン 200の 運転時) には ON状態で、 符号 Aで示した矢印の方向に連通している。  The DME fuel supply device 100 that supplies DME fuel to the diesel engine 200 includes the injection pump 1 according to the present invention. The injection pump 1 includes the same number of injection pump elements 2 as the number of cylinders 31 of the diesel engine 200. The feed pump 5 pressurizes the DME fuel stored in the fuel tank 4 to a predetermined pressure and sends it to the feed pipe 52. The DME fuel outlet of the fuel tank 4 is provided below the level of the DME fuel in the fuel tank 4, and the feed pump 5 is arranged near the DME fuel outlet of the fuel tank 4. . The DME fuel sent to the feed pipe 52 is filtered by the filter 51 and sent to the injection pump 1 via the three-way solenoid valve 71. The three-way solenoid valve 71 is in the ON state during the injection state (during operation of the diesel engine 200), and communicates in the direction of the arrow indicated by the symbol A.
このように、 燃料タンク 4の DME燃料送出口が、 燃料タンク 4内の DME燃 料の液面より下に設けられており、 フィードポンプ 5を燃料タンク 4の DM E燃 料の送出口近傍に配設して、 DME燃料をィンジェクシヨンポンプ 1へ送出する 構成となっているので、燃料タンク 4内の圧力の低下を少なくすることができる。 そして、 それによつて、 燃料タンク 4内の DME燃料が、 燃料タンク 4内の圧力 の低下によって気化してしまう虞を少なくすることができる。 As described above, the DME fuel outlet of the fuel tank 4 is provided below the level of the DME fuel in the fuel tank 4, and the feed pump 5 is connected to the DME fuel of the fuel tank 4. Since the DME fuel is disposed near the feed port of the fuel and the DME fuel is delivered to the injection pump 1, a decrease in the pressure in the fuel tank 4 can be reduced. Thus, it is possible to reduce the risk that the DME fuel in the fuel tank 4 is vaporized due to a decrease in the pressure in the fuel tank 4.
インジェクションポンプ 1内のカム室 (図示せず) は、 ディーゼルエンジン 2 00の潤滑系と分離された専用潤滑系となっており、 オイルセパレー夕 6は、 ィ ンジェクシヨンポンプ 1内のカム室に漏れだした DME燃料が混入したカム室内 の潤滑油を、 DME燃料と潤滑油とに分離し、 潤滑油をカム室に戻す。 オイルセ パレ一夕 6で分離された DME燃料は、 カム室内の圧力が大気圧以下になるのを 防止するチェック弁 62を介して、 カム室内のカムによって駆動されるコンプレ ヅサー 61へ送出され、 コンプレッサー 61で加圧された後、 チェック弁 63、 及びクーラー 41を介して燃料タンク 4へ戻される。 チェック弁 63は、 ディー ゼルエンジン 200の停止時に、 燃料タンク 4から DME燃料がカム室へ逆流す るのを防止するために設けられている。  The cam chamber (not shown) in the injection pump 1 is a dedicated lubrication system separated from the lubrication system of the diesel engine 200. The oil separator 6 is installed in the cam chamber in the injection pump 1. The lubricating oil in the cam chamber containing the leaked DME fuel is separated into DME fuel and lubricating oil, and the lubricating oil is returned to the cam chamber. The DME fuel separated in the oil separator 6 is sent to the compressor 61 driven by the cam in the cam chamber via the check valve 62 for preventing the pressure in the cam chamber from dropping below the atmospheric pressure. After being pressurized by 61, it is returned to the fuel tank 4 via the check valve 63 and the cooler 41. The check valve 63 is provided to prevent the DME fuel from flowing back from the fuel tank 4 to the cam chamber when the diesel engine 200 is stopped.
このように、 インジェクションポンプ 1のカム室が、 ディーゼルエンジン 20 0の潤滑系と分離された専用潤滑系になっているので、 ィンジェクシヨンポンプ エレメント 2からカム室に漏れた D ME燃料が、 ディーゼルエンジン 200の潤 滑系に侵入する虞がない。 そして、 それによつて、 ディーゼルエンジン 200の 潤滑系に侵入した DM E燃料が気化し、 気化した DM E燃料がエンジンのクラン ク室に侵入して引火するといつた虞をなくすことができる。  As described above, since the cam chamber of the injection pump 1 is a dedicated lubrication system separated from the lubrication system of the diesel engine 200, the DME fuel leaked from the injection pump element 2 to the cam chamber is There is no risk of entering the lubrication system of diesel engine 200. Thus, the DME fuel that has entered the lubrication system of the diesel engine 200 is vaporized, and the danger that the vaporized DME fuel enters the crank chamber of the engine and ignites can be eliminated.
また、 カム室に配設されたオイルセパレー夕 6によって、 DME燃料が混入し た潤滑油から DME燃料を分離し、 分離された DME燃料がコンプレッサー 61 によって燃料タンク 4へ送出されるので、 D ME燃料の混入による潤滑油の潤滑 性能の低下等を防止することができる。 そして、 それによつて、 潤滑油の潤滑性 能の低下等によるインジェクションポンプ 1の性能低下を防止することができる さらに、 コンプレッサー 6 1は、 カム室内のカムによって駆動されるので、 電 動モー夕等の駆動源が必要なく、 それによつて、 より省電力なインジェクション ポンプ 1が可能になる。 Also, the oil separator 6 disposed in the cam chamber separates the DME fuel from the lubricating oil mixed with the DME fuel, and the separated DME fuel is sent out to the fuel tank 4 by the compressor 61. It is possible to prevent a decrease in lubrication performance of lubricating oil due to mixing of fuel. As a result, it is possible to prevent the performance of the injection pump 1 from deteriorating due to the deterioration of the lubricating performance of the lubricating oil. Further, since the compressor 61 is driven by the cam in the cam chamber, there is no need for a drive source such as an electric motor and the like, thereby enabling the injection pump 1 to save more power.
燃料タンク 4からフィードポンプ 5によつて所定の圧力に加圧されて送出され た D M E燃料は、 ィンジェクシヨンポンプ 1の各ィンジェクシヨンポンプエレメ ント 2からインジヱクシヨンパイプ 3を経由して、 所定のタイミングで所定の量 だけディーゼルエンジン 2 0 0の各シリンダ 3 1に配設されている燃料噴射ノズ ル 3 2へ圧送される。 ィンジ工クシヨンポンプ 1からオーバ一フローした D M E 燃料は、 オーバ一フロー燃料パイプ 8を経由し、 オーバ一フロー燃料の圧力を決 めるチェック弁 9 1、及びクーラー 4 1を介して燃料タンク 4へ戻される。また、 各燃料噴射ノズル 3 2からオーバーフローした D M E燃料は、 ォ一バーフロー燃 料パイプ 9を経由し、 オーバ一フロー燃料の圧力を決めるチェック弁 9 1及びク 一ラー 4 1を介して燃料タンク 4へ戻される。  The DME fuel pressurized from the fuel tank 4 to a predetermined pressure by the feed pump 5 and sent out flows from each injection pump element 2 of the injection pump 1 through the injection pipe 3. Then, at a predetermined timing, a predetermined amount is pressure-fed to the fuel injection nozzle 32 disposed in each cylinder 31 of the diesel engine 200. The DME fuel that overflowed from the injection pump 1 passed through the overflow fuel pipe 8 and returned to the fuel tank 4 via the check valve 91 that determines the pressure of the overflow fuel and the cooler 41. It is. DME fuel that overflows from each fuel injection nozzle 32 passes through the overflow fuel pipe 9, passes through the check valve 91 that determines the pressure of the overflow fuel, and the fuel tank through the cooler 41. Returned to 4.
さらに、 D M E燃料供給装置 1 0 0は、 ディーゼルエンジン停止時に、 インジ ェクシヨンポンプ 1内の油溜室(図示せず)、 オーバ一フロー燃料パイプ 8、及び オーバーフロー燃料パイプ 9に残留している D M E燃料を、 燃料夕ンク 4へ回収 する「残留燃料回収手段」の構成要素として、ァスビレー夕 7、 3方電磁弁 7 1、 及び 2方電磁弁 7 2を備えている。  Further, when the diesel engine is stopped, the DME fuel supply device 100 removes the DME fuel remaining in the oil reservoir (not shown) in the injection pump 1, the overflow fuel pipe 8, and the overflow fuel pipe 9. As a component of the “residual fuel recovery means” for recovery to the fuel tank 4, it includes a gas turbine 7, a three-way solenoid valve 71, and a two-way solenoid valve 72.
ァスビレー夕 7は、 入口 7 aと出口 7 bと吸入口 7 cとを有している。 入口 7 aと出口 7 bは真っ直ぐに連通しており、 吸入口 7 cは、 入口 7 aと出口 7 bと の間の連通路から、 略垂直方向に分岐している。 3方電磁弁 7 1が O F Fの時に 連通する連通路 (符号 Bの矢印で示した連通方向) の出口側が入口 7 aに接続さ れており、 クーラ一 4 1を介して燃料タンク 4への経路へ出口 7 bが接続されて いる。 また、 吸入口 7 cは、 噴射状態時 (ディーゼルエンジン 2 0 0の運転時) には O F F状態となっている 2方電磁弁 7 2に接続されている。 無噴射状態時 (ディーゼルエンジン 200の停止時) には、 3方電磁弁 71を OFFして符号 Bの矢印で示した方向の連通路を構成するとともに、 2方電磁弁 72を ONして、 オーバ一フロー燃料パイプ 8及びオーバ一フロー燃料パイプ 9 とァスビレー夕 7の吸入口 7 cとの間を連通させる(符号 Cで示した矢印の方向)。 したがって、 フィードポンプ 5から送出された DME燃料は、 インジェクション ポンプ 1へ送出されずに、 ァスビレー夕 7へ送出され、 入口 7 aから出口 7 bへ 抜け、 クーラー 41を介して燃料タンク 4へ戻り、 再びフィードポンプ 5からァ スピレ一夕 7へ送出される。 つまり、 ァスピレ一夕 7を介して DM E燃料液が環 流する状態となる。 そして、 インジェクションポンプ 1内の油溜室、 オーバ一フ ロー燃料パイプ 8、 及びオーバ一フロー燃料パイプ 9に残留している DME燃料 は、 入口 7 aと出口 7 bを流れる DME燃料液の流れによって、 吸入口 7 cから 吸引されて燃料タンク 4へ回収されることになる。 Vasbilet 7 has an inlet 7a, an outlet 7b, and an inlet 7c. The inlet 7a and the outlet 7b are in straight communication with each other, and the inlet 7c is branched in a substantially vertical direction from a communication path between the inlet 7a and the outlet 7b. When the three-way solenoid valve 71 is OFF, the outlet side of the communication passage (communication direction indicated by the arrow B) is connected to the inlet 7a, and is connected to the fuel tank 4 through the cooler 41. Exit 7b is connected to the route. In addition, the intake port 7c is connected to the two-way solenoid valve 72 which is in the OFF state during the injection state (during operation of the diesel engine 200). In the non-injection state (when the diesel engine 200 is stopped), the three-way solenoid valve 71 is turned off to form a communication path in the direction indicated by the arrow B, and the two-way solenoid valve 72 is turned on. The communication between the overflow fuel pipe 8 and the overflow fuel pipe 9 and the suction port 7c of the assembler 7 is made (in the direction of the arrow indicated by the symbol C). Therefore, the DME fuel sent from the feed pump 5 is not sent to the injection pump 1 but sent to the gas turbine 7, exits from the inlet 7 a to the outlet 7 b, returns to the fuel tank 4 via the cooler 41, It is sent out again from feed pump 5 to Aspire 7. In other words, the DME fuel liquid circulates through the aspirator 7. The DME fuel remaining in the oil reservoir, the overflow fuel pipe 8, and the overflow fuel pipe 9 in the injection pump 1 is caused by the flow of the DME fuel liquid flowing through the inlet 7a and the outlet 7b. The fuel is sucked from the suction port 7 c and collected in the fuel tank 4.
このように、 残留燃料回収手段は、 フィードポンプ 5を駆動源としてァスビレ —夕 7によって、 油溜室、 オーバ一フロー燃料パイプ 8、 及びオーバ一フロー燃 料パイプ 9の DM E燃料を吸引して燃料タンク 4へ回収する構成を成しているの で、 新たに残留燃料回収用のポンプ等を設ける必要がない。  As described above, the residual fuel recovery means uses the feed pump 5 as a drive source to suck the DME fuel from the oil reservoir, the overflow fuel pipe 8, and the overflow fuel pipe 9 through the assembler 7. Since it is configured to recover fuel to the fuel tank 4, there is no need to provide a new pump for recovering residual fuel.
次に、 本発明に係るインジェクションポンプ 1を構成するィンジェクシヨンポ ンプエレメント 2の概略構造について説明する。  Next, the schematic structure of the injection pump element 2 constituting the injection pump 1 according to the present invention will be described.
F IG.2は、本発明に係るィンジェクシヨンポンプエレメント 2を示したもの であり、 プランジャのストローク位置が有効ストロークの燃料噴射始まり位置に なっている状態を示したものである。 F I G.2 (a)は、 要部断面図であり、 F IG.2 (b) は、 その一部を拡大して示したものである。  FIG. 2 shows the injection pump element 2 according to the present invention, and shows a state where the stroke position of the plunger is the fuel injection start position of the effective stroke. FIG.2 (a) is a cross-sectional view of the main part, and FIG.2 (b) is a partially enlarged view.
デリバリバルブホルダ 21は、 デリバリバルブ揷設孔 211を有する形状を成 しており、 インジェクションポンプ 1の基体に固定されている。 デリバリバルブ 揷設孔 211と連通している燃料液送出口 212には、 インジェクションパイプ 3が接続される。 デリバリバルブ揷設孔 2 1 1には、 デリバリバルブ 2 3が往復 動可能に揷設されており、 デリバリバルブ 2 3は、 デリバリスプリング 2 2によ つて、 デリバリバルブホルダ 2 1と一体に配設されているデリバリバルブシート 2 4に付勢されている。 The delivery valve holder 21 has a shape having a delivery valve installation hole 211 and is fixed to the base of the injection pump 1. The injection valve is connected to the fuel liquid outlet 212 that communicates with the delivery valve 3 is connected. A delivery valve 23 is provided in the delivery valve installation hole 2 1 1 so as to be able to reciprocate, and the delivery valve 23 is provided integrally with the delivery valve holder 21 by a delivery spring 22. The delivery valve seat 24 is biased.
プランジャバレル 2 5は、 デリバリバルブシート 2 4と一体に配設され、 デリ バリバルブシート 2 4に連通している液圧室 2 5 aを有している。 液圧室 2 5 a には、 プランジャ 2 6が往復動可能に揷設されており、 その上端面 2 6 aがデリ バリバルブ 2 3に面している。 プランジャ 2 6は、 ディーゼルエンジン 2 0 0の 駆動力で回転するカムシャフトのカム (図示せず) の上昇によって、 デリ ノ リノ ルブ 2 3側に押し上げられて上昇し、 カムが下降した際には、 プランジャ 2 6を 下方に付勢するスプリング (図示せず) のばね力によって下降する。  The plunger barrel 25 is provided integrally with the delivery valve seat 24 and has a hydraulic pressure chamber 25 a communicating with the delivery valve seat 24. A plunger 26 is reciprocally movable in the hydraulic chamber 25 a, and an upper end surface 26 a thereof faces the delivery valve 23. When the cam (not shown) of the camshaft rotating by the driving force of the diesel engine 200 rises, the plunger 26 is pushed up to the delino linole 23 side and rises. The plunger 26 is lowered by the spring force (not shown) of urging the plunger 26 downward.
プランジャ 2 6には、 その略中心に上端面 2 6 aに連通している連通孔 2 6 2 が形成されている。 また、 プランジャ 2 6には、 連通孔 2 6 2とプランジャ 2 6 の外周面とを連通させるプランジャポ一ト 2 6 1が形成されている。 つまり、 液 圧室 2 5 aと、プランジャポート 2 6 1は、連通孔 2 6 2を介して連通している。 さらに、 プランジャ 2 6には、 プランジャ 2 6の外周面の一部を斜めに切り欠い たような切り欠き 2 6 3が形成されている。 切り欠き 2 6 3は、 連通孔 2 6 2に 連通している。 プランジャ 2 6が下降する際にプランジャポート 2 6 1から油溜 室 1 1の D M E燃料が連通孔 2 6 2を介して液圧室 2 5 aに吸入され、 プランジ ャ 2 6の上昇過程において、 プランジャポート 2 6 1と油溜室 1 1との連通がプ ランジャバレル 2 5によって遮断された時点、 つまり当該図面に示したプランジ ャ 2 6のストローク位置まで上昇した時点で、 液圧室 2 5 aは密閉状態となる。 このプランジャ 2 6のストローク位置が、 プランジャ 2 6の有効ストロ一クの燃 料噴射始まり位置となる。  In the plunger 26, a communication hole 262 communicating with the upper end surface 26a is formed substantially at the center. Further, the plunger 26 is formed with a plunger port 261, which communicates the communication hole 26 2 with the outer peripheral surface of the plunger 26. That is, the hydraulic chamber 25 a and the plunger port 26 1 communicate with each other through the communication hole 26 2. Further, the plunger 26 is formed with a notch 2 63 which is obtained by cutting a part of the outer peripheral surface of the plunger 26 diagonally. The notch 2 63 communicates with the communication hole 2 62. When the plunger 26 descends, the DME fuel in the oil reservoir 11 is drawn into the hydraulic chamber 25a from the plunger port 26 1 through the communication hole 26 2, and during the ascending process of the plunger 26, When communication between the plunger port 26 1 and the oil sump chamber 11 is interrupted by the plunger barrel 25, that is, when the plunger 26 ascends to the stroke position shown in the drawing, the hydraulic pressure chamber 25a Is closed. The stroke position of the plunger 26 becomes the fuel injection start position of the effective stroke of the plunger 26.
プランジャ 2 6の外周面が油溜室 1 1に面している近傍には、 プランジャ 2 6 に揷設された状態でスリーブ 1 2が配設されている。 スリーブ 1 2には、 プラン ジャ 2 6が揷設されている孔の内周面と油溜室 1 1に面している外周面とを連通 させるスリーブポート 1 2 1が形成されている。 スリーブ 1 2は、 プランジャ 2 6が揷設されている孔の内周面がプランジャ 2 6に摺接した状態で上下動可能に 配設されている。 プランジャ 2 6の有効ストロークの燃料噴射始まり位置におい ては、 切り欠き 2 6 3は、 スリーブポート 1 2 1より下側の位置でスリーブ 1 2 の内周面によって油溜室 1 1と遮断されている。 In the vicinity where the outer peripheral surface of the plunger 26 faces the oil reservoir 11, the plunger 26 The sleeve 12 is disposed in a state where the sleeve 12 is installed. The sleeve 12 has a sleeve port 121 communicating the inner peripheral surface of the hole in which the plunger 26 is provided and the outer peripheral surface facing the oil reservoir 11. The sleeve 12 is disposed so as to be able to move up and down while the inner peripheral surface of the hole in which the plunger 26 is provided is in sliding contact with the plunger 26. At the fuel injection start position of the effective stroke of the plunger 26, the notch 2 63 is cut off from the oil reservoir 11 by the inner peripheral surface of the sleeve 12 at a position below the sleeve port 1 2 1. I have.
また、 インジェクションポンプ 1は、 スリーブ 1 2を上下動させてスリーブ 1 2の位置を調節する 「スリープ位置調節手段」 としてのスリーブァクチユエ一夕 6 5 ( F I G . 1 ) を備えている。 スリーブァクチユエ一夕 6 5は、 コントロール ユニット 1 5によって電子制御され、 所望のスリーブ 1 2の位置に対応した駆動 信号を通電することによって、 スリーブ 1 2を所望の位置へ移動させるスリーブ 駆動部と、 スリーブ 1 2の位置を検出するスリーブ位置検出センサとを有してい る。 スリーブァクチユエ一夕 6 5は、 公知の電磁コイルァクチユエ一夕であり、 コアに巻かれた電磁コイルに通電することによってコア内に磁界を発生させ、 そ の磁界の磁気力によって口一夕を回動させるものである。 そして、 口一夕の回動 によって、 各インジェクションポンプエレメント 2に配設されているスリーブ駆 動部材 1 3を回動させてスリーブ 1 2を上下動させる。  Further, the injection pump 1 is provided with a sleeve actuator 65 (FIG. 1) as “sleep position adjusting means” for adjusting the position of the sleeve 12 by moving the sleeve 12 up and down. The sleeve actuator 65 is electronically controlled by the control unit 15 and is energized with a drive signal corresponding to the desired position of the sleeve 12 to move the sleeve 12 to the desired position. And a sleeve position detection sensor for detecting the position of the sleeve 12. The sleeve actuator 65 is a well-known electromagnetic coil actuator that energizes an electromagnetic coil wound around the core to generate a magnetic field in the core, and the magnetic force of the magnetic field causes the magnetic field to generate a magnetic field. It is to rotate. Then, by the rotation of the mouth, the sleeve driving member 13 provided in each injection pump element 2 is rotated to move the sleeve 12 up and down.
このように、 スリーブ位置検出センサによってスリーブ 1 2の位置を検出する ことができるので、 スリーブ 1 2の位置を確認しながらスリーブ 1 2が所望の位 置へ移動するようにスリーブ駆動部へ通電する駆動信号を制御することができる したがって、 より正確にスリーブ 1 2の位置を調節することができるので、 より 正確なプランジャ 2 6の有効ストロ一ク長の調節が可能になる。  As described above, since the position of the sleeve 12 can be detected by the sleeve position detection sensor, power is supplied to the sleeve driving unit so that the sleeve 12 moves to a desired position while checking the position of the sleeve 12. Since the drive signal can be controlled, the position of the sleeve 12 can be adjusted more accurately, so that the effective stroke length of the plunger 26 can be adjusted more accurately.
F I G . 3は、本発明に係るィンジェクシヨンポンプエレメント 2を示したもの であり、 プランジャ 2 6のストロ一ク位置が有効ストロ一クの燃料噴射終わり位 置になっている状態を示したものである。 F I G . 3 ( a )は、要部断面図であり、 F I G . 3 ( b ) は、 その一部を拡大して示したものである。 FIG. 3 shows the injection pump element 2 according to the present invention, wherein the stroke position of the plunger 26 is the end position of the fuel injection of the effective stroke. FIG. FIG. 3 (a) is a cross-sectional view of a main part, and FIG. 3 (b) is a partially enlarged view.
F I G . 2に示した有効ストロークの燃料噴射始まり位置からプランジャ 2 6 が上昇することによって、 液圧室 2 5 a内の D M E燃料液の液圧が上昇し、 それ によって、 デリバリバルブ 2 3がデリバリバルブシート 2 4から押し上げられ、 デリパリバルブ 2 3が閧弁状態となる。そして、液圧室 2 5 a内の D M E燃料は、 デリバリバルブ揷設孔 2 1 1を経由して、 燃料液送出口 2 1 2からインジェクシ ヨンパイプ 3を介して燃料噴射ノズル 3 2へ圧送される。  As the plunger 26 rises from the fuel injection start position of the effective stroke shown in FIG. 2, the fluid pressure of the DME fuel fluid in the fluid pressure chamber 25 a rises, thereby causing the delivery valve 23 to deliver. Pushed up from the valve seat 24, the delivery valve 23 is brought into the valved state. Then, the DME fuel in the hydraulic chamber 25a is pressure-fed to the fuel injection nozzle 3 2 from the fuel liquid outlet 2 12 via the delivery valve installation hole 2 1 1 via the injection pipe 3 and the injection pipe 3. .
プランジャ 2 6が、 さらに上昇し、 プランジャ 2 6の有効ストロークの燃料噴 射始まり位置において、 スリーブポート 1 2 1より下側の位置でスリーブ 1 2の 内周面によって油溜室 1 1から遮断されていた切り欠き 2 6 3は、 スリーブポー ト 1 2 1と連通する。 それによつて、 液圧室 2 5 aは、 連通孔 2 6 2、 切り欠き 2 6 3を介してスリーブポート 1 2 1と連通するので、 液圧室 2 5 a内の D M E 燃料が符号 Dの矢印で示したようにスリーブポート 1 2 1を介して油溜室 1 1へ 流れ込むことになる。 したがって、 液圧室 2 5 aの D M E燃料の液圧が低下し、 このプランジャ 2 6のストロ一ク位置が、 プランジャ 2 6の有効ストロ一クの燃 料噴射終わり位置となる。  The plunger 26 is further raised, and is shut off from the oil reservoir 11 by the inner peripheral surface of the sleeve 12 at a position below the sleeve port 12 1 at a position where the effective stroke of the plunger 26 starts fuel injection. The notch 2 63 that was connected communicates with the sleeve port 1 2 1. As a result, the hydraulic chamber 25 a communicates with the sleeve port 12 1 through the communication hole 26 2 and the notch 26 3, so that the DME fuel in the hydraulic chamber 25 a As shown by the arrow, the oil flows into the oil reservoir 11 via the sleeve port 12 1. Therefore, the hydraulic pressure of the DME fuel in the hydraulic chamber 25a decreases, and the stroke position of the plunger 26 becomes the fuel injection end position of the effective stroke of the plunger 26.
尚、 切り欠き 2 6 3は、 ディーセルエンジン 2 0 0を所望の回転数で回転させ るためにプランジャ 2 6の上下同方向に対して斜めに形成されている。 各インジ ェクシヨンポンプエレメント 2のプランジャ 2 6は、 図示していないコントロ一 ルラックと係合しており、 コントロールラックのラック位置によって、 周方向に 回動可能に配設されている。 そして、 メカニカルガバナ 6 4 ( F I G . 1 ) によつ てコントロールラックの位置を調節することによって、 プランジャ 2 6が周方向 に回転し、 切り欠き 2 6 3とスリーブポート 1 2 1とが連通するブランジャ 1 6 のストローク位置が変化する。 したがって、 コントロールラックの位置を調節す ることによって、 プランジャ 26の有効ストローク長が変化し、 それによつて、 ディーセルエンジン 200を所望の回転数で回転させるベく、 燃料噴射ノズル 3 2に圧送される D ME燃料の量を調節することができる。 Note that the notch 2 63 is formed obliquely with respect to the same vertical direction of the plunger 26 in order to rotate the diesel engine 200 at a desired rotational speed. The plunger 26 of each injection pump element 2 is engaged with a control rack (not shown), and is arranged so as to be rotatable in the circumferential direction depending on the position of the control rack. By adjusting the position of the control rack with the mechanical governor 64 (FIG. 1), the plunger 26 rotates in the circumferential direction, and the notch 26 3 communicates with the sleeve port 1 21. The stroke position of the plunger 16 changes. Therefore, adjust the position of the control rack. This changes the effective stroke length of the plunger 26, thereby adjusting the amount of DME fuel pumped to the fuel injection nozzles 32 to rotate the diesel engine 200 at the desired speed. Can be.
F I G.4は、本発明に係るィンジェクシヨンポンプエレメント 2を示したもの であり、 プランジャ 26のストローク位置が有効ストロークの燃料噴射始まり位 置になっている状態を示したものである。 F I G.4 (a)は、要部断面図であり、 FIG.4 (b)は、その一部を拡大して示したものである。また、 FIG.5は、 本発明に係るインジェクションポンプエレメント 2を示したものであり、 プラン ジャ 26のストローク位置が有効ストロークの燃料噴射終わり位置になっている 状態を示したものである。 F I G.5 (a)は、要部断面図であり、 F I G.5 (b) は、 その一部を拡大して示したものである。  FIG.4 shows the injection pump element 2 according to the present invention, and shows a state in which the stroke position of the plunger 26 is at the fuel injection start position of the effective stroke. FIG.4 (a) is a cross-sectional view of a main part, and FIG. 4 (b) is a partially enlarged view. FIG. 5 shows the injection pump element 2 according to the present invention, and shows a state where the stroke position of the plunger 26 is the fuel injection end position of the effective stroke. FIG.5 (a) is a cross-sectional view of the main part, and FIG.5 (b) is a partially enlarged view.
FIG.4及び F I G.5に示したィンジェクシヨンポンプエレメント 2は、 F IG.2及び F IG.3に示したインジェクションポンプエレメント 2と比較して、 スリーブ 12の位置が異なっており、 スリーブァクチユエ一夕 65のスリーブ駆 動部材 13によってスリーブ 12が上側に上げられた状態となっている。 そのた め、 F I G.2及び F I G.3に示した状態と比較して、 プランジャ 26の有効ス トロークの燃料噴射始まり位置は変わらないが、 燃料噴射終わり位置が上側にず れた状態、 つまり、 切り欠き 263から遠ざかった状態になっている。 したがつ て、 プランジャ 26の有効ストローク長が長くなり、 それによつて、 インジェク シヨンパイプ 3を介して燃料噴射ノズル 32へ圧送される D M E燃料の量が増え ることになる。  The injection pump element 2 shown in FIG. 4 and FI G.5 differs from the injection pump element 2 shown in FIG. 2 and FIG. 3 in that the position of the sleeve 12 is different. The sleeve 12 is raised by the sleeve driving member 13 of the sleeve actuary 65. Therefore, the fuel injection start position of the effective stroke of the plunger 26 does not change compared to the state shown in FI G.2 and FI G.3, but the fuel injection end position is shifted upward. In other words, it is far from the notch 263. Therefore, the effective stroke length of the plunger 26 becomes longer, and accordingly, the amount of DME fuel that is pumped to the fuel injection nozzle 32 through the injection pipe 3 increases.
FIG.6は、スリーブ 12の位置の違いによるプランジャ 26の有効ストロー ク長の違いを模式的に示したものである。 FIG.6 (a)は、 スリーブ 12がプ ランジャ 26の切り欠き 263寄りに位置している状態を示したものであり、 F I G.6 (b)は、 スリーブ 12が液圧室 25 a寄りに位置している状態を示した ものである。 FIG. 6 schematically shows the difference in the effective stroke length of the plunger 26 due to the difference in the position of the sleeve 12. FIG. 6 (a) shows a state where the sleeve 12 is located near the notch 263 of the plunger 26, and FIG. 6 (b) shows a state where the sleeve 12 is located near the hydraulic chamber 25a. Indicated that it is located in Things.
F I G . 6 ( a ) に示した状態は、 スリーブ 1 2が切り欠き 2 6 3寄りに位置し ている、 つまりスリーブ 1 2が F I G . 2及び F I G . 3に示した位置にある状態 である。 プランジャポート 2 6 1が油溜室 1 1と遮断されるプランジャ 2 6の燃 料噴射始まり位置は、 スリーブ 1 2の位置によって変わることはない。 そして、 スリーブ 1 2が切り欠き 2 6 3寄りに位置している、 つまり、 プランジャ 2 6の 燃料噴射始まり位置から、 スリーブポート 1 2 1と切り欠き 2 6 3とが連通する までのストローク長 (符号 E 1 ) が短い。 したがって、 プランジャ 2 6の燃料噴 射始まり位置から燃料噴射終わり位置までの有効ストローク長 (符号 S 1 ) が短 くなる。  The state shown in FIG. 6 (a) is a state in which the sleeve 12 is located near the notch 2 63, that is, the sleeve 12 is in the position shown in FIG. 2 and FIG. The fuel injection start position of the plunger 26 in which the plunger port 26 1 is isolated from the oil reservoir 11 does not change depending on the position of the sleeve 12. Then, the sleeve 1 2 is located near the notch 26 3, that is, the stroke length from the fuel injection start position of the plunger 26 to the communication between the sleeve port 1 2 1 and the notch 2 63 ( The sign E 1) is short. Therefore, the effective stroke length (symbol S 1) of the plunger 26 from the fuel injection start position to the fuel injection end position becomes shorter.
一方、 F I G . 6 ( b ) に示した状態は、 スリーブ 1 2が液圧室 2 5 a寄りに位 置している、 つまりスリーブ 1 2が F I G . 4及び F I G . 5に示した位置にある 状態である。 前述したように、 プランジャポート 2 6 1が油溜室 1 1と遮断され るプランジャ 2 6の燃料噴射始まり位置は、 スリーブ 1 2の位置によって変わる ことはない。そして、スリーブ 1 2が液圧室 2 5 a寄りに位置している、つまり、 プランジャ 2 6の燃料噴射始まり位置から、 スリーブポート 1 2 1と切り欠き 2 6 3とが連通するまでのストローク長 (符号 E 2 ) が長い。 したがって、 プラン ジャ 2 6の燃料噴射始まり位置から燃料噴射終わり位置までの有効ストローク長 (符号 S 2 ) が長くなる。  On the other hand, in the state shown in FIG. 6 (b), the sleeve 12 is located closer to the hydraulic chamber 25a, that is, the sleeve 12 is at the position shown in FIG. 4 and FIG. State. As described above, the fuel injection start position of the plunger 26 where the plunger port 26 1 is cut off from the oil reservoir 11 does not change depending on the position of the sleeve 12. Then, the sleeve 12 is located near the hydraulic chamber 25 a, that is, the stroke length from the fuel injection start position of the plunger 26 to the communication between the sleeve port 1 2 1 and the notch 26 3. (Sign E 2) is long. Therefore, the effective stroke length (symbol S 2) of the plunger 26 from the fuel injection start position to the fuel injection end position becomes longer.
このようにして、 「スリーブ位置調節手段」にてスリーブ 1 2の位置を調節する ことによって、 プランジャ 2 6の有効ストロークの噴射終わり位置を調節するこ とができるので、 プランジャ 2 6の有効ストローク長の微調節を、 メカニカルガ バナ 6 4によってコントロールラックの位置を調節することなく行うことができ る o  In this way, by adjusting the position of the sleeve 12 with the “sleeve position adjusting means”, the injection end position of the effective stroke of the plunger 26 can be adjusted, so that the effective stroke length of the plunger 26 can be adjusted. Can be fine-tuned without having to adjust the position of the control rack with the mechanical governor 64 o
また、 油溜室 1 1には、 油溜室 1 1内の D M E燃料の温度を検出する燃料温度 センサ 1 4が配設されている。 前述したように、 D M E燃料は、 密度 (k g/m 3 ) や体積弾性率 (N/mm2 ) の温度による変化の割合が、 軽油燃料と比較して 特に大きいので、 燃料の温度変化の影響を特に受けやすい。 そのため、 従来の軽 油燃料においては、 ある程度の範囲で無視することができた温度変化による回転 数の変化は、 D M E燃料のディーゼルエンジン 2 0 0においては、 無視できない 程度に大きなものとなってしまう虞がある。 In addition, a fuel temperature for detecting the temperature of the DME fuel in the oil sump 11 is provided in the sump 11. Sensor 14 is provided. As described above, the rate of change in density (kg / m 3 ) and bulk modulus (N / mm 2 ) with temperature is particularly large in DME fuel compared to light oil fuel. Especially vulnerable. Therefore, the change in the rotational speed due to the temperature change that could be neglected to some extent in the conventional diesel fuel would be so large as to be not negligible in the diesel engine 200 with DME fuel. There is a fear.
そこで、 この燃料温度センサ 1 4にて検出した D M E燃料の温度に応じて、 ス リーブァクチユエ一夕 6 5によりスリーブ 1 2を上下動させる。 それによつて、 燃料温度センサ 1 4にて検出した油溜室 1 1内の D M E燃料の温度に応じてブラ ンジャ 2 6の有効ストロークの噴射終わり位置を調節することができるので、 メ 力二カルガバナ 6 4を搭載したインジェクションポンプ 1においても D M E燃料 の温度に応じてプランジャ 2 6の有効ストローク長の微調節を行うことができる c 尚、 本発明は上記実施例に限定されることなく、 特許請求の範囲に記載した発 明の範囲内で、 種々の変形が可能であり、 それらも本発明の範囲内に含まれるも のであることは言うまでもない。  Therefore, according to the temperature of the DME fuel detected by the fuel temperature sensor 14, the sleeve 12 is moved up and down by the sleeve heater 65. As a result, the injection end position of the effective stroke of the plunger 26 can be adjusted in accordance with the temperature of the DME fuel in the oil reservoir 11 detected by the fuel temperature sensor 14, so that the power governor can be adjusted. The effective stroke length of the plunger 26 can be finely adjusted in accordance with the temperature of the DME fuel even in the injection pump 1 equipped with 64.c Note that the present invention is not limited to the above-described embodiment. It is needless to say that various modifications are possible within the scope of the invention described in the scope of the present invention, and they are also included in the scope of the present invention.
産業上の利用可能性 Industrial applicability
本発明によれば、 プランジャの有効ストローク長の微調節を、 ガバナによって コントロールラックの位置を調節することなく行うことが可能なィンジェクショ ンポンプを提供することができる。 このインジェクションポンプは、 例えばディ —ゼルェンジンの燃料供給装置におけるインジェクションポンプとして好適に利 用できる。  According to the present invention, it is possible to provide an injection pump capable of finely adjusting the effective stroke length of a plunger without adjusting the position of a control rack by a governor. This injection pump can be suitably used, for example, as an injection pump in a fuel supply system of Dzerjenjin.

Claims

請 求 の 範 囲 The scope of the claims
1 . 燃料タンク内の燃料が供給される油溜室と、 ディーゼルエンジンの駆動軸 の回転が伝達されて回転するカムシャフ卜と係合して上下動するプランジャ、 該 プランジャの上昇によって前記油溜室から前記燃料を吸入して圧縮する液圧室を 有するプランジャバレル、 及び前記液圧室に配設され、 該液圧室の燃料の圧力に よって開弁するデリバリバルブを有し、 前記プランジャの上下動によって所定の タイミングで所定の量だけ前記燃料を前記デリバリバルブから前記ディ一ゼルェ ンジンの燃料噴射ノズルに連通しているィンジェクシヨンパイプへ送出するイン ジェクシヨンポンプエレメントとを備えた前記ディ一ゼルェンジンの燃料供給装 置のィンジェクシヨンポンプであって、 1. An oil sump chamber to which fuel in a fuel tank is supplied, a plunger which moves up and down by engaging with a rotating camshaft to which rotation of a drive shaft of a diesel engine is transmitted, and the oil sump chamber is raised by raising the plunger. A plunger barrel having a hydraulic pressure chamber for sucking and compressing the fuel from the fuel tank; and a delivery valve disposed in the hydraulic pressure chamber, the valve being opened by the pressure of the fuel in the hydraulic pressure chamber. An injection pump element for delivering a predetermined amount of the fuel from the delivery valve to the injection pipe communicating with the fuel injection nozzle of the diesel engine at a predetermined timing by movement. An injection pump of a fuel supply device of Xeru Jinjin,
前記ィンジェクシヨンポンプエレメントは、 前記ブランジャが挿設された状態 で前記油溜室内に上下動可能に配設された略円筒形状を成すスリーブと、 該スリ ーブを上下動させるスリーブ位置調節手段とを備え、  The injection pump element includes a sleeve having a substantially cylindrical shape, which is vertically movable within the oil reservoir with the plunger inserted therein, and a sleeve position adjusting mechanism for vertically moving the sleeve. And means,
前記プランジャは、 前記液圧室に面した上端部と前記油溜室とを連通させるプ ランジャポートを有し、 前記プランジャの上昇行程において、 前記プランジャポ —トによる前記液圧室と前記油溜室との連通が遮断される前記プランジャのスト ローク位置が前記ブランジャの有効ストロークの噴射始まり位置となり、  The plunger has a plunger port for communicating an upper end portion facing the hydraulic chamber with the oil reservoir, and in a rising stroke of the plunger, the hydraulic chamber and the oil by the plunger port are moved. The stroke position of the plunger where the communication with the reservoir is interrupted is the injection start position of the effective stroke of the plunger,
前記スリーブは、 前記プランジャが揷設される貫通孔の内周面と前記油溜室に 面した外周面との間を連通させるスリーブポートを有し、 前記プランジャの上昇 行程において、 前記プランジャの外周面に形成された前記液圧室に連通している 切り欠きと前記スリーブポートとが連通する前記プランジャのストローク位置が、 前記プランジャの有効ストロークの噴射終わり位置となる、 ことを特徴としたィ ンジェクシヨンポンプ。  The sleeve has a sleeve port for communicating between an inner peripheral surface of a through-hole in which the plunger is provided and an outer peripheral surface facing the oil reservoir, and in an ascending stroke of the plunger, the outer periphery of the plunger A stroke position of the plunger at which the notch communicating with the hydraulic chamber formed on the surface and the sleeve port communicate with each other is an injection end position of an effective stroke of the plunger. Jexion pump.
2 . 請求項 1において、 前記油溜室内の前記燃料の温度を検出する燃料温度セ ンサと、 前記燃料温度センサにて検出した前記燃料の温度に応じて、 前記スリー ブの位置を前記スリーブ位置調節手段にて調節して前記プランジャの有効ストロ —クの噴射終わり位置を調節する噴射終わり位置制御手段を備える、 ことを特徴 としたィンジェクシヨンポンプ。 2. The fuel temperature sensor according to claim 1, wherein the temperature of the fuel in the oil reservoir is detected. And adjusting the position of the sleeve by the sleeve position adjusting means in accordance with the temperature of the fuel detected by the fuel temperature sensor to adjust the injection end position of the effective stroke of the plunger. An injection pump comprising end position control means.
3 . 請求項 1又は 2において、 前記スリーブ位置調節手段は、 所望の前記スリ ーブの位置に対応した駆動信号を通電することによって、 前記スリーブを所望の 位置へ移動させるスリーブ駆動部と、 前記スリーブの位置を検出するスリーブ位 置検出センサとを有している、 ことを特徴としたィンジェクシヨンポンプ。  3. The sleeve drive unit according to claim 1 or 2, wherein the sleeve position adjusting means is configured to move the sleeve to a desired position by energizing a drive signal corresponding to a desired position of the sleeve, An injection pump comprising: a sleeve position detection sensor for detecting a position of a sleeve.
4 . 請求項 1〜 3のいずれか 1項に記載のインジェクションポンプを備えたデ ィ一ゼルェンジンの燃料供給装置。  4. A fuel supply device for a diesel engine provided with the injection pump according to any one of claims 1 to 3.
5 . 請求項 4において、 D M E (ジメチルエーテル) 燃料を前記燃料とする、 ことを特徴としたディーゼルエンジンの燃料供給装置。  5. The fuel supply device for a diesel engine according to claim 4, wherein a DME (dimethyl ether) fuel is used as the fuel.
PCT/JP2003/002561 2002-03-06 2003-03-05 Injection pump, and fuel feed device of diesel engine with the injection pump WO2003074864A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003213382A AU2003213382A1 (en) 2002-03-06 2003-03-05 Injection pump, and fuel feed device of diesel engine with the injection pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002060840A JP2003262172A (en) 2002-03-06 2002-03-06 Injection pump, and fuel supply device for diesel engine provided with the same
JP2002-60840 2002-03-06

Publications (1)

Publication Number Publication Date
WO2003074864A1 true WO2003074864A1 (en) 2003-09-12

Family

ID=27784821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/002561 WO2003074864A1 (en) 2002-03-06 2003-03-05 Injection pump, and fuel feed device of diesel engine with the injection pump

Country Status (4)

Country Link
JP (1) JP2003262172A (en)
KR (1) KR20030074222A (en)
AU (1) AU2003213382A1 (en)
WO (1) WO2003074864A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100758849B1 (en) * 2006-04-13 2007-09-19 주식회사 탑 엔지니어링 Pump module of liquid crystal dispenser
KR100718845B1 (en) * 2006-05-11 2007-05-16 (주)모토닉 The preventive device of injector fuel leakage in a automobile
KR100861754B1 (en) * 2007-07-10 2008-10-06 자동차부품연구원 Recirculator of leakage dme fuel high-pressure fuel pump of vehicles
KR101368508B1 (en) * 2012-11-21 2014-02-28 현대중공업 주식회사 Mechanical diesel fuel injection equipment for fuel injection timing control with ball screw gear

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4850822A (en) * 1986-03-24 1989-07-25 Robert Bosch Gmbh Fuel injection pump for internal combustion engines
JPH02218842A (en) * 1989-02-21 1990-08-31 Hino Motors Ltd Fuel injection pump
JPH0577552U (en) * 1992-03-26 1993-10-22 日産ディーゼル工業株式会社 Injection amount control device for fuel injection pump
JPH10281030A (en) * 1997-04-09 1998-10-20 Nkk Corp Fuel injection pump of diesel engine for dimethyl ether

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4850822A (en) * 1986-03-24 1989-07-25 Robert Bosch Gmbh Fuel injection pump for internal combustion engines
JPH02218842A (en) * 1989-02-21 1990-08-31 Hino Motors Ltd Fuel injection pump
JPH0577552U (en) * 1992-03-26 1993-10-22 日産ディーゼル工業株式会社 Injection amount control device for fuel injection pump
JPH10281030A (en) * 1997-04-09 1998-10-20 Nkk Corp Fuel injection pump of diesel engine for dimethyl ether

Also Published As

Publication number Publication date
KR20030074222A (en) 2003-09-19
AU2003213382A1 (en) 2003-09-16
JP2003262172A (en) 2003-09-19

Similar Documents

Publication Publication Date Title
KR100373616B1 (en) High-pressure fuel pump and cam for high-pressure fuel pump
KR100237535B1 (en) Device for supplying fuel for internal combustion engines
EP2665918B1 (en) Fuel level sensor for marine fuel vapor separator external to unit
JP4442048B2 (en) High pressure fuel supply device for internal combustion engine
WO2003040549A1 (en) Injection pump, and dme fuel feed device of diesel engine with the injection pump
JP2007285125A (en) Fuel supply device of internal combustion engine
JP2008138567A (en) Fuel injection device and operating method for engine
JP5218681B2 (en) High pressure pump metering device
JP4363197B2 (en) Fuel injection control device for internal combustion engine
WO2003074864A1 (en) Injection pump, and fuel feed device of diesel engine with the injection pump
KR20110021574A (en) Fuel supplying system of lpi engine
CN110177930A (en) Fuel supply module and control system
KR101553686B1 (en) High presure fuel pump for direct injection type liquid petroleum injection system
JP4138793B2 (en) Fuel injection device
US7931010B2 (en) Fuel supply system for boat and outboard motor
JP2014202101A (en) Fuel supply system
JP2005180300A (en) Horizontally arranged pump fuel pump module
JP2012246793A (en) Fuel supply device of internal combustion engine
WO2005040600A1 (en) Fuel supply system
JPH08319871A (en) Pressure accumulation type fuel injection device of internal combustion engine
JP3503174B2 (en) Fuel supply device for internal combustion engine
JP2002317721A (en) Fuel injection device for outboard motor
JPH0942097A (en) Fuel injection device in marine engine provided with in-line type electric motor-driven fuel pump
WO2001034963A1 (en) Electronically controlled fuel injection device
JP4640387B2 (en) High pressure pump and fuel supply device for internal combustion engine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase