WO2003072587A1 - Process for producing nonvolatile thiazolidine compound - Google Patents

Process for producing nonvolatile thiazolidine compound Download PDF

Info

Publication number
WO2003072587A1
WO2003072587A1 PCT/JP2003/001362 JP0301362W WO03072587A1 WO 2003072587 A1 WO2003072587 A1 WO 2003072587A1 JP 0301362 W JP0301362 W JP 0301362W WO 03072587 A1 WO03072587 A1 WO 03072587A1
Authority
WO
WIPO (PCT)
Prior art keywords
producing
thiazolidine
compound
cysteine
thiazolidine compound
Prior art date
Application number
PCT/JP2003/001362
Other languages
French (fr)
Japanese (ja)
Inventor
Hirokazu Kawaguchi
Masanori Kohmura
Original Assignee
Ajinomoto Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co., Inc. filed Critical Ajinomoto Co., Inc.
Priority to JP2003571293A priority Critical patent/JPWO2003072587A1/en
Priority to AU2003207194A priority patent/AU2003207194A1/en
Publication of WO2003072587A1 publication Critical patent/WO2003072587A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H9/00Compounds containing a hetero ring sharing at least two hetero atoms with a saccharide radical
    • C07H9/06Compounds containing a hetero ring sharing at least two hetero atoms with a saccharide radical the hetero ring containing nitrogen as ring hetero atoms

Definitions

  • the present invention relates to a novel method for producing a non-volatile thiazolidine compound which can be produced in a short time and at a high yield and has no problem for food use.
  • a non-volatile thiazolidine compound is useful for enhancing the flavor or improving the flavor of foods and drinks by enhancing the flavor and masking of unpleasant odors, and based on such findings, ⁇ Enhancing the flavor of foods and beverages '' Or a method for enhancing or improving the flavor of foods and beverages using the composition and the method for improving or improving the flavor of the food and drink using the composition (International Application No. PCT / JP01 / 077769 (WO 02/2)). 1 9 3 8 A 1)
  • An object of the present invention is to provide a production method capable of obtaining a non-volatile thiazolidine conjugate having utility as described in the preceding section in a short time and with a high yield.
  • cysteine hydrochloride and reducing sugars are dissolved in an aqueous solvent, neutralized with sodium hydroxide or the like, and heated to obtain a non-volatile compound.
  • the present inventors have found that a thiazolidine compound can be obtained in a short time and at a high yield of about 80% with respect to cysteine, and based on such findings, the present invention has been completed.
  • the present invention firstly relates to a method for producing a non-volatile thiazolidine compound, which comprises maintaining cysteine or Z and cystinyl glycine and a reducing sugar in an aqueous solvent under heating.
  • the present inventor has further conducted intensive studies to achieve the above object, and found that cystine and reducing sugars were dissolved in an aqueous solvent instead of cysteine and / or cystinylglycine in an aqueous solvent, and the solution was alkalized with sodium hydroxide or the like. It was found that a non-volatile thiazolidine compound can be obtained in a short time and with a high yield of about 80% with respect to cysteine by heating, and the present invention was completed based on such findings.
  • the present invention secondly relates to a method for producing a non-volatile thiazolidine compound, which comprises maintaining cystine and a reducing sugar in an aqueous solvent while heating.
  • the non-volatile thiazolidine compound to be produced by the method of the present invention refers to a non-volatile derivative of thiazolidine having one or more substituents on a thiazolidine skeleton.
  • Oproline and its derivatives and 2- (polyhydroxyalkyl) thiazolidine-4-carboxylic acids specifically, 2- (1,2,3-trihydroxypropyl) thiazolidine-4-carboxylic acid, 2- (1,2 , 3,4-Tetrahydroxybutyl) thiazolidine-4-carboxylic acid, 2- (1,2,3,4,5-pentylhydroxypentyl) thiazolidine-4-carboxylic acid, 2-hydroxymethyl-2- (1 , 2,3,4-Tetrahydroxybutyl) thiazolidine-4-carboxylic acid, 2- (1,2,4,5-tetrahydroxy-3-darcoviranosyloxypentyl) thiazolidine-4-ca Bonic acid, 2- (1,2,3,4-tetrahydroxybutyl) thiazolidine-4-force Luponyl-N-glycine, 2- (1,2,3,4,5-penoxyhydroxypentyl) thiazolidine-4 -Carbonyl-N-glycine and
  • such a non-volatile thiazolidine compound may be a saccharide having a reducing group such as cysteine cis-tinylglycine and a monosaccharide such as xylose or glucose, or a disaccharide such as maltose or lactose.
  • the sugar can be easily obtained by holding the composition in an aqueous solvent under heating, for example, under neutral to neutral conditions.
  • cysteine is preferably an integral L when the target non-volatile thiazolidine compound is used for food.
  • Cysteine is usually used in the form of a hydrochloride salt, because its solubility is better in the form of a salt such as a hydrochloride salt than in the free form.
  • cysteine hydrochloride is usually distributed in the form of monohydrate.
  • cysteine (hydrochloride) must be used as long as the effects of the present invention are achieved. It does not need to be pure, and may be, for example, a yeast extract containing cysteine (hydrochloride).
  • Cystinylglycine has a common chemical structure with cysteine, and exhibits the same chemical behavior as cysteine in the production method of the present invention. For these reasons, cysteine and cystinildaricin can be used alone or as a mixture of both as raw materials for the method for producing a nonvolatile thiazolidine compound of the present invention.
  • cysteine or / and cystinyl glycine and reducing sugars react in equimolar amounts to give the target compound. It is preferable that the content is slightly excessive in view of the yield of cysteine or Z and cysteinylglycine of the objective compound.
  • the temperature to be kept under heating is 40 to 100 ° C, preferably 60 to 80 ° C. At low temperatures, it takes a long time to produce the target substance, while at high temperatures, the target substance can be produced in a short time, but it is not preferable because side reactions such as heating browning reaction easily occur. It is needless to say that cysteine and / or cysteinylglycine and reducing sugar are preferably kept under the above conditions until the production rate of the target compound is maximized. May be around 20 minutes (See Figure 1 below)
  • the target compound thus produced can be separated from the reaction mixture and used for food, but may be used as a reaction mixture (solution) as it is, or may be appropriately dried and powdered for distribution.
  • Sodium chloride produced by the neutralization operation accompanies the reaction mixture and its dry powdered product, but it is clear that it does not particularly hinder its use in foods.
  • the reaction mixture may be added with a solvent such as ethanol, crystallized, filtered and dried, or the reaction solution may be directly subjected to spray drying or freeze drying. It may be dried and powdered.
  • a solvent such as ethanol, crystallized, filtered and dried
  • the reaction solution may be directly subjected to spray drying or freeze drying. It may be dried and powdered.
  • the form of application of the nonvolatile thiazolidine compound thus obtained to foods can be appropriately determined by mixing powders and solutions.
  • the non-volatile thiazolidine compound to be produced by the method of the present invention refers to a non-volatile derivative of thiazolidine having one or more substituents on the thiazolidine skeleton, such as thioproline and its derivatives or 2- ( Polyhydroxyalkyl) thiazolidine-4-carboxylic acids, specifically, 2- (1,2,3-trihydroxypropyl) thiazolidine-4-carboxylic acid, 2- (1,2,3,4-tetrahydroxybutyl) Thiazolidine-4-carboxylic acid, 2- (1,2,3,4,5-pentanohydroxypentyl) thiazolidine-4-carboxylic acid, 2-hydroxymethyl-2- (1,2,3,4-tetra (Hydroxybutyl) thiazolidine-4-carboxylic acid, 2- (1,2,4,5-tetrahydroxy-3-darcopyranosyloxypentyl) thiazolidine-4-carboxylic acid, 2- (1,2,4,5
  • such a non-volatile thiazolidine compound includes cystine and a sugar having a reducing group (reducing sugar) such as monosaccharides such as xylose and glucose, and disaccharides such as maltose and lactose.
  • reducing sugar such as monosaccharides such as xylose and glucose
  • disaccharides such as maltose and lactose.
  • cystine is preferably integrated with L when the non-volatile thiazolidine compound of the target compound is used for food.
  • Cystine may be in the form of free acid or in the form of hydrochloride, and is not necessarily a pure product as long as the effects of the present invention can be obtained.
  • cystine eg, yeast extract containing cystine (hydrochloride)
  • it may be in a form.
  • reducing sugar there is no particular limitation on the reducing sugar, and pentoses such as D-xylose, hexoses such as D-darcose, and disaccharides such as maltose can be used.
  • cystine is cleaved at its SS bond by a reducing sugar, and then the resulting cysteine reacts with the reducing sugar in equimolar amounts to give the target compound. Conceivable. Therefore, the required amount of sugar is considered to be 3 moles per 1 mole of cystine.
  • the reducing sugar is at least 2 moles per mole of cystine, and the use of 2.2 moles can maximize the yield of cystine.
  • the temperature to be kept under heating is 25-100 ° C., preferably 60-90. C. At low temperatures, it takes a long time to produce the target substance, while at high temperatures, the target substance can be produced in a short time, but it is not preferable because side reactions such as heating browning reaction easily occur. Needless to say, it is preferable to maintain cystine and reducing sugar under the above conditions until the production rate of the target compound is maximized, but such a time is, for example, within about 15 minutes from the start of the retention. Sometimes (see Figure 2 below).
  • reducing sugars show reducing properties when they are active, and those which are non-volatile thiazolidine compounds. Because of good stability, pH New However, even if the initial pH starts the reaction from an alkali such as pH 11, the pH rapidly drops at first to about pH 8, for example, and then the non-volatile thiazolidine compound As pH is generated, the pH gradually decreases and changes to a neutral range or a weakly acidic range (eg, pH 6.5).
  • a neutral range or a weakly acidic range eg, pH 6.5.
  • the target compound thus formed can be separated from the reaction mixture and used for food as described above, but it may be used as a reaction mixture (solution) as it is, or may be appropriately dried and powdered. Can be put into circulation.
  • the pulverization method or the drying method There are no particular restrictions on the pulverization method or the drying method. After completion of the reaction, a solvent such as ethanol is added to the reaction mixture, and the crystallized product may be filtered and dried, or the reaction solution may be directly subjected to spray drying or freeze drying. It may be dried and powdered.
  • the form of application of the nonvolatile thiazolidine compound thus obtained to foods can be appropriately determined by mixing powders and solutions. These are the same as described above.
  • FIG. 1 shows the effect of the heating temperature on the production rate of the nonvolatile thiazolidine compound (see Examples 1 and 2).
  • FIG. 2 shows the effect of the amount of added sugar on the production rate of the non-volatile thiazolidine compound (see Example 3).
  • FIG. 3 shows the effect of the type and amount of sugar on the production rate of the nonvolatile thiazolidine compound (see Examples 4, 1 and 3).
  • FIG. 4 shows the effect of the heating temperature on the rate of formation of the nonvolatile thiazolidine compound (see Examples 5 and 6).
  • FIG. 5 shows the effect of the amount of added sugar on the production rate of the non-volatile thiazolidine compound (see Example 7).
  • FIG. 6 shows the effect of the type of sugar on the production rate of the non-volatile thiazolidine compound (see Examples 8 and 6). (Best mode for carrying out the invention)
  • a non-volatile thiazolidine compound was chemically synthesized by the method of Schubert et al. (J. Biol. Chem., 130, 601 (1939)). That is, 17.56 g (10 Ommo 1) of cysteine hydrochloride (monohydrate) and 15.01 (10 Ommo 1) of D-xylose were dissolved in 35 ml of pure water, and 8.36 ml of pyridine (10 Ommo 1) was added. After the addition, the mixture was stirred at room temperature for 72 hours. Then, 300 ml of ethanol was added and the mixture was allowed to stand in a refrigerator, whereupon a paste-like precipitate was formed.
  • Example 1 was repeated in exactly the same manner, except that the temperature was changed to 40 ° C or 80 ° C instead of the temperature of 60 ° C.
  • the results of Examples 1 and 2 are summarized in FIG. From FIG. 1, it can be seen that the retention time under heating at various temperatures and the fate of the formation of the target compound. As can be understood from FIG. 1, the production rate reaches 80% or more at 60 to 80 ° C.
  • the yield refers to the molar yield of the non-volatile thiazolidine compound from cysteine (hydrochloride) or / and cystinyl glycine. In addition, even if the holding time under heating is within 20 minutes, the generation rate is maximized and does not change thereafter.
  • Example 3 Effect of amount of reducing sugar used on formation of target compound
  • Example 1 was repeated exactly the same except that the amount of xylose was changed to 12.5 mmol or 14.0 mmol instead of 10.5 mmol.
  • Figure 2 summarizes the evolution of the production rate of the target compound at the three amounts of xylose used.
  • the xylose gives a production rate of the target compound of 80% or more with respect to cysteine hydrochloride at any of 1.05, 1.2 and 1.4 times the molar amount. In other words, if the amount of xylose is a small excess with respect to cysteine hydrochloride, Is sufficient for the maximum production of Example 4: Effect of sugar type on production of target compound
  • Example 5 In order to examine the effect of the type of sugar on the production of the target compound, relevant data from the above Examples 4, 1, 1 and 3 are collected and summarized in FIG. This indicates that the production rate of the target compound is not significantly affected by the type of sugar. Next, examples of the present invention in which cystine is used as a raw material will be described.
  • Example 5 In order to examine the effect of the type of sugar on the production of the target compound, relevant data from the above Examples 4, 1, 1 and 3 are collected and summarized in FIG. This indicates that the production rate of the target compound is not significantly affected by the type of sugar. Next, examples of the present invention in which cystine is used as a raw material will be described. Example 5
  • Example 5 is replaced with a temperature of 60 ° C. instead of 60 ° C. 98 ° C., 90 ° C., 70 ° C. or 50. The procedure was repeated in exactly the same manner except that C was used.
  • the results of Examples 5 and 6 are summarized in FIG. In FIG. 4, the vertical axis indicates the yield obtained by converting the molar yield for cystine to the molar yield for cysteine (relative to the molar yield of Cys). The horizontal axis indicates the heating and holding time.
  • Figure 4 shows the retention time under heating at various temperatures and the fate of the formation of the target compound. As can be understood from Fig. 4, at 60 to 90 ° C, the production rate reaches 80% or more in the heating and holding time of 30 minutes to 2 hours.
  • Example 7 Effect of amount of reducing sugar used on production of target compound
  • Example 5 was the same as Example 5 except that the temperature was changed to 90 ° C or 50 ° C instead of 60 ° C, and the amount of xylose was changed to 1.1 times or 1.4 times as much as cysteine at each temperature. Exactly the same was repeated.
  • Figure 5 summarizes the evolution of the yield of the target compound for the two amounts of xylose used at each temperature.
  • Figure 5 shows that xylose was 1.1 times higher and 1
  • the production rate of the target compound is about 80% or more with any of the 4-fold molar amount.
  • Example 5 the heating and holding temperature was 60. The procedure was exactly the same except that C was replaced by 70 ° C. and 1.75 g of D-xylose was replaced by 2.10 g (11.7 mmol) of D-glucose.
  • relevant data from the above Examples 8 and 6 are collected and summarized in FIG. This indicates that xylose has a slightly higher production rate of the target compound than glucose.
  • Chicken consommé (Knol) Commercially available chicken consommé soup prepared by adding 600 ml of hot water to two cubes (14 g) The above is described above 3
  • the nonvolatile thiazolidine obtained in Example 1 A reaction mixture of the compound was added so that the concentration at the time of eating was 5 ppm in terms of the non-volatile compound, and the non-added compound was used as a control. An evaluation was performed. As a result, as shown in the table, the preference of the additive was significantly higher than that of the additive-free product.
  • Table 2 Sensory evaluation of chicken consommé soup
  • a non-volatile thiazolidine compound having no problem for food And can be produced in high yield ⁇

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Thiazole And Isothizaole Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A novel process for producing a nonvolatile thiazolidine compound, characterized by holding a reducing sugar together with cysteine or/and cysteinyl-glycine or cystine in an aqueous medium with heating. By the process, a nonvolatile thiazolidine compound satisfactorily applicable to foods can be produced in a short time in a high yield.

Description

不揮発性チアゾリジン化合物の製造方法  Method for producing nonvolatile thiazolidine compound
(技術分野) (Technical field)
本発明は、 短時間でしかも高収率に製造が可能な、 食品用としても問題のない 不揮発性チアゾリジン化合物の新規製造方法に関する。  The present invention relates to a novel method for producing a non-volatile thiazolidine compound which can be produced in a short time and at a high yield and has no problem for food use.
(背景技術) (Background technology)
本出願人は、 風味増強、 不快臭マスキングなどによる飲食品の風味の増強また は風味の改善に不揮発性のチアゾリジン化合物が有用なることを見出し、 このよ うな知見に基いて 「飲食品の風味増強または改善組成物およびこれを使用する飲 食品の風味増強または改善方法」なる発明を完成し、 既に特許出願をした (国際 出願番号 P C T/J P 0 1 /0 7 7 6 9 (WO 0 2/2 1 9 3 8 A 1 )参照 The present applicant has found that a non-volatile thiazolidine compound is useful for enhancing the flavor or improving the flavor of foods and drinks by enhancing the flavor and masking of unpleasant odors, and based on such findings, `` Enhancing the flavor of foods and beverages '' Or a method for enhancing or improving the flavor of foods and beverages using the composition and the method for improving or improving the flavor of the food and drink using the composition (International Application No. PCT / JP01 / 077769 (WO 02/2)). 1 9 3 8 A 1)
) o ) o
しかしながら、 このような有用性を有する不揮発性チアゾリジン化合物につい ては、 その優れた製造法が開発されておらず、 僅かに Schubertらによる化学的合 成法が報告されているのみである (J. Biol. Chem. , 130, 601 (1939)) 。 この 方法は、 システィン塩酸塩 ( C y s · H C 1 ) を水に溶解し、 これにキシロース を加えて室温で数日放置後、 さらにピリジンを加えて室温で数日放置し、 これに ェタノ一ルを加えて結晶ィ匕させた後、 さらにエタノ一ルからの再結晶により精製 するものである。  However, for non-volatile thiazolidine compounds having such usefulness, no excellent production method has been developed, and only a chemical synthesis method by Schubert et al. Has been reported (J. Biol. Chem., 130, 601 (1939)). In this method, cysteine hydrochloride (Cys · HC1) is dissolved in water, xylose is added thereto, left at room temperature for several days, pyridine is further added, left at room temperature for several days, and ethanol is added. And then purified by recrystallization from ethanol.
しかしながら、 この方法では目的化合物の作成に約 1週間にも及ぶ長時間を要 し、 加えてピリジンを大量に使用するために得られた目的化合物は食品への利用 には不向きであるという問題点がある。  However, this method requires a long time of about one week to prepare the target compound, and the target compound obtained due to the use of a large amount of pyridine is not suitable for use in foods. There is.
(発明の開示) [発明が解決しょうとする課題] (Disclosure of the Invention) [Problems to be solved by the invention]
本発明の目的は、 前項に説明したような有用性を有する不揮発性チアゾリジン ィ匕合物を短時間でしかも高収率で得ることのできる製造方法を提供することにあ る。  An object of the present invention is to provide a production method capable of obtaining a non-volatile thiazolidine conjugate having utility as described in the preceding section in a short time and with a high yield.
[課題を解決するための手段] [Means for solving the problem]
本発明者は、 前記の目的を達成すべく鋭意研究の結果、 システィン塩酸塩と還 元糖を水性溶媒中に溶解し、 水酸化ナトリゥムなどで中和して加熱することによ り、 不揮発性チアゾリジン化合物が短時間でしかも対システィンで 8 0 %前後に も達する高収率で得られることを見出し、 このような知見に基いて本発明を完成 した。  As a result of intensive studies to achieve the above object, the present inventors have found that cysteine hydrochloride and reducing sugars are dissolved in an aqueous solvent, neutralized with sodium hydroxide or the like, and heated to obtain a non-volatile compound. The present inventors have found that a thiazolidine compound can be obtained in a short time and at a high yield of about 80% with respect to cysteine, and based on such findings, the present invention has been completed.
すなわち、 本発明は、 第一に、 システィンまたは Zおよびシスティニルグリシ ンと還元糖とを水性溶媒中で加熱下に保持することを特徴とする不揮発性チアゾ リジン化合物の製造方法に関する。 本発明者は、 また前記の目的を達成すべく更に鋭意研究の結果、 システィンま たは/およびシスティ二ルグリシンの代りにシスチンと還元糖を水性溶媒中に溶 解し、 水酸化ナトリウムなどでアルカリ性にして加熱することにより、 不揮発性 チアゾリジン化合物が短時間でしかも対システィンで 8 0 %前後にも達する高収 率で得られることを見出し、 このような知見に基いて本発明を完成した。  That is, the present invention firstly relates to a method for producing a non-volatile thiazolidine compound, which comprises maintaining cysteine or Z and cystinyl glycine and a reducing sugar in an aqueous solvent under heating. The present inventor has further conducted intensive studies to achieve the above object, and found that cystine and reducing sugars were dissolved in an aqueous solvent instead of cysteine and / or cystinylglycine in an aqueous solvent, and the solution was alkalized with sodium hydroxide or the like. It was found that a non-volatile thiazolidine compound can be obtained in a short time and with a high yield of about 80% with respect to cysteine by heating, and the present invention was completed based on such findings.
すなわち、 本発明は、 第二に、 シスチンと還元糖とを水性溶媒中で加熱下に保 持することを特徴とする不揮発性チアゾリジン化合物の製造方法に関する。  That is, the present invention secondly relates to a method for producing a non-volatile thiazolidine compound, which comprises maintaining cystine and a reducing sugar in an aqueous solvent while heating.
[発明の実施の形態] [Embodiment of the invention]
以下、 本発明を詳細に説明する。 本発明の製造方法によって不揮発性チアゾリジン化合物を製造する場合、 原料 としてシスティンまたは/およびシスティニルダリシンを選ぶ場合とシスチンを 選ぶ場合とでは、 製造条件はほぼ同じではあるが、 なお若干の相違がある。 そこ で、 以下、 先ず、 原料としてシスティンまたは/およびシスティニルグリシンを 選んだ場合を説明し、 次いで原料としてシスチンを選んだ場合を説明する。 先ず、 システィンまたは/およびシスティニルグリシンを原料とした場合、 本 発明の方法により製造されるべき不揮発性チアゾリジン化合物とはチアゾリジン 骨格に 1以上の置換基を有するチアゾリジンの不揮発性誘導体をいい、 例えばチ ォプロリンおよびその誘導体や 2- (ポリヒドロキシアルキル) チアゾリジン - 4- カルボン酸類、 具体的には、 2-(1,2, 3-トリヒドロキシプロピル)チアゾリジン- 4 -カルボン酸、 2-(1,2,3,4-テトラヒドロキシブチル)チアゾリジン- 4-カルボン酸 、 2-( 1,2,3,4, 5-ペン夕ヒドロキシペンチル)チアゾリジン- 4-カルボン酸、 2 -ヒ ドロキシメチル -2- ( 1 , 2 , 3 , 4-テトラヒドロキシブチル)チアゾリジン- 4-カルボン 酸、 2-( 1,2,4,5-テトラヒドロキシ -3-ダルコビラノシルォキシペンチル)チアゾ リジン- 4-カルボン酸、 2 -(1,2,3,4-テトラヒドロキシブチル)チアゾリジン- 4-力 ルポニル -N-グリシン、 2-( 1,2,3,4, 5-ペン夕ヒドロキシペンチル)チアゾリジン- 4-カルボニル- N -グリシンなどを挙げることができる。 Hereinafter, the present invention will be described in detail. When a non-volatile thiazolidine compound is produced by the production method of the present invention, the production conditions are almost the same when cysteine and / or cystinyldaricin are selected as the raw material and when cystine is selected, but there are still slight differences. . Therefore, hereinafter, first, the case where cysteine and / or cystinylglycine is selected as a raw material will be described, and then the case where cystine is selected as a raw material will be described. First, when cysteine and / or cystinyl glycine are used as a raw material, the non-volatile thiazolidine compound to be produced by the method of the present invention refers to a non-volatile derivative of thiazolidine having one or more substituents on a thiazolidine skeleton. Oproline and its derivatives and 2- (polyhydroxyalkyl) thiazolidine-4-carboxylic acids, specifically, 2- (1,2,3-trihydroxypropyl) thiazolidine-4-carboxylic acid, 2- (1,2 , 3,4-Tetrahydroxybutyl) thiazolidine-4-carboxylic acid, 2- (1,2,3,4,5-pentylhydroxypentyl) thiazolidine-4-carboxylic acid, 2-hydroxymethyl-2- (1 , 2,3,4-Tetrahydroxybutyl) thiazolidine-4-carboxylic acid, 2- (1,2,4,5-tetrahydroxy-3-darcoviranosyloxypentyl) thiazolidine-4-ca Bonic acid, 2- (1,2,3,4-tetrahydroxybutyl) thiazolidine-4-force Luponyl-N-glycine, 2- (1,2,3,4,5-penoxyhydroxypentyl) thiazolidine-4 -Carbonyl-N-glycine and the like.
このような不揮発性チアゾリジン化合物は、 本発明によればシスティンゃシス ティニルグリシンと例えばキシロース、 グルコースなど単糖類、 マルト一ス、 ラ クト一スなどの二糖類等の還元基を有する糖 (還元糖) を水性溶媒中、 例えば中 性〜アル力リ性条件下で加熱下に保持することにより容易に得ることができる。 詳述すると、 システィンは目的化合物の不揮発性チアゾリジン化合物を食品用 途に供する場合は L一体の好ましいことはいうまでもない。 また、 システィンは 溶解性が遊離態よりも塩酸塩などの塩の形態の方がよいので、 通常、 塩酸塩の形 態で使用される。 因みに、 システィン塩酸塩は通常 1水和物の形態で流通に置か れている。 また、 システィン (塩酸塩.) は、 本発明の効果の奏される限りは必ず しも純品である必要はなく、 例えばシスティン (塩酸塩) を含有する酵母エキス などであってもよい。 システィニルグリシンは、 システィンと共通する化学構造 を有し、 本発明の製造方法においてはシスティンと同様の化学的挙動を示す。 こ のような理由もあって、 本発明の不揮発性チアゾリジン化合物の製造方法の原料 として、 システィンおよびシスティニルダリシンは、 それそれ単独で、 また両者 の混合物で採用されることができる。 According to the present invention, such a non-volatile thiazolidine compound may be a saccharide having a reducing group such as cysteine cis-tinylglycine and a monosaccharide such as xylose or glucose, or a disaccharide such as maltose or lactose. The sugar can be easily obtained by holding the composition in an aqueous solvent under heating, for example, under neutral to neutral conditions. To be more specific, it goes without saying that cysteine is preferably an integral L when the target non-volatile thiazolidine compound is used for food. Cysteine is usually used in the form of a hydrochloride salt, because its solubility is better in the form of a salt such as a hydrochloride salt than in the free form. By the way, cysteine hydrochloride is usually distributed in the form of monohydrate. In addition, cysteine (hydrochloride) must be used as long as the effects of the present invention are achieved. It does not need to be pure, and may be, for example, a yeast extract containing cysteine (hydrochloride). Cystinylglycine has a common chemical structure with cysteine, and exhibits the same chemical behavior as cysteine in the production method of the present invention. For these reasons, cysteine and cystinildaricin can be used alone or as a mixture of both as raw materials for the method for producing a nonvolatile thiazolidine compound of the present invention.
還元糖には特別の制限はなく、 D—キシロースなどの五炭糖類、 D—ダルコ一 スなどの六炭糖類、 あるいはマルト一スなどの二糖類が使用可能である。 本発明 の不揮発性チアゾリジンの製造方法では、 システィンまたは/およびシスティ二 ルグリシンと還元糖とは等モル同士で反応して目的化合物を与えるので、 糖の使 用量は、 システィンまたは/およびシスティニルグリシンに対しやや過剰とする のが目的ィ匕合物の対システィンまたは Zおよびシスティニルグリシン収率の点か らは好ましい。  There is no particular limitation on the reducing sugar, and pentoses such as D-xylose, hexoses such as D-darcose, and disaccharides such as maltose can be used. In the method for producing a non-volatile thiazolidine of the present invention, cysteine or / and cystinyl glycine and reducing sugars react in equimolar amounts to give the target compound. It is preferable that the content is slightly excessive in view of the yield of cysteine or Z and cysteinylglycine of the objective compound.
加熱下に保持すべき温度は 4 0〜1 0 0 °Cで、 好ましくは 6 0〜8 0 °Cである 。低温では目的物の生成に長時間を要し、 一方、 高温では短時間で目的物を生成 せしめることが可能であるが、 加熱褐変反応などの副反応が起こりやすくなるの で、 ともに好ましくない。 システィンまたは/およびシスティニルグリシンなら びに還元糖を目的化合物の生成率が最大となる時点まで上記条件下に保持するこ との好ましいことはいうまでもないが、 このような時点は保持開始から例えば 2 0分前後内にあることもある (後掲図 1参照)  The temperature to be kept under heating is 40 to 100 ° C, preferably 60 to 80 ° C. At low temperatures, it takes a long time to produce the target substance, while at high temperatures, the target substance can be produced in a short time, but it is not preferable because side reactions such as heating browning reaction easily occur. It is needless to say that cysteine and / or cysteinylglycine and reducing sugar are preferably kept under the above conditions until the production rate of the target compound is maximized. May be around 20 minutes (See Figure 1 below)
システィンまたは およびシスティニルグリシンならびに還元糖を上記条件下 に保持するときの p Hには特別の制限はないが、 アル力リ性のほうが目的化合物 の不揮発性チアゾリジン化合物の安定性が良好であることから好ましい。 しかし 、 アルカリ性の食品というのは稀であり、 不揮発性チアゾリジン化合物の食品へ の利用という観点からは、 上記条件の保持開始時、 すなわち、 目的化合物の生成 反応開始時の p Hは、 例えば p H 8程度の弱アルカリ性から中性が好ましい。 た だし、 弱アルカリ性から中性で反応を開始しても、 反応中に不揮発性チアゾリジ ン化合物が生成するにしたがって p Hが徐々に低下し、 弱酸性に変化する。 この 場合、 反応中に p Hを調整して p Hを好ましい範囲に保持することが好ましい。 このようにして生成した目的化合物は反応混合物から分離して食品に利用する こともできるが、 反応混合物 (溶液) のまま用いてもよくまた適宜乾燥して粉末 化して流通に置くこともできる。 中和操作により生じた塩化ナトリウムは、 反応 混合物やその乾燥粉末化物に随伴するが、 食品への利用を特に阻害するものでな いことは明らかである。 There are no particular restrictions on the pH when cysteine or cystinylglycine and reducing sugars are kept under the above conditions, but the stability of the target compound, a non-volatile thiazolidine compound, is better when the pH is higher. Is preferred. However, alkaline foods are rare, and from the viewpoint of using non-volatile thiazolidine compounds in foods, the pH at the start of maintaining the above conditions, that is, at the start of the reaction to produce the target compound, is, for example, pH About 8 to weakly alkaline to neutral are preferable. However, even if the reaction is started from weakly alkaline to neutral, non-volatile thiazolyz The pH gradually decreases with the generation of the compound, and the acid changes to slightly acidic. In this case, it is preferable to adjust the pH during the reaction to keep the pH in a preferable range. The target compound thus produced can be separated from the reaction mixture and used for food, but may be used as a reaction mixture (solution) as it is, or may be appropriately dried and powdered for distribution. Sodium chloride produced by the neutralization operation accompanies the reaction mixture and its dry powdered product, but it is clear that it does not particularly hinder its use in foods.
粉末化法や乾燥法にもは特別の制限はない。 反応終了後、 反応混合液にェタノ —ルなどの溶剤を添カ卩して結晶化させたものをろ過して乾燥させても良いし、 反 応液を直接スプレードライ法や凍結乾燥法に付して乾燥、 粉末ィ匕しても良い。 こ のようにして得られた不揮発性チアゾリジン化合物の食品への利用形態は、 適宜 、 粉末混合、 溶液混合などによることができる。 次に、 原料としてシスチンを選んだ場合の本発明を詳細に説明する。  There are no particular restrictions on the pulverization method or the drying method. After completion of the reaction, the reaction mixture may be added with a solvent such as ethanol, crystallized, filtered and dried, or the reaction solution may be directly subjected to spray drying or freeze drying. It may be dried and powdered. The form of application of the nonvolatile thiazolidine compound thus obtained to foods can be appropriately determined by mixing powders and solutions. Next, the present invention when cystine is selected as a raw material will be described in detail.
シスチンを原料とした場合、 本発明の方法により製造されるべき不揮発性チァ ゾリジン化合物とはチアゾリジン骨格に 1以上の置換基を有するチアゾリジンの 不揮発性誘導体をいい、 例えばチォプロリンおよびその誘導体や 2- (ポリヒドロ キシアルキル)チアゾリジン- 4-カルボン酸類、 具体的には、 2-(1,2,3-トリヒド ロキシプロビル)チアゾリジン- 4-カルボン酸、 2-( 1,2,3,4-テトラヒドロキシブ チル)チアゾリジン- 4-カルボン酸、 2- ( 1,2,3,4, 5-ペン夕ヒドロキシペンチル)チ ァゾリジン- 4-カルボン酸、 2-ヒドロキシメチル -2-(1,2,3,4-テトラヒドロキシ プチル)チアゾリジン- 4-カルボン酸、 2- (1,2, 4, 5-テトラヒドロキシ -3-ダルコピ ラノシルォキシペンチル)チアゾリジン- 4-カルボン酸などを挙げることができる ο  When cystine is used as a raw material, the non-volatile thiazolidine compound to be produced by the method of the present invention refers to a non-volatile derivative of thiazolidine having one or more substituents on the thiazolidine skeleton, such as thioproline and its derivatives or 2- ( Polyhydroxyalkyl) thiazolidine-4-carboxylic acids, specifically, 2- (1,2,3-trihydroxypropyl) thiazolidine-4-carboxylic acid, 2- (1,2,3,4-tetrahydroxybutyl) Thiazolidine-4-carboxylic acid, 2- (1,2,3,4,5-pentanohydroxypentyl) thiazolidine-4-carboxylic acid, 2-hydroxymethyl-2- (1,2,3,4-tetra (Hydroxybutyl) thiazolidine-4-carboxylic acid, 2- (1,2,4,5-tetrahydroxy-3-darcopyranosyloxypentyl) thiazolidine-4-carboxylic acid, etc.
このような不揮発性チアゾリジン化合物は、 本発明によれば、 シスチンと例え ばキシロース、 グルコースなど単糖類、 マルト一ス、 ラクト一スなどの二糖類等 の還元基を有する糖 (還元糖) とを水性溶媒中、 初発 p Hをアルカリ性の条件下 で加熱下に保持することにより容易に得ることができる。 According to the present invention, such a non-volatile thiazolidine compound includes cystine and a sugar having a reducing group (reducing sugar) such as monosaccharides such as xylose and glucose, and disaccharides such as maltose and lactose. Initial pH in aqueous medium under alkaline conditions And can be easily obtained by holding under heating.
詳述すると、 シスチンは、 目的化合物の不揮発性チアゾリジン化合物を食品用 途に供する場合は、 L一体の好ましいことはいうまでもない。 また、 シスチンは 遊離酸の形態でも塩酸塩の形態でもよく、 本発明の効果の奏される限りは必ずし も純品である必要はなく、 例えばシスチン (塩酸塩) を含有する酵母エキスなど の形態であってもよい。  More specifically, it is needless to say that cystine is preferably integrated with L when the non-volatile thiazolidine compound of the target compound is used for food. Cystine may be in the form of free acid or in the form of hydrochloride, and is not necessarily a pure product as long as the effects of the present invention can be obtained. For example, cystine (eg, yeast extract containing cystine (hydrochloride)) may be used. It may be in a form.
還元糖には特別の制限はなく、 D—キシロースなどの五炭糖類、 D—ダルコ一 スなどの六炭糖類、 あるいはマルト一スなどの二糖類が使用可能である。  There is no particular limitation on the reducing sugar, and pentoses such as D-xylose, hexoses such as D-darcose, and disaccharides such as maltose can be used.
本発明の不揮発性チアゾリジン化合物の製造方法では、 先ず、 シスチンが還元 糖によってその S— S結合において開裂し、 次に、 生じたシスティンが還元糖と 等モル同士で反応して目的化合物を与えると考えられる。 従って、 糖の所要量は 、 シスチン 1モルに対し 3モルの割合であると考えられるところ、 実際は後掲実 施例 3にみるように、 それほどの量を要しない。 これは、 (アルカリ性下で) 還 元糖が分解して新たな還元性物質が生成し、 これも S— S結合の開裂に関与して いることによるものと考えられる。 本発明によれば、 シスチン 1モル当り、 還元 糖は最低 2モルで、 2 . 2モル使用すれば対シスチン収率を最高にすることがで きる。  In the method for producing a non-volatile thiazolidine compound of the present invention, first, cystine is cleaved at its SS bond by a reducing sugar, and then the resulting cysteine reacts with the reducing sugar in equimolar amounts to give the target compound. Conceivable. Therefore, the required amount of sugar is considered to be 3 moles per 1 mole of cystine. However, in practice, as shown in Example 3 below, not much is required. This is thought to be due to the fact that the reducing sugars are decomposed (under alkaline conditions) to produce new reducing substances, which are also involved in the cleavage of the SS bond. According to the present invention, the reducing sugar is at least 2 moles per mole of cystine, and the use of 2.2 moles can maximize the yield of cystine.
加熱下に保持すべき温度は 2 5〜1 0 0 °Cで、 好ましくは 6 0〜9 0。Cである 。低温では目的物の生成に長時間を要し、 一方、 高温では短時間で目的物を生成 せしめることが可能であるが、 加熱褐変反応などの副反応が起こりやすくなるの で、 ともに好ましくない。 シスチンおよび還元糖を目的化合物の生成率が最大と なる時点まで上記条件下に保持することの好ましいことはいうまでもないが、 こ のような時点は保持開始から例えば 1 5分前後内にあることもある (後掲図 2参 照) 。  The temperature to be kept under heating is 25-100 ° C., preferably 60-90. C. At low temperatures, it takes a long time to produce the target substance, while at high temperatures, the target substance can be produced in a short time, but it is not preferable because side reactions such as heating browning reaction easily occur. Needless to say, it is preferable to maintain cystine and reducing sugar under the above conditions until the production rate of the target compound is maximized, but such a time is, for example, within about 15 minutes from the start of the retention. Sometimes (see Figure 2 below).
シスチンおよび還元糖を上記条件下に保持するときの p Hについては、 アル力 リ性のときに還元糖が還元性を示し、 またアル力リ性のほうが目的化合物の不揮 発性チアゾリジン化合物の安定性が良好であることから p Hはアル力リ性が好ま しい。 ただし、 初発 p Hが例えば p H l 1のようなアルカリ性から反応を開始し ても、 p Hは当初急激に低下して例えば p H 8程度になり、 その後は反応中に不 揮発性チアゾリジン化合物が生成するにしたがって p Hが徐々に低下し、 中性域 や弱酸性域 (例えば p H 6 . 5 ) に変化する。 Regarding the pH when cystine and reducing sugars are maintained under the above conditions, reducing sugars show reducing properties when they are active, and those which are non-volatile thiazolidine compounds. Because of good stability, pH New However, even if the initial pH starts the reaction from an alkali such as pH 11, the pH rapidly drops at first to about pH 8, for example, and then the non-volatile thiazolidine compound As pH is generated, the pH gradually decreases and changes to a neutral range or a weakly acidic range (eg, pH 6.5).
このようにして生成した目的化合物は、 先に説明したと同じく、 反応混合物か ら分離して食品に利用することもできるが、 反応混合物 (溶液) のまま用いても よくまた適宜乾燥して粉末化して流通に置くこともできる。  The target compound thus formed can be separated from the reaction mixture and used for food as described above, but it may be used as a reaction mixture (solution) as it is, or may be appropriately dried and powdered. Can be put into circulation.
粉末化法や乾燥法にもは特別の制限はない。 反応終了後、 反応混合液にェ夕ノ —ルなどの溶剤を添加して結晶化させたものをろ過して乾燥させても良いし、 反 応液を直接スプレードライ法や凍結乾燥法に付して乾燥、 粉末ィ匕しても良い。 こ のようにして得られた不揮発性チアゾリジン化合物の食品への利用形態は、 適宜 、 粉末混合、 溶液混合などによることができる。 これらも、 先に説明したと同じ である。  There are no particular restrictions on the pulverization method or the drying method. After completion of the reaction, a solvent such as ethanol is added to the reaction mixture, and the crystallized product may be filtered and dried, or the reaction solution may be directly subjected to spray drying or freeze drying. It may be dried and powdered. The form of application of the nonvolatile thiazolidine compound thus obtained to foods can be appropriately determined by mixing powders and solutions. These are the same as described above.
(図面の簡単な説明) (Brief description of drawings)
図 1は、 不揮発性チアゾリジン化合物の生成率に及ぼす加熱温度の影響を示す (実施例 1および 2参照) 。  FIG. 1 shows the effect of the heating temperature on the production rate of the nonvolatile thiazolidine compound (see Examples 1 and 2).
図 2は、 不揮発性チアゾリジン化合物の生成率に及ぼす糖の添加量の影響を示 す (実施例 3参照) 。  FIG. 2 shows the effect of the amount of added sugar on the production rate of the non-volatile thiazolidine compound (see Example 3).
図 3は、 不揮発性チアゾリジン化合物の生成率に及ぼす糖の種類および添加量 の影響を示す (実施例 4、 1および 3参照) 。  FIG. 3 shows the effect of the type and amount of sugar on the production rate of the nonvolatile thiazolidine compound (see Examples 4, 1 and 3).
図 4は、 不揮発性チアゾリジン化合物の生成率に及ぼす加熱温度の影響を示す (実施例 5および 6参照) 。  FIG. 4 shows the effect of the heating temperature on the rate of formation of the nonvolatile thiazolidine compound (see Examples 5 and 6).
図 5は、 不揮発性チアゾリジン化合物の生成率に及ぼす糖の添加量の影響を示 す (実施例 7参照) 。  FIG. 5 shows the effect of the amount of added sugar on the production rate of the non-volatile thiazolidine compound (see Example 7).
図 6は、 不揮発性チアゾリジン化合物の生成率に及ぼす糖の種類の影響を示す (実施例 8および 6参照) 。 (発明を実施するための最良の形態) FIG. 6 shows the effect of the type of sugar on the production rate of the non-volatile thiazolidine compound (see Examples 8 and 6). (Best mode for carrying out the invention)
以下、 参考例および実施例によって本発明をさらに詳細に説明する。 参考例 1 (従来法) : 2-(1,2,3,4- Tetrahydroxybutyl)thiazolidine-4- carboxyl ic acidの合成:  Hereinafter, the present invention will be described in more detail by reference examples and examples. Reference Example 1 (Conventional method): Synthesis of 2- (1,2,3,4-Tetrahydroxybutyl) thiazolidine-4-carboxylic acid:
前記 Schubertら (J. Biol. Chem., 130, 601 (1939))の方法により、 不揮発 性チアゾリジン化合物の化学的合成を行った。 すなわち、 システィン塩酸塩 (1 水和物) 17. 56 g (10 Ommo 1) と D—キシロース 15. 01 (10 Ommo 1) を純水 35mlに溶解させ、 ピリジン 8. 36ml (10 Ommo 1) を加えた後、 室温で 72時間攪拌した。 ついで、 300mlのエタノールを 加えて冷蔵庫に静置するとペースト状の沈殿が生じた。 溶媒をデカンテ一シヨン により取り除き、 沈殿を水 100mlに溶解後、 不純物を濾去し、 約 30mlま で濃縮した。 濃縮物にエタノールを沈殿が生じる直前まで加え、 冷蔵庫でー晚静 置した。生じた結晶を濾取し、 減圧乾燥した。乾燥結晶を再び水に溶解し、 不純 物を濾去してから濃縮し、 再びエタノールを加えて再結晶させ、 生じた結晶を濾 取し、 減圧乾燥することにより白色粉末 10. 8gが得られた (対システィンモ ル収率 42. 7%)。 先ず、 システィンまたは ぉよびシスティニルグリシンを原料とした場合の本 発明の実施例を示す。 実施例 1  A non-volatile thiazolidine compound was chemically synthesized by the method of Schubert et al. (J. Biol. Chem., 130, 601 (1939)). That is, 17.56 g (10 Ommo 1) of cysteine hydrochloride (monohydrate) and 15.01 (10 Ommo 1) of D-xylose were dissolved in 35 ml of pure water, and 8.36 ml of pyridine (10 Ommo 1) was added. After the addition, the mixture was stirred at room temperature for 72 hours. Then, 300 ml of ethanol was added and the mixture was allowed to stand in a refrigerator, whereupon a paste-like precipitate was formed. The solvent was removed by decantation, and the precipitate was dissolved in 100 ml of water. Then, the impurities were removed by filtration and concentrated to about 30 ml. Ethanol was added to the concentrate until just before precipitation occurred, and the mixture was allowed to stand in a refrigerator. The resulting crystals were collected by filtration and dried under reduced pressure. The dried crystals were dissolved again in water, the impurities were removed by filtration, concentrated, re-crystallized by adding ethanol again, and the resulting crystals were collected by filtration and dried under reduced pressure to obtain 10.8 g of a white powder. (42.7% yield to cysteine mol). First, examples of the present invention in which cysteine or cystinylglycine is used as a raw material will be described. Example 1
システィン塩酸塩 (1水和物) 1. 75g (10. Ommo 1) を蒸留水 3. 6mlに溶解し、 D—キシロース 1. 58g (10. 5mmol) を加え、 撹拌 して完全に溶解させた。 この溶液に、 27%水酸ィ匕ナトリゥム溶液 2. 3 gを徐 々に添加した。 この時、 pHは約 8であった。 この溶液を 60°Cに加熱して同温 度に保持した。 この間、 適宜反応液をサンプリングし、 蒸留水で 1 , 0 0 0倍に 希釈し、 H P L Cにより目的化合物の生成率を下記第 1表に示す条件で分析した 第 1表:分析条件 1.75 g (10. Ommo 1) of cysteine hydrochloride (monohydrate) was dissolved in 3.6 ml of distilled water, 1.58 g (10.5 mmol) of D-xylose was added, and the mixture was stirred and completely dissolved. . 2.3 g of a 27% sodium hydroxide solution was gradually added to this solution. At this time, the pH was about 8. Heat this solution to 60 ° C and keep it at the same temperature It was kept every time. During this time, the reaction solution was sampled appropriately, diluted 1000 times with distilled water, and the yield of the target compound was analyzed by HPLC under the conditions shown in Table 1 below.
HPLC装置 Waters製「aliiance」  HPLC system Waters “aliiance”
カ ラ ム rCAPCELL PAK NH2」 (内径 0.20讓 x250顧) Column rCAPCELL PAK NH 2 "(0.20 inner diameter x 250 customers)
溶 媒 ァセトニトリル (Α)と 50η»酸アンモニゥム水溶液 (Β)の  Solvents Acetonitrile (Α) and 50 η »acid ammonium aqueous solution (Β)
混合溶媒 (混合比: Α/Β=50/50)  Mixed solvent (mixing ratio: Α / Β = 50/50)
流 m 0.2ml/min.  Flow m 0.2 ml / min.
検出波長 UV (210皿) 実施例 2  Detection wavelength UV (210 dishes) Example 2
実施例 1を、 温度 6 0 °Cに代えて 4 0 °Cまたは 8 0 °Cとしたことを除いては全 く同様にして繰返した。 実施例 1および 2の結果を図 1にまとめて示す。 図 1から、 種々の温度におけ る加熱下保持時間と目的化合物の生成の消長が分かる。 図 1から理解されるよう に、 6 0〜8 0 °Cでは生成率 8 0 %以上にも達する。 本明細書で生成率とは、 シ スティン (塩酸塩) または/およびシスティニルグリシンからの不揮発性チアゾ リジン化合物のモル収率である。 また、 加熱下保持時間 2 0分以内でも生成率が 最大となり、 その後は変化しない。 実施例 3 :還元糖の使用量の、 目的化合物の生成に及ぼす影響  Example 1 was repeated in exactly the same manner, except that the temperature was changed to 40 ° C or 80 ° C instead of the temperature of 60 ° C. The results of Examples 1 and 2 are summarized in FIG. From FIG. 1, it can be seen that the retention time under heating at various temperatures and the fate of the formation of the target compound. As can be understood from FIG. 1, the production rate reaches 80% or more at 60 to 80 ° C. As used herein, the yield refers to the molar yield of the non-volatile thiazolidine compound from cysteine (hydrochloride) or / and cystinyl glycine. In addition, even if the holding time under heating is within 20 minutes, the generation rate is maximized and does not change thereafter. Example 3: Effect of amount of reducing sugar used on formation of target compound
実施例 1を、 キシロースの量を 1 0 . 5 mmo lに代えて 1 2 . O mmo lま たは 1 4. O mm o 1としたことを除いては全く同様に繰返した。 キシロースの 3種の使用量における目的化合物の生成率の消長を図 2にまとめて示す。  Example 1 was repeated exactly the same except that the amount of xylose was changed to 12.5 mmol or 14.0 mmol instead of 10.5 mmol. Figure 2 summarizes the evolution of the production rate of the target compound at the three amounts of xylose used.
図 2から、 システィン塩酸塩に対しキシ口一スは 1 . 0 5、 1 . 2および 1 . 4倍モル量のいずれでも目的化合物の生成率 8 0 %以上を与えることが分る。 換 言すれば、 キシロースの量はシスティン塩酸塩に対し小過剰であれば目的ィ匕合物 の最大生成に充分である。 実施例 4 :糖の種類の、 目的化合物の生成に及ぼす影響 From FIG. 2, it can be seen that the xylose gives a production rate of the target compound of 80% or more with respect to cysteine hydrochloride at any of 1.05, 1.2 and 1.4 times the molar amount. In other words, if the amount of xylose is a small excess with respect to cysteine hydrochloride, Is sufficient for the maximum production of Example 4: Effect of sugar type on production of target compound
システィン塩酸塩 (1水和物) 1. 75g (10. Omol) を蒸留水 3. 6 mlに溶解し、 D—グルコース 1. 89g (10. 5mmo 1) をカロえ、 撹拌し て完全に溶解させた。 この溶液に、 27%水酸ィ匕ナトリウム溶液 2. 3gを徐々 に添カ卩した。 この時、 pHは約 8であった。 この溶液を 60°Cで加熱して同温度 に保持した。 この間、 適宜反応液をサンプリングし、 実施例 1におけると同様に して目的化合物の生成率を分析した。  Dissolve 1.75 g (10. Omol) of cysteine hydrochloride (1.Omol) in 3.6 ml of distilled water, add 1.89 g (10.5 mmo 1) of D-glucose, stir and dissolve completely I let it. 2.3 g of a 27% sodium hydroxide solution was gradually added to the solution. At this time, the pH was about 8. This solution was heated at 60 ° C. and kept at the same temperature. During this time, the reaction solution was appropriately sampled, and the production rate of the target compound was analyzed in the same manner as in Example 1.
同様の操作を、 グルコース 10. 5 mmo 1を 12. 0 mmo 1に代えて行な つた。 糖の種類の、 目的化合物の生成に及ぼす影響をみる目的で、 上記実施例 4、 実 施例 1および実施例 3から関連するデータを集めて図 3にまとめて示す。 これよ り、 目的化合物の生成率は糖の種類によって顕著な影響を受けることがないこと が理解される。 次に、 シスチンを原料とした場合の本発明の実施例を示す。 実施例 5  The same operation was performed by changing glucose 10.5 mmo 1 to 12.0 mmo 1. In order to examine the effect of the type of sugar on the production of the target compound, relevant data from the above Examples 4, 1, 1 and 3 are collected and summarized in FIG. This indicates that the production rate of the target compound is not significantly affected by the type of sugar. Next, examples of the present invention in which cystine is used as a raw material will be described. Example 5
シスチン 1. 0g (4. 2mmo 1) を 27%水酸化ナトリウム水溶液 1. 2 7 gに溶角军し、 D—キシロース 1. 75g (l l. 7mmo 1。 シスチン 1モル はシスティン 2モルに相当するので、 対システィンでは 1. 4倍モルとなる。 ) を加え、 撹拌して完全に溶解させた。 さらに、 水 1. Ogを加え、 60°Cに加熱 して同温度に保持した。 この間、 適宜反応液をサンプリングし、 蒸留水で 1, 0 00倍に希釈し、 HP L Cにより目的化合物の生成率を前記第 1表に示す条件で 分析した。 実施例 6 1.0 g (4.2 mmo 1) of cystine is dissolved in 1.27 g of 27% aqueous sodium hydroxide solution, and D-xylose 1.75 g (l l. 7 mmo 1. 1 mol of cystine is equivalent to 2 mol of cysteine) Therefore, it becomes 1.4 times as much as that of cysteine.) And stirred to dissolve completely. Further, 1.Og of water was added, and the mixture was heated to 60 ° C and maintained at the same temperature. During this period, the reaction solution was appropriately sampled, diluted 1000 times with distilled water, and the yield of the target compound was analyzed by HPLC under the conditions shown in Table 1 above. Example 6
実施例 5を、 温度 60°Cに代えて 60°Cを挟む 98°C、 90°C、 70°Cまたは 50。Cとしたことを除いては全く同様にして繰返した。 実施例 5および 6の結果を図 4にまとめて示す。 図 4において、 縦軸はシスチ ンに対するモル収率をシスティンに対するモル収率 (対 Cysモル収率) に換算 した収率を示す。 また、 横軸は加熱保持時間を示す。  Example 5 is replaced with a temperature of 60 ° C. instead of 60 ° C. 98 ° C., 90 ° C., 70 ° C. or 50. The procedure was repeated in exactly the same manner except that C was used. The results of Examples 5 and 6 are summarized in FIG. In FIG. 4, the vertical axis indicates the yield obtained by converting the molar yield for cystine to the molar yield for cysteine (relative to the molar yield of Cys). The horizontal axis indicates the heating and holding time.
図 4から、 種々の温度における加熱下保持時間と目的化合物の生成の消長が分 かる。 図 4から理解されるように、 60〜90°Cでは加熱保持時間 30分〜 2時 間で生成率 80%以上にも達する。 実施例 7 :還元糖の使用量の、 目的化合物の生成に及ぼす影響  Figure 4 shows the retention time under heating at various temperatures and the fate of the formation of the target compound. As can be understood from Fig. 4, at 60 to 90 ° C, the production rate reaches 80% or more in the heating and holding time of 30 minutes to 2 hours. Example 7: Effect of amount of reducing sugar used on production of target compound
実施例 5を、 温度 60°Cに代えて 90°Cまたは 50°Cとし、 キシロースの量を 各温度において対システィン換算で 1. 1倍モルまたは 1. 4倍モルとしたこと を除いては全く同様に繰返した。 各温度におけるキシロースの 2種の使用量につ いての目的化合物の生成率の消長を図 5にまとめて示す。  Example 5 was the same as Example 5 except that the temperature was changed to 90 ° C or 50 ° C instead of 60 ° C, and the amount of xylose was changed to 1.1 times or 1.4 times as much as cysteine at each temperature. Exactly the same was repeated. Figure 5 summarizes the evolution of the yield of the target compound for the two amounts of xylose used at each temperature.
図 5から、 システィン換算シスチンに対しキシロースは 1. 1倍モルおよび 1 Figure 5 shows that xylose was 1.1 times higher and 1
. 4倍モル量のいずれでも目的化合物の生成率約 80%以上を与えることが分るIt can be seen that the production rate of the target compound is about 80% or more with any of the 4-fold molar amount.
。換言すれば、 キシロースの量はシスチンに対し小過剰であれば目的化合物の最 大生成に充分である。 実施例 8 :糖の種類の、 目的化合物の生成に及ぼす影響 . In other words, a small excess of xylose relative to cystine is sufficient for maximal production of the desired compound. Example 8: Effect of sugar type on production of target compound
実施例 5を、 加熱保持温度 60。Cを 70°Cに代え、 また、 D-キシロース 1. 75 gを D—グルコース 2. 10 g (11. 7mmo 1) に代えたことを除いて は全く同様に繰返した。 糖の種類の、 目的化合物の生成に及ぼす影響をみる目的で、 上記実施例 8およ び実施例 6から関連するデータを集めて図 6にまとめて示す。 これより、 目的化 合物の生成率はキシロースの方がグルコースよりやや高いことが理解される。 実施例 9 In Example 5, the heating and holding temperature was 60. The procedure was exactly the same except that C was replaced by 70 ° C. and 1.75 g of D-xylose was replaced by 2.10 g (11.7 mmol) of D-glucose. In order to examine the effect of the type of sugar on the production of the target compound, relevant data from the above Examples 8 and 6 are collected and summarized in FIG. This indicates that xylose has a slightly higher production rate of the target compound than glucose. Example 9
市販チキンコンソメ (クノール社製) キューブ 2個 (1 4 g) に熱湯 6 0 0 m 1を加えて調製したチキンコンソメスープ 1 0 0 gに上言 3実施例 1で得られた不 揮発性チアゾリジン化合物の反応混合液を該不揮発性化合物換算でこれを喫食時 濃度 5 p p mになるように添加し、 無添加のものを対照として、 専門パネル 5名 により下記第 2表に付記した評価基準に従って官能評価を実施した。 その結果、 同表に示すように、 添加品は無添加品に比べ有意に好ましさが向上した。 第 2表 チキンコンソメスープの官能評価  Chicken consommé (Knol) Commercially available chicken consommé soup prepared by adding 600 ml of hot water to two cubes (14 g) The above is described above 3 The nonvolatile thiazolidine obtained in Example 1 A reaction mixture of the compound was added so that the concentration at the time of eating was 5 ppm in terms of the non-volatile compound, and the non-added compound was used as a control. An evaluation was performed. As a result, as shown in the table, the preference of the additive was significantly higher than that of the additive-free product. Table 2 Sensory evaluation of chicken consommé soup
Figure imgf000014_0001
Figure imgf000014_0001
*危険率 5 %以下で有意差あり  * Significant difference with a risk factor of 5% or less
**危険率 1 %以下で有意差あり  ** Significantly different with a risk factor of 1% or less
<評価基準 > <Evaluation criteria>
評点 + 2 :強い、 または好ましい  Rating +2: Strong or favorable
+ 1 :やや強い、 またはやや好ましい  +1: somewhat strong or slightly favorable
0 :無添加品と同じ  0: Same as additive-free product
一 1 :やや弱い、 またはやや好ましくない  One: slightly weak or slightly unfavorable
一 2 :弱い、 または好ましくない  One-two: weak or unfavorable
(産業上の利用可能性). (Industrial applicability).
本発明によれは、 食品用としても問題のない不揮発性チアゾリジン化合物を短時 間でしかも高収率で製造することができる < According to the present invention, a non-volatile thiazolidine compound having no problem for food And can be produced in high yield <

Claims

請求の範囲 The scope of the claims
1 . システィン若しくは/およびシスティニルグリシンまたはシス チンと還元糖とを水性溶媒中に加熱下に保持することを特徴とする不揮発性チア ゾリジン化合物の製造方法。 1. A method for producing a non-volatile thiazolidine compound, comprising maintaining cysteine and / or cystinylglycine or cystine and a reducing sugar in an aqueous solvent under heating.
2 . 該システィン若しくは/およびシスティ二ルグリシンの加熱下 保持温度が 4 0〜 1 0 0 °Cであることを特徴とする請求項 1記載の不揮発性チァ ゾリジン化合物の製造方法。  2. The method for producing a non-volatile thiazolidine compound according to claim 1, wherein the holding temperature of the cysteine and / or cystinylglycine under heating is 40 to 100 ° C.
3 . 該加熱下保持温度が 6 0〜8 0 °Cであることを特徴とする請求 項 2記載の不揮発性チアゾリジン化合物の製造方法。  3. The method for producing a nonvolatile thiazolidine compound according to claim 2, wherein the holding temperature under heating is 60 to 80 ° C.
4 . 加熱下保持を弱アル力リ性から中性下で行なうことを特徴とす る請求項 2または 3記載の不揮発性チアゾリジン化合物の製造方法。  4. The process for producing a non-volatile thiazolidine compound according to claim 2, wherein the holding under heating is performed under a weak to neutral condition.
5 . 還元糖がキシロースまたは Zおよびグルコースであることを特 徴とする請求項 2〜 4のいずれかに記載の不揮発性チアゾリジン化合物の製造方  5. The method for producing a nonvolatile thiazolidine compound according to any one of claims 2 to 4, wherein the reducing sugar is xylose or Z and glucose.
6 . 該シスチンの加熱下保持温度が 2 5 - 1 0 0 °Cであることを特 徴とする請求項 1記載の不揮発性チアゾリジン化合物の製造方法。 6. The method for producing a non-volatile thiazolidine compound according to claim 1, wherein the holding temperature of the cystine under heating is 25-100 ° C.
7 . 該加熱下保持温度が 6 0〜 9 0 °Cであることを特徴とする請求 項 6記載の不揮発性チアゾリジン化合物の製造方法。  7. The method for producing a nonvolatile thiazolidine compound according to claim 6, wherein the holding temperature under heating is 60 to 90 ° C.
8 . 初発 p Hをアル力リ性で行なうことを特徴とする請求項 6また は 7記載の不揮発性チアゾリジン化合物の製造方法。  8. The method for producing a non-volatile thiazolidine compound according to claim 6 or 7, wherein the initial pH is carried out with a strong force.
9 . 還元糖がキシロースまたは/およびグルコースであることを特 徴とする請求項 6〜 8のいずれかに記載の不揮発性チアゾリジン化合物の製造方 法。  9. The method for producing a nonvolatile thiazolidine compound according to any one of claims 6 to 8, wherein the reducing sugar is xylose or / and glucose.
PCT/JP2003/001362 2002-02-28 2003-02-10 Process for producing nonvolatile thiazolidine compound WO2003072587A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003571293A JPWO2003072587A1 (en) 2002-02-28 2003-02-10 Method for producing nonvolatile thiazolidine compound
AU2003207194A AU2003207194A1 (en) 2002-02-28 2003-02-10 Process for producing nonvolatile thiazolidine compound

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002052586 2002-02-28
JP2002-052586 2002-02-28
JP2002103227 2002-04-05
JP2002-103227 2002-04-05

Publications (1)

Publication Number Publication Date
WO2003072587A1 true WO2003072587A1 (en) 2003-09-04

Family

ID=27767195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001362 WO2003072587A1 (en) 2002-02-28 2003-02-10 Process for producing nonvolatile thiazolidine compound

Country Status (5)

Country Link
JP (1) JPWO2003072587A1 (en)
AU (1) AU2003207194A1 (en)
MY (1) MY139293A (en)
TW (1) TW200303172A (en)
WO (1) WO2003072587A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102132768A (en) * 2011-03-16 2011-07-27 江南大学 Preparation method of cysteamine hydrochloride controlled-release feed additive

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3716735B1 (en) * 1959-10-30 1962-10-17
US4430509A (en) * 1982-01-26 1984-02-07 Degussa Aktiengesellschaft Process for the separation of the racemate (R,S)-cysteine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3716735B1 (en) * 1959-10-30 1962-10-17
US4430509A (en) * 1982-01-26 1984-02-07 Degussa Aktiengesellschaft Process for the separation of the racemate (R,S)-cysteine

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAZUTOMO IMABORI, TAMIO YAMAKAWA: "Seikagaku Jiten", 1 April 1995, TOKYO KAGAKU DOZIN CO., LTD., pages: 595, XP002967784 *
KIMIKO ANNO, BOBUKO SENO: "Tokagaku no Kiso", 10 August 1995, KODANSHA LTD., pages: 31, XP002967783 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102132768A (en) * 2011-03-16 2011-07-27 江南大学 Preparation method of cysteamine hydrochloride controlled-release feed additive

Also Published As

Publication number Publication date
TW200303172A (en) 2003-09-01
JPWO2003072587A1 (en) 2005-06-16
AU2003207194A1 (en) 2003-09-09
MY139293A (en) 2009-09-30

Similar Documents

Publication Publication Date Title
CA2486015C (en) Novel amino acid derivative and sweetening agent
US20040062844A1 (en) Salts of L-amino acids having improved taste and their preparation
EP1070726B1 (en) Aspartyl dipeptide ester derivatives and sweeteners
FI58489C (en) ETH SOETNINGSMEDEL INNEHAOLLANDE 1- (2-HYDROXI-4-CARBOXIMETOXYFENYL) -3- (3-HYDROXI-4-METHOXYPHENYL) PROPAN-1-ON OCH / ELLER DESS ALKALI METAL SALTER
US4994490A (en) Novel N-(sulfomethyl)-N&#39;-arylureas
WO2006001345A1 (en) L-lysine·citric acid salt crystal
JPH07304699A (en) Hydrogenation of sugar
US6458946B1 (en) Crystals of diuridine tetraphosphate or salt thereof, process for producing the crystals, and process for producing the compounds
WO2006001378A1 (en) L-ornithine·citric acid salt crystal
WO2003072587A1 (en) Process for producing nonvolatile thiazolidine compound
EP2481738A1 (en) Maleic acid salt and crystal thereof
JP4631463B2 (en) Novel carnosine ester compounds
JP6716903B2 (en) Method for producing dipeptide
US6649784B2 (en) Aspartyl dipeptide ester derivatives and sweeteners
JPH0574583B2 (en)
JPS61291596A (en) L-aspartyl-d-alanine-(+), beta-fenchyl ester
JP2002363173A (en) Acesulfam salt, method for producing the same and usage of the same
JPS60188037A (en) Method of enhancing tastiness
JPS61224963A (en) Sweetener composition
JPH08134090A (en) Galactosyl kojic acid, its production and tyrosinase-inhibiting agent containing the same
US5266717A (en) N-(sulfomethyl)-N&#39;arylureas
JP4290844B2 (en) Method for producing theanine
JPH0510069B2 (en)
JPS62132863A (en) Novel amino acid derivative and sweetening agent
CA2296017A1 (en) Method for producing calcium pyruvates

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003571293

Country of ref document: JP

122 Ep: pct application non-entry in european phase