WO2003069387A1 - Optical coupler for optical connecting, optical branching or optical collecting - Google Patents

Optical coupler for optical connecting, optical branching or optical collecting Download PDF

Info

Publication number
WO2003069387A1
WO2003069387A1 PCT/JP2003/001469 JP0301469W WO03069387A1 WO 2003069387 A1 WO2003069387 A1 WO 2003069387A1 JP 0301469 W JP0301469 W JP 0301469W WO 03069387 A1 WO03069387 A1 WO 03069387A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
sphere
openings
optical fiber
Prior art date
Application number
PCT/JP2003/001469
Other languages
French (fr)
Japanese (ja)
Inventor
Shoichi Nakamura
Nagahisa Machida
Original Assignee
Acp Japan Co., Ltd.
Machida Toolex Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acp Japan Co., Ltd., Machida Toolex Co., Ltd. filed Critical Acp Japan Co., Ltd.
Priority to AU2003211944A priority Critical patent/AU2003211944A1/en
Publication of WO2003069387A1 publication Critical patent/WO2003069387A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2817Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using reflective elements to split or combine optical signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2808Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using a mixing element which evenly distributes an input signal over a number of outputs

Definitions

  • Optical coupler for optical connection, optical branching or optical aggregation
  • the present invention relates to an optical coupler for connecting, branching, or converging light such as a laser beam guided by an optical fiber, and more particularly, to splitting one light beam into a plurality of light beams, or combining a plurality of light beams.
  • Optical coupler for assembling into a single light beam
  • An optical communication system in which a modulated laser beam is propagated through an optical fiber has extremely excellent transmission characteristics such as low loss, wide band, and non-induction.
  • Optical fibers have physical characteristics such as small diameter and light weight, and optical communication is capable of long distance and large capacity transmission.
  • Measurement fields such as pressure and pressure are being used as transmission media for these measurement signals, and their application fields have been expanding in recent years.
  • Optical fibers come in a wide variety of shapes, from diameters of about 0.05 mm to 0.3 mm to visibly thick, and the core of the optical fiber is usually of pure purity. Made of high quartz glass or plastic. Therefore, in order to combine the light beams propagated by the optical fibers, it is necessary to polish the cut surface of each of the two optical fibers and precisely align the cut surfaces.
  • optical branching method using optical means such as prisms, mirrors and lenses for refracting or reflecting light rays after refracting the light rays, and introducing the light beams branched or collected by these optical means back into the optical fiber.
  • a light beam is converted into electric energy by a light-receiving element such as a light-receiving diode, and the electric energy excites one or a plurality of semiconductor lasers again.
  • electrical branching method for introducing the light emitted in the above into an optical fiber.
  • polarization which is one of the properties of a light wave. Deflection is used for changing the course of a light beam in a free space optical switch or the like.
  • Basic devices necessary for such polarization control include a wave plate, a birefringent plate, a polarization beam splitter, and a liquid crystal polarization control element.
  • Crystals such as quartz, calcite, and mica used in the above-described wave plate have a property called optical anisotropy in which the refractive index is not uniform in the direction of the electric field oscillation of light. More specifically, quartz and calcite belong to the group of uniaxial crystals, and mica belongs to the group of biaxial crystals.If light is incident in that direction, the refractive index can be seen in the same direction. There are two.
  • a wavelength plate that uses this principle is, for example, a 1Z4 wavelength plate that gives a phase of / 4 wavelength (90 °) and is used for mutual conversion between linearly polarized light and elliptically polarized light.
  • the 1/2 wavelength gives a phase difference of 1/2 wavelength (180 °) and is used for rotating the plane of polarization of linearly polarized light.
  • the birefringent plate utilizes the property that when light is incident obliquely to the optical axis, the light propagates in different directions depending on the polarization.
  • ordinary rays obey Snell's law of refraction, but extraordinary rays seem to behave strangely, contrary to Snell's refraction, under the influence of the refractive index gradient. This property is called birefringence.
  • Calcite is a crystal with extremely large birefringence, and it is this property that makes things look double through calcite.
  • a device that achieves the same function as a birefringent plate includes a modified beam splitter.
  • the polarizing beam splitter has a pair of right-angle prisms bonded to each other with a slope, and a dielectric multilayer coating layer interposed therebetween.
  • This principle utilizes the polarization dependence of the reflectance of light, which is not birefringent.
  • the polarization dependence is enhanced by appropriately designing the thickness and refractive index of the multilayer film, and the introduced light is reflected by the dielectric multilayer and travels in a direction perpendicular to the incident light.
  • liquid crystal is a general term for substances having a phase that does not belong to any of solids and liquids. There are properties that are almost complete according to the rules. Since the shape of liquid crystal molecules is long and thin, the refractive index that light perceives in the long and short directions of the molecules differs, and they generally exhibit strong optical anisotropy. The arrangement of the liquid crystal molecules is changed by applying an electric field from the outside. By using this property, it operates as a polarization control element.
  • a configuration of a twisted nematic liquid crystal cell that is widely used as a display element such as a timepiece will be described as an example.
  • the liquid crystal is sandwiched between two highly parallel glass plates.
  • the thickness of the liquid crystal is usually about 10 / m, and a transparent electrode for applying an electric field to the liquid crystal and a special treatment layer for orienting the liquid crystal molecules in a specific direction are formed on the surfaces of both glass plates that are in contact with the liquid crystal.
  • the orientation directions of the upper and lower glass plates are perpendicular to each other so that the liquid crystal molecules draw a 90 ° helix parallel to the glass surface.
  • the polarization plane of the input light is rotated by 90 ° due to the optical anisotropy of the liquid crystal.
  • the liquid crystal cell operates as a polarization control element that can dynamically rotate the plane of polarization by an external input.
  • a polarization device Using these devices, a polarization device, a demultiplexer for demultiplexing light, a concentrator for collecting a plurality of lights, a splitter for splitting light, and the like are formed.
  • Japanese Patent Laid-Open No. 174963/1994 discloses, as optical branching methods, a first curved surface Sp 1 having an end face of a fiber 51 at a focal point O 1 and an end face of a fiber 52 at a focal point Oa 2 as shown in FIG.
  • the light reflecting surface is arranged opposite to the second curved surface Sp2, and of the divergent light beams determined by the exit numerical aperture of the fiber 51, the light beam 55 on one side from the center line of the fiber 51 is incident on the input end face of the fiber 52,
  • a plurality of unit optical elements 50 each having the first curved surface Sp l and the second curved surface Sp2 arranged so as to be incident at an incident angle corresponding to the optical fiber.
  • an optical branching element sharing 51 Disclosed is an optical branching element sharing 51.
  • the light branching / aggregating element forms a first curved surface and a second curved surface such that a light beam refracted by radiating incident light onto a curved surface exits at an exit angle corresponding to the exit numerical aperture, and is reflected. It is necessary to precisely arrange the position of the exit from which the emitted light exits. Further, the position of the exit aperture is limited by the curved surface configuration. Therefore, the direction of the refraction of light is restricted, and a free exit port cannot be arranged.
  • the above-described electrical branching method requires a light receiving element, a semiconductor laser device, and their peripheral circuits and a power supply device at the branching point, thereby realizing a reduction in size and cost of the device. Was extremely difficult.
  • optical fibers have been connected to each other, a light beam propagated by a single optical fiber has only been connected, and the light has been branched into a required number of optical fibers, or transmitted by a plurality of optical fibers. It is an object of the present invention to provide an optical coupler for optical coupling, optical branching, or optical aggregation that can be assembled into one or more optical fibers simply by connecting a plurality of light beams. Disclosure of the invention
  • the present invention provides a sphere filled with a hollow or transparent body provided with a reflecting member for totally reflecting the light on the inner peripheral surface of the sphere, and provided on the surface of the sphere,
  • a multi-mode light source having a plurality of openings formed so that the center line thereof passes through the center of the sphere, and optical fiber connection means provided in the openings;
  • the optical axis center line of the fiber passes through the center of the sphere, one or more of the plurality of openings are light entrances, and the other one or more openings are light exits.
  • the present invention provides an optical coupler for optical connection, branching, or aggregation.
  • the light beam in the multimode optical fiber has a certain optical axis area, not a beam of light, and the light beam is emitted from the end face of the optical fiber into the sphere at a radiation angle within a predetermined range. Since the light beam is reflected by the reflecting member provided on the inner surface of the sphere and reflected inside the sphere a plurality of times, the light beam guided into the sphere from one or more openings provided at arbitrary positions on the surface of the sphere. Will radiate.
  • the present invention further provides a plurality of spheres filled with a hollow or transparent body provided with a reflection member for totally reflecting light on the inner peripheral surface of the sphere, and provided on the surface of each of the spheres. It has a plurality of openings formed so that a center line passes through the center of the sphere, and optical fiber connection means provided in the opening, and the plurality of spheres have one of the openings.
  • the optical axis center line of the multi-mode optical fiber connected to the optical fiber connecting means passes through the center of the connected sphere, and passes through any one of the plurality of openings in any one of the plurality of spheres.
  • Another object of the present invention is to provide an optical coupler for optical connection, light branching, or light aggregation, wherein a plurality of light entrances are used and another one or a plurality of openings are used as light exits.
  • the plurality of spheres are directly connected to each other by being in close contact with each other at one of the openings, or the spheres are connected via optical fibers connected to the respective optical fiber connecting means. It is connected in a shape.
  • the present invention further comprises a reflecting member for totally reflecting light on the inner peripheral surface of the outer periphery of the sphere, and the inside thereof has a refractive index gradually toward the outer periphery centered on a position different from the center of the sphere.
  • the present invention provides an optical coupler for optical connection, optical branching, or optical aggregation.
  • the refractive index inside the sphere gradually changes toward the outer periphery at a position different from the center of the sphere. Due to the effect of the changed transparent body, the beam light from the optical fiber is bent in the sphere, and the light beam is reflected by the reflecting member attached to the inner surface of the sphere, and reflected several times in the sphere. Light rays guided into the sphere are emitted from one or a plurality of openings provided at arbitrary positions on the sphere surface.
  • the present invention further comprises a reflecting member for totally reflecting light on the inner peripheral surface of the outer periphery of the sphere, and the inside thereof has a refractive index gradually toward the outer periphery centered on a position different from the center of the sphere.
  • Optical fiber connection means wherein the plurality of spheres are coupled through one of the openings, and any one or more of any one of the plurality of openings in the plurality of spheres is provided.
  • optical coupler for optical connection, optical branching, or optical assembly, wherein the optical coupler is used as a light entrance port and one or more other openings are used as light exit ports.
  • the refractive index of the transparent body is set so as to gradually increase from the center to the outer periphery. Further, the refractive index of the transparent body is set so as to gradually decrease from the center to the outer periphery.
  • the plurality of spheres are directly connected to each other by being closely attached to each other at one of the openings. Further, the plurality of spheres are connected in a tuft shape via optical fibers connected to the respective optical fiber connecting means.
  • the present invention also provides a sphere filled with a hollow or transparent body provided with a reflecting member for totally reflecting light on the outer peripheral inner surface of the sphere, and a sphere provided on the surface of the sphere, the center line of which is provided on the sphere.
  • a plurality of openings formed to pass through the center;
  • a plurality of apertures comprising: a magnetic generation unit provided at a position facing the circumference and arranged to refract incident light; and an optical fiber connection unit provided at the opening.
  • an optical coupler for optical connection, light branching, or light aggregation, in which any one or more of the units is a light entrance and the other one or more openings are a light exit.
  • the present invention provides a sphere filled with a hollow or transparent body provided with a reflecting member for totally reflecting light on the inner peripheral surface of the sphere, and a sphere provided on the surface of the sphere, the center line of which is provided by the sphere.
  • a plurality of openings formed so as to pass through the center of the sphere, a magnet generating means provided at a position facing the outer periphery of the sphere, and arranged to refract incident light, and provided at the opening.
  • Optical fiber connection means wherein the plurality of spheres are coupled through one of the openings, and any one or any of a plurality of openings in any one of the plurality of spheres is provided.
  • An object of the present invention is to provide an optical coupler for optical connection, light branching, or light condensing, wherein a plurality of light entrances are used and another one or a plurality of openings are light exits.
  • the plurality of spheres are directly connected to each other at one of the openings by being closely attached to each other, or are in a tuft form via optical fibers connected to the respective optical fiber connecting means. It is characterized by being connected to.
  • the material of the transparent body is formed of a transparent material such as an inorganic material oxide glass, high-purity glass, and plastic.
  • the entrance and the exit are formed by removing a part of the reflection member in a circular shape.
  • the reflection member is attached to the surface of the transparent sphere by sputter coating or vacuum deposition.
  • the reflection member is formed of a single-layer metal or a light-impermeable material in which two or three different metals are stacked and deposited.
  • one opening provided on the surface of the sphere is a light entrance
  • another plurality of openings provided in a strip shape on the surface of the sphere is a light exit.
  • one opening provided on the surface of the sphere is a light emitting port
  • other plural openings provided in a strip shape on the surface of the sphere are light receiving ports.
  • two or three spheres are connected to each other in a state where the openings are in close contact with each other.
  • One opening of the one connected sphere is a light entrance, and all other openings are light exits. It is characterized by the following. Furthermore, one opening of the one connected sphere is a light exit, and all other openings are light entrances.
  • the optical coupler for optical connection, optical branching, or light aggregation of the present invention has a simple configuration in which a light beam is reflected a plurality of times in a sphere and emitted from an emission port, and optical connection, optical branching, and
  • the optical assembly can be realized by one optical coupler, and it is possible to freely set which of the plurality of optical fiber connection means provided at the plurality of openings on the surface of the sphere to be the light entrance or exit.
  • FIG. 1 shows a partially cut-away side view of an optical coupler according to the present invention.
  • FIG. 2 shows a form in which incident light from an optical fiber is uniformly dispersed and reflected in the optical coupler.
  • FIG. 3 is a cross-sectional view illustrating a change in the refractive index of a transparent body filled in a sphere.
  • FIG. 4 is a cross-sectional view in which magnetic generating means is provided along the outer periphery of the sphere.
  • FIG. 5 shows a sectional view of a connecting means for connecting a sphere and an optical fiber.
  • FIG. 6 shows a cross-sectional view in which two exit ports are provided in the optical coupler.
  • FIG. 7 is a cross-sectional view in which the optical coupler is provided with two entrances and one exit.
  • FIG. 8 shows a diagram in which two optical couplers are connected and coupled.
  • FIG. 9 shows a diagram in which three optical couplers are connected and coupled.
  • FIG. 10 is a schematic diagram in which a plurality of small optical couplers are connected in a tuft around one optical coupler.
  • FIG. 11 is a cross-sectional view in which a predetermined number of emission ports are formed all around the optical coupler.
  • FIG. 12 shows a conceptual diagram of a 2X2 switch using an optical coupler.
  • FIG. 13 shows the basic configuration of a distribution-selective switch using an optical coupler.
  • FIG. 14 shows an example of a basic configuration of a wavelength routing type switch using an optical coupler.
  • FIG. 15 shows a configuration diagram of an optical branching / gathering element according to the prior art.
  • Light propagation using an optical fiber is a multi-mode in which light propagates in multiple-path propagation modes due to differences in the refractive index distribution shape, number of propagation modes, materials, manufacturing methods, and structures. There is a single mode light propagation through which the light beam propagates.
  • the optical fiber includes a multi-mode optical fiber and a single-mode optical fiber.
  • the light beam to which the optical coupler is adapted is a multimode light beam, and the optical fiber uses a multimode type.
  • the optical coupler optically couples a light beam guided by a multimode optical fiber, and the light beam in the multimode optical fiber is not a beam of light but a straight line. Since the light beam has a certain optical axis area and is emitted into the sphere at an emission angle within a predetermined range from the end face of the optical fiber, the light beam is reflected by the reflecting member attached to the inner surface of the sphere. However, since the light is reflected a plurality of times in the sphere, light rays guided into the sphere are radiated from one or a plurality of openings provided at arbitrary positions on the surface of the sphere.
  • the optical coupler according to the second embodiment of the present invention optically couples a light beam guided by a single-mode optical fiber, and gradually moves toward the outer periphery around a position different from the center of the sphere. Due to the action of the transparent body whose refractive index is changed, the light beam from the optical fiber is bent in the sphere, and the light beam is reflected by a reflecting member provided on the inner surface of the sphere, and the light in the sphere becomes plural. Since the light is reflected twice, light rays guided into the sphere are radiated from one or a plurality of openings provided at arbitrary positions on the surface of the sphere.
  • FIG. 1 is a partially cut-away side view showing an embodiment of the optical coupler 5 of the present invention.
  • the optical coupler 5 normally branches and aggregates the light propagating in the optical fiber, it is used by being welded to the end of the optical fiber.
  • the structure is such that a sphere 2 (for example, a glass sphere or a plastic sphere) filled with a hollow or transparent body is connected to an optical fiber 1 that guides light (laser light), A reflecting member 3 for reflecting light (for example, sputter coating or vacuum evaporation), one or more openings 4, and an optical fiber connecting means 9; Constitutes an optical coupler 5 for optical coupling, optical branching or optical assembly.
  • FIG. 2 shows a state in which the incident light 10 from the optical fiber 1 is uniformly dispersed and reflected in the optical coupler 5.
  • the light ray introduced into the sphere 2 from the light entrance is reflected from the reflection member 3 attached to the sphere 2 a plurality of times and then emitted from the light exit 4 with a repeated number of reflections.
  • the transmission band of the emitted light beam is narrower than the transmission band of the incident light beam, but the luminous intensity of the reflected light is attenuated each time the reflection is repeated within the sphere 2, so the electrical signal of the attenuated light
  • the optical coupler according to the present invention can sufficiently cope with medium-range and medium-band optical transmission.
  • the light output port 4 can be formed at an arbitrary position so as to realize a required refraction and output direction with respect to the optical axis center line L of the incident light depending on the application. Further, the number of the light emission ports 4 is not limited to one, and a required number can be provided.
  • the shape of the light emission port 4 is circular in a plan view in the embodiment, but may be various shapes (for example, a band shape, an elliptical shape). Etc.) can be formed.
  • light can also pass through the reverse path. That is, a plurality of incident lights 10 can be aggregated as one outgoing light.
  • the force shown as that the center line L of the optical axis of the optical fiber 1 substantially coincides with the center line of the optical coupler 5 is not limited to this.
  • the center line L and the center line of the sphere 2 can be shifted and connected.
  • FIG. 3 is a cross-sectional view illustrating a change in the refractive index of a transparent body filled in a sphere.
  • the optical coupler 5a used when branching and collecting the single-mode light 10b of the second form is gradually refracted toward the outer periphery around the center 46 at a position different from the center 45 of the sphere 2 inside. It is composed of a sphere 2 filled with a transparent body of varying rate. Note that, in FIG. 3, the line 47 indicates the equal refractive index of the transparent body having the changed refractive index.
  • FIG. 3 (a) shows a state in which the refractive index of the transparent body is set to gradually increase from the center to the outer periphery. The intervals between the lines 47 indicating the equal refractive index become closer as they approach the vicinity of the center 46 at different positions.
  • the light 10b travels to the upper X point of the sphere 2 in the figure while changing the refractive index and refracting by the transparent body in the sphere 2 that transmits.
  • FIG. 3 (b) shows a state in which the refractive index of the transparent body is set to gradually decrease from the center to the outer periphery. The interval between the lines 47 indicating the equal refractive index becomes narrower as approaching the vicinity of the center 46 at different positions.
  • the light 10b travels to the lower Y point of the sphere 2 in the figure while changing the refractive index and being refracted by the transparent body in the sphere 2 that transmits.
  • the single-mode incident light 10b from the optical fiber 1 reaches the reflecting member 3 while changing the refractive index and being refracted by the transparent body in the transmitting sphere 2.
  • the light 10 b is emitted from the light exit 4 by repeating the same reflection when the multi-mode light beam is irregularly reflected in the sphere 2.
  • a plurality of openings are provided on the surface of the sphere 2, and the openings are formed with one or a plurality of optical fiber connection means and a light emission port 4.
  • the connection between the opening provided in the spherical body 2 and the optical fiber connecting means and the optical fiber is made by optical fiber connecting means or welding.
  • the incident light 10b introduced into the sphere 2 from the light entrance is reflected by the reflecting member 3 attached to the sphere 2 several times. After being reflected, the light is emitted from the light exit 4 with the number of reflections repeated, so that the transmission band of the exit light emitted from the light exit 4 is narrower than the transmission band of the incident light, but within the sphere 2. Since the luminous intensity of the reflected light is attenuated each time the reflection is repeated, the optical coupler according to the present invention can sufficiently cope with medium-range and mid-band optical transmission by electrical signal processing of the attenuated light. It is.
  • FIG. 4 is a cross-sectional view in which magnetic generating means is provided at a position facing the outer periphery of the sphere 2.
  • the inside of the sphere 2 of the optical coupler used when branching and collecting the single mode light 10b is formed of a hollow or transparent body.
  • the sphere 2 is provided with a light entrance 7 and exits 4a and 4b.
  • the magnetism generating means 29 is provided along the outer peripheral surface of the spherical body 2 with the N pole side 29a and the S pole side 29b facing each other.
  • a power supply cable 100 from a power supply is connected to the magnetism generating means 29a and 29b in order to supply a current to a coil wound on a magnetic body.
  • the single-mode light 10b incident on the sphere 2 from the light entrance 7 is refracted in the traveling direction by the magnetic fields from the magnetism generating means 29a and 29b, and travels to the reflecting member 3 attached to the sphere 2. After being reflected a plurality of times, the light is emitted from the light emission ports 4a and 4b with the number of reflections being repeated. Further, the refractive index of light can be changed by changing the strength of the magnetic field.
  • a permanent magnet using an electromagnet may be used as the magnetism generating means.
  • a superconducting magnetic material it can be used as a high-performance magnetic generating means.
  • the incident light 10b introduced into the sphere 2 from the light entrance is reflected by the reflecting member 3 attached to the sphere 2 several times. After being reflected, the light is emitted from the light exit 4 with the number of reflections repeated, so that the transmission band of the exit light emitted from the light exit 4 is narrower than the transmission band of the incident light, but within the sphere 2. Since the luminous intensity of the reflected light is attenuated each time the reflection is repeated, the optical coupler according to the present invention can sufficiently cope with medium-range and mid-band optical transmission by electrical signal processing of the attenuated light. It is.
  • FIG. 5 shows a sectional view of 40 examples of the optical fiber connecting means.
  • the optical fiber connecting means 40 is composed of a member 43 for aligning and holding the optical fiber 1, a mechanism for fixing the optical fiber, and a plug 41 composed of a fastening mechanism. It is composed of an adapter 42 for causing the connection.
  • the core diameter of the optical fiber 1 used is, for example, 50 / m to 200 / m for a multimode fiber, and 10 ⁇ for a single mode fiber, considering a glass-based optical fiber. is there. Therefore, a slight imperfect matching accuracy causes an increase in connection loss.
  • Optical fiber connection methods using connection means can be classified into two types: end face-to-face connection methods and connection methods via lenses.
  • the alignment structure the sleeve alignment structure and the circle that applies a uniform force to the ferrule or fiber in the radial direction
  • a method of aligning the center axis with a cylindrical sleeve A method of aligning the center axis with a cylindrical sleeve), a groove alignment structure, and a guide pin alignment structure.
  • the fastening structure includes various simple operation type fastening structures such as a bayonet fastening structure in addition to a general screw-type fastening structure.
  • connection means 40 One plug 41 a of the connection means 40 is fixed to the optical fiber connection means 9 and the opening 4 of the sphere 2.
  • the optical fiber 1 is inserted into the ferrule 43, and the ferrule 43 and the adapter 42 are screwed into the plug 41a.
  • the plug 41b is turned and screwed with the fastening screw 44 provided on the plug 41b and the adapter 42 to be fixed to the sphere 2.
  • the optical fiber 1 is accurately connected to the optical fiber connecting means 9 and the opening 4. Further, the optical fiber 1 can be removed from the optical coupler 5.
  • connection between the other sphere 2 and the optical fiber can be performed by welding without using the connecting means 40 as described above.
  • the tip of the optical fiber has a convex shape
  • the welding position of the spherical body 2 has a concave shape.
  • the tip of the fiber is made concave, and the welding portion of the sphere 2 is made convex accordingly.
  • Such a complementary uneven shape is necessary to make the welding accurate and strong.
  • connection method between the sphere 2 and the optical fiber 1 is not limited to the connection example shown in the connection example by the plug and the connection example by welding, and the connection method is not limited to the connection described in this embodiment example. It may be to do.
  • the reflection member 3 On the surface of the sphere 2, the reflection member 3 is omitted, and the optical fiber connection means and the emission port 4 are formed.
  • the light exit 4 is positioned so as to coincide with the direction of the refraction angle of 90 ° with respect to the center line (line L) of the straight optical axis of the laser beam. It is formed by removing the reflection member 3.
  • the optical fiber 1 used in this device is very thin, such as a glass-based optical fiber, and its diameter is as small as 50 ⁇ to 200 ⁇ for a multimode fiber and 10 m for a single mode fiber. Glass fibers or plastic fibers of various shapes can be used.
  • the sphere 2 needs to be optically a true sphere, and is made of an inorganic material such as an oxide glass, particularly a high-purity glass. Can be manufactured.
  • the metal material used for the reflecting member 3 is not particularly limited, and any material that is suitable for vacuum deposition or further CVD and is light-impermeable can be used.
  • the reflecting member 3 can be formed by depositing different kinds of metals, not only a single layer of metal, in two layers or three phases.
  • the reflecting member 3 is preferably as thick as possible. Therefore, it is preferable to form a relatively thick reinforcing film of metal by spattering and further by a plating method.
  • optical coupler 5 in which light propagated in the optical fiber 1 branches or converges will be described.
  • the optical couplers 5 of the optical coupler 5 according to the present invention are configured such that one or more optical couplers 5 can be used to obtain light obtained by refracting incident light at an angle in a predetermined direction from the center of the optical axis. It is configured.
  • the light branch takes the incident light 10 into the optical coupler 5, reflects the light in the sphere countless times, and emits the light through one or more light exit ports 4 provided in the optical coupler 5.
  • FIG. 6 shows an example in which two light emission ports 4 are provided in the optical coupler 5.
  • An optical fiber 1 for transmitting light is connected to the light exit ports 4a and 4b in the same shape as the light incident side.
  • the light enters the optical coupler 5 from the tip of the fiber 1, is uniformly dispersed and reflected on the inner surface of the reflecting member 3, and is reflected innumerably many times in a sphere so as to fly, but the two light exit ports 4 a,
  • An exit is found at 4b, and emitted light A and B are emitted linearly from the exit. That is, the incident light 10 is branched into the outgoing light A and the outgoing light B, and is branched and output from the two light output ports 4a and 4b.
  • FIG. 7 shows an example in which the optical coupler 5 is provided with two entrances 7a and 7b, and one exit 8 is provided. This indicates that light can pass through the reverse path due to the reversibility of light in the operation opposite to the branching of light shown in FIG.
  • the incident lights 10a and 10b enter the optical coupler 5 from the two entrances 7a and 7b, are uniformly dispersed and reflected on the inner surface of the reflecting member 3, are reflected innumerably many times in the sphere, and fly out, and exit. An exit is found at 8, and the light exits from the exit and exits from the exit 8 linearly. That is, the incident lights 10a and 10b from the two entrances 7a and 7b are gathered at one exit 8 and emitted.
  • FIG. 8 shows a diagram in which two optical couplers 15 are connected and fixed to perform optical branching and aggregation.
  • the connecting portion of the optical coupler 15 is tightly fixed to a connecting port 18 which is one of the openings so as to prevent light leakage.
  • the optical coupler 15 has a predetermined number of emission ports 17 formed therein.
  • the incident light 10 from the optical fiber 1 enters the optical coupler 5 and is uniformly dispersed and reflected on the inner surface of the reflecting member 3. An exit is found at 18, and the light exits straight from there.
  • FIG. 9 is a diagram showing a state where three optical couplers 16 are connected.
  • the optical couplers 16 are connected to each other in the same manner as in FIG. 8, but it is possible to split the incident light from the optical fiber 1 to a larger number of emission ports 17.
  • Each optical coupler 16 is formed with a predetermined number of emission ports 17 at a predetermined angle from the center of the sphere 2.
  • the optical fiber 1 is connected to each output port 17.
  • the incident light 10 from the optical fiber 1 enters the optical coupler 16, is uniformly dispersed and reflected by the inner surface of the reflecting member 3, exits at the exit 17 and the coupling 18, and exits linearly therefrom.
  • FIG. 10 shows a mode in which a plurality of small optical couplers 21 are connected in a tuft-like manner around one optical coupler 20 via an optical fiber.
  • the light incident from the entrance 22 of the optical coupler 20 enters the optical coupler 20, is uniformly and diffusely reflected on the inner surface of the reflection member 3, finds an exit at the exit 23, and from there. Emitted as output light.
  • the light enters a plurality of small optical couplers 21 connected to the exit 23 via the optical fiber 1.
  • the incident light is again uniformly dispersed and reflected in the small optical couplers 21 and is output toward the optical fibers connected to the output ports provided in the respective optical couplers 21.
  • the optical coupler 21 may be directly connected to the optical coupler 20 without passing through the optical fiber 1, as shown in FIGS. 8 and 9. According to this connection, the loss of light attenuation is reduced, and more light branching is possible.
  • FIG. 11 shows an example in which a predetermined number of light emission ports 26 are formed all around the optical coupler 25 provided at the tip of the optical fiber 1.
  • the optical fiber 1 is connected to the light exit port 26.
  • the incident light 10 is refracted by 90 ° along the entire circumference of the optical coupler 25 and branched into a plurality of optical fibers. According to this embodiment, a plurality of optical branches can be performed in a limited space.
  • Light has various characteristics compared to electricity.
  • the features of optical switching include the following.
  • Light Since light has a wide band, it can switch high-bandwidth signals (hundreds of megahertz) that are electrically difficult to switch. Light has a vast bandwidth of 200 terahertz, and is characterized by being unaffected by external noise. This property can be used not only for optical propagation but also for optical switching.
  • Optical switches generally perform switching by changing the physical characteristics (such as refractive index) of the medium, and therefore consume less energy than electronic switches, which consume less energy.
  • a switch with low power can be realized.
  • the simplest switch is an on-off switch. When controlling flow, it is sometimes called a gate (on_off). There is only one input and one output, and there are only two switch states, on and off, so we can use lbit to represent that state. This type of switch is called a "binary switch”. Various types of switches can be constructed by combining gate switches.
  • cross-nova switch This is also a binary switch with two states, but differs from a point-gate switch with two inputs and two outputs. It has two states: two inputs and outputs connected in parallel (bar shape), and two inputs and outputs connected in a crossed state. Therefore, the two inputs are always connected to one of the two outputs, and there is no state in which the two inputs are connected to one output at the same time or not connected to any output.
  • the most typical switch that can be combined with a crossbar switch is a banyan switch.
  • the third is a multi-valued switch, which selectively connects one input to one of two or more outputs, or connects one of two or more inputs to one.
  • the switch connected to one output is called a multi-value switch.
  • a typical switch of a multivalued switch is a rotary switch.
  • a communication system if one-to-one communication is targeted first, the simplest method of communication is to directly connect two parties to communicate. If there are N people, the number of combinations to select any two of them, that is, if N (N-1) / 2 lines are drawn, it will be possible to perform communication in combinations like degrees. However, in such a method, as N increases, the number of connections becomes enormous (on the order of N square), and it is physically impossible to achieve this. Therefore, if a switch is placed in the middle of the track connecting the people who want to communicate and it is connected according to the request, any N people can communicate with N connections. Switching the connection according to the request in this way is called “switching”.
  • switches have a hierarchical structure, and a connection connecting the switches is called a subscriber propagation path.
  • the size of the exchange can be increased by layering
  • the size of the network can be reduced to a reasonable size, and a total economic network can be realized.
  • optical switching systems are classified into three systems: “space division” (SD), “time division multiplex” (TD), and “frequency division multiplex” (FD).
  • SD space division
  • TD time division multiplex
  • FD frequency division multiplex
  • the “broadband characteristics” that are the greatest features of optical technology include “broadband characteristics of a modulatable signal band” and “broadband characteristics of spatial resolution”.
  • Optical switches are required for diversification, high reliability and economical use of optical fiber communication systems. Since the purpose of the optical switch is to switch the optical path, it is necessary that the insertion loss at the time of ON is low and the crosstalk attenuation at the time of OFF is large. Switching power, switching time, and switching delay time are also important evaluation items. Switches can be classified into mechanical type with moving parts and electronic type without moving parts.
  • the mechanical optical switch has a low switch speed of millimeters, and is not suitable for mass production because it must be manufactured by combining a large number of optical components. However, although the response speed is slow, it has excellent optical characteristics and is already used at present.
  • the electronic optical switch has features such as high-speed operation and high reliability because it has no moving parts.
  • a mechanical optical switch In a mechanical optical switch, the optical path is switched by moving an optical fiber, a prism, a reflector, a lens, and the like, and a manual solenoid, a bimorph, a step motor, or the like is used as a driving means.
  • the connection loss is around ldB, and the crosstalk attenuation is as high as 50dB.
  • these optical switches do not matter whether the optical fiber connected to the outside is multi-mode or single-mode.However, for single mode, low loss and reproducibility of connection are required. High precision is required for parts processing and assembly.
  • the electronic optical switch can apply the optical effect and the acousto-optic effect similarly to the optical modulator and the optical deflector.
  • Various types of electronic optical switches are provided, such as a switch using a quartz glass waveguide, a switch using a semiconductor, a switch using a liquid crystal, and a switch using a liquid crystal.
  • the latest semiconductor optical switch changes the refractive index of a semiconductor by current or voltage, and causes a total reflection based on the refractive index difference to switch the light path. This is equivalent to controlling the reflection of light by moving a mirror, using the physical properties of semiconductors. It is realized by a fine circuit. Advances over the past include the elimination of moving parts, very fast operation, and the use of smaller switches. When high-speed switching becomes possible, signals can be time-multiplexed and switched independently, as in the current electronic exchange. Furthermore, when used as a semiconductor amplifier gate (SOAG), it becomes an optical gate element in which the amount of light can be controlled by the injected current. This semiconductor amplifier gate is capable of high-speed switching, has an amplification gain, and has a high on-Z-off ratio.
  • SOAG semiconductor amplifier gate
  • the polarization plane of light is controlled by liquid crystal to block light from passing through.
  • high-frequency division multiplexing which multiplexes light of different lengths and switches for each wavelength, has also become experimentally possible.
  • liquid crystals Despite being a fluid, liquid crystals have the property that molecules are almost aligned according to a certain rule, similar to solids. Since the shape of liquid crystal molecules is long and thin, the refractive index that light perceives in the long and short directions of the molecules is different, and the liquid crystal molecules generally show strong optical anisotropy. The arrangement of liquid crystal molecules changes when an electric field is applied from the outside. Control of transmitting or reflecting light in a specific direction can be performed by the applied voltage. An optical switching device can be constructed by utilizing this property. -In addition to an optical switch that uses a change in refractive index, an optical switch can be configured by using an optical gate element that can control light transmittance.
  • a 1X2 switch is composed of one optical branching circuit, two optical gates, and one optical merging circuit.
  • the 2X2 switch is composed of two optical branch circuits, four optical gates, and two optical convergence circuits.
  • the optical gate operates as a shutter that turns light on and off, and performs light switching. This configuration is characterized in that branch connection is possible.
  • various gates such as a gate using a silica glass waveguide, a gate using a semiconductor, a liquid crystal gate, and the like can be applied.
  • the 2X2 switch using the optical coupler 30 is composed of four optical couplers 5a, 5b, 5c, 5d and four optical gate elements 30a, 30b, 30c, 30d.
  • the input light A propagated from the bar is branched by the light totally reflected in the optical coupler 5a being emitted from the two emission ports, and reaches the optical gate elements 30a and 30b.
  • a control device (not shown) controls to open the gate 30b through which light passes and close the other gate 30a.
  • the light that has passed through the open gate 30b is collected as output light in the optical coupler 5d and output as output light Y.
  • the light is guided to a desired optical path by the gate controlled on and off. That is, the function of the optical switch that performs the ON / OFF operation according to the predetermined control is performed.
  • optical gates can be controlled on / off by the applied voltage by the control device, and there are no components to operate. Therefore, high-speed and stable switching is performed.
  • the optical branching and aggregation are also simple structures in which the optical coupler 30 is provided.
  • the number of inputs / outputs such as 4X4 and 8X8 can be increased to form a matrix switch.
  • optical coupler / splitter 5 to wavelength division multiplexing type optical switching.
  • the number of 2X2 switches, which are unit switches increases in proportion to the square of N, and it is difficult to increase the scale. Furthermore, it is not so easy to realize a switch with good characteristics as an NxN switch by accumulating the loss, the talk, etc. in each unit switch.
  • the carrier frequency of light is about 193 THz at a wavelength of 1.55 / m.
  • This is the effective bandwidth of the sidebands by modulation has shown that a 1 93TH Z, means that can be carried in light output
  • information about lOOTbitZs from one laser Te, ru. By making full use of the broadband characteristics of light as described above, the problems arising in space division optical switching can be cleared. That is, in NxN switching, if N types of wavelengths are used and their multiplexing / demultiplexing techniques are used, it is possible to use the wavelengths that do not cause internal collisions and use the wavelengths as routing information.
  • Wavelength division multiplexing multiplexes a plurality of spatially separated incoming calls into a wavelength division highway.
  • the switching is the reverse operation.
  • the optical coupler 5 is applied to two typical methods.
  • Distribution-selective switching is an architecture that implements the function of space-division switching using wavelength division multiplexing technology.
  • FIG. 13 shows the basic configuration of a distribution selection switch.
  • the input electric signal is converted into an optical signal at each input port (110) by using a semiconductor laser (fixed wavelength laser) 35 for each input (a fixed wavelength laser).
  • light signals from) via the optical fiber 1 is propagated to the optical coupler 5.
  • propagated light is set by the optical coupler 5, with the optical signal of ⁇ _ N is wavelength multiplexed
  • the light is sent to each output port (1 to N) via the optical fiber 1.
  • Each output port is provided with a variable wavelength filter 55.
  • the variable wavelength filter 36 transmits or reflects light in a predetermined wavelength band.
  • variable wavelength filter 36 reflects the routing information. According to the above, the desired optical signal (wavelength) is selected.
  • the above operation enables the switching of ⁇ .
  • the architecture of this switch uses fixed wavelength transmitter and variable length receiver, so fixed transmission and variable reception It is also called (FT-TR) type network.
  • FIG. 14 shows a schematic diagram of the basic configuration of a wavelength routing switch. An optical signal from each port (fi to f N ) is propagated to the optical coupler 5 via the optical fiber 1.
  • Propagated light is set by the optical coupler 5, example is sent in a state in which optical signals _ N is wavelength-multiplexed to each reception port (through f N).
  • a unique wavelength filter (fixed wavelength filter) 38 is installed at each receiving port, and NxN switching is performed by transmitting an optical signal at the wavelength of the target output port by the tunable laser 37 at each transmitting port. Is realized. Since this switch architecture uses a variable wavelength transmitter and a fixed wavelength receiver, it is also called a TT-FR (variable transmission, fixed reception) type network.
  • the optical coupler of the present invention includes a sphere filled with a hollow or transparent body provided with a reflecting member for totally reflecting light on the outer peripheral inner surface of the sphere, and provided on the surface of the sphere.
  • a plurality of openings formed so that the center line passes through the center of the sphere, and optical fiber connecting means provided in the opening, and an optical fiber connected to the optical fiber connecting means.
  • An optical axis center line passes through the center of the sphere, and one or more of the plurality of openings are light entrances, and the other one or a plurality of openings are light exits.
  • the optical coupler for optical connection, optical branching, or optical aggregation has a simple configuration in which light rays are reflected multiple times in the sphere and emitted from the emission port, and optical coupling, optical branching, and optical aggregation are performed.
  • a single optical coupler can be realized, and any of a plurality of optical fiber connection means provided at a plurality of openings on the surface of the sphere can be used as a light input port or a light output port, and a number of light input ports and light output ports can be provided
  • optical fibers can be coupled to each other, split into the required number of optical fibers simply by connecting the light beams propagated by one optical fiber, or transmitted by multiple optical fibers.
  • An extremely versatile optical coupler for optical coupling, optical branching, or optical aggregation that can be assembled into one or more optical fibers simply by connecting multiple light beams It is. Industrial applications
  • the present invention relates to an optical coupler for connecting, branching, or collecting light such as a laser beam guided by an optical fiber, and has industrial application in the field of optical communication.

Abstract

An optical branching/optical collecting-use coupler for branching a ray of light propagated through one optical fiber into a plurality of optical fibers, and collecting a plurality of rays of light transmitted through a plurality of optical fibers into one or a plurality of optical fibers. An optical branching/coupler comprising a hollow or transparent element-filled spherical element provided with a reflection member for totally reflecting light off the inner surface of the outer periphery of a spherical element, a plurality of openings provided in the surface of a spherical element and formed so that their center lines pass the center of a spherical element, and optical fiber connection means provided in the openings, wherein a plurality of the spherical elements are coupled via one of the openings, the optical axis center line of a multiple-mode optical fiber connected with the above optical fiber connection means passes the center of the spherical elements, and arbitrary one or a plurality of openings out of the above openings are used as light incident ports and the other one or a plurality of openings are used as light outgoing ports.

Description

明 細 書 光接続、光分岐又は光集合のための光結合器 技術分野  Description Optical coupler for optical connection, optical branching or optical aggregation
本発明は、光ファイバによって導かれたレーザ光線等の光を接続、分岐又は集 合するための光結合器に関し、特に、一本の光線を複数本の光線に分岐したり、 複数本の光線を 1本の光線に集合させるための光結合器に関する。 背景技術  The present invention relates to an optical coupler for connecting, branching, or converging light such as a laser beam guided by an optical fiber, and more particularly, to splitting one light beam into a plurality of light beams, or combining a plurality of light beams. Optical coupler for assembling into a single light beam. Background art
変調されたレーザ光線を光ファイバによって伝播する光通信方式は、低損失、広 帯域、無誘導などの伝送特性上の極めて優れた特長を有する。また光ファイバは、 細径、軽量などの物理的特徴を有し、光通信は、長距離及び大容量伝送が可能 である。近年では、高出力の半導体レーザ装置と低損失の光ファイバの製造コスト の低減化が実現したことから、大都市間の大容量伝送分野のみでなく、加入者伝 送方式への利用や、温度や圧力等の計測分野、これらの計測信号の伝送媒体とし ての利用が図られ、その適用分野は近年益々拡大している。  An optical communication system in which a modulated laser beam is propagated through an optical fiber has extremely excellent transmission characteristics such as low loss, wide band, and non-induction. Optical fibers have physical characteristics such as small diameter and light weight, and optical communication is capable of long distance and large capacity transmission. In recent years, the reduction in manufacturing costs of high-power semiconductor laser devices and low-loss optical fibers has been realized. Measurement fields such as pressure and pressure are being used as transmission media for these measurement signals, and their application fields have been expanding in recent years.
このような光ファイバの利用分野の拡大に伴レ、、光ファイバによって伝播された光 線を伝送路の途中又は終端で結合させたり、分岐又は集合させる技術が必要とな つている。し力、し、光ファイバは、直径が 0. 05mm乃至 0. 3mm程度のものから可 視的な太さのものまで広く種々な形のものがあり、光ファイバの芯線は、通常、純度 の高い石英ガラス又はプラスチックにより形成されている。従って、光ファイバによつ て伝播された光線を結合するためには二つの光ファイバの各々の切断面を研磨し、 この切断面を精緻に整合させる必要がある。  With the expansion of the field of use of such optical fibers, there is a need for a technique for coupling, branching, or collecting light beams propagated by the optical fibers in the middle or at the end of a transmission line. Optical fibers come in a wide variety of shapes, from diameters of about 0.05 mm to 0.3 mm to visibly thick, and the core of the optical fiber is usually of pure purity. Made of high quartz glass or plastic. Therefore, in order to combine the light beams propagated by the optical fibers, it is necessary to polish the cut surface of each of the two optical fibers and precisely align the cut surfaces.
光通信においては、光ファイバによって伝播された 1本の光線を複数本の光線に 分岐したり、複数本の光線を 1本又は複数本の光線に集合させるためには、光線を 光ファイバの外に放射させた後に、光線を屈折させたり反射させるためのプリズム、 鏡、レンズ等の光学手段を使用し、これらの光学手段によって分岐又は集合した光 線を再び光ファイバに導入させる光学的分岐方法がある。 前記した光学的分岐方法の他に、光線を、受光ダイオード等の受光素子によつ て電気エネルギーに変換し、当該電気エネルギーによって再び一又は複数の半導 体レーザを励起して、当該半導体レーザにおいて発光した光線を光ファイバに導 入する電気的分岐方法がある。 In optical communication, in order to split a single light beam propagated by an optical fiber into a plurality of light beams, or to aggregate a plurality of light beams into one or more light beams, the light beams must travel outside the optical fiber. Optical branching method using optical means such as prisms, mirrors and lenses for refracting or reflecting light rays after refracting the light rays, and introducing the light beams branched or collected by these optical means back into the optical fiber. There is. In addition to the above-described optical branching method, a light beam is converted into electric energy by a light-receiving element such as a light-receiving diode, and the electric energy excites one or a plurality of semiconductor lasers again. There is an electrical branching method for introducing the light emitted in the above into an optical fiber.
光学的分岐方法として、光の波としての性質の一つである偏光(偏波)を利用し たものがある。偏向は、フリースペース光スィッチなどにおいて光ビームの進路の変 更などに利用される。このような偏光の制御に必要な基本ディバイスとして、波長板、 複屈折板、偏光ビームスプリッタ及び液晶偏光制御素子がある。  As an optical branching method, there is a method using polarization (polarization), which is one of the properties of a light wave. Deflection is used for changing the course of a light beam in a free space optical switch or the like. Basic devices necessary for such polarization control include a wave plate, a birefringent plate, a polarization beam splitter, and a liquid crystal polarization control element.
上記した波長板に使用される、水晶、方解石、雲母のような結晶は、屈折率が光 の電界振動方向に対して均一でない光学的異方性と呼ばれる性質を持っている。 より詳しくは、水晶や方解石は 1軸性結晶、雲母は 2軸性結晶というグループに属し、 その方向に光を入射すれば屈折率が等方向に見える光学軸と呼ばれる方位が、 各々一つもしくは二つ存在する。  Crystals such as quartz, calcite, and mica used in the above-described wave plate have a property called optical anisotropy in which the refractive index is not uniform in the direction of the electric field oscillation of light. More specifically, quartz and calcite belong to the group of uniaxial crystals, and mica belongs to the group of biaxial crystals.If light is incident in that direction, the refractive index can be seen in the same direction. There are two.
一方、光学軸に垂直に入射した光の互いに直交する偏光成分(等方的な屈折 率を感じる方の光線を常光線、そうでない方を異常光線と呼ぶ)間では、伝搬速度 差が生じるために、両者の間に位相差が与えられる。常光線と異常光線に位相差 がある場合出射する際にこれらが合成されると、入射光に対して偏光面が変化する。 この原理を用いたものが波長板であり、例えば、 1Z4波長板は、 1/4波長(9 0° )の位相を与え、直線偏光と楕円偏光の相互変換に用いられる。また、 1/2波 長は、 1/2波長(180° )の位相差を与え直線偏光の偏光面の回転に用いられる。 つぎに、複屈折板は、光軸に対して斜めに光を入射した場合には、光は偏光に よって伝搬方向が異なってくる性質を利用する。すなわち、常光線は、スネルの屈 折の法則に従うが、異常光線は屈折率勾配の影響で、一見スネルの屈折に反する 奇妙な振る舞いをする。この性質は複屈折と呼ばれる。極めて大きな複屈折性を示 す結晶に方解石があり、方解石を通して物が二重に見えるのは、実はこの性質の ためである。  On the other hand, there is a difference in the propagation velocity between the orthogonally polarized components of light that is incident perpendicular to the optical axis (the ray that senses the isotropic refractive index is called the ordinary ray, and the other ray is called the extraordinary ray). Then, a phase difference is given between the two. If there is a phase difference between the ordinary ray and the extraordinary ray, when they are combined at the time of emission, the polarization plane changes with respect to the incident light. A wavelength plate that uses this principle is, for example, a 1Z4 wavelength plate that gives a phase of / 4 wavelength (90 °) and is used for mutual conversion between linearly polarized light and elliptically polarized light. The 1/2 wavelength gives a phase difference of 1/2 wavelength (180 °) and is used for rotating the plane of polarization of linearly polarized light. Next, the birefringent plate utilizes the property that when light is incident obliquely to the optical axis, the light propagates in different directions depending on the polarization. In other words, ordinary rays obey Snell's law of refraction, but extraordinary rays seem to behave strangely, contrary to Snell's refraction, under the influence of the refractive index gradient. This property is called birefringence. Calcite is a crystal with extremely large birefringence, and it is this property that makes things look double through calcite.
円偏光、無偏光、又は偏光面が常光線と異常光線に対して傾いた直線偏光を 入力すると、偏光による分岐機能が得られる。入力光の偏光面を回転させると出射 位置(2点間)の移動ができる。具体的には、これらのディバイスは、それぞれの機 能に応じた条件で切り出した平行平板状の方解石で実現することができる。 By inputting circularly polarized light, non-polarized light, or linearly polarized light whose polarization plane is inclined with respect to ordinary and extraordinary rays, a branching function by polarized light can be obtained. By rotating the plane of polarization of the input light, the output position (between two points) can be moved. Specifically, these devices are It can be realized with a parallel plate-shaped calcite cut out under conditions according to the ability.
複屈折板と同様の機能を実現するディバイスに変更ビームスプリッタがある。偏 光ビームスプリッタは、 1対の直角プリズムの斜面同士を張り合わせ、その間に誘電 体多層膜コーティング層を挟んだものである。この原理は複屈折ではな 光の反 射率の偏光依存特性を利用している。多層構造の膜の厚みや屈折率を適切に設 計して偏光依存特性を増強しており、導入された光線は誘電体多層膜で反射され、 入射光に対して垂直な方向に進む。  A device that achieves the same function as a birefringent plate includes a modified beam splitter. The polarizing beam splitter has a pair of right-angle prisms bonded to each other with a slope, and a dielectric multilayer coating layer interposed therebetween. This principle utilizes the polarization dependence of the reflectance of light, which is not birefringent. The polarization dependence is enhanced by appropriately designing the thickness and refractive index of the multilayer film, and the introduced light is reflected by the dielectric multilayer and travels in a direction perpendicular to the incident light.
つぎに、液晶偏光制御素子であるが、液晶は、固体と液体の何れにも属さない 相を持つ物質の総称であり、液体であるにも関わらず、固体とほぼ同様、分子が一 定の規則にしたがってほぼ揃っている性質がある。液晶分子の形は細長いことから、 分子の長尺、短尺方向で光の感じる屈折率が異なり、一般に強い光学異方性を示 す。また、液晶分子の配列は外部から電界を加えることで変化する。この性質を利 用することによって偏光制御素子として動作する。  Next, regarding the liquid crystal polarization control element, liquid crystal is a general term for substances having a phase that does not belong to any of solids and liquids. There are properties that are almost complete according to the rules. Since the shape of liquid crystal molecules is long and thin, the refractive index that light perceives in the long and short directions of the molecules differs, and they generally exhibit strong optical anisotropy. The arrangement of the liquid crystal molecules is changed by applying an electric field from the outside. By using this property, it operates as a polarization control element.
ここで、時計等の表示素子としても幅広く使用されているッイステツドネマティック 液晶セルの構成を例にとり説明する。液晶は 2枚の平行度の高いガラス板に挟まれ ている。液晶の厚みは通常 10 / m程度、又両ガラス板の液晶と接する面には液晶 に電界を加えるための透明電極と液晶分子を特定の方向に配向させるための特殊 な処理層が形成されている。上下のガラス板の配向方向は、液晶分子がガラス面 に平行かつ 90° の螺旋を描くように直交している。このセルに配向方向に対し平行 又は垂直な偏光面を有する光が入射した場合、液晶の光学異方性により入力光の 偏光面は 90° 回転する。  Here, a configuration of a twisted nematic liquid crystal cell that is widely used as a display element such as a timepiece will be described as an example. The liquid crystal is sandwiched between two highly parallel glass plates. The thickness of the liquid crystal is usually about 10 / m, and a transparent electrode for applying an electric field to the liquid crystal and a special treatment layer for orienting the liquid crystal molecules in a specific direction are formed on the surfaces of both glass plates that are in contact with the liquid crystal. I have. The orientation directions of the upper and lower glass plates are perpendicular to each other so that the liquid crystal molecules draw a 90 ° helix parallel to the glass surface. When light having a polarization plane parallel or perpendicular to the alignment direction enters this cell, the polarization plane of the input light is rotated by 90 ° due to the optical anisotropy of the liquid crystal.
いま、透明電極を介し液晶に電圧を加えると、液晶分子はガラス面に垂直に向き を変える。この結果、入力光に対する光学異方性は無くなり、入力光の偏光面は変 化することなく通過することになる。このように液晶セルは外部入力によってダイナミ ックに偏光面を回転できる偏光制御素子として動作する。  Now, when a voltage is applied to the liquid crystal through the transparent electrode, the liquid crystal molecules change their direction perpendicular to the glass surface. As a result, there is no optical anisotropy with respect to the input light, and the polarization plane of the input light passes through without being changed. In this way, the liquid crystal cell operates as a polarization control element that can dynamically rotate the plane of polarization by an external input.
これらのディバイスを使用して、偏光装置、光の分波を行う分波器、複数の光を 集合する集合器、光を分岐する分岐器等が形成されている。  Using these devices, a polarization device, a demultiplexer for demultiplexing light, a concentrator for collecting a plurality of lights, a splitter for splitting light, and the like are formed.
特開平 6— 174963号は、光学的分岐方法として、第 15図に示すように、焦点 O 1にファイバ 51の端面を有する第 1曲面 Sp lと、焦点 Oa 2にファイバ 52の端面を有 する第 2曲面 Sp2とが光反射面を対向配置し、ファイバ 51の出射開口数によって 定まる発散光束のうち、ファイバ 51の中心線より片側の光束 55がファイバ 52の入 射端面に、入射開口数に対応する入射角で入射するように第 1曲面 Sp lと第 2曲 面 Sp2とが配設されてなる単位光学素子 50を複数個備え、これらの複数個の単位 光学素子が 1つの光ファイバ 51を共有する光分岐集合素子を開示している。 Japanese Patent Laid-Open No. 174963/1994 discloses, as optical branching methods, a first curved surface Sp 1 having an end face of a fiber 51 at a focal point O 1 and an end face of a fiber 52 at a focal point Oa 2 as shown in FIG. The light reflecting surface is arranged opposite to the second curved surface Sp2, and of the divergent light beams determined by the exit numerical aperture of the fiber 51, the light beam 55 on one side from the center line of the fiber 51 is incident on the input end face of the fiber 52, A plurality of unit optical elements 50 each having the first curved surface Sp l and the second curved surface Sp2 arranged so as to be incident at an incident angle corresponding to the optical fiber. Disclosed is an optical branching element sharing 51.
しかし、この光学的分岐に係る従来技術においては、光を分岐又は集合させる ために、光ファイバ内の光線をいつたん外部空間に放射させ、放射された光線の光 路上に配置されたプリズム、レンズ、半導体等で構成された上記のような各種偏光 機器を伝搬させることにより、光を所望の方向に屈折させ、屈折角度に合わせてプ リズム等を可動させる可動部を必要とすることから、構造が極めて複雑である。また、 分岐する光線の光軸の偏向機器に対する整合が煩雑であって、装置の小型化とコ ストの低減が困難であった。さらに、この従来技術における光分岐集合素子は、入 射光を曲面に当て屈折した光束が、出射開口数に対応する出射角で出射するよう に第 1曲面と第 2曲面とを構成し、反射された光が出射する出射口の位置を正確に 配設する必要がある。又、出射開口の配置は、曲面の構成によりその設置位置が 限られる。そのため、光の屈折はその方向が制約されて自由な出射口の配置が出 来ない。  However, in the prior art relating to this optical branching, in order to split or converge light, a light beam in an optical fiber is radiated to an external space at once, and a prism or lens arranged on the optical path of the radiated light beam is used. By propagating the above-mentioned various polarization devices composed of semiconductors and the like, light is refracted in a desired direction, and a movable portion for moving the prism and the like in accordance with the refraction angle is required. Is extremely complicated. In addition, the alignment of the optical axis of the branched light beam with the deflection device is complicated, and it has been difficult to reduce the size and cost of the device. Furthermore, the light branching / aggregating element according to the prior art forms a first curved surface and a second curved surface such that a light beam refracted by radiating incident light onto a curved surface exits at an exit angle corresponding to the exit numerical aperture, and is reflected. It is necessary to precisely arrange the position of the exit from which the emitted light exits. Further, the position of the exit aperture is limited by the curved surface configuration. Therefore, the direction of the refraction of light is restricted, and a free exit port cannot be arranged.
一方、上記の電気的分岐方法においては、分岐箇所において、受光素子、半導 体レーザ装置、及びこれらの周辺回路と電源装置を必耍とし、装置サイズの小型化 と低コスト化を実現するのは極めて困難であった。  On the other hand, the above-described electrical branching method requires a light receiving element, a semiconductor laser device, and their peripheral circuits and a power supply device at the branching point, thereby realizing a reduction in size and cost of the device. Was extremely difficult.
本発明は、光ファイバを相互に結合したり、 1本の光ファイバによって伝搬されて きた光線を接続するだけで所要の本数の光ファイバに分岐したり、複数の光フアイ バによって伝送されてきた複数の光線を接続するだけで 1本又は複数本の光フアイ バに集合させることが可能な、光結合、光分岐又は光集合のための光結合器を提 供することを目的とする。 発明の開示  According to the present invention, optical fibers have been connected to each other, a light beam propagated by a single optical fiber has only been connected, and the light has been branched into a required number of optical fibers, or transmitted by a plurality of optical fibers. It is an object of the present invention to provide an optical coupler for optical coupling, optical branching, or optical aggregation that can be assembled into one or more optical fibers simply by connecting a plurality of light beams. Disclosure of the invention
このため、本発明は、球体の外周内面において光を全反射させるための反射部 材が付された中空又は透明体が充填された球体と、前記球体の表面に設けられ、 その中心線が前記球体の中心を通るように形成された複数の開口部と、前記開口 部において設けられた光ファイバ接続手段とを有し、前記光ファイバ接続手段に接 続された多モード光ファイバの光軸中心線が前記球体の中心を通り、前記複数の 開口部の任意の一又は複数を光入射口としその他の一又は複数の開口部を光出 射口とした、ことを特徴とする光接続、光分岐又は光集合のための光結合器を提供 するものである。 For this reason, the present invention provides a sphere filled with a hollow or transparent body provided with a reflecting member for totally reflecting the light on the inner peripheral surface of the sphere, and provided on the surface of the sphere, A multi-mode light source having a plurality of openings formed so that the center line thereof passes through the center of the sphere, and optical fiber connection means provided in the openings; The optical axis center line of the fiber passes through the center of the sphere, one or more of the plurality of openings are light entrances, and the other one or more openings are light exits. The present invention provides an optical coupler for optical connection, branching, or aggregation.
多モード光ファイバ内の光線はひと筋のビーム光ではなくある光軸面積を有して おり、光線は光ファイバの端面から所定範囲の放射角度を持って球体内に放射さ れることとなるので、光線は、球体内面に付された反射部材によって反射し、球体 内を複数回反射することから、球体表面の任意の位置設けられた 1又は複数の開 口部から球体内に導かれた光線が放射することとなるのである。  The light beam in the multimode optical fiber has a certain optical axis area, not a beam of light, and the light beam is emitted from the end face of the optical fiber into the sphere at a radiation angle within a predetermined range. Since the light beam is reflected by the reflecting member provided on the inner surface of the sphere and reflected inside the sphere a plurality of times, the light beam guided into the sphere from one or more openings provided at arbitrary positions on the surface of the sphere. Will radiate.
本発明は、さらに、球体の外周内面において光を全反射させるための反射部材 が付された中空又は透明体が充填された複数個の球体と、夫々の前記球体の表 面に設けられ、その中心線が前記球体の中心を通るように形成された複数の開口 部と、前記開口部に設けられた光ファイバ接続手段と、を有し、前記複数個の球体 が前記開口部の一つを介して結合され、前記光ファイバ接続手段に接続された多 モード光ファイバの光軸中心線が接続された球体の中心を通り、前記複数の球体 における何れか一つの複数の開口部の任意の一又は複数を光入射口としその他 の一又は複数の開口部を光出射口とした、ことを特徴とする光接続、光分岐又は 光集合のための光結合器を提供するものである。  The present invention further provides a plurality of spheres filled with a hollow or transparent body provided with a reflection member for totally reflecting light on the inner peripheral surface of the sphere, and provided on the surface of each of the spheres. It has a plurality of openings formed so that a center line passes through the center of the sphere, and optical fiber connection means provided in the opening, and the plurality of spheres have one of the openings. The optical axis center line of the multi-mode optical fiber connected to the optical fiber connecting means passes through the center of the connected sphere, and passes through any one of the plurality of openings in any one of the plurality of spheres. Another object of the present invention is to provide an optical coupler for optical connection, light branching, or light aggregation, wherein a plurality of light entrances are used and another one or a plurality of openings are used as light exits.
これによつて、光入射口と光出射口を数多く設けることができ、光入射と光出射 の多様化が図れるのである。  Thus, a large number of light entrances and light exits can be provided, and diversification of light entrance and light exit can be achieved.
ここで、前記複数の球体は、それぞれの前記開口部の一つにおいて相互に密着 することにより直接的に連結されたり、又は、それぞれの前記光ファイバ接続手段に 接続された光ファイバを介して房状に連結されるのである。  Here, the plurality of spheres are directly connected to each other by being in close contact with each other at one of the openings, or the spheres are connected via optical fibers connected to the respective optical fiber connecting means. It is connected in a shape.
本発明は、さらに、球体の外周内面において光を全反射させるための反射部材 が付され、その内部には前記球体の中心と異なる位置を中心にして外周に向かつ て徐々にその屈折率を変化させた透明体が充填された球体と、前記球体の表面に 設けられ、その中心線が前記球体の中心を通るように形成された複数の開口部と、 前記開口部において設けられた光ファイバ接続手段と、を有し、前記複数の開口 部の任意の一又は複数を光入射口としその他の一又は複数の開口部を光出射口 とした、ことを特徴とする光接続、光分岐又は光集合のための光結合器を提供する ものである。 The present invention further comprises a reflecting member for totally reflecting light on the inner peripheral surface of the outer periphery of the sphere, and the inside thereof has a refractive index gradually toward the outer periphery centered on a position different from the center of the sphere. A sphere filled with the changed transparent body, and a plurality of openings provided on the surface of the sphere and having a center line passing through the center of the sphere, Optical fiber connection means provided in the opening, wherein one or more of the plurality of openings are light entrances and the other one or more openings are light exits. The present invention provides an optical coupler for optical connection, optical branching, or optical aggregation.
これにより、本光結合器に接続される光ファイバが単一モードのタイプであっても、 その内部には前記球体の中心と異なる位置を中心にして外周に向かって徐々にそ の屈折率を変化させた透明体の作用により、光ファイバからのビーム光は、球体内 で屈曲されることにより、光線は、球体内面に付された反射部材によって反射し、球 体内を複数回反射することから、球体表面の任意の位置設けられた 1又は複数の 開口部から球体内に導かれた光線が放射することとなる。  Thus, even when the optical fiber connected to the optical coupler is of a single mode type, the refractive index inside the sphere gradually changes toward the outer periphery at a position different from the center of the sphere. Due to the effect of the changed transparent body, the beam light from the optical fiber is bent in the sphere, and the light beam is reflected by the reflecting member attached to the inner surface of the sphere, and reflected several times in the sphere. Light rays guided into the sphere are emitted from one or a plurality of openings provided at arbitrary positions on the sphere surface.
本発明は、さらに、球体の外周内面において光を全反射させるための反射部材 が付され、その内部には前記球体の中心と異なる位置を中心にして外周に向かつ て徐々にその屈折率を変化させた透明体が充填された球体と、夫々の前記球体の 表面に設けられ、その中心線が前記球体の中心を通るように形成された複数の開 口部と、前記開口部に設けられた光ファイバ接続手段と、を有し、前記複数個の球 体が前記開口部の一つを介して結合され、前記複数の球体における何れか一つ の複数の開口部の任意の一又は複数を光入射口としその他の一又は複数の開口 部を光出射口とした、ことを特徴とする光接続、光分岐又は光集合のための光結合 器を提供するものである。これにより、光入射口と光出射口を数多く設けることがで き、光入射と光出射の多様化が図れるのである。  The present invention further comprises a reflecting member for totally reflecting light on the inner peripheral surface of the outer periphery of the sphere, and the inside thereof has a refractive index gradually toward the outer periphery centered on a position different from the center of the sphere. Spheres filled with the changed transparent body, a plurality of openings provided on the surface of each of the spheres, the center lines of which are formed to pass through the centers of the spheres, and the spheres provided at the openings. Optical fiber connection means, wherein the plurality of spheres are coupled through one of the openings, and any one or more of any one of the plurality of openings in the plurality of spheres is provided. An optical coupler for optical connection, optical branching, or optical assembly, wherein the optical coupler is used as a light entrance port and one or more other openings are used as light exit ports. Thus, many light entrances and light exits can be provided, and diversification of light entrance and light exit can be achieved.
ここで、前記透明体の屈折率は、その中心部から外周に向かって徐々に大きくな るように設定されたことを特徴とする。また、前記透明体の屈折率は、その中心部か ら外周に向かって徐々に小さくなるように設定されたことを特徴とする。  Here, the refractive index of the transparent body is set so as to gradually increase from the center to the outer periphery. Further, the refractive index of the transparent body is set so as to gradually decrease from the center to the outer periphery.
そして、前記複数の球体は、それぞれの前記開口部の一つにおいて相互に密 着することにより直接的に連結される。また、前記複数の球体は、それぞれの前記 光ファイバ接続手段に接続された光ファイバを介して房状に連結される。  Then, the plurality of spheres are directly connected to each other by being closely attached to each other at one of the openings. Further, the plurality of spheres are connected in a tuft shape via optical fibers connected to the respective optical fiber connecting means.
本発明は、また、球体の外周内面において光を全反射させるための反射部材が 付された中空又は透明体が充填された球体と、前記球体の表面に設けられ、その 中心線が前記球体の中心を通るように形成された複数の開口部と、前記球体の外 周に沿って対向する位置に設けられ、入射した光を屈折させるように配置された磁 気発生手段と、前記開口部において設けられた光ファイバ接続手段と、を有し、前 記複数の開口部の任意の一又は複数を光入射口としその他の一又は複数の開口 部を光出射口としている光接続、光分岐又は光集合のための光結合器を提供する。 さらに、また本発明は、球体の外周内面において光を全反射させるための反射 部材が付された中空又は透明体が充填された球体と、前記球体の表面に設けられ、 その中心線が前記球体の中心を通るように形成された複数の開口部と、前記球体 の外周に沿って対向する位置に設けられ、入射した光を屈折させるように配置され た磁気発生手段と、前記開口部において設けられた光ファイバ接続手段と、を有し、 前記複数個の球体が前記開口部の一つを介して結合され、前記複数の球体にお ける何れか一つの複数の開口部の任意の一又は複数を光入射口としその他の一 又は複数の開口部を光出射口とした、ことを特徴とする光接続、光分岐又は光集 合のための光結合器を提供するものである。 The present invention also provides a sphere filled with a hollow or transparent body provided with a reflecting member for totally reflecting light on the outer peripheral inner surface of the sphere, and a sphere provided on the surface of the sphere, the center line of which is provided on the sphere. A plurality of openings formed to pass through the center; A plurality of apertures, comprising: a magnetic generation unit provided at a position facing the circumference and arranged to refract incident light; and an optical fiber connection unit provided at the opening. Provided is an optical coupler for optical connection, light branching, or light aggregation, in which any one or more of the units is a light entrance and the other one or more openings are a light exit. Furthermore, the present invention provides a sphere filled with a hollow or transparent body provided with a reflecting member for totally reflecting light on the inner peripheral surface of the sphere, and a sphere provided on the surface of the sphere, the center line of which is provided by the sphere. A plurality of openings formed so as to pass through the center of the sphere, a magnet generating means provided at a position facing the outer periphery of the sphere, and arranged to refract incident light, and provided at the opening. Optical fiber connection means, wherein the plurality of spheres are coupled through one of the openings, and any one or any of a plurality of openings in any one of the plurality of spheres is provided. An object of the present invention is to provide an optical coupler for optical connection, light branching, or light condensing, wherein a plurality of light entrances are used and another one or a plurality of openings are light exits.
そして、前記複数の球体は、それぞれの前記開口部の一つにおいて相互に密 着することにより直接的に連結され、または、それぞれの前記光ファイバ接続手段 に接続された光ファイバを介して房状に連結されたことを特徴としている。  Then, the plurality of spheres are directly connected to each other at one of the openings by being closely attached to each other, or are in a tuft form via optical fibers connected to the respective optical fiber connecting means. It is characterized by being connected to.
前記透明体の材質は、無機材料酸化ガラス、高純度ガラス、プラスチック等の透 光性物質で形成される。  The material of the transparent body is formed of a transparent material such as an inorganic material oxide glass, high-purity glass, and plastic.
また、前記入射口及び前記出射口は、前記反射部材の 1部を円形に削除して形 成される。ここで、前記反射部材は、前記透明球の表面にスパッタ'コーティング又 は真空蒸着により付着される。そして、前記反射部材は、単一層の金属、又は、異 種金属を 2層又は 3層に重積付着させた光不透過性の材料で形成されるのである。 本発明に係る光結合器は、前記球体の表面に設けられた一の開口部を光入射 口とし、前記球体の表面に帯状に設けられた他の複数の開口部を光出射口とする。 また、前記球体の表面に設けられた一の開口部を光出射口とし、前記球体の表面 に帯状に設けられた他の複数の開口部を光入射口とする。  Further, the entrance and the exit are formed by removing a part of the reflection member in a circular shape. Here, the reflection member is attached to the surface of the transparent sphere by sputter coating or vacuum deposition. The reflection member is formed of a single-layer metal or a light-impermeable material in which two or three different metals are stacked and deposited. In the optical coupler according to the present invention, one opening provided on the surface of the sphere is a light entrance, and another plurality of openings provided in a strip shape on the surface of the sphere is a light exit. In addition, one opening provided on the surface of the sphere is a light emitting port, and other plural openings provided in a strip shape on the surface of the sphere are light receiving ports.
さらに、本発明に係る光結合器における球体は、各々の前記開口部が相互に密 着した状態で 2個又は 3個連結されたことを特徴とする。そして、前記連結された一 の球体における一の開口部を光入射口とし、他の全ての開口部を光出射口とした ことを特徴とする。さらには、前記連結された一の球体における一の開口部を光出 射口とし、他の全ての開口部を光入射口としたことを特徴とする。 Further, in the optical coupler according to the present invention, two or three spheres are connected to each other in a state where the openings are in close contact with each other. One opening of the one connected sphere is a light entrance, and all other openings are light exits. It is characterized by the following. Furthermore, one opening of the one connected sphere is a light exit, and all other openings are light entrances.
このように本発明の、光接続、光分岐又は光集合のための光結合器は、光線が 球体内を複数回反射し出射口から出射する簡単な構成であり、光接続、光分岐、 及び光集合を一つの光結合器で実現でき、球体表面の複数の開口部において設 けられた複数個の何れの光ファイバ接続手段を光入射口又は出射口とするかが自 由設定可能である。 図面の簡単な説明  As described above, the optical coupler for optical connection, optical branching, or light aggregation of the present invention has a simple configuration in which a light beam is reflected a plurality of times in a sphere and emitted from an emission port, and optical connection, optical branching, and The optical assembly can be realized by one optical coupler, and it is possible to freely set which of the plurality of optical fiber connection means provided at the plurality of openings on the surface of the sphere to be the light entrance or exit. . BRIEF DESCRIPTION OF THE FIGURES
第 1図は、本発明に係る、光結合器の一部切断側面図を示す。  FIG. 1 shows a partially cut-away side view of an optical coupler according to the present invention.
第 2図は、光ファイバからの入射光が光結合器内を均等分散反射される形態図 を示す。  FIG. 2 shows a form in which incident light from an optical fiber is uniformly dispersed and reflected in the optical coupler.
第 3図は、球体内に充填された透明体の屈折率の変化を説明する断面図を示 す。  FIG. 3 is a cross-sectional view illustrating a change in the refractive index of a transparent body filled in a sphere.
第 4図は、球体の外周に沿って磁気発生手段を設けた断面図を示す。  FIG. 4 is a cross-sectional view in which magnetic generating means is provided along the outer periphery of the sphere.
第 5図は、球体と光ファイバ接続のための接続手段の断面図を示す。  FIG. 5 shows a sectional view of a connecting means for connecting a sphere and an optical fiber.
第 6図は、光結合器に出射口が 2個所設けられた断面図を示す。  FIG. 6 shows a cross-sectional view in which two exit ports are provided in the optical coupler.
第 7図は、光結合器に 2箇所の入射口が設けられ、 1箇所の出射口が設けられた 断面図を示す。  FIG. 7 is a cross-sectional view in which the optical coupler is provided with two entrances and one exit.
第 8図は、光結合器を 2個連結して結合した図を示す。  FIG. 8 shows a diagram in which two optical couplers are connected and coupled.
第 9図は、光結合器を 3個連結して結合した図を示す。  FIG. 9 shows a diagram in which three optical couplers are connected and coupled.
第 10図は、 1個の光結合器の周囲に複数の小さな光結合器が房状に連結され た概略図を示す。  FIG. 10 is a schematic diagram in which a plurality of small optical couplers are connected in a tuft around one optical coupler.
第 1 1図は、光結合器の全周に所定数の出射口が形成されている断面図を示す。 第 12図は、光結合器を用いた 2X2スィッチの概念図を示す。  FIG. 11 is a cross-sectional view in which a predetermined number of emission ports are formed all around the optical coupler. FIG. 12 shows a conceptual diagram of a 2X2 switch using an optical coupler.
第 13図は、光結合器を用いた分配選択型スィッチの基本構成を示す。  FIG. 13 shows the basic configuration of a distribution-selective switch using an optical coupler.
第 14図は、光結合器を用いた波長ルーチング型スィッチの基本構成の例を示 す。  FIG. 14 shows an example of a basic configuration of a wavelength routing type switch using an optical coupler.
第 15図は、従来技術に係る、光分岐集合素子の構成図を示す。 発明を実施するための最良の形態 FIG. 15 shows a configuration diagram of an optical branching / gathering element according to the prior art. BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明に係る光分岐又は光集合のための光結合器の実施の形態例を、 図面を参照しつつ詳細に説明する。  Hereinafter, embodiments of an optical coupler for optical branching or optical aggregation according to the present invention will be described in detail with reference to the drawings.
光ファイバを用いた光伝搬は、屈折率分布形状、伝搬モード数、材料、製法の 違いと構造の違いにより、多数経路の伝搬モードによって光線が伝搬する多モード 光伝搬と単一経路の伝搬モードによって光線が伝搬する単一モード光伝搬がある。 光ファイバは、多モード形光ファイバと単一モード形光ファイバとがある。本発明 の実施の形態での第 1の形態は、光結合器が適応する光ビームは多数モードの光 束であり、光ファイバは多モード形を使用している。  Light propagation using an optical fiber is a multi-mode in which light propagates in multiple-path propagation modes due to differences in the refractive index distribution shape, number of propagation modes, materials, manufacturing methods, and structures. There is a single mode light propagation through which the light beam propagates. The optical fiber includes a multi-mode optical fiber and a single-mode optical fiber. In the first mode of the embodiment of the present invention, the light beam to which the optical coupler is adapted is a multimode light beam, and the optical fiber uses a multimode type.
本発明における、第 1の形態である光結合器は、多モード光ファイバによって導 かれた光線を光結合するものであって、多モード光ファイバ内の光線はひと筋のビ ーム光ではなくある光軸面積を有しており、光線は光ファイバの端面から所定範囲 の放射角度を持って球体内に放射されることとなるので、光線は、球体内面に付さ れた反射部材によって反射し、球体内を複数回反射することから、球体表面の任 意の位置設けられた 1又は複数の開口部から球体内に導かれた光線が放射するこ ととなる。  The optical coupler according to the first embodiment of the present invention optically couples a light beam guided by a multimode optical fiber, and the light beam in the multimode optical fiber is not a beam of light but a straight line. Since the light beam has a certain optical axis area and is emitted into the sphere at an emission angle within a predetermined range from the end face of the optical fiber, the light beam is reflected by the reflecting member attached to the inner surface of the sphere. However, since the light is reflected a plurality of times in the sphere, light rays guided into the sphere are radiated from one or a plurality of openings provided at arbitrary positions on the surface of the sphere.
本発明における、第 2の形態である光結合器は、単一モード光ファイバによって 導かれた光線を光結合するものであって、球体の中心と異なる位置を中心にして外 周に向かって徐々にその屈折率を変化させた透明体の作用により、光ファイバから のビーム光は、球体内で屈曲されることにより、光線は、球体内面に付された反射 部材によって反射し、球体内を複数回反射することから、球体表面の任意の位置 設けられた 1又は複数の開口部から球体内に導かれた光線が放射することとなる。 第 1図は、本発明の光結合器 5の形態例を示す一部切断側面図である。光結合 器 5は、通常、光ファイバ中を伝搬される光を分岐 集合するので、光ファイバの端 部に溶着されて使用される。その構成は、光(レーザ光)を伝搬案内する光ファイバ 1に接続される中空又は透明体が充填された球体 2 (例えばガラス球、プラスチック 球)と、球体 2の表面には、光を全反射させるための反射部材 3 (例えばスパッタ 'コ 一ティング又は真空蒸着等)と、 1又は複数の開口部 4と、光ファイバ接続手段 9と で光結合、光分岐又は光集合のための光結合器 5が構成されている。 The optical coupler according to the second embodiment of the present invention optically couples a light beam guided by a single-mode optical fiber, and gradually moves toward the outer periphery around a position different from the center of the sphere. Due to the action of the transparent body whose refractive index is changed, the light beam from the optical fiber is bent in the sphere, and the light beam is reflected by a reflecting member provided on the inner surface of the sphere, and the light in the sphere becomes plural. Since the light is reflected twice, light rays guided into the sphere are radiated from one or a plurality of openings provided at arbitrary positions on the surface of the sphere. FIG. 1 is a partially cut-away side view showing an embodiment of the optical coupler 5 of the present invention. Since the optical coupler 5 normally branches and aggregates the light propagating in the optical fiber, it is used by being welded to the end of the optical fiber. The structure is such that a sphere 2 (for example, a glass sphere or a plastic sphere) filled with a hollow or transparent body is connected to an optical fiber 1 that guides light (laser light), A reflecting member 3 for reflecting light (for example, sputter coating or vacuum evaporation), one or more openings 4, and an optical fiber connecting means 9; Constitutes an optical coupler 5 for optical coupling, optical branching or optical assembly.
第 2図は、光ファイバ 1からの入射光 10が光結合器 5内を均等分散反射される形 態を示す。  FIG. 2 shows a state in which the incident light 10 from the optical fiber 1 is uniformly dispersed and reflected in the optical coupler 5.
光ファイバ 1の基端(図で左側)近くに配置したレーザ光源又は一般の光源から の光は、球体 2に接続された光ファイバ 1先端から光結合器 5内に進入し、反射部 材 3の内面で均等分散反射され、いわば球体 2内で転々と無数回反射されて飛び 交うが、光出射口 4に出口を見出してそこから線 Rの方向へ直線的に出射(線 Rを 屈折照射方向という)する。  Light from a laser light source or a general light source placed near the base end (left side in the figure) of the optical fiber 1 enters the optical coupler 5 from the tip of the optical fiber 1 connected to the sphere 2, and the reflecting member 3 The light is uniformly reflected on the inner surface of the sphere 2, and is reflected innumerably many times in the sphere 2 and flutters. Irradiation direction).
光入射口から球体 2内に導入された光線は、球体 2内に付された反射部材 3を 複数回反射した後に反射回数を重ねて光出射口 4から放射されるので、光出射口 4から放射される出射光線の伝送帯域は、入射光線の伝送帯域よりも狭くはなるが、 球体 2内で反射を繰り返す毎に、反射光の光度は減衰することとなるので、減衰光 の電気的信号処理により、本発明に係る光結合器は、中距離及び中帯域の光伝 送には充分対応可能である。  The light ray introduced into the sphere 2 from the light entrance is reflected from the reflection member 3 attached to the sphere 2 a plurality of times and then emitted from the light exit 4 with a repeated number of reflections. The transmission band of the emitted light beam is narrower than the transmission band of the incident light beam, but the luminous intensity of the reflected light is attenuated each time the reflection is repeated within the sphere 2, so the electrical signal of the attenuated light By the processing, the optical coupler according to the present invention can sufficiently cope with medium-range and medium-band optical transmission.
光出射口 4は、入射光の光軸中心線 Lに対し用途に応じて所要の屈折出射方 向を実現するように任意の位置に形成することが出来る。また、光出射口 4の個数 は 1個に限らず、必要な個数を設けることが出来、形状も実施例では平面で見て円 形であるが、その他種々な形状に(例えば帯状、楕円形状等)形成することが出来 る。  The light output port 4 can be formed at an arbitrary position so as to realize a required refraction and output direction with respect to the optical axis center line L of the incident light depending on the application. Further, the number of the light emission ports 4 is not limited to one, and a required number can be provided. The shape of the light emission port 4 is circular in a plan view in the embodiment, but may be various shapes (for example, a band shape, an elliptical shape). Etc.) can be formed.
また、光の可逆性により、光がその逆の経路を通ることも出来る。すなわち複数の 入射光 10を 1つの出射光として光集合をすることが出来る。  Also, due to the reversibility of light, light can also pass through the reverse path. That is, a plurality of incident lights 10 can be aggregated as one outgoing light.
なお、第 1図で示した例では、光ファイバ 1の光軸中心線 Lと光結合器 5の中心線 とが略一致したものとして示されている力 必ずしもこれに限らず、ファイバ光軸中 心線 Lと球体 2の中心線とをずらして接続することも出来る。  Note that, in the example shown in FIG. 1, the force shown as that the center line L of the optical axis of the optical fiber 1 substantially coincides with the center line of the optical coupler 5 is not limited to this. The center line L and the center line of the sphere 2 can be shifted and connected.
第 3図は、球体内に充填された透明体の屈折率の変化を説明する断面図を示 す。  FIG. 3 is a cross-sectional view illustrating a change in the refractive index of a transparent body filled in a sphere.
第 2の形態の、単一モードの光 10bを分岐集合する時に使用する光結合器 5aは、 その内部に球体 2の中心 45と異なる位置を中心 46にして外周に向かって徐々にそ の屈折率を変化させた透明体が充填された球体 2で構成されている。 尚、第 3図では、屈折率を変化させた透明体において、等屈折率を線 47で示し ている。 The optical coupler 5a used when branching and collecting the single-mode light 10b of the second form is gradually refracted toward the outer periphery around the center 46 at a position different from the center 45 of the sphere 2 inside. It is composed of a sphere 2 filled with a transparent body of varying rate. Note that, in FIG. 3, the line 47 indicates the equal refractive index of the transparent body having the changed refractive index.
第 3図の(a)は、透明体の屈折率が、その中心部から外周に向かって徐々に大き くなるように設定された状態を示す。等屈折率を示す線 47の間隔は、異なる位置の 中心 46の近傍に近づくにつれて密になっている。光 10bは、透過する球体 2内の 透明体によって屈折率を変化させ屈折しながら、図の球体 2の上方 X点に進行する。 第 3図の(b)は、透明体の屈折率が、その中心部から外周に向かって徐々に小さく なるように設定されている状態を示している。等屈折率を示す線 47の間隔は、異な る位置の中心 46の近傍に近づくにつれて疎になっている。光 10bは、透過する球 体 2内の透明体によって屈折率を変化させ屈折しながら、図の球体 2の下方 Y点に 進行する。  FIG. 3 (a) shows a state in which the refractive index of the transparent body is set to gradually increase from the center to the outer periphery. The intervals between the lines 47 indicating the equal refractive index become closer as they approach the vicinity of the center 46 at different positions. The light 10b travels to the upper X point of the sphere 2 in the figure while changing the refractive index and refracting by the transparent body in the sphere 2 that transmits. FIG. 3 (b) shows a state in which the refractive index of the transparent body is set to gradually decrease from the center to the outer periphery. The interval between the lines 47 indicating the equal refractive index becomes narrower as approaching the vicinity of the center 46 at different positions. The light 10b travels to the lower Y point of the sphere 2 in the figure while changing the refractive index and being refracted by the transparent body in the sphere 2 that transmits.
光ファイバ 1からの単一モードの入射光 10bは、透過する球体 2内の透明体によ つて屈折率を変化させ屈折しながら反射部材 3に至る。光 10bは、球体 2内を多モ ード光束が乱反射すると同様な反射を繰り返して光出射口 4から出射する。  The single-mode incident light 10b from the optical fiber 1 reaches the reflecting member 3 while changing the refractive index and being refracted by the transparent body in the transmitting sphere 2. The light 10 b is emitted from the light exit 4 by repeating the same reflection when the multi-mode light beam is irregularly reflected in the sphere 2.
球体 2の表面には、複数の開口部が設けられ、その開口部は、 1又は複数の光フ アイバ接続手段と光出射口 4とが形成されている。球体 2に設けられた開口部、及 び光ファイバ接続手段と光ファイバとの接続は、光ファイバ接続手段、又は溶着が 使用される。  A plurality of openings are provided on the surface of the sphere 2, and the openings are formed with one or a plurality of optical fiber connection means and a light emission port 4. The connection between the opening provided in the spherical body 2 and the optical fiber connecting means and the optical fiber is made by optical fiber connecting means or welding.
この場合も、先に説明した多モード光ファイバ用光結合器と同様に、光入射口か ら球体 2内に導入された入射光 10bは、球体 2内に付された反射部材 3を複数回反 射した後に反射回数を重ねて光出射口 4から放射されるので、光出射口 4から放射 される出射光線の伝送帯域は、入射光線の伝送帯域よりも狭くはなるが、球体 2内 で反射を繰り返す毎に、反射光の光度は減衰することとなるので、減衰光の電気的 信号処理により、本発明に係る光結合器は、中距離及び中帯域の光伝送には充 分対応可能である。  In this case as well, similarly to the optical coupler for a multimode optical fiber described above, the incident light 10b introduced into the sphere 2 from the light entrance is reflected by the reflecting member 3 attached to the sphere 2 several times. After being reflected, the light is emitted from the light exit 4 with the number of reflections repeated, so that the transmission band of the exit light emitted from the light exit 4 is narrower than the transmission band of the incident light, but within the sphere 2. Since the luminous intensity of the reflected light is attenuated each time the reflection is repeated, the optical coupler according to the present invention can sufficiently cope with medium-range and mid-band optical transmission by electrical signal processing of the attenuated light. It is.
第 4図は、球体 2の外周に沿って対向した位置に磁気発生手段を設けた断面図 を示す。第 3の形態の、単一モードの光 10bを分岐集合する時に使用する光結合 器の球体 2の内部は、中空又は透明体で構成されている。球体 2には、光の入射 口 7と、出射口 4a、 4bが設けられている。球体 2内で入射光を屈折させるために、 磁気発生手段 29は、球体 2の外周面に沿って N極側 29aと S極側 29bが対向して 設けられている。磁気発生手段 29a、 29bには、磁性体上に回卷されたコイルに電 流を流すために電源からの電源ケーブル 100が接続されている。 FIG. 4 is a cross-sectional view in which magnetic generating means is provided at a position facing the outer periphery of the sphere 2. In the third mode, the inside of the sphere 2 of the optical coupler used when branching and collecting the single mode light 10b is formed of a hollow or transparent body. The sphere 2 is provided with a light entrance 7 and exits 4a and 4b. In order to refract the incident light in the sphere 2, The magnetism generating means 29 is provided along the outer peripheral surface of the spherical body 2 with the N pole side 29a and the S pole side 29b facing each other. A power supply cable 100 from a power supply is connected to the magnetism generating means 29a and 29b in order to supply a current to a coil wound on a magnetic body.
光入射口 7から球体 2内に入射した単一モードの光 10bは、磁気発生手段 29a、 29bからの磁界によりその進行方向が屈折されて進行し、球体 2内に付された反射 部材 3を複数回反射した後に反射回数を重ねて光出射口 4a、 4bから放射される。 さらに、光の屈折率は、磁界の強さを変化させることで光の屈折率を変えることがで きる。また、使用する磁気発生手段は、この実施形態例では電磁石を使用している 力 永久磁石を使用してもよい。さらに、超伝導磁性体を使用すれば高性能磁気 発生手段として使用できる。  The single-mode light 10b incident on the sphere 2 from the light entrance 7 is refracted in the traveling direction by the magnetic fields from the magnetism generating means 29a and 29b, and travels to the reflecting member 3 attached to the sphere 2. After being reflected a plurality of times, the light is emitted from the light emission ports 4a and 4b with the number of reflections being repeated. Further, the refractive index of light can be changed by changing the strength of the magnetic field. In this embodiment, a permanent magnet using an electromagnet may be used as the magnetism generating means. Furthermore, if a superconducting magnetic material is used, it can be used as a high-performance magnetic generating means.
この場合も、先に説明した多モード光ファイバ用光結合器と同様に、光入射口か ら球体 2内に導入された入射光 10bは、球体 2内に付された反射部材 3を複数回反 射した後に反射回数を重ねて光出射口 4から放射されるので、光出射口 4から放射 される出射光線の伝送帯域は、入射光線の伝送帯域よりも狭くはなるが、球体 2内 で反射を繰り返す毎に、反射光の光度は減衰することとなるので、減衰光の電気的 信号処理により、本発明に係る光結合器は、中距離及び中帯域の光伝送には充 分対応可能である。  In this case as well, similarly to the optical coupler for a multimode optical fiber described above, the incident light 10b introduced into the sphere 2 from the light entrance is reflected by the reflecting member 3 attached to the sphere 2 several times. After being reflected, the light is emitted from the light exit 4 with the number of reflections repeated, so that the transmission band of the exit light emitted from the light exit 4 is narrower than the transmission band of the incident light, but within the sphere 2. Since the luminous intensity of the reflected light is attenuated each time the reflection is repeated, the optical coupler according to the present invention can sufficiently cope with medium-range and mid-band optical transmission by electrical signal processing of the attenuated light. It is.
第 5図は、光ファイバ接続手段 40例の断面図を示す。光ファイバ接続手段 40は、 光ファイバ 1を整列保持する部材(フ ルール) 43と、光ファイバを固定する機構部、 及び締結機構部により構成されるプラグ 41のほ力 \そのプラグ同士を突合せ整列さ せるためのアダプタ 42により構成される。使用される光ファイバ 1のコア径は、例え ばガラス系の光ファイバを考えると、多モードファイバでは 50 / mから 200 / mくら いまで、単一モードファイバでは、 10 μ ηιと小さな径である。従って、わずかな突合 せ精度の不完全により接続損の増大生じることとなる。接続手段を使用した光ファ ィバの接続方式は、端面突合せ方式と、レンズを介して接続する方式の 2種類に分 類できる。レンズ方式は接続部の平行ビーム径がファイバコア系より大きくできるた め安定した特性が得られる反面、部品数が多ぐ接続損失も大きくなるため、現状 では、ほとんどが端面突合せ方式を採用している。そして、整列構造においては、 スリーブ整列構造と(フェル一ルもしくはファイバを半径方向に均等な力を加える円 筒スリーブなどにより中心軸を合わせる方式)、溝整列構造、及びガイドピン整列構 造などに分けられる。通常、単心光接続手段の場合、円筒スリーブを用レ、た整列構 造が多い。また、締結構造は、一般的なネジ式締結構造の他、バイヨネット締結構 造などの各種簡易操作形の締結構造がある。 FIG. 5 shows a sectional view of 40 examples of the optical fiber connecting means. The optical fiber connecting means 40 is composed of a member 43 for aligning and holding the optical fiber 1, a mechanism for fixing the optical fiber, and a plug 41 composed of a fastening mechanism. It is composed of an adapter 42 for causing the connection. The core diameter of the optical fiber 1 used is, for example, 50 / m to 200 / m for a multimode fiber, and 10 μηι for a single mode fiber, considering a glass-based optical fiber. is there. Therefore, a slight imperfect matching accuracy causes an increase in connection loss. Optical fiber connection methods using connection means can be classified into two types: end face-to-face connection methods and connection methods via lenses. In the lens system, stable characteristics can be obtained because the parallel beam diameter of the connection part can be larger than that of the fiber core system.On the other hand, since the number of parts is large and the connection loss is large, most of the lens systems adopt the end face butt method. I have. In the alignment structure, the sleeve alignment structure and the circle that applies a uniform force to the ferrule or fiber in the radial direction A method of aligning the center axis with a cylindrical sleeve), a groove alignment structure, and a guide pin alignment structure. Usually, in the case of single-core optical connection means, there are many alignment structures using a cylindrical sleeve. The fastening structure includes various simple operation type fastening structures such as a bayonet fastening structure in addition to a general screw-type fastening structure.
球体 2の光ファイバ接続手段 9及び開口部 4に接続手段 40の一方のプラグ 41 a が固着されている。光ファイバ 1をフエルール 43に挿入し、フエルール 43とアダプタ 42は、プラグに 41 a螺合される。次に、プラグ 41 bを廻してプラグ 41bとアダプタ 42 に設けられた締結ネジ 44で螺合され球体 2に固定される。このようにして光ファイバ 1は、正確に光ファイバ接続手段 9及び開口部 4に接続される。また、光結合器 5か ら光ファイバ 1の取り外しも可能である。  One plug 41 a of the connection means 40 is fixed to the optical fiber connection means 9 and the opening 4 of the sphere 2. The optical fiber 1 is inserted into the ferrule 43, and the ferrule 43 and the adapter 42 are screwed into the plug 41a. Next, the plug 41b is turned and screwed with the fastening screw 44 provided on the plug 41b and the adapter 42 to be fixed to the sphere 2. Thus, the optical fiber 1 is accurately connected to the optical fiber connecting means 9 and the opening 4. Further, the optical fiber 1 can be removed from the optical coupler 5.
また、他の球体 2と光ファイバの接続は、上記のような接続手段 40を使用せず溶 着による接続を行なうことができる。この場合、光ファイバの先端は、凸面状とし、対 応して球体 2の溶着個所は凹面状とする。または、ファイバの先端は、凹面状とし、 対応して球体 2の溶着個所は凸面状とする。このような相補的凹凸形状は溶着を正 確強固にするために必要である。  Further, the connection between the other sphere 2 and the optical fiber can be performed by welding without using the connecting means 40 as described above. In this case, the tip of the optical fiber has a convex shape, and the welding position of the spherical body 2 has a concave shape. Alternatively, the tip of the fiber is made concave, and the welding portion of the sphere 2 is made convex accordingly. Such a complementary uneven shape is necessary to make the welding accurate and strong.
本実施例においては、球体 2と光ファイバ 1の接続方法をプラグによる接続例及 び溶着による接続例で示したカ、この実施形態例で説明した接続に限定するもの でなぐ他の方法によって接続することであっても良い。  In the present embodiment, the connection method between the sphere 2 and the optical fiber 1 is not limited to the connection example shown in the connection example by the plug and the connection example by welding, and the connection method is not limited to the connection described in this embodiment example. It may be to do.
球体 2の表面には、反射部材 3を削除して、光ファイバ接続手段と出射口 4が形 成される。第 1図の例では、この光出射口 4がレーザ光の直進光軸中心線(線 L)に 対し、屈折角 90° の方向に一致するように位置付けられ、例えば円形の光出射口 4として反射部材 3を削除することにより形成されている。  On the surface of the sphere 2, the reflection member 3 is omitted, and the optical fiber connection means and the emission port 4 are formed. In the example shown in FIG. 1, the light exit 4 is positioned so as to coincide with the direction of the refraction angle of 90 ° with respect to the center line (line L) of the straight optical axis of the laser beam. It is formed by removing the reflection member 3.
本装置で用いられる光ファイバ 1は、極めて細い例えばガラス系の光ファイバを 考えると、多モードファイバでは 50 μ ιηから 200 μ ΐηくらいまで、単一モードファイバ では、 10 mと小さな径である太さのものまで広く、種々な形のガラスファイバ又は プラスチックファイバを用いることが出来る。  The optical fiber 1 used in this device is very thin, such as a glass-based optical fiber, and its diameter is as small as 50 μιη to 200 μΐη for a multimode fiber and 10 m for a single mode fiber. Glass fibers or plastic fibers of various shapes can be used.
球体 2は、光学的に真球であることを要し、その材質は、無機材料酸化ガラス、特 に高純度ガラスが好適である力 実際的にはプラスチックのような透光性物質をもつ て製作することができる。 反射部材 3に使用される金属材料は、特に限定されるものでなぐ 真空蒸着、或いはさらに CVDに適するもので光不透過性の材料ならすべて使用す ることが出来る。 The sphere 2 needs to be optically a true sphere, and is made of an inorganic material such as an oxide glass, particularly a high-purity glass. Can be manufactured. The metal material used for the reflecting member 3 is not particularly limited, and any material that is suitable for vacuum deposition or further CVD and is light-impermeable can be used.
また、反射部材 3は単一層の金属だけでなぐ異種金属を二層又は三相等に重 積付着させて形成することもできる。  Further, the reflecting member 3 can be formed by depositing different kinds of metals, not only a single layer of metal, in two layers or three phases.
球体 2の補強という目的では、反射部材 3はなるべく厚い方がいいので、スパッタ リングした上にさらにメツキ法により金属の比較的厚い補強膜を形成するようにして ち良い。  For the purpose of reinforcing the sphere 2, the reflecting member 3 is preferably as thick as possible. Therefore, it is preferable to form a relatively thick reinforcing film of metal by spattering and further by a plating method.
ここで、光ファイバ 1内を伝搬された光が分岐又は集合する光結合器 5の実施の 形態例を説明する。本発明における光結合器 5の光分岐'集合は、光結合器 5を 1 又は複数使用して入射光を光軸の中心から所定方向の角度に屈折させた光を得 ることが出来るように構成されている。  Here, an embodiment of the optical coupler 5 in which light propagated in the optical fiber 1 branches or converges will be described. The optical couplers 5 of the optical coupler 5 according to the present invention are configured such that one or more optical couplers 5 can be used to obtain light obtained by refracting incident light at an angle in a predetermined direction from the center of the optical axis. It is configured.
光分岐は、入射光 10を光結合器 5に取り入れ、球内を無数回反射されて光結合 器 5に設けられた 1以上の光出射口 4から出射する。  The light branch takes the incident light 10 into the optical coupler 5, reflects the light in the sphere countless times, and emits the light through one or more light exit ports 4 provided in the optical coupler 5.
第 6図は、光結合器 5に光出射口 4が 2個所設けられた例を示す。光出射口 4a、 4bには、光を伝搬する光ファイバ 1が光入射側と同様な形状で接続されている。 光は、ファイバ 1先端から光結合器 5内に進入し、反射部材 3の内面で均等分散 反射され、いわば球内で転々と無数回反射されて飛び交うが、 2箇所の光出射口 4 a、 4bに出口を見出してそこから出射光 A、 Bとして直線的に出射する。すなわち、 入射光 10は、出射光 A、出射光 Bに分岐され 2箇所の光出射口 4a、 4bから分岐出 力される。  FIG. 6 shows an example in which two light emission ports 4 are provided in the optical coupler 5. An optical fiber 1 for transmitting light is connected to the light exit ports 4a and 4b in the same shape as the light incident side. The light enters the optical coupler 5 from the tip of the fiber 1, is uniformly dispersed and reflected on the inner surface of the reflecting member 3, and is reflected innumerably many times in a sphere so as to fly, but the two light exit ports 4 a, An exit is found at 4b, and emitted light A and B are emitted linearly from the exit. That is, the incident light 10 is branched into the outgoing light A and the outgoing light B, and is branched and output from the two light output ports 4a and 4b.
第 7図は、光結合器 5に 2箇所の入射口 7a、 7bが設けられ、 1箇所の出射口 8が 設けられた例を示す。これは、第 3図で示した光の分岐と逆の動作で、光の可逆性 により、光がその逆の経路を通ることも出来ることを示している。入射光 10a、 10bは、 2箇所の入射口 7a、 7bから光結合器 5内に進入し、反射部材 3の内面で均等分散 反射され、球内で転々と無数回反射されて飛び交い、出射口 8に出口を見出して そこから出射して直線的に出射口 8から出射する。すなわち、 2箇所の入射口 7a、 7 bからの入射光 10a、 10bは、 1箇所の出射口 8に集合されて出射される。  FIG. 7 shows an example in which the optical coupler 5 is provided with two entrances 7a and 7b, and one exit 8 is provided. This indicates that light can pass through the reverse path due to the reversibility of light in the operation opposite to the branching of light shown in FIG. The incident lights 10a and 10b enter the optical coupler 5 from the two entrances 7a and 7b, are uniformly dispersed and reflected on the inner surface of the reflecting member 3, are reflected innumerably many times in the sphere, and fly out, and exit. An exit is found at 8, and the light exits from the exit and exits from the exit 8 linearly. That is, the incident lights 10a and 10b from the two entrances 7a and 7b are gathered at one exit 8 and emitted.
つぎに、光結合器 15を 2個連結して光を分岐する形態例を説明する。 第 8図は、光結合器 15を 2個連結して固着し、光分岐及び集合を行う図を示す。 光結合器 15の連結部は、光漏れのないよう互いの開口部の一つである連結口 18 に密着され固着している。光結合器 15には所定の数の出射口 17が形成されてい る。光ファイバ 1からの入射光 10は、光結合器 5内に進入し、反射部材 3の内面で 均等分散反射され、いわば球内で転々と無数回反射されて飛び交うが、出射口 17、 連結口 18に出口を見出してそこから直線的に出射する。 Next, an example in which two optical couplers 15 are connected to split light will be described. FIG. 8 shows a diagram in which two optical couplers 15 are connected and fixed to perform optical branching and aggregation. The connecting portion of the optical coupler 15 is tightly fixed to a connecting port 18 which is one of the openings so as to prevent light leakage. The optical coupler 15 has a predetermined number of emission ports 17 formed therein. The incident light 10 from the optical fiber 1 enters the optical coupler 5 and is uniformly dispersed and reflected on the inner surface of the reflecting member 3. An exit is found at 18, and the light exits straight from there.
光結合器 15を 2個連結することにより、光ファイバ 1からの入射光 10を光結合器 5に設けられた複数の光出射口 17に光を分岐して出射することが可能になる。  By connecting two optical couplers 15, it becomes possible to split the incident light 10 from the optical fiber 1 to a plurality of light output ports 17 provided in the optical coupler 5 and emit the light.
第 9図は、光結合器 16を 3個連結した状態を示した図である。この形態の場合、 第 8図と同様の方法で互いの光結合器 16を連結するが、光ファイバ 1からの入射光 をより多数の出射口 17に光を分岐することが可能になる。各々の光結合器 16には 球体 2の中心から所定の角度で、所定の数の出射口 17が形成されている。各々の 出射口 17には光ファイバ 1が接続されている。光ファイバ 1からの入射光 10は、光 結合器 16内に進入し、反射部材 3の内面で均等分散反射され、出射口 17、連結 口 18に出口を見出してそこから直線的に出射する。  FIG. 9 is a diagram showing a state where three optical couplers 16 are connected. In the case of this embodiment, the optical couplers 16 are connected to each other in the same manner as in FIG. 8, but it is possible to split the incident light from the optical fiber 1 to a larger number of emission ports 17. Each optical coupler 16 is formed with a predetermined number of emission ports 17 at a predetermined angle from the center of the sphere 2. The optical fiber 1 is connected to each output port 17. The incident light 10 from the optical fiber 1 enters the optical coupler 16, is uniformly dispersed and reflected by the inner surface of the reflecting member 3, exits at the exit 17 and the coupling 18, and exits linearly therefrom.
光結合器 16を 3個連結することにより、光ファイバ 1からの入射光 10を光結合器 16に設けられた複数の出射口 17に光を分岐して出射することが可能になる。光の 出射口を、入射ロカ の距離及び広い角度の位置に自由に設けることが出来るた め機器の設計自由度が増す。  By connecting three optical couplers 16, it becomes possible to split the incident light 10 from the optical fiber 1 to a plurality of output ports 17 provided in the optical coupler 16 and emit the light. Since the light emission port can be freely set at the distance of the incident rocker and at a wide angle position, the degree of freedom in equipment design is increased.
第 10図は、 1個の光結合器 20の周囲に光ファイバを介して房状に複数の小さな 光結合器 21が連結されている形態を示している。この形態では、光結合器 20の入 射口 22から入射した光は、光結合器 20内に進入し、反射部材 3の内面で均等分 散反射され、出射口 23に出口を見出してそこから出力光として出射する。出射口 2 3に光ファイバ 1を介して連結された複数の小さな光結合器 21に入射する。  FIG. 10 shows a mode in which a plurality of small optical couplers 21 are connected in a tuft-like manner around one optical coupler 20 via an optical fiber. In this embodiment, the light incident from the entrance 22 of the optical coupler 20 enters the optical coupler 20, is uniformly and diffusely reflected on the inner surface of the reflection member 3, finds an exit at the exit 23, and from there. Emitted as output light. The light enters a plurality of small optical couplers 21 connected to the exit 23 via the optical fiber 1.
入射した光は、再び小さな光結合器 21内で均等分散反射され各々の光結合器 21の設けられた出射口に接続された光ファイバに向けて出射される。  The incident light is again uniformly dispersed and reflected in the small optical couplers 21 and is output toward the optical fibers connected to the output ports provided in the respective optical couplers 21.
なお、光結合器 21の連結は光ファイバ 1を介さず、第 8図、第 9図で示したように、 直接、光結合器 20と光結合器 21を連結しても良い。この連結によれば、光の減衰 するロスが軽減されさらに多くの光分岐が可能となる。 第 1 1図は、光ファイバ 1の先端部に設けられた光結合器 25の全周に所定数の 光出射口 26が形成されている例を示す。光出射口 26には光ファイバ 1が接続され ている。この形態例では入射光 10が光結合器 25の全周に沿って 90° 屈折され複 数の光ファイバに分岐されている。この形態によれば、限られたスペースにおいて 複数の光分岐が可能となる。 The optical coupler 21 may be directly connected to the optical coupler 20 without passing through the optical fiber 1, as shown in FIGS. 8 and 9. According to this connection, the loss of light attenuation is reduced, and more light branching is possible. FIG. 11 shows an example in which a predetermined number of light emission ports 26 are formed all around the optical coupler 25 provided at the tip of the optical fiber 1. The optical fiber 1 is connected to the light exit port 26. In this embodiment, the incident light 10 is refracted by 90 ° along the entire circumference of the optical coupler 25 and branched into a plurality of optical fibers. According to this embodiment, a plurality of optical branches can be performed in a limited space.
ここで、本発明の光結合器 5の光通信分野における適用例及び利用例について 説明する。  Here, an application example and an application example of the optical coupler 5 of the present invention in the optical communication field will be described.
光は電気に比べて、様々な特徴をもっている。光の持つ広帯域性、高速性、無 漏話無干渉の特長を利用することで、電子技術では達成不可能な大容量のシステ ムを実現できる。光スイッチングの特長として以下のようなことがある。  Light has various characteristics compared to electricity. By taking advantage of the broadband, high-speed, and crosstalk-free interference characteristics of light, a large-capacity system that cannot be achieved with electronic technology can be realized. The features of optical switching include the following.
1.光は広帯域性を有するため、電気的にはスイッチングが困難な高帯域な信号 (数百メガヘルツ)を、スイッチングすることができる。光は 200テラへルツという広大 な帯域を持っており、外部からの雑音の影響を受けないという特長をもっている。こ の性質は、光伝搬だけでなく光スイッチングの特徴としても利用できる。  1. Since light has a wide band, it can switch high-bandwidth signals (hundreds of megahertz) that are electrically difficult to switch. Light has a vast bandwidth of 200 terahertz, and is characterized by being unaffected by external noise. This property can be used not only for optical propagation but also for optical switching.
2.光は高速性を有するため、電気的スィッチより高速のスイッチングが可能であ る。電子的なスィッチでは、キャリアの移動速度や回路の RC時定数によって動作速 度の上限が決まってしまう。光の場合はこうした問題がないので、原理的にはより高 速のスイッチングが可能で、実際、スイッチング時間が数ピコ程度の高速動作が実 験的には確認されている。  2. Since light has a high speed, switching at a higher speed than an electrical switch is possible. With electronic switches, the upper limit of operating speed is determined by the carrier moving speed and the RC time constant of the circuit. In the case of light, there is no such problem, so higher-speed switching is possible in principle. In fact, high-speed operation with a switching time of about several picoseconds has been experimentally confirmed.
3.光の広帯域性のより積極的な利用法として、全帯域を複数の周波数帯域に 分割し、その各々で運ばれる独立した信号をスイッチングすることができる。原理的 には電気の場合も可能ではあるが、光の場合はその広帯域性から帯域を分割利用 するメリットが大きいこと、キャリアの周波数が高いため必要な回路が小型になること から周波数分割多重の伝搬やスイッチングは有望である。  3. As a more aggressive use of the broadband nature of light, it is possible to divide the entire band into multiple frequency bands and switch independent signals carried by each. In principle, it is possible to use electricity, but in the case of light, frequency-division multiplexing is important because of the large merit of dividing the bandwidth due to its wide bandwidth and the required small circuit size due to the high carrier frequency. Propagation and switching are promising.
4.光は外部の電磁界の影響を受けないため、光ビーム相互でも干渉し合わない という特徴がある。したがって、高密度なアレーディバイスを使い配線系を小型化す れば、 3次元の高密度実装が可能である。  4. Light is not affected by external electromagnetic fields, so it does not interfere with light beams. Therefore, by using a high-density array device and miniaturizing the wiring system, three-dimensional high-density mounting is possible.
5.光スィッチは一般に媒体の物理的特性(屈折率など)を変化させてスィッチン グを行うため、熱として消費されるエネルギーが小さぐ電子スィッチに比べて消費 電力の小さいスィッチが実現できる。 5. Optical switches generally perform switching by changing the physical characteristics (such as refractive index) of the medium, and therefore consume less energy than electronic switches, which consume less energy. A switch with low power can be realized.
基本スィッチエレメントとして、最も単純なスィッチはオン'オフスィッチである。流 れを制御する場合は、ゲート(オン _ オフ)と呼ばれることもある。入力と出力の数は それぞれ 1つで、スィッチの状態はオン、オフの 2つしかないため、 lbitでその状態 を表すこと力できる。この種のスィッチを「バイナリスィッチ」と呼ぶ。ゲートスィッチを 組み合わせることにより、様々なタイプのスィッチが構成できる。  As a basic switch element, the simplest switch is an on-off switch. When controlling flow, it is sometimes called a gate (on_off). There is only one input and one output, and there are only two switch states, on and off, so we can use lbit to represent that state. This type of switch is called a "binary switch". Various types of switches can be constructed by combining gate switches.
次は、クロスノバー型スィッチである。これも 2つの状態を持つバイナリスィッチで あるが、入力と出力の数がそれぞれ 2つある点力 ゲートスィッチと異なる。これは 2 つの入力と出力が、平行(バー状)に繋がった状態と、 2つの入力と出力がクロスし た状態で繋がった状態の 2つを持つ。したがって、 2つの入力は、必ず 2つの出力 の何れかと繋がった状態にあり、 2つの入力が同時に一方の出力に繋がったり、い ずれの出力にも繋がっていないという状態は存在しない。クロス バー型スィッチを 組み合わせてできるもっとも典型的なスィッチはバンヤンスイッチである。  Next is a cross-nova switch. This is also a binary switch with two states, but differs from a point-gate switch with two inputs and two outputs. It has two states: two inputs and outputs connected in parallel (bar shape), and two inputs and outputs connected in a crossed state. Therefore, the two inputs are always connected to one of the two outputs, and there is no state in which the two inputs are connected to one output at the same time or not connected to any output. The most typical switch that can be combined with a crossbar switch is a banyan switch.
3番目は多値スィッチ(口一タリースィッチ)で、 1つの入力を 2つ以上の出力のい ずれか 1つに選択的に接続する、あるいは、 2つ以上の入力のいずれか 1つを 1つ の出力に接続するスィッチを多値スィッチと呼ぶ。多値スィッチの典型的なスィッチ がロータリースィッチである。  The third is a multi-valued switch, which selectively connects one input to one of two or more outputs, or connects one of two or more inputs to one. The switch connected to one output is called a multi-value switch. A typical switch of a multivalued switch is a rotary switch.
通信システムにおいて、まず 1対 1の通信を対象にすると、通信を行うもっとも簡 単な方法は、通信したい 2者を直接結べばよい。 N人いれば、その中から任意の 2 人を選び出す組合せの数、すなわち N (N— 1) /2本の線を張れば度のような組合 せの通信も行えることになる。し力し、このような方法では、 Nが増えるにつれて結線 数は膨大な(Nの二乗のオーダ)数になり、それを実現することは物理的に不可能 になる。そこで、通信したい者を結ぶ線路の途中にスィッチを置き要求にしたがって それを結ぶようにすると、 N本の結線で任意の N人が通信できるようになる。このよう に要求に応じて接続を切り替えることを、「スイッチング」と呼ぶ。スイッチングの第 1 義的な機能は、このような「繋ぎ替え」であるが、それと同時に通信ネットワークのリソ ースを必要に応じて割り当てることで無駄を無くして、低コストで通信を提供するとい う重要な役割も持っている。実際のネットワークはスィッチが階層構造になっており、 スィッチ間を結ぶ結線を加入者伝搬路と呼ぶ。階層化することで交換機の規模もあ る程度の大きさに押えることが出来、トータルとして経済的なネットワークが実現され る。 In a communication system, if one-to-one communication is targeted first, the simplest method of communication is to directly connect two parties to communicate. If there are N people, the number of combinations to select any two of them, that is, if N (N-1) / 2 lines are drawn, it will be possible to perform communication in combinations like degrees. However, in such a method, as N increases, the number of connections becomes enormous (on the order of N square), and it is physically impossible to achieve this. Therefore, if a switch is placed in the middle of the track connecting the people who want to communicate and it is connected according to the request, any N people can communicate with N connections. Switching the connection according to the request in this way is called “switching”. The primary function of switching is such a "reconnection", but at the same time, by allocating resources of the communication network as needed, it is possible to eliminate waste and provide communication at low cost. It also has an important role. In an actual network, switches have a hierarchical structure, and a connection connecting the switches is called a subscriber propagation path. The size of the exchange can be increased by layering The size of the network can be reduced to a reasonable size, and a total economic network can be realized.
さらに、光スイッチングの方式は三つの方式「空間分割」(SD)、「時分割多重」 (TD) , 「周波数分割多重」 (FD)に分類される。一方、光技術の最大特長である 「広帯域性」には、「変調可能な信号帯域の広帯域性」「空間分解能の広帯域性」 がある。従来の光ファイバ通信で利用され、最もなじみ深レ、「広域帯域性」という言 葉は主に第一の広帯域性、すなわち時間領域の広帯域性をさしたものである。  Further, optical switching systems are classified into three systems: “space division” (SD), “time division multiplex” (TD), and “frequency division multiplex” (FD). On the other hand, the “broadband characteristics” that are the greatest features of optical technology include “broadband characteristics of a modulatable signal band” and “broadband characteristics of spatial resolution”. The term "broadband", which is used in conventional optical fiber communications and is most familiar, mainly refers to the first broadband, that is, the broadband in the time domain.
光スィッチは、光ファイバ通信システムの多様化,高信頼化 ·経済化等のために 必要となる。光スィッチは光路の分岐 '切換が目的であるからオン時の挿入損が低 ぐオフ時の漏話減衰量が大きいことが必要となる。又切換電力、切換時間、切換 遅延時間も重要な評価項目である。スィッチは可動部を持つ機械式と可動部を持 たない電子式に分類できる。機械式光スィッチは、スィッチ速度がミリ単位と遅く、 多数個の光学部品を組み合わせて製作する必要があるために大量生産に不向き で小型化に限界がある。しかし、応答速度は遅いものの光学特性に優れており、現 在、既に使用されている。一方電子式光スィッチは、高速動作、可動部を持たない ことで高信頼度を実現できるなどの特徴を有している。  Optical switches are required for diversification, high reliability and economical use of optical fiber communication systems. Since the purpose of the optical switch is to switch the optical path, it is necessary that the insertion loss at the time of ON is low and the crosstalk attenuation at the time of OFF is large. Switching power, switching time, and switching delay time are also important evaluation items. Switches can be classified into mechanical type with moving parts and electronic type without moving parts. The mechanical optical switch has a low switch speed of millimeters, and is not suitable for mass production because it must be manufactured by combining a large number of optical components. However, although the response speed is slow, it has excellent optical characteristics and is already used at present. On the other hand, the electronic optical switch has features such as high-speed operation and high reliability because it has no moving parts.
機械式光スィッチでは、光ファイバ、プリズム、反射鏡、レンズなどを動かして光路 を切り換え、その駆動手段として手動ソレノイド、バイモルフ、ステップモータなどを 用いる。接続損は何れも l dB前後であり、漏話減衰量は 50dB程度と高レ、。これら の光スィッチは、原理的に外部へ接続する光ファイバが多モードであるか単一モー ドであるかは問わないが、単一モード用では低損失、接続の再現性を確保するため、 部品加工や組み立てに高い精度が必要である。  In a mechanical optical switch, the optical path is switched by moving an optical fiber, a prism, a reflector, a lens, and the like, and a manual solenoid, a bimorph, a step motor, or the like is used as a driving means. The connection loss is around ldB, and the crosstalk attenuation is as high as 50dB. In principle, these optical switches do not matter whether the optical fiber connected to the outside is multi-mode or single-mode.However, for single mode, low loss and reproducibility of connection are required. High precision is required for parts processing and assembly.
電子式光スィッチは、光変調器や光偏向器と同様に、光学効果、音響光学効果 を適用できる。  The electronic optical switch can apply the optical effect and the acousto-optic effect similarly to the optical modulator and the optical deflector.
電子式光スィッチは、石英ガラス導波路を用いたスィッチ、半導体を用いたスイツ チ、液晶を用レ、たスィッチ等各種のものが提供されてレ、る。  Various types of electronic optical switches are provided, such as a switch using a quartz glass waveguide, a switch using a semiconductor, a switch using a liquid crystal, and a switch using a liquid crystal.
最新の半導体光スィッチは、半導体の屈折率を電流や電圧で変化させ、それに よって生じる屈折率差で全反射を起こして光の経路を切り替える。このことは、鏡を 動かして光の反射をコントロールすると等価なことを、半導体の物理的性質を利用 して微細な回路で実現している。従来より進歩した点は、可動部分がなくなつたこと、 動作が非常に早くなつたこと,スィッチの大きさが微小になったこと、などである。高 速スイッチングできるようになると、現在の電子交換のように、信号を時間的に多重 して、それぞれ独立にスイッチングすることも出来る。さらに、半導体アンプゲート(S OAG)として利用すると、注入する電流によって量を光の量を制御できる光ゲート 素子となる。この半導体アンプゲートは、高速スイッチングが可能で、増幅利得を持 ち、高いオン Zオフ比が得られる。 The latest semiconductor optical switch changes the refractive index of a semiconductor by current or voltage, and causes a total reflection based on the refractive index difference to switch the light path. This is equivalent to controlling the reflection of light by moving a mirror, using the physical properties of semiconductors. It is realized by a fine circuit. Advances over the past include the elimination of moving parts, very fast operation, and the use of smaller switches. When high-speed switching becomes possible, signals can be time-multiplexed and switched independently, as in the current electronic exchange. Furthermore, when used as a semiconductor amplifier gate (SOAG), it becomes an optical gate element in which the amount of light can be controlled by the injected current. This semiconductor amplifier gate is capable of high-speed switching, has an amplification gain, and has a high on-Z-off ratio.
液晶を用いたゲートスィッチでは、光の偏光面を液晶でコントロールして光を透 過 遮断する。又は長の異なる光を多重して、波長ごとに切替を行う高周波分割 多重スイッチングも実験的には可能になってきている。  In a gate switch using liquid crystal, the polarization plane of light is controlled by liquid crystal to block light from passing through. Alternatively, high-frequency division multiplexing, which multiplexes light of different lengths and switches for each wavelength, has also become experimentally possible.
液晶は、流体であるにも関わらず、固体と略同様、分子が一定の規則にしたがつ て、ほぼ揃っている性質がある。液晶分子の形は細長いことから、分子の長尺、短 尺方向で光の感じる屈折率が異なり、一般に強い光学異方性を示す。また、液晶 分子の配列は外部から電界を加えることで変化する。印加電圧によって特定の方 向の光を透過又は反射する制御ができる。この性質を利用することで光スィッチン グディバイスを構成できる。 - 屈折率変化を利用する光スィッチの他に、光の透過率を制御出来る光ゲート素 子を用レヽても光スィッチを構成できる。  Despite being a fluid, liquid crystals have the property that molecules are almost aligned according to a certain rule, similar to solids. Since the shape of liquid crystal molecules is long and thin, the refractive index that light perceives in the long and short directions of the molecules is different, and the liquid crystal molecules generally show strong optical anisotropy. The arrangement of liquid crystal molecules changes when an electric field is applied from the outside. Control of transmitting or reflecting light in a specific direction can be performed by the applied voltage. An optical switching device can be constructed by utilizing this property. -In addition to an optical switch that uses a change in refractive index, an optical switch can be configured by using an optical gate element that can control light transmittance.
一般的なゲートスィッチにおいて、 1X2スィッチは、 1個の光分岐回路と、 2個の 光ゲート及び 1個の光合流回路で構成されている。  In a general gate switch, a 1X2 switch is composed of one optical branching circuit, two optical gates, and one optical merging circuit.
2X2スィッチは、 2個の光分岐回路、 4個の光ゲート及び 2個の光合流回路で構 成されている。光ゲートは光をオン'オフするシャツタとして動作し、光のスイッチング を行う。この構成は、分岐接続が可能な点に特徴がある。  The 2X2 switch is composed of two optical branch circuits, four optical gates, and two optical convergence circuits. The optical gate operates as a shutter that turns light on and off, and performs light switching. This configuration is characterized in that branch connection is possible.
光ゲートは、石英ガラス導波路を用いたゲート、半導体を用いたゲート、液晶を 用レ、たゲート等各種が適用可能である。  As the optical gate, various gates such as a gate using a silica glass waveguide, a gate using a semiconductor, a liquid crystal gate, and the like can be applied.
ここで、本発明の光結合器を用いて上記したゲートスィッチを構成した 2X2スイツ チ例を説明する。  Here, an example of a 2 × 2 switch using the optical coupler of the present invention to configure the above-described gate switch will be described.
光結合器 30を用いた 2X2スィッチは、第 12図に示すように、 4個の光結合器 5a、 5b、 5c、 5dと、 4個の光ゲート素子 30a、 30b、 30c、 30dで構成されてレヽる。フアイ バから伝搬された入力光 Aは、光結合器 5a内で全反射された光が 2つの出射口か ら出射されることにより分岐されて光ゲート素子 30a、 30bに至る。そのとき制御装 置(図示せず)は光を通過させるゲート 30bを開き、他方のゲート 30aを閉じるように 制御を行う。開いているゲート 30bを通過した光は出力光として光結合器 5dに集合 されて出力光 Yとして出力される。このようにして光は、分岐された後、オン'オフ制 御されたゲートにより所望の光路に導かれる。すなわち所定の制御に従ったオン · オフの動作を行う光スィッチの機能が遂行される。 As shown in FIG. 12, the 2X2 switch using the optical coupler 30 is composed of four optical couplers 5a, 5b, 5c, 5d and four optical gate elements 30a, 30b, 30c, 30d. Reply Huay The input light A propagated from the bar is branched by the light totally reflected in the optical coupler 5a being emitted from the two emission ports, and reaches the optical gate elements 30a and 30b. At that time, a control device (not shown) controls to open the gate 30b through which light passes and close the other gate 30a. The light that has passed through the open gate 30b is collected as output light in the optical coupler 5d and output as output light Y. After the light is branched in this way, the light is guided to a desired optical path by the gate controlled on and off. That is, the function of the optical switch that performs the ON / OFF operation according to the predetermined control is performed.
いずれの光ゲートも、制御装置により印加電圧等によるオン'オフのコントロール が可能であり、稼働する部品はない。したがって、高速で安定したスイッチングが行 われる。光分岐及び集合も光結合器 30を配設するだけの簡単な構造である。  All optical gates can be controlled on / off by the applied voltage by the control device, and there are no components to operate. Therefore, high-speed and stable switching is performed. The optical branching and aggregation are also simple structures in which the optical coupler 30 is provided.
さらに、上記したスィッチのゲート数を増やし適正な配置とすることで 4X4、 8X8 など入出力数を増加させマトリックススィッチを構成できる。  Furthermore, by increasing the number of gates of the above-mentioned switches and arranging them appropriately, the number of inputs / outputs such as 4X4 and 8X8 can be increased to form a matrix switch.
さらに又、光集合分岐器 5の波長分割多重型光スイッチングへの適用例を説明 する。上記に説明した空間分割型光スイッチングにおける NxNマトリックススィッチ では、スィッチ規模を大きくすると、単位スィッチである 2X2スィッチの数が Nの 2乗 に比例して増大し、大規模化が困難である。更に、各単位スィッチでの損失、スト口 ーク等が累積されて、 NxNスィッチとして特性の良いスィッチを実現するのはそれ ほど容易なことではない。  Further, an application example of the optical coupler / splitter 5 to wavelength division multiplexing type optical switching will be described. In the NxN matrix switch in the space division type optical switching described above, when the size of the switch is increased, the number of 2X2 switches, which are unit switches, increases in proportion to the square of N, and it is difficult to increase the scale. Furthermore, it is not so easy to realize a switch with good characteristics as an NxN switch by accumulating the loss, the talk, etc. in each unit switch.
一方、光のキャリア周波数は、波長 1. 55 / mで約 193THzである。これは、変 調によるサイドバンドの有効帯域が 1 93THZであるということを示しており、その結 果、 lOOTbitZs程度の情報を一つのレーザから出力される光で運ぶことができる ことを意味してレ、る。以上のような光の広帯域性をフルに利用することで、空間分割 型光スイッチングにおいて生じた問題をクリアできる。すなわち、 NxNスイッチングに おいては、 N種の波長を利用しそれらの多重/分離技術を用いれば、内部衝突が 生じなレ、波長を、ルーチング情報として用レ、ること力 Sできる。 On the other hand, the carrier frequency of light is about 193 THz at a wavelength of 1.55 / m. This is the effective bandwidth of the sidebands by modulation has shown that a 1 93TH Z, means that can be carried in light output As a result, information about lOOTbitZs from one laser Te, ru. By making full use of the broadband characteristics of light as described above, the problems arising in space division optical switching can be cleared. That is, in NxN switching, if N types of wavelengths are used and their multiplexing / demultiplexing techniques are used, it is possible to use the wavelengths that do not cause internal collisions and use the wavelengths as routing information.
波長多重スイッチングは、空間的に分離された複数の入力呼を波長分割ハイゥ エイに多重する。あるいはその逆の動作をするスイッチングである。ここで光結合器 5を代表的な 2つの方式に適用する例について説明する。  Wavelength division multiplexing multiplexes a plurality of spatially separated incoming calls into a wavelength division highway. Alternatively, the switching is the reverse operation. Here, an example in which the optical coupler 5 is applied to two typical methods will be described.
a)まず分配選択型スイッチングネットワークに基づいた波長多重方光スィッチン グである。 a) Wavelength multiplexing optical switching based on distribution-selective switching network It is.
ΝχΝ空間分割型スイッチングの機能を、波長多重技術を用いて実現するァーキ テクチヤとして分配選択型スイッチングがある。第 13図は、分配選択型スィッチの基 本構成を示す。入力する電気信号は各入力ポート(1一 Ν)において、入力毎に決 まった波長(え で発信する半導体レーザ(固定波長レーザ) 35を用いて光信号 に変換される。各ポート( 乃至 fN)からの光信号は、光ファイバ 1を介して光結合器 5に伝搬される。伝搬された光は、光結合器 5により集合され、 ^_Nの光信号が波 長多重された状態で光ファイバ 1を介して各出力ポート(1乃至 N)へ送られる。各出 力ポートには可変波長フィルタ 55が設置されている。可変波長フィルタ 36は、所定 の波長帯域の光を透過又は反射させ、他の波長帯域の光を反射又は透過させるよ うにして、所定の波長帯域の光を選択する機能を持つ。例えば、青色の波長(約 47 Onm)帯域の光のみを透過し、その他の波長帯域の光を反射する。可変波長フィ ルタ 36は、ルーチング情報に従って希望の光信号(波長)を選択する。以上の動作 により、 ΝχΝのスイッチングが可能となる。本スィッチのアーキテクチャは、固定波長 発信器と可変長受信機を用いているため固定送信、可変受信(FT— TR)型ネット ワークとも呼ばれている。 (4) Distribution-selective switching is an architecture that implements the function of space-division switching using wavelength division multiplexing technology. FIG. 13 shows the basic configuration of a distribution selection switch. The input electric signal is converted into an optical signal at each input port (110) by using a semiconductor laser (fixed wavelength laser) 35 for each input (a fixed wavelength laser). light signals from) via the optical fiber 1 is propagated to the optical coupler 5. propagated light is set by the optical coupler 5, with the optical signal of ^ _ N is wavelength multiplexed The light is sent to each output port (1 to N) via the optical fiber 1. Each output port is provided with a variable wavelength filter 55. The variable wavelength filter 36 transmits or reflects light in a predetermined wavelength band. It has a function to select light in a predetermined wavelength band by reflecting or transmitting light in other wavelength bands, such as transmitting only light in the blue wavelength band (about 47 Onm), The variable wavelength filter 36 reflects the routing information. According to the above, the desired optical signal (wavelength) is selected.The above operation enables the switching of 。.The architecture of this switch uses fixed wavelength transmitter and variable length receiver, so fixed transmission and variable reception It is also called (FT-TR) type network.
b)つぎに、波長ル一チング型スイッチングネットヮークに基づいた波長多重型光 スイッチングにおける適用例を説明する。  b) Next, an example of application to wavelength multiplexing type optical switching based on a wavelength routing type switching network will be described.
分配選択型スィッチと同様、波長多重技術を用いた NxN空間分割型光スィッチ ングの機能を実現するアーキテクチャとして、波長ルーチング型スィッチがある。第 14図は、波長ルーチング型スィッチの基本構成の概略図を示す。各ポート (fi乃至 fN)からの光信号は、光ファイバ 1を介して光結合器 5に伝搬される。 As with the distribution-selective switch, there is a wavelength-routing switch as an architecture that realizes the function of NxN space division optical switching using wavelength multiplexing technology. FIG. 14 shows a schematic diagram of the basic configuration of a wavelength routing switch. An optical signal from each port (fi to f N ) is propagated to the optical coupler 5 via the optical fiber 1.
伝搬された光は、光結合器 5により集合され、 え ,_Nの光信号が波長多重された 状態で各受信ポート( 乃至 fN)へ送られる。本アーキテクチャにおいては、各受信 ポートに各々固有の波長フィルタ(固定波長フィルタ) 38が設置されており、各送信 ポートの可変波長レーザ 37により目的出力ポートの波長で光信号を送信すること により NxNスイッチングが実現されたものである。本スィッチアーキテクチャは、可変 波長送信器と固定波長受信器を用いているため、 TT— FR (可変送信、固定受 信)型ネットワークとも呼ばれている。 以上詳しく説明したように、本発明の光結合器は、球体の外周内面において光 を全反射させるための反射部材が付された中空又は透明体が充填された球体と、 前記球体の表面に設けられ、その中心線が前記球体の中心を通るように形成され た複数の開口部と、前記開口部において設けられた光ファイバ接続手段とを有し、 前記光ファイバ接続手段に接続された光ファイバの光軸中心線が前記球体の中心 を通り、前記複数の開口部の任意の一又は複数を光入射口としその他の一又は複 数の開口部を光出射口とした。 Propagated light is set by the optical coupler 5, example is sent in a state in which optical signals _ N is wavelength-multiplexed to each reception port (through f N). In this architecture, a unique wavelength filter (fixed wavelength filter) 38 is installed at each receiving port, and NxN switching is performed by transmitting an optical signal at the wavelength of the target output port by the tunable laser 37 at each transmitting port. Is realized. Since this switch architecture uses a variable wavelength transmitter and a fixed wavelength receiver, it is also called a TT-FR (variable transmission, fixed reception) type network. As described in detail above, the optical coupler of the present invention includes a sphere filled with a hollow or transparent body provided with a reflecting member for totally reflecting light on the outer peripheral inner surface of the sphere, and provided on the surface of the sphere. A plurality of openings formed so that the center line passes through the center of the sphere, and optical fiber connecting means provided in the opening, and an optical fiber connected to the optical fiber connecting means. An optical axis center line passes through the center of the sphere, and one or more of the plurality of openings are light entrances, and the other one or a plurality of openings are light exits.
これにより、光接続、光分岐又は光集合のための光結合器は、光線が球体内を 複数回反射し出射口から出射する簡単な構成であり、光接続、光分岐、及び光集 合を一つの光結合器で実現でき、球体表面の複数の開口部において設けられた 複数個の何れの光ファイバ接続手段を光入射口又は出射口とし、光入射口と光出 射口を数多く設けることを可能とし、さらには、光ファイバを相互に結合したり、 1本 の光ファイバによって伝搬されてきた光線を接続するだけで所要の本数の光フアイ バに分岐したり、複数の光ファイバによって伝送されてきた複数の光線を接続する だけで 1本又は複数本の光ファイバに集合させることが可能な、光結合、光分岐又 は光集合のための極めて汎用性の高い光結合器を実現したのである。 産業上の利用分野  Accordingly, the optical coupler for optical connection, optical branching, or optical aggregation has a simple configuration in which light rays are reflected multiple times in the sphere and emitted from the emission port, and optical coupling, optical branching, and optical aggregation are performed. A single optical coupler can be realized, and any of a plurality of optical fiber connection means provided at a plurality of openings on the surface of the sphere can be used as a light input port or a light output port, and a number of light input ports and light output ports can be provided In addition, optical fibers can be coupled to each other, split into the required number of optical fibers simply by connecting the light beams propagated by one optical fiber, or transmitted by multiple optical fibers. An extremely versatile optical coupler for optical coupling, optical branching, or optical aggregation that can be assembled into one or more optical fibers simply by connecting multiple light beams It is. Industrial applications
本発明は、光ファイバによって導かれたレーザ光線等の光を接続、分岐又は集 合するための光結合器に関し、光通信分野における産業上の利用性を有する。  The present invention relates to an optical coupler for connecting, branching, or collecting light such as a laser beam guided by an optical fiber, and has industrial application in the field of optical communication.

Claims

請 求 の 範 囲 The scope of the claims
1. 球体の外周内面において光を全反射させるための反射部材が付された中空 又は透明体が充填された球体と、 1. a sphere filled with a hollow or transparent body provided with a reflecting member for totally reflecting light on the inner peripheral surface of the sphere;
前記球体の表面に設けられ、その中心線が前記球体の中心を通るように形成さ れた複数の開口部と、  A plurality of openings provided on the surface of the sphere and having a center line passing through the center of the sphere;
前記開口部において設けられた光ファイバ接続手段と、を有し、  Optical fiber connection means provided in the opening,
前記光ファイバ接続手段に接続された多モード光ファイバの光軸中心線が前記 球体の中心を通り、前記複数の開口部の任意の一又は複数を光入射口としその他 の一又は複数の開口部を光出射口とした、ことを特徴とする光接続、光分岐又は 光集合のための光結合器。  The optical axis center line of the multimode optical fiber connected to the optical fiber connecting means passes through the center of the sphere, and any one or more of the plurality of openings is used as a light entrance and the other one or more openings An optical coupler for optical connection, optical branching, or optical assembly, characterized by having a light exit port.
2. 球体の外周内面において光を全反射させるための反射部材が付された中空 又は透明体が充填された複数個の球体と、  2. a plurality of spheres filled with a hollow or transparent body provided with a reflecting member for totally reflecting light on the inner peripheral surface of the sphere;
夫々の前記球体の表面に設けられ、その中心線が前記球体の中心を通るように 形成された複数の開口部と、  A plurality of openings provided on the surface of each of the spheres, the center lines of which are formed so as to pass through the center of the sphere;
前記開口部に設けられた光ファイバ接続手段と、を有し、  Optical fiber connection means provided in the opening,
前記複数個の球体が前記開口部の一つを介して結合され、前記光ファイバ接続 手段に接続された多モード光ファイバの光軸中心線が接続された球体の中心を通 り、前記複数の球体における何れか一つの複数の開口部の任意の一又は複数を 光入射口としその他の一又は複数の開口部を光出射口とした、ことを特徴とする光 接続、光分岐又は光集合のための光結合器。  The plurality of spheres are coupled through one of the openings, and the optical axis center line of the multimode optical fiber connected to the optical fiber connection means passes through the center of the sphere connected to the plurality of spheres. An optical connection, an optical branching or an optical assembly, characterized in that any one or more of any one of the plurality of openings in the sphere is a light entrance and the other one or more openings are a light exit. For optical coupler.
3. 前記複数の球体は、それぞれの前記開口部の一つにおいて相互に密着する ことにより直接的に連結されたことを特徴とする請求項 2に記載の光結合器。  3. The optical coupler according to claim 2, wherein the plurality of spheres are directly connected to each other by being in close contact with each other at one of the openings.
4. 前記複数の球体は、それぞれの前記光ファイバ接続手段に接続された光ファ ィバを介して房状に連結されたことを特徴とする請求項 2に記載の光結合器。  4. The optical coupler according to claim 2, wherein the plurality of spheres are connected in a tuft shape via optical fibers connected to the respective optical fiber connecting means.
5. 球体の外周内面において光を全反射させるための反射部材が付され、その内 部には前記球体の中心と異なる位置を中心にして外周に向かって徐々にその屈折 率を変化させた透明体が充填された球体と、  5. A reflective member for totally reflecting light is attached to the inner surface of the outer periphery of the sphere, and the inside of the sphere has a refractive index gradually changed toward the outer periphery at a position different from the center of the sphere. A sphere filled with a body,
前記球体の表面に設けられ、その中心線が前記球体の中心を通るように形成さ れた複数の開口部と、 The sphere is provided on the surface thereof, and has a center line formed so as to pass through the center of the sphere. Multiple openings,
前記開口部にぉレ、て設けられた光ファイバ接続手段と、を有し、  An optical fiber connection means provided in the opening,
前記複数の開口部の任意の一又は複数を光入射口としその他の一又は複数の 開口部を光出射口とした、ことを特徴とする光接続、光分岐又は光集合のための光 Light for optical connection, light branching, or light aggregation, wherein any one or more of the plurality of openings are light entrances and the other one or more openings are light exits.
/ΤΠ口 / ΤΠ 口
6. 球体の外周内面において光を全反射させるための反射部材が付され、その内 部には前記球体の中心と異なる位置を中心にして外周に向かって徐々にその屈折 率を変化させた透明体が充填された球体と、  6. A reflective member for totally reflecting light is attached to the inner surface of the outer periphery of the sphere, and the inside of the sphere is transparent with its refractive index gradually changed toward the outer periphery at a position different from the center of the sphere. A sphere filled with a body,
夫々の前記球体の表面に設けられ、その中心線が前記球体の中心を通るように 形成された複数の開口部と、  A plurality of openings provided on the surface of each of the spheres, the center lines of which are formed so as to pass through the center of the sphere;
前記開口部に設けられた光ファイバ接続手段と、を有し、  Optical fiber connection means provided in the opening,
前記複数個の球体が前記開口部の一^ 3を介して結合され、前記複数の球体に おける何れか一つの複数の開口部の任意の一又は複数を光入射口としその他の 一又は複数の開口部を光出射口とした、ことを特徴とする光接続、光分岐又は光 集合のための光結合器。  The plurality of spheres are coupled through one third of the openings, and any one or more of any one of the plurality of openings in the plurality of spheres is used as a light entrance and the other one or more An optical coupler for optical connection, optical branching, or light aggregation, wherein an opening is a light exit.
7. 前記透明体の屈折率は、その中心部から外周に向かって徐々に大きくなるよう に設定されたことを特徴とする請求項 5又は 6に記載の光接続、光分岐又は光集合 のための光結合器。  7. The optical connection, optical branching or optical assembly according to claim 5, wherein the refractive index of the transparent body is set so as to gradually increase from the center to the outer periphery. Optical coupler.
8. 前記透明体の屈折率は、その中心部から外周に向力 て徐々に小さくなるよう に設定されたことを特徴とする請求項 5又は 6に記載の光接続、光分岐又は光集合 のための光結合器。  8. The optical connection, optical branching or optical assembly according to claim 5, wherein the refractive index of the transparent body is set so as to gradually decrease from its center toward the outer periphery. For optical coupler.
9. 前記複数の球体は、それぞれの前記開口部の一つにおいて相互に密着する ことにより直接的に連結されたことを特徴とする請求項 6に記載の光結合器。  9. The optical coupler according to claim 6, wherein the plurality of spheres are directly connected to each other by being in close contact with each other at one of the openings.
10. 前記複数の球体は、それぞれの前記光ファイバ接続手段に接続された光フ アイバを介して房状に連結されたことを特徴とする請求項 6に記載の光結合器。 10. The optical coupler according to claim 6, wherein the plurality of spheres are connected in a tuft via optical fibers connected to the respective optical fiber connecting means.
11. 球体の外周内面において光を全反射させるための反射部材が付された中空 又は透明体が充填された球体と、 11. a sphere filled with a hollow or transparent body provided with a reflecting member for totally reflecting light on the inner peripheral surface of the sphere;
前記球体の表面に設けられ、その中心線が前記球体の中心を通るように形成さ れた複数の開口部と、 前記球体の外周に沿って対向する位置に設けられ、入射した光を屈折させるよう に配置された磁気発生手段と、 A plurality of openings provided on the surface of the sphere and having a center line passing through the center of the sphere; Magnetism generating means provided at a position facing the outer periphery of the sphere and arranged to refract incident light;
前記開口部において設けられた光ファイバ接続手段と、を有し、  Optical fiber connection means provided in the opening,
前記複数の開口部の任意の一又は複数を光入射口としその他の一又は複数の 開口部を光出射口とした、ことを特徴とする光接続、光分岐又は光集合のための光  Light for optical connection, light branching, or light aggregation, wherein any one or more of the plurality of openings are light entrances and the other one or more openings are light exits.
12. 球体の外周内面において光を全反射させるための反射部材が付された中空 又は透明体が充填された球体と、 12. A sphere filled with a hollow or transparent body provided with a reflecting member for totally reflecting light on the inner peripheral surface of the sphere;
前記球体の表面に設けられ、その中心線が前記球体の中心を通るように形成さ れた複数の開口部と、  A plurality of openings provided on the surface of the sphere and having a center line passing through the center of the sphere;
前記球体の外周に沿って対向する位置に設けられ、入射した光を屈折させるよう に配置された磁気発生手段と、  Magnetism generating means provided at a position facing the outer periphery of the sphere and arranged to refract incident light;
前記開口部において設けられた光ファイバ接続手段と、を有し、  Optical fiber connection means provided in the opening,
前記複数個の球体が前記開口部の一つを介して結合され、前記複数の球体に おける何れか一つの複数の開口部の任意の一又は複数を光入射口としその他の 一又は複数の開口部を光出射口とした、ことを特徴とする光接続、光分岐又は光 集合のための光結合器。  The plurality of spheres are coupled via one of the openings, and any one or more of any one of the plurality of openings in the plurality of spheres is used as a light entrance and the other one or more openings An optical coupler for optical connection, optical branching, or optical aggregation, wherein the optical coupler is a light exit port.
13. 前記複数の球体は、それぞれの前記開口部の一つにおいて相互に密着す ることにより直接的に連結されたことを特徴とする請求項 12に記載の光結合器。 13. The optical coupler according to claim 12, wherein the plurality of spheres are directly connected to each other by being in close contact with each other at one of the openings.
14. 前記複数の球体は、それぞれの前記光ファイバ接続手段に接続された光フ アイバを介して房状に連結されたことを特徴とする請求項 12に記載の光結合器。14. The optical coupler according to claim 12, wherein the plurality of spheres are connected in a tuft via optical fibers connected to the respective optical fiber connecting means.
15. 前記透明体の材質は、無機材料酸化ガラス、高純度ガラス、プラスチック等 の透光性物質で形成されたことを特徴とする請求項 1、 2、 5、 6、 1 1、又は 12の何 れか一項に記載の光分岐集合器。 15. The material according to claim 1, 2, 5, 6, 6, 11, or 12, wherein the material of the transparent body is formed of a translucent substance such as an inorganic material oxide glass, high-purity glass, and plastic. An optical splitter / aggregator according to any one of the preceding claims.
16. 前記入射口及び前記出射口は、前記反射部材の 1部を円形に削除して形 成されたことを特徴とする請求項 1、 2、 5、 6、 11又は 12の何れか一項に記載の光 分岐集合器。  16. The input port and the output port are formed by removing a part of the reflection member in a circular shape, and are formed as described in any one of claims 1, 2, 5, 6, 11, and 12. 2. The optical branching and collecting device according to 1.
17. 前記反射部材は、前記透明球の表面にスパッタ'コーティング又は真空蒸着 により付着されたことを特徴とする請求項 1、 2、 5、 6、 1 1又は 12の何れか一項に記 載の光分岐集合器。 17. The method according to claim 1, wherein the reflective member is attached to the surface of the transparent sphere by sputter coating or vacuum deposition. The optical splitter on board.
18. 前記反射部材は、単一層の金属、又は、異種金属を 2層又は 3層に重積付 着させた光不透過性の材料で形成されたことを特徴とする請求項 1、 2、 5、 6、 1 1 又は 12の何れか一項に記載の光分岐集合器。  18. The method according to claim 1, wherein the reflection member is formed of a light-impermeable material in which a single-layer metal or a dissimilar metal is stacked on two or three layers. 13. The optical branching / aggregating device according to any one of 5, 6, 11, and 12.
19. 前記球体の表面に設けられた一の開口部を光入射口とし、前記球体の表面 に帯状に設けられた他の複数の開口部を光出射口とすることを特徴とする請求項 1 6に記載の光分岐集合器。  19. The method according to claim 1, wherein one opening provided on the surface of the sphere is a light entrance, and another plurality of openings provided in a strip shape on the surface of the sphere is a light exit. 7. The optical branching and assembling device according to 6.
20. 前記球体の表面に設けられた一の開口部を光出射口とし、前記球体の表面 に帯状に設けられた他の複数の開口部を光入射口とすることを特徴とする請求項 1 6記載の光結合器。  20. The method according to claim 1, wherein one opening provided on the surface of the sphere is a light emitting port, and another plurality of openings provided in a strip shape on the surface of the sphere is a light incident port. 6. The optical coupler according to 6.
21. 前記球体が、各々の前記開口部が相互に密着した状態で 2個又は 3個連結 されたことを特徴とする請求項 3、 9又は 13に記載の光結合器。  21. The optical coupler according to claim 3, 9 or 13, wherein two or three of the spheres are connected in a state where the openings are in close contact with each other.
22. 前記連結された一の球体における一の開口部を光入射口とし、他の全ての 開口部を光出射口としたことを特徴とする請求項 19記載の光結合器。  22. The optical coupler according to claim 19, wherein one opening of the one connected sphere is a light entrance, and all other openings are light exits.
23. 前記連結された一の球体における一の開口部を光出射口とし、他の全ての 開口部を光入射口としたことを特徴とする請求項 19記載の光結合器。  23. The optical coupler according to claim 19, wherein one opening of the one connected sphere is a light exit, and all other openings are light entrances.
PCT/JP2003/001469 2002-02-13 2003-02-13 Optical coupler for optical connecting, optical branching or optical collecting WO2003069387A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003211944A AU2003211944A1 (en) 2002-02-13 2003-02-13 Optical coupler for optical connecting, optical branching or optical collecting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002034895A JP3833122B2 (en) 2002-02-13 2002-02-13 Optical coupler for optical connection, optical branching or optical assembly
JP2002-34895 2002-02-13

Publications (1)

Publication Number Publication Date
WO2003069387A1 true WO2003069387A1 (en) 2003-08-21

Family

ID=27678039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001469 WO2003069387A1 (en) 2002-02-13 2003-02-13 Optical coupler for optical connecting, optical branching or optical collecting

Country Status (3)

Country Link
JP (1) JP3833122B2 (en)
AU (1) AU2003211944A1 (en)
WO (1) WO2003069387A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101536074B1 (en) * 2014-04-30 2015-07-13 성균관대학교산학협력단 Optical Fiber Position Sensor Having Optical Sphere and Position Sensing System Using The Sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184923A (en) * 1982-04-23 1983-10-28 Stanley Electric Co Ltd Optical distributor
JPH02226204A (en) * 1989-02-28 1990-09-07 Tsukasa Nagao Optical circuit formed by using thin film of optical magnetic material
JPH0562733A (en) * 1991-08-30 1993-03-12 Kel Corp Plug connector and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184923A (en) * 1982-04-23 1983-10-28 Stanley Electric Co Ltd Optical distributor
JPH02226204A (en) * 1989-02-28 1990-09-07 Tsukasa Nagao Optical circuit formed by using thin film of optical magnetic material
JPH0562733A (en) * 1991-08-30 1993-03-12 Kel Corp Plug connector and its manufacture

Also Published As

Publication number Publication date
JP2003232954A (en) 2003-08-22
AU2003211944A1 (en) 2003-09-04
JP3833122B2 (en) 2006-10-11

Similar Documents

Publication Publication Date Title
US5943454A (en) Freespace optical bypass-exchange switch
EP0429216B1 (en) Hybrid optical isolator, circulator or switch, and systems utilizing same
US7031574B2 (en) Plug-in module for providing bi-directional data transmission
US6546163B2 (en) Planar waveguide switch and optical cross-connect
JPS59808B2 (en) Improved liquid crystal matrix
WO2020119009A1 (en) Optical phased array-based silicon-based integrated optically adjustable delay line
US4702557A (en) Optical branching device using a liquid crystal
WO1990014606A1 (en) Optical switches using cholesteric or chiral nematic liquid crystals
US8094979B2 (en) Polarization-based optical switching
US20040086214A1 (en) Optical circulator for bi-directional communication
CA2327588C (en) Reflection based nonmoving part optical switch
CN105182473B (en) A kind of wavelength selective optical disabler
US20020118411A1 (en) Full-duplex optical add/drop communications system utilizing central light sources
JP3833122B2 (en) Optical coupler for optical connection, optical branching or optical assembly
US7224860B2 (en) Multi-port optical switches
JP7452886B2 (en) Micro Magneto Optical Fiber Optic Switch
US7062120B2 (en) Optical device and movable reflector
CN1437037A (en) Antipolarization correlation loss light beam exchange
US6879746B2 (en) Miniature 2×2 magneto-optic switch
CN210488175U (en) Miniature magneto-optical fiber switch
US7263250B1 (en) Optical switch using polarization beam splitters
US7209607B2 (en) Optical space-switching matrix
CN104422989A (en) Optical assembly, optical isolator assembly and light emitting system
RU2343517C2 (en) Polarisation-independent acoustooptical fibre-optic commutator
Soref Fiber-Optic Switching With Liquid Crystals

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN ID IL IN KR MX NO NZ PH RU SG US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase