WO2003069315A1 - Method of estimating biomass of forests and trees by remote sensing high-resolution data - Google Patents

Method of estimating biomass of forests and trees by remote sensing high-resolution data Download PDF

Info

Publication number
WO2003069315A1
WO2003069315A1 PCT/JP2003/001460 JP0301460W WO03069315A1 WO 2003069315 A1 WO2003069315 A1 WO 2003069315A1 JP 0301460 W JP0301460 W JP 0301460W WO 03069315 A1 WO03069315 A1 WO 03069315A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomass
trees
tree
crown
forests
Prior art date
Application number
PCT/JP2003/001460
Other languages
French (fr)
Japanese (ja)
Inventor
Jiro Suekuni
Makoto Nogami
Katsushi Hatayama
Original Assignee
Kansai Environmental Engineering Center Co., Ltd.
The Kansai Electric Power Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Environmental Engineering Center Co., Ltd., The Kansai Electric Power Co., Inc. filed Critical Kansai Environmental Engineering Center Co., Ltd.
Priority to JP2003568386A priority Critical patent/JP4219819B2/en
Priority to AU2003211938A priority patent/AU2003211938B2/en
Publication of WO2003069315A1 publication Critical patent/WO2003069315A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/188Vegetation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Definitions

  • Biomass estimation method for forests and trees by remote sensing high-resolution data technology Field of the Invention
  • the present invention relates to a method for estimating biomass of forests and trees by remote sensing high-resolution data processing.
  • Background Technology Various adverse effects due to global warming are regarded as problems on a global scale. On the other hand, it is said that the assimilation of carbon dioxide by forests and trees also has the effect of preventing global warming.
  • biomass is estimated from forests' trees, but the biomass in forests.trees depends on the type of forest and trees, canopy size (area, major axis, minor axis) and their spectral characteristics.
  • problems to be Solved by the Invention Therefore, remote sensing using satellite photographs and aerial photographs has been implemented to measure the species of forests and trees, the crown size (area, major axis, minor axis) and spectral characteristics. I have.
  • Fig. 7 (a) in general, trees grow from the seedling stage, like saplings, young trees, and mature trees, and as shown in Fig. 7 (b).
  • P is a pixel
  • J is a canopy
  • E soil and other parts other than the canopy. Therefore, in forests and trees where the canopy is closed, as shown in C and D in Fig. 7 (c), the conventional remote sensing method can be used, as shown in Fig. 7 (c).
  • the crown J is small and not closed, so the soil and other non-canopy parts E existing between crown J and crown J, that is, It is difficult to distinguish from the ground, roads, trees of other species, vegetation, etc., and trees of tree types other than the planted specific trees, and the ground, roads, vegetation, etc., become noise. Canopy size (area, major axis, minor axis) and its spectral properties could not be measured. In addition, depending on the species, even for mature trees, the crown is not blocked. For example, in the case of planting eucalyptus trees in Australia, the canopy often does not close even when the tree matures.
  • the forest-tree biomass estimation method according to claim 1 of the present invention by remote sensing high-resolution data processing includes: The method is characterized in that the biomass of a specific tree is estimated from the size and spectral characteristics of the crown occupying the predetermined area by taking an image and masking a portion other than the crown portion of the specific tree within the predetermined area based on the photograph. .
  • the term “high-resolution data” is obtained by analyzing high-resolution photos by high-resolution satellites or by analyzing ultra-high-resolution photos by airplanes or wireless Helicopters. Data.
  • the term “canopy size” includes the area, major axis, and minor axis of the canopy part, and is hereinafter referred to as canopy size (area, major axis, minor axis). However, it is not always necessary to include all of the area, the major axis and the minor axis, and only the area may be included. By measuring the major axis and the minor axis, it is possible to estimate the biomass with higher accuracy.
  • the above-mentioned “masking other than the crown portion of the specific tree within the predetermined area” means that the portion other than the specific tree planted within the predetermined area (in the image in the photograph), that is, This refers to erasing trees, ground and roads, vegetation and agricultural products, etc., other than the specified tree species as image data, and cutting out the crown of the specified tree species along the edge of the crown on a photo taken on a computer. The other part says to erase the data on your computer.
  • the work of erasing the part other than the canopy part at the time of the combi-up is to cut out the crown of a specific tree species in the picture image on the monitor while looking at the photograph actually taken by the worker, and erase the other parts
  • the spectral characteristics or the like corresponding to a specific tree species may be grasped in advance, and the other spectral characteristics may be automatically deleted by the combination process.
  • the masking operation requires a relatively long time, but since it is possible to cut out the tree while checking the specific tree species in the actually photographed image, there is an advantage that the crown of the specific tree species can be cut out with high accuracy.
  • the biomass estimation method for forests and trees as described above, if the canopy is not obstructed, that is, within a specific area in the field, in other words, in the image on the photo,
  • the canopy size (area, long diameter, short diameter) of trees of a specific species even if there are different types of trees other than the specific species, as well as the ground, roads, vegetation and crops Diameter can be measured with high accuracy, and together with the measurement of the spectral characteristics of the canopy, the biomass of a particular tree species can be estimated with high accuracy.
  • the manager will decide whether the canopy size should be set annually according to the age of the plantation, or every specified age. (Area, major axis, minor axis) and / or changes in the spectral characteristics of the canopy, estimating the extent of biomass increase and annual biomass accumulation in the area, and reporting the results to investors. Can be. Investors can use the reported data to check the effects of planting their own trees on global warming, as well as forecasting the timing of logging and the expected selling price of timber at the time of logging.
  • the forest-tree biomass estimation method according to claim 2 of the present invention by remote sensing high-resolution data is characterized in that the photograph is a photograph taken in a specific wavelength band.
  • a photograph that emphasizes trees of a tree type that matches or approximates the spectral characteristics based on the spectral characteristics of a specific tree species This makes it possible to blur or easily mask other spectral characteristics, leaving only the crown of a specific tree species, which not only improves masking accuracy but also speeds up masking work. It can be implemented at low cost.
  • the forest-tree biomass estimation method using remote sensing high-resolution data according to claim 3 of the present invention is characterized in that the photograph includes a plurality of tree crowns in one pixel. .
  • the forest-tree biomass estimation method according to the remote sensing high-resolution data set forth in claim 4 of the present invention, wherein the photograph is an ultra-high-resolution photograph, and one canopy extends over a plurality of pixels. It is characterized by the following.
  • FIG. 1 is a schematic flow chart in a method for estimating biomass of a forest / tree using remote sensing high-resolution data according to an embodiment of the present invention.
  • FIG. 2 is a schematic explanatory diagram of each step in the forest / tree biomass estimation method using remote sensing high-resolution data according to the embodiment of the present invention.
  • Figures 3 (a) to 3 (c) illustrate the relationship between the crown and the pixel size.
  • Figure 3 (a) shows the pixel crown diagram when the crown ratio is 100%.
  • FIG. 3 (c) is a pixel crown diagram by a high-resolution photograph when the crown ratio is less than 100%.
  • Figures 4 (a) to 4 (d) show the relationship between various tree factors and biomass based on the local ground-based tree survey.
  • Figure 4 (a) shows the relationship between tree height and biomass.
  • Figure 4 (b) is a characteristic diagram showing the relationship between canopy thickness and biomass
  • Figure 4 (c) is a characteristic diagram showing the relationship between average crown ratio and biomass
  • Figure 4 (d) is the canopy area and biomass.
  • FIG. 4 is a characteristic diagram showing a relationship between
  • Figures 5 (a) to 5 (d) show the relationship between various tree factors and biomass based on the aerial image of the site.
  • Figure 5 (b) is a characteristic diagram showing the relationship between canopy area and biomass
  • Figure 5 (c) is a distribution diagram of the difference between the biomass estimation result using the average canopy diameter and the measured value from the field survey
  • 5 (d) is the distribution map of the difference between the biomass estimation result using the canopy area and the actual measurement value from the field survey.
  • FIG. 6 is a correlation estimation characteristic diagram of the evaluation index IR * G / R and biomass.
  • FIG. 7 (a) to 7 (c) show the growth stages of trees after planting
  • Figure 7 (a) is a side view of trees showing the growth stages of trees after planting
  • Figure 7 (b) is Tree crown diagram at the growth stage of trees after planting
  • Fig. 7 (c) is a pixel crown diagram showing the change in crown ratio with the growth stage of trees after planting.
  • FIG. 1 is an overall schematic flowchart according to a forest / tree biomass estimation method 10 according to the present invention.
  • Fig. 1 photographs of the forests and trees are taken from a high place using a Landsat satellite or a high-resolution satellite (IKONOS), or an aerial vehicle or a radio helicopter. It can take pictures with a resolution of 30 m on each side, and a high-resolution satellite (IKONOS) can take high-resolution pictures with a side of about 4 m. In the case of one, it is possible to take an ultra-high resolution photograph with a side of several cn!
  • IKONOS high-resolution satellite
  • the canopy size (area, major axis, minor axis) of a particular tree species obtained by masking is measured (14). In measuring the canopy size, only the area of the canopy may be measured, but by measuring the major and minor diameters of the canopy, more accurate analysis can be performed.
  • the spectral characteristics of the canopy of the specific tree species cut out as described above are measured (15). The measurement of the spectral characteristics is performed, for example, for each of R, G, B, and IR.
  • NVDI Normalized Difference Vegetation Index
  • This NVD I is one of the indexes of vitality in forest trees, called the “Normalized Difference Vegetation Index”.
  • the reference data and remote sensing data are used in the infrared (R) and near infrared (NIR) regions.
  • NDVI (NIR-R) / (NIR + R).
  • GEMI Global Environment Monitoring Index
  • rj which is an index that reduces the effects of soil background and atmospheric costs
  • V [2 (NIR 2 ⁇ R 2 ) +1.5 NIR + 0.5 R].
  • NI + R + 0.5 the biomass of the specific tree species is calculated from the above measurement results of the crown size (area, major axis, minor axis) and spectral characteristics (vegetation index) (16).
  • biomass refers to the dry weight of stems, branches and leaves. The larger the canopy size (area, major axis, minor axis), the larger the size and the more mature trees.
  • FIG. 2 is a schematic diagram of each step in the method for estimating the biomass of forests and trees using high-resolution remote sensing data according to the present invention. That is, FIG. 2A shows a situation when a high-resolution color infrared photograph (for example, a scale of 1 / 7,000) of the tree 21 is taken by the aircraft 20 or the like.
  • a high-resolution color infrared photograph for example, a scale of 1 / 7,000
  • (B) shows the capture of a photograph into a computer.
  • an analog photograph 22 taken by film is read by a scanner 23 and digitized (for example, 1,200 dpi).
  • Shows the case of taking in (C) is a pre-analysis process such as geometric correction that corrects image distortion caused by the inclination of the attitude of the aircraft during observation. is there.
  • (D) is the extraction of the crown information. For example, by blackening the part 26 other than the crown 25 of the specific tree on a computer, only the crown 25 of the specific tree remains as an image. Based on the crown information, the size (area, major axis, minor axis) of the crown and its spectral characteristics are measured.
  • (E) is a model formula creation process based on the canopy information obtained as described above and on-site data.
  • the horizontal axis is the vegetation index, and the vertical axis is the biomass.
  • the analysis results are output as shown in (f), and the biomass per area and the annual biomass accumulation can be found.
  • Figure 3 shows the difference in crown ratio depending on the size of the crown.
  • Figure 3 (a) shows the state of a mature forest in which the crown 25 is closed in the pixel 30. However, its spectral characteristics can be measured.
  • Fig. 3 (b) shows the number of pixels in a tree 3
  • biomass estimation formula was created from the biomass measurement values in the field survey and tree crown information based on aerial images.
  • biomass measurement value in the field survey refers to the value obtained by measuring the DBH (breast height diameter) of all target trees in the field and calculating the biomass individually from this value using the relative growth formula. .
  • FIG. 4 (a) to (d) show the relationship between biomass and the results of each tree survey by field survey.
  • Fig. 4 (a) is a characteristic diagram showing the relationship between tree height and biomass.
  • Figure 4 (b) is a characteristic diagram showing the relationship between canopy thickness and biomass.
  • Fig. 4 (c) is a characteristic diagram showing the relationship between the average crown diameter and biomass.The average crown diameter has a higher correlation with biomass than the tree height in Fig. 4 (a) (the crown thickness in Fig. 4 (b). You can see that.
  • Fig. 4 (d) is a characteristic diagram showing the relationship between canopy area and biomass, and it can be seen that there is also a high correlation. Analysis results based on aerial images
  • FIG. 4 is a characteristic diagram showing the relationship between the average crown diameter and biomass, and is in good agreement with the characteristic diagram of the average crown diameter and biomass in FIG.
  • Fig. 5 (b) is a characteristic diagram showing the relationship between canopy area and biomass, and also agrees well with the characteristic diagram of canopy area and biomass shown in Fig. 4 (d). Therefore, an equation for calculating biomass was created from the average canopy diameter and canopy area, which have a high correlation with biomass.
  • the accuracy of the biomass estimation formula was verified by comparing the biomass measurement value obtained from the field survey with the biomass obtained by the above estimation formula.
  • the verification was performed using trees different from the trees used in the estimation formula creation.
  • Total biomass in the test trees 1, 06 1.9 kg
  • the distribution of the difference between the biomass estimation result using the average canopy diameter and the actual measurement value from the field survey is shown in Figure 5 (c). It is concentrated on small parts and shows high correlation.
  • the distribution of the difference between the biomass estimation result using the canopy area and the actual measurement value from the field survey is concentrated on the part with a small error, as shown in Fig. 5 (d). ing.
  • the total biomass in the test tree was 1,061.9 kg
  • the biomass obtained from the estimation formula using the average crown diameter was 1,036.8 kg.
  • the estimation accuracy based on the average crown diameter is 97.6%.
  • the present invention captures a photograph of a forest or a tree from a high place, and masks a portion other than a crown portion of a specific tree within a predetermined area based on the photograph to obtain the above-described image.
  • the feature is to estimate the pyomas of a specific tree from the size (area, major axis, minor axis) and spectral characteristics of the canopy occupying a given area, so that the crown is not blocked shortly after planting. Or even mature trees, the crown will not be blocked

Abstract

A method of estimating the biomass of forests and trees by using remote-sensing high-resolution data from high places. The biomass of specific types of trees is estimated with high precision even in the cases of forests and trees where their crowns are not closed due to natural young growth shortly after being planted or young trees, or forests or trees where the crowns of even mature trees are not closed. High-resolution to ultra-high-resolution pictures are shot (11) using high-resolution satellites, air planes and radio helicopters, the pictures are captured into computers (12), portions other than specific types of trees are masked (13), the crown sizes (areas, longer diameters, shorter diameters) of specific types of trees left after the masking are measured (14), the spectral characteristics of the specific types of trees are measured (15), and the biomass of the specific types of trees is calculated from crown sizes (areas, longer diameters, shorter diameters) and spectral characteristics (16). Then, an annual biomass accumulated amount is calculated based on this calculated biomass amounts (17), and the result is printed out (18).

Description

明 細 書 リモートセンシング高解像度デ一夕による森林 ·樹木のバイオマス推定方法 技 術 分 野 本発明はリモートセンシング高解像度デ一夕による森林 ·樹木のバイオマス推 定方法に関し、 詳しくは稚樹ゃ若齢木のため樹冠が閉塞していない場合や、 成熟 木となっても樹冠が閉塞しないような場合における森林 ·樹木のバイオマスを推 定するのに好適なリモートセンシング高解像度デ一夕による森林■樹木のバイオ マス推定方法に関するものである。 背 景 技 術 地球温暖化による各種の弊害が全世界的な規模で問題視されている。 一方、 森 林 ·樹木による炭酸ガスの同化作用によって、 地球温暖化の防止効果も言われて いる。 そこで、 森林 ·樹木による炭酸ガス同化作用の算定の基礎となるバイオマスを 増加させるために、 植林事業の必要性が叫ばれ、 植林事業が盛んに行なわれてい る。 同時に、 森林 '樹木によるバイオマスの推定が行なわれているが、 森林 .樹 木におけるバイオマスは、 森林 ·樹木の種類、 樹冠サイズ (面積、 長径、 短径) およびその分光特性によって左右される。 発明が解決しょうとする課題 そこで、 森林 ·樹木の樹種や、 樹冠サイズ (面積、 長径、 短径) および分光特 性を測定するために、 衛星写真や航空写真を利用するリモートセンシングが実施 されている。 森林分野において、 これまでに実施されてきたランドサット衛皇データ解析は、 画素単位の解析、 すなわち、 RAND S AT/TMの場合では、 例えば、 3 0m 四方を一つのまとまりとして解析してきた。 この方法によって、 広領域における 概要的な調査には十分な精度が得られ、 また、 樹冠が閉塞し、 樹種が限られた森 林では、 自然林でも高い精度で解析が可能であることが分かり、 生態学において リモートセンシングの手法の有用性は、 確立されている。 一方、 全ての森林 ·樹木がこの方法で同様の調査が行なえるとは限らない。 そ れは、 森林,樹木の樹冠が、 その森林 ·樹木のタイプによって閉塞する場合と、 そうでない場合とがあるためである。 すなわち、 図 7 (a) に示すように、 一般に、 樹木は、 実生の段階から、 稚樹 若齢木 成熟木のように、 成長していき、 これに伴って、 図 7 (b) に示すよ うに、 樹冠サイズ (面積、 長径、 短径)、 樹冠厚さと L A I (Leaf Area Index= 葉面積指数) も次第に大きくなつていき、 図 7 ( c) に示すように、 樹冠率も A → →C→O ( = C) のように次第に大きくなつていく。 なお、 図 7 ( c) にお いて、 Pは画素、 Jは樹冠、 Eは土壌その他の樹冠以外の部分である。 したがって、 成熟木となって、 図 7 ( c) の Cや Dのように、 樹冠が閉塞した 森林 ·樹木では、 従来のリモートセンシングによる方法を採用することができる が、 図 7 ( c) の Aの実生段階から Bの若齢木段階の間は、 樹冠 Jが小さくて閉 塞していないので、 樹冠 Jと樹冠 Jとの間に存在する土壌その他の樹冠以外の部 分 E、 すなわち、 地面や道、 他の樹種の樹木、 草木などとの区別が付き難く、 植 林された特定樹木以外の樹種の樹木や、地面や道、草木などがノイズとなるため、 精度の高い特定樹種の樹冠サイズ (面積、 長径、 短径) およびその分光特性の測 定ができなかった。 また、 樹種によっては、 成熟木であっても、 樹冠が閉塞されないものもある。 例えば、 オーストラリアのユーカリ植林の場合には、 成熟木となっても樹冠が閉 塞しないことが多く、 特に、 マリ一ユーカリでは、 植樹林間に麦などの農作物が 栽培されることが多い。 このような森林 ·樹木の場合は、これまで行なわれていた画素単位の方法では、 植林樹木と地面や道, 下草や他の栽培植物などが入り混じつた値を解析すること になり、植樹された特定の樹種についての精度の高い樹冠面積や分光特性の測定、 したがって、 高精度のバイオマスの推定ができなかった。 しかも、 一度合成された情報を後から分離することはほとんど不可能であるた め、 データ取得の段階から手法を工夫する必要に迫られていた。 したがって、 本発明は、 植林後、 比較的経過年数が短い稚樹ゃ若齢木のために 樹冠が閉塞されていない場合や、 成熟木であっても樹冠が閉塞しないような樹種 の場合においても、 樹冠のサイズ (面積、 長径、 短径) やその分光特性を高精度 で測定することが可能で、 これらの結果から高精度でバイォマスを推定できるリ モートセンシング高解像度データによる森林 ·樹木のバイオマス推定方法を提供 することを目的とするものである。 発 明 の 開 示 本発明の請求項 1に記載されたリモートセンシング高解像度デ一夕による森 林 -樹木のバイオマス推定方法は、 上記課題を解決するために、 高所から森林 - 樹木の写真を撮像し、 その写真に基づいて所定面積内の特定樹木の樹冠部分以外 をマスキングして、 前記所定面積内に占める樹冠サイズおよび分光特性から特定 樹木のバイオマスを推定することを特徴とするものである。 ここで、 上記の 「高解像度データ」 の用語は、 高解像度衛星による高解像度写 真や、 航空機や無線へリコプ夕一等による超高解像度写真の解析によって得られ るデータを総称するものである。 また、 上記の 「樹冠サイズ」 の用語は、 樹冠部分の面積、 長径、 短径を含むも のであり、 以下、 樹冠サイズ (面積、 長径、 短径) と表記する。 ただし、 面積、 長径および短径の全てを必ずしも含む必要はなく、 面積のみでもよいが、 長径や 短径をも測定することによって、 より高精度のバイォマスを推定することが可能 になる。 さらに、 上記の 「所定面積内の特定樹木の樹冠部分以外をマスキングして」 の 用語の意味するところは、 所定面積内 (写真上ではある画像内) の植林した特定 樹木以外の部分、 すなわち、 特定樹種以外の樹木、 地面や道、 草木や農作物など を画像データとして消去することを言い、 コンピュータに取り込んだ写真デ一夕 上で、 特定の樹種の樹冠部分を樹冠の縁に沿って切り出して、 それ以外の部分を コンピュータ上でデ一夕を消去することを言う。 この樹冠部分以外の部分をコンビユー夕上で消去する作業は、 作業者が実際に 撮影した写真を見ながら、 モニタ上の写真画像における特定樹種の樹冠を切り出 して、 それ以外の部分を消去してもよいし、 予め、 特定の樹種に応じた分光特性 などを把握しておいて、それ以外の分光特性部分を、コンビユー夕処理によって、 自動的に消去するようにしてもよい。 前者の場合、 マスキング作業に比較的長時間を要するが、 実際に撮影した写真 で特定樹種を確認しながら切り出しができるので、 高い精度で特定樹種の樹冠の 切り出しができるという利点がある。 一方、 後者の場合は、 特定樹種の切り出し の精度は必ずしも高くはないが、 切り出し作業が短時間で行なえるという利点が ある。 したがって、 この推定方法の採用時にあっては、 前者の作業者による高精 度の切り出しを行い、 ある程度切り出しデータが蓄積されて特定樹種の諸デ一夕 が得られてからは、 その蓄積データに基づいて、 コンピュータによる自動処理を 行なうようにすれば、比較的短時間で、高精度の切り出しが行なえるようになる。 以上のような、 森林 ·樹木のバイオマス推定方法によれば、 樹冠が閉塞してい ない場合、 すなわち、現地における特定面積内、換言すれば、写真上の画像内に、 植林した特定樹種の樹木の他に、 地面や道、 草木や農作物が存在する場合は元よ り、 特定樹種以外の異種の樹木が存在する場合であっても、 特定樹種の樹木にお ける樹冠サイズ (面積、 長径、 短径) を高精度で測定することができ、 その樹冠 の分光特性の測定と相俟って、 特定の樹種のバイオマスを高精度で推定できるよ つになる。 したがって、 例えば、 投資家が植林の投資を行い、 その森林 ·樹木の管理を委 託するような場合は、 管理者が、 植林後の経過年にしたがって毎年、 または所定 経過年ごとに、 樹冠サイズ (面積、 長径、 短径) の変化および/または樹冠の分 光特性の変化から、 その区域におけるバイオマスの増加の度合いや年間バイオマ ス蓄積量を推定して、 投資家に結果データを報告することができる。 投資家は、 その報告データによって、 自己の植樹による地球温暖化防止効果や、 伐採時期の 予想および伐採時における材木の予想売却価格などの投資効果を確認することが できる。 また、 成熟しても樹冠が閉塞しないようなユー力リ林のような樹種地域におい ても、 上記と同様に、 高精度の樹冠サイズ (面積、 長径、 短径) の測定および/ または分光特性の測定による、 高精度のバイオマスや年間バイオマス蓄積量の推 定を行うことができる。 本発明の請求項 2に記載されたリモートセンシング高解像度デ一夕による森 林 -樹木のバイオマス推定方法は、 前記写真が、 特定の波長帯域による撮像写真 であることを特徴とするものである。 このような森林 ·樹木のバイオマス推定方法によると、 特定の樹種の分光特性 に基づいて、 その分光特性に一致ないし近似する樹種の樹木を強調した写真撮影 が可能になり、 特定樹種の樹冠部分だけを残して、 他の分光特性部分を不鮮明化 したり、 容易にマスキングしたりすることができ、 マスキング精度が向上するの みならず、 マスキング作業が迅速、 かつ、 低コストで実施できる。 本発明の請求項 3に記載されたリモートセンシング高解像度データによる森 林 -樹木のバイオマス推定方法は、 前記写真が、 1画素内に複数の樹冠が含まれ ていることを特徴とするものである。 このような森林 ·樹木のバイオマス推定方法によると、 樹冠と樹冠との間に間 隔がぁり樹冠が閉塞していない状態であっても、 分光特性の測定をすることがで き、 その結果と適切な推定式の利用により、 バイオマスや年間バイオマス蓄積量 を高精度で推定することができる。 本発明の請求項 4に記載されたリモートセンシング高解像度デー夕による森 林 -樹木のバイオマス推定方法は、 前記写真が超高解像度写真であり、 一つの樹 冠が複数の画素にまたがつていることを特徴とするものである。 このような森林 ·樹木のバイオマス推定方法によると、 一つの樹冠が複数の画 素にまたがつていることによって、 樹冠が閉塞している画素の数が多くなればな るほど、 樹冠サイズ (面積、 長径、 短径) の測定精度を向上させることができ、 バイオマスや年間バイオマス蓄積量高精度で推定することができる。 ただし、 画 素数が多くなればなるほどデ一夕数が増加し、 それに伴って画像処理工数が大き くなるので、 樹冠サイズ (面積、 長径、 短径) に応じて、 画素数を適宜設定すれ ばよい。 図面の簡単な説明 図 1は、 本発明の実施形態に係るリモートセンシング高解像度データによる森 林 ·樹木のバイオマス推定方法における概略フロー図である。 図 2は、 本発明の実施形態に係るリモートセンシング高解像度データによる森 林 ·樹木のバイオマス推定方法における各工程の概略説明図である。 Description: Biomass estimation method for forests and trees by remote sensing high-resolution data technology Field of the Invention The present invention relates to a method for estimating biomass of forests and trees by remote sensing high-resolution data processing. Forests where the crown is not blocked because of the tree, or when the crown is not blocked even if it has matured.Remote sensing suitable for estimating the biomass of the tree. And a method for estimating biomass. Background Technology Various adverse effects due to global warming are regarded as problems on a global scale. On the other hand, it is said that the assimilation of carbon dioxide by forests and trees also has the effect of preventing global warming. Therefore, the need for afforestation projects is being raised to increase biomass, which is the basis for calculating carbon dioxide assimilation by forests and trees, and afforestation projects are being actively conducted. At the same time, biomass is estimated from forests' trees, but the biomass in forests.trees depends on the type of forest and trees, canopy size (area, major axis, minor axis) and their spectral characteristics. Problems to be Solved by the Invention Therefore, remote sensing using satellite photographs and aerial photographs has been implemented to measure the species of forests and trees, the crown size (area, major axis, minor axis) and spectral characteristics. I have. In the forestry field, the Landsat emperor data analysis that has been carried out so far has been performed on a pixel-by-pixel basis, that is, in the case of the RAND SAT / TM, for example, as a unit of 30 m square. This method provides sufficient accuracy for general surveys over a wide area, and shows that high-accuracy analysis can be performed even in natural forests in forests where the crowns are closed and the tree species are limited. However, the usefulness of remote sensing techniques in ecology is well established. On the other hand, not all forests and trees can be surveyed in this way. This is because the crowns of forests and trees may or may not be closed depending on the type of forest and tree. In other words, as shown in Fig. 7 (a), in general, trees grow from the seedling stage, like saplings, young trees, and mature trees, and as shown in Fig. 7 (b). Thus, the crown size (area, major axis, minor axis), crown thickness and LAI (Leaf Area Index) gradually increase, and as shown in Fig. 7 (c), the crown ratio also increases from A → → It grows larger like C → O (= C). In Fig. 7 (c), P is a pixel, J is a canopy, and E is soil and other parts other than the canopy. Therefore, in forests and trees where the canopy is closed, as shown in C and D in Fig. 7 (c), the conventional remote sensing method can be used, as shown in Fig. 7 (c). Between the seedling stage of A and the young tree stage of B, the crown J is small and not closed, so the soil and other non-canopy parts E existing between crown J and crown J, that is, It is difficult to distinguish from the ground, roads, trees of other species, vegetation, etc., and trees of tree types other than the planted specific trees, and the ground, roads, vegetation, etc., become noise. Canopy size (area, major axis, minor axis) and its spectral properties could not be measured. In addition, depending on the species, even for mature trees, the crown is not blocked. For example, in the case of planting eucalyptus trees in Australia, the canopy often does not close even when the tree matures. In particular, in Malian eucalyptus, crops such as wheat are often grown between plantations. In the case of such forests and trees, the pixel-based method that has been used up to now analyzes the value of a mixture of planted trees and the ground, roads, undergrowth and other cultivated plants, etc. It was not possible to measure the crown area and spectral characteristics of specific tree species with high accuracy, and therefore to estimate biomass with high accuracy. Moreover, since it is almost impossible to separate the information once synthesized, it was necessary to devise a method from the data acquisition stage. Therefore, the present invention can be applied to a case where the crown is not closed due to a young tree or a young tree that has a relatively short age after planting, or even a mature tree that does not have a closed crown. Canopy size (area, major axis, minor axis) and its spectral characteristics can be measured with high accuracy, and the biomass of forests and trees can be highly accurately estimated from these results using remote sensing high-resolution data. The purpose is to provide an estimation method. DISCLOSURE OF THE INVENTION The forest-tree biomass estimation method according to claim 1 of the present invention by remote sensing high-resolution data processing includes: The method is characterized in that the biomass of a specific tree is estimated from the size and spectral characteristics of the crown occupying the predetermined area by taking an image and masking a portion other than the crown portion of the specific tree within the predetermined area based on the photograph. . Here, the term “high-resolution data” is obtained by analyzing high-resolution photos by high-resolution satellites or by analyzing ultra-high-resolution photos by airplanes or wireless Helicopters. Data. The term “canopy size” includes the area, major axis, and minor axis of the canopy part, and is hereinafter referred to as canopy size (area, major axis, minor axis). However, it is not always necessary to include all of the area, the major axis and the minor axis, and only the area may be included. By measuring the major axis and the minor axis, it is possible to estimate the biomass with higher accuracy. Furthermore, the above-mentioned “masking other than the crown portion of the specific tree within the predetermined area” means that the portion other than the specific tree planted within the predetermined area (in the image in the photograph), that is, This refers to erasing trees, ground and roads, vegetation and agricultural products, etc., other than the specified tree species as image data, and cutting out the crown of the specified tree species along the edge of the crown on a photo taken on a computer. The other part says to erase the data on your computer. The work of erasing the part other than the canopy part at the time of the combi-up is to cut out the crown of a specific tree species in the picture image on the monitor while looking at the photograph actually taken by the worker, and erase the other parts Alternatively, the spectral characteristics or the like corresponding to a specific tree species may be grasped in advance, and the other spectral characteristics may be automatically deleted by the combination process. In the former case, the masking operation requires a relatively long time, but since it is possible to cut out the tree while checking the specific tree species in the actually photographed image, there is an advantage that the crown of the specific tree species can be cut out with high accuracy. On the other hand, in the latter case, although the accuracy of cutting out a specific tree species is not always high, there is an advantage that the cutting operation can be performed in a short time. Therefore, when adopting this estimation method, the former worker performs high-precision cutting, and after the cutting data is accumulated to some extent and the data of the specific tree species is obtained, the accumulated data is If automatic processing is performed by a computer based on this, high-precision extraction can be performed in a relatively short time. According to the biomass estimation method for forests and trees as described above, if the canopy is not obstructed, that is, within a specific area in the field, in other words, in the image on the photo, In addition to the above, the canopy size (area, long diameter, short diameter) of trees of a specific species, even if there are different types of trees other than the specific species, as well as the ground, roads, vegetation and crops Diameter can be measured with high accuracy, and together with the measurement of the spectral characteristics of the canopy, the biomass of a particular tree species can be estimated with high accuracy. Therefore, for example, if an investor invests in afforestation and entrusts the management of the forests and trees, the manager will decide whether the canopy size should be set annually according to the age of the plantation, or every specified age. (Area, major axis, minor axis) and / or changes in the spectral characteristics of the canopy, estimating the extent of biomass increase and annual biomass accumulation in the area, and reporting the results to investors. Can be. Investors can use the reported data to check the effects of planting their own trees on global warming, as well as forecasting the timing of logging and the expected selling price of timber at the time of logging. Also, in tree species areas such as Yururi forest where the crown does not close even after maturity, similarly to the above, high-precision measurement of canopy size (area, major axis, minor axis) and / or spectral characteristics It is possible to estimate highly accurate biomass and annual biomass accumulation by measuring the amount of biomass. The forest-tree biomass estimation method according to claim 2 of the present invention by remote sensing high-resolution data is characterized in that the photograph is a photograph taken in a specific wavelength band. According to such a forest / tree biomass estimation method, a photograph that emphasizes trees of a tree type that matches or approximates the spectral characteristics based on the spectral characteristics of a specific tree species This makes it possible to blur or easily mask other spectral characteristics, leaving only the crown of a specific tree species, which not only improves masking accuracy but also speeds up masking work. It can be implemented at low cost. The forest-tree biomass estimation method using remote sensing high-resolution data according to claim 3 of the present invention is characterized in that the photograph includes a plurality of tree crowns in one pixel. . According to such a method for estimating forest and tree biomass, it is possible to measure the spectral characteristics even in a state in which there is a gap between the crowns and the crowns are not closed, and as a result, And the use of appropriate estimation formulas, it is possible to estimate biomass and annual biomass accumulation with high accuracy. The forest-tree biomass estimation method according to the remote sensing high-resolution data set forth in claim 4 of the present invention, wherein the photograph is an ultra-high-resolution photograph, and one canopy extends over a plurality of pixels. It is characterized by the following. According to such a method of estimating forest and tree biomass, as one canopy extends over a plurality of pixels, the more pixels the canopy blocks, the larger the canopy size (area , Long diameter, short diameter) can be improved, and biomass and annual biomass accumulation can be estimated with high accuracy. However, as the number of pixels increases, the number of images increases, and the number of image processing steps increases accordingly. Therefore, if the number of pixels is set appropriately according to the crown size (area, major axis, minor axis) Good. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic flow chart in a method for estimating biomass of a forest / tree using remote sensing high-resolution data according to an embodiment of the present invention. FIG. 2 is a schematic explanatory diagram of each step in the forest / tree biomass estimation method using remote sensing high-resolution data according to the embodiment of the present invention.
図 3 (a) から図 3 (c) は、 樹冠と画素との大きさの関係について説明する もので、 図 3 (a) は樹冠率が 100%の場合における画素樹冠図、 図 3 (b) は樹冠率が 100%未満の場合における画素樹冠図、 図 3 (c) は樹冠率が 1 0 0 %未満の場合における高解像度写真による画素樹冠図である。  Figures 3 (a) to 3 (c) illustrate the relationship between the crown and the pixel size.Figure 3 (a) shows the pixel crown diagram when the crown ratio is 100%. ) Is a pixel crown diagram when the crown ratio is less than 100%, and FIG. 3 (c) is a pixel crown diagram by a high-resolution photograph when the crown ratio is less than 100%.
図 4 (a) から図 4 (d) は、 現地の地上毎木調査による各種樹木要因とバイ ォマスとの関係を示すもので、 図 4 (a) は樹高とバイオマスとの関係を示す特 性図、 図 4 (b) は樹冠厚さとバイオマスとの関係を示す特性図、 図 4 (c) は 平均樹冠率とバイオマスとの関係を示す特性図、 図 4 (d) は樹冠面積とバイオ マスとの関係を示す特性図である。  Figures 4 (a) to 4 (d) show the relationship between various tree factors and biomass based on the local ground-based tree survey.Figure 4 (a) shows the relationship between tree height and biomass. Figure, Figure 4 (b) is a characteristic diagram showing the relationship between canopy thickness and biomass, Figure 4 (c) is a characteristic diagram showing the relationship between average crown ratio and biomass, and Figure 4 (d) is the canopy area and biomass. FIG. 4 is a characteristic diagram showing a relationship between
図 5 (a) から図 5 (d) は、 現地の空撮画像による各種樹木要因とバイオマ スとの関係を示すもので、 図 5 (a) は平均樹冠径とバイオマスとの関係を示す 特性図、 図 5 (b) は樹冠面積とバイオマスとの関係を示す特性図、 図 5 (c) は平均樹冠径を利用したバイオマスの推定結果と現地調査による実測値との差の 分布図、 図 5 (d) は樹冠面積を利用したバイオマスの推定結果と現地調査によ る実測値との差の分布図である。  Figures 5 (a) to 5 (d) show the relationship between various tree factors and biomass based on the aerial image of the site. Figure, Figure 5 (b) is a characteristic diagram showing the relationship between canopy area and biomass, and Figure 5 (c) is a distribution diagram of the difference between the biomass estimation result using the average canopy diameter and the measured value from the field survey. 5 (d) is the distribution map of the difference between the biomass estimation result using the canopy area and the actual measurement value from the field survey.
図 6は、 評価指数 I R * G/Rとバイォマスとの相関推定特性図である。  FIG. 6 is a correlation estimation characteristic diagram of the evaluation index IR * G / R and biomass.
図 7 (a) から図 7 (c) は植林後の樹木の成長段階を示すもので、 図 7 (a) は植林後の樹木の成長段階を示す樹木の側面図、 図 7 (b) は植林後の樹木の成 長段階における樹木の樹冠図、 図 7 (c) は植林後の樹木の成長段階に伴う樹冠 率の変化を示す画素樹冠図である。 発明の実施をするための最良の形態 以下、 本発明のリモートセンシング高解像度デ一夕による森林 ·樹木のバイオ マス推定方法に係る実施の形態について、 図面を参照して説明する。 図 1は、 本発明の第 1の実施形態に係るリモートセンシング高解像度デ一夕に よる森林■樹木のバイオマス推定方法 1 0に係る全体の概略フロー図である。 図 1において、 まず、 ランドサット衛星や高解像度衛星 (I K O N O S )、 または航 空機や無線ヘリコプター等による高所から森林 ·樹木の高所写真を撮影する ( 1 Do ランドサヅト衛星の場合は、 例えば、 1辺が 3 0 m四方の解像度の写真が撮 影できる。 また、 高解像度衛星 ( I K O N O S ) の場合は、 1辺が 4 m程度の高 解像度の写真が撮影できる。 さらに、 航空機や無線へリコプ夕一の場合は 1辺が 数 c n!〜 2 0 c m程度の超高解像度の写真が撮影できる。 この写真撮影において、 スキャナー型光学センサ一等の観測装置を用いるか、 特定の波長帯域に感光するフィルムを用いて撮影を行なうと、 植林に係る特定の 樹種以外の樹木や、 地面や道、 草木や農作物などを、 その分光特性によりコンビ ユー夕処理によって取り除くことができ、 後のマスキング工程において、 特定の 樹種における樹冠の切り出し作業が容易に行なえる。 なお、 この写真撮影は、 長波長が多い朝方や夕方を避けて、 例えば、 午前 1 0 時から午後 2時までの間に行なうことが望ましい。 そのようにすれば、 波長の偏 りが少ない光線下で樹種に応じた樹像が明確になって、後の切り出し作業が容易、 かつ、 高精度で行なえる。 また、 朝日や夕日が斜めに射し込むことに起因して、 樹冠に影が生じることがないので、 後の切り出し作業が高精度で行なえる利点が める。 次に、上記の高所写真をコンピュータに取り込み( 1 2 )、モニタ上に映し出す。 このとき、 撮影した写真がデジタル写真であれば、 そのままコンピュータに取り 込むことができる。 また、 フィルムによるアナログ写真であれば、 スキャナなど を利用してデジ夕ル化した上でコンビュ一夕に取り込む。 次に、 モニタ上に映し出された高所写真を元に、 特定の樹種以外の部分、 すな わち、特定樹種以外の樹木や、地面や道、草木や農作物などをマスキングする ( 1 3 )。 この切り出し作業は、 前述のように、 このバイオマス推定方法の採用時や採 用後間もない時は、 ベテラン作業者によって実際に撮影した写真を見ながら実施 することが望ましい。 また、 ある程度デ一夕が蓄積された後は、 その蓄積データ に基づいて、 コンビユー夕による自動処理をすることが望ましい。 次に、 マスキングによって得られた特定の樹種の樹冠サイズ (面積、 長径、 短 径) を測定する (14)。 なお、 樹冠サイズの測定では、 樹冠の面積のみを測定し てもよいが、 樹冠の長径や短径も測定することによって、 より高精度の解析を行 うことができる。 次に、 上記のようにして切り出された特定の樹種における樹冠の分光特性を測 定する (15)。 この分光特性の測定は、 例えば、 R, G, Bや IRごとに行う。 この分光特性に基づいて、 周知の NVD I ( Normalized Difference Vegetation Index)などの植生指数を算出する。 この NVD Iは、 森林樹木における活力度の 評価指数の一つで、 「正規化差植生指数」 と呼ばれ、 基準データおよびリモートセ ンシングデータが、 赤外域 (R) および近赤外域 (NIR) の 2バンドの分光特 性デ一夕に基づいて、 NIRと Rとの比である初期の植生指数 RVI (=N I R /R) を正規化したもので、 NDVI= (NIR-R) / (N I R + R) で算出 されるものである。 なお、 樹木の活力度の評価指数は、 上記の ND VIの他に、 前述の R VIや、 上記の ND V Iにおける土壌の影響を軽減した植生指数である、 P V I (Perpendicular Vegetation Index) = (NiR— axR— ?) / 、1+ひ2) し 2を使用することができる。 ただし、 および/?はソィルラインの傾きおよび切片 である。 また、 土壌背景を軽減した SAV Iを基に改良した指数である、 MSAVI (Modified Soil- Adjusted Vegetation Index) = ( 1 +L) X (N I R-R) / (N I R + R + L) で算出される植生指数を使用することができる。 ただし、 L=l - 2 a xND V I X (NIR— «xR) である。 さらにまた、 土壌背景および大気高価の影響を軽減する指数である、 GEMI (Global Environment Monitoring Index) = rj 、丄 一 0. 25?7) ― (R— 0. 125) / ( 1 -R) で算出される植生指数を使用することができる。 ただし、 V = [2 (N I R2-R2) + 1. 5NIR+0. 5 R] .(N I + R+ 0. 5) である。 次に、 上記の樹冠サイズ (面積、 長径、 短径) および分光特性 (植生指数) の 測定結果から、 その特定樹種のバイオマスを算出する (16)。 この「バイオマス」 とは、 樹幹, 枝および葉の乾燥重量をいい、 樹冠サイズ (面積、 長径、 短径) が 大きくなればなるほど大きくなり、 成熟木になるほど大きくなる。 次に、 上記のバイオマスに基づいて、 特定樹種の年間バイオマス蓄積量を算出 する (17)。 これは、 異なる年に測定されたバイオマスの差を取り、 両者の期間 で割ったものである。 次に、 上記の算出結果を、 プリントァゥ卜する (18)。 このプリントアウトし た結果に基づいて、森林'樹木のバイオマスや年間バイオマス蓄積量を把握して、 今後の植林管理に利用したり、 伐採計画の参考にしたり、 投資家へ情報提供した りする。 図 2は、 本発明によるリモートセンシング高解像度データによる森林 .樹木の バイオマス推定方法における各工程の概略図を示している。 すなわち、 図 2 (a) は航空機 20などによる樹木 21の高解像度カラー赤外線写真 (例えば、 縮尺 1 /7, 000) の撮影時の状況を示す。 (b) は撮影写真のコンピュータへの取り 込みを示し、 図示例はフィルム撮影によるアナログ写真 22を、 スキャナ 23に よって読み取ってデジタル化 (例えば、 1, 200 dpi) した上で、 コンビュ 一夕 24に取り込む場合を示している。 (c)は幾何補正等解析前処理工程で、 観 測時における航空機等の姿勢の傾きによって生じる画像の歪みを補正するもので ある。 (d ) は樹冠情報の取り出しで、 例えば、 コンピュータ上で特定樹木の樹冠 2 5以外の部分 2 6を黒化することによって、 特定樹木の樹冠 2 5のみが画像と して残る。 この樹冠情報に基づいて、 樹冠部分のサイズ (面積、 長径、 短径) お よびその分光特性を測定する。 (e ) は上記のようにして得られた樹冠情報と、 現 地デ一夕に基づくモデル式作成工程で、 横軸に植生指数等を取り、 縦軸にバイオ マスを取る。これらの処理が終わると、 (f )に示すように、解析結果が出力され、 面積当りのバイオマスや年間バイオマス蓄積量が分かる。 図 3は樹冠の大きさによる樹冠率の違いを示し、 図 3 ( a ) は画素 3 0内を樹 冠 2 5が閉塞している成熟林の状態を示し、 このような場合は、 従来方法でもそ の分光特性の測定が可能である。 図 3 ( b ) は植林後の経過年が短くて稚樹ゃ若 齢木のため、 あるいは成熟木であっても樹冠が閉塞しない植樹林のため、 画素 3Figures 7 (a) to 7 (c) show the growth stages of trees after planting, Figure 7 (a) is a side view of trees showing the growth stages of trees after planting, and Figure 7 (b) is Tree crown diagram at the growth stage of trees after planting, and Fig. 7 (c) is a pixel crown diagram showing the change in crown ratio with the growth stage of trees after planting. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of a method for estimating biomass of forests and trees by remote sensing high resolution data of the present invention will be described with reference to the drawings. FIG. 1 shows a remote sensing high-resolution image according to the first embodiment of the present invention. FIG. 1 is an overall schematic flowchart according to a forest / tree biomass estimation method 10 according to the present invention. In Fig. 1, first, photographs of the forests and trees are taken from a high place using a Landsat satellite or a high-resolution satellite (IKONOS), or an aerial vehicle or a radio helicopter. It can take pictures with a resolution of 30 m on each side, and a high-resolution satellite (IKONOS) can take high-resolution pictures with a side of about 4 m. In the case of one, it is possible to take an ultra-high resolution photograph with a side of several cn! ~ 20 cm.In this photographing, use an observation device such as a scanner-type optical sensor or expose to a specific wavelength band When filming is used, trees other than the specific tree species involved in afforestation, as well as the ground, roads, vegetation, and agricultural crops can be removed by combi-evening processing based on their spectral characteristics. In this process, it is easy to cut the crown of a specific tree species, and avoid photographing in the morning or evening when there are many long wavelengths, for example, between 10 am and 2 pm By doing so, the tree image according to the tree species becomes clear under a light beam with a small wavelength deviation, and the subsequent cutting operation can be performed easily and with high accuracy. There is no shadow on the tree canopy due to the oblique incidence of the sun or the sunset, which has the advantage that the subsequent cutting work can be performed with high precision. 1 2) Projected on a monitor At this time, if the photographed image is a digital photograph, it can be directly imported to a computer, or if it is a film analog photograph, a scanner Then, digitize the image using a digital camera and then import it into the combi.Next, based on the high-altitude photo projected on the monitor, the part other than the specific tree species, that is, Mask trees, ground, roads, vegetation, agricultural crops, etc. (13) As described above, this cutting work is performed when this biomass estimation method is adopted or when sampling is performed. When it is not long after use, it is desirable to carry out the inspection while looking at pictures actually taken by experienced workers. After a certain amount of data has been accumulated, it is desirable to perform automatic processing by combination based on the accumulated data. Next, the canopy size (area, major axis, minor axis) of a particular tree species obtained by masking is measured (14). In measuring the canopy size, only the area of the canopy may be measured, but by measuring the major and minor diameters of the canopy, more accurate analysis can be performed. Next, the spectral characteristics of the canopy of the specific tree species cut out as described above are measured (15). The measurement of the spectral characteristics is performed, for example, for each of R, G, B, and IR. Based on this spectral characteristic, a well-known vegetation index such as NVDI (Normalized Difference Vegetation Index) is calculated. This NVD I is one of the indexes of vitality in forest trees, called the “Normalized Difference Vegetation Index”. The reference data and remote sensing data are used in the infrared (R) and near infrared (NIR) regions. The initial vegetation index RVI (= NIR / R), which is the ratio between NIR and R, is normalized based on the spectral characteristics of the two bands.NDVI = (NIR-R) / (NIR + R). In addition to the above-mentioned NDVI, the evaluation index of the vitality of a tree is PVI (Perpendicular Vegetation Index) = (NiR — AxR—?) /, 1 + hi 2 ) and 2 can be used. Where and /? Are the slope and intercept of the soil line. It is calculated by MSAVI (Modified Soil-Adjusted Vegetation Index) = (1 + L) X (NI RR) / (NIR + R + L), which is an index based on SAV I with reduced soil background. The vegetation index can be used. Where L = l-2 a xND VIX (NIR— «xR). In addition, GEMI (Global Environment Monitoring Index) = rj, which is an index that reduces the effects of soil background and atmospheric costs, is calculated as: (R-0.125) / (1-R). The calculated vegetation index can be used. Here, V = [2 (NIR 2 −R 2 ) +1.5 NIR + 0.5 R]. (NI + R + 0.5). Next, the biomass of the specific tree species is calculated from the above measurement results of the crown size (area, major axis, minor axis) and spectral characteristics (vegetation index) (16). The term “biomass” refers to the dry weight of stems, branches and leaves. The larger the canopy size (area, major axis, minor axis), the larger the size and the more mature trees. Next, based on the above biomass, calculate the annual biomass accumulation of the specific tree species (17). This is the difference between biomass measured in different years and divided by both periods. Next, the above calculation result is printed (18). Based on the results of this printout, the biomass and annual biomass accumulation of the forest's trees will be grasped and used for future afforestation management, as a reference for logging plans, and provided to investors. FIG. 2 is a schematic diagram of each step in the method for estimating the biomass of forests and trees using high-resolution remote sensing data according to the present invention. That is, FIG. 2A shows a situation when a high-resolution color infrared photograph (for example, a scale of 1 / 7,000) of the tree 21 is taken by the aircraft 20 or the like. (B) shows the capture of a photograph into a computer. In the example shown, an analog photograph 22 taken by film is read by a scanner 23 and digitized (for example, 1,200 dpi). Shows the case of taking in (C) is a pre-analysis process such as geometric correction that corrects image distortion caused by the inclination of the attitude of the aircraft during observation. is there. (D) is the extraction of the crown information. For example, by blackening the part 26 other than the crown 25 of the specific tree on a computer, only the crown 25 of the specific tree remains as an image. Based on the crown information, the size (area, major axis, minor axis) of the crown and its spectral characteristics are measured. (E) is a model formula creation process based on the canopy information obtained as described above and on-site data. The horizontal axis is the vegetation index, and the vertical axis is the biomass. When these processes are completed, the analysis results are output as shown in (f), and the biomass per area and the annual biomass accumulation can be found. Figure 3 shows the difference in crown ratio depending on the size of the crown.Figure 3 (a) shows the state of a mature forest in which the crown 25 is closed in the pixel 30. However, its spectral characteristics can be measured. Fig. 3 (b) shows the number of pixels in a tree 3
0内を樹冠 2 5が閉塞しておらず、 地面や草木などの部分 2 6が含まれている状 態を示し、 低解像度のデータでは樹冠部分のサイズ (面積、 長径、 短径) および その分光特性の測定が不可能であつたが、 本発明による超高解像度デ一夕の利用0 indicates that the crown 25 is not closed and includes the ground and vegetation 26. In low-resolution data, the size (area, major axis, minor axis) of the crown and its Although it was impossible to measure spectral characteristics, use of ultra-high resolution data according to the present invention
{図 3 ( c )} によって地面や草木などの影響を受けることなく、 樹冠部分のサイ ズ (面積、 長径、 短径) およびその分光特性を高精度で測定することが可能であ る。 実 施 例 上記のリモートセンシング高解像度デ一夕による森林 ·樹木のバイオマス推定 方法におけるバイオマス推定精度を、 実際に現地における地上毎木調査および空 撮画像に基づく解析処理を行って検証した結果を、 以下に説明する。 事例 1 解像度 2 . 5 c mでの解析 [超高解像度データ] {Fig. 3 (c)} makes it possible to measure the size (area, major axis, minor axis) of the crown and its spectral characteristics with high accuracy without being affected by the ground or vegetation. Example The accuracy of biomass estimation by the above method of estimating the biomass of forests and trees by remote sensing high-resolution data was verified by actually conducting on-site tree surveys and analysis based on aerial images at the site. This will be described below. Case 1 Analysis at 2.5 cm resolution [Ultra high resolution data]
1 . 調査対象地域  1. Survey Area
沖繙県西表島浦内川河口域のマングロープ (ヤエャマヒルギ) 林  Mangrove forest at the mouth of the Urauchi River in Iriomote Island, Oki-Ref prefecture
2 . 調査方法 2. 1現地調査 2. Survey method 2.1 Field survey
(1) 方形区 (50mx50m) の設置  (1) Establishment of a rectangular area (50mx50m)
(2)每木調査 (DBH=胸高直径、 樹高、 樹冠の長径および短径、 樹冠厚さ) (2) Tree survey (DBH = breast height diameter, tree height, major and minor diameters of crown, crown thickness)
(3) 測量 (個々の樹木の方形区内での座檫情報を得る) (3) Surveying (obtain location information within each tree square)
(4) 空撮 (小型無線ヘリを利用したカラ一赤外フィルム撮影)  (4) Aerial photography (shooting a color infrared film using a small wireless helicopter)
2. 2データ解析  2.2 Data analysis
( 1 ) 地上調査結果の集約  (1) Aggregation of ground survey results
(2) 空撮写真の画像処理と解析  (2) Image processing and analysis of aerial photographs
(3) バイオマス推定精度の検証 バイオマス推定式の作成  (3) Verification of biomass estimation accuracy Creation of biomass estimation formula
現地調査におけるバイオマス測定値と、 空撮画像に基づく樹冠情報から、 バイ ォマス推定式を作成した。 ここで、 「現地調査におけるバイオマス測定値」 とは、 現地で全対象樹木の DBH (胸高直径) を測定した後、 この値から個々に相対成 長式を利用してバイオマスを計算した値をいう。  A biomass estimation formula was created from the biomass measurement values in the field survey and tree crown information based on aerial images. Here, the “biomass measurement value in the field survey” refers to the value obtained by measuring the DBH (breast height diameter) of all target trees in the field and calculating the biomass individually from this value using the relative growth formula. .
樹木サンプル数 n: 72本 Number of tree samples n: 72
推定式作成用樹木におけるバイオマスの合計: 799. 6kg 図 4 (a) 〜 (d) は、 現地調査による毎木調査の結果とバイオマスとの関係 を示す。 図 4 (a) は樹高とバイオマスとの関係を示す特性図である。 図 4 (b) は樹冠厚さとバイオマスとの関係を示す特性図である。 図 4 (c) は平均樹冠径 とバイオマスとの関係を示す特性図であり、 平均樹冠径は、 図 4 (a) の樹高ゃ 図 4 (b) の樹冠厚さよりもバイオマスと高い相関を有することが分かる。 図 4 (d) は樹冠面積とバイオマスとの関係を示す特性図であり、 同様に高い相関を 有することが分かる。 空撮画像に基づく解析の結果 Total biomass in trees for creating the estimation formula: 799.6 kg Figures 4 (a) to (d) show the relationship between biomass and the results of each tree survey by field survey. Fig. 4 (a) is a characteristic diagram showing the relationship between tree height and biomass. Figure 4 (b) is a characteristic diagram showing the relationship between canopy thickness and biomass. Fig. 4 (c) is a characteristic diagram showing the relationship between the average crown diameter and biomass.The average crown diameter has a higher correlation with biomass than the tree height in Fig. 4 (a) (the crown thickness in Fig. 4 (b). You can see that. Fig. 4 (d) is a characteristic diagram showing the relationship between canopy area and biomass, and it can be seen that there is also a high correlation. Analysis results based on aerial images
図 5 (a) (b) は毎木調査において相関が高かった平均樹冠径と樹冠面積に着 目して、 同一の方形域における空撮画像に基づく解析結果を示す。 図 5 (a) は 平均樹冠径とバイオマスとの関係を示す特性図であり、 前述の毎木調査による、 図 4 (c) の平均樹冠径とバイオマスとの特性図と良く一致している。 また、 図 5 (b)は樹冠面積とバイオマスとの関係を示す特性図であり、やはり、図 4 (d) に示す樹冠面積とバイオマスとの特性図と良く一致している。 そこで、 バイオマ スとの相関が高い平均樹冠径および樹冠面積から、 バイオマスを求める式を作成 した。 Figures 5 (a) and 5 (b) show the analysis results based on aerial images in the same rectangular area, focusing on the average crown diameter and crown area, which were highly correlated in each tree survey. Figure 5 (a) FIG. 4 is a characteristic diagram showing the relationship between the average crown diameter and biomass, and is in good agreement with the characteristic diagram of the average crown diameter and biomass in FIG. Fig. 5 (b) is a characteristic diagram showing the relationship between canopy area and biomass, and also agrees well with the characteristic diagram of canopy area and biomass shown in Fig. 4 (d). Therefore, an equation for calculating biomass was created from the average canopy diameter and canopy area, which have a high correlation with biomass.
>推定式の精度の検証 > Verify accuracy of estimation formula
次に、 現地調査によるバイオマス測定値と、 上記推定式により得られたバイオ マスとを比較して、 バイオマス推定式の精度を検証した。 なお、 検証は、 推定式 作成で利用した樹木とは異なる樹木を用いて実施した。  Next, the accuracy of the biomass estimation formula was verified by comparing the biomass measurement value obtained from the field survey with the biomass obtained by the above estimation formula. The verification was performed using trees different from the trees used in the estimation formula creation.
樹木サンプル数 n: 72本 Number of tree samples n: 72
検証用樹木におけるバイオマスの合計: 1, 06 1. 9 kg 平均樹冠径を利用したバイオマスの推定結果と現地調査による実測値との差の 分布は、 図 5 (c) に示すように、 誤差の小さい部分に集中しており、 高い相関 を示している。 また、 樹冠面積を利用したバイオマスの推定結果と現地調査による実測値との 差の分布は、 図 5 (d) に示すように、 誤差の小さい部分に集中しており、 同様 に高い相関を示している。 前述のように、 検証用樹木におけるバイオマスの合計は 1, 06 1. 9 kgで あるのに対して、 平均樹冠径を利用した推定式から求めたバイオマスは 1 , 03 6. 8 kgであり、 平均樹冠径に基づく推定精度は 97. 6%である。 また、 樹 冠面積を利用した推定式から求めたバイオマスは 1 , 005. 3 kgであり、 樹 冠面積に基づく推定精度は 94. 7%である。 このように、 平均樹冠径、 樹冠面 積のいずれも高い推定精度を有することが分かった。 したがって、 本発明のリモ ートセンシング高解像度データによる森林 ·樹木のバイオマス推定方法は、 十分 実用性を有するものであり、 今後の森林 ·樹木の成長段階でのバイオマス推定精 度向上により、 地球環境改善に大きな効果を発揮することが期待できる。 事例 2 解像度 4mでの解析 [樹冠の切り出しを行わない場合] Total biomass in the test trees: 1, 06 1.9 kg The distribution of the difference between the biomass estimation result using the average canopy diameter and the actual measurement value from the field survey is shown in Figure 5 (c). It is concentrated on small parts and shows high correlation. In addition, the distribution of the difference between the biomass estimation result using the canopy area and the actual measurement value from the field survey is concentrated on the part with a small error, as shown in Fig. 5 (d). ing. As described above, the total biomass in the test tree was 1,061.9 kg, whereas the biomass obtained from the estimation formula using the average crown diameter was 1,036.8 kg. The estimation accuracy based on the average crown diameter is 97.6%. The biomass obtained from the estimation formula using the canopy area is 1,055.3 kg, and the estimation accuracy based on the canopy area is 94.7%. Thus, it was found that both the average crown diameter and the crown area have high estimation accuracy. Therefore, the method for estimating the biomass of forests and trees using the remote sensing high-resolution data of the present invention is not sufficient. It is practical and can be expected to have a significant effect on improving the global environment by improving the accuracy of biomass estimation at the growth stage of forests and trees in the future. Case 2 Analysis at a resolution of 4m [When the crown is not cut out]
1. 調査対象地域  1. Study Area
タイ国トラヅト ( rat) の リゾフオーラアビキユラ一夕林  Rizofora abikiyura forest in Thailand (rat)
2. 調査方法  2. Survey method
2. 1現地調査  2.1 Field survey
( 1 )方形区 (20mx20m) を 7つ (樹齢 1年, 3、年, 5年, 7年, 9年, 11年, 13年) 設置  (1) 7 squares (20mx20m) (1 year, 3 years, 5 years, 7 years, 9 years, 11 years, 13 years)
(2)毎木調査 (DBH=胸高直径、 樹高、 樹冠の長径および短径、 樹冠厚さ) (2) Tree survey (DBH = breast height diameter, tree height, major and minor diameters of the crown, crown thickness)
(3)空撮 (大型無線ヘリを利用したカラ一赤外フィルム撮影) (3) Aerial photography (shooting a color infrared film using a large wireless helicopter)
( ) 分光特性の測定  () Measurement of spectral characteristics
2. 2データ解析  2.2 Data analysis
( 1 ) 地上調査結果の集約 '  (1) Aggregate ground survey results ''
(2)空撮写真の画像処理と解析  (2) Image processing and analysis of aerial photographs
(3) バイオマス推定精度の検証 なお、 東南アジアのように、 乾季と雨季がはっきりしている地域で、 乾季と雨 季でバイオマス推定精度の違いの有無を見るために、 季節と分光特性 (NDVI) との関係を調査したところ、 表 1のような結果が得られた。 (3) Verification of biomass estimation accuracy In regions where the dry and rainy seasons are clear, such as in Southeast Asia, the seasonal and spectral characteristics (NDVI) were used to check for differences in biomass estimation accuracy between the dry and rainy seasons. Investigating the relationship between the two, the results shown in Table 1 were obtained.
表 1 季節と分光特性 (NDVI)との関係 Table 1 Relationship between seasons and spectral characteristics (NDVI)
Figure imgf000017_0001
Figure imgf000017_0001
*表中の数値は LAI (葉面積指数)と NDVIの相関係数 (r2)を示す * Values in the table indicate the correlation coefficient (r 2 ) between LAI (leaf area index) and NDVI
R.a. リゾフ; ¾| -ーラ ァヒキユラ一タ (Rhizophora apiculata) R.a. Rizov; ¾ | -Rahzophora apiculata
R.m. リゾフ^—フ ムクロナ一 (Rhizophora mucronata)  R.m. Rhizophora mucronata
C上 セリオブス タガル (Ceriops tagal)  C on Ceriobus tagal (Ceriops tagal)
B.g. フ_レ十丄ラ ンムノフィサ (Bruguiera gymnor niza)  B.g. Bruguiera gymnor niza
表 1におい 、 トラヅト (Trat)はタイ湾の北部地域、チュンボン(Chumphon) は中部地域、 カノン (Khanom) は南部地域である。 この表 1の結果から、 N D V Iと L A Iの関係は、 雨季の方が高い相関を有することが分かった。 また、 マングローブの樹齢とバイオマスとの関係を調査したところ、 表 2の結 果が得られた。 In Table 1, Trat is the northern part of the Gulf of Thailand, Chumphon is the central part, and Khanom is the southern part. From the results in Table 1, it was found that the relationship between NDVI and LAI had a higher correlation in the rainy season. In addition, when the relationship between mangrove age and biomass was investigated, the results shown in Table 2 were obtained.
3¾ L用弒(規則 26) 表 2 マングローブの樹齢とバイオマスとの関係 3¾ For L 弒 (Rule 26) Table 2 Relationship between mangrove age and biomass
Figure imgf000018_0001
Figure imgf000018_0001
この表 2の結果から、 マングローブの樹齢が高くなり、 樹木が成長するのに従 い、 バイオマスが大きくなることが分かる。 また、 各種評価指数におけるバイオマスとの相関係数を調査したところ、 表 3 のような結果が得られた。 From the results in Table 2, it can be seen that the biomass increases as the mangrove grows older and the trees grow. In addition, when the correlation coefficient with biomass in various evaluation indices was investigated, the results shown in Table 3 were obtained.
差換え用紙 (規則 26) 表 3 植生指数とバイオマスとの関係 Replacement paper (Rule 26) Table 3 Relationship between vegetation index and biomass
Figure imgf000019_0001
この表 3から、 NDVI (IR. R = 0. 818)、 GR (= 0. 892 ), I R*G (=0. 889)、 IR (=0. 951)、 I G/R (= 0. 955 ) などの評価指数が高い相関性を有することが分かり、特に、 IR*G/R (=0. 955 ) が最も高い相関性を有することが分かった。 図 6は、上記表 3において最高の相関値を示す評価指数 I R * G/R (r2 = 0. 955 ) とバイオマスとの関係の推定式の特性図である。 樹齢が 1から 13年のマングローブ林について、 それそれの樹齢ごとに空撮画 像を得、 新たにそれらの画像に基づいた 3種類のシミュレーション画像を作成し た。 樹齢 1〜13年の全ての樹齢の林で構成された画像を Aクラスとし、 樹齢 1 〜 5年の若齢の林で構成された画像を Bクラス、 さらに樹齢 7〜13年の高齢の 林で構成された画像を Cクラスとした。 なお、 各クラスを構成する個々の樹齢の 林は、 画像内にそれそれ同一の割合で含まれている。 表 4は、 これらのクラス A〜Cを対象に、 バイオマスを推定した結果である,
Figure imgf000019_0001
From Table 3, NDVI (IR.R = 0.818), GR (= 0.892), IR * G (= 0.889), IR (= 0.951), IG / R (= 0.955) ) Was found to have a high correlation, and in particular, IR * G / R (= 0.955) was found to have the highest correlation. FIG. 6 is a characteristic diagram of an equation for estimating the relationship between the evaluation index IR * G / R (r 2 = 0.955) showing the highest correlation value in Table 3 and biomass. For mangrove forests 1 to 13 years old, aerial images were obtained for each age, and three new simulation images were created based on those images. Images composed of forests of all ages from 1 to 13 years of age are classified as A class, images composed of young forests of 1 to 5 years of age are classified into B class, and older forests of 7 to 13 years of age. The image composed of was designated as C class. The forests of each age that make up each class are included in the image at the same rate. Table 4 shows the results of estimating biomass for these classes A to C,
表 4 マングローブ植林地におけるバイオマスの推定精度 Table 4 Estimation accuracy of biomass in mangrove plantations
(解像度 4mでの解析結果。マスキングなしの場合)  (Analysis result at 4m resolution, without masking)
Figure imgf000020_0001
Figure imgf000020_0001
この表 4から、 樹齢 1〜 5年の若齢の林のみで構成されたクラス Bにおいて、 精度が 5 3 . 1 %になり、 3クラスで最も低い値を示した。 逆に、 樹齢 7〜1 3 年の高齢の林のみで構成されたクラス Cでは、最高の 8 7 . 6 %という値を示し、 また、 全ての樹齢を含む樹齢 1〜 1 3年のクラス Aでは、 両者の中間的な精度を 示した。 この例で分かるように、 樹冠が閉塞していない若齢の林を、 解像度 4 mで解析 を行うと、 推定の精度が低い。 一方、 解像度 4 mでも、 樹冠が閉塞していれば、 適切な推定式を利用することにより、 高精度で推定できる可能性が示された。 換言すれば、 マスキングを行わずに高精度で推定するには、 まず、 樹冠が閉塞 していることが重要条件であり、 同時に適切な推定式を利用することが要求され る。 発 明 の 効 果 以上説明してきたように、 本発明は、 高所から森林 ·樹木の写真を撮像し、 そ の写真に基づいて所定面積内の特定樹木の樹冠部分以外をマスキングして、 前記 所定面積内に占める樹冠部分のサイズ (面積、 長径、 短径) および分光特性から 特定樹木のパイォマスを推定することを特徴とするものであるから、 植林後間も なく樹冠が閉塞していないような場合や、 成熟木であっても樹冠が閉塞しないよ From Table 4, the accuracy was 53.1% in class B, which consisted only of young forests 1 to 5 years old, and the lowest value was shown in three classes. Conversely, class C, which consists of only old forests aged 7 to 13 years, shows the highest value of 87.6%, and class A, which includes all ages, is 1 to 13 years old. Shows the accuracy between the two. As can be seen from this example, the accuracy of estimation is low when analyzing a young forest with a clear canopy at a resolution of 4 m. On the other hand, even at a resolution of 4 m, it was shown that if the canopy is closed, it is possible to estimate with high accuracy by using an appropriate estimation formula. In other words, in order to perform high-precision estimation without masking, it is important that the canopy is closed first. At the same time, it is necessary to use an appropriate estimation formula. Effects of the Invention As described above, the present invention captures a photograph of a forest or a tree from a high place, and masks a portion other than a crown portion of a specific tree within a predetermined area based on the photograph to obtain the above-described image. The feature is to estimate the pyomas of a specific tree from the size (area, major axis, minor axis) and spectral characteristics of the canopy occupying a given area, so that the crown is not blocked shortly after planting. Or even mature trees, the crown will not be blocked
差替え用紙(規則 26) うな植樹林の場合においても、 樹冠と樹冠との間のノイズ情報をマスキングする ことによって、 植林された特定樹木の樹冠サイズ (面積、 長径、 短径) およびそ の分光特性を高精度で測定可能になり、 高精度のバイオマスの推定が可能になつ て、 年間バイオマス蓄積量も高精度で算出することができる。 Replacement form (Rule 26) Even in the case of tree plantations, masking noise information between the crowns of the trees enables the crown size (area, major axis, minor axis) of the planted specific tree and its spectral characteristics to be measured with high accuracy. As a result, biomass can be estimated with high accuracy, and the annual biomass accumulation can be calculated with high accuracy.

Claims

請 求 の 範 囲 The scope of the claims
1 . 高所から森林 ·樹木の写真を撮像し、 その写真に基づいて所定面積内の特定 樹木の樹冠部分以外をマスキングして、 前記所定面積内に占める樹冠サイズおよ び分光特性から特定樹木のバイオマスを推定することを特徴とするリモートセン シング高解像度データによる森林 ·樹木のバイオマス推定方法。 1. Photographs of forests and trees are taken from high places, and based on the photographs, masking is performed on areas other than the crown of the specific tree within a predetermined area, and the specific tree is determined from the crown size and spectral characteristics occupying the predetermined area. A method for estimating forest and tree biomass using remote sensing high-resolution data, characterized by estimating the biomass of forests.
2 . 前記写真が、 特定の波長帯域による撮像写真であることを特徴とする請求項 1に記載のリモートセンシング高解像度データによる森林 ·樹木のバイオマス推 定方法。 2. The method for estimating biomass of a forest or a tree using high-resolution remote sensing data according to claim 1, wherein the photograph is an image photographed in a specific wavelength band.
3 . 前記写真が、 1画素内に複数の樹冠が含まれていることを特徴とする請求項 1または 2に記載のリモートセンシング高解像度デ一夕による森林 ·樹木のバイ ォマス推定方法。 3. The biomass estimation method according to claim 1 or 2, wherein the photograph includes a plurality of tree crowns in one pixel.
4 . 前記写真が超高解像度写真であり、 一つの樹冠が複数の画素にまたがつてい ることを特徴とする請求項 1または 2に記載のリモートセンシング高解像度デ一 夕による森林 ·樹木のバイオマス推定方法。 4. The photograph according to claim 1 or 2, wherein the photograph is an ultra-high-resolution photograph, and one canopy extends over a plurality of pixels. Biomass estimation method.
PCT/JP2003/001460 2002-02-13 2003-02-13 Method of estimating biomass of forests and trees by remote sensing high-resolution data WO2003069315A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003568386A JP4219819B2 (en) 2002-02-13 2003-02-13 Forest / tree biomass estimation method using remote sensing high resolution data
AU2003211938A AU2003211938B2 (en) 2002-02-13 2003-02-13 Method of biomass estimation for forests and trees by remote sensing high-resolution data

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002035784 2002-02-13
JP2002-35784 2002-02-13

Publications (1)

Publication Number Publication Date
WO2003069315A1 true WO2003069315A1 (en) 2003-08-21

Family

ID=27678066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001460 WO2003069315A1 (en) 2002-02-13 2003-02-13 Method of estimating biomass of forests and trees by remote sensing high-resolution data

Country Status (3)

Country Link
JP (1) JP4219819B2 (en)
AU (1) AU2003211938B2 (en)
WO (1) WO2003069315A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149104A (en) * 2005-11-29 2007-06-14 National Arboretum Korea Forest Service Quantification method for plant resources using gis
CN105158413A (en) * 2015-07-22 2015-12-16 兰州大学 Establishing method for reference sample plot used for remote sensing monitoring of alpine grassland
WO2018034166A1 (en) * 2016-08-17 2018-02-22 ソニー株式会社 Signal processing device and signal processing method, and program
CN108921885A (en) * 2018-08-03 2018-11-30 南京林业大学 A kind of method of comprehensive three classes data source joint inversion forest ground biomass
US20190166765A1 (en) * 2016-08-18 2019-06-06 Tevel Advanced Technologies Ltd. System and method for mapping and building database for harvesting-dilution tasks using aerial drones
CN110162872A (en) * 2019-05-17 2019-08-23 中国科学院城市环境研究所 A kind of forest assessment biomass estimation model of multisource data fusion
JP2019144607A (en) * 2018-02-15 2019-08-29 西日本高速道路株式会社 Tree species estimation method using satellite image and tree species soundness determination method for tree species estimated
US10607078B2 (en) 2013-03-25 2020-03-31 Sony Corporation Method, system, and medium having stored thereon instructions that cause a processor to execute a method for obtaining image information of an organism comprising a set of optical data
US11481904B1 (en) * 2022-01-04 2022-10-25 Natural Capital Exchange, Inc. Automated determination of tree inventories in ecological regions using probabilistic analysis of overhead images

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6187639B2 (en) * 2016-06-10 2017-08-30 ソニー株式会社 Imaging apparatus, imaging method, and program
CN116227758B (en) * 2023-05-10 2023-08-08 江西师范大学 Agricultural product maturity prediction method and system based on remote sensing technology and deep learning

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001068447A2 (en) * 2000-03-10 2001-09-20 Sky Calypso Inc. Internet linked environmental data collection system and method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2130707C1 (en) * 1998-02-11 1999-05-27 Московский государственный университет леса Method for evaluating stock of trees
RU2155472C1 (en) * 1999-03-22 2000-09-10 Московский государственный университет леса Method for evaluating plantation biomass

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001068447A2 (en) * 2000-03-10 2001-09-20 Sky Calypso Inc. Internet linked environmental data collection system and method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DEFOURNY P., DIGEST INT. GEOSCI. REMOTE SENS. SYMP., vol. 4, 1991, pages 2461 - 2464, XP010040915 *
DEFOURNY P., PROCEEDINGS OF XXIITH SYMPOSIUM ON ENVIRONMENTAL REMOTE SENSING, 18 April 1990 (1990-04-18) - 25 April 1990 (1990-04-25), ERIM, BANGKOK, pages 589 - 601, XP002969986 *
GOETZ S.J. ET AL.: "Mapping net primary production and related biophysical variables with remote sensing: Application to the BOREAS region", J. GEOPHYS. RES., vol. 104, no. D22, 27 November 1999 (1999-11-27), pages 27719 - 27734, XP002969985 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149104A (en) * 2005-11-29 2007-06-14 National Arboretum Korea Forest Service Quantification method for plant resources using gis
US11443509B2 (en) 2013-03-25 2022-09-13 Sony Corporation Method, system, and medium having stored thereon instructions that cause a processor to execute a method for obtaining image information of an organism comprising a set of optical data
US10607078B2 (en) 2013-03-25 2020-03-31 Sony Corporation Method, system, and medium having stored thereon instructions that cause a processor to execute a method for obtaining image information of an organism comprising a set of optical data
US11875562B2 (en) 2013-03-25 2024-01-16 Sony Group Corporation Method, system, and medium having stored thereon instructions that cause a processor to execute a method for obtaining image information of an organism comprising a set of optical data
US11699286B2 (en) 2013-03-25 2023-07-11 Sony Corporation Method, system, and medium having stored thereon instructions that cause a processor to execute a method for obtaining image information of an organism comprising a set of optical data
CN105158413A (en) * 2015-07-22 2015-12-16 兰州大学 Establishing method for reference sample plot used for remote sensing monitoring of alpine grassland
WO2018034166A1 (en) * 2016-08-17 2018-02-22 ソニー株式会社 Signal processing device and signal processing method, and program
JPWO2018034166A1 (en) * 2016-08-17 2019-06-13 ソニー株式会社 Signal processing apparatus, signal processing method, and program
US11047793B2 (en) 2016-08-17 2021-06-29 Sony Corporation Signal processing apparatus, signal processing method, and progress
US20190166765A1 (en) * 2016-08-18 2019-06-06 Tevel Advanced Technologies Ltd. System and method for mapping and building database for harvesting-dilution tasks using aerial drones
US11846946B2 (en) * 2016-08-18 2023-12-19 Tevel Advanced Technologies Ltd. System and method for mapping and building database for harvesting-dilution tasks using aerial drones
JP7046432B2 (en) 2018-02-15 2022-04-04 西日本高速道路株式会社 Tree species estimation method using satellite images and tree health determination method for tree species estimation
JP2019144607A (en) * 2018-02-15 2019-08-29 西日本高速道路株式会社 Tree species estimation method using satellite image and tree species soundness determination method for tree species estimated
CN108921885B (en) * 2018-08-03 2020-05-12 南京林业大学 Method for jointly inverting forest aboveground biomass by integrating three types of data sources
CN108921885A (en) * 2018-08-03 2018-11-30 南京林业大学 A kind of method of comprehensive three classes data source joint inversion forest ground biomass
CN110162872A (en) * 2019-05-17 2019-08-23 中国科学院城市环境研究所 A kind of forest assessment biomass estimation model of multisource data fusion
US11481904B1 (en) * 2022-01-04 2022-10-25 Natural Capital Exchange, Inc. Automated determination of tree inventories in ecological regions using probabilistic analysis of overhead images

Also Published As

Publication number Publication date
AU2003211938A1 (en) 2003-09-04
JP4219819B2 (en) 2009-02-04
JPWO2003069315A1 (en) 2005-06-09
AU2003211938B2 (en) 2008-04-10

Similar Documents

Publication Publication Date Title
US11029251B2 (en) Method for estimating aboveground biomass of rice based on multi-spectral images of unmanned aerial vehicle
Roth et al. Predicting cover crop biomass by lightweight UAS-based RGB and NIR photography: an applied photogrammetric approach
Waring et al. Scaling gross ecosystem production at Harvard Forest with remote sensing: a comparison of estimates from a constrained quantum‐use efficiency model and eddy correlation
Xu et al. Compare NDVI extracted from Landsat 8 imagery with that from Landsat 7 imagery
Guo et al. Integrating spectral and textural information for identifying the tasseling date of summer maize using UAV based RGB images
CN109117811A (en) A kind of system and method based on low-altitude remote sensing measuring technique estimation urban vegetation coverage rate
Yang et al. Yield estimation from hyperspectral imagery using spectral angle mapper (SAM)
Sharifi Estimation of biophysical parameters in wheat crops in Golestan province using ultra-high resolution images
JP2006250827A (en) Analytical method for growth condition of crop
JP4219819B2 (en) Forest / tree biomass estimation method using remote sensing high resolution data
CN115453555A (en) Unmanned aerial vehicle rapid monitoring method and system for grassland productivity
Scher et al. Drone-based photogrammetry for the construction of high-resolution models of individual trees
Pin et al. Paddy field mapping using UAV multi-spectral imagery
Pätzig et al. Allometric relationships for selected macrophytes of kettle holes in northeast Germany as a basis for efficient biomass estimation using unmanned aerial systems (UAS)
Günlü et al. Estimation of leaf area index using WorldView-2 and Aster satellite image: a case study from Turkey
Smith et al. Forest canopy structural properties
Tugi et al. Oil palm tree growth monitoring for smallholders by using unmanned aerial vehicle
Gers et al. Using SPOT4 satellite imagery to monitor area harvested by small scale sugarcane farmers at Umfolozi
CN113514402B (en) System and method for predicting chlorophyll content of winter wheat
Baynes Assessing forest canopy density in a highly variable landscape using Landsat data and FCD Mapper software
Fukagawa et al. Detecting crop growth by a multi-spectral imaging sensor
Yang et al. Using multispectral imagery and linear spectral unmixing techniques for estimating crop yield variability
Iiames Jr et al. Validation of an integrated estimation of loblolly pine (Pinus taeda L.) leaf area index (LAI) using two indirect optical methods in the southeastern United States
Pellikka Application of vertical skyward wide-angle photography and airborne video data for phenological studies of beech forests in the German Alps
Jiménez-Bello et al. Use of remote sensing and geographic information tools for irrigation management of citrus trees

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003568386

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003211938

Country of ref document: AU

122 Ep: pct application non-entry in european phase