WO2003068453A1 - Two-leg walking moving device - Google Patents

Two-leg walking moving device Download PDF

Info

Publication number
WO2003068453A1
WO2003068453A1 PCT/JP2003/001325 JP0301325W WO03068453A1 WO 2003068453 A1 WO2003068453 A1 WO 2003068453A1 JP 0301325 W JP0301325 W JP 0301325W WO 03068453 A1 WO03068453 A1 WO 03068453A1
Authority
WO
WIPO (PCT)
Prior art keywords
gait
walking
robot
module
angular
Prior art date
Application number
PCT/JP2003/001325
Other languages
French (fr)
Japanese (ja)
Inventor
Takayuki Furuta
Tetsuo Tawara
Yu Okumura
Hiroaki Kitano
Original Assignee
Japan Science And Technology Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Corporation filed Critical Japan Science And Technology Corporation
Publication of WO2003068453A1 publication Critical patent/WO2003068453A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/032Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid

Definitions

  • the present invention relates to a biped walking type mobile device that performs biped walking such as a biped walking humanoid robot, and actively acquires environmental information such as a road surface to be walked, and responds to this environmental information.
  • the present invention relates to a biped walking type mobile device capable of performing controlled walking. Background art
  • a humanoid robot as a so-called bipedal locomotion device generates gait patterns (hereinafter referred to as “gait”) set in advance and performs gait control in accordance with the gait data. Predetermined walking no. By walking the legs in turns, biped walking is realized. At this time, in order to stabilize the walking posture, the point at which the combined moment of the floor reaction force and gravity at the sole of the robot becomes zero (hereinafter referred to as ZMP (Zero Moment Point)) is set as the target value. The robot is stabilized according to this ZMP standard by performing convergence, so-called ZMP compensation.
  • ZMP Zero Moment Point
  • a bipedal walking of a robot is realized by a single walking control method on the premise that the robot walks on a road surface with known environmental information such as a flat road surface. Has become. Therefore, under such preconditions, irregular terrain such as unevenness on the road surface is treated as a disturbance in walking control, and a compensation unit is provided separately from the gait data generation unit. The part absorbs and removes disturbance.
  • the present invention provides a bipedal locomotion device which acquires environmental information for each walk and performs walking control in real time in response to the environmental information.
  • the purpose is.
  • a main body a leg having a knee at an intermediate position on both lower sides of the main body and capable of swinging in two axial directions, and a leg at a lower end.
  • Drive means for swinging the swingable joints of the legs, lower legs, and thighs, respectively, and a gait generator corresponding to the target angle trajectory, target angular velocity, and target angle corresponding to the movement command.
  • a walking control device that generates gait data including acceleration, and drives and controls each of the driving units by a control unit based on the gait data.
  • the gait generator generates the robot based on the sensor information from the sensors for detecting the state of each joint during walking and / or the sensor for detecting the angular velocity and angular acceleration and the foot force sensor mounted on the robot. Detects the posture and based on this posture Ri by the current value from biped walking mobile apparatus characterized by generating in real time an angle command value of the final gait de one data target value and the sensor information by the movement instruction is achieved.
  • the gait generator generates a gait library storing gait modules serving as elements of robot walking, and gait data relating to the next gait.
  • a gait module that selects and reads the corresponding gait module from the gait library, and a compensator that generates the final gait data by synthesizing the gait module selected by the selector in real time.
  • the gait module stored in the gait library is constituted by at least one angular trajectory pattern.
  • the bipedal locomotion device preferably comprises the gait module
  • the angular trajectory pattern is classified as ZMP value, angular momentum around the center of gravity, and angular acceleration as indices.
  • the selection unit detects the robot posture from the sensor information after the end of the previous walking, and sets a position until the target end state of the next walking by the movement command.
  • a motion plan is made, and a gait module necessary for realizing the motion plan is read from the gait library.
  • a main body a leg having a knee at a middle portion capable of swinging in two axial directions on both lower sides of the main body and a leg at a lower end;
  • a gait generating unit corresponding to a motion command is provided for a bipedal walking type moving device including a driving means for swinging a swingable joint of a leg, a lower leg, and a thigh of the leg.
  • a gait data including a target angle trajectory, a target angular velocity, and a target angular acceleration is generated by using the gait data, and based on the gait data, a control unit drives and controls each of the above driving means by a control unit.
  • the gait generator of the walking control device may include a sensor for detecting a state of each of the joints during walking and / or a sensor for detecting an angular velocity and an angular acceleration mounted on a lopot, and a sensor from a foot force sensor.
  • the attitude of the robot based on the information
  • a real-time angle command value as final gait data is generated from a target value based on the motion command and the current value of the sensor information based on the posture. Achieved.
  • the gait generator stores a gait module storing a gait module that is an element of robot walking;
  • the gait module that selects and reads the corresponding gait module from the gait library and the gait module selected by the selection unit are synthesized in real time to generate final gait data And a compensating unit.
  • the gait module stored in the gait library preferably comprises at least one angular trajectory pattern.
  • the angular trajectory pattern constituting the gait module includes a ZMP value, an angular momentum around a center of gravity, an angular addition. Speed is classified as an index.
  • the selection unit detects a posture of the robot from sensor information after the end of the previous walking, and sets a target of a next walking by a movement command.
  • a motion plan up to the terminal state is made, and a gait module necessary for realizing the motion plan is read from the gait library.
  • the gait generator of the walking control device performs the robot control based on the sensor information from the sensors provided in the robot when the robot walks. Then, an angle command value for the final gait is generated based on this posture. Therefore, the gait generator always generates gait data in real time based on the posture of the robot during the walking motion of the robot, so that the walking motion can be stably and reliably performed even on a road surface on which environmental information is unknown. Will be able to do so.
  • the gait generator selects a gait library that stores gait modules that are elements of robot gait and a corresponding gait module from the gait library when generating gait data for the next walk
  • the gait generator includes a selecting unit that reads out the gait module selected by the selecting unit and a compensating unit that generates final gait data by synthesizing the gait module in real time
  • desired gait data can be generated by reading gait modules as elements from the gait library and combining them. As a result, the amount of calculation by the gait generator is reduced, and gait data can be generated quickly.
  • gait modules stored in the gait library are composed of at least one angular orbital pattern, more diverse gait data can be synthesized.
  • the gait generator selects the gait module from the library. When reading, the gait module can be quickly searched and read.
  • the selecting unit After the previous walking is completed, the selecting unit detects the robot posture from the sensor information, and performs an operation plan up to a target end state of the next walking based on the movement command, and When reading out the gait modules necessary to realize the work plan from the gait library, the selection unit performs an operation plan for the next walk based on the sensor information for each walk, and the corresponding gait module. Select a module. Therefore, the compensator can generate gait data in real time based on the gait module selected by the selector for each walk.
  • FIG. 1 is a schematic diagram showing a mechanical configuration of an embodiment of a bipedal walking robot according to the present invention.
  • FIG. 2 is a block diagram showing an electric configuration of the biped walking robot of FIG.
  • FIG. 3 is a block diagram showing a configuration of the walking control device in the bipedal walking robot of FIG.
  • FIG. 4 is a flowchart showing walking control of the biped walking robot of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 and 2 show the configuration of an embodiment of a bipedal walking robot to which the bipedal walking type moving device according to the present invention is applied.
  • a bipedal walking robot 10 has an upper body 11 as a main body, and two legs with knees 1 L and 1 2 R in the middle attached to both lower sides of the upper body 11. 13 L, 1313 ⁇ 4, and legs 13 L, 14 L, 14 R attached to the lower end of the 13 R.
  • the upper legs 13 L and 13 R are respectively six joints, that is, joints 15 L and 15 for turning the waist legs relative to the upper body 11 in order from the top.
  • R joints in the waist roll direction (around the X axis) 16 L, 16 R, joints in the hip pitch direction (around the y axis) 17 L, 1713 ⁇ 4, knees 12 and 1 2 R
  • Each of the joints 15L, 15R to 20L, 20R is constituted by a joint driving motor.
  • the waist joint is composed of the above-mentioned joints 15 and 15 R, 16 R, 16 L, 16 R, 17 L and 17 R
  • the ankle joint is the joints 19 L and 1 It consists of 9 R, 20 L, and 20 R.
  • the waist joint and the knee joint are connected by thigh links 21 L and 21 R
  • the knee joint and the ankle joint are connected by a crus link 22 L,
  • the legs 13 L, 13 R and the feet ⁇ IH 4 L, 14 R on both the left and right sides of the bipedal walking robot 10 are given 6 degrees of freedom, respectively.
  • the legs 13 L, 13 R, and the legs 14 L, 14 R are all By giving a desired motion, the user can walk in a three-dimensional space arbitrarily.
  • feet 14 L and 14 R are ZMP detection sensors 2 as foot force sensors.
  • the ZMP detection sensors 23 L and 23 R detect the ZMP that is the center point of the sole reaction force of the soles 14 L and 14 R, respectively, and output the measured ZMP value.
  • each joint is provided with an angle detection sensor 24 (described later) such as a rotary encoder corresponding to the driving means.
  • the upper body 11 is simply shown as a box T in the illustrated case, but may actually have a head or both hands.
  • FIG. 2 shows the electrical configuration of the bipedal walking robot 10 shown in FIG.
  • a bipedal walking robot 10 includes a walking control device that drives and controls the above-mentioned driving means, that is, the above-described joint driving motors 15 L, 15 R to 20 L, and 20 R of each joint. 30.
  • the coordinate system of the bipedal walking robot 10 is an x-yz coordinate system with the X-direction (forward +) in the front-rear direction, the y-direction (inward +) in the lateral direction, and the z-direction (up +) in the up-down direction.
  • the gait control device 30 includes a gait generator 31 that generates gait data in response to a motion command, and a driving unit based on the gait data. And a control unit 32 for driving and controlling the motors 15L, 15R to 20L, 20R.
  • the gait generator 31 is a bipedal walking type corresponding to a motion command input from the outside.
  • Each joint 15 required for the robot 10 to walk 15 generates gait data including the target angular trajectory, target angular velocity, and target angular acceleration of 15R to 20L and 20R.
  • the gait generator 31 includes a selector 33 and a compensator 34, as shown in FIG. '
  • the selection unit 33 receives the sensor information from the angle detection sensor 24 and the ZMP detection unit 23, 3R, and the angular velocity or angular velocity.
  • the robot's posture is detected by acquiring the angular value of each joint of the robot, the angular momentum around the center of gravity, the angular acceleration, and the ZMP value from the acceleration detection sensor and the sole force sensor.
  • the selection unit 33 includes a gait library 33a.
  • the gait library 33a previously stores a gait module 33b as posture data which is an element of the robot's walking motion.
  • the gait module 33b is composed of, for example, at least one angular trajectory pattern. Each angular trajectory pattern is categorized as ZMP value as sensor information, angular momentum around the robot's center of gravity, and angular acceleration as intex.
  • the selection unit 33 performs an operation plan by calculating the initial posture, the terminal posture, and the initial angular momentum required for the movement of the robot in the single-leg supporting period, and according to the motion plan,
  • the gait module 33b which provides the movement in the two-leg support period necessary to realize the initial posture during the support period, is retrieved from the gait library 33a, read out, and output to the compensator 34.
  • the compensating unit 34 combines these gait modules 33 b in real time by at least one gait module 33 b from the selecting unit 33, and calculates the final value of each joint as gait data. Generates an ideal angle command value. Further, the compensator 34 performs ZMP target value compensation of the gait data synthesized in real time based on the ZMP actual measurement values from the ZMP detection sensors 23L and 23R.
  • the gait generator 31 outputs the final angle command value of each joint to the controller 32 as gait data for each walk.
  • the control unit 32 generates a control signal for each joint driving motor based on the angle command value as gait data from the compensating unit 34 and the sensor information from the angle detection sensor 24. Drive the joint drive motor of each joint of the robot 10 according to the signal. Dynamic control.
  • the bipedal walking robot 10 according to the embodiment of the present invention is configured as described above, and walks as shown in the flowchart of FIG.
  • step ST1 the gait generator 31 of the walking control device 30 designates a target end state of the robot for the next walking when the previous walking is completed. Then, the operation plan is started in step ST2. Then, in step ST3, the selection unit 33 of the gait generation unit 31 sends sensor information and / or angular velocity and angular acceleration from the angle detection sensor 24 and the ZMP detection sensors 23L and 23R. Based on information from the detection sensor and the sole force sensor, the current angle value, angular momentum around the center of gravity, angular velocity, and ZMP value of each joint of the robot are detected. After that, in step ST4, the selection unit 33 calculates the angular momentum of each joint of the mouth robot required to transition from the current initial state of the robot to the target end state based on the detected values. I do.
  • the selection unit 33 stores the detected values as indices in the gait library 33a based on the respective detected values in step ST3 and the respective momentums in step ST4, for example.
  • the retrieved gait module 33b is searched, and at least one corresponding gait module 33b is selected and read out, or a gait is calculated and generated in real time based on the detected value.
  • the operation plan ends at step ST6.
  • the compensator 34 starts the robot operation in step ST7, and in step ST8, the gait module 33b selected and read by the selector 33 in the motion plan.
  • the gait module 33b selected and read by the selector 33 in the motion plan are combined in real time to calculate the angle and ZMP target value of each joint of the robot, and in step ST9, sensor information from the angle detection sensor 24 and ZMP detection sensor 23L, 23R Based on, the actual measured ZMP value and the momentum of each joint are detected.
  • step ST5 when the gait is generated in real time by dynamics calculation, the above-described synthesis may not be performed.
  • the compensating unit 34 compares the calculated angular momentum and ZMP target value of each joint with the detected angular momentum and ZMP measured value of each joint.
  • step ST10 if there is no error between the calculated value and the detected value, the compensator 3 4 Determines in step ST11 whether ZMP compensation is possible. If ZMP compensation is not possible, an operation plan is performed again in step ST12, and the process returns to step ST3. If ZMP compensation is possible in step ST11, the compensator 34 performs ZMP compensation in step ST13 to change the angular motion trajectory of each joint of the robot. Instead, correct the error by adjusting only the angular velocity and angular acceleration. If there is no error between the calculated value and the detected value in step ST10, and after correcting the error in step ST13, the compensator 34 returns the current robot It is determined whether or not the state is the target end state according to the operation plan.
  • step ST14 If the state is not the target end state, the process returns to step ST8 again. If it is determined in step ST14 that the vehicle is in the target terminal state, the walking control device 30 completes the robot operation in step ST15 and ends one walk. As described above, the walking control relating to one walking of the robot is completed. The walking control device 30 repeats the above operation in real time every time the robot walks.
  • the bipedal walking robot 10 when the mouth bot is walking, the posture of the robot at that time is detected, and the walking data for realizing the movement command is obtained. Is generated in real time, so that even when walking on a road or the like where environmental information is unknown, stable biped walking can always be realized. Thus, for example, even on a road with complicated unevenness, the robot posture is always detected, and gait data is generated while referring to the robot posture. Exercise can be performed stably and reliably.
  • the legs 12 L and 12 R have six degrees of freedom, and the arms 13 L and 13 R have five degrees of freedom, but are not limited thereto. It may have a degree of freedom or a greater degree of freedom.
  • a gait may be generated in real time by dynamics calculation based on the sensor information. In this case, real-time synthesis of gaits does not have to be performed.
  • the gait generator of the walking control device is provided in each part when the robot walks.
  • the robot posture is detected based on the sensor information from the user, and an angle command value as final gait data is generated based on the posture. Therefore, the gait generator always generates gait data in real time based on the posture of the robot during the walking motion of the robot, so that the walking motion can be stably and reliably performed even on a road surface where environmental information is unknown. It is possible to do.
  • an extremely excellent bipedal walking type moving device which acquires environmental information for each walk and performs walking control in real time in accordance with the environmental information. Provided.

Abstract

A two-leg walking moving device comprising join-use drive motors for respectively swinging leg-swinging joints (15L, 15R) of the waist, rolling-direction joints (16L, 16R) of the waist, pitch-direction joints (17L, 17R) of the waist, pitch-direction joints (18L, 18R) of knees (12L, 12R), pitch-direction joints (19L, 19R) of ankles with respect to feet (14L, 14R), and roll-direction joints (20L, 20R) of ankles, and a walking control device (30) for producing gait data at a gait generation unit (31) in response to a motion command and drive-controlling respective drive motors at a control unit (32) based on this gait data, wherein the gait generation unit (31) detects a robot’s attitude based on sensor information from an angle detection sensor (24) for detecting the walking conditions of respective joints and from ZMP detection sensors (23L, 23R) for detecting ZMP at each foot, produces in real time angle command values as final gait data from a target value by a motion command and the current values of sensor information based on this attitude, acquires environmental information for each walk, and controls a walk in real time according to this environmental information.

Description

明 細 書 二脚歩行式移動装置 技術分野  Description Bipedal locomotion device Technical field
本発明は、 二脚歩行式人型ロボッ ト等の二脚歩行を行なう二脚歩行式移動装置 にかかり、 歩行すべき路面等の環境情報を能動的に取得して、 この環境情報に対 応した歩行制御が可能な二脚歩行式移動装置に関するものである。 背景技術  The present invention relates to a biped walking type mobile device that performs biped walking such as a biped walking humanoid robot, and actively acquires environmental information such as a road surface to be walked, and responds to this environmental information. The present invention relates to a biped walking type mobile device capable of performing controlled walking. Background art
従来、 所謂二脚歩行移動装置としての人型ロボットは、 前もって設定された歩 行パターン (以下、 歩容 (g a i t ) という) データを生成して、 この歩容デー タに従つて歩行制御を行なつて所定の歩行ノ、。ターンで脚部を歩行させることによ り、 二脚歩行を実現するようにしている。 その際、 歩行姿勢を安定させるために 、 ロボッ卜の足裏における床反力と重力との合成モーメントがゼロとなる点 (以 下、 Z M P ( Z e r o M o m e n t P o i n t ) という) を目標値に収束さ せる、 所謂 Z M P補償を行なってこの Z M P規範によりロボットの安定化を図る ようにしている。  Conventionally, a humanoid robot as a so-called bipedal locomotion device generates gait patterns (hereinafter referred to as “gait”) set in advance and performs gait control in accordance with the gait data. Predetermined walking no. By walking the legs in turns, biped walking is realized. At this time, in order to stabilize the walking posture, the point at which the combined moment of the floor reaction force and gravity at the sole of the robot becomes zero (hereinafter referred to as ZMP (Zero Moment Point)) is set as the target value. The robot is stabilized according to this ZMP standard by performing convergence, so-called ZMP compensation.
ところで、 従来の二脚歩行式人型ロボッ卜においては、 平坦路面等環境情報が 既知の路面を歩行することを前提条件に、 単一の歩行制御手法によりロボットの 二脚歩行を実現するようになっている。 従って、 このような前提条件のもと、 路 面上の凹凸等の不整地については、 歩行制御における外乱として取り扱うように して、 歩容データの生成部とは別に補償部を設けて、 補償部により外乱の吸収 ' 除去を行なっている。  By the way, in a conventional bipedal walking humanoid robot, a bipedal walking of a robot is realized by a single walking control method on the premise that the robot walks on a road surface with known environmental information such as a flat road surface. Has become. Therefore, under such preconditions, irregular terrain such as unevenness on the road surface is treated as a disturbance in walking control, and a compensation unit is provided separately from the gait data generation unit. The part absorbs and removes disturbance.
しかしながら、 未知の外舌し要素を補償部のみで対処することには限界があり、 ロボットのニ脚歩行の安定ィ匕が損なわれてしまうことがある。 また、 歩行制御手 法に関しても、 単一の歩行制御手法のみによる歩行安定化は、 例えば路面状況等 の環境変ィ匕に即応的に対処することが困難である。  However, there is a limit in dealing with unknown external tongue elements using only the compensator, and the stability of robot bipedal walking may be impaired. As for the walking control method, it is difficult to stabilize walking by using only a single walking control method, for example, to respond promptly to environmental changes such as road surface conditions.
口ボッ トの姿勢及び歩行すベき路面等の環境情報を能動的に取得し認識するこ とにより、 リアルタイムで運動計画を作成することによって歩行の安定化を図る ことは可能であるが、 このような歩行制御は従来の二脚歩行式ロボットにおいて は行なわれていない。 発明の開示 Actively acquire and recognize environmental information such as the posture of the mouth bot and the road surface that should be walked. Thus, it is possible to stabilize walking by creating an exercise plan in real time, but such walking control is not performed in a conventional bipedal walking robot. Disclosure of the invention
本発明は、 以上の点にかんがみて、 歩行毎に環境情報を取得して、 この環境情 報に対応してリアルタイムに歩行制御を行なうようにした、 二脚歩行式移動装置 を提供することを目的としている。  In view of the above, the present invention provides a bipedal locomotion device which acquires environmental information for each walk and performs walking control in real time in response to the environmental information. The purpose is.
上記目的は、 この発明の第一の構成によれば、 本体と、 本体の下部両側にて二 軸方向に揺動可能な中間に膝部, 下端に足部を備えた脚部と、.上記脚部の足部, 下腿部, 大腿部の揺動可能な関節部をそれぞれ揺動させる駆動手段と、 運動命令 に対応して、 歩容生成部により目標角度軌道, 目標角速度, 目標角加速度を含む 歩容データを生成し、 この歩容データに基づいて上記各駆動手段を制御部により それぞれ駆動制御する歩行制御装置と、 を備えた二脚歩行式移動装置において、 上記歩行制御装置の歩容生成部が、 上記各関節部の歩行時における状態を検出す るセンサ及び/又はロボットに搭載された角速度, 角加速度検出用センサ, 足部 力センサからのセンサ情報に基づいてロボッ 卜の姿勢を検出し、 この姿勢に基づ いて運動命令による目標値とセンサ情報の現在値とから最終歩容デ一タとしての 角度指令値をリアルタイムで生成することを特徴とする二脚歩行式移動装置によ り、 達成される。  According to a first aspect of the present invention, there is provided a main body, a leg having a knee at an intermediate position on both lower sides of the main body and capable of swinging in two axial directions, and a leg at a lower end. Drive means for swinging the swingable joints of the legs, lower legs, and thighs, respectively, and a gait generator corresponding to the target angle trajectory, target angular velocity, and target angle corresponding to the movement command. A walking control device that generates gait data including acceleration, and drives and controls each of the driving units by a control unit based on the gait data. The gait generator generates the robot based on the sensor information from the sensors for detecting the state of each joint during walking and / or the sensor for detecting the angular velocity and angular acceleration and the foot force sensor mounted on the robot. Detects the posture and based on this posture Ri by the current value from biped walking mobile apparatus characterized by generating in real time an angle command value of the final gait de one data target value and the sensor information by the movement instruction is achieved.
本発明による二脚歩行式移動装置は、 好ましくは、 前記歩容生成部が、 ロボッ トの歩行の要素となる歩容モジュールを格納した歩容ライブラリと、 次の歩行に 関する歩容データを生成する際に、 歩容ライブラリから対応する歩容モジュール を選択して読み出す選択部と、 選択部で選択された歩容モジユールをリアルタイ ム合成して、 最終的な歩容データを生成する補償部と、 を備えている。  In the two-legged walking type mobile device according to the present invention, preferably, the gait generator generates a gait library storing gait modules serving as elements of robot walking, and gait data relating to the next gait. A gait module that selects and reads the corresponding gait module from the gait library, and a compensator that generates the final gait data by synthesizing the gait module selected by the selector in real time. And
本発明による二脚歩行式移動装置は、 好ましくは、 前記歩容ラィブラリに格納 された歩容モジュールが、少なく とも一つの角度軌道パターンから構成されてい る。  In the two-legged walking device according to the present invention, preferably, the gait module stored in the gait library is constituted by at least one angular trajectory pattern.
本発明による二脚歩行式移動装置は、 好ましくは、 前記歩容モジュールを構成 する角度軌道パターンが、 Z M P値, 重心周りの角運動量, 角加速度をインデッ クスとして分類されている。 The bipedal locomotion device according to the present invention preferably comprises the gait module The angular trajectory pattern is classified as ZMP value, angular momentum around the center of gravity, and angular acceleration as indices.
本発明による二脚歩行式移動装置は、 好ましくは、 前記選択部が、 前の歩行の 終了後に、 センサ情報からロボッ卜の姿勢を検出して、 運動命令による次の歩行 の目標終端状態までの動作計画を行なつて、 この動作計画を実現するために必要 な歩容モジュールを歩容ライブラリから読み出す。  In the bipedal walking type moving device according to the present invention, preferably, the selection unit detects the robot posture from the sensor information after the end of the previous walking, and sets a position until the target end state of the next walking by the movement command. A motion plan is made, and a gait module necessary for realizing the motion plan is read from the gait library.
また、 上記目的は、 この発明の第二の構成によれば、 本体と、 本体の下部両側 にて二軸方向に揺動可能な中間に膝部, 下端に足部を備えた脚部と、 上記脚部の 足部, 下腿部, 大腿部の揺動可能な関節部をそれぞれ揺動させる駆動手段とを含 む二脚歩行式移動装置に関して、 運動命令に対応して歩容生成部により目標角度 軌道, 目標角速度, 目標角加速度を含む歩容データを生成し、 この歩容データに 基づいて上記各駆動手段を制御部によりそれぞれ駆動制御する二脚歩行式移動装 置の歩行制御装置において、 上記歩行制御装置の歩容生成部が、 上記各関節部の 歩行時における状態を検出するセンサ及び/又はロポッ 卜に搭載された角速度, 角加速度検出用センサ, 足部力センサからのセンサ情報に基づいてロポッ 卜の姿 勢を検出し、 この姿勢に基づいて運動命令による目標値とセンサ情報の現在値と から最終歩容データとしての角度指令値をリアルタイムで生成することを特徴と する二脚歩行式移動装置の歩行制御装置により、 達成される。  According to a second aspect of the present invention, there is provided a main body, a leg having a knee at a middle portion capable of swinging in two axial directions on both lower sides of the main body and a leg at a lower end; A gait generating unit corresponding to a motion command is provided for a bipedal walking type moving device including a driving means for swinging a swingable joint of a leg, a lower leg, and a thigh of the leg. A gait data including a target angle trajectory, a target angular velocity, and a target angular acceleration is generated by using the gait data, and based on the gait data, a control unit drives and controls each of the above driving means by a control unit. The gait generator of the walking control device may include a sensor for detecting a state of each of the joints during walking and / or a sensor for detecting an angular velocity and an angular acceleration mounted on a lopot, and a sensor from a foot force sensor. The attitude of the robot based on the information And a real-time angle command value as final gait data is generated from a target value based on the motion command and the current value of the sensor information based on the posture. Achieved.
本発明による二脚歩行式移動装置の歩行制御装置は、 好ましくは、 前記歩容生 成部が、 ロボッ卜の歩行の要素となる歩容モジュールを格納した歩容ライブラリ と、 次の歩行に関する歩容データを生成する際に、 歩容ライブラリから対応する 歩容モジュールを選択して読み出す選択部と、 選択部で選択された歩容モジユー ルをリアルタイム合成して、 最終的な歩容データを生成する補償部と、 を備えて いる。  In the walking control device for a bipedal walking type moving device according to the present invention, preferably, the gait generator stores a gait module storing a gait module that is an element of robot walking; When generating gait data, the gait module that selects and reads the corresponding gait module from the gait library and the gait module selected by the selection unit are synthesized in real time to generate final gait data And a compensating unit.
本発明による二脚歩行式移動装置の歩行制御装置は、 好ましくは、 前記歩容ラ ィブラリに格納された歩容モジュールが、 少なくとも一つの角度軌道パタ一ンか ら構成されている。  The gait module stored in the gait library preferably comprises at least one angular trajectory pattern.
本発明による二脚歩行式移動装置の歩行制御装置は、 好ましくは、 前記歩容モ ジュールを構成する角度軌道パターンが、 Z M P値, 重心周りの角運動量, 角加 速度をィンデックスとして分類されている。 In the walking control device for a bipedal walking type moving device according to the present invention, preferably, the angular trajectory pattern constituting the gait module includes a ZMP value, an angular momentum around a center of gravity, an angular addition. Speed is classified as an index.
本発明による二脚歩行式移動装置の歩行制御装置は、 好ましくは、 前記選択部 が、 前の歩行の終了後にセンサ情報からロボッ卜の姿勢を検出して、 運動命令に よる次の歩行の目標終端状態までの動作計画を行なつて、 この動作計画を実現す るために必要な歩容モジユールを歩容ラィブラリから読み出す。  In the walking control device for a bipedal walking type mobile device according to the present invention, preferably, the selection unit detects a posture of the robot from sensor information after the end of the previous walking, and sets a target of a next walking by a movement command. A motion plan up to the terminal state is made, and a gait module necessary for realizing the motion plan is read from the gait library.
上記構成によれば、 二脚歩行式移動装置が歩行運動を行なう際、 歩行制御装置 の歩容生成部が、 ロボッ ト各部の歩行時に各部に備えられたセンサからのセンサ 情報に基づいてロボッ卜の姿勢を検出し、 この姿勢に基づいて最終歩容デ一夕と しての角度指令値を生成する。 従って、 歩容生成部がロボッ卜の歩行運動時に、 常にロボッ 卜の姿勢に基づいてリアルタイムに歩容データを生成するので、 環境 情報が未知である路面においても、 歩行運動を安定して確実に行なうことが可能 になる。  According to the above configuration, when the biped walking type mobile device performs a walking motion, the gait generator of the walking control device performs the robot control based on the sensor information from the sensors provided in the robot when the robot walks. Then, an angle command value for the final gait is generated based on this posture. Therefore, the gait generator always generates gait data in real time based on the posture of the robot during the walking motion of the robot, so that the walking motion can be stably and reliably performed even on a road surface on which environmental information is unknown. Will be able to do so.
上記歩容生成部が、 ロボッ卜の歩行の要素となる歩容モジュールを格納した歩 容ライブラリと、 次の歩行に関する歩容データを生成する際に歩容ライブラリか ら対応する歩容モジュールを選択して読み出す選択部と、 選択部で選択された歩 容モジュールをリアルタイム合成して最終的な歩容データを生成する補償部と、 を備えている場合には、 歩容生成部が歩容データを生成する際に、 要素となる歩 容モジユールを歩容ラィブラリから読み出して合成することで所望の歩容デ一タ を生成することができる。 これにより、 歩容生成部の計算量が低減され、 迅速な 歩容データの生成を行なうことが可能になる。  The gait generator selects a gait library that stores gait modules that are elements of robot gait and a corresponding gait module from the gait library when generating gait data for the next walk When the gait generator includes a selecting unit that reads out the gait module selected by the selecting unit and a compensating unit that generates final gait data by synthesizing the gait module in real time, When generating gait data, desired gait data can be generated by reading gait modules as elements from the gait library and combining them. As a result, the amount of calculation by the gait generator is reduced, and gait data can be generated quickly.
上記歩容ライブラリに格納された歩容モジュールが、 少なくとも一つの角度軌 道パターンから構成されている場合には、 より多彩な歩容データを合成すること ができる。  If the gait modules stored in the gait library are composed of at least one angular orbital pattern, more diverse gait data can be synthesized.
上言己歩容モジュールを構成する角度軌道パターンが、 Z M P値, 重心周りの角 運動量, 角加速度をインデックスとして分類されている場合には、 歩容生成部が ライブラリから歩容モジュールを選択して読み出す際に、 歩容モジユールを迅速 に検索し読み出すことができる。  If the angular trajectory patterns that make up the self-gait module are classified using the ZMP value, angular momentum around the center of gravity, and angular acceleration as indices, the gait generator selects the gait module from the library. When reading, the gait module can be quickly searched and read.
上記選択部が、 前の歩行の終了後に、 センサ情報からロボッ卜の姿勢を検出し て、 運動命令による次の歩行の目標終端状態までの動作計画を行なって、 この動 作計画を実現するために必要な歩容モジュールを歩容ライブラリから読み出す場 合には、各歩行毎に、 選択部がセンサ情報に基づいて次の歩行のための動作計画 を行なって対応する歩容モジュールを選択する。 従って、補償部が各歩行毎に選 択部により選択された歩容モジュ一ルに基づいてリアルタイムに歩容デ一タを生 成することができる。 図面の簡単な説明 After the previous walking is completed, the selecting unit detects the robot posture from the sensor information, and performs an operation plan up to a target end state of the next walking based on the movement command, and When reading out the gait modules necessary to realize the work plan from the gait library, the selection unit performs an operation plan for the next walk based on the sensor information for each walk, and the corresponding gait module. Select a module. Therefore, the compensator can generate gait data in real time based on the gait module selected by the selector for each walk. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明による二脚歩行式ロボッ卜の一実施形態の機械的構成を示す概略 図である。  FIG. 1 is a schematic diagram showing a mechanical configuration of an embodiment of a bipedal walking robot according to the present invention.
図 2は 図 1の二脚歩行式ロボットの電気的構成を示すプロック図である。 図 3は 図 1の二脚歩行式ロボットにおける歩行制御装置の構成を示すプロッ ク図である。  FIG. 2 is a block diagram showing an electric configuration of the biped walking robot of FIG. FIG. 3 is a block diagram showing a configuration of the walking control device in the bipedal walking robot of FIG.
図 4は 図 1の二脚歩行式ロボッ卜の歩行制御を示すフローチャートである。 発明を実施するための最良の形態  FIG. 4 is a flowchart showing walking control of the biped walking robot of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面に示した実施の形態に基づいて、 この発明を詳細に説明する。 図 1乃至図 2は、 本発明による二脚歩行式移動装置を適用した二脚歩行式ロボ ッ卜の一実施形態の構成を示している。  Hereinafter, the present invention will be described in detail based on an embodiment shown in the drawings. 1 and 2 show the configuration of an embodiment of a bipedal walking robot to which the bipedal walking type moving device according to the present invention is applied.
図 1において、二脚歩行式ロボット 10は、 本体である上体 1 1と、 上体 1 1 の下部両側に取り付けられた中間に膝部 1 L, 1 2 Rを備えた二本の脚部 1 3 L, 131¾と、各脚部1 3し, 1 3 Rの下端に取り付けられた足部 14 L, 1 4 Rと、 を含んでいる。  In FIG. 1, a bipedal walking robot 10 has an upper body 11 as a main body, and two legs with knees 1 L and 1 2 R in the middle attached to both lower sides of the upper body 11. 13 L, 131¾, and legs 13 L, 14 L, 14 R attached to the lower end of the 13 R.
ここで、 上言己脚部 1 3 L, 1 3 Rは、 それぞれ六個の関節部、即ち上方から順 に、上体 1 1に対する腰の脚部回旋用の関節部 1 5 L, 1 5 R、 腰のロール方向 (X軸周り) の関節部 1 6 L, 1 6 R、 腰のピッチ方向 (y軸周り) の関節部 1 7 L, 171¾、膝部1 2し, 1 2 Rのピッチ方向の関節部 1 8L, 1 8 R、足部 1 4 L, 1 4 Rに対する足首部のピッチ方向の関節部 1 9 L, 1 9 R、足首部の ロール方向の関節部 20 L, 20 Rを備えている。 なお各関節部 1 5 L, 1 5 R 乃至 20 L, 20 Rは、 それぞれ関節駆動用モータにより構成されている。 この ようにして、 腰関節は、 上記関節部 1 5し, 1 5 R, 1 6 L, 1 6 R, 1 7 L, 1 7 Rから構成され、 また足関節は、 関節部 1 9 L, 1 9 R, 2 0 L, 2 0 Rか ら構成されることになる。 さらに、 腰関節と膝関節との間は大腿リンク 2 1 L, 2 1 Rにより連結されており、 また膝関節と足関節との間は下腿リンク 2 2 L,Here, the upper legs 13 L and 13 R are respectively six joints, that is, joints 15 L and 15 for turning the waist legs relative to the upper body 11 in order from the top. R, joints in the waist roll direction (around the X axis) 16 L, 16 R, joints in the hip pitch direction (around the y axis) 17 L, 171¾, knees 12 and 1 2 R Pitch direction joints 18L, 18R, feet 14L, 14R, ankle pitch joints 19L, 19R, ankle roll direction joints 20L, 20 It has R. Each of the joints 15L, 15R to 20L, 20R is constituted by a joint driving motor. this Thus, the waist joint is composed of the above-mentioned joints 15 and 15 R, 16 R, 16 L, 16 R, 17 L and 17 R, and the ankle joint is the joints 19 L and 1 It consists of 9 R, 20 L, and 20 R. Further, the waist joint and the knee joint are connected by thigh links 21 L and 21 R, and the knee joint and the ankle joint are connected by a crus link 22 L,
2 2 Rにより連結されている。 They are linked by 22R.
これにより、 二脚歩行式ロボット 1 0の左右両側の脚部 1 3 L, 1 3 R及び足 咅 IH 4 L, 1 4 Rは、 それぞれ 6自由度を与えられることになり、 歩行中にこれ らの 1 2個の関節部をそれぞれ駆動モータにより適宜の角度, 角速度及び角加速 度で駆動制御することにより、脚部 1 3 L, 1 3 R, 足部 1 4 L, 1 4 R全体に 所望の動作を与えて、 任意に三次元空間を歩行することができる。  As a result, the legs 13 L, 13 R and the feet 足 IH 4 L, 14 R on both the left and right sides of the bipedal walking robot 10 are given 6 degrees of freedom, respectively. By controlling the drive of these 12 joints at appropriate angles, angular velocities, and angular accelerations by drive motors, the legs 13 L, 13 R, and the legs 14 L, 14 R are all By giving a desired motion, the user can walk in a three-dimensional space arbitrarily.
さらに、 上記足部 1 4 L, 1 4 Rは、足部力センサとして ZMP検出センサ 2 Further, the above-mentioned feet 14 L and 14 R are ZMP detection sensors 2 as foot force sensors.
3 L, 2 3 Rを備えている。 この ZMP検出センサ 2 3 L, 2 3 Rは、 それぞれ 各足部 1 4 L, 1 4 Rにおける足裏床反力の中心点である ZMPを検出して、 Z MP実測値を出力する。 3 L, 23 R are provided. The ZMP detection sensors 23 L and 23 R detect the ZMP that is the center point of the sole reaction force of the soles 14 L and 14 R, respectively, and output the measured ZMP value.
さらに、各関節部には、 それぞれ駆動手段に対応してロータリエンコーダ等の 角度検出センサ 2 4 (後述) が設けられている。  Further, each joint is provided with an angle detection sensor 24 (described later) such as a rotary encoder corresponding to the driving means.
なお、 上記上体 1 1は、 図示の場合、単に箱状に示され Tいるが、実際には、 頭部や両手を備えていてもよい。  The upper body 11 is simply shown as a box T in the illustrated case, but may actually have a head or both hands.
図 2は図 1に示した二脚歩行式ロボット 1 0の電気的構成を示している。 図 1 において、 二脚歩行式ロボット 1 0は、 上記駆動手段、 即ち上述した各関節部の 関節駆動用モータ 1 5 L, 1 5 R乃至 2 0 L, 2 0 Rを駆動制御する歩行制御装 置 30を備えている。 なお、 二脚歩行式ロボット 1 0の座標系として、前後方向 を X方向 (前方 + ) , 横方向を y方向 (内方 + ) そして上下方向を z方向 (上方 + ) とする x yz座標系を使用する。  FIG. 2 shows the electrical configuration of the bipedal walking robot 10 shown in FIG. In FIG. 1, a bipedal walking robot 10 includes a walking control device that drives and controls the above-mentioned driving means, that is, the above-described joint driving motors 15 L, 15 R to 20 L, and 20 R of each joint. 30. The coordinate system of the bipedal walking robot 10 is an x-yz coordinate system with the X-direction (forward +) in the front-rear direction, the y-direction (inward +) in the lateral direction, and the z-direction (up +) in the up-down direction. Use
上記歩行制御装置 3 0は、運動命令に対応して歩容データを生成する歩容生成 部 3 1と、 この歩容データに基づいて、駆動手段、 即ち上述した各関節部即ち関 節駆動用モータ 1 5 L, 1 5 R乃至 20 L, 2 0 Rを駆動制御する制御部 3 2と を備えている。  The gait control device 30 includes a gait generator 31 that generates gait data in response to a motion command, and a driving unit based on the gait data. And a control unit 32 for driving and controlling the motors 15L, 15R to 20L, 20R.
上記歩容生成部 3 1は、外部から入力される運動命令に対応して、二脚歩行式 ロボット 1 0の歩行に必要な各関節部 1 5し, 1 5 R乃至 2 0 L , 2 0 Rの目標 角度軌道, 目標角速度, 目標角加速度を含む歩容データを生成するようになって いる。 ここで、 上記歩容生成部 3 1は、 図 3に示すように、 選択部 3 3と補償部 3 4とから構成されている。 ' The gait generator 31 is a bipedal walking type corresponding to a motion command input from the outside. Each joint 15 required for the robot 10 to walk 15 generates gait data including the target angular trajectory, target angular velocity, and target angular acceleration of 15R to 20L and 20R. . Here, the gait generator 31 includes a selector 33 and a compensator 34, as shown in FIG. '
上記選択部 3 3は、 前の歩行終了後、 即ち遊脚接地衝撃吸収期終了後に、 前記 角度検出センサ 2 4及び Z M P検出部 2 3し, 3 Rからのセンサ情報及びノ又 は角速度, 角加速度検出用センサ, 足裏力センサからのロボッ卜の各関節部の角 度値と重心周りの角運動量及び角加速度そして Z M P値を取得して、 ロボッ 卜の 姿勢を検出する。  After the previous walking is completed, that is, after the swing leg impact shock absorption period is completed, the selection unit 33 receives the sensor information from the angle detection sensor 24 and the ZMP detection unit 23, 3R, and the angular velocity or angular velocity. The robot's posture is detected by acquiring the angular value of each joint of the robot, the angular momentum around the center of gravity, the angular acceleration, and the ZMP value from the acceleration detection sensor and the sole force sensor.
ここで、 選択部 3 3は、 歩容ライブラリ 3 3 aを備えている。 この歩容ライブ ラリ 3 3 aは、 前もってロボッ卜の歩行動作の要素となる姿勢データとしての歩 容モジュール 3 3 bが格納されている。 この歩容モジュール 3 3 bは、 例えば少 なくとも一つの角度軌道パターンから構成されている。 各角度軌道パターンは、 センサ情報としての Z M P値, ロボッ卜の重心周りの角運動量及び角加速度をィ ンテックスとして分類されている。 そして、 選択部 3 3は、 ロボッ卜の単脚支持 期の初期姿勢, 終端姿勢及びその運動に必要な初期角運動量を算出することによ り動作計画を行なって、 この動作計画に従って、 単脚支持期初期姿勢を実現する ために必要な両脚支持期の運動を与える歩容モジュール 3 3 bを歩容ライブラリ 3 3 aから検索して読み出し、 補償部 3 4へ出力する。  Here, the selection unit 33 includes a gait library 33a. The gait library 33a previously stores a gait module 33b as posture data which is an element of the robot's walking motion. The gait module 33b is composed of, for example, at least one angular trajectory pattern. Each angular trajectory pattern is categorized as ZMP value as sensor information, angular momentum around the robot's center of gravity, and angular acceleration as intex. Then, the selection unit 33 performs an operation plan by calculating the initial posture, the terminal posture, and the initial angular momentum required for the movement of the robot in the single-leg supporting period, and according to the motion plan, The gait module 33b, which provides the movement in the two-leg support period necessary to realize the initial posture during the support period, is retrieved from the gait library 33a, read out, and output to the compensator 34.
上記補償部 3 4は、 選択部 3 3からの少なくとも一つの歩容モジュール 3 3 b により、 これらの歩容モジュール 3 3 bをリアルタイム合成して、 歩容データと しての各関節部の最終的な角度指令値を生成する。 さらに、 上記補償部 3 4は、 上記 Z M P検出センサ 2 3 L , 2 3 Rからの Z M P実測値に基づいて、 リアルタ ィム合成した歩容データの Z M P目標値補償を行なう。  The compensating unit 34 combines these gait modules 33 b in real time by at least one gait module 33 b from the selecting unit 33, and calculates the final value of each joint as gait data. Generates an ideal angle command value. Further, the compensator 34 performs ZMP target value compensation of the gait data synthesized in real time based on the ZMP actual measurement values from the ZMP detection sensors 23L and 23R.
このようにして、 歩容生成部 3 1は、 歩行毎の歩容データとして、各関節部の 最終的な角度指令値を制御部 3 2に出力する。  Thus, the gait generator 31 outputs the final angle command value of each joint to the controller 32 as gait data for each walk.
上記制御部 3 2は、 補償部 3 4からの歩容データとしての角度指令値と、 角度 検出センサ 2 4からのセンサ情報に基づいて、 各関節駆動用モータの制御信号を 生成し、 この制御信号に従ってロボット 1 0の各関節部の関節駆動用モータを駆 動制御するようになっている。 The control unit 32 generates a control signal for each joint driving motor based on the angle command value as gait data from the compensating unit 34 and the sensor information from the angle detection sensor 24. Drive the joint drive motor of each joint of the robot 10 according to the signal. Dynamic control.
本発明実施形態による二脚歩行式ロボッ ト 1 0は以上のように構成されており 、 図 4のフローチャートに示すように歩行する。  The bipedal walking robot 10 according to the embodiment of the present invention is configured as described above, and walks as shown in the flowchart of FIG.
図 4のフローチャートにおいて、 先ず、 ステップ ST 1にて、 歩行制御装置 3 0の歩容生成部 3 1は、 前の歩行が終了した時点で次の歩行のためのロボッ 卜の 目標終端状態を指定し、 これによりステップ ST 2にて動作計画を開始する。 そ して、 ステップ ST 3にて、 歩容生成部 3 1の選択部 3 3は、 角度検出センサ 2 4及び ZMP検出センサ 2 3 L, 2 3 Rからのセンサ情報及び/又は角速度, 角 加速度検出用センサ, 足裏力センサからの情報に基づいて、 現在のロボッ卜の各 関節部の角度値, 重心周りの角運動量, 角速度及び ZMP値を検出する。 その後 ステップ S T 4にて、 選択部 3 3は、 これらの検出値から、 現在のロボットの初 期状態から目標終端状態まで遷移するために必要な口ボッ トの各関節部の角運動 量を算出する。  In the flowchart of FIG. 4, first, in step ST1, the gait generator 31 of the walking control device 30 designates a target end state of the robot for the next walking when the previous walking is completed. Then, the operation plan is started in step ST2. Then, in step ST3, the selection unit 33 of the gait generation unit 31 sends sensor information and / or angular velocity and angular acceleration from the angle detection sensor 24 and the ZMP detection sensors 23L and 23R. Based on information from the detection sensor and the sole force sensor, the current angle value, angular momentum around the center of gravity, angular velocity, and ZMP value of each joint of the robot are detected. After that, in step ST4, the selection unit 33 calculates the angular momentum of each joint of the mouth robot required to transition from the current initial state of the robot to the target end state based on the detected values. I do.
これにより、 ステップ ST 5にて、 選択部 3 3はステップ ST 3での各検出値 及びステップ ST 4での各運動量に基づいて、 例えば上記検出値をィンデックス として歩容ライブラリ 3 3 aに格納された歩容モジュール 3 3 bを検索し、 対応 する少なくとも一つの歩容モジュール 3 3 bを選択して読み出し、 或いは検出値 をもとに歩容をリアルタイムで計算し生成する。 これにより、 ステップ ST6に て動作計画が終了する。  Accordingly, in step ST5, the selection unit 33 stores the detected values as indices in the gait library 33a based on the respective detected values in step ST3 and the respective momentums in step ST4, for example. The retrieved gait module 33b is searched, and at least one corresponding gait module 33b is selected and read out, or a gait is calculated and generated in real time based on the detected value. Thus, the operation plan ends at step ST6.
続いて、補償部 3 4はステップ ST 7にてロボッ卜の動作を開始し、 ステップ ST8にて、 動作計画にて選択部 3 3により選択して読み出された歩容モジュ一 ル 3 3 bをリアルタイム合成して、 ロボッ卜の各関節部の角度及び Z MP目標値 を算出すると共に、 ステップ ST9にて、 角度検出センサ 2 4及び ZMP検出セ ンサ 2 3 L, 2 3 Rからのセンサ情報に基づいて、 そのときの ZMP実測値及び 各関節部の各運動量を検出する。 なお、 ステップ ST 5において、 歩容を動力学 計算によりリアルタイムで生成する場合には、 上記合成は行わなくてもよい。 そ して、 補償部 3 4はステップ ST 1 0にて、 算出した各関節部の角運動量及び Z M P目標値と検出した各関節部の角運動量及び Z M P実測値とを比較する。 ここ で、 ステップ ST 1 0にて、 算出値と検出値の誤差がない場合には、 補償部 3 4 はステップ ST 1 1にて ZMP補償が可能か否かを判定し、 ZMP補償が可能で ない場合には、 ステップ ST 1 2にて再度動作計画を行なってステップ ST 3に 戻る。 また、 ステップ ST 1 1にて、 Z MP補償が可能である場合には、 補償部 3 4はステップ ST 1 3にて ZMP補償を行なって、 ロボッ 卜の各関節部の角運 動軌道を変更せずに、 角速度及び角加速度のみの調整により誤差を修正する。 ス テツプ ST 1 0にて、 算出値と検出値の誤差がない場合、 またステップ ST 1 3 にて誤差の修正を行なった後、 補償部 3 4は、 ステップ ST 1 4にてロボッ 卜の 現在の状態が動作計画による目標終端状態であるか否かを判定して、 目標終端状 態でない場合には、 再びステップ ST 8に戻る。 また、 ステップ ST 1 4にて、 目標終端状態である場合には、 歩行制御装置 3 0はステップ ST 1 5にてロボッ ト動作を完了して、 一つの歩行を終了する。 以上で、 ロボッ卜の一つの歩行に関 する歩行制御が終了するが、 歩行制御装置 30は、 ロボッ卜の歩行毎に上記動作 をリアルタイムで繰返し行なう。 Subsequently, the compensator 34 starts the robot operation in step ST7, and in step ST8, the gait module 33b selected and read by the selector 33 in the motion plan. Are combined in real time to calculate the angle and ZMP target value of each joint of the robot, and in step ST9, sensor information from the angle detection sensor 24 and ZMP detection sensor 23L, 23R Based on, the actual measured ZMP value and the momentum of each joint are detected. Note that, in step ST5, when the gait is generated in real time by dynamics calculation, the above-described synthesis may not be performed. Then, in step ST10, the compensating unit 34 compares the calculated angular momentum and ZMP target value of each joint with the detected angular momentum and ZMP measured value of each joint. Here, in step ST10, if there is no error between the calculated value and the detected value, the compensator 3 4 Determines in step ST11 whether ZMP compensation is possible. If ZMP compensation is not possible, an operation plan is performed again in step ST12, and the process returns to step ST3. If ZMP compensation is possible in step ST11, the compensator 34 performs ZMP compensation in step ST13 to change the angular motion trajectory of each joint of the robot. Instead, correct the error by adjusting only the angular velocity and angular acceleration. If there is no error between the calculated value and the detected value in step ST10, and after correcting the error in step ST13, the compensator 34 returns the current robot It is determined whether or not the state is the target end state according to the operation plan. If the state is not the target end state, the process returns to step ST8 again. If it is determined in step ST14 that the vehicle is in the target terminal state, the walking control device 30 completes the robot operation in step ST15 and ends one walk. As described above, the walking control relating to one walking of the robot is completed. The walking control device 30 repeats the above operation in real time every time the robot walks.
このようにして、 本発明実施形態による二脚歩行式ロボッ ト 1 0によれば、 口 ボッ卜の歩行時に、 そのときのロボッ卜の姿勢を検出して、 運動命令を実現する ための歩行データをリアルタイムで生成するので、 環境情報が未知である路面等 を歩行する場合であっても、 常に安定した二脚歩行を実現することができる。 こ れにより、 例えば複雑な凹凸のある路面においても、 常にロボッ 卜の姿勢を検出 して、 ロボッ卜の姿勢を参照しながら歩容データを生成することにより、 二脚歩 行式移動装置による歩行運動を安定して確実に行なうことが可能になる。  As described above, according to the bipedal walking robot 10 according to the embodiment of the present invention, when the mouth bot is walking, the posture of the robot at that time is detected, and the walking data for realizing the movement command is obtained. Is generated in real time, so that even when walking on a road or the like where environmental information is unknown, stable biped walking can always be realized. Thus, for example, even on a road with complicated unevenness, the robot posture is always detected, and gait data is generated while referring to the robot posture. Exercise can be performed stably and reliably.
上述した実施形態においては、脚部 1 2 L, 1 2 Rは 6自由度を、 そして腕部 1 3 L, 1 3 Rは 5自由度を有しているが、 これに限らず、 より小さい自由度ま たはより大きい自由度を有していてもよい。 また、 ステップ ST 1 5にて、 セン サ情報に基づレ、て動力学計算により歩容をリアルタイムで生成してもよい。 この 場合、 歩容のリアルタイム合成は実行しなくてもよい。 産業上の利用可能性  In the embodiment described above, the legs 12 L and 12 R have six degrees of freedom, and the arms 13 L and 13 R have five degrees of freedom, but are not limited thereto. It may have a degree of freedom or a greater degree of freedom. In step ST15, a gait may be generated in real time by dynamics calculation based on the sensor information. In this case, real-time synthesis of gaits does not have to be performed. Industrial applicability
以上述べたように、 本発明によれば、 二脚歩行式移動装置が歩行運動を行なう 際、 歩行制御装置の歩容生成部がロボッ ト各部の歩行時に各部に備えられたセン ザからのセンサ情報に基づいてロボッ卜の姿勢を検出し、 この姿勢に基づいて最 終歩容データとしての角度指令値を生成する。 従って、 歩容生成部がロボッ卜の 歩行運動時に常にロボットの姿勢に基づいてリアルタイムに歩容データを生成す ることにより、 環境情報が未知である路面においても、 歩行運動を安定して確実 に行なうことが可能になる。 As described above, according to the present invention, when the two-legged walking device performs a walking motion, the gait generator of the walking control device is provided in each part when the robot walks. The robot posture is detected based on the sensor information from the user, and an angle command value as final gait data is generated based on the posture. Therefore, the gait generator always generates gait data in real time based on the posture of the robot during the walking motion of the robot, so that the walking motion can be stably and reliably performed even on a road surface where environmental information is unknown. It is possible to do.
このようにして、 本発明によれば、 歩行毎に環境情報を取得して、 この環境情 報に対応してリアルタイムに歩行制御を行なうようにした、 極めて優れた二脚歩 行式移動装置が提供される。  Thus, according to the present invention, there is provided an extremely excellent bipedal walking type moving device which acquires environmental information for each walk and performs walking control in real time in accordance with the environmental information. Provided.

Claims

請 求 の 範 囲 The scope of the claims
1 . 本体と、 本体の下部両側にて二軸方向に揺動可能な中間に膝部, 下端に 足部を備えた脚部と、 上記脚部の足部, 下腿部, 大腿部の揺動可能な関節部をそ れぞれ揺動させる駆動手段と、 運動命令に対応して歩容生成部により目標角度軌 道, 目標角速度, 目標角力 D速度を含む歩容データを生成しこの歩容デ一夕に基づ いて上記各駆動手段を制御部によりそれぞれ駆動制御する歩行制御装置と、 を備 えた二脚歩行式移動装置において、 1. A main body, a leg with a knee at the middle and a foot at the lower end that can swing in two axial directions on both lower sides of the main body, and a foot, a lower leg, and a thigh of the leg. The gait generator generates the gait data including the target angular trajectory, the target angular velocity, and the target angular force D speed by the gait generator in response to the motion command. A walking control device that drives and controls each of the above-described driving means by a control unit based on the gait data;
上記歩行制御装置の歩容生成部が、 上記各関節部の歩行時における状態を検出 するセンサ及び/又はロボットに搭載された角速度, 角加速度検出用センサ, 足 部力センサからのセンサ情報に基づいてロボッ 卜の姿勢を検出し、 この姿勢に基 づいて運動命令による目標値とセンサ情報の現在値とから最終歩容デ一タとして の角度指令値をリアルタイムで生成することを特徴とする二脚歩行式移動装置。  The gait generator of the walking control device is configured to detect a state of each of the joints during walking and / or sensor information from an angular velocity and angular acceleration detecting sensor mounted on the robot and a foot force sensor. The robot is configured to detect the robot's posture, and based on the posture, generate an angle command value as final gait data in real time from a target value by a motion command and a current value of sensor information. Leg walking type moving device.
2 . 前記歩容生成部が、 ロボットの歩行の要素となる歩容モジュールを格納 した歩容ライブラリと、 次の歩行に関する歩容データを生成する際に、 歩容ライ ブラリから対応する歩容モジュールを選択して読み出す選択部と、 選択部で選択 された歩容モジュールをリアルタイム合成して、 最終的な歩容データを生成する 補償部と、 を備えていることを特徴とする、 請求項 1に記載の二脚歩行式移動装 2. The gait generator stores a gait module that stores gait modules that are elements of robot walking, and a gait module corresponding to the gait library when generating gait data for the next gait. 2. A selecting unit for selecting and reading the selected gait module, and a compensating unit for real-time synthesizing the gait module selected by the selecting unit to generate final gait data. Bipedal walking mobile device described in
3 . 前記歩容ライブラリに格納された歩容モジュールが、 少なくとも一つの 角度軌道ノ、'ターンから構成されていることを特徴とする、 請求項 2に記載の二脚 歩行式移動装置。 3. The bipedal locomotion device according to claim 2, wherein the gait module stored in the gait library includes at least one angular trajectory and a 'turn'.
4 . 前記歩容モジュールを構成する角度軌道パターンが、 Z M P値, 重心周 りの角運動量, 角加速度をィンデックスとして分類されていることを特徴とする 、 請求項 3に記載の二脚歩行式移動装置。 4. The bipedal locomotion according to claim 3, wherein the angular trajectory pattern constituting the gait module is classified as a ZMP value, an angular momentum around a center of gravity, and an angular acceleration as indices. apparatus.
5. 前記選択部が、 前の歩行の終了後に、 センサ情報からロボットの姿勢を 検出して、 運動命令による次の歩行の目標終端状態までの動作計画を行なつて、 この動作計画を実現するために必要な歩容モジユールを歩容ラィブラリから読み 出すことを特徴とする、 請求項 2から 4の何れかに記載の二脚歩行式移動装置。 5. After the previous walking is completed, the selection unit detects the posture of the robot from the sensor information, and performs an operation plan up to a target end state of the next walk by a motion command, thereby realizing the motion plan. The bipedal locomotion device according to any one of claims 2 to 4, wherein a gait module required for the purpose is read out from a gait library.
6 . 本体と、 本体の下部両側にて二軸方向に揺動可能な中間に膝部, 下端に 足部を備えた脚部と、 上記脚部の足部, 下腿部, 大腿部の揺動可能な関節部をそ れぞれ揺動させる駆動手段と、 を含む二脚歩行式移動装置に関して、 運動命令に 対応して歩容生成部により目標角度軌道, 目標角速度, 目標角加速度を含む歩容 デ一タを生成しこの歩容デ一タに基づいて上記各駆動手段を制御部によりそれぞ れ駆動制御する二脚歩行式移動装置の歩行制御装置において、 6. A main body, a leg with a knee at the middle and a foot at the lower end that can swing in two axial directions on both lower sides of the main body, and a foot, a lower leg, and a thigh of the leg. The drive means for swinging the swingable joints, respectively, and the bipedal locomotion system including the gait generator, the target angle trajectory, the target angular velocity, and the target angular acceleration are calculated by the gait generator in response to the movement command. In the walking control device of the bipedal walking type moving device that generates gait data including the gait data and drives and controls each of the driving means by the control unit based on the gait data,
上記歩行制御装置の歩容生成部が、 上記各関節部の歩行時における状態を検出 するセンサ及び/又はロボッ 卜に搭載された角速度, 角加速度検出用センサ, 足 部力センサからのセンサ情報に基づいてロボッ 卜の姿勢を検出し、 この姿勢に基 づいて運動命令による目標値とセンサ情報の現在値とから最終歩容データとして の角度指令値をリアルタイムで生成することを特徴とする、 二脚歩行式移動装置 の歩行制御装置。  The gait generator of the walking control device receives the sensor information from the sensor for detecting the state of each joint during walking and / or the sensor for detecting angular velocity and angular acceleration mounted on the robot, and the foot force sensor. Based on the posture, and based on the posture, generates an angle command value as final gait data in real time from a target value by a motion command and a current value of sensor information. A walking control device for a legged walking device.
7 . 前記歩容生成部が、 ロボットの歩行の要素となる歩容モジュールを格納 した歩容ライブラリと、 次の歩行に関する歩容データを生成する際に、 歩容ライ ブラリから対応する歩容モジュールを選択して読み出す選択部と、 選択部で選択 された歩容モジュールをリアルタイム合成して、 最終的な歩容デ一タを生成する 補償部と、 を備えていることを特徴とする、 請求項 6に記載の二脚歩行式移動装 置の歩行制御装置。 7. The gait generation unit stores a gait library storing gait modules that are elements of robot walking, and a gait module corresponding to the gait library when generating gait data related to the next gait. A gait module selected by the selector and a compensator for generating final gait data by synthesizing the gait module selected in real time. Item 7. The walking control device for a bipedal locomotion device according to Item 6.
8 . 前記歩容ラィブラリに格納された歩容モジュ一ルが、 少なくとも一つの 角度軌道 、'ターンから構成されていることを特徴とする、 請求項 7に記載の二脚 歩行式移動装置の歩行制御装置。 8. The gait module of claim 7, wherein the gait module stored in the gait library comprises at least one angular trajectory, a 'turn'. Control device.
9. 前記歩容モジュールを構成する角度 flitパターンが、 Z M P値, 重心周 りの角運動量, 角加速度をィンデッタスとして分類されていることを特徴とする 、 請求項 8に記載の二脚歩行式移動装置の歩行制御装置。 9. The bipedal locomotion according to claim 8, wherein the angle flit pattern constituting the gait module is classified as ZMP value, angular momentum around the center of gravity, and angular acceleration as indettas. The walking control device of the device.
1 0. 前記選択部が、 前の歩行の終了後にセンサ情報からロボットの姿勢を 贪出して、 運動命令による次の歩行の目標終端状態までの動作計画を行なつて、 この動作計画を実現するために必要な歩容モジュールを歩容ライブラリから読み 出すことを特徴とする、 請求項 7から 9の何れかに記載の二脚歩行式移動装置の 歩行制御装置。 10. The selection unit detects the posture of the robot from the sensor information after the end of the previous walk, and performs an operation plan up to a target end state of the next walk based on the motion command, thereby realizing the motion plan. 10. The walking control device for a bipedal locomotion device according to claim 7, wherein a gait module necessary for the reading is read from a gait library.
PCT/JP2003/001325 2002-02-18 2003-02-07 Two-leg walking moving device WO2003068453A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-40838 2002-02-18
JP2002040838A JP2003236783A (en) 2002-02-18 2002-02-18 Bipedal walking transfer device

Publications (1)

Publication Number Publication Date
WO2003068453A1 true WO2003068453A1 (en) 2003-08-21

Family

ID=27678322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001325 WO2003068453A1 (en) 2002-02-18 2003-02-07 Two-leg walking moving device

Country Status (3)

Country Link
JP (1) JP2003236783A (en)
TW (1) TW200303257A (en)
WO (1) WO2003068453A1 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100174385A1 (en) * 2008-09-04 2010-07-08 Iwalk, Inc. Hybrid Terrain-Adaptive Lower-Extremity Systems
EP2343163A1 (en) * 2010-01-11 2011-07-13 Samsung Electronics Co., Ltd. Walking robot and method of controlling balance thereof
EP2347868A1 (en) * 2010-01-18 2011-07-27 Samsung Electronics Co., Ltd. Humanoid robot and walking control method thereof
US8864846B2 (en) 2005-03-31 2014-10-21 Massachusetts Institute Of Technology Model-based neuromechanical controller for a robotic leg
US8870967B2 (en) 2005-03-31 2014-10-28 Massachusetts Institute Of Technology Artificial joints using agonist-antagonist actuators
US9032635B2 (en) 2011-12-15 2015-05-19 Massachusetts Institute Of Technology Physiological measurement device or wearable device interface simulator and method of use
US9060883B2 (en) 2011-03-11 2015-06-23 Iwalk, Inc. Biomimetic joint actuators
US9149370B2 (en) 2005-03-31 2015-10-06 Massachusetts Institute Of Technology Powered artificial knee with agonist-antagonist actuation
US9221177B2 (en) 2012-04-18 2015-12-29 Massachusetts Institute Of Technology Neuromuscular model-based sensing and control paradigm for a robotic leg
US9333097B2 (en) 2005-03-31 2016-05-10 Massachusetts Institute Of Technology Artificial human limbs and joints employing actuators, springs, and variable-damper elements
US9339397B2 (en) 2005-03-31 2016-05-17 Massachusetts Institute Of Technology Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components
US9668888B2 (en) 2003-09-25 2017-06-06 Massachusetts Institute Of Technology Active ankle foot orthosis
US9687377B2 (en) 2011-01-21 2017-06-27 Bionx Medical Technologies, Inc. Terrain adaptive powered joint orthosis
US9693883B2 (en) 2010-04-05 2017-07-04 Bionx Medical Technologies, Inc. Controlling power in a prosthesis or orthosis based on predicted walking speed or surrogate for same
US9737419B2 (en) 2011-11-02 2017-08-22 Bionx Medical Technologies, Inc. Biomimetic transfemoral prosthesis
US9839552B2 (en) 2011-01-10 2017-12-12 Bionx Medical Technologies, Inc. Powered joint orthosis
US10080672B2 (en) 2005-03-31 2018-09-25 Bionx Medical Technologies, Inc. Hybrid terrain-adaptive lower-extremity systems
US10137011B2 (en) 2005-03-31 2018-11-27 Massachusetts Institute Of Technology Powered ankle-foot prosthesis
US10285828B2 (en) 2008-09-04 2019-05-14 Bionx Medical Technologies, Inc. Implementing a stand-up sequence using a lower-extremity prosthesis or orthosis
US10307272B2 (en) 2005-03-31 2019-06-04 Massachusetts Institute Of Technology Method for using a model-based controller for a robotic leg
US10485681B2 (en) 2005-03-31 2019-11-26 Massachusetts Institute Of Technology Exoskeletons for running and walking
US10531965B2 (en) 2012-06-12 2020-01-14 Bionx Medical Technologies, Inc. Prosthetic, orthotic or exoskeleton device
US10537449B2 (en) 2011-01-12 2020-01-21 Bionx Medical Technologies, Inc. Controlling powered human augmentation devices
US11278433B2 (en) 2005-03-31 2022-03-22 Massachusetts Institute Of Technology Powered ankle-foot prosthesis

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100835361B1 (en) * 2003-08-29 2008-06-04 삼성전자주식회사 Walking robot and its control method using simple ground reaction force sensors
CN110340880A (en) * 2018-04-02 2019-10-18 新世代机器人暨人工智慧股份有限公司 Posable robot and its attitude adjusting method
KR102175945B1 (en) * 2018-08-06 2020-11-09 한국로봇융합연구원 Human motion planning system using an angular momentum in zmp

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0856457A2 (en) * 1997-01-31 1998-08-05 Honda Giken Kogyo Kabushiki Kaisha Gait generation system of legged mobile robot
EP1018467A1 (en) * 1996-07-25 2000-07-12 Honda Giken Kogyo Kabushiki Kaisha Gait generating device for leg type moving robot
JP5062363B2 (en) * 2009-04-01 2012-10-31 トヨタ自動車株式会社 Control device for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1018467A1 (en) * 1996-07-25 2000-07-12 Honda Giken Kogyo Kabushiki Kaisha Gait generating device for leg type moving robot
EP0856457A2 (en) * 1997-01-31 1998-08-05 Honda Giken Kogyo Kabushiki Kaisha Gait generation system of legged mobile robot
JP5062363B2 (en) * 2009-04-01 2012-10-31 トヨタ自動車株式会社 Control device for internal combustion engine

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9668888B2 (en) 2003-09-25 2017-06-06 Massachusetts Institute Of Technology Active ankle foot orthosis
US10342681B2 (en) 2005-03-31 2019-07-09 Massachusetts Institute Of Technology Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components
US10307272B2 (en) 2005-03-31 2019-06-04 Massachusetts Institute Of Technology Method for using a model-based controller for a robotic leg
US11273060B2 (en) 2005-03-31 2022-03-15 Massachusetts Institute Of Technology Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components
US8864846B2 (en) 2005-03-31 2014-10-21 Massachusetts Institute Of Technology Model-based neuromechanical controller for a robotic leg
US8870967B2 (en) 2005-03-31 2014-10-28 Massachusetts Institute Of Technology Artificial joints using agonist-antagonist actuators
US10588759B2 (en) 2005-03-31 2020-03-17 Massachusetts Institute Of Technology Artificial human limbs and joints employing actuators, springs and variable-damper elements
US11278433B2 (en) 2005-03-31 2022-03-22 Massachusetts Institute Of Technology Powered ankle-foot prosthesis
US9539117B2 (en) 2005-03-31 2017-01-10 Massachusetts Institute Of Technology Method for controlling a robotic limb joint
US10485681B2 (en) 2005-03-31 2019-11-26 Massachusetts Institute Of Technology Exoskeletons for running and walking
US9149370B2 (en) 2005-03-31 2015-10-06 Massachusetts Institute Of Technology Powered artificial knee with agonist-antagonist actuation
US10137011B2 (en) 2005-03-31 2018-11-27 Massachusetts Institute Of Technology Powered ankle-foot prosthesis
US10080672B2 (en) 2005-03-31 2018-09-25 Bionx Medical Technologies, Inc. Hybrid terrain-adaptive lower-extremity systems
US9333097B2 (en) 2005-03-31 2016-05-10 Massachusetts Institute Of Technology Artificial human limbs and joints employing actuators, springs, and variable-damper elements
US9339397B2 (en) 2005-03-31 2016-05-17 Massachusetts Institute Of Technology Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components
US11491032B2 (en) 2005-03-31 2022-11-08 Massachusetts Institute Of Technology Artificial joints using agonist-antagonist actuators
US10285828B2 (en) 2008-09-04 2019-05-14 Bionx Medical Technologies, Inc. Implementing a stand-up sequence using a lower-extremity prosthesis or orthosis
US10070974B2 (en) 2008-09-04 2018-09-11 Bionx Medical Technologies, Inc. Hybrid terrain-adaptive lower-extremity systems
US9554922B2 (en) * 2008-09-04 2017-01-31 Bionx Medical Technologies, Inc. Hybrid terrain-adaptive lower-extremity systems
US9345592B2 (en) 2008-09-04 2016-05-24 Bionx Medical Technologies, Inc. Hybrid terrain-adaptive lower-extremity systems
US20100174385A1 (en) * 2008-09-04 2010-07-08 Iwalk, Inc. Hybrid Terrain-Adaptive Lower-Extremity Systems
US9211201B2 (en) 2008-09-04 2015-12-15 Iwalk, Inc. Hybrid terrain-adaptive lower-extremity systems
US10105244B2 (en) 2008-09-04 2018-10-23 Bionx Medical Technologies, Inc. Hybrid terrain-adaptive lower-extremity systems
US9351856B2 (en) 2008-09-04 2016-05-31 Iwalk, Inc. Hybrid terrain-adaptive lower-extremity systems
US8900325B2 (en) 2008-09-04 2014-12-02 Iwalk, Inc. Hybrid terrain-adaptive lower-extremity systems
US9079624B2 (en) 2010-01-11 2015-07-14 Samsung Electronics Co., Ltd. Walking robot and method of controlling balance thereof
EP2343163A1 (en) * 2010-01-11 2011-07-13 Samsung Electronics Co., Ltd. Walking robot and method of controlling balance thereof
US8676381B2 (en) 2010-01-18 2014-03-18 Samsung Electronics Co., Ltd. Humanoid robot and walking control method thereof
EP2347868A1 (en) * 2010-01-18 2011-07-27 Samsung Electronics Co., Ltd. Humanoid robot and walking control method thereof
US10406002B2 (en) 2010-04-05 2019-09-10 Bionx Medical Technologies, Inc. Controlling torque in a prosthesis or orthosis based on a deflection of series elastic element
US9693883B2 (en) 2010-04-05 2017-07-04 Bionx Medical Technologies, Inc. Controlling power in a prosthesis or orthosis based on predicted walking speed or surrogate for same
US9839552B2 (en) 2011-01-10 2017-12-12 Bionx Medical Technologies, Inc. Powered joint orthosis
US10537449B2 (en) 2011-01-12 2020-01-21 Bionx Medical Technologies, Inc. Controlling powered human augmentation devices
US9687377B2 (en) 2011-01-21 2017-06-27 Bionx Medical Technologies, Inc. Terrain adaptive powered joint orthosis
US9060883B2 (en) 2011-03-11 2015-06-23 Iwalk, Inc. Biomimetic joint actuators
US9872782B2 (en) 2011-03-11 2018-01-23 Bionx Medical Technologies, Inc. Biomimetic joint actuators
US9737419B2 (en) 2011-11-02 2017-08-22 Bionx Medical Technologies, Inc. Biomimetic transfemoral prosthesis
US9032635B2 (en) 2011-12-15 2015-05-19 Massachusetts Institute Of Technology Physiological measurement device or wearable device interface simulator and method of use
US9221177B2 (en) 2012-04-18 2015-12-29 Massachusetts Institute Of Technology Neuromuscular model-based sensing and control paradigm for a robotic leg
US9975249B2 (en) 2012-04-18 2018-05-22 Massachusetts Institute Of Technology Neuromuscular model-based sensing and control paradigm for a robotic leg
US10531965B2 (en) 2012-06-12 2020-01-14 Bionx Medical Technologies, Inc. Prosthetic, orthotic or exoskeleton device

Also Published As

Publication number Publication date
JP2003236783A (en) 2003-08-26
TW200303257A (en) 2003-09-01

Similar Documents

Publication Publication Date Title
WO2003068453A1 (en) Two-leg walking moving device
JP3760186B2 (en) Biped walking type moving device, walking control device thereof, and walking control method
JP3078009B2 (en) Walking control device for legged mobile robot
JP4513320B2 (en) Robot apparatus and motion control method of robot apparatus
US7873436B2 (en) Gait generator for mobile robot
US7774098B2 (en) Gait generating device for moving robot
US8688273B2 (en) Walking control apparatus of robot and method of controlling the same
JP4641252B2 (en) Gait generator for legged mobile robot
US7715944B2 (en) Gait generating device of mobile robot
US7765030B2 (en) Gait generator for mobile robot
KR100515277B1 (en) Bipedal moving device, and device and method for controlling walking of the bipedal moving device
JP2013126711A (en) Walking robot and control method thereof
JP5181957B2 (en) Robot control apparatus, robot control method, and robot control program
US20110172817A1 (en) Walking robot and method of controlling balance thereof
US7801643B2 (en) Legged mobile robot and control program for the robot
JP3167406B2 (en) Walking control device for legged mobile robot
JP3627057B2 (en) Biped humanoid robot
JP3569767B2 (en) Walking robot
JP5468974B2 (en) Biped mobile robot controller and gait generator
JP5306959B2 (en) Control device for legged mobile robot
JPH04201187A (en) Walk controller on leg type mobile robot
JP4946566B2 (en) Walking robot and walking control method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase