WO2003068391A1 - Hydrogenation catalyst and process for production of alkenes - Google Patents

Hydrogenation catalyst and process for production of alkenes Download PDF

Info

Publication number
WO2003068391A1
WO2003068391A1 PCT/JP2003/001355 JP0301355W WO03068391A1 WO 2003068391 A1 WO2003068391 A1 WO 2003068391A1 JP 0301355 W JP0301355 W JP 0301355W WO 03068391 A1 WO03068391 A1 WO 03068391A1
Authority
WO
WIPO (PCT)
Prior art keywords
same
compound
hydrogenation catalyst
substituent
general formula
Prior art date
Application number
PCT/JP2003/001355
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Ohkuma
Makoto Yoshida
Ryoji Noyori
Original Assignee
Nagoya Industrial Science Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Industrial Science Research Institute filed Critical Nagoya Industrial Science Research Institute
Priority to AU2003207190A priority Critical patent/AU2003207190A1/en
Publication of WO2003068391A1 publication Critical patent/WO2003068391A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2409Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring with more than one complexing phosphine-P atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0211Oxygen-containing compounds with a metal-oxygen link
    • B01J31/0212Alkoxylates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • B01J31/146Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/08Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds
    • C07C5/09Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds to carbon-to-carbon double bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/645Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of C=C or C-C triple bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/24Phosphines

Definitions

  • the present invention relates to a method for producing a hydrogenation catalyst and an alkene compound.
  • the present invention relates to a hydrogenation catalyst for partially hydrogenating an alkyne compound to an argen compound, and a method for producing an alkene compound using the hydrogenation catalyst.
  • the present invention has been made in view of the above problems, and has as its object to provide a catalyst for partially hydrogenating an alkyne compound with high activity. Another object is to provide a catalyst which partially hydrogenates an alkyne compound to give a cis-algen compound with high selectivity. It is another object of the present invention to obtain an alkene compound from an alkyne compound in high yield using these catalysts. Still another object is to obtain a cis alkene compound from an alkyne compound with high selectivity using these catalysts. Disclosure of the invention
  • the present inventors have conducted intensive studies and found that as a hydrogenation catalyst for partially hydrogenating an alkyne compound into an alkene compound, at least one selected from the group consisting of general formulas (1) to (3) is used as a main component. Was found to have high activity.
  • n is an integer from 1 to 5, and R '' to R "may be the same or different, and may be a hydrocarbon which may have a substituent.
  • X ′ 1 and X ′ 2 are anions which may be the same or different,
  • R 2 ′ to R 24 are the same or different and may have a substituent, and Y 2 ′ to ⁇ ′′ are the same.
  • Hydrogen, an optionally substituted hydrocarbon group, a halogen, an alkoxy group, or an amino group, and X 2 ′ and X 22 may be the same or different.
  • R 3 ′ to R 36 are the same or different and may be a hydrocarbon group which may have a substituent, and X 3 ′ and X 32 are the same. Or an anion that can be different)
  • —Hydrogenation catalysts having general formulas (1) to (3) as main components can be used to produce alkene compounds by partially hydrogenating various alkyne compounds. It is difficult to obtain an alkene compound with a catalyst, and alkyne compounds can be satisfactorily partially hydrogenated to give alkene compounds in high yields, or cis alkene compounds can be given with high selectivity. Highly useful as a catalyst.
  • the — (CH 2 ) ⁇ — of the methylene chain of the general formula (1) may have a difference in selectivity and reactivity depending on its length, and is appropriately determined according to the alkyne compound as a reaction substrate.
  • the methylene chain is preferably an integer of any one of to 5, particularly preferably the methylene chain is an integer of any of 1 to 4, and more preferably 2 or 3.
  • R " ⁇ R 'hydrocarbon group which may have a substituent at 4 in the general formula (1) are aliphatic, hydrocarbon group having an alicyclic saturated or unsaturated, monocyclic or polycyclic Aromatic or araliphatic hydrocarbons, or various of these substituted hydrocarbon groups such as alkyl, alkenyl, cycloalkyl, cycloalkenyl, phenyl, trityl, xylyl, and alcohol.
  • Hydrocarbon groups such as xylphenyl, naphthyl, phenylalkyl and the like, and those hydrocarbon groups, as well as acceptable groups such as alkyl, alkenyl, cycloalkyl, aryl, alkoxy, ester, acyl, halogen, nitro, cyano, etc. that various may be selected from among those having a substituent.
  • R and R '2, R' 3 and R '4 form a ring
  • R to R ′ 4 are preferably alkyl, cycloalkyl or phenyl which may have a substituent, among which alkyl (for example, carbon Numerals 1 to 5), cyclopentyl, cyclohexyl, phenyl, tolyl, xylyl, and alkoxyphenyl (alkoxy is, for example, having 1 to 5 carbon atoms) are particularly preferable. Further, "it is preferable that all to R 14 are the same.
  • R Anion in, X '2 are fluorine, chlorine, bromine, may be a halogen such as iodine A carboxylate such as an acetate And alkoxy such as methoxy and ethoxy.
  • the hydrocarbon group which may have a substituent in R 2 ′ to R ′′ in the general formula (2) is an aliphatic or alicyclic saturated or unsaturated hydrocarbon group, a monocyclic or polycyclic aromatic group. It may be an aromatic or araliphatic hydrocarbon or any of these substituted hydrocarbon groups, for example, alkyl, alkenyl, cycloalkyl, cycloalkenyl, phenyl, trityl, xylyl, alkoxyphenyl, In addition to hydrocarbon groups such as naphthyl and phenylalkyl, and these hydrocarbon groups, there are also allowable groups such as alkyl, alkenyl, cycloalkyl, aryl, alkoxy, ester, acyl, halogen, halogen, cyano, etc.
  • R 2 ′ and R 22 and when R 23 and R 24 form a ring, R 2 ′ and R 22 , R 23 and R 24 may combine to form a carbon chain, alkyl on the carbon chain, an alkenyl, a cycloalkyl, Ariru, alkoxy, ester, Ashiru old xylene, halogen atom, nitro, such Shiano group
  • R "to R” may be alkyl, cycloalkyl or a substituent.
  • Phenyl which may be possessed is preferred, and among them, alkyl (for example, having 1 to 5 carbon atoms), cyclopentyl, cyclohexyl, phenyl, tolyl, xylyl, and alkoxy phenyl (for example, alkoxy has 1 to 5 carbon atoms) are preferred. It is particularly preferable that all of R "to R" are the same.
  • hydrocarbon group which may have a substituent in to Y "of the general formula (2) Similar to R 2 ' ⁇ R “supra, aliphatic, having a saturated or unsaturated hydrocarbon group of alicyclic, monocyclic or polycyclic aromatic or araliphatic hydrocarbons, or a substituent may be any species of these hydrocarbon groups, Y 2 ' ⁇ Y "if forms a ring, for example Y 2' and Upsilon 22, Upsilon 22 and Upsilon" or ⁇ 23 and Upsilon "binds To form a carbon chain on which alkyl, alkenyl, cycloalkyl, aryl, Those having various allowable substituents such as lucoxy, ester, acyl, halogen, nitrogen, cyano and the like may be selected.
  • anion at X 2 ′ and X 22 in the general formula (2) may be a halogen such as fluorine, chlorine, bromine or iodine, or a carboxylate such as acetate, Alkoxy such as methoxy and ethoxy may be used.
  • the hydrocarbon group which may have a substituent in R 3 ′ to R 36 in the general formula (3) is an aliphatic or alicyclic saturated or unsaturated hydrocarbon group, a monocyclic or polycyclic aromatic group. It may be an aromatic or araliphatic hydrocarbon, or various of these substituted hydrocarbon groups.
  • alkyl, alkenyl, cycloalkyl, aryl, hydrocarbon groups such as alkyl, alkenyl, cycloalkyl, cycloalkenyl, phenyl, tril, xylyl, alkoxyphenyl, naphthyl and phenylalkyl, and these hydrocarbon groups, It may be selected from those having various acceptable substituents such as alkoxy, ester, acyl, halogen, nitrogen, cyano and the like.
  • R "to R 36 are ⁇ alkyl, optionally phenyl which may have a cycloalkyl or substituents rather preferred, of which alkyl (Eg, C 1-5), cyclopentyl, cyclohexyl, phenyl, tolyl, xylyl, and alkoxyphenyl (alkoxy is, eg, C 1-5) are particularly preferred.
  • X 3 in the general formula (3) ', Anion in X 32 are fluorine, chlorine, bromine, may be a halogen such as iodine, may be a Karubokishire Bok such Asete one Bok, main Bok alkoxy, alkoxy such as E Bok alkoxy It may be.
  • the palladium complex which is a starting material for synthesizing the phosphine-palladium complexes represented by the general formulas (1) to (3), has a valence of zero, one, two, three, and even higher valences. Can be used. In the case of using 0-valent and 1-valent palladium complexes, it is necessary to oxidize palladium by the final stage. You. When a divalent complex is used, a phosphine-palladium complex represented by general formulas (1) to (3) can be synthesized by reacting a palladium complex with a phosphine ligand.
  • the reaction between the starting material palladium complex and the phosphine ligand is a Aromatic hydrocarbon solvents such as pentane and xylene; aliphatic hydrocarbon solvents such as pentane and hexane; halogen-containing hydrocarbon solvents such as methylene chloride; ether solvents such as ether and tetrahydrofuran; methanol, ethanol, 2 —Alcohol solvents such as propanol, butanol, benzyl alcohol, etc., acetonitrile, N, N-dimethylacetamide (DMA), N, N-dimethylformamide (DMF), N— In organic solvents containing heteroatoms such as methylpyrrolidone and dimethylsulfoxide (DMSO), the reaction temperature is 100. The reaction is carried out at a temperature between C and
  • the amount of the phosphine-palladium complex varies depending on the reaction vessel and economics.
  • the molar ratio S / C (S is a substrate, C is a catalyst) can be used in the range of 100 to 500 000, and is preferably used in the range of 100 to 100 000.
  • a reaction substrate is used in a reaction solvent in the presence of a base or a reducing agent and in the presence of hydrogen or a compound that donates hydrogen.
  • Alkene compounds can be partially hydrogenated to produce alkene compounds in high yield.
  • a cis alkene compound can be produced with high yield and / or high selectivity from an internal alkyne compound, and a terminal alkene compound can be produced with high yield from a terminal alkyne compound.
  • examples of the base include alkali metal salts such as a hydroxyl group, an alkoxy group, a mercapto group, and a naphthyl group or an earth metal salt, and specifically, KOH, CH 3 OK And t-Bu OK.
  • examples of the reducing agent include sodium borohydride and aluminum lithium hydride.
  • the amount of the base or the reducing agent is not particularly limited, but may be, for example, in the range of 0.5 to 100 equivalents of the phosphine-palladium complex represented by the general formulas (1) to (3). It may be determined as appropriate.
  • an appropriate solvent such as a protic solvent, an aprotic solvent, a coordinating solvent, or a mixed solvent thereof can be used.
  • Examples of the protonic solvent include alcohol solvents such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, tert-butanol, and benzyl alcohol, water, and mixed solvents thereof.
  • Examples of non-protonic solvents include aromatic hydrocarbon solvents such as toluene and xylene, aliphatic hydrocarbon solvents such as pentane and hexane, octogen-containing hydrocarbon solvents such as methylene chloride, ethers, tetrahydrofuran, and the like. And the like, or a mixed solvent thereof.
  • the coordinating solvent examples include heterodimer, N, N-dimethylacetamide (DMA), N, N-dimethylformamide (DMF), N-methylpyrrolidone, and dimethylsulfoxide (DMSO).
  • Examples thereof include an organic solvent containing atoms or a mixed solvent thereof.
  • the reaction solvent is preferably DMF or DMF and an alcohol solvent (particularly tert-butanol).
  • the pressure of hydrogen in this partial hydrogenation reaction is sufficient to be 0.5 atm due to the extremely high activity of the present catalyst system, it is preferably in the range of 200 atm in consideration of economical efficiency, and preferably 3 atm. A range of ⁇ 100 atm is desirable, but high activity can be maintained even at 50 atm or less considering the economics of the whole process. It is possible.
  • the reaction temperature is preferably from ⁇ 15 to 100 ° C. in consideration of economy, but the reaction can be carried out at around 20 to 45 at room temperature.
  • the reaction time varies depending on the reaction conditions such as the concentration of the reaction substrate, temperature and pressure, but the reaction is completed in a few minutes to several days.
  • additives include N, N, N ', N'tetramethylethylenediamine (TMEDA), N, N'-dimethylethylenediamine, ethylene glycol, N, N-dimethyl
  • TEDA trimetramethylethylenediamine
  • N, N'-dimethylethylenediamine ethylene glycol
  • N, N-dimethyl examples include aminoethanol, phenol, aniline, benzonitrile, p-nitrophenol, triphenylphosphinoxide, trifluroethanol, water or quinoline.
  • the phosphine-palladium complex represented by any of the general formulas (1) to (3) for example, an alkyne compound having a hydroxyl group, an alkyne compound having a halogen, an alkyne compound having an ester, and an alkyne compound having a protected hydroxyl group
  • alkyne compounds having various functional groups such as alkyne compounds having an amino group, alkynyl ketones, and enynes
  • FIG. 1 is a structural formula of the phosphine-palladium complex synthesized in Examples 1 to 9,
  • FIG. 2 is a table of reaction conditions and reaction results of Examples 10 to 18;
  • FIG. 3 is a table of reaction conditions and reaction results of Examples 19 to 33;
  • FIG. 4 is a table showing the reaction conditions and the reaction results of Examples 34 to 51, and
  • FIG. 5 is a table showing the reaction conditions and the reaction results of Examples 52 to 58.
  • FIG. 1 shows the structural formulas of the phosphine-palladium (II) complexes synthesized in Examples 1 to 9.
  • 1,2-bis (dimethylphosphino) benzene was prepared as follows. That is, THF (50 mL) was placed in a 250 mL Schlenk-type reaction tube equipped with a stir bar coated with polytetrafluoroethylene under an argon atmosphere, and then lithium aluminum hydride (3 9 g, 10 2.8 mm 0 I) was added. The reaction solution was cooled to 178 ° C, and trimethylsilane (12.9 mL, 102.5 mmo I) was carefully added dropwise using a syringe, followed by stirring at room temperature for 2 hours. .
  • Example 2 In accordance with Example 1, 1 chloride to give 2- bis (dimethyl phosphine Ino) Etanpa radium (P d CI 2 (dmpe) ). The 1,2-bis (dimethylphosphino) ethane was manufactured by FIuka.
  • Example 1 In accordance with Example 1, to obtain a chloride 1, 4 one-bis (diphenyl phosphine Ino) pigs emissions palladium (P d CI 2 (dppb) ).
  • the 1,4-bis (diphenylphosphino) butane was manufactured by Tokyo Chemical Industry.
  • 1,2-bis [di (3,5-xylyl) phosphino] ethanepalladium chloride was obtained.
  • 1,2-bis [di (3,5-xylyl) phosphino] ethane was prepared as follows. That is, a stir bar was placed in a 500 mL two-necked flask equipped with a reflux cooler, finely cut metallic lithium (0.07 g, 10.1 mm 0 I) was added, and a septum rubber cap was added. And closed the mouth. Under an argon atmosphere, degassed hexane (5 mL) was added with a syringe, and after stirring for 5 minutes, the hexane was removed. This operation was repeated three times.
  • 1,2-bis [di (4-methoxyphenyl) phosphino] ethanepalladium chloride was obtained.
  • 1,2- [di (4-methoxyphenyl) phosphino) ethane was prepared as follows. That is, In a 100 mL two-necked flask equipped with a stirrer coated with tetrafluoroethylene, put metallic magnesium (291.5 mg, 12.Ommo), and add THF (1 A solution of 2.5 mL, prepared beforehand, of 4-bromoanisole. 5 mL, 12 mm 0 I) (manufactured by Tokyo Chemical Industry Co., Ltd.) (2.5 mL) was added dropwise with a syringe.
  • Examples 10 to 18 described below show examples of producing an alkene compound by partially hydrogenating an alkyne compound using a phosphine-palladium (II) complex of each type.
  • FIG. 2 is a table showing the reaction results of Examples 10 to 18.
  • PdCI 2 (dmpb) (l.5 mg, 4.0 moI) obtained in Example 1 was placed in a 100-mL glass-made autoclave equipped with a stirrer coated with polyethylene glycol. I weighed it. The air in the autoclave was replaced with argon, and 3-hexine (4.56 ⁇ m, 4.0 mm 01), which had been degassed by argon bubbling, 2-propanol (4 mL), and tert-Butoxy potassium solution in 2-methyl-2-propanol (1 M ) (48 L, 48 moI) was added with a syringe under a stream of argon.
  • the gas supply tube was used to connect the storage tube to the hydrogen cylinder, and the air in the introduction tube was replaced three times with 2 atmospheres of hydrogen. Subsequently, the operation of carefully introducing 5 atm of hydrogen into the storage clave and then carefully releasing it to 2 atm was repeated 10 times, and then the hydrogen pressure was set to 8 atm and the solution was violently heated at 25 ° C for 1 hour. Stirred. Conversion cis Bruno trans selectivity was determined by '3 CNMR analyzes. Conversion,>95%; cis Z transratio, 94: 6.
  • Examples 19 to 33 below show examples of producing 41-year-old octene by adding various additives and partially hydrogenating 41-year-old cutin using a phosphine-palladium (II) complex.
  • FIG. 3 is a table showing the reaction results of Examples 19 to 33.
  • PdC (dppp) 1.5 mg, 2.5 ⁇ oI synthesized in Example 5 was added to a 100 mL glass-made autoclave equipped with a stirrer coated with polyethylene glycol. I weighed it. The air in the autoclave was replaced with argon, and 4-butane cutin (373 tL, 2.54 mmoI), 2-propanol (2 m), and tert-degassed in advance by argon bubbling.
  • FIG. 4 shows the reaction conditions and reaction results at that time.
  • each alkyne compound was partially hydrogenated using a phosphine-palladium (II) complex to produce the corresponding alkyne compound.
  • FIG. 5 shows the reaction conditions and reaction results at that time.
  • the method for producing a hydrogenation catalyst and an alkene compound of the present invention can be used for obtaining carbon-carbon double bonds contained in many physiologically active substances such as fatty acids, fragrances, pheromones, and pharmaceuticals and agricultural chemicals. It can also be used for industrial synthesis of polymer raw materials such as paints and films.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

The conversion of an internal alkyne into a cis-alkene or that of a terminal alkyne into a terminal alkene can be carried out by conducting partial hydrogenation of an alkyne as the substrate with a catalytic amount of [1,2-bis(diphenyl- phosphino)propane]palladium chloride in a mixed solvent consisting of DMF and an alcohol in the presence of potassium t-butoxide or sodium borohydride and in the presence of hydrogen.

Description

明細書  Specification
水素化触媒及びアルケン化合物の製造方法 技術分野  TECHNICAL FIELD The present invention relates to a method for producing a hydrogenation catalyst and an alkene compound.
本発明は、 アルキン化合物をアルゲン化合物に部分水素化する水素化触 媒、 及び、 この水素化触媒を用いたアルゲン化合物の製造方法に関するも のである。 背景枝術  The present invention relates to a hydrogenation catalyst for partially hydrogenating an alkyne compound to an argen compound, and a method for producing an alkene compound using the hydrogenation catalyst. Background branch art
従来より、 アルキン化合物のアルケン化合物への部分的水素化反応にお いて、パラジウムやニッケルなどの遷移金属触媒を用いた研究が行われて いる。 例えば、 H . L i n d I a rは、 炭酸カルシウムに坦持した金属パ ラジウムを酢酸鉛で被毒して調製した触媒を用いてアルキン化合物の部 分水素化を行い、 高選択的にシスアルケン化合物が得られることを報告し た。 この触媒は、 高活性と高シス選択性を兼ね備えたものとして現在もつ とも一般的に用いられている。  Conventionally, in the partial hydrogenation reaction of an alkyne compound to an alkene compound, a study using a transition metal catalyst such as palladium or nickel has been conducted. For example, H. Lind Iar performs partial hydrogenation of alkyne compounds using a catalyst prepared by poisoning metal palladium supported on calcium carbonate with lead acetate, and highly selectively converts cis-alkene compounds. Reported that it could be obtained. This catalyst is currently commonly used for its high activity and high cis selectivity.
しかしながら、 金属錯体を用いた触媒的水素化には、 種々の官能基を有 するアルキン化合物を基質に用いたものがいくつか報告されているが、研 究例は少なく、 その適用範囲は限られている。 また、 これらの多くは、 長 時間の撹拌を行うと、生成物のアルケン化合物が還元されてアルカン化合 物を生成したり、 あるいは、 シスアルケン化合物が異性化してより安定な 卜ランスアルケン化合物を与えるなどの欠点を抱えている。 このため、 ァ ルキン化合物を高活性に部分水素化する触媒や、 アルキン化合物を部分水 素化して高選択的にシスアルケン化合物を与える触媒の開発が望まれて いた。 本発明は、 上述した課題に鑑みなされたものであり、 アルキン化合物を 高活性に部分水素化する触媒を提供することを目的とする。 また、 アルキ ン化合物を部分水素化して高選択的にシスアルゲン化合物を与える触媒 を提供することを別の目的とする。 更に、 これらの触媒を用いて高収率で アルキン化合物からアルゲン化合物を得ることを別の目的とする。更にま た、 これらの触媒を用いて高選択的にアルキン化合物からシスアルケン化 合物を得ることを別の目的とする。 発明の開示 However, some catalytic hydrogenations using metal complexes using alkyne compounds having various functional groups as substrates have been reported.However, there are few research examples and the applicable range is limited. ing. In addition, many of these compounds, when stirred for a long time, reduce the product alkene compound to produce an alkane compound, or the cis alkene compound isomerizes to give a more stable trans alkene compound. Have the drawbacks. Therefore, there has been a demand for the development of a catalyst for partially hydrogenating an alkyne compound with high activity and a catalyst for partially hydrogenating an alkyne compound to give a cis-alkene compound with high selectivity. The present invention has been made in view of the above problems, and has as its object to provide a catalyst for partially hydrogenating an alkyne compound with high activity. Another object is to provide a catalyst which partially hydrogenates an alkyne compound to give a cis-algen compound with high selectivity. It is another object of the present invention to obtain an alkene compound from an alkyne compound in high yield using these catalysts. Still another object is to obtain a cis alkene compound from an alkyne compound with high selectivity using these catalysts. Disclosure of the invention
本発明者らは鋭意研究した結果、 アルキン化合物をアルケン化合物に部 分水素化する水素化触媒として、 一般式 ( 1 ) ~ ( 3 ) からなる群より選 ばれた少なくとも一つを主成分とするものが、 高活性を有することを見い 出した。  The present inventors have conducted intensive studies and found that as a hydrogenation catalyst for partially hydrogenating an alkyne compound into an alkene compound, at least one selected from the group consisting of general formulas (1) to (3) is used as a main component. Was found to have high activity.
Figure imgf000003_0001
Figure imgf000003_0001
R13 R14
Figure imgf000003_0002
Figure imgf000004_0001
R 13 R 14
Figure imgf000003_0002
Figure imgf000004_0001
(—般式 ( 1 ) において、 nは 1 ~ 5のいずれかの整数であり、 R''~R "は同じであっても異なっていてもよく置換基を有していてもよい炭化水 素基であり、 X'1, X'2は同じであっても異なっていてもよいァニオンで あり、 (In the general formula (1), n is an integer from 1 to 5, and R '' to R "may be the same or different, and may be a hydrocarbon which may have a substituent. X ′ 1 and X ′ 2 are anions which may be the same or different,
—般式 (2) において、 R2'〜R24は同じであっても異なっていてもよ く置換基を有していてもよい炭化水素基であり、 Y2'〜丫"は同じであつ ても異なっていてもよく水素、 置換基を有していてもよい炭化水素基、 ハ ロゲン、 アルコキシ基又はアミノ基であり、 X2', X22は同じであっても 異なっていてもよいァニオンであリ、 —In the general formula (2), R 2 ′ to R 24 are the same or different and may have a substituent, and Y 2 ′ to 丫 ″ are the same. Hydrogen, an optionally substituted hydrocarbon group, a halogen, an alkoxy group, or an amino group, and X 2 ′ and X 22 may be the same or different. A good anion,
一般式 (3) において、 R3'〜R36は同じであっても異なっていてもよ く置換基を有していてもよい炭化水素基であり、 X3', X32は同じであつ ても異なっていてもよいァニオンである) In the general formula (3), R 3 ′ to R 36 are the same or different and may be a hydrocarbon group which may have a substituent, and X 3 ′ and X 32 are the same. Or an anion that can be different)
—般式 ( 1 ) ~ ( 3) を主成分とする水素化触媒は、 種々のアルキン化 合物を部分水素化してアルケン化合物を製造するのに用いることができ、 従来知られている水素化触媒ではアルケン化合物を得ることが難しかつ たアルキン化合物についても良好に部分水素化してアルケン化合物を高 収率で与えたり、 シスアルケン化合物を高選択的に与えることがあり、 ァ ルキン化合物の部分水素化触媒として有用性が高い。 一般式 ( 1 ) のメチレン鎖である— (C H2) π—は、 その長さによって 選択性や反応性に差が生じることがあるため反応基質であるアルキン化 合物に応じて適宜決定することが好ましいが、 通常、 メチレン鎖が 〜 5 のいずれかの整数であることが好ましく、 メチレン鎖が 1 ~4のいずれか の整数であることが特に好ましく、 2又は 3であることが更に好ましい。 また、 一般式 ( 1 ) の R "~ R '4における置換基を有していてもよい炭化 水素基は、 脂肪族、 脂環族の飽和又は不飽和の炭化水素基、 単環又は多環 の芳香族もしくは芳香脂肪族の炭化水素、 あるいは置換基をもつこれら炭 化水素基の各種のものであってよい。 たとえばアルキル、 アルケニル、 シ クロアルキル、 シクロアルケニル、 フエニル、 卜リル、 キシリル、 アルコ キシフエニル、 ナフチル、 フエニルアルキル等の炭化水素基と、 これら炭 化水素基に、 さらにアルキル、 アルケニル、 シクロアルキル、 ァリール、 アルコキシ、 エステル、 ァシル才キシ、 ハロゲン原子、 ニトロ、 シァノ基 等の許容される各種の置換基を有するもののうちから選択してもよい。そ して、 R と R'2、 R'3と R '4が環を形成する場合には、 R と R12、 R '3 と R "は、 結合して炭素鎖を形成し、 この炭素鎖上にアルキル、 アルケニ ル、 シクロアルキル、 ァリール、 アルコキシ、 エステル、 ァシル才キシ、 ハロゲン原子、 二卜口、 シァノ基等の許容される各種の置換基をもつもの を選択してもよい。 ここで、 合成のしゃすさや入手のしゃすいさ等を考慮 すれば、 R 〜R'4は、 アルキル、 シクロアルキル又は置換基を有してい てもよいフエニルが好ましく、 このうち、 アルキル (例えば炭素数 1〜5 )、 シクロペンチル、 シクロへキシル、 フエニル、 卜リル、 キシリル、 ァ ルコキシフエニル (アルコキシは例えば炭素数 1〜5 ) が特に好ましい。 また、 R "〜R14はすべて同じであることが好ましい。 更に、 一般式 ( 1 ) の X", X'2におけるァニオンは、 フッ素、 塩素、 臭素、 ヨウ素などの ハロゲンであってもよいし、 ァセテ一卜などのカルボキシレ一卜であって もよいし、 メ トキシ、 エトキシなどのアルコキシであってもよい。 —Hydrogenation catalysts having general formulas (1) to (3) as main components can be used to produce alkene compounds by partially hydrogenating various alkyne compounds. It is difficult to obtain an alkene compound with a catalyst, and alkyne compounds can be satisfactorily partially hydrogenated to give alkene compounds in high yields, or cis alkene compounds can be given with high selectivity. Highly useful as a catalyst. The — (CH 2 ) π— of the methylene chain of the general formula (1) may have a difference in selectivity and reactivity depending on its length, and is appropriately determined according to the alkyne compound as a reaction substrate. Usually, the methylene chain is preferably an integer of any one of to 5, particularly preferably the methylene chain is an integer of any of 1 to 4, and more preferably 2 or 3. . Also, R "~ R 'hydrocarbon group which may have a substituent at 4 in the general formula (1) are aliphatic, hydrocarbon group having an alicyclic saturated or unsaturated, monocyclic or polycyclic Aromatic or araliphatic hydrocarbons, or various of these substituted hydrocarbon groups such as alkyl, alkenyl, cycloalkyl, cycloalkenyl, phenyl, trityl, xylyl, and alcohol. Hydrocarbon groups such as xylphenyl, naphthyl, phenylalkyl and the like, and those hydrocarbon groups, as well as acceptable groups such as alkyl, alkenyl, cycloalkyl, aryl, alkoxy, ester, acyl, halogen, nitro, cyano, etc. that various may be selected from among those having a substituent. with its, if R and R '2, R' 3 and R '4 form a ring, R R 12, R '3 and R "may combine to form a carbon chain, alkyl on the carbon chain, alkenyl Le, cycloalkyl, Ariru, alkoxy, ester, Ashiru old alkoxy, halogen atom, Two Bok port, Those having various allowable substituents such as a cyano group may be selected. Here, in consideration of the ease of synthesis and the ease of availability, R to R ′ 4 are preferably alkyl, cycloalkyl or phenyl which may have a substituent, among which alkyl (for example, carbon Numerals 1 to 5), cyclopentyl, cyclohexyl, phenyl, tolyl, xylyl, and alkoxyphenyl (alkoxy is, for example, having 1 to 5 carbon atoms) are particularly preferable. Further, "it is preferable that all to R 14 are the same. Further, X in the general formula (1)" R Anion in, X '2 are fluorine, chlorine, bromine, may be a halogen such as iodine A carboxylate such as an acetate And alkoxy such as methoxy and ethoxy.
一般式 (2 ) の R2'~ R"における置換基を有していてもよい炭化水素 基は、 脂肪族、 脂環族の飽和又は不飽和の炭化水素基、 単環又は多環の芳 香族もしくは芳香脂肪族の炭化水素、 あるいは置換基をもつこれら炭化水 素基の各種のものであってよい。 たとえばアルキル、 アルケニル、 シクロ アルキル、 シクロアルケニル、 フエニル、 卜リル、 キシリル、 アルコキシ フエニル、 ナフチル、 フエニルアルキル等の炭化水素基と、 これら炭化水 素基に、 さらにアルキル、 アルケニル、 シクロアルキル、 ァリール、 アル コキシ、 エステル、 ァシル才キシ、 ハロゲン原子、 二卜口、 シァノ基等の 許容される各種の置換基を有するもののうちから選択してもよい。そして 、 R2'と R22、 R23と R24が環を形成する場合には、 R2'と R22、 R23と R24 は、 結合して炭素鎖を形成し、 この炭素鎖上にアルキル、 アルケニル、 シ クロアルキル、 ァリール、 アルコキシ、 エステル、 ァシル才キシ、 ハロゲ ン原子、 ニトロ、 シァノ基等の許容される各種の置換基をもつものを選択 してもよい。 ここで、 合成のしゃすさや入手のしゃすいさ等を考慮すれば 、 R"〜 R "は、 アルキル、 シクロアルキル又は置換基を有していてもよ いフエニルが好ましく、 このうち、 アルキル (例えば炭素数 1 〜 5 )、 シ クロペンチル、 シクロへキシル、 フエニル、 トリル、 キシリル、 アルコキ シフエニル (アルコキシは例えば炭素数 1 〜 5 ) が特に好ましい。 また、 R"~ R "はすべて同じであることが好ましい。 また、 一般式 (2 ) の 、 〜Y "における置換基を有していてもよい炭化水素基は、 前出の R2'~ R" と同様、 脂肪族、 脂環族の飽和又は不飽和の炭化水素基、 単環又は多環の 芳香族もしくは芳香脂肪族の炭化水素、 あるいは置換基をもつこれら炭化 水素基の各種のものであってよく、 Y2'~ Y"が環を形成する場合には、 たとえば Y2'と Υ22、 Υ22と Υ"又は丫 23と Υ"が結合して炭素鎖を形成し 、 この炭素鎖上にアルキル、 アルケニル、 シクロアルキル、 ァリール、 ァ ルコキシ、 エステル、 ァシル才キシ、 ハロゲン原子、 二卜口、 シァノ基等 の許容される各種の置換基をもつものを選択してもよい。 更に、 一般式 ( 2 ) の X 2', X 22におけるァニオンは、 フッ素、 塩素、 臭素、 ヨウ素など のハロゲンであってもよいし、 ァセテ一卜などのカルボキシレー卜であつ てもよいし、 メ卜キシ、 エトキシなどのアルコキシであってもよい。 The hydrocarbon group which may have a substituent in R 2 ′ to R ″ in the general formula (2) is an aliphatic or alicyclic saturated or unsaturated hydrocarbon group, a monocyclic or polycyclic aromatic group. It may be an aromatic or araliphatic hydrocarbon or any of these substituted hydrocarbon groups, for example, alkyl, alkenyl, cycloalkyl, cycloalkenyl, phenyl, trityl, xylyl, alkoxyphenyl, In addition to hydrocarbon groups such as naphthyl and phenylalkyl, and these hydrocarbon groups, there are also allowable groups such as alkyl, alkenyl, cycloalkyl, aryl, alkoxy, ester, acyl, halogen, halogen, cyano, etc. And R 2 ′ and R 22 , and when R 23 and R 24 form a ring, R 2 ′ and R 22 , R 23 and R 24 may combine to form a carbon chain, alkyl on the carbon chain, an alkenyl, a cycloalkyl, Ariru, alkoxy, ester, Ashiru old xylene, halogen atom, nitro, such Shiano group In consideration of the ease of synthesis and the ease of availability, R "to R" may be alkyl, cycloalkyl or a substituent. Phenyl which may be possessed is preferred, and among them, alkyl (for example, having 1 to 5 carbon atoms), cyclopentyl, cyclohexyl, phenyl, tolyl, xylyl, and alkoxy phenyl (for example, alkoxy has 1 to 5 carbon atoms) are preferred. It is particularly preferable that all of R "to R" are the same. Also, the hydrocarbon group which may have a substituent in to Y "of the general formula (2) , Similar to R 2 '~ R "supra, aliphatic, having a saturated or unsaturated hydrocarbon group of alicyclic, monocyclic or polycyclic aromatic or araliphatic hydrocarbons, or a substituent may be any species of these hydrocarbon groups, Y 2 '~ Y "if forms a ring, for example Y 2' and Upsilon 22, Upsilon 22 and Upsilon" or丫23 and Upsilon "binds To form a carbon chain on which alkyl, alkenyl, cycloalkyl, aryl, Those having various allowable substituents such as lucoxy, ester, acyl, halogen, nitrogen, cyano and the like may be selected. Further, the anion at X 2 ′ and X 22 in the general formula (2) may be a halogen such as fluorine, chlorine, bromine or iodine, or a carboxylate such as acetate, Alkoxy such as methoxy and ethoxy may be used.
一般式 (3 ) の R 3'〜R 36における置換基を有していてもよい炭化水素 基は、 脂肪族、 脂環族の飽和又は不飽和の炭化水素基、 単環又は多環の芳 香族もしくは芳香脂肪族の炭化水素、 あるいは置換基をもつこれら炭化水 素基の各種のものであってよい。 たとえばアルキル、 アルケニル、 シクロ アルキル、 シクロアルケニル、 フエニル、 卜リル、 キシリル、 アルコキシ フエニル、 ナフチル、 フ Iニルアルキル等の炭化水素基と、 これら炭化水 素基に、 さらにアルキル、 アルケニル、 シクロアルキル、 ァリール、 アル コキシ、 エステル、 ァシル才キシ、 ハロゲン原子、 二卜口、 シァノ基等の 許容される各種の置換基を有するもののうちから選択してもよい。 ここで 、 合成のしゃすさや入手のしゃすいさ等を考慮すれば、 R "〜R 36は、 ァ ルキル、 シクロアルキル又は置換基を有していてもよいフエニルが好まし く、 このうち、 アルキル (例えば炭素数 1 〜5 )、 シクロペンチル、 シク 口へキシル、 フエニル、 トリル、 キシリル、 アルコキシフエニル (アルコ キシは例えば炭素数 1 ~ 5 ) が特に好ましい。 また、 一般式 (3 ) の X 3' , X 32におけるァニオンは、 フッ素、 塩素、 臭素、 ヨウ素などのハロゲン であってもよいし、 ァセテ一卜などのカルボキシレー卜であってもよいし 、 メ卜キシ、 ェ卜キシなどのアルコキシであってもよい。 The hydrocarbon group which may have a substituent in R 3 ′ to R 36 in the general formula (3) is an aliphatic or alicyclic saturated or unsaturated hydrocarbon group, a monocyclic or polycyclic aromatic group. It may be an aromatic or araliphatic hydrocarbon, or various of these substituted hydrocarbon groups. For example, alkyl, alkenyl, cycloalkyl, aryl, hydrocarbon groups such as alkyl, alkenyl, cycloalkyl, cycloalkenyl, phenyl, tril, xylyl, alkoxyphenyl, naphthyl and phenylalkyl, and these hydrocarbon groups, It may be selected from those having various acceptable substituents such as alkoxy, ester, acyl, halogen, nitrogen, cyano and the like. Here, considering the synthesis of Chasse of and availability if put pyramid, etc., R "to R 36 are § alkyl, optionally phenyl which may have a cycloalkyl or substituents rather preferred, of which alkyl (Eg, C 1-5), cyclopentyl, cyclohexyl, phenyl, tolyl, xylyl, and alkoxyphenyl (alkoxy is, eg, C 1-5) are particularly preferred. X 3 in the general formula (3) ', Anion in X 32 are fluorine, chlorine, bromine, may be a halogen such as iodine, may be a Karubokishire Bok such Asete one Bok, main Bok alkoxy, alkoxy such as E Bok alkoxy It may be.
一般式 ( 1 ) 〜 (3 ) で表されるホスフィンーパラジウム錯体を合成す るための出発原料であるパラジウム錯体には、 0価、 1価、 2価、 3価及 び、 さらに高原子価の錯体を用いることができる。 0価及び 1価のパラジ ゥ厶錯体を用いた場合には、最終段階までにパラジウムの酸化が必要であ る。 2価の錯体を用いた場合には、 パラジウム錯体とホスフィン配位子と 反応させることによリー般式 ( 1 ) 〜 (3) で表されるホスフィン—パラ ジゥ厶錯体を合成できる。 3価及び 4価以上のパラジウム錯体を出発原料 に用いた場合には、 最終段階までに、 パラジウム原子の還元が必要である 出発原料であるパラジウム錯体とホスフィン配位子との反応は、 卜ルェ ン、 キシレンなどの芳香族炭化水素溶媒、 ペンタン、 へキサンなどの脂肪 族炭化水素溶媒、 塩化メチレンなどのハロゲン含有炭化水素溶媒、 エーテ ル、 テ卜ラヒドロフランなどのエーテル系溶媒、 メタノール、 エタノール 、 2—プロパノール、 ブタノ一ル、 ベンジルアルコールなどのアルコール 系溶媒、 ァセ卜二卜リル、 N, N—ジメチルァセ卜アミ ド (D MA)、 N , N—ジメチルホルムアミ ド (DM F)、 N—メチルピロリ ドン、 ジメチ ルスルホキシド (DM S O) などへテロ原子を含む有機溶媒中、 反応温度 一 1 0 0。Cから 2 00°Cの間で行われ、 ホスフィンーパラジウム錯体を得 ることができる。 The palladium complex, which is a starting material for synthesizing the phosphine-palladium complexes represented by the general formulas (1) to (3), has a valence of zero, one, two, three, and even higher valences. Can be used. In the case of using 0-valent and 1-valent palladium complexes, it is necessary to oxidize palladium by the final stage. You. When a divalent complex is used, a phosphine-palladium complex represented by general formulas (1) to (3) can be synthesized by reacting a palladium complex with a phosphine ligand. When a trivalent or tetravalent palladium complex is used as the starting material, the reduction of the palladium atom is required by the final stage. The reaction between the starting material palladium complex and the phosphine ligand is a Aromatic hydrocarbon solvents such as pentane and xylene; aliphatic hydrocarbon solvents such as pentane and hexane; halogen-containing hydrocarbon solvents such as methylene chloride; ether solvents such as ether and tetrahydrofuran; methanol, ethanol, 2 —Alcohol solvents such as propanol, butanol, benzyl alcohol, etc., acetonitrile, N, N-dimethylacetamide (DMA), N, N-dimethylformamide (DMF), N— In organic solvents containing heteroatoms such as methylpyrrolidone and dimethylsulfoxide (DMSO), the reaction temperature is 100. The reaction is carried out at a temperature between C and 200 ° C. to obtain a phosphine-palladium complex.
一般式 ( 1 ) ~ (3 ) で表されるホスフィン—パラジウム錯体をアルキ ン化合物の部分水素化触媒として用いる場合、 その使用量は反応容器や経 済性によって異なるが、反応基質であるカルボニル化合物とのモル比 S/ C (Sは基質、 Cは触媒) が 1 0~5 0 0 0 0 00で用いることができ、 1 0 0〜 1 00 00 0の範囲で用いることが好ましい。  When the phosphine-palladium complex represented by any of the general formulas (1) to (3) is used as a partial hydrogenation catalyst for an alkyne compound, the amount of the phosphine-palladium complex varies depending on the reaction vessel and economics. The molar ratio S / C (S is a substrate, C is a catalyst) can be used in the range of 100 to 500 000, and is preferably used in the range of 100 to 100 000.
一般式 ( 1 ) 〜 ( 3 ) で表されるホスフィン—パラジウム錯体を用いて 、 反応溶媒中、 塩基又は還元剤の存在下で且つ水素又は水素を供与する化 合物の存在下、 反応基質であるアルキン化合物を部分水素化してアルケン 化合物を高収率で製造することができる。 また、 内部アルキン化合物から はシスアルケン化合物を高収率及び/又は高選択的に製造することがで き、末端アルキン化合物からは末端アルケン化合物を高収率で製造するこ とができる。 Using the phosphine-palladium complex represented by any of the general formulas (1) to (3), a reaction substrate is used in a reaction solvent in the presence of a base or a reducing agent and in the presence of hydrogen or a compound that donates hydrogen. Alkene compounds can be partially hydrogenated to produce alkene compounds in high yield. In addition, a cis alkene compound can be produced with high yield and / or high selectivity from an internal alkyne compound, and a terminal alkene compound can be produced with high yield from a terminal alkyne compound. Can be.
ここで、 塩基としては、 例えばヒドロキシル基、 アルコキシ基、 メルカ プ卜基、 ナフチル基などのアル力リ金属塩又はアル力リ土類金属塩などが 挙げられ、 具体的には K O H、 C H3O K、 t一 B u O Kなどが挙げられ る。 また、 還元剤としては、 例えば水素化ホウ素ナトリウムや水素化アル ミニゥ厶リチウムなどが挙げられる。 塩基又は還元剤の使用量は、 特に限 定されるものではないが、 例えば一般式 ( 1 ) 〜 (3) で表されるホスフ イン—パラジウム錯体の 0. 5〜1 0 0当量の範囲で適宜定めてもよい。 反応溶媒としては、 プロトン性溶媒、 非プロトン性溶媒、 配位性溶媒又は これらの混合溶媒など、 適宜なものを用いることができる。 プロ トン性溶 媒としては、 例えばメタノール、 エタノール、 1 —プロパノール、 2—プ ロパノール、 1 —プタノ一ル、 t e r t—プタノ一ル、 ベンジルアルコー ルなどのアルコール溶媒、 水又はこれらの混合溶媒が挙げられる。 非プロ 卜ン性溶媒としては、 トルエン、 キシレンなどの芳香族炭化水素溶媒、 ぺ ンタン、 へキサンなどの脂肪族炭化水素溶媒、 塩化メチレンなどの八ロゲ ン含有炭化水素溶媒、 エーテル、 テ卜ラヒドロフランなどのエーテル系溶 媒又はこれらの混合溶媒が挙げられる。 配位性溶媒としては、 ァセ卜二卜 リル、 N, N—ジメチルァセ卜アミド (DMA)、 N, N—ジメチルホル 厶アミド (DM F)、 N—メチルピロリ ドン、 ジメチルスルホキシド (D M S O)などへテロ原子を含む有機溶媒又はこれらの混合溶媒が挙げられ る。 ここで、 反応溶媒としては、 DM F又は DM Fとアルコール溶媒 (特 に t e r t—ブタノール) が好ましい。 Here, examples of the base include alkali metal salts such as a hydroxyl group, an alkoxy group, a mercapto group, and a naphthyl group or an earth metal salt, and specifically, KOH, CH 3 OK And t-Bu OK. In addition, examples of the reducing agent include sodium borohydride and aluminum lithium hydride. The amount of the base or the reducing agent is not particularly limited, but may be, for example, in the range of 0.5 to 100 equivalents of the phosphine-palladium complex represented by the general formulas (1) to (3). It may be determined as appropriate. As the reaction solvent, an appropriate solvent such as a protic solvent, an aprotic solvent, a coordinating solvent, or a mixed solvent thereof can be used. Examples of the protonic solvent include alcohol solvents such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, tert-butanol, and benzyl alcohol, water, and mixed solvents thereof. Can be Examples of non-protonic solvents include aromatic hydrocarbon solvents such as toluene and xylene, aliphatic hydrocarbon solvents such as pentane and hexane, octogen-containing hydrocarbon solvents such as methylene chloride, ethers, tetrahydrofuran, and the like. And the like, or a mixed solvent thereof. Examples of the coordinating solvent include heterodimer, N, N-dimethylacetamide (DMA), N, N-dimethylformamide (DMF), N-methylpyrrolidone, and dimethylsulfoxide (DMSO). Examples thereof include an organic solvent containing atoms or a mixed solvent thereof. Here, the reaction solvent is preferably DMF or DMF and an alcohol solvent (particularly tert-butanol).
この部分水素化反応における水素の圧力は、本触媒系が極めて高活性で あることから 0. 5気圧で十分でもあるが、 絰済性を考慮すると 〜 2 0 0気圧の範囲で、 好ましくは 3〜 1 0 0気圧の範囲が望ましいが、 プロセ ス全体の経済性を考慮して 5 0気圧以下でも高い活性を維持することも 可能である。反応温度は経済性を考慮して— 1 5で〜 1 0 0 °Cで行うこと が好ましいが、 2 0〜4 5での室温付近で反応を実施することもできる。 反応時間は反応基質濃度、 温度、 圧力等の反応条件によって異なるが数分 から数日で反応は完結する。 Although the pressure of hydrogen in this partial hydrogenation reaction is sufficient to be 0.5 atm due to the extremely high activity of the present catalyst system, it is preferably in the range of 200 atm in consideration of economical efficiency, and preferably 3 atm. A range of ~ 100 atm is desirable, but high activity can be maintained even at 50 atm or less considering the economics of the whole process. It is possible. The reaction temperature is preferably from −15 to 100 ° C. in consideration of economy, but the reaction can be carried out at around 20 to 45 at room temperature. The reaction time varies depending on the reaction conditions such as the concentration of the reaction substrate, temperature and pressure, but the reaction is completed in a few minutes to several days.
この部分水素化反応においては、 更なる添加物を加えてもよい。 そのよ うな添加物としては、 N, N, N ', N ' ーテ卜ラメチルエチレンジアミ ン (T M E D A )、 N, N ' ージメチルエチレンジァミン、 エチレングリ コール、 N, N —ジメチルァミノエタノール、 フエノール、 ァニリン、 ベ ンゾニ卜リル、 p—ニトロフエノール、 卜リフエニルホスフィンォキシド 、 トリフル才ロエタノール、 水又はキノリンが挙げられる。 これらの添加 物を加えることにより、 反応系によっては、 シスアルケン化合物の卜ラン スアルゲン化合物への異性化を抑制したり、 アルケン化合物のアル力ン化 合物へのオーバ一リダクションを抑制したリすることができる。  In this partial hydrogenation reaction, further additives may be added. Such additives include N, N, N ', N'tetramethylethylenediamine (TMEDA), N, N'-dimethylethylenediamine, ethylene glycol, N, N-dimethyl Examples include aminoethanol, phenol, aniline, benzonitrile, p-nitrophenol, triphenylphosphinoxide, trifluroethanol, water or quinoline. By adding these additives, depending on the reaction system, it is possible to suppress the isomerization of the cis-alkene compound to the trans-argen compound or to suppress the over-reduction of the alkene compound to the alkane compound. Can be.
一般式 ( 1 ) 〜 (3 ) で表されるホスフィンーパラジウム錯体を用いれ ば、 例えば、 ヒドロキシル基を有するアルキン化合物、 ハロゲンを有する アルキン化合物、 エステルを有するアルキン化合物、 ヒドロキシル基を保 護したアルキン化合物、 アミノ基を有するアルキン化合物、 アルキニルケ 卜ン、 ェンィンなど種々の官能基を有するアルキン化合物を部分水素化し て、 これらに対応するアルケン類を高収率で製造したり、 高シス選択的に 製造したりすることができる。 図面の簡単な説明  When the phosphine-palladium complex represented by any of the general formulas (1) to (3) is used, for example, an alkyne compound having a hydroxyl group, an alkyne compound having a halogen, an alkyne compound having an ester, and an alkyne compound having a protected hydroxyl group By partially hydrogenating alkyne compounds having various functional groups such as alkyne compounds having an amino group, alkynyl ketones, and enynes, the corresponding alkenes can be produced in a high yield or in a highly cis-selective manner. Or you can. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、実施例 1〜9で合成したホスフィン—パラジウム錯体の構造 式であり、  FIG. 1 is a structural formula of the phosphine-palladium complex synthesized in Examples 1 to 9,
図 2は、 実施例 1 0 ~ 1 8の反応条件及び反応結果の表であり、 図 3は、 実施例 1 9〜3 3の反応条件及び反応結果の表であり、 図 4は、 実施例 3 4 ~ 5 1 の反応条件及び反応結果の表であリ、 図 5は、 実施例 5 2〜5 8の反応条件及び反応結果の表である。 発明を実施するための最良の形態 FIG. 2 is a table of reaction conditions and reaction results of Examples 10 to 18; FIG. 3 is a table of reaction conditions and reaction results of Examples 19 to 33; FIG. 4 is a table showing the reaction conditions and the reaction results of Examples 34 to 51, and FIG. 5 is a table showing the reaction conditions and the reaction results of Examples 52 to 58. BEST MODE FOR CARRYING OUT THE INVENTION
下記実施例 1 ~9に、 ホスフィン一パラジウム (I I) 錯体の合成例を示 す。 なお、 図 1 に実施例 1〜9で合成したホスフィンーパラジウム (I I) 錯体の構造式を示す。  Examples 1 to 9 below show examples of the synthesis of phosphine-palladium (II) complex. FIG. 1 shows the structural formulas of the phosphine-palladium (II) complexes synthesized in Examples 1 to 9.
[実施例 1 ] [Example 1]
撹拌子を備えた 2 0 m Lシュレンク型反応管に塩化ビス(ァセ卜二卜リ ル) パラジウム ( 6 5. 4 m g , 0. 2 5 m m o I ) を量り取り、 ァルゴ ン雰囲気下で 1, 2—ジクロロェタン ( 2 m L) と 1 , 2—ビス (ジメチ ルホスフイノ) ベンゼン (5 0 mg, 0. 2 5 mm o l ) を加えて、 5 0 °Cの油浴中で 2時間撹拌した。 室温まで冷却したのち、 へキサン (4 m L ) を加えて橙色沈澱を析出させた。 吸引ろ過して得られた固体を減圧下 ( 1 mmH g) で乾燥させて淡橙色の塩化 1 , 2—ビス (ジメチルホスフィ ノ) ベンゼンパラジウム ( P d C I 2 (d m p b)) を得た。 In a 20-mL Schlenk-type reaction tube equipped with a stirrer, weigh bis (acetonitol) palladium (65.4 mg, 0.25 mmoI) and place it under argon atmosphere. , 2-Dichloroethane (2 mL) and 1,2-bis (dimethylphosphino) benzene (50 mg, 0.25 mmol) were added, and the mixture was stirred in a 50 ° C oil bath for 2 hours. After cooling to room temperature, hexane (4 mL) was added to precipitate an orange precipitate. The solid obtained by suction filtration under reduced pressure (1 mmH g) chloride 1 pale orange dried to give 2- bis (dimethyl phosphinate Roh) benzene palladium (P d CI 2 (dmpb) ) a.
なお、 1 , 2—ビス (ジメチルホスフイノ) ベンゼンは以下のようにし て調製した。 即ち、 ポリテ卜ラフルォロエチレンでコー卜した撹拌子を備 えた 2 5 0 m Lシュレンク型反応管に、 アルゴン雰囲気下、 T H F ( 5 0 m L) を取り、 続いて水素化アルミニウムリチウム (3. 9 g, 1 0 2. 8 mm 0 I ) を加えた。 反応溶液を一 7 8°Cに冷却し、 クロ口卜リメチル シラン ( 1 2. 9 m L, 1 0 2. 5 m m o I ) を注射器を用いて注意深く 滴下したのち、 室温下で 2時間撹拌した。 一 3 0°Cに冷却し、 あらかじめ 調製しておいたテトラメチルー 1 , 2—フエ二レンジホスファネー卜 (5 • 0 g, 1 7. O mm o の T H F溶液 ( 5 0 m L) を注射器を用いて 滴下したのち、 室温下で 3 6時間撹袢した。 脱気した蒸留水 (2 5 m L) を少しずつ加え、 続いて 1規定水酸化ナトリウム水溶液 ( 1 5 m L) を加 えた。 脱気したジェチルエーテル (5 0 m L) を注射器で加えて 5分間撹 拌したのち、 静置した。 有機層を、 撹拌子と硫酸ナトリウム ( 1 0 g) を 備えた別のシュレンクに力二ユラによって移した。 この抽出操作を 3回繰 リ返した。 反応溶液を撹袢子を備えた別のシュレンクに力二ユラで移し、 溶媒を減圧留去した。粗生成物を 1 O m Lナス型フラスコに力二ユラによ つて移し、 減圧下、 簡易蒸留によリ無色液体の 1 , 2—ビス (ホスフイノ ) ベンゼン ( 1 . 9 1 g, 収率 7 9. 1 %) を得た。 次に、 ポリテ卜ラフ ルォロエチレンでコー卜した撹拌子を備えた 7 5 m Lシュレンク型反応 管に、 アルゴン雰囲気下で脱気したジェチルエーテル ( 1 5 m L) と 1, 2—ビス (ホスフイノ) ベンゼン ( 5 0 0. 0 mg, 3. 5 mm o I ) を加えた。 一 7 8°Cに冷却し、 1 . 6 M n—プチルリチウムのへキサン 溶液 (5 m L, 8. 1 mm o I ) を加え、 3 0分間撹拌した。 ヨウ化メチ ル (0. 5 m L, 8. 1 mm 0 I ) を加え、 室温で 1時間撹拌した。 再度 — 7 8°Cに冷却し、 1 . 6 M n—プチルリチウムのへキサン溶液 ( 5. 3 m L, 8. 4 mm 0 I ) を加えて 3 0分間撹拌したのち、 ヨウ化メチル ( 0. 5 3 m L, 8. 4 m m o I ) を加え、 室温で 2時間撹拌した。 脱気し た蒸留水 (2 5 m L) を注射器で加え、 3分間撹拌したのち、 静置した。 有機層を、 撹拌子と硫酸ナトリウム (5 g) を備えた別のシュレンクに力 二ユラによって移し、 撹拌したのちに、 撹拌子を備えた別のシュレンクに 力二ユラで移し、 溶媒を減圧留去した。 生成物を 5 m Lナス型フラスコに 力二ユラによって移し、 減圧下、 簡易蒸留により無色液体の 1 , 2—ビス (ジメチルホスフィノ) ベンゼン (6 4 1 . 9 m g, 収率 9 2. 0 %) を 得た。 In addition, 1,2-bis (dimethylphosphino) benzene was prepared as follows. That is, THF (50 mL) was placed in a 250 mL Schlenk-type reaction tube equipped with a stir bar coated with polytetrafluoroethylene under an argon atmosphere, and then lithium aluminum hydride (3 9 g, 10 2.8 mm 0 I) was added. The reaction solution was cooled to 178 ° C, and trimethylsilane (12.9 mL, 102.5 mmo I) was carefully added dropwise using a syringe, followed by stirring at room temperature for 2 hours. . After cooling to 30 ° C, a pre-prepared solution of tetramethyl-1,2-phenylenediphosphonate (5 • 0 g, 17.Ommo in THF (50 mL)) was injected into the syringe. Using After the dropwise addition, the mixture was stirred at room temperature for 36 hours. Degassed distilled water (25 mL) was added little by little, and then a 1 N aqueous sodium hydroxide solution (15 mL) was added. Degassed getyl ether (50 mL) was added with a syringe, stirred for 5 minutes, and allowed to stand. The organic layer was transferred by force to another Schlenk equipped with a stir bar and sodium sulfate (10 g). This extraction operation was repeated three times. The reaction solution was transferred to another Schlenk equipped with a stirrer with a force, and the solvent was distilled off under reduced pressure. The crude product was transferred to a 1 OmL eggplant-shaped flask by means of a pressure vessel, and subjected to simple distillation under reduced pressure to give colorless liquid 1,2-bis (phosphino) benzene (1.91 g, yield 7). 9.1%). Next, a 75 mL Schlenk-type reaction tube equipped with a stirrer coated with polytetrafluoroethylene was added to dimethyl ether (15 mL) degassed in an argon atmosphere and 1,2-bis (phosphine). ) Benzene (500.0 mg, 3.5 mmoI) was added. The mixture was cooled to 178 ° C., a hexane solution of 1.6 M n-butyllithium (5 mL, 8.1 mmol) was added, and the mixture was stirred for 30 minutes. Methyl iodide (0.5 mL, 8.1 mm 0 I) was added, and the mixture was stirred at room temperature for 1 hour. Cool again to −78 ° C., add 1.6 M n-butyllithium hexane solution (5.3 mL, 8.4 mm 0 I), stir for 30 minutes, and add methyl iodide ( 0.5 mL, 8.4 mmoI) was added, and the mixture was stirred at room temperature for 2 hours. Degassed distilled water (25 mL) was added with a syringe, stirred for 3 minutes, and allowed to stand. The organic layer was transferred to another Schlenk equipped with a stir bar and sodium sulfate (5 g) by force, and after stirring, transferred to another Schlenk equipped with a stir bar with force, and the solvent was distilled under reduced pressure. I left. The product was transferred to a 5-mL eggplant-shaped flask with a power flask and subjected to simple distillation under reduced pressure to form a colorless liquid of 1,2-bis (dimethylphosphino) benzene (641.9 mg, yield 92.0). %).
[実施例 2] 実施例 1 に準じて、 塩化 1 , 2—ビス (ジメチルホスフイノ) ェタンパ ラジウム ( P d C I 2 ( d m p e )) を得た。 なお、 1 , 2—ビス (ジメチ ルホスフイノ) エタンは、 F I u k a社製のものを用いた。 [Example 2] In accordance with Example 1, 1 chloride to give 2- bis (dimethyl phosphine Ino) Etanpa radium (P d CI 2 (dmpe) ). The 1,2-bis (dimethylphosphino) ethane was manufactured by FIuka.
[実施例 3]  [Example 3]
実施例 1 に準じて、 塩化ビス (ジシクロへキシルホスフィノ) メタンパ ラジウム ( P d C I 2 (d c p m)) を得た。 なお、 ビス (ジシク口へキシ ルホスフイノ) メタンは、 A I d r i c h社製のものを用いた。 Analogously as described in Example 1 to obtain a bis chloride (Kishiruhosufino dicyclohexyl) Metanpa radium (P d CI 2 (dcpm) ). The bis (hexylphosphine) methane used was manufactured by AI drich.
[実施例 4]  [Example 4]
実施例 1 に準じて、 塩化 1 , 2—ビス (ジフエニルホスフイノ) ェタン パラジウム ( P d C I 2 (d p p e )) を得た。 なお、 1 , 2—ビス (ジフ ェニルホスフイノ) エタンは、 東京化成社製のものを用いた。 In accordance with Example 1, 1 chloride to give 2- bis (diphenyl phosphine Ino) Etan palladium (P d CI 2 (dppe) ). The 1,2-bis (diphenylphosphino) ethane was manufactured by Tokyo Chemical Industry.
[実施例 5]  [Example 5]
実施例 1 に準じて、 塩化 1 , 2—ビス (ジフエニルホスフイノ) プロ パンパラジウム (P d C I 2 (d p p p)) を得た。 なお、 1 , 2—ビス ( ジフエニルホスフイノ) プロパンは、 東京化成社製のものを用いた。 In accordance with Example 1, 1 chloride to give 2- bis (diphenyl phosphine Ino) propane palladium (P d CI 2 (dppp) ). The 1,2-bis (diphenylphosphino) propane used was manufactured by Tokyo Chemical Industry Co., Ltd.
[実施例 6]  [Example 6]
実施例 1 に準じて、 塩化 1 , 4一ビス (ジフエニルホスフイノ) ブタ ンパラジウム (P d C I 2 (d p p b)) を得た。 なお、 1, 4—ビス (ジ フエニルホスフイノ) ブタンは、 東京化成社製のものを用いた。 In accordance with Example 1, to obtain a chloride 1, 4 one-bis (diphenyl phosphine Ino) pigs emissions palladium (P d CI 2 (dppb) ). The 1,4-bis (diphenylphosphino) butane was manufactured by Tokyo Chemical Industry.
[実施例 7]  [Example 7]
ポリテトラフル才ロエチレンでコートした撹拌子を備えた 2 0 m Lシ ュレンク型反応管に、 四塩化パラジウム(I I)酸カリウム ( 1 00. 0 m g, 0. 3 1 mm o I ) を量り取り、 蒸留水 (4 m L) を加えた。 そこ ヘメチルジフエニルホスフィン ( 1 1 5 し, 0. 6 2 mm 0 I ) (東京 化成社製) を量り取り、 室温下で 3時間撹拌した。 ジクロロメタン ( 5 m L) を加えて撹拌後、 水層を注射器を用いて除去した。 有機層にへキサン を加えて黄色沈澱を析出させ、 フィルタろ過して得られた固体を減圧下 (In a 20 mL Schlenk-type reaction tube equipped with a stirrer coated with polytetrafluoroethylene, weigh potassium tetrachloride (II) (1000.0 mg, 0.31 mmoI) and distill it Water (4 mL) was added. Hemethyldiphenylphosphine (115, 0.62 mm 0 I) (manufactured by Tokyo Kasei Co., Ltd.) was weighed and stirred at room temperature for 3 hours. After adding dichloromethane (5 mL) and stirring, the aqueous layer was removed with a syringe. Hexane in organic layer Was added to precipitate a yellow precipitate, and the solid obtained by filtration was filtered under reduced pressure (
1 mmH g) で乾燥させて黄色の塩化ビス (メチルジフエニルホスフィン ) パラジウム ( P d C I 2 (M e P h2P) 2, 収量 1 0 7. 9 m g , 収率 6 1 . 0 ) を得た。 1 mmH g) in dried yellow bis (methyl diphenyl phosphine) palladium (P d CI 2 (M e P h 2 P) 2, yields 1 0 7. 9 mg, yield 6 1.0) The Obtained.
[実施例 8]  [Example 8]
実施例 1 に準じて、 塩化 1 , 2—ビス [ジ (3 , 5—キシリル) ホスフ イノ] ェタンパラジウムを得た。 なお、 1, 2—ビス [ジ (3, 5—キシ リル) ホスフイノ] エタンは、 以下のようにして調製した。 即ち、 環流冷 却器を取り付けた 5 00 m L二つ口フラスコに撹拌子を入れ、細かく切つ た金属リチウム (0. 0 7 g, 1 0. 1 mm 0 I ) を入れてセプタムラバ 一キャップで口を封じた。 アルゴン雰囲気下で、 脱気したへキサン (5 m L) を注射器で加え、 5分間撹拌したのちにへキサンを除去した。 この操 作を 3回繰り返した。 そこへあらかじめ調製しておいた塩化ビス (3 , 5 ーキシリル) ホスフィン ( 1 . 5 m L, 6. 5 mm 0 I ) の T H F溶液 ( 2 0 m L) を注射器で加え、 室温下で 2. 5時間撹拌した。 さらにそこ へ、 あらかじめ調製した 1, 2—ジクロロエタン (0. 4 m L, 5. 1 m m o I ) の T H F溶液 (5 m L) を注射器で注意深く滴下したのち、 80 °Cで 3 0分間環流した。 室温まで冷却し、 蒸留水 (3 0 O m L) を注射器 で加えた。 吸引ろ過して得られた固体を減圧下 ( 1 mmH g) で乾燥させ て白色の塩化 1, 2—ビス [ジ (3 , 5—キシリル) ホスフイノ] ェタン パラジウム ( P d C I 2 (d x p e), 収屢 3 7 2. 1 m g , 収率 1 1 . 2 %) を得た。 According to Example 1, 1,2-bis [di (3,5-xylyl) phosphino] ethanepalladium chloride was obtained. In addition, 1,2-bis [di (3,5-xylyl) phosphino] ethane was prepared as follows. That is, a stir bar was placed in a 500 mL two-necked flask equipped with a reflux cooler, finely cut metallic lithium (0.07 g, 10.1 mm 0 I) was added, and a septum rubber cap was added. And closed the mouth. Under an argon atmosphere, degassed hexane (5 mL) was added with a syringe, and after stirring for 5 minutes, the hexane was removed. This operation was repeated three times. A THF solution (20 mL) of bis (3,5-xylyl) phosphine (1.5 mL, 6.5 mm0 I) prepared in advance was added by a syringe to the solution at room temperature. Stir for 5 hours. Further, a THF solution (5 mL) of 1,2-dichloroethane (0.4 mL, 5.1 mmol) prepared in advance was carefully added dropwise using a syringe, and the mixture was refluxed at 80 ° C for 30 minutes. . After cooling to room temperature, distilled water (30 OmL) was added with a syringe. The solid obtained by suction filtration under reduced pressure (1 mmH g) in dried white chloride 1, 2-bis [di (3, 5-xylyl) Hosufuino] Etan palladium (P d CI 2 (dxpe) , A yield of 372.1 mg (yield 11.2%) was obtained.
[実施例 9]  [Example 9]
実施例 1 に準じて、 塩化 1 , 2—ビス [ジ (4—メトキシフエ二ル) ホ スフイノ] ェタンパラジウムを得た。 なお、 1, 2— [ジ (4ーメトキシ フエニル) ホスフイノ) エタンは、 以下のようにして調製した。 即ち、 ポ リテ卜ラフルォロエチレンでコートした撹拌子を備えた 1 0 0 m L二つ 口フラスコに金属マグネシウム ( 2 9 1 . 5 m g , 1 2. O mm o を 入れ、 アルゴン雰囲気下で T H F ( 1 0 m L) を加えた。 あらかじめ調製 した 4—ブロモア二ソール . 5 m L, 1 2 mm 0 I ) (東京化成社 製) の T H F溶液 (2. 5 m L) を注射器で少しずつ滴下したのち、 1 . 5時間撹袢した。 反応溶液を 0°Cまで冷却し、 あらかじめ調製した 1 , 2 一ビス (ジクロロホスフイノ) ェタン (3 0 2 t L, 2 mm 0 I ) (A I d r i c h社製) の T H F溶液 ( 2. 5 m L) を注射器を用いて加え、 室 温下で 2 1時間撹拌した。 0°Cに冷却したのちに、 飽和塩化アンモニゥ厶 水溶液 (5 O m L) を加え、 グラスフィルタでろ過して不純物を取り除い た。 有機層を回収し、 無水硫酸ナトリウムで乾燥した。 ろ過後、 減圧濃縮 して油状物を得たのち、 冷却した 2—プロパノール (5 m L) を加えて固 体を析出させた。 吸引ろ過して減圧下 ( 1 mmH g) で乾燥させることで 白色粉末として 1 , 2—ビス [ジ (4ーメ卜キシフエニル) ホスフイノ] ェタン (P d C I 2 (d m p p e), 収量 44 9. 1 m g, 収率 4 3. 3 % ) を得た。 In accordance with Example 1, 1,2-bis [di (4-methoxyphenyl) phosphino] ethanepalladium chloride was obtained. In addition, 1,2- [di (4-methoxyphenyl) phosphino) ethane was prepared as follows. That is, In a 100 mL two-necked flask equipped with a stirrer coated with tetrafluoroethylene, put metallic magnesium (291.5 mg, 12.Ommo), and add THF (1 A solution of 2.5 mL, prepared beforehand, of 4-bromoanisole. 5 mL, 12 mm 0 I) (manufactured by Tokyo Chemical Industry Co., Ltd.) (2.5 mL) was added dropwise with a syringe. Thereafter, the mixture was stirred for 1.5 hours. The reaction solution was cooled to 0 ° C, and a previously prepared solution of 1,2-bis (dichlorophosphino) ethane (302 tL, 2 mm0I) (manufactured by AI drich) in THF (2.5 m L) was added using a syringe, and the mixture was stirred at room temperature for 21 hours. After cooling to 0 ° C, a saturated aqueous ammonium chloride solution (5 OmL) was added, and the mixture was filtered through a glass filter to remove impurities. The organic layer was collected and dried over anhydrous sodium sulfate. After filtration, the filtrate was concentrated under reduced pressure to obtain an oil, and then cooled 2-propanol (5 mL) was added to precipitate a solid. 1 as a white powder by causing suction filtration and dried under reduced pressure (1 mmH g), 2-bis [di (4-menu Bok Kishifueniru) Hosufuino] Etan (P d CI 2 (dmppe) , yield 44 9.1 mg, yield 43.3%).
次に、 下記実施例 1 0〜 1 8に、 各瘇のホスフィン一パラジウム (I I) 錯体を用いてアルキン化合物を部分水素化してアルケン化合物を製造す る例を示す。 なお、 図 2に実施例 1 0〜 1 8の反応結果を表で示す。  Next, Examples 10 to 18 described below show examples of producing an alkene compound by partially hydrogenating an alkyne compound using a phosphine-palladium (II) complex of each type. FIG. 2 is a table showing the reaction results of Examples 10 to 18.
[実施例 1 0]  [Example 10]
ポリテ卜ラフル才ロエチレンでコートした撹拌子を備えた 1 0 0 m L ガラス製才ートクレーブに、 実施例 1 で得た P d C I 2 (d m p b) ( l . 5 m g , 4. 0 m o I ) を量り取った。 オートクレープ内の空気をアル ゴンで置換し、 あらかじめアルゴンバプリングにより脱気した 3—へキシ ン (4 5 6 μし, 4. 0 mm 0 1 )、 2—プロパノール (4 m L)、 および t e r t一ブトキシカリウ厶の 2—メチルー 2—プロパノール溶液( 1 M ) (4 8 L, 4 8 m o I ) をアルゴン気流下、 注射器で加えた。 ガス 導入管を用いて才一トクレーブと水素ボンべを接続し、 導入管内の空気を 2気圧の水素で 3回置換した。続いて 5気圧の水素を才ー卜クレーブに導 入したのちに 2気圧まで注意深く放出するという操作を 1 0回繰り返し た後、 水素圧を 8気圧にして溶液を 2 5°Cで 1時間激しく撹拌した。 変換 率とシスノトランス選択性は '3 C N M R分析により決定した。 変換率、 > 9 5 % ; シス Z卜ランス比、 94 : 6。 PdCI 2 (dmpb) (l.5 mg, 4.0 moI) obtained in Example 1 was placed in a 100-mL glass-made autoclave equipped with a stirrer coated with polyethylene glycol. I weighed it. The air in the autoclave was replaced with argon, and 3-hexine (4.56 μm, 4.0 mm 01), which had been degassed by argon bubbling, 2-propanol (4 mL), and tert-Butoxy potassium solution in 2-methyl-2-propanol (1 M ) (48 L, 48 moI) was added with a syringe under a stream of argon. The gas supply tube was used to connect the storage tube to the hydrogen cylinder, and the air in the introduction tube was replaced three times with 2 atmospheres of hydrogen. Subsequently, the operation of carefully introducing 5 atm of hydrogen into the storage clave and then carefully releasing it to 2 atm was repeated 10 times, and then the hydrogen pressure was set to 8 atm and the solution was violently heated at 25 ° C for 1 hour. Stirred. Conversion cis Bruno trans selectivity was determined by '3 CNMR analyzes. Conversion,>95%; cis Z transratio, 94: 6.
[実施例 1 1 ~ 1 8]  [Examples 11 to 18]
実施例 2~ 9で得た各ホスフィン—パラジウム (I I) 錯体を用いて、 実 施例 1 0に準じて図 2に示す表の条件下でアルキン化合物を部分水素化 したところ、 同表に示す変換率、 シス Z卜ランス選択性でアルケン化合物 を得た。  Using each of the phosphine-palladium (II) complexes obtained in Examples 2 to 9, the alkyne compound was partially hydrogenated under the conditions shown in FIG. 2 according to Example 10 and the results are shown in the table. An alkene compound was obtained with a conversion and cis-Z trans selectivity.
次に、 下記実施例 1 9〜3 3に、 各種の添加物を加えてホスフィンーパ ラジウム (I I) 錯体を用いて 4一才クチンを部分水素化して 4一才クテン を製造する例を示す。 なお、 図 3に実施例 1 9〜 3 3の反応結果を表で示 す。  Next, Examples 19 to 33 below show examples of producing 41-year-old octene by adding various additives and partially hydrogenating 41-year-old cutin using a phosphine-palladium (II) complex. FIG. 3 is a table showing the reaction results of Examples 19 to 33.
[実施例 1 9]  [Example 19]
ポリテ卜ラフル才ロエチレンでコートした撹拌子を備えた 1 0 0 m L ガラス製才一トクレーブに実施例 5で合成した P d C (d p p p) ( 1 . 5 m g , 2. 5 μηι o I ) を量り取った。 オートクレープ内の空気をァ ルゴンで置換し、 あらかじめアルゴンバブリングにより脱気した 4—才ク チン ( 3 7 3 t L, 2. 54 mm o I ), 2—プロパノール ( 2 mし)、 t e r t—ブトキシカリウムの 2—メチル— 2—プロパノール溶液 ( 1 M) ( 3 1 M L , 3 1 M m 0 I ), およびあらかじめ調製した T M E D A (半 井社製) の 1 . 0 M 2—プロパノール溶液 ( 1 2. 7 μし, 1 2. 7 μ. m o I ) をアルゴン気流下、 注射器で加えた。 ガス導入管を用いて才ー卜 クレーブと水素ボンべを接続し、導入管内の空気を 2気圧の水素で 3回置 換した。続いて 5気圧の水素をォートクレープに導入したのちに 2気圧ま で注意深く放出する操作を 1 0回繰り返した後、水素圧を 8気圧にして溶 液を 2 5°Cで 3 0分間激しく撹拌した。 変換率 (G C)、 1 0 0 % ; シス /卜ランス比、 9 8. 2 : 1 . 8 ; n—オクタン、 0 %。 PdC (dppp) (1.5 mg, 2.5 μηιoI) synthesized in Example 5 was added to a 100 mL glass-made autoclave equipped with a stirrer coated with polyethylene glycol. I weighed it. The air in the autoclave was replaced with argon, and 4-butane cutin (373 tL, 2.54 mmoI), 2-propanol (2 m), and tert-degassed in advance by argon bubbling. A solution of potassium butoxy in 2-methyl-2-propanol (1 M) (31 ML, 31 Mm 0 I) and a previously prepared 1.0 M solution of TMEDA (Hanei Co., Ltd.) in 1 M 2.7 μ, and 12.7 μ.moI) were added with a syringe under a stream of argon. Use the gas inlet pipe The clave was connected to a hydrogen cylinder, and the air in the inlet tube was replaced three times with 2 atm of hydrogen. Subsequently, the operation of carefully releasing hydrogen up to 2 atm after introducing 5 atm of hydrogen into the auto crepe was repeated 10 times, then the hydrogen pressure was increased to 8 atm and the solution was vigorously stirred at 25 ° C for 30 minutes. did. Conversion (GC), 100%; cis / trans ratio, 98.2: 1.8; n-octane, 0%.
[実施例 2 0〜3 3 ]  [Examples 20 to 33]
実施例 1 9に準じて図 3に示す表の条件下で 4一才クチンを部分水素 化したところ、 同表に示す変換率、 シス Z卜ランス選択性で 4ーォクテン を得た。  When 4-year-old cutin was partially hydrogenated under the conditions shown in FIG. 3 according to Example 19, 4-octene was obtained with the conversion and cis-Z trans selectivity shown in the table.
[実施例 34-5 1 ]  [Example 34-5 1]
実施例 3 4〜5 1では、 各種の反応溶媒中でホスフィンーパラジウム ( I I)錯体を用いて 4一才クチンを部分水素化して 4—ォクテンを製造した 。 そのときの反応条件及び反応結果を図 4に示す。  In Examples 34 to 51, 4-octene was partially hydrogenated using phosphine-palladium (II) complex in various reaction solvents to produce 4-octene. FIG. 4 shows the reaction conditions and reaction results at that time.
[実施例 5 2〜5 8]  [Examples 52 to 58]
実施例 5 2〜 5 8では、 ホスフィン一パラジウム (II) 錯体を用いて各 種のアルキン化合物を部分水素化して、 対応するアルキン化合物を製造し た。 そのときの反応条件及び反応結果を図 5に示す。 産業上の利用の可能性  In Examples 52 to 58, each alkyne compound was partially hydrogenated using a phosphine-palladium (II) complex to produce the corresponding alkyne compound. FIG. 5 shows the reaction conditions and reaction results at that time. Industrial applicability
本発明の水素化触媒及びアルケン化合物の製造方法は、 脂肪酸、 香料、 フェロモン、 医農薬などの多くの生理活性物質中に含まれる炭素一炭素二 重結合を得る際に利用できるし、合成繊維や塗料やフイルムといったポリ マーの原料を工業的に合成する際にも利用できる。  The method for producing a hydrogenation catalyst and an alkene compound of the present invention can be used for obtaining carbon-carbon double bonds contained in many physiologically active substances such as fatty acids, fragrances, pheromones, and pharmaceuticals and agricultural chemicals. It can also be used for industrial synthesis of polymer raw materials such as paints and films.

Claims

請求の範囲 The scope of the claims
1 . アルキン化合物をアルケン化合物に部分水素化する水素化触媒で あって、 1. A hydrogenation catalyst for partially hydrogenating an alkyne compound to an alkene compound,
一般式 ( 1 ) 〜 (3) からなる群より選ばれた少なくとも一つを主成分 とする水素化触媒。  A hydrogenation catalyst comprising at least one selected from the group consisting of the general formulas (1) to (3) as a main component.
R 〈尸2 R <Shikabane 2
\ ノ"  \ ノ "
(CH2)n Pd (1) (CH 2 ) n Pd (1)
p/ ヽ X12
Figure imgf000018_0001
Figure imgf000018_0002
p / ヽ X 12
Figure imgf000018_0001
Figure imgf000018_0002
Figure imgf000018_0003
Figure imgf000018_0003
/ \  / \
R35 R36 (—般式 ( 1 ) において、 nは 1 〜5のいずれかの整数であり、 R''〜 R 14は同じであっても異なっていてもよく置換基を有していてもよい炭化水 素基であり、 X'', X'2は同じであっても異なっていてもよいァニオンで あり、 R35 R 36 (- In general formula (1), n is any integer of 1 ~5, R''~ R 14 may hydrocarbon which may have a well-substituent be different even in the same X '' and X ' 2 are anions which may be the same or different,
一般式 (2) において、 R"〜 R24は同じであっても異なっていてもよ く置換基を有していてもよい炭化水素基であり、 YZ'〜Y"は同じであつ ても異なっていてもよく水素、 置換基を有していてもよい炭化水素基、 ハ ロゲン、 アルコキシ基又はアミノ基であり、 X2', X22は同じであっても 異なっていてもよいァニオンであリ、 In the general formula (2), R "~ R 24 is a hydrocarbon group which may have a substituent rather good be different even in the same, Y Z '~Y" is same as has filed May be hydrogen, a hydrocarbon group which may have a substituent, a halogen, an alkoxy group or an amino group, and X 2 ′ and X 22 may be the same or different. And
一般式 (3 ) において、 R3'〜 R36は同じであっても異なっていてもよ く置換基を有していてもよい炭化水素基であり、 X3', X32は同じであつ ても異なっていてもよいァニオンである) In the general formula (3), R 3 ′ to R 36 are the same or different and may be a hydrocarbon group which may have a substituent, and X 3 ′ and X 32 are the same. Or an anion that can be different)
2. —般式 ( 1 ) において、 nは、 1 〜4のいずれかの整数である請求 項 1記載の水素化触媒。  2. —The hydrogenation catalyst according to claim 1, wherein in the general formula (1), n is an integer of any one of 1 to 4.
3. —般式 ( 1 ) において、 R"〜R'4は、 同じであっても異なっていて もよく、 アルキル、 シクロアルキル又は置換基を有していてもよいフエ二 ルである請求項 1又は 2記載の水素化触媒。 3. - In general formula (1), according to claim R "to R '4, which may be different even in the same, alkyl, optionally phenylene Le have a cycloalkyl or a substituent 3. The hydrogenation catalyst according to 1 or 2.
4. 一般式 (2 ) において、 R2'〜 R24は、 同じであっても異なっていて もよく、 アルキル、 シクロアルキル又は置換基を有していてもよいフエ二 ルである請求項 1 〜 3のいずれかに記載の水素化触媒。 4. In the general formula (2), R 2 ′ to R 24 may be the same or different, and are alkyl, cycloalkyl or phenyl which may have a substituent. 4. The hydrogenation catalyst according to any one of claims 1 to 3.
5. —般式 (3 ) において、 R3'~R "は、 同じであっても異なっていて もよく、 アルキル、 シクロアルキル又は置換基を有していてもよいフエ二 ルである請求項 1 〜 4のいずれかに記載の水素化触媒。 5. —In the general formula (3), R 3 ′ to R ″ may be the same or different and are alkyl, cycloalkyl or phenyl which may have a substituent. 5. The hydrogenation catalyst according to any one of 1 to 4.
6. 請求項 1 〜 5のいずれかに記載の水素化触媒を用いて、 反応溶媒中 、塩基又は還元剤の存在下で且つ水素又は水素を供与する化合物の存在下 6. Using the hydrogenation catalyst according to any one of claims 1 to 5, in a reaction solvent, in the presence of a base or a reducing agent, and in the presence of hydrogen or a compound that donates hydrogen.
、反応基質であるアルキン化合物を部分水素化してアルケン化合物を製造 するアルケン化合物の製造方法。 Manufactures alkene compounds by partially hydrogenating alkyne compounds as reaction substrates For producing an alkene compound.
7 . 内部アルキン化合物を部分水素化してシスアルケン化合物を製造す るか、 又は末端アルキン化合物を部分水素化して末端アルケン化合物を製 造する請求項 6記載のアルケン化合物の製造方法。  7. The method for producing an alkene compound according to claim 6, wherein the internal alkyne compound is partially hydrogenated to produce a cis alkene compound, or the terminal alkyne compound is partially hydrogenated to produce a terminal alkene compound.
8 . 前記反応基質に対して前記水素化触媒を 1ノ1 0 0〜 1 1 0 0 0 0 0当量使用する請求項 6又は 7記載のアルケン化合物の製造方法。 8. The method for producing an alkene compound according to claim 6 or 7, wherein the hydrogenation catalyst is used in an amount of 100 to 1000 equivalents to the reaction substrate.
9 . 前記反応溶媒は、 プロトン性溶媒、 非プロトン性溶媒、 配位性溶媒 又はこれらの混合溶媒である請求項 6〜 8のいずれかに記載のアルケン 化合物の製造方法。 9. The method for producing an alkene compound according to any one of claims 6 to 8, wherein the reaction solvent is a protic solvent, an aprotic solvent, a coordinating solvent, or a mixed solvent thereof.
1 0 . 前記反応溶媒は、 N, N —ジメチルホルムアミ ド又は N, N —ジ メチルホルムアミドとアルコールとの混合溶媒である請求項 6〜 9のい ずれかに記載のアルケン化合物の製造方法。 10. The method for producing an alkene compound according to any one of claims 6 to 9, wherein the reaction solvent is N, N-dimethylformamide or a mixed solvent of N, N-dimethylformamide and an alcohol.
1 1 . 添加物として Ν, Ν, Ν ' , Ν ' ーテトラメチルエチレンジァミン 、 Ν , Ν ' ージメチルエチレンジァミン、 エチレングリコール、 Ν, Ν - ジメチルァミノエタノール、 フエノール、 ァニリン、 ベンゾニ卜リル、 ρ 一二トロフエノール、 トリフエニルホスフィンォキシド、 トリフル才ロェ タノール、水又はキノリンを加えて部分水素化を行う請求項 6〜 1 0のい ずれかに記載のアルゲン化合物の製造方法。  1 1. Additives Ν, Ν, Ν ', Ν'-tetramethylethylenediamine, Ν, Ν'-dimethylethylenediamine, ethylene glycol, Ν, Ν-dimethylaminoethanol, phenol, aniline, The process for producing an argen compound according to any one of claims 6 to 10, wherein the partial hydrogenation is carried out by adding benzonitrile, ρ12-trophenol, triphenylphosphinoxide, trifluroylethanol, water or quinoline. .
PCT/JP2003/001355 2002-02-12 2003-02-10 Hydrogenation catalyst and process for production of alkenes WO2003068391A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003207190A AU2003207190A1 (en) 2002-02-12 2003-02-10 Hydrogenation catalyst and process for production of alkenes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-34427 2002-02-12
JP2002034427A JP2003236386A (en) 2002-02-12 2002-02-12 Hydrogenation catalyst and method for producing alkene compound

Publications (1)

Publication Number Publication Date
WO2003068391A1 true WO2003068391A1 (en) 2003-08-21

Family

ID=27678027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001355 WO2003068391A1 (en) 2002-02-12 2003-02-10 Hydrogenation catalyst and process for production of alkenes

Country Status (3)

Country Link
JP (1) JP2003236386A (en)
AU (1) AU2003207190A1 (en)
WO (1) WO2003068391A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111774096A (en) * 2020-07-14 2020-10-16 厦门大学 Catalyst modified by thiol ligand and preparation method and application thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5331305B2 (en) 2004-03-31 2013-10-30 公益財団法人名古屋産業科学研究所 Method for producing hydrogenation accelerator, hydrogenation catalyst and alkene compound
JP4576584B2 (en) * 2005-01-31 2010-11-10 独立行政法人科学技術振興機構 Phosphorus-containing polymer-immobilized palladium catalyst and use thereof
US9732015B2 (en) 2015-05-29 2017-08-15 Uop Llc Process for the selective hydrogenation of acetylene to ethylene

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0560532A1 (en) * 1992-03-09 1993-09-15 Nissan Chemical Industries Ltd. Preparation of cis-olefins

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0560532A1 (en) * 1992-03-09 1993-09-15 Nissan Chemical Industries Ltd. Preparation of cis-olefins

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111774096A (en) * 2020-07-14 2020-10-16 厦门大学 Catalyst modified by thiol ligand and preparation method and application thereof
CN111774096B (en) * 2020-07-14 2021-12-03 厦门大学 Catalyst modified by thiol ligand and preparation method and application thereof

Also Published As

Publication number Publication date
AU2003207190A1 (en) 2003-09-04
JP2003236386A (en) 2003-08-26

Similar Documents

Publication Publication Date Title
JP4004123B2 (en) Method for producing alcohol compound using ruthenium complex as catalyst
Gomez-Suarez et al. Influence of a very bulky N-heterocyclic carbene in gold-mediated catalysis
CN106458823B (en) Process for preparing unsaturated carboxylic acid salts
Hauwert et al. Zerovalent [Pd (NHC)(Alkene) 1, 2] complexes bearing expanded-ring N-heterocyclic carbene ligands in transfer hydrogenation of alkynes
CN101733162A (en) Organic metal framework supported palladium, preparation method and application thereof
JP3566955B2 (en) Novel ruthenium complex and method for producing alcohol compound using the same as catalyst
KR20090078835A (en) Hydrogen splitting composition
JP2017508747A (en) Ruthenium-phenol catalyst for hydrogen transfer reaction
WO2020057274A1 (en) Method for preparing substituted primary amine
WO2012150053A1 (en) Hydrogenation of dienals with rhodium complexes under carbon monoxide free atmosphere
Fan et al. Air-Stable Half-Sandwich Iridium Complexes as Aerobic Oxidation Catalysts for Imine Synthesis
JP2731377B2 (en) Method for producing optically active alcohols
US9556211B2 (en) Metal complex compound, hydrogen production catalyst and hydrogenation reaction catalyst each comprising the metal complex compound, and hydrogen production method and hydrogenation method each using the catalyst
Yang Partial reductions of carboxylic acids and their derivatives to aldehydes
US20020072636A1 (en) Optically active diphosphines, preparation thereof according to a process for the resolution of the racemic mixture and use thereof
WO2005092825A1 (en) Process for production of optically active alcohols
CN114478362A (en) Preparation method of chiral pyridinol derivative
WO2003068391A1 (en) Hydrogenation catalyst and process for production of alkenes
WO2014077323A1 (en) Method for producing optically active isopulegol and optically active menthol
CN111068789B (en) For CO2Catalyst for participating in esterification reaction of olefin carbonyl
Marozsán et al. Catalytic racemization of secondary alcohols with new (arene) Ru (II)-NHC and (arene) Ru (II)-NHC-tertiary phosphine complexes
WO2021138908A1 (en) γ-VALEROLACTONE PREPARATION METHOD
CN114478372A (en) Asymmetric preparation method of pyridinol nitrogen oxide
CN112851521A (en) Method for preparing primary amine by catalytic reduction of nitrile compound with nano porous palladium catalyst
JP5680878B2 (en) Method for producing optically active alcohol

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase