WO2003064516A1 - Rubber composition and process for producing the same - Google Patents

Rubber composition and process for producing the same Download PDF

Info

Publication number
WO2003064516A1
WO2003064516A1 PCT/JP2003/001003 JP0301003W WO03064516A1 WO 2003064516 A1 WO2003064516 A1 WO 2003064516A1 JP 0301003 W JP0301003 W JP 0301003W WO 03064516 A1 WO03064516 A1 WO 03064516A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
weight
conjugated
parts
rubber composition
Prior art date
Application number
PCT/JP2003/001003
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Karato
Yoshihiro Chino
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corporation filed Critical Zeon Corporation
Publication of WO2003064516A1 publication Critical patent/WO2003064516A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers

Definitions

  • the present invention relates to a rubber composition and a method for producing the same, and more particularly, to a sheet obtained by molding a composition containing silica as a reinforcing agent into a sheet with a roll, and having excellent tensile properties and low tensile strength.
  • the present invention relates to a rubber composition having excellent heat build-up and a method for producing the same. Background art
  • JP-A-64-22940 discloses a conjugated gen-based rubber obtained by copolymerizing a conjugated gen and an amino group-containing monomer by a solution polymerization method using an organic alkali metal or the like as a polymerization catalyst.
  • a silicide compounded rubber composition having improved breaking strength and abrasion resistance.
  • this publication also discloses a specific compounding example in which a styrene-butadiene copolymer rubber having a natural rubber gum viscosity of about 50 is blended with the conjugated gen-based rubber.
  • Such conjugated rubbers generally have a narrow molecular weight distribution and thus are inferior in processability, and the conjugated rubber blends described above have slightly improved processability.
  • the rubber composition with poor processability is formed into a sheet by a roll.
  • the resulting rubber composition is inferior in surface shape, making it difficult to form a green tire in the tire manufacturing process.
  • JP-A Japanese Patent Application Laid-Open (JP-A) No. 11-344 discloses that a tertiary amino group-containing monomer containing 1 to 20% by weight of an emulsion-copolymerized conjugated gen-based rubber has excellent tensile properties and low heat build-up.
  • An excellent silica-containing rubber composition is disclosed.
  • This publication also discloses a specific compounding example in which a styrene-butadiene copolymer rubber having a natural rubber gum viscosity of about 50 is blended with the conjugated gen-based rubber.
  • the rubber composition containing such a conjugated diene rubber is inferior in processability, and the above rubber blend has insufficient heat resistance and low heat generation. Poor balance between properties and tensile properties.
  • Japanese Patent Laid-Open No. 8- 1 thirty-four thousand two hundred seventy-two, and a 1 weight 0/0 less than tertiary amino group-containing Yutan weight conjugated diene-based and the body copolymerized rubber and silane coupling agent the particular condition Discloses a silica compounded rubber composition kneaded in the above.
  • a rubber composition is excellent in extrusion processability, and excellent in tensile properties, low heat generation, etc., but the surface shape of the rubber composition when formed into a sheet by rolls is not satisfactory. Did not. Disclosure of the invention
  • an object of the present invention is to improve the surface shape of a sheet when a composition containing silica as a reinforcing agent is formed into a sheet by a roll, and to obtain tensile properties and low heat generation.
  • An object of the present invention is to provide a rubber composition excellent in water resistance and a method for producing the same.
  • the present inventors have conducted intensive studies to achieve the above object, and have a conjugated diene rubber having a relatively high viscosity with no amino group and a Mooney viscosity having a lower Mooney viscosity than that having an amino group. It has been found that a blend with a conjugated rubber is compounded with silica and gives a rubber composition which is excellent in the surface shape of a sheet when formed into a sheet by a roll, and which is excellent in tensile properties and low heat generation properties. Based on this finding, the present invention has been completed.
  • a conjugated diene unit 0 to 60% by weight of an aromatic vinyl monomer unit and 0 to 20% of other copolymerizable monomer units according to the present invention.
  • A conjugated gen-based rubber
  • A having a viscosity in the range of 70 to 200, and 40 to 99.8% by weight of a conjugated diene unit
  • an aromatic vinyl monomer And 5 to 20% by weight of a monomer unit, 0.2 to 20% by weight of an amino group-containing monomer unit, and 0 to 20% by weight of another copolymerizable monomer unit.
  • One viscosity is in the range of 20 to 150, and the conjugated rubber (A) contains 80 to 20 parts by weight of a conjugated rubber (B) having a Muney viscosity which is 10 or more lower than the mu viscosity of the conjugated rubber (A). (The total amount of the conjugated rubber (A) and the conjugated rubber (B) is 100 parts by weight.)
  • a rubber composition is provided.
  • the present invention provides a method for producing the rubber composition containing a conjugated diene rubber (A) and a conjugated diene rubber (B).
  • the rubber composition of the present invention contains 40 to 100% by weight of a conjugated gen unit and 0 to 60% by weight of an aromatic vinyl monomer unit, and has a viscosity of 70 to 200. 20 to 80 parts by weight of a diene rubber (A), 40 to 99.8% by weight of a conjugated diene unit, 0 to 59.8% by weight of an aromatic vinyl monomer unit, and 0.2 to 2% of an amino group-containing monomer unit It comprises 20 weight 0, the range of beam one knee viscosity from 20 to 150, the conjugated diene-based rubber having a low ⁇ one knee viscosity 10 more than arm one knee viscosity of the conjugated diene rubber (a) (B) 80 ⁇ 20 parts by weight (the total amount of the conjugated rubber (A) and the conjugated rubber (B) is 100 parts by weight;).
  • the conjugated diene rubber (A) has a conjugated diene unit of 40 to 100% by weight, preferably 50 to 90% by weight, more preferably 55 to 80% by weight, and an aromatic vinyl monomer unit 0 to 60% by weight, preferably Contains 10 to 50% by weight 0 / o, more preferably 20 to 45% by weight, and has a Mooney viscosity (ML l + 4 , 100) of 70 to 200, preferably 90 to 160, more preferably 100 It is in the range of ⁇ 150.
  • ML l + 4 , 100 Mooney viscosity
  • the conjugated diene unit amount in the conjugated diene rubber (A) is small, low heat build-up is inferior. Both When the amount of the aromatic vinyl monomer unit in the role-based rubber (A) is large, low heat build-up is inferior.
  • the conjugated rubber (A) preferably contains an aromatic vinyl monomer unit from the viewpoint of more excellent tensile properties.
  • the conjugated gen-based rubber (A) contains other copolymerizable monomer units other than the conjugated gen unit and the aromatic vinyl monomer unit as long as the effects of the present invention are not essentially impaired. Is also good.
  • the amount of the copolymerizable monomer is usually 20% by weight or less, more preferably 10% by weight 0/0 or less in all monomer units. If this amount is too large, the physical property balance of the crosslinked rubber tends to deteriorate.
  • the conjugated rubber (A) does not contain an amino group-containing monomer unit.
  • it may contain amino group-containing monomer units in a range that does not substantially impair the effects of the present invention, usually less than 0.2% by weight, particularly less than 0.1% by weight. If this amount is too large, the viscosity of the composition becomes too high, making it difficult to apply, or the surface shape of the sheet becomes poor.
  • the conjugated diene rubber (A) has a low viscosity, low heat build-up and abrasion resistance are inferior. Conversely, if it is high, the surface shape of the sheet deteriorates and the viscosity of the compound becomes too high. It becomes difficult to add.
  • the conjugated diene rubber (B) has a conjugated diene unit content of 40 to 99.8% by weight, preferably 50 to 89.% by weight, more preferably 55 to 79.6% by weight, and an aromatic vinyl monomer unit 0- 59.8 weight 0 / o, preferably 1 0 to 49. off weight 0 / o, more preferably from 20 to 44.6 by weight%, and an amino group-containing monomer units 0.2 to 20 wt%, preferably Contains 0.3 to 10% by weight, more preferably 0.4 to 5% by weight.
  • the synergistic gen-based rubber (B) contains an aromatic vinyl monomer unit from the viewpoint of more excellent tensile properties.
  • the conjugated gen-based rubber (B) is a component other than a conjugated gen unit, an aromatic vinyl monomer unit and an amino group-containing monomer unit as long as the effect of the present invention is not substantially impaired. May contain other copolymerizable monomer units.
  • the amount of this copolymerizable monomer unit is usually at most 20% by weight, especially at most 10% by weight. If the amount is too large, the physical property balance of the crosslinked rubber tends to deteriorate.
  • the conjugated rubber (B) has a viscosity at ML ( +4 , 100 ° C.) of 20-150, preferably 40-"! 30, more preferably 50-100.
  • the viscosity is lower than the viscosity of the conjugated rubber (A) by 10 or more, preferably 20 or more, more preferably 25 or more.
  • the conjugated diene rubber (B) has low viscosity, low heat build-up and abrasion resistance are inferior. Conversely, if it is high, the surface shape of the sheet deteriorates and the compound viscosity becomes too high. It becomes difficult to add. If the difference between the viscosity of the conjugated rubber (B) and the viscosity of the conjugated rubber (A) is too small, the surface shape of the sheet may deteriorate or the viscosity of the compound may be reduced. It becomes too high and difficult to process.
  • the ratio of the conjugated rubber (A) to the conjugated rubber (B) is 20 to 80 parts by weight, preferably 30 to 7 parts by weight, based on a total of 100 parts by weight of both. It is 5 parts by weight, more preferably 40 to 70 parts by weight. If the amount of the conjugated diene rubber (A) is small, the surface shape of the sheet is deteriorated, or the viscosity of the compound is too high, making it difficult to apply. Conversely, if the amount is large, the tensile properties and low heat build-up are poor.
  • conjugated gen examples include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene, 1,3-pentadiene, and the like. Is mentioned. Among these, 1,3-butadiene is preferred. These can be used alone or in combination of two or more.
  • aromatic vinyl monomer an aromatic vinyl compound having no amino group is used.
  • styrene a-methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2,4-diisopropyl
  • examples include styrene, 2,4-dimethylstyrene, 4-t-butylstyrene, 5-t-butyl-2-methylstyrene, monochlorostyrene, dichlorostyrene, and monofluorostyrene.
  • styrene is preferred. These can be used alone or in combination of two or more.
  • Amino group-containing monomers are selected from primary, secondary and tertiary amino groups in one molecule. Preferred are polymerizable monomers having at least one amino group, particularly those having a tertiary amino group.
  • Examples of the primary amino group-containing monomer include acrylamide, methacrylamide, p-aminostyrene, aminomethyl (meth) acrylate, aminoethyl (meth) acrylate, aminopropyl (meth) acrylate, aminobutyl (meth) acrylate And the like.
  • secondary amino group-containing monomer examples include anilinostyrenes disclosed in JP-A-61-130355; N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-methylolacrylamide N- (4-anilinophenyl) methacrylamide; N-monosubstituted (meth) acrylamides;
  • tertiary amino group-containing monomer examples include N, N-disubstituted aminoalkyl (meth) acrylate, N, N-disubstituted aminoalkyl (meth) acrylamide, N, N-disubstituted aminoaromatic
  • examples thereof include a vinyl compound and a polymerizable monomer having a pyridyl group.
  • N, N-disubstituted aminoalkyl (meth) acrylate examples include N, N-dimethylaminomethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate.
  • N, N-dimethylaminoethyl (meth) acrylate, N, N-getylaminoethyl (meth) acrylate, and N, N-dipropylaminoethyl (meth) acrylate are preferred.
  • N, N-disubstituted aminoalkyl (meth) acrylamide examples include N, N-dimethylaminomethyl (meth) acrylamide, N, N-dimethylaminoethyl (meth) acrylamide, N, N-dimethylaminopropyl ( (Meth) acrylamide, N, N-dimethylaminobutyl (meth) acrylamide, N, N-getylaminoethyl (meth) acrylamide, N, N- Getylaminopropyl (meth) acrylamide, N, N-getylaminobutyl (meth) acrylamide, N-methyl-1-N-ethylaminoethyl (meth) acrylamide, N, N-dipropylaminoethyl (meth) ) Acrylamide, N, N-dibutylaminoethyl (meth) acrylamide, N, N-dibutylaminoprop
  • N, N-disubstituted aminoalkyl aromatic vinyl compound examples include N, N-dimethylaminoethylstyrene, N, N-getylaminoethylstyrene, N, N-dipropylaminoethylstyrene, N, N —Dioctylaminoethylstyrene and the like.
  • Examples of the polymerizable monomer having a pyridyl group include 2-vinylpyridine, 4-vinylpyridine, 5-methyl-1-vinylpyridine, 5-ethyl-2-vinylpyridine, and the like. Of these, 2-vinylpyridine and 4-vinylpyridine are preferred.
  • amino group-containing monomers can be used alone or in combination of two or more.
  • monomers other than the conjugated gen, the aromatic vinyl monomer and the amino group-containing monomer may be copolymerizable with the conjugated gen, the aromatic vinyl monomer and the amino group-containing monomer.
  • Specific examples thereof include, but are not limited to, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and 2-ethyl (meth) acrylate.
  • Ethylenically unsaturated carboxylic acid ester monomers such as xyl, dibutyl maleate, getyl fumarate, and dibutyl itaconate; (meth) acrylic acid, maleic acid, fumaric acid, monoethyl maleate, monobutyl fumarate, etc.
  • Lenic unsaturated carboxylic acid monomers ethylenically unsaturated nitrile monomers such as (meth) acrylonitrile; vinyl chloride, vinyl acetate, etc. That.
  • the method for producing the conjugated rubbers (A) and (B) used in the present invention is not particularly limited, but an emulsion polymerization method or a solution polymerization method can be adopted.
  • Solution polymerization is a conjugate It can be preferably used when preparing a rubber having a vinyl bond content of 20 to 85% by weight in a conjugated gen unit in a rubber.
  • a conventional emulsion polymerization method may be used.
  • a method in which a predetermined amount of the above monomer is emulsified and dispersed in a dispersion medium in the presence of an emulsifier, and emulsion polymerization is performed using a radical polymerization initiator is employed.
  • Can be The amount of each monomer used is appropriately selected so that each monomer unit has a desired content.
  • a long-chain fatty acid salt having 10 or more carbon atoms and a phosphate or rhodium salt are used.
  • Specific examples thereof include potassium or sodium salts of fatty acids such as hydropric acid, lauric acid, myristic acid, palmitic acid, oleic acid, and stearic acid.
  • Water is usually used as a dispersion medium used in the emulsion polymerization, and may contain a water-soluble organic solvent such as methanol or ethanol as long as the stability during polymerization is not impaired.
  • radical polymerization initiator examples include a persulfate such as ammonium persulfate and potassium persulfate; a combination of ammonium persulfate and ferric sulfate; a combination of an organic peroxide and ferric sulfate; Redox initiators such as a combination of hydrogen oxide and ferric sulfate; and the like.
  • a chain transfer agent may be added.
  • the chain transfer agent include mercaptans such as t-dodecyl mercaptan, n-dodecyl mercaptan, carbon tetrachloride, thioglycolic acid, diterpene, terpinolene, r-terbinene, ⁇ -methylstyrene dimer and the like.
  • mercaptans such as t-dodecyl mercaptan, n-dodecyl mercaptan, carbon tetrachloride, thioglycolic acid, diterpene, terpinolene, r-terbinene, ⁇ -methylstyrene dimer and the like.
  • the temperature of the emulsion polymerization can be appropriately selected depending on the type of the radical polymerization initiator to be used, but is usually 0 to 100 ° C, preferably 0 to 60 ° C.
  • the polymerization mode may be any mode such as continuous polymerization or batch polymerization.
  • the polymerization conversion rate at the time of stopping the polymerization reaction is preferably 85 ⁇ 85 or less, more preferably 50-75 50.
  • Termination of the polymerization reaction is usually performed by adding a polymerization terminator to the polymerization system when a predetermined polymerization conversion is reached.
  • the polymerization terminator include amine-based compounds such as isopropylhydroxylamine and getylhydroxylamine-hydroxylamine. Compounds; quinone-based compounds such as hydroquinone and benzoquinone; sodium nitrite, sodium dithiocarbamate and the like.
  • an antioxidant may be added to the obtained latex, if necessary.
  • salts such as sodium chloride, calcium chloride and potassium chloride are used as a coagulant, and nitric acid, sulfuric acid and the like are used as necessary.
  • the acid can be added to adjust the pH of the coagulation system to a predetermined value while coagulating the polymer as crumb, and then separating the dispersion medium to recover the polymer.
  • the crumb can be washed and dehydrated and then dried with a band dryer or the like to obtain the desired geno rubber.
  • a latex and an extender oil which has been previously made into an emulsified dispersion can be mixed and recovered as an oil-extended rubber.
  • the solution polymerization method may be a conventional solution polymerization method.
  • the above monomer is polymerized in a polymerization solvent using an organic alkali metal as an anion polymerization catalyst, if desired, in the presence of a polar compound. .
  • polymerization solvent examples include aliphatic hydrocarbons such as n-butane, n-pentane, isopentane, n-hexane, n-heptane, and isooctane; alicyclic rings such as cyclopentane, cyclohexane, and methylcyclopentane.
  • hydrocarbons aromatic hydrocarbons such as benzene and toluene; and the like.
  • unsaturated hydrocarbons having low anion polymerizability such as 1-butene, cis-1-butene, and 2-hexene may be used in combination.
  • These polymerization solvents are used alone or in combination of two or more kinds, and are usually used in a ratio such that the monomer concentration becomes 1% by weight to 40% by weight 0/0.
  • organic alkali metal examples include organic monolithium compounds such as n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium, and stilbenelithium; dilithiomethane, 1,4 dilithiobutane, 1,4 Polyfunctional organic lithium compounds such as —dilithio—2-ethylcyclohexane and 1,3,5-trilithiobenzene; sodium naphthalene and potassium naphthalene; Of these, organic lithium compounds are preferred, and organic monolithium compounds are particularly preferred. These organic alkali metals can be used alone or in combination of two or more.
  • the amount of organic alkali metal used depends on the required polymer although it is appropriately selected depending on the molecular weight, it is usually in the range of 0.1 to 30 mmol, preferably 0.2 to 15 mmol, more preferably 0.3 to 1 Ommol per 100 g of monomer. is there.
  • the organic alkali metal may be used as an organic alkali metal amide by previously reacting with a secondary amine such as dibutylamine, dihexylamine or dibenzylamine.
  • an organic alkali metal When used as a polymerization catalyst, it is preferable not to use such a monomer since there are monomers that affect the polymerization reaction. From this point of view, it is preferable to use a tertiary amino group-containing monomer as the amino group-containing monomer, and it is particularly preferable to use an N, N-disubstituted amino aromatic vinyl compound. Dimethylaminoethylstyrene is most preferred.
  • the polar compound is not particularly limited as long as it is a compound generally used in anion polymerization to adjust the microstructure of conjugated gen units and the distribution of aromatic vinyl in the copolymer chain.
  • Specific examples thereof include ether compounds such as dibutyl ether, tetrahydrofuran, and ethylene glycol ethyl ether; tertiary amines such as trimethylethylenediamine and trimethylamine; potassium mono-t-amyloxide; Alkali metal alkoxides such as amyloxide; phosphine compounds such as triphenylphosphine; and the like.
  • tertiary amines are preferred, and tetramethylethylenediamine is particularly preferred, in that the amount of vinyl bonds in the conjugated gen unit and the amount of independent bond units of aromatic vinyl can be greatly increased.
  • the amount of the polar compound used is preferably in the range of 0.1 to 100 mol, more preferably 0.5 to 50 mol, and particularly preferably 1 to 30 mol, per 1 mol of the organic alkali metal used as the polymerization initiator. It is. Within this range, the amount of vinyl bonds in the conjugated gen unit can be adjusted appropriately.
  • the polymerization reaction is usually carried out at a temperature in the range of 170 to 150 ° C, preferably 0 to 100 ° C, and more preferably 30 to 90 ° C, in a batch or continuous polymerization mode.
  • the composition ratio of the aromatic vinyl monomer and the conjugated gen in the polymerization system is improved in order to improve the randomness of the bond between the aromatic vinyl monomer units. It is preferable to supply the conjugated gen or a mixture of the conjugated gen and the aromatic vinyl monomer continuously or intermittently to the reaction system so that the content of the aromatic vinyl monomer is in a specific concentration range. .
  • an alcohol such as methanol or isopropanol is added as a polymerization terminator to terminate the reaction to obtain a polymerization solution.
  • tin tetrachloride, tetrachlorosilane, tetramethoxysilane, tetraglycidyl-1,3-bisaminomethylcyclohexane, 2,4-tolylenediisocyanate which can react with the polymerization active terminal
  • a polymerization terminal modifier such as 4,4′-bis (getylamino) benzophenone, N-methylpyrrolidone, and N-vinylpyrrolidone.
  • the polymerization solvent is separated from the polymerization solution by direct drying or steam stripping, and the target rubber is recovered.
  • the extension oil and the polymerization solution may be mixed in advance and recovered as an oil-extended rubber.
  • the rubber composition of the present invention is prepared by kneading and blending a conjugated rubber (A) and a conjugated rubber (B) in the form of a solid rubber, respectively, or as a solid rubber.
  • the dispersion medium is separated and obtained as a solid rubber-like blend. Is also good.
  • the latter method is preferable because the dispersibility of the conjugated rubber (A) and the conjugated rubber (B) is excellent, and it is particularly preferable to mix the latexes or the solutions.
  • the dispersion medium is mainly composed of water in the case of latex, and is mainly composed of the polymerization solvent in the case of solution.
  • the rubber composition of the present invention preferably contains an extension oil so that the viscosity of the compound when silica is compounded does not become too high.
  • an extender oil those commonly used in the rubber industry can be used, and examples thereof include a paraffin extender oil, an aromatic extender oil, and a naphthenic extender oil.
  • the pour point of the extender oil is preferably between 20 and 50 ° C, more preferably between 10 and 30 ° C. Within this range, the extensibility and the balance between tensile properties and low heat build-up are excellent.
  • the aroma carbon content (CA%) of the extended oil by Kurz analysis is preferably 15% or more, more preferably 25% or more, and the paraffin carbon content (CP%) is preferably 65% or less, more preferably Preferably it is 45%. If CAo / o is too small or CP% is too large, the tensile properties will be insufficient.
  • the polycyclic aromatic content of the extender oil is preferred. Or less than 3%. This content is measured by the method of IP346 (test method of THE INSTITUTE PETROLEUM in the UK).
  • the content of the extender oil is preferably 5 to 100 parts by weight, more preferably 10 to 80 parts by weight, based on 100 parts by weight of the total of the conjugated rubber (A) and the conjugated rubber (B). Preferably it is 20 to 60 parts by weight.
  • the content of the extender oil is in this range, the viscosity of the compound containing silicide is appropriate, and the tensile properties and the low heat generation balance are excellent.
  • the rubber composition of the present invention preferably contains at least one selected from silicic acid and carbon black as a reinforcing agent, and more preferably contains silica as an essential component.
  • a reinforcing agent a carbon-silica dual 'phase' filler having silica supported on the carbon black surface may be used.
  • silica examples include dry-process white carbon, wet-process white carbon, colloidal silica, and precipitated silica disclosed in JP-A-62-62838.
  • wet-process white carbon containing hydrous gay acid as a main component is particularly preferable.
  • These silicas can be used alone or in combination of two or more.
  • the specific surface area of silica is not particularly limited, a nitrogen adsorption specific surface area (BET method) is preferably from 5O ⁇ 400m 2 Zg, more preferably 100 ⁇ 220m 2 Zg, particularly preferably 12 0 ⁇ 190m 2 Zg .
  • BET method a nitrogen adsorption specific surface area
  • the nitrogen adsorption specific surface area is a value measured by the BET method according to ASTMD3037-81.
  • furnace black for example, furnace black, acetylene black, thermal black, channel black, graphite and the like can be used.
  • furnace black is particularly preferred, and specific examples thereof include SAF, ISAF, ISAF-HS, ISAF-LS, IISAF-HS, HAF, HAF-HS, HAF-LS, and FEF. Grade grades. These carbon blacks can be used alone or in combination of two or more.
  • the specific surface area of carbon black is not particularly limited, a nitrogen absorption specific surface area (N 2 SA), preferably 5 ⁇ 200m 2 Zg, more preferably 50m ⁇ 150m 2 Zg, particularly preferably 80 ⁇ 130m 2 Zg is there.
  • N 2 SA nitrogen absorption specific surface area
  • the nitrogen adsorption specific surface area is in this range, the tensile characteristics are more excellent.
  • the adsorption amount of dibutylphthalate (KDBP) of the power pump rack is not particularly limited, and the power is preferably 5 to 300 ml 1 OOg, more preferably 50 to 200 ml / 1 OOg, and particularly preferably 80 to "! 60 ml / 100 g When the DBP adsorption amount is within this range, the tensile properties are more excellent.
  • KDBP dibutylphthalate
  • the adsorption (CTAB) specific surface area of cetyltrimethylammonium bromide disclosed in JP-A-5-230290 is 110 to 170 m 2 Zg, and at a pressure of 24, OOOpsi.
  • Abrasion resistance can be improved by using high-structure one-strength black, which has a DBP (24M4D BP) oil absorption of 110-130mlZ100g after repeated compression.
  • the compounding amount of the reinforcing agent is preferably 10 to 200 parts by weight, more preferably 20 to "! 50 parts by weight, particularly preferably 30 to"! 20 parts by weight.
  • the mixing ratio is preferably 10:90 to 99: 1, more preferably 30:70 to 95: 5, by weight ratio of silica: force—bon black, It is preferably 50:50 to 90:10 for temples.
  • the rubber composition of the present invention contains silica as a reinforcing agent, it is preferable to add a silane coupling agent for the purpose of further improving tensile properties and low heat build-up.
  • silane coupling agent examples include vinyltriethoxysilane,-(3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ - (monoaminoethyl) -r- aminopropyl trimethoxysilane, (3- (triethoxysilyl) propyl) tetrasulfide, bis (3- (triethoxysilyl) propyl) disulphide and the like, and r-trimethoxysilylpropyl dimethylthiothiol described in JP-A-6-248116 Lubamil tetrasulfide, 7-trimethoxysilylpropylbenzothiazyltetrasulfide And the like. Since scorch at the time of kneading can be avoided, the silane coupling agent is preferably one containing four or less sulfur in one molecule. These silane coupling agents can be used alone or in combination of two or more.
  • the amount of the silane coupling agent to be added is preferably 0.1 to 30 parts by weight, more preferably "! To 20 parts by weight, particularly preferably 2 to 10 parts by weight, based on 100 parts by weight of silica. .
  • the rubber composition of the present invention may contain other rubbers other than the conjugated rubber (A) and the conjugated rubber (B) as long as the effects of the present invention are not substantially impaired.
  • other rubbers include natural rubber, high cis-polyisoprene rubber, high cis-polybutadiene rubber, acrylonitrile-butadiene copolymer rubber, butyl rubber, and ethylene-propylene-one-gen copolymer rubber.
  • the rubber composition of the present invention contains, in addition to the above components, compounding agents such as a crosslinking agent, a crosslinking accelerator, a crosslinking activator, an antioxidant, an activator, a plasticizer, a lubricant, and a filler according to a conventional method. Each of them can be contained in a required amount.
  • cross-linking agent examples include sulfur such as powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, and highly dispersible sulfur; sulfur halides such as sulfur monochloride and sulfur dichloride; dicumyl valoxide, tert-butyl butyl oxide.
  • Quinonedioximes such as P-quinondioxime, p, p'-dibenzoylquinonedioxime; triethylenepentramine, hexamethylenediamine powerbamate, 4,4'-methylenebis-o-chloroa
  • Organic polyamine compounds such as diphosphorus; alkylpheno having a methylol group
  • crosslinking agents may be used alone or in combination of two or more.
  • the compounding amount of the crosslinking agent is preferably 0.3 to 10 parts by weight, more preferably 0.5 to 5 parts by weight, based on 100 parts by weight of the rubber component.
  • crosslinking accelerator examples include N-cyclohexyl-1-benzothiazolesulfenamide, Nt-butyl-2-benzothiazolsulfenamide, N-oxyethylene-12-benzothiazolsulfenamide, and N-oxyethylene 2-benzothiazolsulfenamide, N, N'-diisopropyl-1-benzothiazolesulfenamide, etc.
  • Sulfenamide-based crosslinking accelerators guanidine-based crosslinking accelerators such as diphenylguanidine, dioritoltriguanidine, and o-tolylbiguanidine; thioperia-based crosslinking accelerators such as getylthioperia; 2-mercaptobenzothiazole Thiazole-based cross-linking accelerators such as dimethyl, dibenzothiazyl disulfide and 2-mercaptobenzothiazol zinc salt; thiuram-based cross-linking accelerators such as tetramethylthiuram monosulfide and tetramethylthiuram disulfide; Cross-linking accelerators such as sodium rubamate and dithiol-rubic acid-based cross-linking accelerators such as getyldithi-rich zinc rubamate; sodium xanthate-based cross-linking accelerators such as sodium isopropylxanthate, zinc isopropylxanthate and zinc butylxant
  • sulfenamide-based crosslinking accelerators are preferred. These cross-linking accelerators are used alone or in combination of two or more.
  • the compounding amount of the crosslinking accelerator is preferably from 0.3 to 10 parts by weight, more preferably from 0.5 to 5 parts by weight, based on 100 parts by weight of the rubber component.
  • crosslinking activator for example, higher fatty acids such as stearic acid, zinc oxide, and the like can be used. It is preferable to use zinc oxide having a surface activity of 5 m or less as the zinc oxide, and it is preferable to use active zinc white having a particle size of 0.05 to 0.2 jum or zinc white having a particle size of 0.3 to 1 ⁇ m. Can be mentioned. Zinc oxide may be surface-treated with an amine-based dispersant or wetting agent. These crosslinking activators can be used alone or in combination of two or more. The mixing ratio of the crosslinking activator is appropriately selected depending on the type of the crosslinking activator.
  • the blending amount of the higher fatty acid is preferably from 0.3 to 10 parts by weight, more preferably from 0.5 to 5 parts by weight, based on 100 parts by weight of the rubber component.
  • the amount of zinc oxide is preferably 0.1 to 5 parts by weight, more preferably 0.5 to 2 parts by weight, based on 100 parts by weight of the rubber component.
  • examples of the compounding agent include an activator such as diethylene glycol, polyethylene glycol, and silicone oil; a filler such as calcium carbonate, talc, clay, and aluminum hydroxide; and a wax.
  • the rubber composition containing a reinforcing agent can be obtained by kneading each component according to a conventional method.
  • a kneading product may be kneaded with a crosslinking agent and a crosslinking accelerator to obtain a rubber composition.
  • the kneading temperature of the compounding agent, the reinforcing agent, and the rubber component excluding the crosslinking agent and the crosslinking accelerator is preferably 80 to 200 ° C, more preferably 100 to 190 ° C, and particularly preferably 140 to 180 ° C.
  • the obtained kneaded product is preferably 100 ° C. or less, more preferably 80 ° C. or less, it is kneaded with a crosslinking agent and a crosslinking accelerator.
  • the rubber composition containing the reinforcing agent is obtained as a wet master batch rubber by mixing a reinforcing agent at a predetermined ratio in advance into each polymer latex or polymer solution before obtaining as a solid rubber. You can also.
  • the rubber composition of the present invention is usually used after crosslinking.
  • the crosslinking method is not particularly limited, and may be selected according to the shape, size, and the like of the crosslinked product.
  • the crosslinking temperature and the crosslinking time are also not particularly limited, and may be selected according to the shape and size of the crosslinked product.
  • the crosslinking temperature is preferably from 120 to 200 ° C, more preferably from 140 to 180 ° C.
  • the properties of the copolymer and the rubber composition were measured according to the following methods.
  • Styrene unit amount in copolymer Measured according to JIS K6383 (refractive index method).
  • Mooney viscosity of copolymer rubber (ML, +4 , 100 ° C): Measured according to JIS K6300.
  • Tensile properties of crosslinked rubber The stress at 300% elongation (MPa) was measured according to JIS K6301. This property was expressed as an index (tensile property index) with the reference sample as 100. The larger the value, the better.
  • Production Example 1 was repeated except that the monomer was changed to the charge composition shown in Table 1, and the amount of t-dodecyl mercaptan used was changed appropriately so that the Mooney viscosity of the obtained solid rubber became the value shown in Table 1. Polymerization was carried out in the same manner to obtain polymer latexes containing polymers HA1, L1 and LA1 to A3, respectively.
  • a solid rubber was prepared in the same manner as in Production Example 1.
  • Table 1 shows the composition and muci-viscosity of each solid rubber.
  • N, N-Dimethylaminoethylstyrene unit 1.16 viscosity 1 22 1 20 70 67 54 7 6
  • the obtained kneaded product was combined with 1.4 parts of sulfur and a crosslinking accelerator (a mixture of 1.8 parts of N-cyclohexyl-2-benzothiazylsulfenamide and 1.7 parts of diphenylguanidine). After kneading with an open roll at 50 ° C., the mixture was taken out in a sheet form.
  • a crosslinking accelerator a mixture of 1.8 parts of N-cyclohexyl-2-benzothiazylsulfenamide and 1.7 parts of diphenylguanidine.
  • An oil-extended rubber was prepared in the same manner as in Example 1, except that the mixing ratio was changed to the polymer shown in Table 2.
  • Table 2 shows the Mooney viscosity of each oil-extended rubber.
  • Example 4 A rubber composition was prepared and processed in the same manner as in Example 1 except that the obtained oil-extended rubber was used, and the physical properties of the crosslinked rubber were evaluated. The results are shown in Table 2. (Example 4)
  • Enerthenel 849A manufactured by Pretty Petroleum Co., Ltd.
  • extender oil 100 parts of the polymer!.
  • the polymer latex containing the extended oil was coagulated with sodium chloride while adjusting the pH to 3 to 5 with sulfuric acid to obtain a crumb-like solid.
  • the crumb was dried with a hot air dryer at 80 ° C to obtain an oil-extended rubber.
  • a rubber composition was prepared in the same manner as in Example 1 except that the oil-extended rubber containing the polymer H1 and the oil-extended rubber containing the polymer LA1 were used so that the ratios shown in Table 2 were obtained. The processability was evaluated, and further the physical properties of the crosslinked rubber were evaluated. Table 2 shows the results.
  • Enerthenel 849A manufactured by Pretty Petroleum Co.
  • the polymer latex containing the extended oil was coagulated with sodium chloride while adjusting the pH to 3 to 5 with sulfuric acid to obtain a crumb-like solid.
  • the crumb was dried with a hot air dryer at 80 ° C to obtain an oil-extended rubber.
  • a rubber composition was prepared and its processability was evaluated in the same manner as in Comparative Example 1 except that the polymer H1 was changed to the polymer LA1, and further, the physical properties of the crosslinked rubber were evaluated.
  • Table 2 shows the results.
  • a rubber composition was prepared and the processability thereof was evaluated in the same manner as in Example 1 except that the polymer and the compounding ratio were changed as shown in Table 2, and further, the physical properties of the crosslinked rubber were evaluated. Table 2 shows the results. Comparative Example ''
  • the rubber composition of Comparative Example 1 containing only the polymer H1 having no amino group has good processability, but is inferior in the properties of the crosslinked rubber.
  • the rubber composition of Comparative Example 2 containing only the polymer LA1 having an amino group is superior to Comparative Example 1 in the properties of the crosslinked rubber, but is inferior in processability.
  • the rubber composition of Comparative Example 3 blended with a polymer H1 having no amino group and a polymer HA1 having an amino group but having a difference in viscosity of less than the range specified in the present invention is: The properties of the crosslinked rubber are good, but the processability is poor.
  • the rubber compositions containing silica of Examples 1 to 4 of the present invention have good processability and excellent properties of crosslinked rubber.
  • Table 3 shows the composition and Mooney viscosity of each polymer.
  • the polymer solution containing the polymer SH1 and the polymer solution containing the polymer SLA1 were mixed so that each polymer had the compounding ratio shown in Table 4, and then, based on 100 parts of the whole polymer, w extended oil was added. Enerthenel 849 A (British Petroleum) as 37/5 Added.
  • the polymerization solvent was separated and removed from the polymer solution containing the extended oil by a steam stripping method, dewatered by a roll, and further dried by a hot air dryer at 80 ° C to obtain an oil-extended rubber.
  • Table 4 shows the Mooney viscosity of the oil-extended rubber.
  • the obtained kneaded material was combined with 1.4 parts of sulfur and a crosslinking accelerator (a mixture of 1.8 parts of N-cyclohexyl-2-benzothiazylsulfenamide and 1.9 parts of diphenylguanidine). After kneading with an open roll at 50 ° C., the mixture was taken out in a sheet form.
  • a crosslinking accelerator a mixture of 1.8 parts of N-cyclohexyl-2-benzothiazylsulfenamide and 1.9 parts of diphenylguanidine.
  • a rubber composition was prepared and its processability was evaluated in the same manner as in Example 5, except that the polymers and the compounding ratio shown in Table 4 were used, and the physical properties of the crosslinked rubber were evaluated. Table 2 shows the results.
  • the rubber composition of Comparative Example 5 containing only the polymer SH1 having no amino group had good processability but was inferior in the properties of the crosslinked rubber.
  • the rubber composition of Comparative Example 6, which contains only the polymer SLA1 having an amino group, is superior to Comparative Example 5 in the properties of the crosslinked rubber, but is inferior in processability.
  • the rubber composition of Comparative Example 8 in which a polymer SL 1 having no amino group and a polymer S HA 1 having an amino group having a higher viscosity than that of the polymer SL 1 were blended has poor processability, and Poor properties of crosslinked rubber.
  • the rubber composition containing the silica of Example 5 within the range specified by the present invention has good processability and excellent properties of the crosslinked rubber. Industrial applicability
  • the rubber composition of the present invention is excellent in the surface shape of a sheet when a compound containing silica as a reinforcing agent is formed into a sheet by a roll, and is excellent in tensile properties and low heat generation.
  • the rubber composition of the present invention can be used in various applications that make use of its properties, for example, tire members such as treads, under treads, force scums, sidewalls, bead portions; hoses, window frames, belts, shoes. It can be used for rubber materials such as bases, anti-vibration rubber, seismic isolation rubber, and automotive parts; resin-reinforced rubber materials such as impact-resistant polystyrene and ABS resin. Among them, it is suitable as a tire member and particularly suitable as a tire tread of a fuel-efficient tire.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

A rubber composition which comprises: 20 to 80 parts by weight of a conjugated diene rubber (A) comprising 40 to 100 wt.% conjugated diene units and 0 to 60 wt.% aromatic vinyl monomer units and having a Mooney viscosity of 70 to 200; and 80 to 20 parts by weight of a conjugated diene rubber (B) comprising 40 to 99.8 wt.% conjugated diene units, 0 to 59.8 wt.% aromatic vinyl monomer units, and 0.2 to 20 wt.% aminated monomer units and having a Mooney viscosity which is 20 to 150 and is lower by at least 10 than that of the conjugated diene rubber (A) (the sum of the conjugated diene rubber (A) and the conjugated diene rubber (B) is 100 parts by weight). A compound obtained by compounding this rubber composition with a silica reinforcement gives, through molding with rolls, a sheet excellent in surface shape and tensile properties and reduced in heat build-up.

Description

明細書 ゴム組成物およびその製造方法 技術分野  TECHNICAL FIELD Rubber composition and method for producing the same
本発明は、ゴム組成物およびその製造方法に関し、さらに詳しくは、補強剤とし てシリカを配合した組成物をロールでシート状に成形した際のシートの表面形状に 優れ、かつ、引張特性および低発熱性に優れるゴム組成物、およびその製造方 法に関する。 背景技術  The present invention relates to a rubber composition and a method for producing the same, and more particularly, to a sheet obtained by molding a composition containing silica as a reinforcing agent into a sheet with a roll, and having excellent tensile properties and low tensile strength. The present invention relates to a rubber composition having excellent heat build-up and a method for producing the same. Background art
近年、省資源や環境対策などが重視され、 自動車の低燃費化に対する要求 はますます厳しくなリ、 自動車用タイヤには、転動抵抗を小さくすることにより、低 燃費化に寄与することが求められている。  In recent years, resource conservation and environmental measures have been emphasized, and the demand for low fuel consumption of automobiles is becoming increasingly severe.Car tires are required to contribute to low fuel consumption by reducing rolling resistance. Have been.
タイヤの転動抵抗を小さくするために、共役ジェン系ゴムに、補強剤として、力 一ボンブラックに代えて、シリカを配合したゴム組成物を用いることが知られている。 このようなシリカ配合ゴム組成物は、カーボンブラック配合ゴム組成物に比べ、低 発熱性に優れるので、タイヤの転動抵抗を小さくできるが、耐磨耗性や引張特性 に劣る。この問題点を改善するために、アミノ基を有する単量体を共重合したジェ ン系ゴムを使用することが提案されている。  In order to reduce the rolling resistance of a tire, it is known to use a rubber composition in which silica is compounded as a reinforcing agent in a conjugated gen-based rubber instead of rubber black. Such a rubber composition containing silica is excellent in low heat build-up as compared with a rubber composition containing carbon black, so that the rolling resistance of the tire can be reduced, but the abrasion resistance and tensile properties are poor. In order to solve this problem, it has been proposed to use a gen-based rubber obtained by copolymerizing a monomer having an amino group.
例えば、特開昭 64— 22940号公報には、有機アルカリ金属などを重合触媒 として用い、溶液重合法により、共役ジェンとァミノ基含有単量体とを共重合して 得られる共役ジェン系ゴムを含む、破断強度および耐磨耗性が向上した、シリ力 配合ゴム組成物が開示されている。さらに、この公報には、該共役ジェン系ゴムに 天然ゴムゃム一二一粘度が 50程度のスチレン一ブタジエン共重合ゴムをブレンド した具体的な配合例も開示されている。し力、しな力《ら、このような共役ジェン系ゴ ムは、概して分子量分布が狭いので、加工性に劣り、また、上記の共役ジェン系 ゴムブレンド物は、加工性がやや改善されているものの、低発熱性および引張特 性のバランスに劣る。加工性に劣るゴム組成物は、ロールによりシート状に成形し たゴム組成物の表面形状に劣り、タイヤ製造工程において、グリーンタイヤの成 形がし難くなる。 For example, JP-A-64-22940 discloses a conjugated gen-based rubber obtained by copolymerizing a conjugated gen and an amino group-containing monomer by a solution polymerization method using an organic alkali metal or the like as a polymerization catalyst. Disclosed is a silicide compounded rubber composition having improved breaking strength and abrasion resistance. Furthermore, this publication also discloses a specific compounding example in which a styrene-butadiene copolymer rubber having a natural rubber gum viscosity of about 50 is blended with the conjugated gen-based rubber. Such conjugated rubbers generally have a narrow molecular weight distribution and thus are inferior in processability, and the conjugated rubber blends described above have slightly improved processability. However, the balance between low heat build-up and tensile properties is poor. The rubber composition with poor processability is formed into a sheet by a roll. The resulting rubber composition is inferior in surface shape, making it difficult to form a green tire in the tire manufacturing process.
また、特開平 1一 1 0 1 344号公報には、第三級ァミノ基含有単量体を 1〜20 重量%乳化共重合させた共役ジェン系ゴムを含む、引張特性、低発熱性などに 優れる、シリカ配合ゴム組成物が開示されている。この公報には、該共役ジェン 系ゴムに天然ゴムゃム一二一粘度が 50程度のスチレン一ブタジエン共重合ゴム をブレンドした具体的な配合例も開示されている。し力、しな力《ら、このような共役ジ ェン系ゴムを配合したゴム組成物は、加工性に劣り、上記のゴムブレンド物は、加 ェ性が不十分で、かつ、低発熱性および引張特性のバランスに劣る。  Japanese Patent Application Laid-Open (JP-A) No. 11-344 discloses that a tertiary amino group-containing monomer containing 1 to 20% by weight of an emulsion-copolymerized conjugated gen-based rubber has excellent tensile properties and low heat build-up. An excellent silica-containing rubber composition is disclosed. This publication also discloses a specific compounding example in which a styrene-butadiene copolymer rubber having a natural rubber gum viscosity of about 50 is blended with the conjugated gen-based rubber. In addition, the rubber composition containing such a conjugated diene rubber is inferior in processability, and the above rubber blend has insufficient heat resistance and low heat generation. Poor balance between properties and tensile properties.
さらに、特開平 8— 1 34272号公報には、 1重量0 /0未満の第三級アミノ基含 有単量体を共重合させた共役ジェン系ゴムとシランカップリング剤とを含み、特定 条件で混練されたシリカ配合ゴム組成物が開示されている。このようなゴム組成 物は、押し出し加工性に優れ、かつ、引張特性、低発熱性などに優れるものの、 ロールによリシ一ト状に成形した場合のゴム組成物の表面形状は満足できるもの ではなかった。 発明の開示 Further, Japanese Patent Laid-Open No. 8- 1 thirty-four thousand two hundred seventy-two, and a 1 weight 0/0 less than tertiary amino group-containing Yutan weight conjugated diene-based and the body copolymerized rubber and silane coupling agent, the particular condition Discloses a silica compounded rubber composition kneaded in the above. Such a rubber composition is excellent in extrusion processability, and excellent in tensile properties, low heat generation, etc., but the surface shape of the rubber composition when formed into a sheet by rolls is not satisfactory. Did not. Disclosure of the invention
本発明の目的は、上記のような事情に鑑み、補強剤としてシリカを配合した組 成物をロールでシート状に成形した際のシートの表面形状に優れ、かつ、引張特 性および低発熱性に優れるゴム組成物、およびその製造方法を提供することにあ る。  In view of the above-mentioned circumstances, an object of the present invention is to improve the surface shape of a sheet when a composition containing silica as a reinforcing agent is formed into a sheet by a roll, and to obtain tensile properties and low heat generation. An object of the present invention is to provide a rubber composition excellent in water resistance and a method for producing the same.
本発明者らは、上記目的を達成するために、鋭意検討を行ない、アミノ基を有 さない比較的高いム一二一粘度の共役ジェン系ゴムと、アミノ基を有するそれより 低いムーニー粘度の共役ジェン系ゴムとのブレンド物は、シリカを配合と、ロール でシート状に成形した際のシートの表面形状に優れ、かつ、引張特性および低発 熱性に優れるゴム組成物を与えることを見出し、この知見に基づき、本発明を完 成するに至った。  Means for Solving the Problems The present inventors have conducted intensive studies to achieve the above object, and have a conjugated diene rubber having a relatively high viscosity with no amino group and a Mooney viscosity having a lower Mooney viscosity than that having an amino group. It has been found that a blend with a conjugated rubber is compounded with silica and gives a rubber composition which is excellent in the surface shape of a sheet when formed into a sheet by a roll, and which is excellent in tensile properties and low heat generation properties. Based on this finding, the present invention has been completed.
力、くして、本発明によれば、共役ジェン単位 40 ~ 1 00重量%、芳香族ビニル 単量体単位 0〜60重量%および共重合可能なその他の単量体の単位 0 ~ 20 重量%を含んでなり、ム一二一粘度が 70〜 200の範囲である共役ジェン系ゴム (A)20〜80重量部と、共役ジェン単位 40~99. 8重量%、芳香族ビニル単量 体単位 0〜59. 8重量%、アミノ基含有単量体単位 0. 2〜20重量%および共重 合可能なその他の単量体の単位 0~ 20重量%を含んでなり、ム一二一粘度が 2 0~ 150の範囲であって、共役ジェン系ゴム(A)のム一二一粘度より 10以上低い ム一ニー粘度を有する共役ジェン系ゴム(B)80~20重量部を含む(共役ジェン 系ゴム(A)と共役ジェン系ゴム(B)との合計量は 100重量部である。)ことを特徴 とするゴム組成物が提供される。 According to the present invention, 40 to 100% by weight of a conjugated diene unit, 0 to 60% by weight of an aromatic vinyl monomer unit and 0 to 20% of other copolymerizable monomer units according to the present invention. 20 to 80 parts by weight of a conjugated gen-based rubber (A) having a viscosity in the range of 70 to 200, and 40 to 99.8% by weight of a conjugated diene unit, and an aromatic vinyl monomer And 5 to 20% by weight of a monomer unit, 0.2 to 20% by weight of an amino group-containing monomer unit, and 0 to 20% by weight of another copolymerizable monomer unit. One viscosity is in the range of 20 to 150, and the conjugated rubber (A) contains 80 to 20 parts by weight of a conjugated rubber (B) having a Muney viscosity which is 10 or more lower than the mu viscosity of the conjugated rubber (A). (The total amount of the conjugated rubber (A) and the conjugated rubber (B) is 100 parts by weight.) A rubber composition is provided.
さらに、本発明によれば、共役ジェン系ゴム(A)のラテックスまたは溶液と、共 役ジェン系ゴム( B)のラテックスまたは溶液とを混合し、次いで、混合液から分散 媒を分離することを特徴とする、共役ジェン系ゴム(A)と共役ジェン系ゴム(B)を 含む上記ゴム組成物の製造方法が提供される。 発明を実施するための最良の形態  Further, according to the present invention, it is possible to mix the latex or solution of the conjugated rubber (A) with the latex or solution of the co-used rubber (B), and then separate the dispersion medium from the mixed solution. The present invention provides a method for producing the rubber composition containing a conjugated diene rubber (A) and a conjugated diene rubber (B). BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明のゴム組成物は、共役ジェン単位 40〜 100重量 0/0および芳香族ビニ ル単量体単位 0〜60重量%を含み、ム一二一粘度が 70〜 200の範囲である共 役ジェン系ゴム(A)20~80重量部と、共役ジェン単位 40〜99. 8重量%、芳香 族ビニル単量体単位 0~59. 8重量%およびアミノ基含有単量体単位 0. 2-20 重量0 を含み、ム一ニー粘度が 20〜150の範囲であり、共役ジェン系ゴム(A) のム一ニー粘度より 10以上低い厶一ニー粘度を有する共役ジェン系ゴム(B) 80 〜 20重量部を含む(共役ジェン系ゴム(A)と共役ジェン系ゴム( B)との合計量は 100重量部である。;)。 The rubber composition of the present invention contains 40 to 100% by weight of a conjugated gen unit and 0 to 60% by weight of an aromatic vinyl monomer unit, and has a viscosity of 70 to 200. 20 to 80 parts by weight of a diene rubber (A), 40 to 99.8% by weight of a conjugated diene unit, 0 to 59.8% by weight of an aromatic vinyl monomer unit, and 0.2 to 2% of an amino group-containing monomer unit It comprises 20 weight 0, the range of beam one knee viscosity from 20 to 150, the conjugated diene-based rubber having a low厶one knee viscosity 10 more than arm one knee viscosity of the conjugated diene rubber (a) (B) 80 ~ 20 parts by weight (the total amount of the conjugated rubber (A) and the conjugated rubber (B) is 100 parts by weight;).
共役ジェン系ゴム(A)は、共役ジェン単位 40〜100重量%、好ましくは 50〜 90重量%、より好ましくは 55〜80重量%、および芳香族ビニル単量体単位 0〜 60重量%、好ましくは" 10~50重量0 /o、より好ましくは 20〜45重量%を含んでな リ、そのムーニー粘度(MLl+4, 100 )カ 70~200、好ましくは 90〜160、より 好ましくは 100〜150の範囲のものである。 The conjugated diene rubber (A) has a conjugated diene unit of 40 to 100% by weight, preferably 50 to 90% by weight, more preferably 55 to 80% by weight, and an aromatic vinyl monomer unit 0 to 60% by weight, preferably Contains 10 to 50% by weight 0 / o, more preferably 20 to 45% by weight, and has a Mooney viscosity (ML l + 4 , 100) of 70 to 200, preferably 90 to 160, more preferably 100 It is in the range of ~ 150.
共役ジェン系ゴム( A)中の共役ジェン単位量が少ないと低発熱性に劣る。共 役ジェン系ゴム(A)中の芳香族ビニル単量体単位量が多いと低発熱性に劣る。 共役ジェン系ゴム(A)は、引張特性により優れる点から、芳香族ビニル単量体単 位を含むことが好ましい。 If the conjugated diene unit amount in the conjugated diene rubber (A) is small, low heat build-up is inferior. Both When the amount of the aromatic vinyl monomer unit in the role-based rubber (A) is large, low heat build-up is inferior. The conjugated rubber (A) preferably contains an aromatic vinyl monomer unit from the viewpoint of more excellent tensile properties.
共役ジェン系ゴム(A)は、本発明の効果を本質的に阻害しない範囲で、共役 ジェン単位および芳香族ビニル単量体単位以外のその他の共重合可能な単量 体の単位を含んでいてもよい。共重合可能な単量体の量は、全単量体単位中、 通常 20重量%以下、より好ましくは 1 0重量 0/0以下である。この量が多すぎると、 架橋ゴムの物性バランスが悪化する傾向にある。  The conjugated gen-based rubber (A) contains other copolymerizable monomer units other than the conjugated gen unit and the aromatic vinyl monomer unit as long as the effects of the present invention are not essentially impaired. Is also good. The amount of the copolymerizable monomer is usually 20% by weight or less, more preferably 10% by weight 0/0 or less in all monomer units. If this amount is too large, the physical property balance of the crosslinked rubber tends to deteriorate.
共役ジェン系ゴム(A)は、アミノ基含有単量体単位は含まないことが好ましい。 ただし、本発明の効果を本質的に阻害しない範囲、通常は 0. 2重量%未満、特 に 0. 1重量%未満のアミノ基含有単量体単位を含んでいてもよい。この量が多す ぎると、配合物粘度が高くなリすぎて加ェ困難となつたり、シートの表面形状が悪 くなる。  Preferably, the conjugated rubber (A) does not contain an amino group-containing monomer unit. However, it may contain amino group-containing monomer units in a range that does not substantially impair the effects of the present invention, usually less than 0.2% by weight, particularly less than 0.1% by weight. If this amount is too large, the viscosity of the composition becomes too high, making it difficult to apply, or the surface shape of the sheet becomes poor.
共役ジェン系ゴム( A)のム一二一粘度が低いと低発熱性および耐磨耗性に劣 り、逆に、高いとシートの表面形状が悪化したり、配合物粘度が高くなリすぎて加 ェ困難となる。  If the conjugated diene rubber (A) has a low viscosity, low heat build-up and abrasion resistance are inferior. Conversely, if it is high, the surface shape of the sheet deteriorates and the viscosity of the compound becomes too high. It becomes difficult to add.
共役ジェン系ゴム(B )は、共役ジェン単位 40〜99. 8重量%、好ましくは 50 〜89. フ重量%、より好ましくは 55〜79. 6重量%、芳香族ビニル単量体単位 0 - 59. 8重量0 /o、好ましくは 1 0〜49. フ重量0 /o、より好ましくは 20〜44. 6重 量%、およびアミノ基含有単量体単位 0. 2 ~ 20重量%、好ましくは 0. 3 ~ 1 0重 量%、より好ましくは 0. 4 ~ 5重量%を含む。 The conjugated diene rubber (B) has a conjugated diene unit content of 40 to 99.8% by weight, preferably 50 to 89.% by weight, more preferably 55 to 79.6% by weight, and an aromatic vinyl monomer unit 0- 59.8 weight 0 / o, preferably 1 0 to 49. off weight 0 / o, more preferably from 20 to 44.6 by weight%, and an amino group-containing monomer units 0.2 to 20 wt%, preferably Contains 0.3 to 10% by weight, more preferably 0.4 to 5% by weight.
共役ジェン系ゴム( B )中の共役ジェン単位量が少ないと低発熱性に劣る。共 役ジェン系ゴム(B )の芳香族ビニル単量体単位量が多いと低発熱性に劣る。共 役ジェン系ゴム(B )は、引張特性により優れる点から芳香族ビニル単量体単位を 含むことが好ましい。  When the amount of conjugated gen units in the conjugated gen-based rubber (B) is small, low heat buildup is inferior. When the amount of the aromatic vinyl monomer unit of the synergistic gen-based rubber (B) is large, low heat build-up is inferior. It is preferable that the synergistic gen-based rubber (B) contains an aromatic vinyl monomer unit from the viewpoint of more excellent tensile properties.
共役ジ工ン系ゴム( B)中のアミノ基含有単量体単位量が少ないと、低発熱性お よび耐磨耗性に劣り、逆に、 多いと、シートの表面形状が悪くなる。  If the amount of the amino group-containing monomer unit in the conjugated diene-based rubber (B) is small, low heat build-up and abrasion resistance are inferior. Conversely, if it is large, the surface shape of the sheet becomes poor.
共役ジェン系ゴム(B )は、本発明の効果を本質的に阻害しない範囲で、共役 ジェン単位、芳香族ビニル単量体単位およびアミノ基含有単量体単位以外のそ の他の共重合可能な単量体単位を含んでいてもよい。この共重合可能な単量体 単位の量は、通常 20重量%以下、特に 1 0重量%以下である。この量が多すぎ ると、架橋ゴムの物性バランスが悪化する傾向にある。 The conjugated gen-based rubber (B) is a component other than a conjugated gen unit, an aromatic vinyl monomer unit and an amino group-containing monomer unit as long as the effect of the present invention is not substantially impaired. May contain other copolymerizable monomer units. The amount of this copolymerizable monomer unit is usually at most 20% by weight, especially at most 10% by weight. If the amount is too large, the physical property balance of the crosslinked rubber tends to deteriorate.
共役ジェン系ゴム(B )のム一二一粘度(M L, +4 , 1 00°C )は、 20 - 1 50 ,好ま しくは 40〜"! 30、より好ましくは 50〜 1 00の範囲であって、共役ジェン系ゴム(A) のム一二一粘度より 1 0以上、好ましくは 20以上、より好ましくは 25以上低いもの である。 The conjugated rubber (B) has a viscosity at ML ( +4 , 100 ° C.) of 20-150, preferably 40-"! 30, more preferably 50-100. The viscosity is lower than the viscosity of the conjugated rubber (A) by 10 or more, preferably 20 or more, more preferably 25 or more.
共役ジェン系ゴム( B )のム一二一粘度が低いと低発熱性および耐磨耗性に劣 り、逆に、高いとシートの表面形状が悪化したり、配合物粘度が高くなリすぎて加 ェ困難となる。共役ジェン系ゴム(B)のム一二一粘度と、共役ジェン系ゴム(A)の ム一二一粘度との差が小さすぎると、シートの表面形状が悪化したり、配合物粘 度が高くなりすぎて加工困難となる。  If the conjugated diene rubber (B) has low viscosity, low heat build-up and abrasion resistance are inferior. Conversely, if it is high, the surface shape of the sheet deteriorates and the compound viscosity becomes too high. It becomes difficult to add. If the difference between the viscosity of the conjugated rubber (B) and the viscosity of the conjugated rubber (A) is too small, the surface shape of the sheet may deteriorate or the viscosity of the compound may be reduced. It becomes too high and difficult to process.
共役ジェン系ゴム(A)と共役ジェン系ゴム(B)の比率は、両者の合計 1 00重 量部に対して、共役ジェン系ゴム(A)が 20〜80重量部、好ましくは 30〜7 5重量 部、より好ましくは 40〜70重量部である。共役ジェン系ゴム(A)の量が少ないと シートの表面形状が悪化したり、配合物粘度が高くなリすぎて加ェ困難となり、逆 に、多いと引張特性および低発熱性に劣る。  The ratio of the conjugated rubber (A) to the conjugated rubber (B) is 20 to 80 parts by weight, preferably 30 to 7 parts by weight, based on a total of 100 parts by weight of both. It is 5 parts by weight, more preferably 40 to 70 parts by weight. If the amount of the conjugated diene rubber (A) is small, the surface shape of the sheet is deteriorated, or the viscosity of the compound is too high, making it difficult to apply. Conversely, if the amount is large, the tensile properties and low heat build-up are poor.
共役ジェンとしては、例えば、 1 , 3—ブタジエン、 2—メチルー 1, 3—ブタジエン、 2 , 3—ジメチル一 1 , 3—ブタジエン、 2—クロロー 1 , 3—ブタジエン、 1 , 3—ペンタ ジェンなどが挙げられる。これらの中でも、 1 , 3—ブタジエンが好ましい。これらは、 それぞれ単独で、または 2種以上を組み合わせて用いることができる。  Examples of the conjugated gen include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene, 1,3-pentadiene, and the like. Is mentioned. Among these, 1,3-butadiene is preferred. These can be used alone or in combination of two or more.
芳香族ビニル単量体としては、アミノ基を有さない芳香族ビニル化合物が用い られ、例えば、スチレン、 a—メチルスチレン、 2—メチルスチレン、 3—メチルスチレ ン、 4ーメチルスチレン、 2, 4—ジイソプロピルスチレン、 2 , 4—ジメチルスチレン、 4 一 t一プチルスチレン、 5— t—ブチルー 2—メチルスチレン、モノクロロスチレン、ジク ロロスチレン、モノフルォロスチレンなどが挙げられる。これらの中でも、スチレンが 好ましい。これらは、それぞれ単独で、または 2種以上を組み合わせて用いること ができる。  As the aromatic vinyl monomer, an aromatic vinyl compound having no amino group is used. For example, styrene, a-methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2,4-diisopropyl Examples include styrene, 2,4-dimethylstyrene, 4-t-butylstyrene, 5-t-butyl-2-methylstyrene, monochlorostyrene, dichlorostyrene, and monofluorostyrene. Of these, styrene is preferred. These can be used alone or in combination of two or more.
アミノ基含有単量体は、 1分子中に第 1級、第 2級および第 3級ァミノ基から選 ばれる少なくとも 1つのアミノ基を有する重合性単量体であり、なかでも第 3級アミ ノ基を有するものが好ましい。 Amino group-containing monomers are selected from primary, secondary and tertiary amino groups in one molecule. Preferred are polymerizable monomers having at least one amino group, particularly those having a tertiary amino group.
第 1級ァミノ基含有単量体としては、例えば、アクリルアミド、メタアクリルアミド、 p—アミノスチレン、アミノメチル(メタ)ァクリレート、アミノエチル(メタ)ァクリレート、 ァミノプロピル(メタ)ァクリレート、アミノブチル(メタ)ァクリレートなどが挙げられる。  Examples of the primary amino group-containing monomer include acrylamide, methacrylamide, p-aminostyrene, aminomethyl (meth) acrylate, aminoethyl (meth) acrylate, aminopropyl (meth) acrylate, aminobutyl (meth) acrylate And the like.
第 2級ァミノ基含有単量体としては、例えば、特開昭 61— 130355号公報に 開示されるァニリノスチレン類; N—メチル(メタ)アクリルアミド、 N—ェチル(メタ)ァ クリルアミド, N—メチロールアクリルアミド、 N— (4—ァニリノフエニル)メタアクリル アミドなど N—モノ置換(メタ)アクリルアミド類;などが挙げられる。  Examples of the secondary amino group-containing monomer include anilinostyrenes disclosed in JP-A-61-130355; N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-methylolacrylamide N- (4-anilinophenyl) methacrylamide; N-monosubstituted (meth) acrylamides;
第 3級ァミノ基含有単量体としては、例えば、 N, N—ジ置換アミノアルキル(メ タ)ァクリレート、 N, N—ジ置換アミノアルキル(メタ)アクリルアミド、 N, N—ジ置換 ァミノ芳香族ビニル化合物およびピリジル基を有する重合性単量体などが挙げら れる。  Examples of the tertiary amino group-containing monomer include N, N-disubstituted aminoalkyl (meth) acrylate, N, N-disubstituted aminoalkyl (meth) acrylamide, N, N-disubstituted aminoaromatic Examples thereof include a vinyl compound and a polymerizable monomer having a pyridyl group.
N, N—ジ置換アミノアルキル(メタ)ァクリレートとしては、例えば、 N, N—ジメチ ルァミノメチル(メタ)ァクリレート、 N, N—ジメチルアミノエチル(メタ)ァクリレート、 N, N—ジメチルァミノプロピル(メタ)ァクリレート、 N, N—ジメチルアミノブチル(メタ)ァ クリレート、 N, N—ジェチルアミノエチル(メタ)ァクリレート、 N, N—ジェチルァミノ プロピル(メタ)ァクリレート、 N, N—ジェチルアミノブチル(メタ)ァクリレート、 N—メ チル一 N—ェチルアミノエチル(メタ)ァクリレート、 N, N—ジプロピルアミノエチル(メ タ)ァクリレート、 N, N—ジブチルアミノエチル(メタ)ァクリレート、 N, N—ジブチルァ ミノプロピル(メタ)ァクリレート、 N, N—ジブチルアミノブチル(メタ)ァクリレート、 N, N—ジへキシルアミノエチル(メタ)ァクリレート、 N, N—ジォクチルアミノエチル(メ タ)ァクリレートなどが挙げられる。これらの中でも、 N, N—ジメチルアミノエチル(メ タ)ァクリレート、 N, N—ジェチルアミノエチル(メタ)ァクリレート、 N, N—ジプロピル アミノエチル(メタ)ァクリレートが好ましい。  Examples of N, N-disubstituted aminoalkyl (meth) acrylate include N, N-dimethylaminomethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate. ) Acrylate, N, N-dimethylaminobutyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, N, N-dimethylaminobutyl (meth) acrylate ) Acrylate, N-methyl-1-N-ethylaminoethyl (meth) acrylate, N, N-dipropylaminoethyl (meth) acrylate, N, N-dibutylaminoethyl (meth) acrylate, N, N-dibutyla Minopropyl (meth) acrylate, N, N-dibutylaminobutyl (meth) acrylate, N, N-dihexyl Aminoethyl (meth) Akurireto, N, N-di-O-lipped Le aminoethyl (meth) Akurireto the like. Among these, N, N-dimethylaminoethyl (meth) acrylate, N, N-getylaminoethyl (meth) acrylate, and N, N-dipropylaminoethyl (meth) acrylate are preferred.
N, N—ジ置換アミノアルキル(メタ)アクリルアミドとしては、例えば、 N, N—ジメ チルァミノメチル(メタ)アクリルアミド、 N, N—ジメチルアミノエチル(メタ)アクリルァ ミド、 N, N—ジメチルァミノプロピル(メタ)アクリルアミド、 N, N—ジメチルアミノブチ ル(メタ)アクリルアミド、 N, N—ジェチルアミノエチル(メタ)アクリルアミド、 N, N- ジェチルァミノプロピル(メタ)アクリルアミド、 N , N—ジェチルアミノブチル(メタ)ァク リルアミド、 N—メチル一N—ェチルアミノエチル(メタ)アクリルアミド、 N , N—ジプロ ピルアミノエチル(メタ)アクリルアミド、 N , N—ジブチルアミノエチル(メタ)アクリルァ ミド、 N , N—ジブチルァミノプロピル(メタ)アクリルアミド、 N , N—ジブチルアミノブチ ル(メタ)アクリルアミド、 N , N—ジへキシルアミノエチル(メタ)アクリルアミド、 N , N 一ジへキシルァミノプロピル(メタ)アクリルアミド、 N, N—ジォクチルァミノプロピル (メタ)アクリルアミドなどが挙げられる。これらの中でも、 N , N—ジメチルァミノプロ ピル(メタ)アクリルアミド、 N , N—ジェチルァミノプロピル(メタ)アクリルアミドが好ま しい。 Examples of N, N-disubstituted aminoalkyl (meth) acrylamide include N, N-dimethylaminomethyl (meth) acrylamide, N, N-dimethylaminoethyl (meth) acrylamide, N, N-dimethylaminopropyl ( (Meth) acrylamide, N, N-dimethylaminobutyl (meth) acrylamide, N, N-getylaminoethyl (meth) acrylamide, N, N- Getylaminopropyl (meth) acrylamide, N, N-getylaminobutyl (meth) acrylamide, N-methyl-1-N-ethylaminoethyl (meth) acrylamide, N, N-dipropylaminoethyl (meth) ) Acrylamide, N, N-dibutylaminoethyl (meth) acrylamide, N, N-dibutylaminopropyl (meth) acrylamide, N, N-dibutylaminobutyl (meth) acrylamide, N, N-dihexylamino Ethyl (meth) acrylamide, N, N-dihexylaminopropyl (meth) acrylamide, N, N-dioctylaminopropyl (meth) acrylamide and the like. Among these, N, N-dimethylaminopropyl (meth) acrylamide and N, N-getylaminopropyl (meth) acrylamide are preferred.
N , N—ジ置換アミノアルキル芳香族ビニル化合物としては、例えば、 N , N—ジ メチルアミノエチルスチレン、 N , N—ジェチルアミノエチルスチレン、 N , N—ジプロピ ルアミノエチルスチレン、 N, N—ジォクチルアミノエチルスチレンなどが挙げられる。  Examples of the N, N-disubstituted aminoalkyl aromatic vinyl compound include N, N-dimethylaminoethylstyrene, N, N-getylaminoethylstyrene, N, N-dipropylaminoethylstyrene, N, N —Dioctylaminoethylstyrene and the like.
ピリジル基を有する重合性単量体としては、例えば、 2—ビニルピリジン、 4—ビ 二ルビリジン、 5—メチル一2—ビニルピリジン、 5—ェチル一2—ビニルピリジンなど が挙げられる。これらの中でも、 2—ビニルピリジン、 4一ビニルピリジンが好まし い。  Examples of the polymerizable monomer having a pyridyl group include 2-vinylpyridine, 4-vinylpyridine, 5-methyl-1-vinylpyridine, 5-ethyl-2-vinylpyridine, and the like. Of these, 2-vinylpyridine and 4-vinylpyridine are preferred.
これらのアミノ基含有単量体は、それぞれ単独で、または 2種以上を組み合わ せて用いることができる。  These amino group-containing monomers can be used alone or in combination of two or more.
共役ジェン、芳香族ビニル単量体およびアミノ基含有単量体以外のその他の 単量体は、共役ジェン、芳香族ビニル単量体およびアミノ基含有単量体と共重 合可能なものであれば特に限定されないが、その具体例としては、(メタ)アクリル 酸メチル、(メタ)アクリル酸ェチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブ チル、 (メタ)アクリル酸 2—ェチルへキシル、マレイン酸ジブチル、フマル酸ジェチル, ィタコン酸ジブチルなどのエチレン性不飽和カルボン酸エステル単量体;(メタ)ァク リル酸、マレイン酸、フマル酸、マレイン酸モノエチル、フマル酸モノブチルなどェチ レン性不飽和カルボン酸単量体;(メタ)アクリロニトリルなどのエチレン性不飽和 二トリル単量体;塩化ビニル、酢酸ビニルなどが挙げられる。  Other monomers other than the conjugated gen, the aromatic vinyl monomer and the amino group-containing monomer may be copolymerizable with the conjugated gen, the aromatic vinyl monomer and the amino group-containing monomer. Specific examples thereof include, but are not limited to, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and 2-ethyl (meth) acrylate. Ethylenically unsaturated carboxylic acid ester monomers such as xyl, dibutyl maleate, getyl fumarate, and dibutyl itaconate; (meth) acrylic acid, maleic acid, fumaric acid, monoethyl maleate, monobutyl fumarate, etc. Lenic unsaturated carboxylic acid monomers; ethylenically unsaturated nitrile monomers such as (meth) acrylonitrile; vinyl chloride, vinyl acetate, etc. That.
本発明で使用する共役ジェン系ゴム(A)および( B)の製造方法は、特に限定 されないが、乳化重合法または溶液重合法が採用できる。溶液重合法は、共役 ジェンゴム中の共役ジェン単位中のビニル結合量が 20〜 85重量%のものを調 製する場合に、好ましく採用できる。 The method for producing the conjugated rubbers (A) and (B) used in the present invention is not particularly limited, but an emulsion polymerization method or a solution polymerization method can be adopted. Solution polymerization is a conjugate It can be preferably used when preparing a rubber having a vinyl bond content of 20 to 85% by weight in a conjugated gen unit in a rubber.
乳化重合法としては、通常の乳化重合法を用いればよぐ例えば、所定量の 上記単量体を乳化剤の存在下に分散媒中に乳化分散し、ラジカル重合開始剤 により乳化重合する方法が採られる。各単量体の使用量は、各単量体単位量が 所望の含有量になるように、適宜選択される。  As the emulsion polymerization method, a conventional emulsion polymerization method may be used.For example, a method in which a predetermined amount of the above monomer is emulsified and dispersed in a dispersion medium in the presence of an emulsifier, and emulsion polymerization is performed using a radical polymerization initiator is employed. Can be The amount of each monomer used is appropriately selected so that each monomer unit has a desired content.
乳化剤としては、例えば、炭素数 1 0以上の長鎖脂肪酸塩およびノまたはロジ ン酸塩が用いられる。その具体例としては、力プリン酸、ラウリン酸、ミリスチン酸、 パルミチン酸、ォレイン酸、ステアリン酸などの脂肪酸のカリウム塩またはナトリウ ム塩が挙げられる。  As the emulsifier, for example, a long-chain fatty acid salt having 10 or more carbon atoms and a phosphate or rhodium salt are used. Specific examples thereof include potassium or sodium salts of fatty acids such as hydropric acid, lauric acid, myristic acid, palmitic acid, oleic acid, and stearic acid.
乳化重合に用いる分散媒としては、通常、水が使用され、重合時の安定性を 阻害しない範囲であれば、メタノール、エタノールなどの水溶性有機溶媒を含んで いてもよい。  Water is usually used as a dispersion medium used in the emulsion polymerization, and may contain a water-soluble organic solvent such as methanol or ethanol as long as the stability during polymerization is not impaired.
ラジカル重合開始剤としては、例えば、過硫酸アンモニゥムゃ過硫酸カリウム のような過硫酸塩;過硫酸アンモニゥムと硫酸第二鉄との組み合わせ、有機過酸 化物と硫酸第二鉄との組み合わせ、および過酸化水素と硫酸第二鉄との組み合 わせなどのレドックス系開始剤;などが挙げられる。  Examples of the radical polymerization initiator include a persulfate such as ammonium persulfate and potassium persulfate; a combination of ammonium persulfate and ferric sulfate; a combination of an organic peroxide and ferric sulfate; Redox initiators such as a combination of hydrogen oxide and ferric sulfate; and the like.
得られるゴムの厶一二一粘度を調節するために、連鎖移動剤を添加することも できる。連鎖移動剤としては、例えば、 t—ドデシルメルカブタン、 n—ドデシルメル力 ブタンなどのメルカブタン類、四塩化炭素、チォグリコール酸、ジテルペン、ターピノ —レン、 r一テルビネン、 α—メチルスチレンダイマーなどが挙げられる。  In order to adjust the viscosity of the obtained rubber, a chain transfer agent may be added. Examples of the chain transfer agent include mercaptans such as t-dodecyl mercaptan, n-dodecyl mercaptan, carbon tetrachloride, thioglycolic acid, diterpene, terpinolene, r-terbinene, α-methylstyrene dimer and the like. Can be
乳化重合の温度は、使用するラジカル重合開始剤の種類によって適宜選択 することができるが、通常、 0 ~ 1 00°Cで、好ましくは 0〜60°Cである。重合様式は, 連続重合、回分重合などのいずれでの様式でも構わない。  The temperature of the emulsion polymerization can be appropriately selected depending on the type of the radical polymerization initiator to be used, but is usually 0 to 100 ° C, preferably 0 to 60 ° C. The polymerization mode may be any mode such as continuous polymerization or batch polymerization.
重合反応停止の際の重合転化率は、重合体のゲル化を防止する観点から、 85 <½以下とすることが好ましく、 50〜75 «½の範囲とすることがより好ましい。重合 反応停止は、通常、所定の重合転化率に達した時点で、重合系に重合停止剤 を添加することによって行われる。重合停止剤としては、例えば、イソプロピルヒド ロキシルァミン、ジェチルヒドロキシルアミンゃヒドロキシルァミンなどのアミン系化 合物;ヒドロキノンやべンゾキノンなどのキノン系化合物;亜硝酸ナトリウム、ソジゥ 厶ジチォカーバメートなどが挙げられる。 From the viewpoint of preventing the gelation of the polymer, the polymerization conversion rate at the time of stopping the polymerization reaction is preferably 85 <85 or less, more preferably 50-75 50. Termination of the polymerization reaction is usually performed by adding a polymerization terminator to the polymerization system when a predetermined polymerization conversion is reached. Examples of the polymerization terminator include amine-based compounds such as isopropylhydroxylamine and getylhydroxylamine-hydroxylamine. Compounds; quinone-based compounds such as hydroquinone and benzoquinone; sodium nitrite, sodium dithiocarbamate and the like.
重合反応停止後、必要に応じて、得られたラテックスに老化防止剤を添加して もよい。  After termination of the polymerization reaction, an antioxidant may be added to the obtained latex, if necessary.
重合反応停止後、得られたラテックスから必要に応じて未反応単量体を除去し、 次いで、塩化ナトリウム、塩化カルシウム、塩化カリウムなどの塩を凝固剤とし、必 要に応じて硝酸、硫酸などの酸を添加して凝固系の p Hを所定の値に調整しなが ら、重合体をクラムとして凝固させた後、分散媒を分離することにより重合体を回 収できる。クラムは水洗'脱水後、バンドドライヤーなどで乾燥し、 目的とするジェ ン系ゴムを得ることができる。なお、凝固の際に、所望により、予めラテックスと乳 化分散液にした伸展油とを混合し、油展ゴムとして回収することもできる。  After the polymerization reaction is stopped, unreacted monomers are removed from the obtained latex as necessary, and then salts such as sodium chloride, calcium chloride and potassium chloride are used as a coagulant, and nitric acid, sulfuric acid and the like are used as necessary. The acid can be added to adjust the pH of the coagulation system to a predetermined value while coagulating the polymer as crumb, and then separating the dispersion medium to recover the polymer. The crumb can be washed and dehydrated and then dried with a band dryer or the like to obtain the desired geno rubber. At the time of coagulation, if desired, a latex and an extender oil which has been previously made into an emulsified dispersion can be mixed and recovered as an oil-extended rubber.
溶液重合法は、通常の溶液重合法を用いればよく、例えば、重合溶媒中で、 ァニオン重合触媒として有機アルカリ金属を使用して、所望により、極性化合物 の存在下、上記単量体を重合する。  The solution polymerization method may be a conventional solution polymerization method.For example, the above monomer is polymerized in a polymerization solvent using an organic alkali metal as an anion polymerization catalyst, if desired, in the presence of a polar compound. .
重合溶媒としては、例えば、 n—ブタン、 n—ペンタン、イソペンタン、 n—へキサ ン、 n—ヘプタン、イソオクタンなどの脂肪族炭化水素;シクロペンタン、シクロへキ サン、メチルシクロペンタンなどの脂環式炭化水素;ベンゼン、 トルエンなどの芳香 族炭化水素;などが挙げられる。また、必要に応じて、 1—ブテン、シス一 2—ブテ ン、 2—へキセンなどのァニオン重合性の低い不飽和炭化水素などを併用しても よい。これらの重合溶媒は、単独で、または 2種以上組み合わせて、通常、単量 体濃度が 1重量%〜 40重量 0/0になる量比で用いられる。  Examples of the polymerization solvent include aliphatic hydrocarbons such as n-butane, n-pentane, isopentane, n-hexane, n-heptane, and isooctane; alicyclic rings such as cyclopentane, cyclohexane, and methylcyclopentane. Formula hydrocarbons; aromatic hydrocarbons such as benzene and toluene; and the like. If necessary, unsaturated hydrocarbons having low anion polymerizability such as 1-butene, cis-1-butene, and 2-hexene may be used in combination. These polymerization solvents are used alone or in combination of two or more kinds, and are usually used in a ratio such that the monomer concentration becomes 1% by weight to 40% by weight 0/0.
有機アルカリ金属としては、例えば、 n—ブチルリチウム、 sec—ブチルリチウム、 t一ブチルリチウム、へキシルリチウム、フエニルリチウム、スチルベンリチウムなど の有機モノリチウム化合物;ジリチオメタン、 1 , 4ージリチォブタン、 1 , 4—ジリチォ —2—ェチルシクロへキサン、 1 , 3 , 5—トリリチォベンゼンなどの多官能性有機リ チウム化合物;ナトリウムナフタレン、カリウムナフタレンなどが挙げられる。これら の中でも、有機リチウム化合物が好まし 有機モノリチウム化合物が特に好まし し、。これらの有機アルカリ金属は、それぞれ単独で、または 2種以上を組み合わせ て用いることができる。有機アルカリ金属の使用量は、要求される生成重合体の 分子量によって適宜選択されるが、単量体 l OOg当り、通常 0. 1 ~ 30m mo l、好 ましくは 0. 2〜 1 5 m moしより好ましくは 0. 3〜 1 Om molの範囲である。 Examples of the organic alkali metal include organic monolithium compounds such as n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium, and stilbenelithium; dilithiomethane, 1,4 dilithiobutane, 1,4 Polyfunctional organic lithium compounds such as —dilithio—2-ethylcyclohexane and 1,3,5-trilithiobenzene; sodium naphthalene and potassium naphthalene; Of these, organic lithium compounds are preferred, and organic monolithium compounds are particularly preferred. These organic alkali metals can be used alone or in combination of two or more. The amount of organic alkali metal used depends on the required polymer Although it is appropriately selected depending on the molecular weight, it is usually in the range of 0.1 to 30 mmol, preferably 0.2 to 15 mmol, more preferably 0.3 to 1 Ommol per 100 g of monomer. is there.
有機アルカリ金属は、予め、ジブチルァミン、ジへキシルァミン、ジベンジルアミ ンなどの第 2級ァミンと反応させて、有機アルカリ金属アミドとして使用してもよい。  The organic alkali metal may be used as an organic alkali metal amide by previously reacting with a secondary amine such as dibutylamine, dihexylamine or dibenzylamine.
重合触媒として有機アルカリ金属を使用する場合は、重合反応に影響する単 量体があるので、そのような単量体は使用しないことが好ましい。この見地から、 アミノ基含有単量体としては、第 3級ァミノ基含有単量体を用いることがが好まし く、 N , N—ジ置換アミノ芳香族ビニル化合物が特に好ましく、 N , N—ジメチルアミ ノエチルスチレンが最も好ましい。  When an organic alkali metal is used as a polymerization catalyst, it is preferable not to use such a monomer since there are monomers that affect the polymerization reaction. From this point of view, it is preferable to use a tertiary amino group-containing monomer as the amino group-containing monomer, and it is particularly preferable to use an N, N-disubstituted amino aromatic vinyl compound. Dimethylaminoethylstyrene is most preferred.
極性化合物としては、ァニオン重合において、共役ジェン単位のミクロ構造や 芳香族ビニルの共重合体鎖中の分布を調整するために、通常用いられるもので あれば格別制限はない。その具体例としては、ジブチルェ一テル、テトラヒドロフラ ン、エチレングリコールジェチルェ一テルなどのエーテル化合物;亍トラメチルェチレ ンジァミン、 トリメチルァミンなどの 3級ァミン;カリウム一 t—アミルォキシド、力リウ 厶ー t—アミルォキシドなどのアルカリ金属アルコキシド;トリフエニルホスフィンなど のホスフィン化合物;などが挙げられる。これらの中でも、共役ジェン単位のビニル 結合量と芳香族ビニルの独立結合単位量を高度に増大できる点で、 3級ァミンが 好ましく、テトラメチルエチレンジァミンが特に好ましい。  The polar compound is not particularly limited as long as it is a compound generally used in anion polymerization to adjust the microstructure of conjugated gen units and the distribution of aromatic vinyl in the copolymer chain. Specific examples thereof include ether compounds such as dibutyl ether, tetrahydrofuran, and ethylene glycol ethyl ether; tertiary amines such as trimethylethylenediamine and trimethylamine; potassium mono-t-amyloxide; Alkali metal alkoxides such as amyloxide; phosphine compounds such as triphenylphosphine; and the like. Among these, tertiary amines are preferred, and tetramethylethylenediamine is particularly preferred, in that the amount of vinyl bonds in the conjugated gen unit and the amount of independent bond units of aromatic vinyl can be greatly increased.
極性化合物の使用量は、重合開始剤として用いる有機アルカリ金属 1モルに 対して、好ましくは 0. 1 ~ 1 00モル、より好ましくは 0. 5〜50モル、特に好ましくは 1〜30モルの範囲である。この範囲にあると、共役ジェン単位のビニル結合量を 適度に調整できる。  The amount of the polar compound used is preferably in the range of 0.1 to 100 mol, more preferably 0.5 to 50 mol, and particularly preferably 1 to 30 mol, per 1 mol of the organic alkali metal used as the polymerization initiator. It is. Within this range, the amount of vinyl bonds in the conjugated gen unit can be adjusted appropriately.
重合反応は、通常、一 78〜1 50°C、好ましくは 0〜1 00°C、より好ましくは 30 ~ 90°Cの範囲で、回分式または連続式などの重合様式で行われる。また、芳香 族ビニル単量体を共重合させる場合は、芳香族ビニル単量体単位の結合のラン ダム性を向上させるため、重合系中の芳香族ビニル単量体と共役ジェンの組成 比における芳香族ビニル単量体含有量が特定濃度範囲になるように、共役ジェ ンまたは共役ジェンと芳香族ビニル単量体との混合物を、反応系に連続的また は断続的に供給することが好ましい。 重合反応終了後、重合停止剤として、メタノール、イソプロパノールなどのアル コールを添加して反応を停止して重合溶液を得る。重合停止剤を添加する前に、 重合活性末端と反応しうる、四塩化錫、テトラクロロシラン、テトラメトキシシラン、 テトラグリシジル一 1 , 3—ビスアミノメチルシクロへキサン、 2 , 4—トリレンジイソシ アナ一トなどのカップリング剤や 4, 4 '一ビス(ジェチルァミノ)ベンゾフエノン、 N—メ チルピロリドン、 N—ビニルピロリドンなどの重合末端変性剤を添加してもよい。 The polymerization reaction is usually carried out at a temperature in the range of 170 to 150 ° C, preferably 0 to 100 ° C, and more preferably 30 to 90 ° C, in a batch or continuous polymerization mode. When the aromatic vinyl monomer is copolymerized, the composition ratio of the aromatic vinyl monomer and the conjugated gen in the polymerization system is improved in order to improve the randomness of the bond between the aromatic vinyl monomer units. It is preferable to supply the conjugated gen or a mixture of the conjugated gen and the aromatic vinyl monomer continuously or intermittently to the reaction system so that the content of the aromatic vinyl monomer is in a specific concentration range. . After the completion of the polymerization reaction, an alcohol such as methanol or isopropanol is added as a polymerization terminator to terminate the reaction to obtain a polymerization solution. Before adding the polymerization terminator, tin tetrachloride, tetrachlorosilane, tetramethoxysilane, tetraglycidyl-1,3-bisaminomethylcyclohexane, 2,4-tolylenediisocyanate, which can react with the polymerization active terminal And a polymerization terminal modifier such as 4,4′-bis (getylamino) benzophenone, N-methylpyrrolidone, and N-vinylpyrrolidone.
次いで、所望により、老化防止剤やクラム化剤を重合溶液に添加した後、直 接乾燥やスチームストリツビングにより重合溶液から重合溶媒を分離して、 目的 のゴムを回収する。なお、重合溶液から重合溶媒を分離する前に、予め伸展油と 重合溶液を混合し、油展ゴムとして回収することもできる。  Next, if desired, after adding an antioxidant or a crumbing agent to the polymerization solution, the polymerization solvent is separated from the polymerization solution by direct drying or steam stripping, and the target rubber is recovered. Before separating the polymerization solvent from the polymerization solution, the extension oil and the polymerization solution may be mixed in advance and recovered as an oil-extended rubber.
本発明のゴム組成物を調製するには、それぞれ固形ゴム状の、共役ジェン系 ゴム(A)および共役ジェン系ゴム(B )を混練ブレンドしても、または、固形状ゴムと して取得する前の、共役ジェン系ゴム(A)のラテックスまたは溶液と、共役ジェン 系ゴム(B )のラテックスまたは溶液とを混合した後、分散媒を分離して、固形ゴム 状のブレンド物として取得してもよい。なかでも、共役ジェン系ゴム(A)および共役 ジェン系ゴム(B)の分散性に優れる点で、後者の方法が好ましく、ラテックス同士 または溶液同士で、混合することが特に好ましい。ここで、分散媒とは、ラテックス の場合は水を主成分とするものであり、溶液の場合は重合溶媒を主成分とするも のである。  The rubber composition of the present invention is prepared by kneading and blending a conjugated rubber (A) and a conjugated rubber (B) in the form of a solid rubber, respectively, or as a solid rubber. After mixing the conjugated rubber (A) latex or solution and the conjugated rubber (B) latex or solution, the dispersion medium is separated and obtained as a solid rubber-like blend. Is also good. Among them, the latter method is preferable because the dispersibility of the conjugated rubber (A) and the conjugated rubber (B) is excellent, and it is particularly preferable to mix the latexes or the solutions. Here, the dispersion medium is mainly composed of water in the case of latex, and is mainly composed of the polymerization solvent in the case of solution.
本発明のゴム組成物は、シリカを配合した際の配合物粘度が高くなリ過ぎな いよう、伸展油を含有することが好ましい。伸展油としては、ゴム工業において通 常使用されるものが使用でき、パラフィン系伸展油、芳香族系伸展油、ナフテン 系伸展油などが挙げられる。  The rubber composition of the present invention preferably contains an extension oil so that the viscosity of the compound when silica is compounded does not become too high. As the extender oil, those commonly used in the rubber industry can be used, and examples thereof include a paraffin extender oil, an aromatic extender oil, and a naphthenic extender oil.
伸展油の流動点は、好ましくは一 20〜 50 °C、より好ましくは一 1 0〜 30 °Cであ る。この範囲であれば、伸展しやすぐ引張特性と低発熱性のバランスにより優れ る。伸展油のクルツ分析法によるァロマ炭素含有量(CA% )は、好ましくは 1 5 % 以上、より好ましくは 25 %以上であり、パラフィン炭素含有量(C P% )は、好ましく は 65 %以下、より好ましくは 45 %である。 CAo/oが小さすぎたり、 C P%が大きすぎ たりすると、引張特性が不十分となる。伸展油の多環芳香族の含有量は、好まし くは 3%未満である。この含有量は、 IP346の方法(英国の THE INSTITUTE PETROLEUMの検査方法)により測定される。 The pour point of the extender oil is preferably between 20 and 50 ° C, more preferably between 10 and 30 ° C. Within this range, the extensibility and the balance between tensile properties and low heat build-up are excellent. The aroma carbon content (CA%) of the extended oil by Kurz analysis is preferably 15% or more, more preferably 25% or more, and the paraffin carbon content (CP%) is preferably 65% or less, more preferably Preferably it is 45%. If CAo / o is too small or CP% is too large, the tensile properties will be insufficient. The polycyclic aromatic content of the extender oil is preferred. Or less than 3%. This content is measured by the method of IP346 (test method of THE INSTITUTE PETROLEUM in the UK).
伸展油の含有量は、共役ジェン系ゴム(A)と共役ジェン系ゴム(B)の合計 10 0重量部に対して、好ましくは 5〜100重量部、より好ましくは 10〜80重量部、 特に好ましくは 20〜 60重量部である。伸展油の含有量がこの範囲にあると、シリ 力を配合した配合物粘度が適度であり、かつ引張特性および低発熱性のバラン スに優れる。  The content of the extender oil is preferably 5 to 100 parts by weight, more preferably 10 to 80 parts by weight, based on 100 parts by weight of the total of the conjugated rubber (A) and the conjugated rubber (B). Preferably it is 20 to 60 parts by weight. When the content of the extender oil is in this range, the viscosity of the compound containing silicide is appropriate, and the tensile properties and the low heat generation balance are excellent.
伸展油を配合する場合は、固形状ゴムとして取得する前の、それぞれの重合 体ラテックスまたは溶液に、予め所定比率で伸展油を混合した後、油展ゴムとし て取得することが、補強剤の分散性に優れる点で好ましい。  When compounding an extender oil, it is possible to mix the polymer latex or solution at a predetermined ratio in advance with each polymer latex or solution before obtaining as a solid rubber, and then obtain as an oil-extended rubber. It is preferable because it has excellent dispersibility.
本発明のゴム組成物は、補強剤として、シリ力およびカーボンブラックの中から 選ばれる少なくと一種を含有することが好まし 特にシリカを必須成分として含 有することがより好ましい。また、補強剤として、カーボンブラック表面にシリカを担 持させたカーボン一シリカ デュアル'フェイズ'フイラ一を用いてもよい。  The rubber composition of the present invention preferably contains at least one selected from silicic acid and carbon black as a reinforcing agent, and more preferably contains silica as an essential component. As a reinforcing agent, a carbon-silica dual 'phase' filler having silica supported on the carbon black surface may be used.
シリカとしては、例えば、乾式法ホワイトカーボン、湿式法ホワイト力一ボン、コロ ィダルシリカ、および特開昭 62— 62838号公報に開示されている沈降シリカなど が挙げられる。これらの中でも、含水ゲイ酸を主成分とする湿式法ホワイトカーボ ンが特に好ましい。これらのシリカは、それぞれ単独で、または 2種以上を組み合 わせて用いることができる。  Examples of the silica include dry-process white carbon, wet-process white carbon, colloidal silica, and precipitated silica disclosed in JP-A-62-62838. Among these, wet-process white carbon containing hydrous gay acid as a main component is particularly preferable. These silicas can be used alone or in combination of two or more.
シリカの比表面積は、特に制限はされないが、窒素吸着比表面積(BET法)で, 好ましくは 5O~400m2Zg、より好ましくは 100〜220m2Zg、特に好ましくは 12 0〜190m2Zgである。シリカの比表面積がこの範囲であると、引張特性および 低発熱性のバランスに優れる。なお、窒素吸着比表面積は、 ASTMD3037— 8 1に準じ BET法で測定される値である。 The specific surface area of silica is not particularly limited, a nitrogen adsorption specific surface area (BET method) is preferably from 5O ~ 400m 2 Zg, more preferably 100~220m 2 Zg, particularly preferably 12 0~190m 2 Zg . When the specific surface area of the silica is in this range, the balance between the tensile properties and the low heat buildup is excellent. The nitrogen adsorption specific surface area is a value measured by the BET method according to ASTMD3037-81.
カーボンブラックとしては、例えば、,ファーネスブラック、アセチレンブラック、サ一 マルブラック、チャンネルブラック、グラフアイトなどを用いることができる。これらの 中でも、特にファーネスブラックが好ましく、その具体例としては、 SAF、 ISAF、 IS AF-HS, ISAF— LS、 IISAF— HS、 HAF、 HAF— HS、 HAF— LS、 FEFなどの グレードのものが挙げられる。これらのカーボンブラックは、それぞれ単独で、また は 2種以上を組み合わせて用いることができる。 As carbon black, for example, furnace black, acetylene black, thermal black, channel black, graphite and the like can be used. Among them, furnace black is particularly preferred, and specific examples thereof include SAF, ISAF, ISAF-HS, ISAF-LS, IISAF-HS, HAF, HAF-HS, HAF-LS, and FEF. Grade grades. These carbon blacks can be used alone or in combination of two or more.
カーボンブラックの比表面積は、特に制限はないが、窒素吸着比表面積(N2S A)で、好ましくは 5~200m2Zg、より好ましくは 50m〜 150m2Zg、特に好ましく は 80〜130m2Zgである。窒素吸着比表面積がこの範囲であると、より引張特 性に優れる。 The specific surface area of carbon black is not particularly limited, a nitrogen absorption specific surface area (N 2 SA), preferably 5 ~ 200m 2 Zg, more preferably 50m~ 150m 2 Zg, particularly preferably 80~130m 2 Zg is there. When the nitrogen adsorption specific surface area is in this range, the tensile characteristics are more excellent.
また、力一ポンプラックのジブチルフタレ一KDBP)吸着量も、特に制限はない力《、 好ましく Iま 5~300ml 1 OOg、より好ましくは 50〜 200ml/ 1 OOg、特に好まし くは 80〜"! 60ml/ 100gである。 DBP吸着量がこの範囲であると、より引張特性 に優れる。  Also, the adsorption amount of dibutylphthalate (KDBP) of the power pump rack is not particularly limited, and the power is preferably 5 to 300 ml 1 OOg, more preferably 50 to 200 ml / 1 OOg, and particularly preferably 80 to "! 60 ml / 100 g When the DBP adsorption amount is within this range, the tensile properties are more excellent.
さらに、力一ボンブラックとして、特開平 5— 230290号公報に開示されているセ チルトリメチルアンモニゥムブロマイドの吸着(CTAB)比表面積が 110〜170m2 Zgであり、 24, OOOpsiの圧力で 4回繰り返し圧縮をカロえた後の DBP(24M4D BP)吸油量が 110〜130mlZ100gであるハイストラクチャ一力一ボンブラックを 用いることにより、耐摩耗性を改善できる。 Further, as a carbon black, the adsorption (CTAB) specific surface area of cetyltrimethylammonium bromide disclosed in JP-A-5-230290 is 110 to 170 m 2 Zg, and at a pressure of 24, OOOpsi. Abrasion resistance can be improved by using high-structure one-strength black, which has a DBP (24M4D BP) oil absorption of 110-130mlZ100g after repeated compression.
補強剤の配合量は、ゴム成分 100重量部に対して、好ましくは 10〜200重 量部、より好ましくは 20〜"! 50重量部、特に好ましくは 30〜"! 20重量部である。 補強剤としてシリカとカーボンブラックとを併用する場合の混合割合は、シリカ:力 —ボンブラックの重量比で、好ましくは 10:90~99: 1、より好ましくは 30:70〜9 5:5、 寺に好ましくは 50: 50〜90: 10である。  The compounding amount of the reinforcing agent is preferably 10 to 200 parts by weight, more preferably 20 to "! 50 parts by weight, particularly preferably 30 to"! 20 parts by weight. When silica and carbon black are used in combination as a reinforcing agent, the mixing ratio is preferably 10:90 to 99: 1, more preferably 30:70 to 95: 5, by weight ratio of silica: force—bon black, It is preferably 50:50 to 90:10 for temples.
本発明のゴム組成物が補強剤としてシリカを含有する場合は、引張特性およ び低発熱性をさらに改善する目的で、シランカップリング剤を配合することが好ま しい。  When the rubber composition of the present invention contains silica as a reinforcing agent, it is preferable to add a silane coupling agent for the purpose of further improving tensile properties and low heat build-up.
シランカップリング剤としては、例えば、ビニルトリエトキシシラン、 ー(3, 4— エポキシシクロへキシル)ェチルトリメトキシシラン、 Ν— ( 一アミノエチル)一 r一 ァミノプロビルトリメトキシシラン、ビス(3—(トリエトキシシリル)プロピル)テトラスル フイド、ビス(3— (トリエトキシシリル)プロピル)ジスルフイドなどや、特開平 6— 24 8116号公報に記載されている r—トリメトキシシリルプロピルジメチルチオ力ルバ ミルテトラスルフイド、 7·—トリメトキシシリルプロピルべンゾチアジルテトラスルフイド などのテトラスルフイド類などを挙げることができる。混練時のスコーチを避けられ るので、シランカップリング剤は、一分子中に含有される硫黄が 4個以下のものが 好ましい。これらのシランカップリング剤は、それぞれ単独で、または 2種以上を組 み合わせて使用することができる。 Examples of the silane coupling agent include vinyltriethoxysilane,-(3,4-epoxycyclohexyl) ethyltrimethoxysilane, Ν- (monoaminoethyl) -r- aminopropyl trimethoxysilane, (3- (triethoxysilyl) propyl) tetrasulfide, bis (3- (triethoxysilyl) propyl) disulphide and the like, and r-trimethoxysilylpropyl dimethylthiothiol described in JP-A-6-248116 Lubamil tetrasulfide, 7-trimethoxysilylpropylbenzothiazyltetrasulfide And the like. Since scorch at the time of kneading can be avoided, the silane coupling agent is preferably one containing four or less sulfur in one molecule. These silane coupling agents can be used alone or in combination of two or more.
シランカップリング剤の配合量は、シリカ 1 00重量部に対して、好ましくは 0. 1 ~ 30重量部、より好ましくは"!〜 20重量部、特に好ましくは 2〜1 0重量部であ る。  The amount of the silane coupling agent to be added is preferably 0.1 to 30 parts by weight, more preferably "! To 20 parts by weight, particularly preferably 2 to 10 parts by weight, based on 100 parts by weight of silica. .
本発明のゴム組成物は、本発明の効果を本質的に損なわない範囲で、共役 ジェン系ゴム(A )および共役ジェン系ゴム(B )以外のその他のゴムを含んでもよ し、。その他のゴムとしては、例えば、天然ゴム、ハイシス一ポリイソプレンゴム、ハイ シス一ポリブタジエンゴム、アクリロニトリル一ブタジエン共重合ゴム、ブチルゴム、 エチレン一プロピレン一ジェン共重合ゴムなどが挙げられる。  The rubber composition of the present invention may contain other rubbers other than the conjugated rubber (A) and the conjugated rubber (B) as long as the effects of the present invention are not substantially impaired. Examples of other rubbers include natural rubber, high cis-polyisoprene rubber, high cis-polybutadiene rubber, acrylonitrile-butadiene copolymer rubber, butyl rubber, and ethylene-propylene-one-gen copolymer rubber.
本発明のゴム組成物には、上記成分以外に、常法に従って、架橋剤、架橋促 進剤、架橋活性化剤、老化防止剤、活性剤、可塑剤、滑剤、充填剤などの配合 剤をそれぞれ必要量含有せしめることができる。  The rubber composition of the present invention contains, in addition to the above components, compounding agents such as a crosslinking agent, a crosslinking accelerator, a crosslinking activator, an antioxidant, an activator, a plasticizer, a lubricant, and a filler according to a conventional method. Each of them can be contained in a required amount.
架橋剤としては、例えば、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、 高分散性硫黄などの硫黄;一塩化硫黄、二塩化硫黄などのハロゲン化硫黄;ジ クミルバ一ォキシド、ジタ一シヤリブチルバ一ォキシドなどの有機過酸化物; P—キノ ンジォキシム、 p, p '—ジベンゾィルキノンジォキシムなどのキノンジォキシム;トリ エチレン亍トラミン、へキサメチレンジァミン力ルバメート、 4, 4 'ーメチレンビス一 o— クロロア二リンなどの有機多価アミン化合物;メチロール基をもったアルキルフエノ Examples of the cross-linking agent include sulfur such as powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, and highly dispersible sulfur; sulfur halides such as sulfur monochloride and sulfur dichloride; dicumyl valoxide, tert-butyl butyl oxide. Quinonedioximes such as P-quinondioxime, p, p'-dibenzoylquinonedioxime; triethylenepentramine, hexamethylenediamine powerbamate, 4,4'-methylenebis-o-chloroa Organic polyamine compounds such as diphosphorus; alkylpheno having a methylol group
—ル樹脂;などが挙げられる。これらの中でも、硫黄が好まし 粉末硫黄が特に 好ましい。これらの架橋剤は、それぞれ単独で、または 2種以上を組み合わせて 用いられる。架橋剤の配合量は、ゴム成分 1 00重量部に対して、好ましくは 0. 3 ~ 1 0重量部、より好ましくは 0. 5〜5重量部である。 —Resin resin; and the like. Among these, sulfur is preferred, and powdered sulfur is particularly preferred. These crosslinking agents may be used alone or in combination of two or more. The compounding amount of the crosslinking agent is preferably 0.3 to 10 parts by weight, more preferably 0.5 to 5 parts by weight, based on 100 parts by weight of the rubber component.
架橋促進剤としては、 N—シクロへキシル一2—ベンゾチアゾールスルフェンアミ ド、 N—t—プチルー 2—ベンゾチアゾ一ルスルフェンアミド、 N—ォキシエチレン一 2 —ベンゾチアゾ一ルスルフェンアミド、 N—ォキシエチレン一 2—ベンゾチアゾ一ルス ルフェンアミド、 N , N '—ジイソプロピル一 2—ベンゾチアゾールスルフェンアミドなど のスルフェンアミド系架橋促進剤:ジフエ二ルグァ二ジン、ジオルト卜リルグァニジン、 オルトトリルビグァニジンなどのグァニジン系架橋促進剤;ジェチルチオゥレアなど のチォゥレア系架橋促進剤; 2—メルカプトべンゾチアゾール、ジベンゾチアジルジ スルフイド、 2—メルカプトべンゾチアゾ一ル亜鉛塩などのチアゾール系架橋促進 剤;テトラメチルチウラムモノスルフイド、テトラメチルチウラムジスルフイドなどのチウ ラム系架橋促進剤;ジメチルジチ才力ルバミン酸ナトリウム、ジェチルジチ才力ルバ ミン酸亜鉛などのジチォ力ルバミン酸系架橋促進剤;イソプロピルキサントゲン酸 ナトリウム、イソプロピルキサントゲン酸亜鉛、プチルキサントゲン酸亜鉛などのキ サントゲン酸系架橋促進剤;などの架橋促進剤が挙げられる。中でも、スルフェン アミド系架橋促進剤が好ましい。これらの架橋促進剤は、それぞれ単独で、また は 2種以上を組み合わせて用いられる。架橋促進剤の配合量は、ゴム成分 1 00 重量部に対して、好ましくは 0. 3〜1 0重量部、より好ましくは 0. 5〜5重量部で あ 。 Examples of the crosslinking accelerator include N-cyclohexyl-1-benzothiazolesulfenamide, Nt-butyl-2-benzothiazolsulfenamide, N-oxyethylene-12-benzothiazolsulfenamide, and N-oxyethylene 2-benzothiazolsulfenamide, N, N'-diisopropyl-1-benzothiazolesulfenamide, etc. Sulfenamide-based crosslinking accelerators: guanidine-based crosslinking accelerators such as diphenylguanidine, dioritoltriguanidine, and o-tolylbiguanidine; thioperia-based crosslinking accelerators such as getylthioperia; 2-mercaptobenzothiazole Thiazole-based cross-linking accelerators such as dimethyl, dibenzothiazyl disulfide and 2-mercaptobenzothiazol zinc salt; thiuram-based cross-linking accelerators such as tetramethylthiuram monosulfide and tetramethylthiuram disulfide; Cross-linking accelerators such as sodium rubamate and dithiol-rubic acid-based cross-linking accelerators such as getyldithi-rich zinc rubamate; sodium xanthate-based cross-linking accelerators such as sodium isopropylxanthate, zinc isopropylxanthate and zinc butylxanthate; Agent It is. Among them, sulfenamide-based crosslinking accelerators are preferred. These cross-linking accelerators are used alone or in combination of two or more. The compounding amount of the crosslinking accelerator is preferably from 0.3 to 10 parts by weight, more preferably from 0.5 to 5 parts by weight, based on 100 parts by weight of the rubber component.
架橋活性化剤としては、例えば、ステアリン酸などの高級脂肪酸、および酸化 亜鉛などを用いることができる。酸化亜鉛としては、表面活性の高い粒度 5 m 以下のものを用いるのが好ましぐ粒度が 0. 05 ~ 0. 2 ju mの活性亜鉛華や 0. 3 - 1 μ mの亜鉛華などを挙げることができる。また、酸化亜鉛は、ァミン系の分 散剤や湿潤剤で表面処 ¾してあってもよい。これらの架橋活性化剤は、それぞれ 単独で、または 2種以上を併用して用いることができる。架橋活性化剤の配合割 合は、架橋活性化剤の種類により適宜選択される。高級脂肪酸の配合量は、ゴ 厶成分 1 00重量部に対して、好ましくは 0. 3 ~ 1 0重量部、より好ましくは 0. 5 ~ 5重量部である。酸化亜鉛の配合量は、ゴム成分 1 00重量部に対して、好ましく は 0. 1 ~ 5重量部、より好ましくは 0. 5〜 2重量部である。  As the crosslinking activator, for example, higher fatty acids such as stearic acid, zinc oxide, and the like can be used. It is preferable to use zinc oxide having a surface activity of 5 m or less as the zinc oxide, and it is preferable to use active zinc white having a particle size of 0.05 to 0.2 jum or zinc white having a particle size of 0.3 to 1 μm. Can be mentioned. Zinc oxide may be surface-treated with an amine-based dispersant or wetting agent. These crosslinking activators can be used alone or in combination of two or more. The mixing ratio of the crosslinking activator is appropriately selected depending on the type of the crosslinking activator. The blending amount of the higher fatty acid is preferably from 0.3 to 10 parts by weight, more preferably from 0.5 to 5 parts by weight, based on 100 parts by weight of the rubber component. The amount of zinc oxide is preferably 0.1 to 5 parts by weight, more preferably 0.5 to 2 parts by weight, based on 100 parts by weight of the rubber component.
さらに、配合剤としては、ジエチレングリコール、ポリエチレングリコール、シリコ —ンオイルなどの活性剤;炭酸カルシウム、タルク、クレー、水酸化アルミニウムな どの充填剤;ワックスなどが挙げられる。  Further, examples of the compounding agent include an activator such as diethylene glycol, polyethylene glycol, and silicone oil; a filler such as calcium carbonate, talc, clay, and aluminum hydroxide; and a wax.
補強剤を含むゴム組成物は、常法に従って各成分を混練することにより得るこ とができる。例えば、架橋剤と架撟促進剤を除く配合剤と補強剤とゴム成分とを 混練後、その混練物に架橋剤と架橋促進剤を混練してゴム組成物を得ることが できる。架橋剤と架橋促進剤と除く配合剤と補強剤とゴム成分との混練温度は、 好ましくは 80~200°C、より好ましくは 100〜190°C、特に好ましくは 140~ 18 0°Cの範囲とする。次いで、得られた混練物を、好ましくは 100°C以下、より好まし くは 80 °C以下まで冷却した後、それと架橋剤および架橋促進剤とを混練する。 The rubber composition containing a reinforcing agent can be obtained by kneading each component according to a conventional method. For example, after kneading a compounding agent excluding a crosslinking agent and a crosslinking accelerator, a reinforcing agent, and a rubber component, a kneading product may be kneaded with a crosslinking agent and a crosslinking accelerator to obtain a rubber composition. it can. The kneading temperature of the compounding agent, the reinforcing agent, and the rubber component excluding the crosslinking agent and the crosslinking accelerator is preferably 80 to 200 ° C, more preferably 100 to 190 ° C, and particularly preferably 140 to 180 ° C. And Next, after cooling the obtained kneaded product to preferably 100 ° C. or less, more preferably 80 ° C. or less, it is kneaded with a crosslinking agent and a crosslinking accelerator.
また、補強剤を含むゴム組成物は、固形状ゴムとして取得する前の、それぞれ の重合体ラテックスまたは重合体溶液に、予め所定比率で補強剤を混合して、ゥ エツトマスターバッチゴムとして取得することもできる。  In addition, the rubber composition containing the reinforcing agent is obtained as a wet master batch rubber by mixing a reinforcing agent at a predetermined ratio in advance into each polymer latex or polymer solution before obtaining as a solid rubber. You can also.
本発明のゴム組成物は、通常、架橋して使用される。架橋方法は、特に限定 されず、架橋物の形状、大きさなどに応じて選択すればよい。金型中に架橋性ゴ ム組成物を充填して加熱することにより成形と同時に架橋してもよぐ予め成形し ておいた架橋性ゴム組成物を加熱して架橋してもよい。架橋温度や架橋時間も 特に限定されず、架橋物の形状、大きさなどに応じて選択すればよい。架橋温度 は、好ましくは 120〜200°C、より好ましくは 140〜180°Cである。  The rubber composition of the present invention is usually used after crosslinking. The crosslinking method is not particularly limited, and may be selected according to the shape, size, and the like of the crosslinked product. By filling the mold with the crosslinkable rubber composition and heating, the crosslinkable rubber composition which has been molded in advance or which can be crosslinked at the same time as molding may be heated and crosslinked. The crosslinking temperature and the crosslinking time are also not particularly limited, and may be selected according to the shape and size of the crosslinked product. The crosslinking temperature is preferably from 120 to 200 ° C, more preferably from 140 to 180 ° C.
(実施例)  (Example)
以下に、実施例および比較例をあげて、本発明を具体的に説明する。なお、 実施例および比較例における部および%は、特に断りのない限り、重量基準であ る。  Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples. Parts and% in Examples and Comparative Examples are based on weight unless otherwise specified.
共重合体およびゴム組成物の特性は、下記方法に従って測定した。  The properties of the copolymer and the rubber composition were measured according to the following methods.
(1) 共重合体中のスチレン単位量: JIS K6383(屈折率法)に準じて測定 した。  (1) Styrene unit amount in copolymer: Measured according to JIS K6383 (refractive index method).
(2) 共重合体中のブタジエン部分のビニル結合単位量: 500MHz1 Η— ΝΜ Rで測定し、重合体全体に対するビニル結合単位量として示す。 (2) Amount of vinyl bond unit in butadiene part in copolymer: 500 MHz 1 1— ΝΜ Measured with R, and shown as the amount of vinyl bond unit to the whole polymer.
(3) 共重合体中のアミノ基含有単量体単位量:共重合体をテトラヒドロフラ ンに溶解し、メタノール/アセトン(1 1容積比)混合溶媒で、 2回再沈殿精製を 行ない、真空乾燥した後、 500MHz1 H— NMRで測定した。 (3) Amino group-containing monomer unit in the copolymer: The copolymer is dissolved in tetrahydrofuran, reprecipitated twice with a mixed solvent of methanol / acetone (11 volume ratio), and dried under vacuum. After that, measurement was performed by 500 MHz 1 H-NMR.
(4) 共重合体ゴムのムーニー粘度(ML, +4, 100°C): JIS K6300に準じて 測定した。 (5) 架橋ゴムの引張特性: JIS K6301に準じて 300%伸張時応力(MP a)を測定した。この特性は、基準サンプルを 100とする指数(引張特性指数)で 表示した。この値は大きいほど好ましい。 (4) Mooney viscosity of copolymer rubber (ML, +4 , 100 ° C): Measured according to JIS K6300. (5) Tensile properties of crosslinked rubber: The stress at 300% elongation (MPa) was measured according to JIS K6301. This property was expressed as an index (tensile property index) with the reference sample as 100. The larger the value, the better.
(6) 架橋ゴムの低発熱性:レオメトリックス社製造 RDA— IIを用し、、 0. 50/0ね じれ、 201>^の条件で60°〇にぉけるセ3 <5を測定した。この特性は、基準サンプル を 100とする指数(低発熱性指数)で表示した。この値は大きいほど好ましい。  (6) Low heat build-up of crosslinked rubber: RDA-II manufactured by Rheometrics Co., Ltd. was used to measure 3 <5 at 60 °° under 0.50 / 0 torsion and 201> ^. This characteristic is indicated by an index (low exothermic index) with the reference sample as 100. The larger the value, the better.
(7) ゴム組成物の加工性:ロール混練した後、シートの厚みが 3mmになるよ うに取出したシート状サンプルを観察し、シートにおける表面肌の平滑性およびェ ッジ部分の連続性をそれぞれ下記の基準で採点し、その合計点で判定した。この 合計点数が大きいほど、加工性に優れておリ、 5点以上であれば、グリーンタイヤ の成形工程などの後ェ程での問題は発生しない。  (7) Processability of rubber composition: After kneading the rolls, observe the sheet-shaped sample taken out so that the thickness of the sheet becomes 3 mm, and check the smoothness of the surface skin and the continuity of the edge portion of the sheet. It was scored based on the following criteria, and judged by the total score. The larger the total score, the better the workability. If the score is 5 or more, no problems occur in the later stages such as the green tire molding process.
表面肌の平滑性  Surface skin smoothness
4点:表面が平滑で艷がある。  4 points: The surface is smooth and shiny.
3点:表面はほぼ平滑であるが、艷がない。  3 points: The surface is almost smooth but not glossy.
2点:凹凸がある。  2 points: There are irregularities.
1点:凹凸が多くあり、かつ凹凸の深さが深い。  1 point: There are many irregularities and the depth of the irregularities is deep.
エッジの連続性 4点:平滑である。  Edge continuity 4 points: Smooth.
3点:凹凸が少しある。  3 points: There are a few irregularities.
2点:凹凸が多い。  2 points: Many irregularities.
1点:深い切れ込みが多数ある。  1 point: There are many deep cuts.
(製造例 1)  (Production Example 1)
撹拌機付き耐圧反応器に脱イオン水 200部、ロジン酸石験 1. 5部、脂肪酸 石鹼 2. 1部、表 1に示す仕込み組成の単量体および t—ドデシルメルカブタン 0. 13部を仕込んだ。反応器温度を 10°Cとし、重合開始剤としてジイソプロピルベン ゼンハイド口パーオキサイド 0. 1部、ソディウム'ホルムアルデヒド'スルホキシレー ト 0. 2部を溶解した脱イオン水溶液 5部、および、エチレンジァミン四酢酸ナトリウ ム 0. 004部と硫酸第二鉄 0. 04部とを溶解した脱イオン水溶液 2部を反応器に 添加して重合を開始した。重合転化率が 450/0に達した時点で、 t _ドデシルメル力 ブタン 0. 05部を添加して反応を継続させた。重合転化率が 700/0に達した時点 で、ジェチルヒドロキシルァミンを 0. 05部添加して反応を停止させた。 200 parts of deionized water, 1.5 parts of rosinite test, 2.1 parts of fatty acid stone, 0.13 parts of monomer and t-dodecylmercaptan having the composition shown in Table 1 in a pressure-resistant reactor equipped with a stirrer Was charged. At a reactor temperature of 10 ° C, 0.1 parts of diisopropylbenzene hydride peroxide as polymerization initiator, 5 parts of a deionized aqueous solution in which 0.2 parts of sodium 'formaldehyde' sulfoxylate were dissolved, and sodium ethylenediaminetetraacetate 2 parts of a deionized aqueous solution in which 0.004 parts of ferric sulfate and 0.04 parts of ferric sulfate were dissolved were added to the reactor to initiate polymerization. When the polymerization conversion reaches 450/0, t_dodecylmel force The reaction was continued by adding 0.05 parts of butane. When the polymerization conversion reached 700/0, 0.05 parts of getylhydroxylamine was added to stop the reaction.
未反応単量体を水蒸気蒸留により除去した後、重合体 1 00部に対して、老 化防止剤として、ォクタデシル一 3—(3 , 5—ジー t一プチルー 4ーヒドロキシフエ二 ル)プロピオネート 0. 8部および 2 , 4—ビス(n—ォクチルチオメチル)一6—メチル フエノール 0. 2部を添加し、重合体 H 1を含む重合体ラテックスを得た。  After removing unreacted monomers by steam distillation, 100 parts of the polymer was treated with 0.8 parts of octadecyl-13- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate as an antioxidant in an amount of 0.8 parts. And 0.2 part of 2,4-bis (n-octylthiomethyl) -1-methylphenol were added to obtain a polymer latex containing a polymer H1.
その一部を取り出し、硫酸で p H 3〜5になるように調製しながら、塩化ナトリウ ムにより、重合体ラテックスを凝固し、クラム状の重合体を得た。このクラムを 8 0°Cの熱風乾燥機で乾燥し、固形ゴムを得た。得られたゴムの組成およびム一二 一粘度を表 1に示す。  A part thereof was taken out, and the polymer latex was coagulated with sodium chloride while adjusting the pH to 3 to 5 with sulfuric acid to obtain a crumb-like polymer. The crumb was dried with a hot air dryer at 80 ° C. to obtain a solid rubber. Table 1 shows the composition and viscosity of the obtained rubber.
(製造例 2〜6 )  (Production Examples 2-6)
表 1に示す仕込み組成の単量体に変更し、得られる固形ゴムのムーニー粘度 が表 1に示す値になるように t—ドデシルメルカブタンの使用量を適宜変更した他 は、製造例 1と同様に重合を行ない、それぞれ、重合体 H A 1、 L 1および LA 1〜し A3を含む重合体ラテックスを得た。  Production Example 1 was repeated except that the monomer was changed to the charge composition shown in Table 1, and the amount of t-dodecyl mercaptan used was changed appropriately so that the Mooney viscosity of the obtained solid rubber became the value shown in Table 1. Polymerization was carried out in the same manner to obtain polymer latexes containing polymers HA1, L1 and LA1 to A3, respectively.
製造例 1と同様に固形ゴムを調製した。それぞれの固形ゴムの組成およびム 一二一粘度を表 1に示す。 A solid rubber was prepared in the same manner as in Production Example 1. Table 1 shows the composition and muci-viscosity of each solid rubber.
製造例 ' ' 1 2 3 4 5 6 重合体 N o . H 1 H A 1 し 1· し A 1 L A 2 し A 3 仕込み量(部) Production example '' 1 2 3 4 5 6 Polymer No. H 1 H A 1 to 1 A 1 L A 2 to A 3 Preparation amount (parts)
1 , 3—ブタジエン 57. 5 56. 3 57. 5 56. 3 55. 7 55. 5 スチレン 42. 5 42. 5 42. 5 42. 5 42. 5 42. 5 1, 3-butadiene 57.5 56.3 57.5 56.3 55.7 55.5 Styrene 42.5 42.5 42.5 42.5 42.5 42.5
N, 'N—ジメチルァミノプロピルアクリルアミ ド 1. 2 1. 2 1. 8 I* N. N—ジメチルアミノエチルスチレン 2 重合体組成 (%) N, 'N-dimethylaminopropyl acrylamide 1.2.2.1.1.8 I * N. N-dimethylaminoethylstyrene 2 polymer composition (%)
スチレン単位 35. 5 35. 0 34. 9 34. 8 35. 3 35. 0 Styrene unit 35.5 35.0 34.9 34.8 35.3 35.0
N, N—ジメチルァミノプロピルアクリルアミ ド単位 0. 7 0. フ 1 - 0 N, N—Dimethylaminopropylacrylamide unit 0.7 0.
N, N—ジメチルアミノエチルスチレン単位 1. 6 ム一二一粘度 1 22 1 20 70 67 54 7 6 N, N-Dimethylaminoethylstyrene unit 1.16 viscosity 1 22 1 20 70 67 54 7 6
(実施例 1) (Example 1)
重合体 H1を含む重合体ラテックスと重合体ラテックス LA1を含む重合体ラテ ックスとを各重合体の比率が表 2に示す割合になるように混合した後、全重合体 100部に対して、 ί申展油として Enerthenel 849A (プリティッシュペトロリアム社 製)を 37. 5部添加した。その後、硫酸で pH3~5になるように調整しながら、塩 化ナトリウムにより、伸展油を含む重合体ラテックスを凝固し、クラム状の固形物 を得た。このクラムを 80°Cの熱風乾燥機で乾燥し、油展ゴムを得た。得られた油 展ゴムのムーニー粘度を表 2に示す。  After mixing the polymer latex containing the polymer H1 and the polymer latex containing the polymer latex LA1 such that the ratio of each polymer is as shown in Table 2, に 対 し て was added to 100 parts of the total polymer. 37.5 parts of Enerthenel 849A (manufactured by Pretty Petroleum) was added as an exhibition oil. Thereafter, the polymer latex containing the extended oil was coagulated with sodium chloride while adjusting the pH to 3 to 5 with sulfuric acid to obtain a crumb-like solid. The crumb was dried with a hot air dryer at 80 ° C to obtain an oil-extended rubber. Table 2 shows the Mooney viscosity of the obtained oil-extended rubber.
ブラベンダータイプミキサーを用い、上記油展ゴム 137. 5部(ゴム分 100部に 相当する。)を、開始温度 110°Cで 30秒間素練りした後、シリカ(Zeosil 1165 MP:ローディア社製) 53部およびシランカップリング剤(Si69:デグッサ社製) 6. 4部を投入し 2分間混練後、さらにシリカ(Zeosil 1165MP:ローディア社製) 2 7部、酸化亜鉛(粒度 0. 4 m、亜鉛華 #1:本荘ケミカル社製) 3部、ステアリン 酸 2部、および老化防止剤(ノクラック 6C:大内新興社製) 2部を添加して 2分間 混練した。混鍊終了時の温度は 150°Cであった。  Using a Brabender type mixer, 137.5 parts of the above oil-extended rubber (equivalent to 100 parts of rubber) was masticated at a starting temperature of 110 ° C for 30 seconds, and then silica (Zeosil 1165 MP: manufactured by Rhodia) 53 parts and silane coupling agent (Si69: manufactured by Degussa) 6. 4 parts were charged and kneaded for 2 minutes. Then, 27 parts of silica (Zeosil 1165MP: manufactured by Rhodia) 27 parts, zinc oxide (particle size 0.4 m, zinc Hana # 1: Honjo Chemical Co., Ltd.) 3 parts, stearic acid 2 parts, and antioxidant (Nocrack 6C: Ouchi Shinko Co., Ltd.) 2 parts were added and kneaded for 2 minutes. The temperature at the end of the mixing was 150 ° C.
得られた混練物と、硫黄 1. 4部および架橋促進剤(N—シクロへキシル—2— ベンゾチアジルスルフェンアミド 1. 8部とジフエ二ルグァ二ジン 1. 7部の混合物)と を 50°Cのオープンロールで混練した後、シート状に取り出した。  The obtained kneaded product was combined with 1.4 parts of sulfur and a crosslinking accelerator (a mixture of 1.8 parts of N-cyclohexyl-2-benzothiazylsulfenamide and 1.7 parts of diphenylguanidine). After kneading with an open roll at 50 ° C., the mixture was taken out in a sheet form.
加工性は、上記のシートの表面肌とエッジ部分を観察し、それぞれ採点した。 結果を表 2に示す。  The workability was evaluated by observing the surface skin and the edge portion of the above sheet. Table 2 shows the results.
架橋ゴムの物性は、 160°Cで 30分間プレス架橋して試験片を作製し、各物 性を測定した。結果を表 2に示す。但し、表 2においては、比較例 2を基準(指数 1 00)として表言己した。  The physical properties of the crosslinked rubber were determined by press-crosslinking at 160 ° C for 30 minutes to prepare test specimens, and each physical property was measured. Table 2 shows the results. However, in Table 2, it was expressed using Comparative Example 2 as a reference (index 100).
(実施例 2および 3)  (Examples 2 and 3)
表 2に示す重合体と配合比率に変更した他は、実施例 1と同様に油展ゴムを 調製した。それぞれの油展ゴムのムーニー粘度を表 2に示す。  An oil-extended rubber was prepared in the same manner as in Example 1, except that the mixing ratio was changed to the polymer shown in Table 2. Table 2 shows the Mooney viscosity of each oil-extended rubber.
それぞれ得られた油展ゴムを使用した他は、実施例 1と同様に、ゴム組成物を 調製し、その加工性を評価し、さらに、架橋ゴムの物性を評価した。結果を表 2に 示す (実施例 4) A rubber composition was prepared and processed in the same manner as in Example 1 except that the obtained oil-extended rubber was used, and the physical properties of the crosslinked rubber were evaluated. The results are shown in Table 2. (Example 4)
重合体 H1を含む重合体ラテックスに、重合体 100部に対して、伸展油として Enerthenel 849A (プリティッシュペトロリアム社製)を 37. 5部添力!]した。その後、 硫酸で pH3〜 5になるように調整しながら、塩化ナトリウムにより、伸展油を含む 重合体ラテックスを凝固し、クラム状の固形物を得た。このクラムを 80°Cの熱風 乾燥機で乾燥し、油展ゴムを得た。  To a polymer latex containing the polymer H1, 37.5 parts of Enerthenel 849A (manufactured by Pretty Petroleum Co., Ltd.) was added as extender oil to 100 parts of the polymer!]. Thereafter, the polymer latex containing the extended oil was coagulated with sodium chloride while adjusting the pH to 3 to 5 with sulfuric acid to obtain a crumb-like solid. The crumb was dried with a hot air dryer at 80 ° C to obtain an oil-extended rubber.
重合体 LA1を含む重合体ラテックスに、重合体 100部に対して、伸展油として Enerthenel 849 A (ブリティッシュペトロリアム社製)を 37. 5部添加した。その後、 上記と同様に行ない、油展ゴムを得た。  To a polymer latex containing the polymer LA1, 37.5 parts of Enerthenel 849A (manufactured by British Petroleum Co.) was added as an extender oil to 100 parts of the polymer. Thereafter, the same procedure as above was performed to obtain an oil-extended rubber.
表 2に示す割合になるように、重合体 H 1を含む油展ゴムと重合体 LA1を含む 油展ゴムとを使用した他は、実施例 1と同様に、ゴム組成物を調製し、その加工 性を評価し、さらに、架橋ゴムの物性を評価した。結果を表 2に示す。  A rubber composition was prepared in the same manner as in Example 1 except that the oil-extended rubber containing the polymer H1 and the oil-extended rubber containing the polymer LA1 were used so that the ratios shown in Table 2 were obtained. The processability was evaluated, and further the physical properties of the crosslinked rubber were evaluated. Table 2 shows the results.
(比較例 1)  (Comparative Example 1)
重合体 HIを含む重合体ラテックスに、重合体 100部に対して、伸展油として Enerthenel 849A (プリティッシュペトロリアム社製)を 37. 5部; 力 Qした。その後、 硫酸で pH3~5になるように調整しながら、塩化ナトリウムにより、伸展油を含む 重合体ラテックスを凝固し、クラム状の固形物を得た。このクラムを 80°Cの熱風 乾燥機で乾燥し、油展ゴムを得た。  To a polymer latex containing polymer HI, 37.5 parts of Enerthenel 849A (manufactured by Pretty Petroleum Co.) was applied as an extension oil to 100 parts of the polymer; Thereafter, the polymer latex containing the extended oil was coagulated with sodium chloride while adjusting the pH to 3 to 5 with sulfuric acid to obtain a crumb-like solid. The crumb was dried with a hot air dryer at 80 ° C to obtain an oil-extended rubber.
この油展ゴムを使用した他は、実施例 1と同様に、ゴム組成物を調製し、その 加工性を評価し、さらに、架橋ゴムの物性を評価した。結果を表 2に示す。  Except for using this oil-extended rubber, a rubber composition was prepared and its processability was evaluated in the same manner as in Example 1, and further the physical properties of the crosslinked rubber were evaluated. Table 2 shows the results.
(比較例 2)  (Comparative Example 2)
重合体 H1を重合体 LA1に変更した他は比較例 1と同様に、ゴム組成物を調 製し、その加工性を評価し、さらに、架橋ゴムの物性を評価した。結果を表 2に示 す。  A rubber composition was prepared and its processability was evaluated in the same manner as in Comparative Example 1 except that the polymer H1 was changed to the polymer LA1, and further, the physical properties of the crosslinked rubber were evaluated. Table 2 shows the results.
(比較例 3および 4)  (Comparative Examples 3 and 4)
それぞれ、表 2に示す重合体、配合比率に変更した他は実施例 1と同様に、ゴ 厶組成物を調製し、その加工性を評価し、さらに、架橋ゴムの物性を評価した。結 果を表 2に示す。 比較例 ' A rubber composition was prepared and the processability thereof was evaluated in the same manner as in Example 1 except that the polymer and the compounding ratio were changed as shown in Table 2, and further, the physical properties of the crosslinked rubber were evaluated. Table 2 shows the results. Comparative Example ''
1 2 3 4 1 L 3 4 里 P* H 1 H 1 Η 1 Η .1 H 1 Η 1 し 1  1 2 3 4 1 L 3 4 ri P * H 1 H 1 Η 1 Η .1 H 1 Η 1 し 1
50 50 50 60 1 U U 50 50 里 し A 1 し A 2 L A 3 し A 1 Η A 1 Η A 1 50 50 50 60 1 U U 50 50 R A 1 L A 2 L A 3 L A 1 Η A 1 Η A 1
5C DP; 50 5 Ο D リ 40 1 00 50 50 伸展油量 (部) 3 7. 5 37. 5 37. 5 -.37. 5 37. 5 37. 5 37. 5 37. 5 5C DP; 50 5 D D 40 1 00 50 50 Extending oil volume (parts) 3 7.5 57.5 57.5 -.37.5 37.5 57.5 537.5 37.5
6 油 s後ム一二一粘度 45 42 47 57 34 56 4 ゴム組成物の物性  6 Oil s After viscosity 22 42 47 57 34 56 4 Physical properties of rubber composition
'シ一卜の肌 (点) 3 2 2 3 3 1 1 2 シートのエッジ (点) . 4 4 3 4 4 1 1 2 加工性 (点) 7 6 5 フ 7 2 2 4 配合物厶一二一粘度 86 88 92 8 1 7 7 90 9 1 83 'Sheet skin (dots) 3 2 2 3 3 1 1 2 Sheet edge (dots). 4 4 3 4 4 1 1 2 Workability (dots) 7 6 5 f 7 2 2 4 One viscosity 86 88 92 8 1 7 7 90 9 1 83
300%伸張時応力 (指数) 88 1 00 1 02 94 Stress at 300% elongation (index) 88 1 00 1 02 94
1 05 1 05 1 04 03  1 05 1 05 1 04 03
t a n <5 (指数) 1 05 1 1 2 1 1 0 04 90 1 00 1 02 96 tan <5 (index) 1 05 1 1 2 1 1 0 04 90 1 00 1 02 96
アミノ基を有さない重合体 H1のみを含む比較例 1のゴム組成物は、加工性が 良好であるものの、架橋ゴムの特性に劣る。 アミノ基を有する重合体 LA1のみを 含む比較例 2のゴム組成物は、比較例 1に比べれば、架橋ゴムの特性に優れる ものの、加工性に劣る。 アミノ基を有さない重合体 H1と、アミノ基を有するものの、 ム一二一粘度の差が本発明で規定する範囲より小さい、重合体 HA1とをブレンド した比較例 3のゴム組成物は、架橋ゴムの特性は良好であるが、加工性に劣る。 アミノ基を有さない重合体 L1と、それより高いム一二一粘度のアミノ基を有する重 合体 HA1とをブレンドした比較例 4のゴム組成物は、加工性に劣り、かつ架橋ゴ ムの特性に劣る。 The rubber composition of Comparative Example 1 containing only the polymer H1 having no amino group has good processability, but is inferior in the properties of the crosslinked rubber. The rubber composition of Comparative Example 2 containing only the polymer LA1 having an amino group is superior to Comparative Example 1 in the properties of the crosslinked rubber, but is inferior in processability. The rubber composition of Comparative Example 3 blended with a polymer H1 having no amino group and a polymer HA1 having an amino group but having a difference in viscosity of less than the range specified in the present invention is: The properties of the crosslinked rubber are good, but the processability is poor. The rubber composition of Comparative Example 4 in which the polymer L1 having no amino group and the polymer HA1 having an amino group having a higher viscosity than that of the polymer L1 were blended, the processability was poor, and the rubber composition of the crosslinked rubber was poor. Poor characteristics.
これらの比較例に比べ、本発明の実施例 1〜4のシリカを配合したゴム組成物 は、加工性が良好であり、かつ架橋ゴムの特性に優れている。  Compared with these comparative examples, the rubber compositions containing silica of Examples 1 to 4 of the present invention have good processability and excellent properties of crosslinked rubber.
(製造例 7)  (Production Example 7)
攪拌機付きオートクレープにシクロへキサン 4,000部、スチレン 270部、 1, 3 一ブタジエン 330部およびテトラメチルエチレンジァミン 0. 3部を仕込み、 n—ブチ ルリチウム 0. 25部を加え、 40°Cで重合を開始した。重合開始 20分後に残部の スチレン 80部と 1, 3—ブタジエン 320部の混合物を 60分間かけて連続的に添 加し、重合転化率が 100%になったことを確認の後、 1, 3—ブタジエン 5部を添 加し 10分間反応させ、次いで亍トラメトキシシラン 0. 11部を添加し 30分間反応 させ、メタノールを添加して停止した。重合時の最高到達温度は 65°Cであった。  In an autoclave equipped with a stirrer, 4,000 parts of cyclohexane, 270 parts of styrene, 330 parts of 1,3-butadiene and 0.3 parts of tetramethylethylenediamine were charged, and 0.25 parts of n-butyllithium was added, and the mixture was added at 40 ° C. To initiate polymerization. Twenty minutes after the start of the polymerization, the remaining mixture of 80 parts of styrene and 320 parts of 1,3-butadiene was continuously added over 60 minutes, and after confirming that the polymerization conversion reached 100%, 1,3 — 5 parts of butadiene was added and reacted for 10 minutes, then 0.11 parts of tetramethoxysilane was added and reacted for 30 minutes, and methanol was added to stop the reaction. The highest temperature reached during polymerization was 65 ° C.
得られた重合体溶液に重合体 100部あたり、老化防止剤として 2, 4—ビス(n —ォクチルチオメチル)ー6—メチルフエノールを 0. 2部添力 Qし、重合体 SH1を含 む重合体溶液を得た。  0.2 part of 2,4-bis (n-octylthiomethyl) -6-methylphenol as an antioxidant was added to 100 parts of the obtained polymer solution per 100 parts of polymer, and the polymer SH1 was added. A polymer solution was obtained.
その一部を取り出して、スチームストリツビング法により重合溶剤を除去した後、 ロールにかけて脱水し、さらに 80°Cの熱風乾燥機にて乾燥を行い、固形ゴムを得 た。その固形ゴムの組成とム一二一粘度を表 3に示す。  A part thereof was taken out, and after removing the polymerization solvent by a steam stripping method, dewatered by a roll, and further dried by a hot air drier at 80 ° C to obtain a solid rubber. Table 3 shows the composition of the solid rubber and its viscosity.
(製造例 8~10)  (Production Examples 8 to 10)
表 3に示すように単量体仕込み組成およびカップリング剤を変更した他は、製 造例 7と同様に、それぞれ重合体 SHA1、 SL1および SLA1を含む重合体溶液を 得た。それぞれの重合体の組成およびムーニー粘度を表 3に示す。 表 3 A polymer solution containing polymers SHA1, SL1, and SLA1, respectively, was obtained in the same manner as in Production Example 7, except that the monomer charge composition and the coupling agent were changed as shown in Table 3. Table 3 shows the composition and Mooney viscosity of each polymer. Table 3
Figure imgf000026_0001
Figure imgf000026_0001
(実施例 5)  (Example 5)
重合体 SH1を含む重合体溶液と重合体 SLA1を含む重合体溶液とを、各重 合体が表 4に示す配合比率になるように混合した後、全重合体 100部に対して、 w展油として Enerthenel 849 A (ブリティッシュペトロリア厶社製)を 37 · 5部添 加した。この伸展油を含む重合体溶液から、スチ一ムストリッピング法により重合 溶剤を分離除去した後、ロールにかけて脱水し、さらに 80°Cの熱風乾燥機にて 乾燥を行い、油展ゴムを得た。油展ゴムのムーニー粘度を表 4に示す。 The polymer solution containing the polymer SH1 and the polymer solution containing the polymer SLA1 were mixed so that each polymer had the compounding ratio shown in Table 4, and then, based on 100 parts of the whole polymer, w extended oil was added. Enerthenel 849 A (British Petroleum) as 37/5 Added. The polymerization solvent was separated and removed from the polymer solution containing the extended oil by a steam stripping method, dewatered by a roll, and further dried by a hot air dryer at 80 ° C to obtain an oil-extended rubber. Table 4 shows the Mooney viscosity of the oil-extended rubber.
ブラベンダータイプミキサーを用い、上記油展ゴム 137. 5部(ゴム分 100部に 相当する。)を、開始温度 110°Cで 30秒間素練りした後、シリカ(Zeosil 1200 MP:口一ディア社製) 53部およびシランカップリング剤(Si69:デグッサ社製) 8部 を投入し 2分間混練後、さらにシリカ( Zeosil 1200M P:口一ディア社製) 27部、 Enerthenel 849A (ブリティッシュペトロリアム社製) 7. 5部、酸ィ匕亜 |¾($ί [度 0. 4μ m、亜鉛華 #1:本荘ケミカル社製) 3部、ステアリン酸 2部、および老化防止 剤(ノクラック 6C:大内新興社製) 2部を添加して 2分間混練した。混鍊終了時の 温度は 150°Cであった。  Using a Brabender type mixer, 137.5 parts of the above oil-extended rubber (equivalent to 100 parts of rubber) was masticated at a starting temperature of 110 ° C for 30 seconds, and then silica (Zeosil 1200 MP: Kuchiichidia Co., Ltd.) 53 parts and 8 parts of silane coupling agent (Si69: Degussa) were added and kneaded for 2 minutes, and then 27 parts of silica (Zeosil 1200M P: Kuchiichidia), Enerthenel 849A (British Petroleum) 7.5 parts, Siriya | | ($ ί [degree 0.4 μm, zinc flower # 1: Honjo Chemical Co., Ltd.) 3 parts, stearic acid 2 parts, and antioxidant (Nocrack 6C: Ouchi Emerging 2 parts) and kneaded for 2 minutes. The temperature at the end of the mixing was 150 ° C.
得られた混練物と、硫黄 1. 4部および架橋促進剤(N—シクロへキシル—2— ベンゾチアジルスルフェンアミド 1. 8部とジフエ二ルグァ二ジン 1. 9部の混合物)と を 50°Cのオープンロールで混練した後、シート状に取り出した。  The obtained kneaded material was combined with 1.4 parts of sulfur and a crosslinking accelerator (a mixture of 1.8 parts of N-cyclohexyl-2-benzothiazylsulfenamide and 1.9 parts of diphenylguanidine). After kneading with an open roll at 50 ° C., the mixture was taken out in a sheet form.
加工性は、上記のシートの表面肌とエッジ部分を観察し、それぞれ採点した。 結果を表 4に示す。  The workability was evaluated by observing the surface skin and the edge portion of the above sheet. Table 4 shows the results.
架橋ゴムの物性は、 160°Cで 30分間プレス架橋して試験片を作製し、各物 性を測定した。結果を表 4に示す。但し、表 4においては、比較例 6を基準(指数 1 00)として表記した。  The physical properties of the crosslinked rubber were determined by press-crosslinking at 160 ° C for 30 minutes to prepare test specimens, and each physical property was measured. Table 4 shows the results. However, in Table 4, Comparative Example 6 was described as a reference (index 100).
(比較例 5)  (Comparative Example 5)
重合体 SH1を含む重合体溶液に、重合体 100部に対して、伸展油として En erthenel 849A (ブリティッシュペトロリア厶社製)を 37. 5部添カロした。この伸展 油を含む重合体溶液から、スチームストリッビング法により重合溶剤を除去した後, ロールにかけて脱水し、さらに 80°Cの熱風乾燥機にて乾燥を行い、油展ゴムを得 た。油展ゴムのム一二一粘度を表 4に示す。  To a polymer solution containing the polymer SH1 was added 37.5 parts of Enerthenel 849A (manufactured by British Petroleum Corp.) as an extension oil per 100 parts of the polymer. After removing the polymerization solvent from the polymer solution containing the extended oil by a steam stripping method, the polymer solution was rolled and dehydrated, and further dried by a hot air drier at 80 ° C to obtain an oil-extended rubber. Table 4 shows the viscosity of the oil-extended rubber.
上記の油展ゴムを用いた他は、実施例 5と同様に、ゴム組成物を調製し、その 加工性を評価し、さらに、架橋ゴムの物性を評価した。結果を表 2に示す。  Except for using the above oil-extended rubber, a rubber composition was prepared and its processability was evaluated in the same manner as in Example 5, and further, the physical properties of the crosslinked rubber were evaluated. Table 2 shows the results.
(比較例 6)  (Comparative Example 6)
重合体 SH1を含む重合体溶液に代えて重合体 SLA1を含む重合体溶液を 用いた他は、比較例 5と同様に、ゴム組成物を調製し、その加工性を評価し、さら に、架橋ゴムの物性を評価した。結果を表 2に示す。 Instead of a polymer solution containing polymer SH1, a polymer solution containing polymer SLA1 was used. A rubber composition was prepared and its processability was evaluated in the same manner as in Comparative Example 5, except for using the rubber composition, and further, the physical properties of the crosslinked rubber were evaluated. Table 2 shows the results.
(比較例フおよび 8 )  (Comparative Examples and 8)
表 4に示す重合体および配合比率に代えた他は、実施例 5と同様に、ゴム組 成物を調製し、その加工性を評価し、さらに、架橋ゴムの物性を評価した。結果を 表 2に示す。  A rubber composition was prepared and its processability was evaluated in the same manner as in Example 5, except that the polymers and the compounding ratio shown in Table 4 were used, and the physical properties of the crosslinked rubber were evaluated. Table 2 shows the results.
表 4  Table 4
Figure imgf000028_0001
表 4から以下のことがわかる。
Figure imgf000028_0001
Table 4 shows the following.
アミノ基を有さない重合体 S H 1のみを含む比較例 5のゴム組成物は、加工性 が良好であるものの、架橋ゴムの特性に劣る。 アミノ基を有する重合体 S LA 1の みを含む比較例 6のゴム組成物は、比較例 5に比べれば、架橋ゴムの特性に優 れるものの、加工性に劣る。 アミノ基を有さない重合体 S H 1と、アミノ基を有する ものの、ム一ニー粘度の差が本発明で規定する範囲より小さい、重合体 S HA 1と をブレンドした比較例 7のゴム組成物は、加工性に劣り、かつ架橋ゴムの特性に 劣る。 アミノ基を有さない重合体 S L 1と、それより高いム一二一粘度のアミノ基を 有する重合体 S HA 1とをブレンドした比較例 8のゴム組成物は、加工性に劣リ、 かつ架橋ゴムの特性に劣る。  The rubber composition of Comparative Example 5 containing only the polymer SH1 having no amino group had good processability but was inferior in the properties of the crosslinked rubber. The rubber composition of Comparative Example 6, which contains only the polymer SLA1 having an amino group, is superior to Comparative Example 5 in the properties of the crosslinked rubber, but is inferior in processability. A rubber composition of Comparative Example 7 in which a polymer SH 1 having no amino group and a polymer SHA 1 having an amino group but having a difference in Mooney viscosity smaller than the range specified in the present invention are blended. Is inferior in processability and inferior in properties of crosslinked rubber. The rubber composition of Comparative Example 8 in which a polymer SL 1 having no amino group and a polymer S HA 1 having an amino group having a higher viscosity than that of the polymer SL 1 were blended has poor processability, and Poor properties of crosslinked rubber.
これらの比較例に比べ、本発明で規定する範囲内にある実施例 5のシリカを 配合したゴム組成物は、加工性が良好であり、かつ架橋ゴムの特性に優れてい る。 産業上の利用可能性  Compared with these comparative examples, the rubber composition containing the silica of Example 5 within the range specified by the present invention has good processability and excellent properties of the crosslinked rubber. Industrial applicability
本発明のゴム組成物は、補強剤としてシリカを配合した配合物をロールでシー ト状に成形した際のシートの表面形状に優れ、かつ、引張特性および低発熱性に 優れている。  The rubber composition of the present invention is excellent in the surface shape of a sheet when a compound containing silica as a reinforcing agent is formed into a sheet by a roll, and is excellent in tensile properties and low heat generation.
従って、本発明のゴム組成物は、その特性を生かす各種用途、例えば、 トレッ ド、アンダ一トレッド、力一カス、サイドウォール、ビード部などのタイヤ用部材;ホー ス、窓枠、ベルト、靴底、防振ゴム、免震ゴム、 自動車部品などのゴム部材;耐衝 撃性ポリスチレン、 ABS樹脂などの樹脂強化ゴム部材;などに利用できる。なかで も、タイヤ用部材として好適であり、低燃費タイヤのタイヤトレッドとして特に好適で あ 。  Accordingly, the rubber composition of the present invention can be used in various applications that make use of its properties, for example, tire members such as treads, under treads, force scums, sidewalls, bead portions; hoses, window frames, belts, shoes. It can be used for rubber materials such as bases, anti-vibration rubber, seismic isolation rubber, and automotive parts; resin-reinforced rubber materials such as impact-resistant polystyrene and ABS resin. Among them, it is suitable as a tire member and particularly suitable as a tire tread of a fuel-efficient tire.

Claims

請求の範囲 The scope of the claims
1. 共役ジェン単位 40〜100重量%、芳香族ビニル単量体単位 0~60重 量%および共重合可能なその他の単量体の単位 0〜20重量%を含み、ムーニー 粘度が 70~ 200の範囲である共役ジェン系ゴム(A)20~ 80重量部と、共役ジ ェン単位 40〜99. 8重量0 /o、芳香族ビニル単量体単位 0〜59. 8重量%、ァミノ 基含有単量体単位 0. 2〜20重量%および共重合可能なその他の単量体の単 位 0〜20重量%を含み、ム一二一粘度が 20〜150の範囲であって、共役ジェン 系ゴム(A)のム一ニー粘度より 10以上低いム一二一粘度を有する共役ジェン系 ゴム(B)80〜 20重量部を含む(共役ジェン系ゴム(A)と共役ジェン系ゴム(B)と の合計量は 100重量部である。)ことを特徴とするゴム組成物。 1. Containing 40 to 100% by weight of a conjugated diene unit, 0 to 60% by weight of an aromatic vinyl monomer unit and 0 to 20% by weight of other copolymerizable monomer units, and has a Mooney viscosity of 70 to 200. 20 to 80 parts by weight of a conjugated diene rubber (A) in the range of 40 to 99.8 parts by weight 0 / o, an aromatic vinyl monomer unit 0 to 59.8 parts by weight, and an amino group Containing 0.2 to 20% by weight of monomer units and 0 to 20% by weight of other copolymerizable monomers, having a viscosity of 20 to 150, Containing 80 to 20 parts by weight of a conjugated diene rubber (B) having a muddy viscosity of 10 or more lower than the muddy viscosity of the base rubber (A) (conjugated diene rubber (A) and conjugated diene rubber (B ) And is 100 parts by weight in total.)
2. 共役ジェン系ゴム(A)が、共役ジェン単位 50~90重量%、芳香族ビニ ル単量体単位 10~ 50重量%および共重合可能なその他の単量体の単位 0〜 1 0重量%を含む請求の範囲 1記載のゴム組成物。 .  2. 50 to 90% by weight of conjugated gen unit, 10 to 50% by weight of aromatic vinyl monomer unit, and 0 to 10% by weight of other copolymerizable monomer unit when conjugated gen-based rubber (A) is used %. .
3. 共役ジェン系ゴム(A)が、アミノ基含有単量体単位を含まないか、または、 0. 2重量%未満含む請求の範囲 1または 2記載のゴム組成物。 .  3. The rubber composition according to claim 1, wherein the conjugated rubber (A) does not contain an amino group-containing monomer unit or contains less than 0.2% by weight. .
4. 共役ジェン系ゴム(A)のム一二一粘度が 90~160の範囲である請求の 範囲 1〜3のいずれかに記載のゴム組成物。 .  4. The rubber composition according to any one of claims 1 to 3, wherein the conjugated diene rubber (A) has a viscosity of 90 to 160. .
5. 共役ジェン系ゴム(B)が、共役ジェン単位 50~89. 7重量%、芳香族ビ 二ル単量体単位 10〜49. 7重量%、アミノ基含有単量体単位 0. 3〜10重量% および共重合可能なその他の単量体の単位 0〜 10重量%を含む請求の範囲 1 〜4のいずれかに記載のゴム組成物。 .  5. The conjugated gen-based rubber (B) is composed of 50 to 89.7% by weight of a conjugated unit, 10 to 49.7% by weight of an aromatic vinyl monomer unit, and 0.3 to 4% by weight of an amino group-containing monomer unit. The rubber composition according to any one of claims 1 to 4, comprising 10% by weight and 0 to 10% by weight of a unit of another copolymerizable monomer. .
6. 共役ジェン系ゴム(B)のム一二一粘度が、 40〜130の範囲であって、共 役ジェン系ゴム(A)のム一二一粘度より 20以上低いものである請求の範囲 1〜5 のいずれかに記載のゴム組成物。 .  6. The conjugated diene rubber (B) has a viscosity in the range of 40 to 130, which is 20 or more lower than the muddy viscosity of the synergistic rubber (A). 6. The rubber composition according to any one of 1 to 5. .
7. 共役ジェン系ゴム(A)と共役ジェン系ゴム(B)との比率が、両者の合計 量 100重量部に対し、共役ジェン系ゴム(A)30〜75重量部および共役ジェン 系ゴム(B) 25 ~ 70重量部である請求の範囲 1 ~ 6のいずれかに記載のゴム組 成物。 7. The ratio of the conjugated rubber (A) and the conjugated rubber (B) is 30 to 75 parts by weight of the conjugated rubber (A) and the conjugated rubber (B) in a total amount of 100 parts by weight. B) The rubber composition according to any one of claims 1 to 6, which is 25 to 70 parts by weight.
8. アミノ基含有単量体単位が、第 1級、第 2級および第 3級ァミノ基から選 ばれる少なくとも一種のアミノ基を含有する重合性単量体から導かれるものである 請求の範囲 1〜7のいずれかに記載のゴム組成物。 8. The amino group-containing monomer unit is derived from at least one amino group-containing polymerizable monomer selected from primary, secondary and tertiary amino groups. 8. The rubber composition according to any one of items 1 to 7.
9. アミノ基含有単量体単位が、 N, N—ジ置換アミノアルキル一ァクリレート および一メタァクリレート、 N, N—ジ置換アミノアルキルーアクリルアミドおよび一メ タアクリルアミド、 N, N—ジ置換アミノ芳香族ビニル化合物およびピリジル基を有 する重合性単量体の中から選ばれる少なくとも一種の第 3級ァミノ基含有重合性 単量体から導かれるものである請求の範囲 1〜7のいずれかに記載のゴム組成 物。  9. When the amino group-containing monomer unit is N, N-disubstituted aminoalkyl monoacrylate and monomethacrylate, N, N-disubstituted aminoalkyl-acrylamide and monomethacrylamide, N, N-disubstituted amino aromatic 8. The method according to claim 1, which is derived from at least one tertiary amino group-containing polymerizable monomer selected from a vinyl compound and a polymerizable monomer having a pyridyl group. Rubber composition.
10. さらに、共役ジェン系ゴム(A)と共役ジェン系ゴム(B)との合計量 100重 量部に対し、 5~100重量部の伸展油を含む請求の範囲 1〜9のいずれかに記 載のゴム組成物。  10. The method according to any one of claims 1 to 9, further comprising 5 to 100 parts by weight of an extension oil based on 100 parts by weight of the total of the conjugated rubber (A) and the conjugated rubber (B). The rubber composition described.
11. 共役ジェン系ゴム(A)と共役ジェン系ゴム(B)をそれぞれ固形状ゴムとし て取得する前の、それぞれの共重合体ラテックスまたは溶液に伸展油を混合する ことにより調製したものである請求の範囲 10に記載のゴム組成物。  11. Prepared by mixing the conjugated rubber (A) and the conjugated rubber (B) with the respective copolymer latex or solution and the extension oil before obtaining the conjugated rubber (B) as a solid rubber. 11. The rubber composition according to claim 10.
12. さらに、共役ジェン系ゴム(A)と共役ジェン系ゴム(B)との合計量 100重 量部に対し、シリカおよび力一ボンブラックの中から選ばれる少なくとも一種の補強 剤を 10〜200重量部含む請求の範囲 1 ~11のいずれかに記載のゴム組成物。  12. Furthermore, for 100 parts by weight of the total of the conjugated rubber (A) and the conjugated rubber (B), at least one reinforcing agent selected from silica and bonbon black is added in an amount of 10 to 200 parts by weight. 12. The rubber composition according to any one of claims 1 to 11, comprising parts by weight.
13. 補強剤力 窒素吸着比表面積(BET法) 50〜400m2Zgであるシリカで ある請求の範囲 12に記載のゴム組成物。 13. The rubber composition according to claim 12, wherein the rubber composition is silica having a nitrogen adsorption specific surface area (BET method) of 50 to 400 m 2 Zg.
14. 補強剤力 シリカとカーボンブラックとを、シリカ Zカーボンブラック重量比 = 10 90~99ノ 1の割合で含む混合物である請求項 12に記載のゴム組成 物。  14. The rubber composition according to claim 12, wherein the rubber composition is a mixture containing silica and carbon black at a silica Z carbon black weight ratio of 1090 to 99: 1.
15. さらに、シリカ 100重量部に対し、シランカップリング剤 0. 1〜30重量部 を含む請求の範囲 13または 14に記載のゴム組成物。  15. The rubber composition according to claim 13, further comprising 0.1 to 30 parts by weight of a silane coupling agent with respect to 100 parts by weight of silica.
16. 共役ジェン系ゴム(A)のラテックスまたは溶液と、共役ジェン系ゴム(B) のラテックスまたは溶液とを混合し、次いで、得られた混合液から分散媒を分離す ることを特徴とする請求の範囲 1〜16のいずれかに記載のゴム組成物を製造す る方法。 16. A latex or solution of the conjugated rubber (A) and a latex or solution of the conjugated rubber (B) are mixed, and then a dispersion medium is separated from the resulting mixture. A method for producing the rubber composition according to any one of claims 1 to 16.
1 7. 共役ジェン系ゴム( A)および共役ジェン系ゴム( B)のラテックス同士また は溶液同士を混合する請求の範囲 1 6に記載の製造方法。 17. The production method according to claim 16, wherein latexes or solutions of the conjugated rubber (A) and the conjugated rubber (B) are mixed.
PCT/JP2003/001003 2002-01-31 2003-01-31 Rubber composition and process for producing the same WO2003064516A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002023474A JP2003221471A (en) 2002-01-31 2002-01-31 Rubber composition and method of manufacturing
JP2002-23474 2002-01-31

Publications (1)

Publication Number Publication Date
WO2003064516A1 true WO2003064516A1 (en) 2003-08-07

Family

ID=27654451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001003 WO2003064516A1 (en) 2002-01-31 2003-01-31 Rubber composition and process for producing the same

Country Status (2)

Country Link
JP (1) JP2003221471A (en)
WO (1) WO2003064516A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4624753B2 (en) * 2003-10-31 2011-02-02 三ツ星ベルト株式会社 V-ribbed belt
JP4624747B2 (en) * 2003-10-31 2011-02-02 三ツ星ベルト株式会社 Power transmission belt
JP4624748B2 (en) * 2003-10-31 2011-02-02 三ツ星ベルト株式会社 Toothed belt
BRPI0604797A (en) * 2005-11-30 2007-10-09 Goodyear Tire & Rubber functionalized rubber polymers
JP2011140613A (en) * 2009-12-09 2011-07-21 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire
JP2011184521A (en) * 2010-03-05 2011-09-22 Sumitomo Rubber Ind Ltd Rubber composition for clinch and pneumatic tire
JP5702070B2 (en) * 2010-03-08 2015-04-15 住友ゴム工業株式会社 Sidewall rubber composition and pneumatic tire
WO2023145771A1 (en) * 2022-01-26 2023-08-03 株式会社Eneosマテリアル Polymer composition production method, polymer composition, cross-linked body, and tire

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01101344A (en) * 1987-10-14 1989-04-19 Bridgestone Corp Tire
JPH0255747A (en) * 1988-08-22 1990-02-26 Bridgestone Corp Rubber composition
WO1996030444A1 (en) * 1995-03-29 1996-10-03 Nippon Zeon Co., Ltd. Diene rubber composition
WO1997009378A1 (en) * 1995-09-05 1997-03-13 Nippon Zeon Co., Ltd. Diene rubber composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01101344A (en) * 1987-10-14 1989-04-19 Bridgestone Corp Tire
JPH0255747A (en) * 1988-08-22 1990-02-26 Bridgestone Corp Rubber composition
WO1996030444A1 (en) * 1995-03-29 1996-10-03 Nippon Zeon Co., Ltd. Diene rubber composition
WO1997009378A1 (en) * 1995-09-05 1997-03-13 Nippon Zeon Co., Ltd. Diene rubber composition

Also Published As

Publication number Publication date
JP2003221471A (en) 2003-08-05

Similar Documents

Publication Publication Date Title
JP4000874B2 (en) Oil-extended rubber and rubber composition
JP6504459B2 (en) Rubber composition and tire
JP3933966B2 (en) Diene rubber, method for producing the same, rubber composition, method for producing the same, and cross-linked product
JP3736577B2 (en) Rubber composition and method for producing the same
JP3601559B2 (en) Diene rubber composition
WO1997019990A1 (en) Rubber composition
JP2000281835A (en) Oil extended rubber, rubber composition and crosslinked product
WO2019044889A1 (en) Rubber composition for tire
WO2019044891A1 (en) Rubber composition for high grip tire
WO2019044888A1 (en) Rubber composition for tire
CA3074360A1 (en) Heavy-duty tire rubber compositions and tires
WO1999050309A1 (en) Conjugated diene rubber, process for producing the same, and rubber composition
WO2003064516A1 (en) Rubber composition and process for producing the same
WO2009151103A1 (en) Rubber composition and tire using the same
JP2004107384A (en) Conjugated diene rubber, rubber composition and method for producing conjugated diene rubber
WO2019044890A1 (en) Rubber composition for high grip tire
JP2002201307A (en) Rubber composition and crosslinked material
JP3951755B2 (en) Rubber composition
KR20210027417A (en) Polymer composition, crosslinked polymer, and tire
JP2015086307A (en) Conjugated diene rubber composition and rubber crosslinked product
EP1236747B1 (en) Tapered aromatic-vinyl/conjugated-diene copolymer rubber, process for producing the same, and rubber composition
JP7270035B2 (en) Diene rubber and rubber composition
JP2018131502A (en) Rubber composition for tread of passenger car summer tire
JP2018131501A (en) Rubber composition for high grip tire tread
JP2018131498A (en) Rubber composition for tire tread

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase