WO2003062681A1 - Seal for rotating shaft and method for manufacture thereof - Google Patents

Seal for rotating shaft and method for manufacture thereof Download PDF

Info

Publication number
WO2003062681A1
WO2003062681A1 PCT/JP2002/013758 JP0213758W WO03062681A1 WO 2003062681 A1 WO2003062681 A1 WO 2003062681A1 JP 0213758 W JP0213758 W JP 0213758W WO 03062681 A1 WO03062681 A1 WO 03062681A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal case
hydroxyl group
seal
molecule
fluororesin
Prior art date
Application number
PCT/JP2002/013758
Other languages
French (fr)
Japanese (ja)
Inventor
Hitoshi Shimoura
Masanori Fujii
Hiromi Obata
Takeshi Baba
Original Assignee
Mitsubishi Cable Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001400858A external-priority patent/JP2003194231A/en
Priority claimed from JP2001401237A external-priority patent/JP2003194234A/en
Application filed by Mitsubishi Cable Industries, Ltd. filed Critical Mitsubishi Cable Industries, Ltd.
Publication of WO2003062681A1 publication Critical patent/WO2003062681A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/328Manufacturing methods specially adapted for elastic sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3204Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip
    • F16J15/3228Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip formed by deforming a flat ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3268Mounting of sealing rings

Definitions

  • the present invention relates to a rotary shaft seal and a method for manufacturing the same, and more particularly, to a rotary shaft seal using a seal element mainly containing polytetrafluoroethylene and a method for manufacturing the same.
  • a seal used for an automobile engine shaft has been a combination of a rubber seal element and a metal case (annular metal fittings).
  • a metal case annular metal fittings
  • polytetraflus having high heat resistance and low frictional resistance as a seal element have been developed.
  • Polyethylene hereinafter, also referred to as PTFE
  • the sealing element made of rubber fluororubber
  • the sealing element made of PTFE can be integrated with the metal case by molding rubber (fluororubber) so as to cover the metal case, but the seal element made of PTFE uses PTFE as the metal.
  • a fixing bracket is used separately from the metal case, and a sealing element is sandwiched between the metal case and the fixing bracket. It is fixed by bending (force crimping). At this time, the rubber elastic body is sandwiched together with the seal element made of PTFE to prevent the movement and rotation of the seal element.
  • the fixing of the seal element is due to the mechanical compression force, it is difficult to say that the fixing force is sufficiently high.
  • PTFE seal element using an epoxy resin-based adhesive.
  • fluororesins such as PTFE have low surface free energy, are inert on the surface, and require a sodium treatment on the surface of the sealing element to obtain good adhesion. After immersion in a sodium solution, exposure to air to introduce hydroxyl groups, etc.) or plasma treatment to modify the surface of the seal element is required. Since these surface treatment methods use special gases and solvents, special equipment and working environments are indispensable, and equipment and management costs increase.
  • Epoxy resin adhesives are liquid at room temperature, and the work conditions for applying the adhesive to the metal case (ambient temperature, discharge pressure, time, measurement, prevention of dripping / clogging), etc., are controlled. There is a problem of complexity. Therefore, to apply it to mass production (industrial production), the number of processes is large, the equipment is complicated, work management in each process is not easy, and the production time is long. I can't say.
  • the rotary shaft seal obtained by such a method has a metal case and a seal element adhered to each other with a certain high adhesive strength. However, the heat seal between the epoxy resin adhesive and the polytetrafluoroethylene is not sufficient.
  • the present invention has a simple configuration without using a dedicated metal part or rubber elastic body, and has a seal element mainly composed of PTFE firmly fixed to a metal case. It is an object of the present invention to provide a highly reliable rotating shaft seal in which a critical path is extremely unlikely to occur.
  • a rotary shaft seal with a PTFE-based seal element firmly fixed to a metal case can be manufactured efficiently and in a short time.
  • the present invention has the following features.
  • a rotary shaft seal having a structure in which a metal case contains a seal element mainly composed of polytetrafluoroethylene, A rotary shaft seal, wherein a seal element mainly composed of polytetrafluoroethylene is adhered to and integrated with a metal case through a layer of a fluororesin having a hydroxyl group in a molecule;
  • the seal element has a ring shape, and is bonded to a flange of the annular metal case via a layer of a fluororesin having a hydroxyl group in a molecule.
  • the fluororesin layer having a hydroxyl group in the molecule is provided so that the terminal portion on the rotating shaft side does not protrude into the through hole from the terminal portion on the rotating shaft side of the flange portion.
  • a method for manufacturing a rotary shaft seal in which a seal element mainly composed of polytetrafluoroethylene is integrated with a metal case comprising:-a seal element mainly composed of polytetrafluoroethylene and a metal; A fluororesin having a hydroxyl group in the molecule and having a melting point lower than the melting point of polytetrafluoroethylene constituting the sealing element is sandwiched between the case and the obtained stack. After heating and compressing, the stack is cooled under a load, and the fluororesin having a hydroxyl group in the molecule is melted and solidified.
  • FIG. 1 is a diagram schematically illustrating a rotary shaft seal according to one embodiment of the present invention, and is a radial cross-sectional view of a metal case in a state where the metal case is mounted between a housing and a rotary shaft.
  • FIG. 2 is a simplified view of a rotary shaft seal according to one embodiment of the present invention.
  • FIG. 2 is a radial cross-sectional view of the metal case before being mounted between the housing and the rotary shaft. (A)) and a plan view (Fig. (B)).
  • FIG. 3 is a view for explaining an operation of sandwiching a fluororesin having a hydroxyl group in a molecule between a metal case and a seal element in the method of manufacturing a rotary shaft seal according to the present invention
  • FIG. 3 The arrangement of the seal element and the fluorine resin (film) having a hydroxyl group in the molecule is shown in Fig. (B).
  • the metal case, the seal element and the fluorine resin (hydroxyl) having the hydroxyl group in the molecule after the work are shown in Fig. (B). Shows the arrangement state of.
  • FIG. 4 is a cross-sectional view of a step of heating and compressing a stack in which a fluorine resin having a hydroxyl group in a molecule is sandwiched between a metal case and a seal element in the method of manufacturing a rotary shaft seal according to the present invention.
  • FIG. 5 is a cross-sectional view schematically showing a jig for measuring a shearing-off torque.
  • FIG. 6 is a cross-sectional view schematically showing a conventional clamp type rotary shaft seal.
  • FIGS. 1 to 3 is a rotating shaft seal
  • 2 is a metal case
  • 3 is a sealing element
  • 10 in FIGS. 1 and 2 is A layer of a fluororesin having a hydroxyl group is shown
  • 1OA in FIG. 3 indicates a circular ring-shaped film made of a fluororesin having a hydroxyl group in a molecule.
  • reference numeral 20 denotes a stack
  • 15 A and 15 B in FIG. 4 denote press plates
  • 17 denotes a thermostat
  • 21 denotes a compression jig.
  • a metal case accommodates a sealing element containing polytetrafluoroethylene (PTFE) as a main component, and the sealing element is interposed through a layer of a fluororesin having a hydroxyl group in a molecule. It is bonded and integrated into the case, engine shaft, In order to prevent leakage of fluid sealed around the rotating shaft from one side in the longitudinal direction of the rotating shaft to the other side in air conditioner compressors, super jars, evening jars, etc. It is used by inserting it into a rotating shaft.
  • PTFE polytetrafluoroethylene
  • the seal element containing PTFE as the main component used in the present invention has excellent mechanical properties even under the high temperature operating environment of the rotating shaft due to the excellent heat resistance, oil resistance, chemical resistance and low friction of PTFE. (Strength and elongation) are hardly deteriorated and the frictional resistance is small.
  • a layer of a fluororesin having a hydroxyl group in a molecule interposed between a seal element mainly composed of PTFE and a metal case is formed on both the seal element and the metal case. It fuses with high adhesive strength, and as a result, the sealing element mainly composed of PTFE is firmly bonded and integrated with the metal case. Therefore, not only at room temperature (25 ° C) but also at high temperature (150 ° C or more, specifically 150-180 ° C) or extremely low temperature (-40 ° C or less, specifically -40-170 ° C).
  • the sealing element mainly composed of PTFE is firmly fixed to the metal varnish, and has sufficient resistance to rotational torque caused by contact with the axis of the sealing element. Therefore, peeling of the seal element is unlikely to occur, and the occurrence of a critical path is extremely unlikely to occur.
  • the metal case is bent (forced) using the conventional fixing bracket and rubber elastic body, thereby forming the seal element into the metal case. The manufacturing operation is extremely simple compared to a rotating shaft seal that is mechanically fixed to the shaft (hereinafter, also referred to as a “clamp-type rotating shaft seal”).
  • the “sea element mainly composed of polytetrafluoroethylene (PTFE)” used in the present invention is a seal element formed by molding PTFE alone, or a composition obtained by combining PTFE with a filler or the like. Means a sealing element formed from an object.
  • polytetrafluoroethylene (PTFE)” used for the seal element includes modified PTFE (polybutafluoroethylene) obtained by copolymerizing a small amount of perfluoroalkylvinyl ether with polytetrafluoroethylene. Content of 99.0 mol% or more).
  • perfluoroalkyl vinyl ethers in such modified PTF E include perfluoromethyl, no ⁇ -fluoroethyl, perfluoropropyl, perfluorobutyl, and perfluoropentene. Chill, perfluorohexyl and the like.
  • the “PTFE-based sealing element” used in the present invention includes, for example, PT FE processed into a desired shape, or PTFE, a filler, and other additives to be combined as necessary.
  • a mixture obtained by mixing with a known mixing device such as Henschel mixer and processed into a desired shape is used.
  • the processing method is not particularly limited, but a method through compression molding, sintering, and cutting is preferable.
  • a commercially available sealing element can also be used.
  • Examples of the filler to be mixed with PTFE include inorganic fibers, solid lubricants, hard copper alloy powder, and the like.
  • Inorganic fibers are effective for improving the abrasion resistance of the sealing element.
  • glass fibers such as soda glass, alkali-free glass and silica glass, ceramic fibers such as rock wool, steel, iron, aluminum, nickel, copper, etc.
  • Metal fibers, whisks such as potassium titanate, carbon fibers, and carbon graphite fibers.
  • glass fibers such as non-alkali glass are preferred.
  • the inorganic fibers preferably have a single fiber tensile strength of 20 OkgfZmm 2 or more, and more preferably have a single fiber tensile strength of 30 OkgfZmm 2 or more.
  • the average length of the inorganic fiber is preferably 10 m to 1000 m, and 50 m! ⁇ 15 O zm is particularly preferred. Further, the aspect ratio is preferably from 1 to 80, and particularly preferably from 5 to 50.
  • the solid lubricant can be used without limitation as long as it is a compound capable of imparting a known lubricating property. Among them, stone, mica, stone, stone, zinc white, molybdenum-based compounds and the like are preferable, and molybdenum is particularly preferable. It is a system compound.
  • Hard copper alloy powder is effective for improving the creep property (load deformation resistance) of the seal element, and examples thereof include powders of various copper alloys such as bronze, brass, phosphor bronze, nickel silver, and lead bronze. Among them, bronze powder is preferable.
  • the above-mentioned hard copper alloy powder and solid lubricant are both used in the form of fine powder or fine powder. It is particularly preferable that the particles pass 100% through the same sieve 200 mesh.
  • Additives that can be added to PTFE as needed include, for example, heat-resistant resin powders and pigments.
  • heat-resistant resin powder include powders such as polyphenylene sulfide (PPS), polyimide resin (P1), and aromatic polyester resin (LCP).
  • PPS polyphenylene sulfide
  • P1 polyimide resin
  • LCP aromatic polyester resin
  • the pigment include bengara, conoretable, titanium oxide, and the like.
  • the present inventors have found that the use of a sealing element composed of a composition in which a filler is mixed with PTFE enables higher adhesion to a fluororesin having a hydroxyl group in the molecule to be obtained. This is probably because the sealing element containing the filler has minute irregularities on its surface, and the fluorine resin having a hydroxyl group enters the minute irregularities, thereby providing an anchor effect. .
  • inorganic fibers based on 100 parts by weight of PTFE, 3 to 30 parts by weight of inorganic fiber, 2 to 5 parts by weight of solid lubricant, or 1 to 50 parts by weight of hard copper alloy powder
  • a higher adhesive strength can be obtained by using a sealing element composed of the composition or a composition containing any two or three of these fillers in the above-described predetermined amount.
  • the combination of inorganic fibers and solid lubricant is the most preferred embodiment.
  • the thickness of the seal element containing PTFE as a main component is not particularly limited, but is generally about 0.2 to 1.5 mm, preferably about 0.4 to 1.2 mm.
  • the fluororesin having a hydroxyl group in the molecule used in the present invention is a fluororesin having no hydroxyl group in the molecule known per se, and one or more kinds of a fluorine-containing ethylene monomer having a hydroxyl group. Are further copolymerized.
  • Examples of the fluorine-containing ethylene monomer having a hydroxyl group include compounds represented by the following general formula (I).
  • R f is a divalent alkylene group having 1 to 40 carbon atoms, and a fluorine-containing 1 to 40 carbon atoms.
  • a fluorine-containing oxyalkylene group containing an ether bond having 1 to 40 carbon atoms include the following compounds a to p.
  • CF 2 CFOCF 2 CF 2 CH 2 OH
  • CH 2 CFCF 2 CF 2 CH 2 OH
  • CH 2 CH (CF 2 ) 6 CH 2 CH 2 OH
  • compound 1 (1,1-, 9,9-tetrahydro-1,2,5-bistrifluoromethyl-3,6-dioxal 8-nonenol) is particularly preferred.
  • fluororesin having no hydroxyl group in the molecule examples include tetrafluoroethylene, perfluoroalkyl vinyl ether, black trifluoroethylene, and vinylidyl fluoride.
  • Polymers having at least one fluorine-containing ethylene monomer selected from the group consisting of denene and hexafluoropropylene as a constitutional unit (homopolymers, copolymers), or the at least one Copolymers containing a fluorine-containing ethylene monomer and ethylene as constituent units are exemplified.
  • the fluororesin having a hydroxyl group in the molecule includes a fluorine-containing ethylene monomer having a hydroxyl group and a fluorine-containing ethylene monomer having no hydroxyl group (a conventionally known fluorine-containing monomer having no hydroxyl group in the molecule). And a monomer constituting the resin) by a known polymerization method.
  • the polymerization mechanism in such copolymerization is preferably radical polymerization.
  • the radical polymerization initiator a known radical polymerization initiator that generates radicals by heat, light or ionizing radiation can be used.
  • the polymerization method is not particularly limited, and solution polymerization, bulk polymerization, suspension polymerization, emulsion polymerization and the like can be used without limitation. Also, the copolymer to be produced
  • the molecular weight of the (fluorine resin having a hydroxyl group in the molecule) is controlled by the concentration of the monomer, the concentration of the polymerization initiator, the concentration of the chain transfer agent, the temperature, etc., and the resulting copolymer (having a hydroxyl group in the molecule)
  • the composition of (fluororesin) can be controlled by the composition of the charged monomers.
  • the fluororesin having a hydroxyl group in the molecule in the present invention the fluororesin having a hydroxyl group in the molecule described in the publication of International Publication No.WO 97/21779 can be suitably used, and among them, Tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer (PFA) obtained by further copolymerizing a fluorine-containing ethylene-based monomer having a hydroxyl group, tetrafluoroethylene-hexafluoro Propylene copolymer (FEP) is obtained by further copolymerizing a fluorinated ethylenic monomer having a hydroxyl group, and ethylene-tetrafluoroethylene copolymer (ETFE) is obtained by further copolymerizing a fluorinated ethylene monomer having a hydroxyl group.
  • Copolymers and the like are preferable, and those obtained by further copolymerizing PFA with a fluorine-containing
  • the copolymerization amount of the fluorine-containing ethylene monomer having a hydroxyl group is usually from 0.05 to 5% per the whole polymer (resin).
  • the copolymerization amount of the fluorinated ethylene monomer is less than 0.05 mol%, the amount of the sealant and the metal case may be reduced. If it exceeds 30 mol%, its heat resistance will decrease, and its melting and solidification will cause coloring, foaming, etc., and its adhesion will decrease. In addition, as described later, when a molded product formed into a film is used, coloring, foaming, decomposition, and the like occur during the molding, and the adhesiveness of the molded product (film) tends to decrease. Not preferred.
  • the fluororesin having a hydroxyl group in the molecule may be used as a composition in which various additives such as a filler and a pigment are blended as long as the adhesiveness, heat resistance and the like are not impaired.
  • FIG. 1 and 2 are simplified views of a specific example of a rotary shaft seal according to the present invention.
  • FIG. 1 is a radial cross-sectional view of a metal case, in which a housing and a rotary shaft are actually connected. It shows a radial portion with respect to the shaft in a state where the seal element is mounted and pressed against the seal element. The figure shows a radial portion on one side contacting the shaft of the seal, and the other radial portion contacting the shaft (not shown) has the same configuration.
  • Fig. 2 shows the rotating shaft seal before it is mounted between the housing and the rotating shaft.
  • Fig. (A) is a radial cross section of the metal case
  • Fig. (B) is a plan view of the metal case. It is.
  • a layer 10 of a fluororesin having a hydroxyl group in the molecule is fused to the metal case 2 and the circular ring-shaped seal element 3, whereby the seal element 3 and the metal case 2 are fused.
  • the metal case 2 has a cylindrical peripheral wall portion 4 and a flange portion 5 protruding from one axial end of the peripheral wall portion 4 toward the internal space of the peripheral wall portion.
  • the flange portion 5 is formed at the one end portion over the entire circumferential direction of the peripheral wall portion 4, thereby forming a circular through hole 1.1 through which the shaft (rotating shaft) 12 is inserted.
  • seal lip portion 8 is attached to the shaft 12.
  • the other end is bent to the sealed fluid R side so as to press against the seal fluid R, and in such a state, the seal 1 is mounted between the housing 13 and the shaft 12.
  • the seal lip 8 of the seal element 3 is pressed against the shaft 12 to prevent leakage of fluid from the contact surface with the shaft 12.
  • the seal 1 is attached (closely fitted) between the shaft 12 and the housing 13.
  • a sealant 15 is provided on the outer peripheral side (back side) of the metal case 2.
  • the sealant 15 is formed by, for example, a method of pressure-molding rubber such as acrylic rubber or fluorine rubber, or applying and drying a paste made with a solvent.
  • the metal case is a member for holding and fixing the seal element so that the seal element comes into contact with the rotary shaft in a predetermined pressing state.
  • iron, aluminum, stainless steel, steel It can be obtained by appropriately processing a metal material such as carbon steel or special steel) into a shape and size according to the purpose by a metal press or the like.
  • Case 2 is a particularly preferable configuration because it has good retention of the seal element and good mounting of the seal between the shaft and the housing, and requires a small number of processing steps.
  • the surface to be bonded (the surface 5 A on the inner side of the case of the flange portion 5 in the case shown in FIG. 1) to which the fluororesin layer having a hydroxyl group in the molecule of the metal case is fused (bonded)
  • the surface may be roughened by a known method such as sand plasting, sanding, and acid Z cleaning, and the surface of the metal case (including the surface to be adhered) may be subjected to a surface protection treatment by a known method. May be applied.
  • the surface treatment applied to the metal case preferably has heat resistance at the heating temperature at the time of fusing the fluororesin having a hydroxyl group.
  • the rotary shaft seal of the present invention has a configuration in which the seal element is bonded to the metal case via a layer of a fluororesin having a hydroxyl group in the molecule, the fluorine element having a hydroxyl group in the molecule forming the adhesive layer is used. If the resin protrudes from the shaft-side end of the metal case into the shaft insertion through-hole, the fluororesin layer comes into contact with the rotating shaft, and the fluororesin falls off from the contact portion, which causes foreign matter to be removed. It may enter between the shaft and the sealing surface.
  • the fluororesin layer having a hydroxyl group in the molecule (fused layer) obtained by melting and solidifying between the sealing element and the metal case has a shaft end at the shaft end of the metal case. It is preferable that the end is not protruded from the end into the through hole for shaft insertion.
  • the end on the shaft side is provided so as to be located deeper in the case than the end on the shaft side of the metal case. Is particularly preferred.
  • the circular through hole 1 in the surface 5 A to be bonded of the flange 5 is provided.
  • a ring-shaped region around which the fluororesin having a hydroxyl group in the molecule does not exist i.e., the circular through hole of the flange 5 on the surface 5A to be bonded of the flange 5 shown in FIG. 2 (b) 1 1
  • D 3) in the above is preferably not less than 0.1 mm.
  • the width of the ring-shaped region (D3 in Fig. 2 (b)) in which the fluorine resin having a hydroxyl group in the molecule does not exist exceeds 3 mm, the circular ring-shaped seal element 3 is attached to the shaft 2 On the other hand, it is difficult to make contact with a sufficiently high pressing force, so that the width is preferably 3 mm or less.
  • the layer 10 of the fluororesin having a hydroxyl group in the molecule has an area of 20 to 100% of the surface 5 A to be bonded of the flange 5.
  • it is provided so as to cover the area (in the case of 100%, the axial end of the fluororesin layer having a hydroxyl group in the molecule coincides with the axial end of the metal case). More preferably, it is provided so as to cover 70% of the area.
  • the circular through hole 1 of the flange 5 of the annular metal case 2 is used.
  • the distance (D 1 in FIG. 1) between the end 5 a on the first side and the shaft 12 is preferably about 0.7 to 3.0 mm, and the circular shape of the flange 5 in the circular ring-shaped seal element 3.
  • the amount of protrusion (D2 in FIG. 2 (A)) from the end portion 5a of the through hole 11 to the shaft 12 is preferably about 210 mm. .
  • the thickness of the fluororesin layer having a hydroxyl group in the molecule is also important, and the thickness is preferably 5 to 100 ⁇ m, more preferably 10 to 70 / im. If the thickness is less than, sufficient adhesive strength cannot be obtained, and the workability deteriorates. If the thickness exceeds 100 111, the fluororesin layer having a hydroxyl group in the molecule itself is broken, and the adhesiveness may be reduced. This is not preferred.
  • the rotating shaft seal of the present invention has a structure in which hydroxyl is contained in the molecule between the metal case and the seal element.
  • the fluororesin having a hydroxyl group in the molecule is melted and solidified by sandwiching a fluororesin having a group, heating and pressurizing such a stack, and then cooling. That is, a seal element containing PTFE as a main component is used as it is without being subjected to a special surface treatment (an activation treatment such as a plasma treatment or a metal sodium treatment).
  • a fluorine resin having a hydroxyl group in the molecule is sandwiched between the case and the case (first step), and the stacked material is heated and compressed (second step), and then cooled under a load (third step).
  • the fluororesin having a hydroxyl group in the molecule is melted and solidified, and is fused to the metal case and the seal element.
  • a rotary shaft seal is obtained in which the seal element is integrally formed via a fusion layer of a fluororesin having a hydroxyl group in the molecule.
  • the melting point of the fluororesin having a hydroxyl group in the molecule is lower than the melting point of PTFE (320 to 360 ° C) constituting the seal element.
  • a fluorine resin having a hydroxyl group in a molecule is sandwiched between a metal case and a seal element, and the stack is heated and compressed to obtain a fluorine resin having a hydroxyl group in a molecule.
  • the melting point of the fluororesin having a hydroxyl group in the molecule is equal to or higher than the melting point of the PTFE constituting the sealing element, a hydroxyl group is formed in the molecule. If the heating is performed so that the fluorine resin contained therein is sufficiently melted, the heat deformation of the sealing element becomes large, and the sealing performance of the obtained rotary shaft seal decreases. In addition, if a fluororesin having a hydroxyl group in the molecule is used, the melting point of which is lower than the melting point of PTFE (320 to 360 ° C) constituting the sealing element, the hydroxyl group in the molecule is increased.
  • the polytetrafluoroethylene constituting the seal element has hydroxyl groups in the molecule before it solidifies.
  • the fluororesin solidifies first to fix the seal element, thereby suppressing heat shrinkage of the seal element. If the present inventors cannot sufficiently suppress the thermal shrinkage of the seal element, residual strain will occur in the seal element portion of the manufactured rotary shaft seal, causing unintended deformation (such as waving) or adhesive force. It has been found that problems such as peeling occur even with a slight rise in the operating environment temperature.
  • a fluororesin having a hydroxyl group in the molecule must have a melting point that is at least 10 ° C lower than the melting point of the polytetrafluoroethylene constituting the sealing element used. It is preferable to use a compound having a temperature lower by 15 ° C. or more.
  • fluoropolymers having a hydroxyl group in the molecule have a melting point of 260 ° C or higher. Preferably, one is used.
  • the fluororesin having a hydroxyl group in the molecule may be in the form of a powder, a pellet, a rod, a film, or the like. From the viewpoint of handling (handling) at the time of sandwiching work between the sealant and the metal case, it is preferably formed into a rod shape or a film shape, and particularly preferably formed into a film shape. . In addition, if it is formed into a film, the uniformity of the properties of the fusion layer obtained by melting and solidifying is excellent, and the metal case and the seal element are more firmly adhered. Further, the setting of the fusion region with respect to the seal element is advantageous because it can be easily performed only by changing the shape and size of the film.
  • the fusion layer obtained by melting and solidification is formed in a state protruding from the axial end of the metal case (periphery of the circular through hole through which the shaft is inserted), and the contact state of the sealing surface changes, ''
  • the problem of deteriorating the sealing performance can be avoided.
  • the fluororesin may be formed by a hot-melt method; an extrusion method; a cutting method; a solvent casting; and an aqueous or organic solvent-based dispersion (dispersion).
  • the film may be formed according to a known resin film forming method such as a method of coating a base material to form a continuous film and peeling the film from the substrate.
  • a stack in which a fluorine resin having a hydroxyl group in a molecule is sandwiched between a seal element and a metal case is heated and compressed.
  • the PTFE in the seal element and the fluororesin having the hydroxyl group in the molecule are dissolved together to form a fused part. preferable.
  • the heating temperature is preferably a temperature higher than the melting point of PTFE constituting the sealing element to be used, more preferably a temperature higher than the melting point of the PTFE by 5 ° C or more, and more preferably 30 ° C than the melting point of the PTFE. It is particularly preferable to set the temperature higher than C. When the heating temperature is 400 ° C or higher, the PTFE constituting the seal element is thermally decomposed. Therefore, the heating temperature is preferably set to less than 400 ° C.
  • the compressive force (load) during heating and compression is usually 0.01 to 10 MPa, preferably 0.01 to 5 MPa, and particularly preferably 0.05 to 1 MPa.
  • the heating / compression time varies depending on the heating temperature, compression force (load), etc., but is generally about 30 seconds to 30 minutes, preferably 5 to 30 minutes, and more preferably about 5 to 15 minutes.
  • the stack it is preferable to cool the stack as it is (that is, cool it under load) after heating and compressing the stack in order to achieve high adhesive strength. .
  • the load at the time of cooling is usually 0.01 to 10 MPa, preferably 0.01 to 5 MPa, and particularly preferably 0.05 to LMPa.
  • a circular ring-shaped sealing element 3 made of a circular ring-shaped film 10A and PTFE (or PTFE composition) is prepared. (In Fig. 1, the sealant is placed on the back side of the annular metal case 2. The layers are shown, but are not shown here.)
  • the members are aligned so that the centers of the circular through holes of these members overlap on the same axis.
  • a circular ring-shaped film 1OA made of a fluororesin having a hydroxyl group in the molecule is placed on the inner surface 5A of the flange 5 of the annular metal case 2 on the case. It is made of fluororesin having a hydroxyl group in the molecule between the metal case 2 and the circular ring-shaped seal element 3.
  • a stack 20 is made by sandwiching the circular ring-shaped film 1 OA.
  • a thermostatic chamber 17 in which a pair of upper and lower press plates 15 As 15 B with their flat surfaces facing each other in parallel was prepared, and the thermostatic chamber 17 was previously prepared.
  • a cylindrical compression jig 21 is heated to the same temperature as the melting point of the PTFE that forms the seal element 3 inside the thermostat, and the temperature is set to the same temperature as the melting point of the PTFE that forms the seal element.
  • the above-mentioned stack 20 is put, and a columnar compression jig 21 is placed on the circular ring-shaped seal element 3 of the stack 20, and then the inside of the thermostat is cooled.
  • the compression jig 21 is mounted on the press plates 15A and 15B by setting the temperature to a desired temperature within the range of not less than the melting point of PTFE constituting the seal element 3 and less than 400 ° C. Heating / compression is performed by sandwiching the piled product 20 and holding it for a predetermined time.
  • the press plates 15A and 15B are connected to means (not shown) for moving them by, for example, hydraulic pressure, pneumatic pressure, or the like.
  • the columnar compression jig 21 is used so that the pressure by the press plates 15A and 15B is transmitted uniformly (particularly to the seal element) to the stack 20.
  • the outer diameter is smaller than the inner diameter of the cylindrical peripheral wall 4 of the metal case 2 and is obtained by processing a metal such as steel or aluminum, and a circular ring-shaped seal is used. An element larger than the outer diameter of element 3 is used.
  • the stacked structures press plates 15A and 15 B.
  • the stacked structures Take out the compression jig 21 and the stack 20) from the thermostatic chamber 17 and leave it naturally (air cooling), or contact the stack with a cooling jig such as a metal plate.
  • forced cooling such as water cooling of the stacked structure. The cooling is performed until the temperature becomes lower than the melting point of the fluororesin having a hydroxyl group in the molecule. This is because the heat shrinkage of the seal element is fixed by sufficiently cooling and solidifying the fluororesin having a hydroxyl group in the molecule. If the forced cooling is performed, the cooling time can be shortened, which is more effective in shortening the manufacturing time.
  • the inner surface 5 of the flange 5 of the annular metal case 2 A shows a seal having a configuration in which a seal element 3 having a seal lip portion is adhered, but when another seal element having a dust lip portion or the like is attached, the outer surface 5 B of the flange portion 5 (surface 5 (The opposite side to A) also forms a stack with another seal element stacked with a fluorine resin having a hydroxyl group in the molecule (a film) interposed therebetween, and heats and compresses the stack. , And cooling may be applied.
  • the heating and compression of the stack were performed by pressing (compressing) the stack in a constant temperature bath.
  • the stack was heated and compressed by using a known hot press apparatus having a heating plate. It may be carried out by hot pressing heavy materials.
  • the shear peeling torque measured between the seal element and the metal case by a method described later is 80 O kgf ⁇ cm or more at room temperature (25 ° C.) and 150 ° C. (° C or higher) and 300 kgf'cm or more at cryogenic temperatures ( ⁇ 40 ° C or less).
  • the use of the rotary shaft seal of the present invention is not particularly limited, but is used for an engine shaft (sealing fluid: engine oil), for a compressor of an air conditioner (sealing fluid: lubricating oil and refrigerant), for a supercharger (sealing fluid: Suitable for high temperature and high pressure gas), turbocharger (sealed fluid: high temperature and high pressure gas), etc.
  • the rotary shaft seal of the present invention is particularly suitable for engine shafts. It has sufficient resistance to engine oil, which is a sealing fluid when used for engine shafts, especially high-temperature engine oil, and maintains its excellent adhesion to metal cases and seal elements for a long time.
  • the melting point of PTF E. and the melting point of the fluororesin having a hydroxyl group in the molecule are values obtained by DSC (differential scanning calorimetry) analysis.
  • the steel case is annular and has an inner diameter (D4 in Fig. 3 (a)) of 58.5 mm0 and an inner diameter of a circular through-hole (Fig. 3 (a)).
  • D5) is 46.5mm0
  • wall thickness (D6 in Fig. 3 (a)) is 0.8mm
  • the height of the cylindrical peripheral wall (D7 in Fig. 3 (a)) is 7.0mm did.
  • the PTFE sealing element is made of PTFE compound (per 100 parts by weight of PTFE, contains 5 parts by weight of molybdenum disulfide (solid lubricant) and 5 parts by weight of glass fiber), and has a thickness (Fig. 3 (a)). D 8) 0.8mmx outer diameter (D 9 in Fig. 3 (a)) 58.
  • a hydroxyl group-containing PFA (melting point: 310 ° C) manufactured by Daikin Industries, Ltd. is formed into a film and the thickness (D in Fig. 3 (a)) 1 1) 85 / mx outer diameter (D 12 in Fig. 3 (a)) 56. 50mm x inner diameter (D 13 in Fig. 3 (a)) 50.5 Omm0 .
  • the compression jig used was a cylinder made of steel with a height of 15 mm and an outer diameter of 58.4 mm and weighing 500 g.
  • the size (area) of the hydroxyl group-containing PFA film is 50.
  • Heating and compression were performed at 360 ° C. O. 06 MP ax for 30 minutes.
  • the press plate and the compression jig were left as they were, and the air was cooled for about 5 minutes until the compression jig reached approximately 250 ° C.
  • the bonded surface of the flange of the metal case in the finished product ie
  • the size (area) of the fused area of the hydroxyl group-containing PFA to the inner surface 5A) of the flange 5 was 98.0%.
  • a region (ring-shaped region) with a width of 0.1 mm where no hydroxyl group-containing PFA is present is formed around the through-hole on the surface to be bonded.
  • the thickness of the hydroxyl group-containing PFA layer was 15 to 40 zm.
  • the shearing and peeling torque between the metal case and the seal element of the completed rotary shaft seal was measured at room temperature (20 ° C) using the jig shown in Fig. 5.
  • the jig slipped off the seal element before the seal element peeled from the metal case. Since the torque when this slip occurred was 800 kgf ⁇ cm, the shear peeling torque between the metal case and the seal element was determined to be 800 kgf′cm or more.
  • the jig for measuring the shear-peeling torque shown in FIG. 5 includes an outer jig 31 for fixing the metal case, jigs 32 and 33 for tightening and rotating the seal element, and a tightening bolt 34.
  • the outer jig 31 has a cylindrical shape large enough to fit the metal case 2, and the metal case 2 is fitted into the outer jig 31 and fixed with a vice, etc. 1 is fixed. Tightening the seal element 'The jigs 32 and 33 for rotation are mounted on the disc-shaped substrate 33 a whose outer diameter is slightly smaller than the inner diameter of the outer jig 31 for fixing the metal case.
  • a cylindrical projection 33b large enough to be inserted into the through hole of the metal case 2 (larger than the through hole of the seal element 3) is provided, and further inserted into the through hole of the seal element 3 on the projection 33b.
  • the upper jig 32 is provided with a protrusion 33 c having a size smaller than the inner diameter of the cylindrical peripheral wall portion 4 of the metal case 2. Although the through-hole is large, the through-hole of the metal case 2 is also formed with a small cylindrical projection 32b.
  • the tightening bolt 34 is adapted to be screwed into a screw hole formed in the axis of the upper jig 32 and the lower jig 33. Only the seal element 3 is clamped (tightened) by the cylindrical projection 32b of the upper jig 32 and the cylindrical projection 33b of the lower jig 33, and a rotational torque is generated.
  • the steel case (the inner diameter of the cylindrical peripheral wall (D 4 in Fig. 3 (a)) whose surface is sanded is 99.6mm0, and the inner diameter of the circular through hole defined by the flange (Fig. 3 (a) D5) in the figure is 88.2mm0, otherwise it is an annular case with the same dimensions as the steel case of Example 1) and thickness (D8) in figure 3 (a) 0.8mmx outer diameter ( D 9 in Fig. 3 (a) 99.5 mm0x inside diameter (D 10 in Fig. 3 (a)) 76.
  • Omm ⁇ PTFE compound (actual The same sheet as in Example 1) and the same hydroxyl group-containing PFA (melting point: 310 ° C) as in Example 1 were formed into a film, and the thickness (D 1 1) in Figure 3 (a) 85 mx Outer diameter (D 12 in Fig. 3 (a)) 98.0mm ⁇ 2ix Inner diameter (D 13 in Fig. 3 (a)) 92. Process into a circular ring of ⁇ This was carried out at 360 ° C. under a pressure of 0.06 MPa for 30 minutes. After heating and pressurization, the mixture was air-cooled while maintaining the pressurized state to produce a rotary shaft seal.
  • the size (area) of the hydroxyl group-containing PFA film was 53.2% of the total area of the bonded surface of the flange portion of the metal case.
  • the hydroxyl group-containing PFA film was not overlapped on the 1.9 mm wide area around the through hole on the surface to be bonded.
  • the area of the hydroxyl group-containing PFA layer is 99.1% of the area of the entire bonded surface of the flange of the metal case.
  • Existence An area (ring-shaped area) with a width of 0.2 mm without PFA was formed.
  • the thickness of the layer of hydroxyl group-containing PFA was 10 to 60 / m.
  • the shear peeling torque between the metal case and the seal element of the completed rotary shaft seal was measured in the same manner as in Example 1.
  • the jig was removed from the seal element before the seal element was peeled from the metal case. I slipped. Since the torque when this slip occurred was 80 Okgf ⁇ cm, the shear peeling torque between the metal case and the sealing element was determined to be 80 Okgf ⁇ cm or more.
  • a rotary shaft seal was produced in the same manner as in Example 1 except that a ring-shaped steel case (the dimensions were the same as in Example 1) whose surface was sanded was used.
  • the size (area) of the fused area of the hydroxyl group-containing PFA on the bonded surface of the flange of the metal case in the finished product was 98.0%.
  • the shear peeling torque between the metal case and the seal element of the completed rotary shaft seal was measured in the same manner as in Example 1.
  • the jig slipped from the seal element before the seal element peeled from the metal case. I have. Since the torque when this slip occurred was 80 Okgf ⁇ cm, the shear peeling torque between the metal case and the sealing element was determined to be 800 kgf ⁇ cm or more.
  • the rotary shaft seal was replaced in the same manner as in Example 1 except that the annular case was replaced with an aluminum case with the same dimensions as the steel case used in Example 1 but without surface treatment (as is). Produced.
  • the size (area) of the fused area of the hydroxyl-containing PFA to the surface to be bonded of the flange of the metal case in the finished product was 98.0%.
  • the shear peeling torque between the metal case and the seal element of the completed rotary shaft seal was measured in the same manner as in Example 1.
  • the jig was removed from the seal element before the seal element was peeled from the metal case. I slipped. Since the torque when this slip occurred was 800 kgf ⁇ cm, the shear peeling torque between the metal case and the sealing element was judged to be 80 Okgf ⁇ cm or more.
  • a PTFE sheet treated with metallic sodium (the PTFE sheet used in Example 1 treated with metallic sodium) was used, and the same metal case as in Example 1 was used.
  • Laminate via adhesive (BANI-620T (Maruzen Petrochemical Co., Ltd.)), heat at 170 ° C x O.06MP ax for 5 minutes, compress and then further at 170 ° C for 15 hours Reheated.
  • the metal PTFE treatment of the PTFE sheet was performed by immersing the PTFE sheet in tetra-etch (manufactured by Junye Co.) for 30 seconds, followed by washing with acetone and then water.
  • tetra-etch manufactured by Junye Co.
  • the inner case 41 made of steel and rubber elastic body 42 made of acrylic rubber are used.
  • the metal case 2 and the seal element 3 are the same as in the first embodiment, and the clamp type rotary shaft is used. A seal was made. When the shear peeling torque between the metal case and the seal element of the completed rotary shaft seal was measured in the same manner as in Example 1, only the seal element rotated at 250 kgf ⁇ cm.
  • the rotating shaft seal was subjected to the same shearing and peeling test as described above under an atmosphere of 150 ° C., and the peeling torque was measured.
  • the rotating shaft seal was subjected to the same shearing and peeling test as described above under an atmosphere of 140 ° C., and the peeling torque was measured.
  • the seal element mainly composed of PTFE is firmly attached to the metal case. It is possible to obtain a highly reliable rotating shaft seal that is fixed and has a very low possibility of occurrence of a critical path.
  • the rotating shaft seal of the present invention has a high resistance to the temperature change in the adhesive force between the seal element and the metal case, the sealing performance hardly changes even when the temperature of the use environment changes. High reliability is obtained. Also, since the sealing element can be fixed to the metal case with a small number of steps, the manufacturing time can be greatly reduced as compared with the conventional clamp type seal.
  • the rotary shaft seal of the present invention can perform industrial production extremely efficiently.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Devices (AREA)
  • Sealing With Elastic Sealing Lips (AREA)

Abstract

A seal for a rotating shaft wherein a sealing element containing PTFE as a main component is housed in a metal case, characterized in that the sealing element is adhered to the metal case via a layer of a fluororesin having a hydroxyl group in its molecule so as to be integrated with the metal case; and a method for manufacturing the seal, wherein a laminate comprised of the sealing element, the metal case and, sandwiched between them, the fluororesin is subjected to heating and compression, and then the laminate is cooled under the application of a load. The seal has the sealing element fixed firmly to the metal case, and thus is extremely low in possibility of the occurrence of a critical path and highly reliable, without the use of a metal part or a rubbery elastomer specially made therefor and with a simple constitution. Further, the adhesion between a sealing element and a metal case has high durability also against the change of temperature, which results in the retention of good sealing performance capabilities against the temperature change in the circumstance for use. The manufacturing method, which is simple, allows the significant reduction of the time required for the manufacture relative to that in the case of a conventional seal of cramp type, does not need a heating operation for a long time which is required in the case wherein use is made of an epoxy resin based adhesive known as a heat-resistant adhesive usable also for a metal, and is free form complexities associated with the management of work conditions and facilities for application of an adhesive, which lead to the commercial production of a seal with good efficiency.

Description

明 細 書  Specification
回転軸シール及びその製造方法  Rotary shaft seal and method of manufacturing the same
技術分野  Technical field
本発明は回転軸シール及びその製造方法に関し、 より詳しくは、 ポリテトラフルォ 口エチレンを主成分とするシールエレメントを用いた回転軸シール及びその製造方法 に関する。  The present invention relates to a rotary shaft seal and a method for manufacturing the same, and more particularly, to a rotary shaft seal using a seal element mainly containing polytetrafluoroethylene and a method for manufacturing the same.
背景技術  Background art
従来、 自動車のエンジンシャフトに使用されるシールには、 ゴム製のシールエレメ ントと金属製ケース (円環状の金具) とを組み合わせたものが使用されてきた。 しか し、 近年、 エンジンシャフトの高速回転ィ匕ゃ使用環境温度の上昇に伴うシールへの一 層の高耐久性の要求から、 シールエレメントとして耐熱性が高く、 かつ、 摩擦抵抗が 小さいポリテトラフルォロエチレン(以下、 P T F Eとも称す。)が使用されつつある。 しかし、 ゴム (フッ素ゴム) 製のシールエレメントは、 ゴム (フッ素ゴム) を金属 ケースを被覆するように成形することで、 金属ケースと一体化できるが、 P T F E製 のシールェレメントは、 P T F Eを金属ケースを被覆するように成形することができ ないので、 一般に、 金属ケースとは別に固定用金具を使用し、 金属ケースと固定用金 具の間にシールエレメントを挟んで、 金属ケースの端部を折り曲げ (力シメ) て固定 している。 そして、 この際、 P T F E製のシールエレメントと共にゴム弾性体を挾み 込んで、 シールエレメントの移動および回転を防止している。 しかしながら、 シール エレメントの固定は機械的な圧縮力によるので、 その固定力は十分に高いとは言い難 く、 特に、 その組み付け精度が悪い場合、 金属部品やシールエレメントの変形、 ゴム 弾性体の位置ずれ、 膨潤劣化等によって、 シールエレメントが移動して、 不要な隙間 を生じ、 シールリップ部の回転軸への当接部 (シール部) 以外の部分から、 液体や気 体が透過するクリティカルパスを発生することがある。 また、 金属ケース以外にシ一 ルエレメントを挟むための金属部品およびゴム弾性体が必要であることから、 部品数 が多く、 組み立てに手間がかかり (製造時間が長くなり)、 製造設備の管理も複雑で、 生産性が低い。  Conventionally, a seal used for an automobile engine shaft has been a combination of a rubber seal element and a metal case (annular metal fittings). However, in recent years, high-speed rotation of the engine shaft has been required in order to further increase the durability of the seal due to an increase in the operating temperature of the shaft. Therefore, polytetraflus having high heat resistance and low frictional resistance as a seal element have been developed. Polyethylene (hereinafter, also referred to as PTFE) is being used. However, the sealing element made of rubber (fluororubber) can be integrated with the metal case by molding rubber (fluororubber) so as to cover the metal case, but the seal element made of PTFE uses PTFE as the metal. Since it cannot be molded so as to cover the case, in general, a fixing bracket is used separately from the metal case, and a sealing element is sandwiched between the metal case and the fixing bracket. It is fixed by bending (force crimping). At this time, the rubber elastic body is sandwiched together with the seal element made of PTFE to prevent the movement and rotation of the seal element. However, since the fixing of the seal element is due to the mechanical compression force, it is difficult to say that the fixing force is sufficiently high. Particularly, when the assembling accuracy is poor, the deformation of the metal parts and the seal element, the position of the rubber elastic body The seal element moves due to misalignment, swelling, etc., creating an unnecessary gap, and the critical path through which liquid and gas pass through from the part other than the contact part (seal part) of the seal lip with the rotating shaft. May occur. In addition, the need for metal parts and rubber elastic bodies to sandwich the sealing element in addition to the metal case requires a large number of parts, requires time-consuming assembly (manufacturing time is long), and manages manufacturing equipment. Complex and low productivity.
そこで、 本発明者等は、 エポキシ樹脂系接着剤を用いて、 P T F E製シールエレメ ントを金属ケースに接着固定することを試みた。しかし、 P T F E等のフッ素樹脂は、 他の樹脂類と比較して、 表面自由エネルギーが小さく、 表面が不活性であり、 良好な 接着性を得るためには、 シールエレメントの表面に金属ナトリウム処理 (ナトリウム 溶液に浸漬後、 空気中に暴露して水酸基などを導入する) やプラズマ処理を施してシ ールエレメントの表面を改質する前処理が必須となる。 これらの表面処理方法は、 特 殊なガスや溶剤を使用するため、 特別な設備や作業環境が必須となり、 設備および管 理のコストが上昇する。 また、 エポキシ樹脂系接着剤は常温では液状物であり、 金属 ケースへの接着剤の塗布作業の作業条件 (周囲温度、 吐出圧力、 時間、 計量、 液垂れ /液詰まりの防止)等の管理が複雑という問題がある。従って、 量産ィ匕 (工業的生産) に適用するには、 工程数が多く、 設備が複雑で、 各工程での作業管理も容易でなく、 製造時間も長くなるため、 効率的な製造方法とは言えない。 また、 かかる方法で得ら れる回転軸シールは、 金属ケースとシールエレメントとがある程度高い接着力で接着 されたものとなるが、 エポキシ樹脂系接着剤とポリテトラフルォロエチレンとの間の 熱膨張係数の違いから、 高温環境下での使用において金属ケースとシールエレメント との間の接着力が低下し、 軸シール部以外からの封止流体の漏れを生じる虞がある。 本発明は、 上記のような事情に鑑み、 専用の金属部品やゴム弾性体を使用せず、 簡 素な構成で、 しかも、 P T F Eを主成分とするシールエレメントが金属ケースに強固 に固定されて、 クリティカルパスの発生が極めて生じ難い、 高信頼性の回転軸シール を提供することを目的とする。 Therefore, the present inventors have developed a PTFE seal element using an epoxy resin-based adhesive. We tried to fix the adhesive to the metal case. However, compared to other resins, fluororesins such as PTFE have low surface free energy, are inert on the surface, and require a sodium treatment on the surface of the sealing element to obtain good adhesion. After immersion in a sodium solution, exposure to air to introduce hydroxyl groups, etc.) or plasma treatment to modify the surface of the seal element is required. Since these surface treatment methods use special gases and solvents, special equipment and working environments are indispensable, and equipment and management costs increase. Epoxy resin adhesives are liquid at room temperature, and the work conditions for applying the adhesive to the metal case (ambient temperature, discharge pressure, time, measurement, prevention of dripping / clogging), etc., are controlled. There is a problem of complexity. Therefore, to apply it to mass production (industrial production), the number of processes is large, the equipment is complicated, work management in each process is not easy, and the production time is long. I can't say. In addition, the rotary shaft seal obtained by such a method has a metal case and a seal element adhered to each other with a certain high adhesive strength. However, the heat seal between the epoxy resin adhesive and the polytetrafluoroethylene is not sufficient. Due to the difference in the expansion coefficient, the adhesive force between the metal case and the sealing element is reduced in use in a high-temperature environment, and there is a possibility that sealing fluid leaks from portions other than the shaft seal portion. In view of the circumstances described above, the present invention has a simple configuration without using a dedicated metal part or rubber elastic body, and has a seal element mainly composed of PTFE firmly fixed to a metal case. It is an object of the present invention to provide a highly reliable rotating shaft seal in which a critical path is extremely unlikely to occur.
また、 少ない工程数かつ各工程の管理も容易で、 しかも簡単な製造設備で、 P T F Eを主成分とするシールエレメントが金属ケースに強固に固定された回転軸シールを、 効率よく、 短時間で製造できる、 回転軸シールの製造方法を提供することを目的とす o  In addition, with a small number of processes, easy management of each process, and simple manufacturing equipment, a rotary shaft seal with a PTFE-based seal element firmly fixed to a metal case can be manufactured efficiently and in a short time. O to provide a method of manufacturing a rotary shaft seal o
発明の開示  Disclosure of the invention
上記目的を達成するために、 本発明は以下の構成を特徴とする。  In order to achieve the above object, the present invention has the following features.
すなわち、 本発明は、  That is, the present invention
( 1 ) 金属ケースにポリテトラフルォロエチレンを主成分とするシールエレメントを 収容した構造の回転軸シールであって、 ポリテトラフルォロエチレンを主成分とするシールエレメントが、 分子中に水酸基 を有するフッ素樹脂の層を介して、 金属ケースに接着、 一体化されてなることを特徴 とする回転軸シール、 (1) A rotary shaft seal having a structure in which a metal case contains a seal element mainly composed of polytetrafluoroethylene, A rotary shaft seal, wherein a seal element mainly composed of polytetrafluoroethylene is adhered to and integrated with a metal case through a layer of a fluororesin having a hydroxyl group in a molecule;
( 2 ) 金属ケースが、 円筒状周壁部のその軸線方向一方側の端部から内部空間側へ鍔 部を突出させ、 該鍔部に回転軸が揷通される円形貫孔を形成した円環状金属ケースで あり、  (2) An annular shape in which a metal case protrudes a flange portion from one axial end of the cylindrical peripheral wall portion toward the internal space, and forms a circular through-hole through which the rotation shaft passes. Metal case,
シールエレメントはリング状で、 かつ、 前記円環状金属ケースの鍔部に、 分子中に 水酸基を有するフッ素樹脂の層を介して接着されており、 ·  The seal element has a ring shape, and is bonded to a flange of the annular metal case via a layer of a fluororesin having a hydroxyl group in a molecule.
前記分子中に水酸基を有するフッ素樹脂の層は、 その回転軸側の終端部が、 鍔部の 回転軸側の終端部から貫孔内にはみ出さないように設けられていることを特徴とする 上記 (1 ) 記載の回転軸シール、  The fluororesin layer having a hydroxyl group in the molecule is provided so that the terminal portion on the rotating shaft side does not protrude into the through hole from the terminal portion on the rotating shaft side of the flange portion. The rotary shaft seal described in (1) above,
( 3 ) 分子中に水酸基を有するフッ素樹脂の層が、 鍔部の被接着面の 2 0〜1 0 0 % の面積領域を覆うように設けられている上記 (2 ) 記載の回転軸シール、 ' (3) The rotary shaft seal according to the above (2), wherein a layer of a fluororesin having a hydroxyl group in the molecule is provided so as to cover an area of 20 to 100% of the surface to be bonded of the flange portion. '
( 4 )鍔部の被接着面おける円形貫孔の周囲の幅 0 . 1 m 以上のリング状領域内に、 分子中に水酸基を有するフッ素樹脂が存在していないことを特徴とする上記 (2 ) 記 載の回転軸シール、 (4) The above-mentioned (2), wherein a fluororesin having a hydroxyl group in a molecule is not present in a ring-shaped region having a width of 0.1 m or more around a circular through-hole on a surface to be bonded of a flange portion. ) Rotary shaft seal
( 5 ) 分子中に水酸基を有するフッ素樹脂の層の厚みが 5〜1 0 0〃mであることを 特徴とする上記 ( 1 ) 〜 (4 ) のいずれかに記載の回転軸シール、  (5) The rotary shaft seal according to any one of (1) to (4), wherein the thickness of the layer of the fluororesin having a hydroxyl group in the molecule is 5 to 1001m.
( 6 ) ポリテトラフルォロエチレンを主成分とするシールエレメントを金属ケースと 一体化した回転軸シールを製造する方法であって、 - ポリテトラフルォロエチレンを主成分とするシールエレメントと金属ケースとの間 に、 分子中に水酸基を有するフッ素樹脂であって、 その融点がシールエレメントを構 成するポリテトラフルォロエチレンの融点よりも低いフッ素樹脂を挟み込み、 得られ た積重物を加熱 ·圧縮した後、 当該積重物を荷重下に冷却して、 前記分子中に水酸基 を有するフッ素樹脂を溶融 ·固化させることを特徴とする回転軸シールの製造方法、 (6) A method for manufacturing a rotary shaft seal in which a seal element mainly composed of polytetrafluoroethylene is integrated with a metal case, comprising:-a seal element mainly composed of polytetrafluoroethylene and a metal; A fluororesin having a hydroxyl group in the molecule and having a melting point lower than the melting point of polytetrafluoroethylene constituting the sealing element is sandwiched between the case and the obtained stack. After heating and compressing, the stack is cooled under a load, and the fluororesin having a hydroxyl group in the molecule is melted and solidified.
( 7 ) 分子中に水酸基を有するフッ素樹脂が、 フィルム状に成形した成形物であるこ とを特徴とする上記 (6 ) 記載の回転軸シールの製造方法、 及び (7) The method for producing a rotary shaft seal according to the above (6), wherein the fluororesin having a hydroxyl group in a molecule is a molded product molded into a film.
( 8 ) 分子中に水酸基を有するフヅ素樹脂の融点とシールエレメントを構成するポリ テトラフルォロエチレンの融点との差が 1 0 °C以上であることを特徴とする上記(6 ) ΐ己載の回転軸シールの製造方法、 に関する。 (8) The melting point of the fluororesin having a hydroxyl group in the molecule and the poly (6) The method for producing a self-mounted rotary shaft seal, wherein the difference from the melting point of tetrafluoroethylene is 10 ° C. or more.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の一具体例の回転軸シールを簡略ィ匕して示した図で、 ハウジングと回 転軸との間に装着した状態での金属ケースの径方向の断面図である。  FIG. 1 is a diagram schematically illustrating a rotary shaft seal according to one embodiment of the present invention, and is a radial cross-sectional view of a metal case in a state where the metal case is mounted between a housing and a rotary shaft.
図 2は本発明の一具体例の回転軸シールを簡略ィ匕して示した図で、 ハウジングと回 転軸との間に装着する前の状態での金属ケースの径方向の断面図(図(a)) と平面図 (図 (b )) である。  FIG. 2 is a simplified view of a rotary shaft seal according to one embodiment of the present invention. FIG. 2 is a radial cross-sectional view of the metal case before being mounted between the housing and the rotary shaft. (A)) and a plan view (Fig. (B)).
図 3は本発明の回転軸シールの製造方法において金属ケースとシールエレメントと の間に分子中に水酸基を有するフッ素樹脂を挟み込む作業を説明する図で、 図 (a ) は当該作業前の金属ケース、 シールエレメント及び分子中に水酸基を有するフッ素樹 脂 (フィルム) の配置状態を示し、 図 (b ) は当該作業後の金属ケ "ス、 シールエレ メント及び分子中に水酸基を有するフッ素樹脂 (フィル ) の配置状態を示す。  FIG. 3 is a view for explaining an operation of sandwiching a fluororesin having a hydroxyl group in a molecule between a metal case and a seal element in the method of manufacturing a rotary shaft seal according to the present invention, and FIG. The arrangement of the seal element and the fluorine resin (film) having a hydroxyl group in the molecule is shown in Fig. (B). The metal case, the seal element and the fluorine resin (hydroxyl) having the hydroxyl group in the molecule after the work are shown in Fig. (B). Shows the arrangement state of.
図 4は本発明の回転軸シールの製造方法において金属ケースとシ ルエレメントと の間に分子中に水酸基を有するフッ素樹脂を挟み込んだ積重物を加熱 ·圧縮する工程 の断面図である。  FIG. 4 is a cross-sectional view of a step of heating and compressing a stack in which a fluorine resin having a hydroxyl group in a molecule is sandwiched between a metal case and a seal element in the method of manufacturing a rotary shaft seal according to the present invention.
図 5はせん断剥離トルク測定用治具を簡略化して示す断面図である。  FIG. 5 is a cross-sectional view schematically showing a jig for measuring a shearing-off torque.
図 6は従来のクランプタイプの回転軸シールを簡略ィ匕して示す断面図である。  FIG. 6 is a cross-sectional view schematically showing a conventional clamp type rotary shaft seal.
なお、 図中の符号について簡単に説明すると、 図 1〜図 3中の 1は回転軸シール、 2は金属ケース、 3はシールエレメントを示し、 図 1及び図 2中の 1 0は分子中に水 酸基を有するフッ素樹脂の層を示し、 図 3中の 1 O Aは分子中に水酸基を有するフッ 素樹脂からなる円形リング状フィルムを示す。 また、 図 3及び図 4中の 2 0は積重物 を示し、 図 4中の 1 5 A、 1 5 Bはプレス板、 1 7は恒温槽、 2 1は圧縮用治具を示 す。  The symbols in the drawings will be briefly described. 1 in FIGS. 1 to 3 is a rotating shaft seal, 2 is a metal case, 3 is a sealing element, and 10 in FIGS. 1 and 2 is A layer of a fluororesin having a hydroxyl group is shown, and 1OA in FIG. 3 indicates a circular ring-shaped film made of a fluororesin having a hydroxyl group in a molecule. Also, in FIGS. 3 and 4, reference numeral 20 denotes a stack, 15 A and 15 B in FIG. 4 denote press plates, 17 denotes a thermostat, and 21 denotes a compression jig.
発明の詳細な説明  Detailed description of the invention
本発明の回転軸シールは、金属ケースに、 ポリテトラフルォロエチレン(P T F E ) を主成分とするシールエレメントを収容し、 これを、 分子中に水酸基を有するフッ素 樹脂の層を介して、 金属ケースに接着、 一体化したものであり、 エンジンシャフト、 エアコン用コンプレッサー、 スーパ一チヤ一ジャー、 夕一ボチヤ一ジャー等における 回転軸の周囲に密封される流体の、 回転軸の長さ方向の一方の側から他方の側への漏 れを防ぐために、 回転軸に挿着して使用される。 In the rotating shaft seal of the present invention, a metal case accommodates a sealing element containing polytetrafluoroethylene (PTFE) as a main component, and the sealing element is interposed through a layer of a fluororesin having a hydroxyl group in a molecule. It is bonded and integrated into the case, engine shaft, In order to prevent leakage of fluid sealed around the rotating shaft from one side in the longitudinal direction of the rotating shaft to the other side in air conditioner compressors, super jars, evening jars, etc. It is used by inserting it into a rotating shaft.
本発明で使用する P T F Eを主成分とするシールェレメントは、 PTFEの優れた 耐熱性、耐油性、耐薬品性および低摩擦性により、回転軸の高温度の使用環境下でも、 その機械的物性 (強度、 伸び) が劣化しにくく、 また、 摩擦抵抗が小さいので、 上記 の密封流体に対して長期にわたって、 良好なシール性を示す。  The seal element containing PTFE as the main component used in the present invention has excellent mechanical properties even under the high temperature operating environment of the rotating shaft due to the excellent heat resistance, oil resistance, chemical resistance and low friction of PTFE. (Strength and elongation) are hardly deteriorated and the frictional resistance is small.
本発明の回転軸シールでは、 PTFEを主成分とするシールエレメントと金属ケ一 スとの間に介在する、 分子中に水酸基を有するフッ素樹脂の層が、 シールエレメント と金属ケースの両者に対して高い接着力で融着し、 それによつて、 PTFEを主成分 とするシールエレメントが金属ケースに強固に接着、 一体化されている。 よって、 常 温 (25°C) では勿論のこと、 高温 ( 150°C以上、 具体的には 150〜180°C) や極低温 (—40°C以下、 具体的には— 40〜一 70°C) の使用環境下においても、 P T F Eを主成分とするシールエレメントが金属ケニスに強固に固定され、 特にシ一 ルエレメントの軸との接触による回転トルクに対しても十分な耐性を有することから、 シールエレメン卜の剥離が生じにくく、 クリティカルパスの発生が極めて起こりにく くなる。 また、 シールエレメントと金属ケースとが接着によって一体化されているの で、 従来の、 固定用金具とゴム弾性体を使用し、 金属ケースを折り曲げ (力シメ) る ことで、 シールエレメントを金属ケースに機械的に固定した回転軸シール(以下、 「ク ランプタイプの回転軸シール」 ともいう) に比べて、 製造作業が極めて簡単である。 本発明で使用する、 「ポリテトラフルォロエチレン (PTFE)を主成分とするシ一 ルエレメント」 とは、 PTFE単独を成形したシールエレメント、 または、 PTFE に充填剤等を酉己合した組成物を成形したシールエレメントを意味する。 また、 当該シ —ルエレメントに使用する 「ポリテトラフルォロエチレン (PTFE)」には、 ポリテ トラフルォロエチレンに少量のパ一フルォロアルキルビニルエーテルを共重合させた 変性 PTFE (丁 £の含量が99. 0モル%以上) も含まれる。 かかる変性 PTF Eにおけるパーフルォロアルキルビニルエーテルとしては、 パーフルォロメチル、 ノ^ —フルォロェチル、 パーフルォロプロピル、 パーフルォロブチル、 パ一フルォロペン チル、 パーフルォ口へキシル等が挙げられる。 In the rotary shaft seal of the present invention, a layer of a fluororesin having a hydroxyl group in a molecule interposed between a seal element mainly composed of PTFE and a metal case is formed on both the seal element and the metal case. It fuses with high adhesive strength, and as a result, the sealing element mainly composed of PTFE is firmly bonded and integrated with the metal case. Therefore, not only at room temperature (25 ° C) but also at high temperature (150 ° C or more, specifically 150-180 ° C) or extremely low temperature (-40 ° C or less, specifically -40-170 ° C). (° C), the sealing element mainly composed of PTFE is firmly fixed to the metal varnish, and has sufficient resistance to rotational torque caused by contact with the axis of the sealing element. Therefore, peeling of the seal element is unlikely to occur, and the occurrence of a critical path is extremely unlikely to occur. In addition, since the seal element and the metal case are integrated by bonding, the metal case is bent (forced) using the conventional fixing bracket and rubber elastic body, thereby forming the seal element into the metal case. The manufacturing operation is extremely simple compared to a rotating shaft seal that is mechanically fixed to the shaft (hereinafter, also referred to as a “clamp-type rotating shaft seal”). The “sea element mainly composed of polytetrafluoroethylene (PTFE)” used in the present invention is a seal element formed by molding PTFE alone, or a composition obtained by combining PTFE with a filler or the like. Means a sealing element formed from an object. In addition, “polytetrafluoroethylene (PTFE)” used for the seal element includes modified PTFE (polybutafluoroethylene) obtained by copolymerizing a small amount of perfluoroalkylvinyl ether with polytetrafluoroethylene. Content of 99.0 mol% or more). Examples of perfluoroalkyl vinyl ethers in such modified PTF E include perfluoromethyl, no ^ -fluoroethyl, perfluoropropyl, perfluorobutyl, and perfluoropentene. Chill, perfluorohexyl and the like.
本発明で使用する 「PTFEを主成分とするシールエレメント」 は、 例えば、 PT FEを所望の形状に加工したもの、 または、 PTFE、 充填剤および必要に応じて配 合されるその他の添加剤をヘンシェルミキザなどの公知の混合装置で混合して得られ た混合物を所望の形状に加工したものが使用される。 加工方法としては、 特に限定さ れないが、 圧縮成形、 焼結及び切削の各工程を経る方法が好適である。 また、 シール エレメントは市販されているものも使用可能である。  The “PTFE-based sealing element” used in the present invention includes, for example, PT FE processed into a desired shape, or PTFE, a filler, and other additives to be combined as necessary. A mixture obtained by mixing with a known mixing device such as Henschel mixer and processed into a desired shape is used. The processing method is not particularly limited, but a method through compression molding, sintering, and cutting is preferable. A commercially available sealing element can also be used.
, PTFEに配合する充填剤としては、 例えば、 無機繊維、.固体潤滑剤、 硬銅合金粉 末等が挙げられる。  Examples of the filler to be mixed with PTFE include inorganic fibers, solid lubricants, hard copper alloy powder, and the like.
無機繊維は、 シールエレメントの耐摩耗性向上に有効であり、 たとえば、 ソーダガ ラス、 無アルカリガラス、 シリカガラスなどのガラス繊維、 ロックウールなどのセラ ミック繊維、 スチール、 鉄、 アルミニウム、 ニッケル、 銅などの金属の金属繊維、 チ タン酸カリウムなどのウイス力一、 カーボン繊維、 力一ボングラフアイ ト繊維などが 挙げられる。 これらの中でも、 無アルカリガラスなどのガラス繊維が好ましい。 当該 無機繊維は、単繊維の引張強さが 20 OkgfZmm2以上のものが好ましく、単繊維 の引張強さが 30 OkgfZmm2以上のものがより好ましい。また、平均繊維径が 5 0 m以下のものが好ましく、 平均繊維径が 1 O zm以下のものがより好ましい。 ま た、 当該無機繊維の平均長さは 10 m〜 1000〃mが好ましく、 50〃π!〜 15 O zmが特に好ましい。 また、 アスペクト比は 1〜80が好ましく、 5〜50が特に 好ましい。 Inorganic fibers are effective for improving the abrasion resistance of the sealing element.For example, glass fibers such as soda glass, alkali-free glass and silica glass, ceramic fibers such as rock wool, steel, iron, aluminum, nickel, copper, etc. Metal fibers, whisks such as potassium titanate, carbon fibers, and carbon graphite fibers. Of these, glass fibers such as non-alkali glass are preferred. The inorganic fibers preferably have a single fiber tensile strength of 20 OkgfZmm 2 or more, and more preferably have a single fiber tensile strength of 30 OkgfZmm 2 or more. Further, those having an average fiber diameter of 50 m or less are preferable, and those having an average fiber diameter of 1 Ozm or less are more preferable. The average length of the inorganic fiber is preferably 10 m to 1000 m, and 50 m! ~ 15 O zm is particularly preferred. Further, the aspect ratio is preferably from 1 to 80, and particularly preferably from 5 to 50.
固体潤滑剤は、 公知の潤滑性を付与し得る化合物であれば制限なく使用できるが、 そのうちでも、 石鹼、 雲母、 石鹼石、 亜鉛華、 モリブデン系化合物等が好ましく、 特 に好ましくはモリブデン系化合物である。  The solid lubricant can be used without limitation as long as it is a compound capable of imparting a known lubricating property. Among them, stone, mica, stone, stone, zinc white, molybdenum-based compounds and the like are preferable, and molybdenum is particularly preferable. It is a system compound.
硬銅合金粉末は、 シールエレメントのクリープ性 (耐荷重変形性) 向上に有効であ り、 例えば、 青銅、 黄銅、 燐青銅、 洋白、 鉛青銅など各種銅合金の粉末が挙げられる が、 これらの中でも青銅粉末が好ましい。  Hard copper alloy powder is effective for improving the creep property (load deformation resistance) of the seal element, and examples thereof include powders of various copper alloys such as bronze, brass, phosphor bronze, nickel silver, and lead bronze. Among them, bronze powder is preferable.
なお、 上述の硬銅合金粉末および固体潤滑剤は、 いずれも細粉状ないし微粉状で使 用され、 それらは粒度にして夕イラ一標準篩 100メッシュを 100%通過するもの が好ましく、 同篩 200メッシュを 100%通過するものが特に好ましい。 The above-mentioned hard copper alloy powder and solid lubricant are both used in the form of fine powder or fine powder. It is particularly preferable that the particles pass 100% through the same sieve 200 mesh.
PTFEに必要に応じて配合できる添加剤としては、 例えば、 耐熱性樹脂粉末、 顔 料等を挙げることができる。 耐熱性樹脂粉末としては、 例えば、 ポリフエ二レンサル フアイ ド (PPS)ヽ ポリイミ ド樹脂 (P 1)、 芳香族ポリエステル樹脂 (LCP)等 の粉末が挙げられる。 また、 顔料としては、 ベンガラ、 コノ レトブル一、 酸化チタン 等が挙げられる。  Additives that can be added to PTFE as needed include, for example, heat-resistant resin powders and pigments. Examples of the heat-resistant resin powder include powders such as polyphenylene sulfide (PPS), polyimide resin (P1), and aromatic polyester resin (LCP). Examples of the pigment include bengara, conoretable, titanium oxide, and the like.
本発明者等は、 P T F Eに充填剤を配合した組成物からなるシールエレメントを使 用すれば、 分子中に水酸基を有するフッ素樹脂との間により高い接着力が得られるこ とを見出している。 これは、 おそらく、 充填剤を含むシールエレメントはその表面に 微小な凹凸を有するので、 水酸基を有するフッ素樹脂がこの微小な凹凸に入り込むこ とによって、 アンカー効果が付与されるためであると考えられる。 特に、' PTFE 1 00重量部に対して、 無機繊維を 3〜30重量部含むか、 固体潤滑剤を 2〜5重量部 含むか、 若しくは、 硬銅合金粉末を 1〜: I 50重量部含む組成物か、 または、 これら の充填剤のうちのいずれか 2種若しくは 3種を上記の所定量で含有する組成物からな るシールエレメントを使用することで、 より高い接着力を得ることができる。 これら のなかでも無機繊維と固体潤滑剤の併用が最も好ましい態様である。  The present inventors have found that the use of a sealing element composed of a composition in which a filler is mixed with PTFE enables higher adhesion to a fluororesin having a hydroxyl group in the molecule to be obtained. This is probably because the sealing element containing the filler has minute irregularities on its surface, and the fluorine resin having a hydroxyl group enters the minute irregularities, thereby providing an anchor effect. . In particular, based on 100 parts by weight of PTFE, 3 to 30 parts by weight of inorganic fiber, 2 to 5 parts by weight of solid lubricant, or 1 to 50 parts by weight of hard copper alloy powder A higher adhesive strength can be obtained by using a sealing element composed of the composition or a composition containing any two or three of these fillers in the above-described predetermined amount. . Of these, the combination of inorganic fibers and solid lubricant is the most preferred embodiment.
本発明において、 PTFEを主成分とするシールエレメントの厚みは特に限定され ないが、 一般的には 0. 2〜1. 5 mm程度、 好ましくは 0. 4〜1. 2 mm程度で ある。  In the present invention, the thickness of the seal element containing PTFE as a main component is not particularly limited, but is generally about 0.2 to 1.5 mm, preferably about 0.4 to 1.2 mm.
本発明で使用する、 分子中に水酸基を有するフッ素樹脂とは、 それ自体公知の分子 中に水酸基を有さないフッ素樹脂に、 水酸基を有する含フッ素エチレン系単量体の 1 種又は 2種以上をさらに共重合した樹脂である。  The fluororesin having a hydroxyl group in the molecule used in the present invention is a fluororesin having no hydroxyl group in the molecule known per se, and one or more kinds of a fluorine-containing ethylene monomer having a hydroxyl group. Are further copolymerized.
水酸基を有する含フッ素エチレン系単量体としては、 例えば、 下記の一般式 ( I ) で表される化合物が挙げられる。  Examples of the fluorine-containing ethylene monomer having a hydroxyl group include compounds represented by the following general formula (I).
式 (D CX^CX1 - Rf— CH2OH Formula (D CX ^ CX 1 -R f — CH 2 OH
(式中、 Xおよび X1は同一または異なってよく、 それそれ、 水素原子またはフッ素原 子を表し、 Rfは炭素数 1〜40の 2価のアルキレン基、 炭素数 1~40の含フッ素 ォキシアルキレン基、 炭素数 1〜 40のエーテル結合を含む含フッ素アルキレン基ま たは炭素数 1〜 4 0のエーテル結合を含む含フッ素ォキシアルキレン基を表す。) 該一般式 (I ) で表される化合物の具体例としては、 例えば、 下記の化合物 a〜p が挙げられる。 a:CF2=CFOCF2CF2CH2OH、 b:CF2=CFO(CF2)3CH2OH 、 c: CF2=CFOCF2CFOCF2CF2CH2OH、 d:CF2=CFCF2CH2OH、 (Wherein X and X 1 may be the same or different and each represents a hydrogen atom or a fluorine atom, R f is a divalent alkylene group having 1 to 40 carbon atoms, and a fluorine-containing 1 to 40 carbon atoms. An alkoxyalkylene group, a fluorine-containing alkylene group having an ether bond having 1 to 40 carbon atoms. Or a fluorine-containing oxyalkylene group containing an ether bond having 1 to 40 carbon atoms. Specific examples of the compound represented by the general formula (I) include the following compounds a to p. a: CF 2 = CFOCF 2 CF 2 CH 2 OH, b: CF 2 = CFO (CF 2 ) 3 CH 2 OH, c: CF 2 = CFOCF 2 CFOCF 2 CF 2 CH 2 OH, d: CF 2 = CFCF 2 CH 2 OH,
CF3 e:CF2=CFCF2CF2CH2OH、 f:CF2=CFCF2OCF2CF2CF2CH2OH、 CF 3 e: CF 2 = CFCF 2 CF 2 CH 2 OH, f: CF 2 = CFCF 2 OCF 2 CF 2 CF 2 CH 2 OH,
g:CF2=CFCF2OCF2CFCH2OHヽ h:CH2=CFCF2CF2CH2CH2OHヽ g: CF 2 = CFCF 2 OCF 2 CFCH 2 OH ヽ h: CH 2 = CFCF 2 CF 2 CH 2 CH 2 OH ヽ
CF3 i:CH2=CFCF2CF2CH2OH、 j:CH2=CF(CF2)4CH2CH2OHヽ k:CH2=CFCF2OCFCH2OH> l:CH2=CFCF2OCFCF2OCFCH2OH、 CF 3 i: CH 2 = CFCF 2 CF 2 CH 2 OH, j: CH 2 = CF (CF 2 ) 4 CH 2 CH 2 OH ヽ k: CH 2 = CFCF 2 OCFCH 2 OH > l: CH 2 = CFCF 2 OCFCF 2 OCFCH 2 OH,
CF3 CF3 CF3 m:CH2=CHCF2CF2CH2CH2OHs n:CH2=CH(CF2)4CH2CH2CH2CF 3 CF 3 CF 3 m: CH 2 = CHCF 2 CF 2 CH 2 CH 2 OH s n: CH 2 = CH (CF 2 ) 4 CH 2 CH 2 CH 2
o:CH2=CH(CF2)6CH2CH2OH、 p:CH2=CHCH2COH o: CH 2 = CH (CF 2 ) 6 CH 2 CH 2 OH, p: CH 2 = CHCH 2 COH
3  Three
これらの中でも、 特に化合物 1 (パ一フルォロ一 (1 , 1 , 9, 9—テトラヒドロ 一 2, 5—ビストリフルォロメチルー 3, 6—ジォキサー 8—ノネノール))が好まし い。  Among them, compound 1 (1,1-, 9,9-tetrahydro-1,2,5-bistrifluoromethyl-3,6-dioxal 8-nonenol) is particularly preferred.
分子中に水酸基を有さないフッ素樹脂としては、例えば、テトラフルォロエチレン、 パ一フルォロアルキルビニルエーテル、 クロ口トリフルォロエチレン、 フッ化ビニリ デンおよびへキサフルォロプロピレンからなる群から選ばれる少なくとも 1種の含フ ッ素エチレン系単量体を構成単位とする重合体 (ホモポリマ一、 共重合体)、 または、 当該少なくとも 1種の含フッ素エチレン系単量体とエチレンとを構成単位とする共重 合体が挙げられる。 Examples of the fluororesin having no hydroxyl group in the molecule include tetrafluoroethylene, perfluoroalkyl vinyl ether, black trifluoroethylene, and vinylidyl fluoride. Polymers having at least one fluorine-containing ethylene monomer selected from the group consisting of denene and hexafluoropropylene as a constitutional unit (homopolymers, copolymers), or the at least one Copolymers containing a fluorine-containing ethylene monomer and ethylene as constituent units are exemplified.
該分子中に水酸基を有するフッ素樹脂は、 水酸基を有する含フッ素エチレン系単量 体と、 水酸基を有さない含フッ素エチレン系単量体 (従来公知の分子中に水酸基を有 さないフヅ素樹脂の構成単量体) とを、 周知の重合方法で共重合することによって得 ることができる。 かかる共重合における重合機構はラジカル重合が好適であり、 ラジ カル重合開始剤としては、 熱、 光または電離線照射によるラジカルを発生する公知の ラジカル重合開始剤を使用できる。 また、 重合方法は特に限定されず、 溶液重合、 バ ルク重合、 懸濁重合、 乳化重合等を制限なく使用できる。 また、 製造される共重合体 The fluororesin having a hydroxyl group in the molecule includes a fluorine-containing ethylene monomer having a hydroxyl group and a fluorine-containing ethylene monomer having no hydroxyl group (a conventionally known fluorine-containing monomer having no hydroxyl group in the molecule). And a monomer constituting the resin) by a known polymerization method. The polymerization mechanism in such copolymerization is preferably radical polymerization. As the radical polymerization initiator, a known radical polymerization initiator that generates radicals by heat, light or ionizing radiation can be used. The polymerization method is not particularly limited, and solution polymerization, bulk polymerization, suspension polymerization, emulsion polymerization and the like can be used without limitation. Also, the copolymer to be produced
(分子中に水酸基を有するフッ素樹脂) の分子量は、 モノマーの濃度、 重合開始剤の 濃度、 連鎖移動剤の濃度、 温度等によって制御され、 生成する共重合体 (分子中に水 酸基を有するフッ素樹脂)の組成は、仕込みモノマーの組成によって制御可能である。 本発明における分子中に水酸基を有ずるフッ素樹脂として、 国際公開番号 WO 9 7 / 2 1 7 7 9の公報に記載された分子中に水酸基を有するフッ素樹脂は好適に使用で き、 そのなかでも、 テトラフルォロエチレンーパ一フルォロ (アルキルビニルエーテ ル) 共重合体 ( P F A) に水酸基を有する含フッ素エチレン系単量体がさらに共重合 したもの、 テトラフルォロエチレン一へキサフルォロプロピレン共重合体 (F E P ) に水酸基を有する含フッ素ェチレン系単量体がさらに共重合したもの、 エチレンーテ トラフルォロエチレン共重合体 ( E T F E ) に水酸基を有する含フッ素エチレン系単 量体がさらに共重合したもの等は好ましいものであり、 P F Aに水酸基を有する含フ ッ素エチレン系単量体がさらに共重合したもの(以下、「水酸基含有 P F A」ともいう。) は特に好ましいものである。 The molecular weight of the (fluorine resin having a hydroxyl group in the molecule) is controlled by the concentration of the monomer, the concentration of the polymerization initiator, the concentration of the chain transfer agent, the temperature, etc., and the resulting copolymer (having a hydroxyl group in the molecule) The composition of (fluororesin) can be controlled by the composition of the charged monomers. As the fluororesin having a hydroxyl group in the molecule in the present invention, the fluororesin having a hydroxyl group in the molecule described in the publication of International Publication No.WO 97/21779 can be suitably used, and among them, Tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer (PFA) obtained by further copolymerizing a fluorine-containing ethylene-based monomer having a hydroxyl group, tetrafluoroethylene-hexafluoro Propylene copolymer (FEP) is obtained by further copolymerizing a fluorinated ethylenic monomer having a hydroxyl group, and ethylene-tetrafluoroethylene copolymer (ETFE) is obtained by further copolymerizing a fluorinated ethylene monomer having a hydroxyl group. Copolymers and the like are preferable, and those obtained by further copolymerizing PFA with a fluorine-containing ethylene monomer having a hydroxyl group (hereinafter referred to as “hydroxyl-containing PFA”) Is particularly preferred.
本発明で使用する分子中に水酸基を有するフッ素樹脂において、 水酸基を有する含 フッ素エチレン系単量体の共重合量は、 通常、 重合体 (樹脂) 全体当たり 0 . 0 5 ~ In the fluororesin having a hydroxyl group in the molecule used in the present invention, the copolymerization amount of the fluorine-containing ethylene monomer having a hydroxyl group is usually from 0.05 to 5% per the whole polymer (resin).
3 0モル%でぁり、 好ましくは 0 . 1〜1 0モル%である。 含フッ素エチレン系単量 体の共重合量が 0 . 0 5モル%未満では、 シールエレメントおよび金属ケースに対し て十分に高い接着力で融着することが困難となり、また、 3 0モル%を超える場合は、 その耐熱性が低下して、 その溶融 ·固化時に着色、 発泡等を起こして接着力が低下す る傾向となり、また、後述するように、フィルム状に成形した成形物を使用する場合、 その成形時に着色、 発泡、 分解等を起こして成形物 (フィルム) の接着性が低下する 傾向となり、 好ましくない。 It is 30 mol%, preferably 0.1 to 10 mol%. If the copolymerization amount of the fluorinated ethylene monomer is less than 0.05 mol%, the amount of the sealant and the metal case may be reduced. If it exceeds 30 mol%, its heat resistance will decrease, and its melting and solidification will cause coloring, foaming, etc., and its adhesion will decrease. In addition, as described later, when a molded product formed into a film is used, coloring, foaming, decomposition, and the like occur during the molding, and the adhesiveness of the molded product (film) tends to decrease. Not preferred.
本発明において、 分子中に水酸基を有するフッ素樹脂は、 その接着性、 耐熱性等を 損なわない範囲で、 充填剤、 顔料等の種々の添加剤を配合した組成物にして用いても よい。  In the present invention, the fluororesin having a hydroxyl group in the molecule may be used as a composition in which various additives such as a filler and a pigment are blended as long as the adhesiveness, heat resistance and the like are not impaired.
図 1、 図 2は本発明の回転軸シールの一具体例を簡略ィ匕して示した図で、 図 1は金 属ケースの径方向の断面図であり、 実際にハウジングと回転軸との間に装着してシ一 ルエレメントを押接させた状態の軸に対する半径部分を示している。 なお、 図はシ ルの軸に接する一方の側の半径部分であり、 図示しない軸に接する他方の半径部分は 同様の構成である。 また、 図 2は回転軸シールのハウジングと回転軸との間に装着す る前の状態を示し、 図 (a ) はその金属ケースの径方向の断面図、 図 (b ) はその平 面図である。  1 and 2 are simplified views of a specific example of a rotary shaft seal according to the present invention. FIG. 1 is a radial cross-sectional view of a metal case, in which a housing and a rotary shaft are actually connected. It shows a radial portion with respect to the shaft in a state where the seal element is mounted and pressed against the seal element. The figure shows a radial portion on one side contacting the shaft of the seal, and the other radial portion contacting the shaft (not shown) has the same configuration. Fig. 2 shows the rotating shaft seal before it is mounted between the housing and the rotating shaft. Fig. (A) is a radial cross section of the metal case, and Fig. (B) is a plan view of the metal case. It is.
該回転軸シール 1では、 分子中に水酸基を有するフッ素樹脂の層 1 0が、 金属ケー ス 2および円形リング状のシールエレメント 3に融着し、 これによつて、 シールエレ メント 3と金属ケース 2が強固に接着して、 一体ィ匕されている。 金属ケース 2は、 円 筒状周壁部 4と、 該周壁部 4の軸線方向一方側の端部から周壁部の内部空間側へと突 出する鍔部 5とを有する。 鍔部 5は、 前記一方側の端部において、 周壁部 4の周方向 の全域にわたって形成され、 それによつて、 軸 (回転軸) 1 2が挿通する円形貫孔 1 . 1が形成されている。 円形リング状のシ一ルェレメント 3は、 鍔部 5の軸線方向他方 側の面に分子中に水酸基を有するフッ素樹脂の層 1 0を介してその一端側が接着され、 シールリップ部 8が軸 1 2に押接するように、 その他端側を密封流体 R側へ屈曲させ て配置されており、 かかる状態で、 当該シール 1は、 ハウジング 1 3と軸 1 2との間 に装着されている。 上記のように、 シールエレメント 3のシールリップ部 8が軸 1 2 に押接することで、 軸 1 2との接面からの流体の漏れを防止している。 また、 当該回 転軸シール 1では、 軸 1 2とハウジング 1 3間に当該シール 1を装着 (密嵌) するた めに、 金属ケース 2の外周側 (背面側) にシーラント 1 5を設けている。 該シーラン ト 1 5は、 たとえば、 アクリルゴム、 フッ素ゴム等のゴムを加圧成形したり、 溶剤に てペースト状にしたものを塗布、 乾燥する方法等で形成される。 In the rotary shaft seal 1, a layer 10 of a fluororesin having a hydroxyl group in the molecule is fused to the metal case 2 and the circular ring-shaped seal element 3, whereby the seal element 3 and the metal case 2 are fused. Are firmly adhered to each other. The metal case 2 has a cylindrical peripheral wall portion 4 and a flange portion 5 protruding from one axial end of the peripheral wall portion 4 toward the internal space of the peripheral wall portion. The flange portion 5 is formed at the one end portion over the entire circumferential direction of the peripheral wall portion 4, thereby forming a circular through hole 1.1 through which the shaft (rotating shaft) 12 is inserted. . One end of the circular ring-shaped element 3 is adhered to the other surface in the axial direction of the flange portion 5 through a fluororesin layer 10 having a hydroxyl group in a molecule, and a seal lip portion 8 is attached to the shaft 12. The other end is bent to the sealed fluid R side so as to press against the seal fluid R, and in such a state, the seal 1 is mounted between the housing 13 and the shaft 12. As described above, the seal lip 8 of the seal element 3 is pressed against the shaft 12 to prevent leakage of fluid from the contact surface with the shaft 12. In addition, in the rotating shaft seal 1, the seal 1 is attached (closely fitted) between the shaft 12 and the housing 13. For this purpose, a sealant 15 is provided on the outer peripheral side (back side) of the metal case 2. The sealant 15 is formed by, for example, a method of pressure-molding rubber such as acrylic rubber or fluorine rubber, or applying and drying a paste made with a solvent.
本発明の回転軸シールにおいて、 金属ケースは、 シールエレメントが回転軸に対し て所定の押接状態で接するように、保持、固定するための部材であり、たとえば、鉄、 アルミニウム、 ステンレス、 鋼 (炭素鋼、 特殊鋼) などの金属材料を金属プレスなど によって、目的に応じた形状および大きさに適宜加工することで得られる。前記図 1、 図 2に示す、 円筒状周壁部 4の軸線方向の一方側端部より鍔部 5を周壁部 4の全周に かけて内部空間側へと突設させた、 円環状の金属ケース 2は、 シールエレメントの保 持性と軸とハウジング間へのシールの装着性が良好で、 しかも、 加工工数が少なくて 済むので、 特に好ましい構成である。  In the rotary shaft seal according to the present invention, the metal case is a member for holding and fixing the seal element so that the seal element comes into contact with the rotary shaft in a predetermined pressing state. For example, iron, aluminum, stainless steel, steel ( It can be obtained by appropriately processing a metal material such as carbon steel or special steel) into a shape and size according to the purpose by a metal press or the like. An annular metal, shown in FIGS. 1 and 2, in which a flange 5 projects from one end in the axial direction of the cylindrical peripheral wall 4 toward the inner space over the entire circumference of the peripheral wall 4. Case 2 is a particularly preferable configuration because it has good retention of the seal element and good mounting of the seal between the shaft and the housing, and requires a small number of processing steps.
また、 本発明において、 金属ケースの分子中に水酸基を有するフッ素樹脂の層が融 着(接着)する被接着面(図 1に示すケースでは鍔部 5のケース内部側の面 5 A)は、 サンドプラスト処理、 ヤスリ掛け、 酸 Zアル力リ洗浄等の公知の方法で粗面化処理し てもよく、 また、 金属ケースの表面 (被接着面を含む) は公知の方法で防鯖処理を施 してもよい。 なお、 金属ケースに施す表面処理は、 水酸基を有するフッ素樹脂を融着 させる際の加熱温度において、 耐熱性を有するものが好ましい。  Further, in the present invention, the surface to be bonded (the surface 5 A on the inner side of the case of the flange portion 5 in the case shown in FIG. 1) to which the fluororesin layer having a hydroxyl group in the molecule of the metal case is fused (bonded) The surface may be roughened by a known method such as sand plasting, sanding, and acid Z cleaning, and the surface of the metal case (including the surface to be adhered) may be subjected to a surface protection treatment by a known method. May be applied. The surface treatment applied to the metal case preferably has heat resistance at the heating temperature at the time of fusing the fluororesin having a hydroxyl group.
本発明の回転軸シールは、 金属ケースにシールエレメントを分子中に水酸基を有す るフッ素樹脂の層を介して接着した構成であるため、 接着層を構成する分子中に水酸 基を有するフッ素樹脂が金属ケースの軸側の終端部から軸挿通用貫孔内へはみ出して いると、回転軸に'当該フッ素樹脂の層が接触し、該接触部からフッ素樹脂が脱落して、 これが異物となって軸とシール面間に侵入することがある。 また、 フッ素樹脂が軸へ 接触しない場合でも、 はみ出したフッ素樹脂との接着によってシールエレメントの軸 への接触状態が変動し、 それによつて、 シール性能が悪化することが懸念される。 よ つて、 シールエレメントと金属ケース間で溶融、 固化して得られる、 分子中に水酸基 を有するフッ素樹脂の層 (融着層) は、 その軸側の終端部が、 金属ケースの軸側の終 端部から軸挿通用貫孔内へはみ出さないように設けるのが好ましく、 該軸側の終端部 が金属ケースの軸側の終端部よりもケース内の奥まった位置に存在するように設ける のが特に好ましい。 Since the rotary shaft seal of the present invention has a configuration in which the seal element is bonded to the metal case via a layer of a fluororesin having a hydroxyl group in the molecule, the fluorine element having a hydroxyl group in the molecule forming the adhesive layer is used. If the resin protrudes from the shaft-side end of the metal case into the shaft insertion through-hole, the fluororesin layer comes into contact with the rotating shaft, and the fluororesin falls off from the contact portion, which causes foreign matter to be removed. It may enter between the shaft and the sealing surface. Even when the fluororesin does not come into contact with the shaft, there is a concern that the state of contact of the seal element with the shaft fluctuates due to adhesion to the protruding fluororesin, thereby deteriorating the sealing performance. Thus, the fluororesin layer having a hydroxyl group in the molecule (fused layer) obtained by melting and solidifying between the sealing element and the metal case has a shaft end at the shaft end of the metal case. It is preferable that the end is not protruded from the end into the through hole for shaft insertion. The end on the shaft side is provided so as to be located deeper in the case than the end on the shaft side of the metal case. Is particularly preferred.
従って、 例えば、 前記図 1及び図 2に示す円環状金属ケース 2、 円形リング状のシ —ルエレメント 3を用いた回転軸シール 1では、 鍔部 5の被接着面 5 Aにおける円形 貫孔 1 1の周囲に分子中に水酸基を有するフッ素樹脂が存在しないリング状領域 (す なわち、 図 2 (b) に示す鍔部 5の被接着面 5 A上における鍔部 5の円形貫孔 1 1側 の終端部 5 aと分子中に水酸基を有するフッ素樹脂の層 10の円形貫孔 1 1側の終端 部 10 a間の領域 T 1)を設けるのが好ましく、 その幅(図 2 (b)中の D 3)は 0. lmm以上であるのが好ましい。 しかし、 このような分子中に水酸基を有するフッ素 樹脂を存在させないリング状領域の幅(図 2 (b)中の D 3)が 3 mmを超える場合、 円形リング状のシールエレメント 3を軸 2に対して十分に高い押接力で接触させるこ とが困難になるので、 当該幅は 3 mm以下であることが好ましい.。  Therefore, for example, in the rotary shaft seal 1 using the annular metal case 2 and the circular ring-shaped seal element 3 shown in FIGS. 1 and 2, the circular through hole 1 in the surface 5 A to be bonded of the flange 5 is provided. A ring-shaped region around which the fluororesin having a hydroxyl group in the molecule does not exist (i.e., the circular through hole of the flange 5 on the surface 5A to be bonded of the flange 5 shown in FIG. 2 (b) 1 1 It is preferable to provide a region T 1) between the terminal portion 5a on the side and the circular through-hole 11 of the fluororesin layer 10 having a hydroxyl group in the molecule 10 between the terminal portion 10a on the side of FIG. D 3) in the above is preferably not less than 0.1 mm. However, if the width of the ring-shaped region (D3 in Fig. 2 (b)) in which the fluorine resin having a hydroxyl group in the molecule does not exist exceeds 3 mm, the circular ring-shaped seal element 3 is attached to the shaft 2 On the other hand, it is difficult to make contact with a sufficiently high pressing force, so that the width is preferably 3 mm or less.
また、 分子中に水酸基を有するフヅ素樹脂の層 10は、 シールエレメント 3と金属 ケース 2との間の接着力の観点から、 鍔部 5の被接着面 5 Aの 20〜 100 %の面積 領域を覆うよう設けるのが好ましく ( 100%の場合、 分子中に水酸基を有するフッ 素樹脂の層の軸側の終端部は金属ケースの軸側の終端部に一致している。)、 40〜7 0%の面積領域を覆うよう設けるのがより好ましい。 ―  Further, from the viewpoint of the adhesive force between the seal element 3 and the metal case 2, the layer 10 of the fluororesin having a hydroxyl group in the molecule has an area of 20 to 100% of the surface 5 A to be bonded of the flange 5. Preferably, it is provided so as to cover the area (in the case of 100%, the axial end of the fluororesin layer having a hydroxyl group in the molecule coincides with the axial end of the metal case). More preferably, it is provided so as to cover 70% of the area. ―
また、 前記図 1及び図 2に示す円環状金属ケース 2、 円形リング状のシールエレメ ント 3を用いた回転軸シール 1においては、 通常、 円環状金属ケース 2の鍔部 5の円 形貫孔 1 1側の終端部 5 aと、 軸 12との離間距離 (図 1中の D 1) は 0. 7〜3. 0mm程度が好ましく、 また、 円形リング状のシールエレメント 3における鍔部 5の 円形貫孔 1 1側の終端部 5 aからの軸 12への突出量 (図 2 (A) 中の D2) は 2 10 mm程度が好ましい。.  Also, in the rotary shaft seal 1 using the annular metal case 2 and the circular ring-shaped seal element 3 shown in FIGS. 1 and 2, usually, the circular through hole 1 of the flange 5 of the annular metal case 2 is used. The distance (D 1 in FIG. 1) between the end 5 a on the first side and the shaft 12 is preferably about 0.7 to 3.0 mm, and the circular shape of the flange 5 in the circular ring-shaped seal element 3. The amount of protrusion (D2 in FIG. 2 (A)) from the end portion 5a of the through hole 11 to the shaft 12 is preferably about 210 mm. .
本発明の回転軸シールでは、 分子中に水酸基を有するフッ素樹脂の層の厚みも重要 であり、該厚みは好ましくは 5〜100〃m、より好ましくは 10〜70/imである。 該厚みが 未満では、 十分な接着力が得られず、 作業性も悪化し、 100 111を 超えると、 分子中に水酸基を有するフッ素樹脂の層自体が破断して、 接着性が低下す る虞れがあり、 好ましくない。  In the rotary shaft seal of the present invention, the thickness of the fluororesin layer having a hydroxyl group in the molecule is also important, and the thickness is preferably 5 to 100 μm, more preferably 10 to 70 / im. If the thickness is less than, sufficient adhesive strength cannot be obtained, and the workability deteriorates.If the thickness exceeds 100 111, the fluororesin layer having a hydroxyl group in the molecule itself is broken, and the adhesiveness may be reduced. This is not preferred.
本発明の回転軸シールは、 金属ケースとシールエレメントとの間に、 分子中に水酸 基を有するフッ素樹脂を挟み込み、 かかる積重物を加熱 ·加圧した後、 冷却して、 前 記分子中に水酸基を有するフッ素樹脂を溶融、 固化することで得ることができる。 すなわち、 P T F Eを主成分とするシールエレメントを、これに特別な表面処理(プ ラズマ処理や金属ナトリム処理等の活性化処理) を施すことなくそのまま使用し、 当 該未表面処理のシールエレメントと金属ケースとの間に、 分子中に水酸基を有するフ ッ素樹脂を挟み込み(第 1工程)、 かかる積重物を加熱'圧縮し(第 2工程)、続いて、 荷重下に冷却する(第 3工程)ことで製造でき、かかる第 1〜第 3工程を経ることで、 分子中に水酸基を有するフッ素樹脂が溶融'固ィ匕して、 金属ケースとシールエレメン トに融着し、 金属ケースとシールェレメン卜とが分子中に水酸基を有するフヅ素樹脂 の融着層を介して一体ィ匕した回転軸シールが得られる。 The rotating shaft seal of the present invention has a structure in which hydroxyl is contained in the molecule between the metal case and the seal element. The fluororesin having a hydroxyl group in the molecule is melted and solidified by sandwiching a fluororesin having a group, heating and pressurizing such a stack, and then cooling. That is, a seal element containing PTFE as a main component is used as it is without being subjected to a special surface treatment (an activation treatment such as a plasma treatment or a metal sodium treatment). A fluorine resin having a hydroxyl group in the molecule is sandwiched between the case and the case (first step), and the stacked material is heated and compressed (second step), and then cooled under a load (third step). Through the first to third steps, the fluororesin having a hydroxyl group in the molecule is melted and solidified, and is fused to the metal case and the seal element. As a result, a rotary shaft seal is obtained in which the seal element is integrally formed via a fusion layer of a fluororesin having a hydroxyl group in the molecule.
本発明において、 分子中に水酸基を有するフッ素樹脂は、 その融点がシールエレメ ントを構成する P T F Eの融点 (3 2 0〜3 6 0 °C) よりも低いものが好適である。 上記の通り、 本発明の回転軸シールは、 金属ケースとシールエレメントとの間に分子 中に水酸基を有するフッ素樹脂を挟み込み、 かかる積重物を加熱 '圧縮して、 分子中 に水酸基を有するフッ素樹脂を溶融、 固化することで、 作製されるが、 分子中に水酸 基を有するフッ素樹脂の融点が、 シールエレメントを構成する P T F Eの融点と同等 またはそれ以上であると、 分子中に水酸基を有するフッ素樹脂が十分に溶融するよう に加熱を行うと、 それによつて、 シールエレメントの加熱変形が大きくなつて、 得ら れる回転軸シールのシール性能が低下してしまう。 また、 分子中に水酸基を有するフ ッ素樹脂として、 その融点がシールエレメントを構成する P T F Eの融点 (3 2 0〜 3 6 0 °C) よりも低いものを使用すすれば、 分子中に水酸基を有するフッ素樹脂を金 属ケースとシールエレメントとの間に挟み込んで加熱 ·圧縮した後の冷却工程におい て、 シールエレメントを構成するポリテトラフルォロエチレンが固化する前に分子中 に水酸基を有するフッ素樹脂が先に固化してシールエレメントを固定し、 シールエレ メントの熱収縮を抑制できる。 本発明者等は、 かかるシールエレメントの熱収縮を十 分に抑制できないと、 製造される回転軸シールのシールエレメント部に残留ひずみが 発生し、 意図しない変形 (波打ち等) が生じたり、 接着力の低下が起こり、 使用環境 温度の若干の昇温によっても剥離する等の不具合が生じることを知見している。 よつ て、 シールエレメントの熱収縮抑制効果を十分に発揮させるには、 分子中に水酸基を 有するフッ素樹脂は、 その融点が使用するシールエレメントを構成するポリテトラフ ルォロエチレンの融点よりも 1 0 °C以上低いものを用いるのが好ましく、 1 5 °C以上 低いものが特に好ましい。 なお、 分子中に水酸基を有するフッ素樹脂の融点が低すぎ ると、 それ自体の耐熱性が十分でなくなるため、 回転軸シールの高温環境下 (具体的 には 1 5 0 °C以上) での使用においてその接着力が低下して、 シールエレメントが剥 離し、 封止流体が漏れるという問題を起こす危険性があり、 よって、 分子中に水酸基 を有するフッ素樹脂は融点が 2 6 0 °C以上のものを用いるのが好ましい。 In the present invention, it is preferable that the melting point of the fluororesin having a hydroxyl group in the molecule is lower than the melting point of PTFE (320 to 360 ° C) constituting the seal element. As described above, in the rotating shaft seal of the present invention, a fluorine resin having a hydroxyl group in a molecule is sandwiched between a metal case and a seal element, and the stack is heated and compressed to obtain a fluorine resin having a hydroxyl group in a molecule. It is produced by melting and solidifying the resin.If the melting point of the fluororesin having a hydroxyl group in the molecule is equal to or higher than the melting point of the PTFE constituting the sealing element, a hydroxyl group is formed in the molecule. If the heating is performed so that the fluorine resin contained therein is sufficiently melted, the heat deformation of the sealing element becomes large, and the sealing performance of the obtained rotary shaft seal decreases. In addition, if a fluororesin having a hydroxyl group in the molecule is used, the melting point of which is lower than the melting point of PTFE (320 to 360 ° C) constituting the sealing element, the hydroxyl group in the molecule is increased. In a cooling process after sandwiching a fluororesin with a resin between the metal case and the seal element and heating and compressing, the polytetrafluoroethylene constituting the seal element has hydroxyl groups in the molecule before it solidifies. The fluororesin solidifies first to fix the seal element, thereby suppressing heat shrinkage of the seal element. If the present inventors cannot sufficiently suppress the thermal shrinkage of the seal element, residual strain will occur in the seal element portion of the manufactured rotary shaft seal, causing unintended deformation (such as waving) or adhesive force. It has been found that problems such as peeling occur even with a slight rise in the operating environment temperature. Yotsu In order to sufficiently exhibit the effect of suppressing heat shrinkage of the seal element, a fluororesin having a hydroxyl group in the molecule must have a melting point that is at least 10 ° C lower than the melting point of the polytetrafluoroethylene constituting the sealing element used. It is preferable to use a compound having a temperature lower by 15 ° C. or more. If the melting point of the fluororesin having a hydroxyl group in the molecule is too low, the heat resistance of the resin itself becomes insufficient, so that the high-temperature environment of the rotating shaft seal (specifically, at 150 ° C or more) In use, there is a danger that the adhesive strength will be reduced, the sealing element will peel off, and the sealing fluid will leak out.Therefore, fluoropolymers having a hydroxyl group in the molecule have a melting point of 260 ° C or higher. Preferably, one is used.
本発明において、 分子中に水酸基を有するフッ素樹脂は、 粉末状のものや、 ペレツ ト状、 ロッド状またはフィルム状等の形態に成形した成形物を使用できる。 シ一ルェ レメントと金属ケ一スの間への挟み込み作業時の取扱い性 (ハンドリング性) の点か ら、 ロヅド状、 フィルム状に成形したのものが好ましく、 フィルム状に成形したもの が特に好ましい。 また、 フィルム状に成形したものであれば、 溶融 '固化して得られ る融着層の性状の均一性にも優れ、 金属ケースおよびシールエレメントがより強固に 接着される。 さらにまた、 シールエレメントに対する融着領域の設定も、 フィルムの 形状、サイズを変更するだけで、容易に行える利点があり、好ましい。よって、 溶融- 固化して得られる融着層が金属ケースの軸側終端部 (軸が挿通する円形貫孔の周縁) からはみ出した状態に形成されて、 シール面の接触状態が変化して、''シール性能を悪 化させるというような問題も回避できる。 なお、 分子中に水酸基を有するフッ素樹脂 をフィルム状に成形する場合、 当該フッ素樹脂を熱溶融法;押出法;切削法;溶剤キ ヤスティング;水性または有機溶剤による分散体 (ディスパ一ジョン) を基材状に塗 装して連続的な被膜にし、 から剥離する方法等の公知の樹脂のフィルム化方法に 従って作成すればよい。  In the present invention, the fluororesin having a hydroxyl group in the molecule may be in the form of a powder, a pellet, a rod, a film, or the like. From the viewpoint of handling (handling) at the time of sandwiching work between the sealant and the metal case, it is preferably formed into a rod shape or a film shape, and particularly preferably formed into a film shape. . In addition, if it is formed into a film, the uniformity of the properties of the fusion layer obtained by melting and solidifying is excellent, and the metal case and the seal element are more firmly adhered. Further, the setting of the fusion region with respect to the seal element is advantageous because it can be easily performed only by changing the shape and size of the film. Therefore, the fusion layer obtained by melting and solidification is formed in a state protruding from the axial end of the metal case (periphery of the circular through hole through which the shaft is inserted), and the contact state of the sealing surface changes, '' The problem of deteriorating the sealing performance can be avoided. When a fluororesin having a hydroxyl group in a molecule is formed into a film, the fluororesin may be formed by a hot-melt method; an extrusion method; a cutting method; a solvent casting; and an aqueous or organic solvent-based dispersion (dispersion). The film may be formed according to a known resin film forming method such as a method of coating a base material to form a continuous film and peeling the film from the substrate.
本発明では、 シールエレメン卜と金属ケースとの間に分子中に水酸基を有するフッ 素樹脂を挾み込んだ積重物を加熱 '圧縮するが、この際に、高い接着力を得るために、 シールエレメントと分子中に水酸基を有するフッ素樹脂 (の層) の境界部において、 シールエレメント中の P T F Eと分子中に水酸基を有するフヅ素樹脂が共に溶解して 融合した融合部を形成させるのが好ましい。 従って、 積重物の加熱'圧縮時における 加熱温度を、 使用するシールエレメントを構成する PTFEの融点以上の温度とする のが好ましく、 該 P T F Eの融点よりも 5 °C以上高い温度とするのがより好ましく、 該 P T F Eの融点よりも 30°C以上高い温度に設定するのがとりわけ好ましい。なお、 加熱温度が 400°C以上になるとシールエレメントを構成する PTFEが熱分解する ので、 加熱温度は 400°C未満にするのが好ましい。 In the present invention, a stack in which a fluorine resin having a hydroxyl group in a molecule is sandwiched between a seal element and a metal case is heated and compressed.In this case, in order to obtain a high adhesive force, At the boundary between (the layer of) the seal element and the fluororesin having a hydroxyl group in the molecule, the PTFE in the seal element and the fluororesin having the hydroxyl group in the molecule are dissolved together to form a fused part. preferable. Therefore, during heating and compression of the stack The heating temperature is preferably a temperature higher than the melting point of PTFE constituting the sealing element to be used, more preferably a temperature higher than the melting point of the PTFE by 5 ° C or more, and more preferably 30 ° C than the melting point of the PTFE. It is particularly preferable to set the temperature higher than C. When the heating temperature is 400 ° C or higher, the PTFE constituting the seal element is thermally decomposed. Therefore, the heating temperature is preferably set to less than 400 ° C.
加熱'圧縮時の圧縮力 (荷重) は、 通常、 0. 01〜10MPa、 好ましくは 0. 0 l〜5MPa、 特に好ましくは 0. 05〜lMPaである。 また、 加熱'圧縮時間 は、 加熱温度、 圧縮力 (荷重) 等によっても異なるが一般に 30秒〜 30分程度、 好 ましくは 5〜30分、. より好ましくは 5〜15分程度である。  The compressive force (load) during heating and compression is usually 0.01 to 10 MPa, preferably 0.01 to 5 MPa, and particularly preferably 0.05 to 1 MPa. The heating / compression time varies depending on the heating temperature, compression force (load), etc., but is generally about 30 seconds to 30 minutes, preferably 5 to 30 minutes, and more preferably about 5 to 15 minutes.
さらに、 本発明においては、 高い接着力を達成するために、 積重物を加熱 '圧縮し た後、 積重物をそのままの状態で冷却する (すなわち、 荷重下で冷却する) のが好ま しい。 このような加熱 ·圧縮時の圧縮力 (荷重) を掛けたまままの状態で冷却するこ とで、 接着力がより一層向上する。 かかる冷却時の荷重は、 通常、 0. 01〜10M Pa、 好ましくは 0. 0 l〜5MPa、 特に好ましくは 0. 05〜: LMPaである。 以下、 図 1に示す回転軸シール 1の製造例を示して、 本発明の回転軸シールの製造 方法の具体的手順を詳しく説明する。  Further, in the present invention, it is preferable to cool the stack as it is (that is, cool it under load) after heating and compressing the stack in order to achieve high adhesive strength. . By cooling while applying the compressive force (load) during such heating and compression, the adhesive force is further improved. The load at the time of cooling is usually 0.01 to 10 MPa, preferably 0.01 to 5 MPa, and particularly preferably 0.05 to LMPa. Hereinafter, a specific example of a method of manufacturing the rotating shaft seal of the present invention will be described in detail with reference to a manufacturing example of the rotating shaft seal 1 illustrated in FIG.
先ず、 図 3 (a) に示すように、 円筒状周壁部 4および該周壁部 4の軸線方向一方 側の端部から周壁部の内部空間側へ突出する鍔部 5 (該鍔部 5は、 周壁部 4の周方向 の全域にわたって形成されている。)を有する円環状の金属ケース 2、分子中に水酸基 を有するフッ素樹脂を成形 ·加工して作成した、 分子中に水酸基を有するフッ素樹脂 からなる円形リング状フィルム 10A、 および、 PTFE (または PTFE組成物). からなる円形リング状のシールエレメント 3を用意し (なお、 図 1では、 円環状の金 属ケース 2の背面側にシ一ラント層を示しているが、 ここでは図示していない。)、 こ れら各部材の円形貫孔の中心が同一軸線上に重なるよう位置合わせする。  First, as shown in FIG. 3 (a), a cylindrical peripheral wall portion 4 and a flange portion 5 projecting from one axial end of the peripheral wall portion 4 to the internal space side of the peripheral wall portion (the flange portion 5 is An annular metal case 2 formed over the entire area in the circumferential direction of the peripheral wall portion 4), formed from a fluororesin having a hydroxyl group in the molecule by molding and processing, and made of a fluororesin having a hydroxyl group in the molecule. A circular ring-shaped sealing element 3 made of a circular ring-shaped film 10A and PTFE (or PTFE composition) is prepared. (In Fig. 1, the sealant is placed on the back side of the annular metal case 2. The layers are shown, but are not shown here.) The members are aligned so that the centers of the circular through holes of these members overlap on the same axis.
次に、 図 3 (b) に示すように、 円環状金属ケース 2の鍔部 5のケース内部側の面 5 Aに、 分子中に水酸基を有するフッ素樹脂からなる円形リング状フィルム 1 OAを 載置し、 その上に円形リング状のシールエレメント 3を重ねて、 金属ケース 2と円形 リング状のシールエレメント 3との間に分子中に水酸基を有するフッ素樹脂からなる 円形リング状フィルム 1 O Aを挾み込んで、 積重物 2 0を作成する。 Next, as shown in FIG. 3 (b), a circular ring-shaped film 1OA made of a fluororesin having a hydroxyl group in the molecule is placed on the inner surface 5A of the flange 5 of the annular metal case 2 on the case. It is made of fluororesin having a hydroxyl group in the molecule between the metal case 2 and the circular ring-shaped seal element 3. A stack 20 is made by sandwiching the circular ring-shaped film 1 OA.
次に、 図 4に示すように、 互いの平坦面を平行に相対させた上下一対のプレス板 1 5 As 1 5 Bを内部に設置した恒温槽 1 7を用意し、 予め該恒温槽 1 7内で円柱状の 圧縮用治具 2 1をシールエレメント 3を構成する P T F Eの融点と同程度の温度に加 熱しておき、 当該シールエレメントを構成する P T F Eの融点と同程度の温度とした 恒温槽 1 7内に、 上記積重物 2 0を投入し、 円柱状の圧縮用治具 2 1を該積重物 2 0 の円形リング状のシールエレメント 3上に載せ、 この後、 恒温槽内をシールエレメン ト 3を構成する P T F Eの融点以上、 4 0 0 °C未満の範囲内の所望の温度に設定し、 プレス板 1 5 A、 1 5 Bで当該圧縮用治具 2 1が載置された積重物 2 0を挟み付け、 所定時間保持することで、 加熱 ·圧縮を行う。 ここで、 プレス板 1 5 A、 1 5 Bは、 例えば、 油圧、 空気圧等によって、 これらを可動させる手段 (図示せず) に繋がれて いる。 また、 円柱状の圧縮用治具 2 1は、 積重物 2 0にプレス板 1 5 A、 1 5 Bによ る圧力が一様に (特にシールエレメントに対して 様に) 伝わるように使用されるも のであり、 通常、 鋼、 アルミニム等の金属を加工して得られた、 その外径が金属ケ一 ス 2の円筒状周壁部 4の内径よりも小さく、 かつ、 円形リング状のシールエレメント 3の外径よりも大きいものが使用される。  Next, as shown in FIG. 4, a thermostatic chamber 17 in which a pair of upper and lower press plates 15 As 15 B with their flat surfaces facing each other in parallel was prepared, and the thermostatic chamber 17 was previously prepared. A cylindrical compression jig 21 is heated to the same temperature as the melting point of the PTFE that forms the seal element 3 inside the thermostat, and the temperature is set to the same temperature as the melting point of the PTFE that forms the seal element. Into 17, the above-mentioned stack 20 is put, and a columnar compression jig 21 is placed on the circular ring-shaped seal element 3 of the stack 20, and then the inside of the thermostat is cooled. The compression jig 21 is mounted on the press plates 15A and 15B by setting the temperature to a desired temperature within the range of not less than the melting point of PTFE constituting the seal element 3 and less than 400 ° C. Heating / compression is performed by sandwiching the piled product 20 and holding it for a predetermined time. Here, the press plates 15A and 15B are connected to means (not shown) for moving them by, for example, hydraulic pressure, pneumatic pressure, or the like. The columnar compression jig 21 is used so that the pressure by the press plates 15A and 15B is transmitted uniformly (particularly to the seal element) to the stack 20. Usually, the outer diameter is smaller than the inner diameter of the cylindrical peripheral wall 4 of the metal case 2 and is obtained by processing a metal such as steel or aluminum, and a circular ring-shaped seal is used. An element larger than the outer diameter of element 3 is used.
次に、 プレス板 1 5 A、 1 5 Bの間に圧縮用治具 2 1および積重物 2 0を挟んだ状 態のままで、 かかる積重構造物 (プレス板 1 5 A、 1 5 B、 圧縮用治具 2 1および積 重物 2 0 ) を恒温槽 1 7から取出して、 自然放置 (空冷) するか、 または、 当該積重 構造物を金属板等の冷却用治具に接触させるか、 若しくは、 当該積重構造物を水冷す る等の強制冷却を行う。 該冷却は、 分子中に水酸基を有するフッ素樹脂の融点以下に なるまで行う。 これは、 分子中に水酸基を有するフッ素樹脂を十分に冷却 ·固化させ ることで、 シールエレメントの熱収縮を固定するためである。 なお、 強制冷却を行え ば、 冷却時間を短縮できるので、 製造時間の短縮により有効である。  Next, with the compression jig 21 and the stack 20 sandwiched between the press plates 15A and 15B, the stacked structures (press plates 15A and 15 B. Take out the compression jig 21 and the stack 20) from the thermostatic chamber 17 and leave it naturally (air cooling), or contact the stack with a cooling jig such as a metal plate. Or forced cooling such as water cooling of the stacked structure. The cooling is performed until the temperature becomes lower than the melting point of the fluororesin having a hydroxyl group in the molecule. This is because the heat shrinkage of the seal element is fixed by sufficiently cooling and solidifying the fluororesin having a hydroxyl group in the molecule. If the forced cooling is performed, the cooling time can be shortened, which is more effective in shortening the manufacturing time.
この後、 プレス板 1 5 A、 1 5 Bおよび圧縮用治具 2 1を取り外すと、 円環状の金 属ケース 2に円形リング状のシールエレメント 3が分子中に水酸基を有するフッ素樹 脂の融着層によつて接着、 固定された回転軸シ一ル 1が得られる。  Thereafter, when the press plates 15A and 15B and the compression jig 21 are removed, the circular ring-shaped seal element 3 is attached to the ring-shaped metal case 2 to melt the fluorine resin having a hydroxyl group in the molecule. The rotating shaft seal 1 adhered and fixed by the adhesion layer is obtained.
なお、 前記図 1〜図 4では、 円環状の金属ケース 2の鍔部 5のケース内部側の面 5 Aに、 シールリップ部を有するシールェレメント 3を接着した構成のシールを示して いるが、 ダストリップ部等を有する他のシールエレメントを付設する場合、 鍔部 5の 外側面 5 B (面 5 Aとは反対の面) にも、 分子中に水酸基を有するフッ素樹脂 (のフ イルム) を介在させて、 他のシールエレメントを重ねた積重物を構成し、 かかる積重 物に加熱,圧縮、 および、 冷却を施せばよい。 In FIGS. 1 to 4, the inner surface 5 of the flange 5 of the annular metal case 2 A shows a seal having a configuration in which a seal element 3 having a seal lip portion is adhered, but when another seal element having a dust lip portion or the like is attached, the outer surface 5 B of the flange portion 5 (surface 5 (The opposite side to A) also forms a stack with another seal element stacked with a fluorine resin having a hydroxyl group in the molecule (a film) interposed therebetween, and heats and compresses the stack. , And cooling may be applied.
また、 ここでは、 積重物の加熱 ·圧縮を、 積重物を恒温槽内でプレス (圧縮) する ことによって実施したが、 公知の、 加熱板を備えた熱プレス装置を使用して、 積重物 を熱プレスすることによって行ってもよい。  Here, the heating and compression of the stack were performed by pressing (compressing) the stack in a constant temperature bath. However, the stack was heated and compressed by using a known hot press apparatus having a heating plate. It may be carried out by hot pressing heavy materials.
本発明の回転軸シールでは、 シールエレメントと金属ケースとの間に後述する方法 で測定されるせん断剥離トルクが、 常温 (2 5 °C) で 8 0 O k g f · c m以上、 高温 ( 1 5 0 °C以上) で 3 0 0 k g f ' c m以上、 極低温 (—4 0 °C以下) で 1 0 0 0 k g f · c m以上となる接着強度を達成できる。  In the rotary shaft seal according to the present invention, the shear peeling torque measured between the seal element and the metal case by a method described later is 80 O kgf · cm or more at room temperature (25 ° C.) and 150 ° C. (° C or higher) and 300 kgf'cm or more at cryogenic temperatures (−40 ° C or less).
本発明の回転軸シールの用途は、 特に限定されないが、 エンジンシャフト用 (密封 流体:エンジンオイル)、エアコンのコンプレッサー用(密封流体:潤滑油および冷媒)、 スーパ一チヤ一ジャー用 (密封流体:高温'高圧ガス)、 ターボチヤ一ジャー用 (密封 流体:高温 ·高圧ガス) 等に好適である。 特に、 分子中に水酸基を有するフッ素樹脂 の層は、 優れた耐油性を有するので、 本発明の回転軸シールは、 エンジンシャフト用 として特に好適であり、 分子中に水酸基を有するフッ素樹脂の層はエンジンシャフト 用に用いた場合の密封流体となるエンジンオイル、 特に高温のエンジンオイルに対し て充分な耐性を有し、 その優れた金属ケースおよびシールエレメン卜への接着性が長 期間維持される。  The use of the rotary shaft seal of the present invention is not particularly limited, but is used for an engine shaft (sealing fluid: engine oil), for a compressor of an air conditioner (sealing fluid: lubricating oil and refrigerant), for a supercharger (sealing fluid: Suitable for high temperature and high pressure gas), turbocharger (sealed fluid: high temperature and high pressure gas), etc. In particular, since the fluororesin layer having a hydroxyl group in the molecule has excellent oil resistance, the rotary shaft seal of the present invention is particularly suitable for engine shafts. It has sufficient resistance to engine oil, which is a sealing fluid when used for engine shafts, especially high-temperature engine oil, and maintains its excellent adhesion to metal cases and seal elements for a long time.
本明細書中の P T F E.の融点および分子中に水酸基を有するフッ素樹脂の融点は D S C (示差走査熱量計) 分析による値である。  In the present specification, the melting point of PTF E. and the melting point of the fluororesin having a hydroxyl group in the molecule are values obtained by DSC (differential scanning calorimetry) analysis.
実施例  Example
以下、 実施例と比較例を示して本発明をより具体的に説明する。 なお、 本発明は以 下に記載の実施例によって限定されるものでない。  Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. It should be noted that the present invention is not limited by the embodiments described below.
実施例 1 Example 1
分子中に水酸基を有するフッ素樹脂のフィルムを使用し、 図 3、 4に示す製造手順 で、 鋼製ケースと PTFEシールエレメントとを接着、 一体ィ匕した回転軸シールを作 製した。 Using a fluororesin film containing hydroxyl groups in the molecule, the manufacturing procedure shown in Figures 3 and 4 In this way, a steel shaft and a PTFE seal element were bonded together to produce a rotary shaft seal integrally formed.
鋼製ケースは、 円環状で、 円筒状周壁部の内径 (図 3 (a) 中の D 4) が 58. 5 mm0、鍔部で区画される円形貫孔の内径(図 3 (a)中の D 5)が 46. 5mm0、 肉厚 (図 3 (a) 中の D6) 0. 8mm、 円筒状周壁部の高さ (図 3 (a) 中の D7) が 7. 0mmのものを使用した。  The steel case is annular and has an inner diameter (D4 in Fig. 3 (a)) of 58.5 mm0 and an inner diameter of a circular through-hole (Fig. 3 (a)). D5) is 46.5mm0, wall thickness (D6 in Fig. 3 (a)) is 0.8mm, and the height of the cylindrical peripheral wall (D7 in Fig. 3 (a)) is 7.0mm did.
PTFEシールエレメントは、 PTFEコンパウンド (PTFE 100重量部当た り、 二硫化モリブデン (固体潤滑剤) を 5重量部、 ガラス繊維を 5重量部含む。)から なり、 厚み (図 3 (a) 中の D 8) 0. 8mmx外径 (図 3 (a) 中の D 9) 58. The PTFE sealing element is made of PTFE compound (per 100 parts by weight of PTFE, contains 5 parts by weight of molybdenum disulfide (solid lubricant) and 5 parts by weight of glass fiber), and has a thickness (Fig. 3 (a)). D 8) 0.8mmx outer diameter (D 9 in Fig. 3 (a)) 58.
45mm x内径(図 3 (a)中の D 10) 35. πιπι の円形リング状シート(表 面処理無し) を使用した。 なお、 PTFEシールエレメントの PTFEの融点 ( J IA circular ring-shaped sheet (without surface treatment) of 45 mm x inside diameter (D 10 in Fig. 3 (a)) 35. πιπι was used. The melting point of PTFE in the PTFE sealing element (JI
5 K7 12 1に準拠、 DSC分析 (昇温 10°C/分)) は 327°Cである。 According to 5 K7121, DSC analysis (temperature rise 10 ° C / min) is 327 ° C.
分子中に水酸基を有するフッ素樹脂のフィルムには、 ダイキン工業 (株) 製の水酸 基含有 PFA (融点: 3 10°C) をフィルム状に成形し、 厚み (図 3 (a) 中の D 1 1) 85 /mx外径 (図 3 (a) 中の D 12) 56. 50mm x内径 (図 3 (a) 中の D 13) 50. 5 Omm0の円形リング状に加工したフィルムを使用した。  For a fluororesin film having a hydroxyl group in the molecule, a hydroxyl group-containing PFA (melting point: 310 ° C) manufactured by Daikin Industries, Ltd. is formed into a film and the thickness (D in Fig. 3 (a)) 1 1) 85 / mx outer diameter (D 12 in Fig. 3 (a)) 56. 50mm x inner diameter (D 13 in Fig. 3 (a)) 50.5 Omm0 .
圧縮用治具は、 高さ 15 mm X外径 ( ) 58. 4 mmの鋼製の重さ 500 gの円 柱体を使用した。  The compression jig used was a cylinder made of steel with a height of 15 mm and an outer diameter of 58.4 mm and weighing 500 g.
金属ケースと水酸基含有 PF Aフィルムとの位置合わせにおいて、 金属ケースの鍔 部の被接着面全体の面積に対して水酸基含有 PF Aフィルムの大きさ(面積)は 50. When aligning the metal case and the hydroxyl group-containing PFA film, the size (area) of the hydroxyl group-containing PFA film is 50.
9%であり、 鍔部の被接着面における円形貫孔の周囲の幅 2. Qmmの領域には水酸 基含有 PF Aフィルムを重ねないようにした。 9%, the width around the circular through hole on the surface to be bonded of the flange 2. The hydroxyl group-containing PFA film was not overlapped in the area of Qmm.
加熱 ·圧縮は、 360°Cx O. 06 MP ax 30分間行った。加熱 ·圧縮後の冷却 は、 プレス板及び圧縮用治具をそのままの状態で、 圧縮用治具が約 250°Cになるま で、 約 5分間空冷した。 完成品における金属ケースの鍔部の被接着面 (すなわち、 図 Heating and compression were performed at 360 ° C. O. 06 MP ax for 30 minutes. For cooling after heating and compression, the press plate and the compression jig were left as they were, and the air was cooled for about 5 minutes until the compression jig reached approximately 250 ° C. The bonded surface of the flange of the metal case in the finished product (ie
3 (b) における鍔部 5のケース内部側の面 5 A) に対する水酸基含有 PFAの融着 領域の大きさ (面積) は 98. 0%であった。 また、 被接着面における貫孔の周囲に は、 水酸基含有 PF Aが存在しない、 幅 0. 1mmの領域 (リング状領域) が形成さ れていた。 また、 水酸基含有 PFAの層の厚みは 15〜40 zmであった。 In Fig. 3 (b), the size (area) of the fused area of the hydroxyl group-containing PFA to the inner surface 5A) of the flange 5 was 98.0%. In addition, around the through-hole on the surface to be bonded, a region (ring-shaped region) with a width of 0.1 mm where no hydroxyl group-containing PFA is present is formed. Had been. The thickness of the hydroxyl group-containing PFA layer was 15 to 40 zm.
出来上がった回転軸シールの金属ケースとシールエレメントとの間のせん断剥離ト ルクを、 図 5に示す治具を用いて、 室温 (20°C) で測定した。 その結果、 金属ケ一 スからシールエレメントが剥離を起こすまでに、 治具がシールエレメントから滑って しまった。 この滑りが生じた際のトルクは 800 kgf · cmであったので、 金属ケ ース一シールェレメント間のせん断剥離トルクは 800kgf 'c m以上と判断した。 図 5に示すせん断剥離トルク測定用治具は、 金属ケース固定用の外側治具 3 1と、 シールエレメントの締め付け ·回転用の治具 32、 33と、 締め付けボルト 34で構 成される。 すなわち、 外側治具 3 1は金属ケース 2が嵌入し得る大きさの円筒状であ り、 該外側治具 3 1に金属ケース 2を嵌入し、 万力等で固定することによって、 回転 軸シール 1が固定ざれる。シールエレメントの締め付け '回転用の治具 32、 33は、 下側治具 33が、 金属ケース固定用の外側治具 3 1の内径よりも若干小さい外径の円 盤状基板 33 a上に、 金属ケース 2の貫孔に挿入される大きさ (シールエレメント 3 の貫孔よりも大きい) の円柱状突起 33 bを設け、 さらにこの突起 33 bの上にシ一 ルエレメント 3の貫孔に挿入される大きさの突起 33 cを設けて構成され、 上側治具 32が、 金属ケース 2の円筒状周壁部 4の内径よりも若干小さい外径の円盤状基板 3 2 a上にシールエレメント 3の貫孔ょりも大きいが、 金属ケース 2の貫孔ょりも小さ い大きさの円柱状突起 32 bを設けて構成されている。 締め付けボルト 34は、 上側 治具 32と下側治具 33の軸心に形成した螺子孔に螺合するようになつており、 該ボ ルト 34を螺合させて廻すことによって、 回転軸シール 1におけるシールエレメント 3のみが上側治具 32の円柱状突起 32 bと下側治具 33の円柱状突起 33 bで挟み 付けられる (締め付けられる) とともに、 回転トルクが発生する。  The shearing and peeling torque between the metal case and the seal element of the completed rotary shaft seal was measured at room temperature (20 ° C) using the jig shown in Fig. 5. As a result, the jig slipped off the seal element before the seal element peeled from the metal case. Since the torque when this slip occurred was 800 kgf · cm, the shear peeling torque between the metal case and the seal element was determined to be 800 kgf′cm or more. The jig for measuring the shear-peeling torque shown in FIG. 5 includes an outer jig 31 for fixing the metal case, jigs 32 and 33 for tightening and rotating the seal element, and a tightening bolt 34. That is, the outer jig 31 has a cylindrical shape large enough to fit the metal case 2, and the metal case 2 is fitted into the outer jig 31 and fixed with a vice, etc. 1 is fixed. Tightening the seal element 'The jigs 32 and 33 for rotation are mounted on the disc-shaped substrate 33 a whose outer diameter is slightly smaller than the inner diameter of the outer jig 31 for fixing the metal case. A cylindrical projection 33b large enough to be inserted into the through hole of the metal case 2 (larger than the through hole of the seal element 3) is provided, and further inserted into the through hole of the seal element 3 on the projection 33b. The upper jig 32 is provided with a protrusion 33 c having a size smaller than the inner diameter of the cylindrical peripheral wall portion 4 of the metal case 2. Although the through-hole is large, the through-hole of the metal case 2 is also formed with a small cylindrical projection 32b. The tightening bolt 34 is adapted to be screwed into a screw hole formed in the axis of the upper jig 32 and the lower jig 33. Only the seal element 3 is clamped (tightened) by the cylindrical projection 32b of the upper jig 32 and the cylindrical projection 33b of the lower jig 33, and a rotational torque is generated.
実施例 2 Example 2
表面をヤスリ掛け処理した、 鋼製ケース (円筒状周壁部の内径 (図 3 (a) 中の D 4) が 99. 6mm0、 鍔部で区画される円形貫孔の内径 (図 3 (a) 中の D 5) が 88. 2mm0、それ以外は実施例 1の鋼製ケースと同じ寸法とした円環状のケース) と、 厚み (図 3 (a) 中の D 8) 0. 8mmx外径 (図 3 (a) 中の D 9) 99. 5 mm0x内径 (図 3 (a) 中の D 1 0) 76. Omm^の PTFEコンパウンド (実 施例 1と同じ) 製のシートと、 実施例 1と同じ水酸基含有 PF A (融点: 3 10°C) をフィルム状に成形し、 厚み (図 3 (a) 中の D 1 1) 85 mx外径 (図 3 (a) 中の D 12) 98. 0mm<2ix内径 (図 3 (a) 中の D 13) 92. πίπι の円形 リング状に加工しフィルムを使用し、 加熱 '加圧を、 0. 06MPaの圧力下、 36 0°Cで、 30分間行い、 加熱 ·加圧後、 その加圧状態を保持したまま空冷して、 回転 軸シールを作製した。 The steel case (the inner diameter of the cylindrical peripheral wall (D 4 in Fig. 3 (a)) whose surface is sanded is 99.6mm0, and the inner diameter of the circular through hole defined by the flange (Fig. 3 (a) D5) in the figure is 88.2mm0, otherwise it is an annular case with the same dimensions as the steel case of Example 1) and thickness (D8) in figure 3 (a) 0.8mmx outer diameter ( D 9 in Fig. 3 (a) 99.5 mm0x inside diameter (D 10 in Fig. 3 (a)) 76. Omm ^ PTFE compound (actual The same sheet as in Example 1) and the same hydroxyl group-containing PFA (melting point: 310 ° C) as in Example 1 were formed into a film, and the thickness (D 1 1) in Figure 3 (a) 85 mx Outer diameter (D 12 in Fig. 3 (a)) 98.0mm <2ix Inner diameter (D 13 in Fig. 3 (a)) 92. Process into a circular ring of πίπι This was carried out at 360 ° C. under a pressure of 0.06 MPa for 30 minutes. After heating and pressurization, the mixture was air-cooled while maintaining the pressurized state to produce a rotary shaft seal.
金属ケースと水酸基含有 PF Aフィルムとの位置合わせにおいて、 金属ケースの鍔 部の被接着面全体の面積に対して水酸基含有 PFAフィルムの大きさ(面積)は 53. 2%であり、 鍔部の被接着面における貫孔の周囲の幅 1. 9mmの領域には水酸基含 有 PF Aフィルムを重ねないようにした。  When aligning the metal case with the hydroxyl group-containing PFA film, the size (area) of the hydroxyl group-containing PFA film was 53.2% of the total area of the bonded surface of the flange portion of the metal case. The hydroxyl group-containing PFA film was not overlapped on the 1.9 mm wide area around the through hole on the surface to be bonded.
接着後の完成品において、 水酸基含有 PF Aの層の面積は、 金属ケースの鍔部の被 接着面全体の面積の 99. 1%であり、 被接着面における貫孔の周囲には、 水酸基含 有 PF Aが存在しない、 幅 0. 2 mmの領域 (リング状領域) が形成されていた。 ま た、 水酸基含有 PF Aの層の厚みは 10〜60 /mであった。  In the finished product after bonding, the area of the hydroxyl group-containing PFA layer is 99.1% of the area of the entire bonded surface of the flange of the metal case. Existence An area (ring-shaped area) with a width of 0.2 mm without PFA was formed. In addition, the thickness of the layer of hydroxyl group-containing PFA was 10 to 60 / m.
出来上がった回転軸シールの金属ケースとシールエレメントとの間のせん断剥離ト ルクを、 実施例 1と同様にして測定したところ、 金属ケースからシールエレメントが 剥離を起こすまでに、 治具がシールエレメントから滑ってしまった。 この滑りが生じ た際のトルクは 80 Okgf · cmであったので、 金属ケース一シールエレメント間 のせん断剥離トルクは 80 Okgf · cm以上と判断した。  The shear peeling torque between the metal case and the seal element of the completed rotary shaft seal was measured in the same manner as in Example 1.The jig was removed from the seal element before the seal element was peeled from the metal case. I slipped. Since the torque when this slip occurred was 80 Okgf · cm, the shear peeling torque between the metal case and the sealing element was determined to be 80 Okgf · cm or more.
実施例 3 Example 3
表面をヤスリ掛け処理した鋼製の円環状ケース (寸法は実施例 1と同じ) を用いた 以外は、 実施例 1と同様にして、 回転軸シールを作製した。 完成品における金属ケ一 スの鍔部の被接着面に対する水酸基含有 PF Aの融着領域の大きさ (面積) は 98. 0%であった。 出来上がった回転軸シールの金属ケースとシールエレメントとの間の せん断剥離トルクを、 実施例 1と同様にして測定したところ、 金属ケースからシール エレメントが剥離を起こすまでに、 治具がシールエレメントから滑ってしまった。 こ の滑りが生じた際のトルクは 80 Okgf · cmであったので、 金属ケース—シール エレメント間のせん断剥離トルクは 800kgf · cm以上と判断した。 実施例 4 A rotary shaft seal was produced in the same manner as in Example 1 except that a ring-shaped steel case (the dimensions were the same as in Example 1) whose surface was sanded was used. The size (area) of the fused area of the hydroxyl group-containing PFA on the bonded surface of the flange of the metal case in the finished product was 98.0%. The shear peeling torque between the metal case and the seal element of the completed rotary shaft seal was measured in the same manner as in Example 1.The jig slipped from the seal element before the seal element peeled from the metal case. I have. Since the torque when this slip occurred was 80 Okgf · cm, the shear peeling torque between the metal case and the sealing element was determined to be 800 kgf · cm or more. Example 4
円環状ケースを、 実施例 1で用いた鋼製ケースと同じ寸法の、 表面処理無し (削り 出しのまま) のアルミニウム製ケースに替えた以外は、 実施例 1と同様にして、 回転 軸シールを作製した。 完成品における金属ケースの鍔部の被接着面に対する水酸基含 有 PFAの融着領域の大きさ (面積) は 98. 0%であった。  The rotary shaft seal was replaced in the same manner as in Example 1 except that the annular case was replaced with an aluminum case with the same dimensions as the steel case used in Example 1 but without surface treatment (as is). Produced. The size (area) of the fused area of the hydroxyl-containing PFA to the surface to be bonded of the flange of the metal case in the finished product was 98.0%.
出来上がった回転軸シールの金属ケースとシールエレメントとの間のせん断剥離ト ルクを、 実施例 1と同様にして測定したところ、 金属ケースからシールエレメントが 剥離を起こすまでに、 治具がシールエレメントから滑ってしまった。 この滑りが生じ た際のトルクは 800 kgf · cmであったので、 金属ケース一シールエレメント間 のせん断剥離トルクは 80 Okgf · cm以上と判断した。  The shear peeling torque between the metal case and the seal element of the completed rotary shaft seal was measured in the same manner as in Example 1.The jig was removed from the seal element before the seal element was peeled from the metal case. I slipped. Since the torque when this slip occurred was 800 kgf · cm, the shear peeling torque between the metal case and the sealing element was judged to be 80 Okgf · cm or more.
比較例 1 Comparative Example 1
金属ナトリゥム処理を施した P T F Eシート (実施例 1で用いた P T F Eシ一トに 金属ナトリウム処理を施したもの) を使用し、 金属ケースは実施例 1と同じものを使 用し、 これらをエポキシ樹脂系接着剤(BANI— 620 T (丸善石油化学(株)製)) を介して重ねて、 170°CxO. 06 MP ax 5分の条件で加熱 '圧縮し、 その後、 さらに 170°Cで 15時間再加熱した。  A PTFE sheet treated with metallic sodium (the PTFE sheet used in Example 1 treated with metallic sodium) was used, and the same metal case as in Example 1 was used. Laminate via adhesive (BANI-620T (Maruzen Petrochemical Co., Ltd.)), heat at 170 ° C x O.06MP ax for 5 minutes, compress and then further at 170 ° C for 15 hours Reheated.
なお、 PTFEシートの金属ナトリウム処理は、 テトラエッチ (潤ェ社製) に PT FEシートを 30秒間浸潰し、 その後アセトン、 次いで水で洗浄することで行った。 出来上がった回転軸シールの金属ケースとシールエレメントとの間のせん断剥離ト ルクを、 実施例 1と同様にして測定したところ、 500 kgf · cmでシールエレメ ントのみが回転した。  The metal PTFE treatment of the PTFE sheet was performed by immersing the PTFE sheet in tetra-etch (manufactured by Junye Co.) for 30 seconds, followed by washing with acetone and then water. When the shear-peeling torque between the metal case and the seal element of the completed rotary shaft seal was measured in the same manner as in Example 1, only the seal element rotated at 500 kgf · cm.
比較例 2 Comparative Example 2
図 5に示すように、 鋼製のインナーケース 41およびアクリルゴムからなるゴム弾 性体 42を用い、 金属ケース 2、 シールエレメント 3は実施例 1と同じものを使用し て、 クランプタイプの回転軸シールを作製した。 出来上がった回転軸シールの金属ケ ースとシールエレメントとの間のせん断剥離トルクを、 実施例 1と同様にして、 測定 したところ 250 kgf · cmでシールエレメントのみが回転した。  As shown in Fig. 5, the inner case 41 made of steel and rubber elastic body 42 made of acrylic rubber are used. The metal case 2 and the seal element 3 are the same as in the first embodiment, and the clamp type rotary shaft is used. A seal was made. When the shear peeling torque between the metal case and the seal element of the completed rotary shaft seal was measured in the same manner as in Example 1, only the seal element rotated at 250 kgf · cm.
次に、 上記作製した実施例 3、 4および比較例 1の回転軸シールについて、 以下の 耐熱試験および耐寒試験を行つた Next, the rotating shaft seals of Examples 3 and 4 and Comparative Example 1 produced above were Heat resistance test and cold resistance test
[耐熱試験]  [Heat resistance test]
回転軸シールを 1 5 0 °Cの雰囲気下で前記と同様のせん断剥離試験を行って、 剥離 トルクを測定した。  The rotating shaft seal was subjected to the same shearing and peeling test as described above under an atmosphere of 150 ° C., and the peeling torque was measured.
[耐寒試験]  [Cold resistance test]
回転軸シールを一 4 0 °Cの雰囲気下で前記と同様のせん断剥離試験を行って、 剥離 トルクを測定した。  The rotating shaft seal was subjected to the same shearing and peeling test as described above under an atmosphere of 140 ° C., and the peeling torque was measured.
以上の試験結果が下記表 1である。  The above test results are shown in Table 1 below.
表 1 せん断剥離トル  Table 1 Shear peeling torque
ク(20°C)  (20 ° C)
[kgf'cmj 800≤ 800≤ 800≤ 800≤ 500 250 耐熱試験  [kgf'cmj 800≤ 800≤ 800≤ 800≤ 500 250 Heat resistance test
( 150°C雰囲気下  (Under 150 ° C atmosphere
でのせん断剥離 実施せず 実施せず 300≤ 300≤ 200 実施せず トルク)  No peeling at the time Not performed Not performed 300 ≤ 300 ≤ 200 Not performed Torque)
[kgf 'cmj  [kgf 'cmj
耐寒試験  Cold resistance test
(-40 C雰囲気下  (Under -40 C atmosphere
でのせん断剥離  Peeling at
実施せず 実施せず 1000≤ 1000≤ 650 実施せず トルク)  Not implemented Not implemented 1000 ≤ 1000 ≤ 650 Not implemented Torque)
[kgf -cm] [kgf -cm]
産業上の利用の可能性 Industrial applicability
以上の説明により明らかなように、 本発明によれば、 専用の金属部品やゴム弾性体 を使用せず、 簡素な構成で、 しかも、 P T F Eを主成分とするシールエレメントが金 属ケースに強固に固定され、 クリティカルパスの発生の可能性が極めて低い、 高信頼 性の回転軸シールを得ることができる。 また、 本発明の回転軸シールはシールエレメ ントと金属ケースとの間の接着力が温度変化に対しても高い耐性を有するので、 使用 環境の温度変化に対してもシール性能が変化しにくく、 より高い信頼性が得られる。 また、 少ない工程数で、 シールエレメントを金属ケースに固定できるので、 従来のク ランプタイプのシールに比べて製造時間を大きく短縮できる。 また、 一般に、 金属に も接着する耐熱性接着剤として知られている、 エポキシ樹脂系接着剤を使用する場合 のように、 長時間の加熱を必要とせず、 しかも、 接着剤の塗布作業の作業条件や設備 の管理が複雑になるというような煩雑さもないので、 本発明の回転軸シールはそのェ 業的生産を極めて効率よく行うことができる。  As is apparent from the above description, according to the present invention, a simple structure is used without using a dedicated metal part or rubber elastic body, and the seal element mainly composed of PTFE is firmly attached to the metal case. It is possible to obtain a highly reliable rotating shaft seal that is fixed and has a very low possibility of occurrence of a critical path. In addition, since the rotating shaft seal of the present invention has a high resistance to the temperature change in the adhesive force between the seal element and the metal case, the sealing performance hardly changes even when the temperature of the use environment changes. High reliability is obtained. Also, since the sealing element can be fixed to the metal case with a small number of steps, the manufacturing time can be greatly reduced as compared with the conventional clamp type seal. Also, unlike the use of epoxy resin-based adhesives, which are generally known as heat-resistant adhesives that adhere to metals, they do not require long-time heating, and work for applying adhesives Since there is no complexity such as complicated management of conditions and equipment, the rotary shaft seal of the present invention can perform industrial production extremely efficiently.
本出願は日本で出願された特願 2 0 0 1 - 4 0 0 8 5 8および特願 2 0 0 1 - 4 0 1 2 3 7を基礎としており、 それらの内容は本明細書に全て包含される。  This application is based on Japanese Patent Application No. 200-410-588 and Japanese Patent Application No. 200-410-237, the contents of which are incorporated in full herein. Is done.

Claims

請求の範囲 The scope of the claims
1 . 金属ケースにポリテトラフルォロエチレンを主成分とするシールエレメントを 収容した構造の回転軸シールであって、  1. A rotating shaft seal with a structure in which a sealing element mainly containing polytetrafluoroethylene is contained in a metal case,
ポリテトラフルォロエチレンを主成分とするシールエレメントが、 分子中に水酸基 を有するフッ素樹脂の層を介して、 金属ケースに接着、 一体化されてなることを特徴 とする回転軸シール。  A rotary shaft seal, wherein a seal element mainly composed of polytetrafluoroethylene is adhered and integrated with a metal case via a layer of a fluororesin having a hydroxyl group in a molecule.
2 . 金属ケースが、 円筒状周壁部のその軸線方向一方側の端部から内部空間側へ鍔 部を突出させ、 該鍔部に回転軸が挿通される円形貫孔を形成した円環状金属ケースで あり、  2. An annular metal case in which a metal case has a flange portion protruding from one axial end of the cylindrical peripheral wall portion toward the internal space, and a circular through-hole through which the rotation shaft is inserted is inserted into the flange portion. And
シールエレメントはリング状で、 かつ、 前記円環状金属ケースの鍔部に、 分子中に 水酸基を有するフッ素樹脂の層を介して接着されており、  The seal element has a ring shape, and is bonded to a flange of the annular metal case via a layer of a fluororesin having a hydroxyl group in a molecule,
前記分子中に水酸基を有するフッ素樹脂の層は、 その回転軸側の終端部が、 鍔部の 回転軸側の終端部から貫孔内にはみ出さないように設けられていることを特徴とする 請求の範囲第 1項記載の回転軸シール。  The fluororesin layer having a hydroxyl group in the molecule is provided so that the terminal portion on the rotating shaft side does not protrude into the through hole from the terminal portion on the rotating shaft side of the flange portion. The rotary shaft seal according to claim 1, wherein:
3 . 分子中に水酸基を有するフヅ素樹脂の層が、 鍔部の被接着面の 2 0〜1 0 0 % の面積領域を覆うように設けられていることを特徴とする請求の範囲第 2項記載の回 転軸シール。  3. The layer of a fluororesin having a hydroxyl group in the molecule is provided so as to cover an area of 20 to 100% of the surface to be bonded of the flange portion. The rotating shaft seal described in item 2.
4 . 鍔部の被接着面おける円形貫孔の周囲の幅 0 . 1 mm以上のリング状領域内に、 分子中に水酸基を有するフッ素樹脂が存在していないことを特徴とする請求の範囲第 2項記載の回転軸シール。  4. The fluororesin having a hydroxyl group in a molecule is not present in a ring-shaped region having a width of 0.1 mm or more around a circular through-hole on a surface to be bonded of a flange portion. Rotary shaft seal according to item 2.
5 . 分子中に水酸基を有するフッ素樹脂の層の厚みが 5〜 1 0 0 mであることを 特徴とする請求の範囲第 1項〜第 4項のいずれかに記載の回転軸シール。  5. The rotary shaft seal according to any one of claims 1 to 4, wherein the thickness of the fluororesin layer having a hydroxyl group in the molecule is 5 to 100 m.
6 . ポリテトラフルォロエチレンを主成分とするシールエレメントを金属ケースと 一体ィ匕した回転軸シールを製造する方法であって、  6. A method for producing a rotary shaft seal in which a seal element mainly composed of polytetrafluoroethylene is integrally formed with a metal case,
ポリテトラフルォロェチレンを主成分とするシールエレメントと金属ケースとの間 に、 分子中に水酸基を有するフッ素樹脂であって、 その融点がシールエレメントを構 成するポリテトラフルォロエチレンの融点よりも低いフヅ素樹脂を挟み込み、 得られ た積重物を加熱 ·圧縮した後、 当該積重物を荷重下に冷却して、 前記分子中に水酸基 を有するフッ素樹脂を溶融 ·固化させることを特徴とする回転軸シールの製造方法。A fluorine resin having a hydroxyl group in the molecule between the seal element mainly composed of polytetrafluoroethylene and the metal case, the melting point of which is the melting point of polytetrafluoroethylene that constitutes the seal element After heating and compressing the obtained stack, the stack is cooled under a load, and the hydroxyl group is contained in the molecule. A method for producing a rotary shaft seal, comprising melting and solidifying a fluororesin having the following characteristics.
7 . 分子中に水酸基を有するフッ素樹脂がフィルム状に成形した成形物であること を特徴とする請求の範囲第 6項記載の回転軸シールの製造方法。 7. The method for producing a rotary shaft seal according to claim 6, wherein the fluororesin having a hydroxyl group in a molecule is a molded product molded into a film.
8 . 分子中に水酸基を有するフッ素樹脂の融点とシールェレメントを構成するポリ テトラフルォロエチレンの融点との差が 1 o °c以上であることを特徴とする請求の範 囲第 6項記載の回転軸シールの製造方法。  8. The range of claim 6, wherein the difference between the melting point of the fluororesin having a hydroxyl group in the molecule and the melting point of polytetrafluoroethylene constituting the sealerment is 1 ° C or more. A manufacturing method of the rotating shaft seal according to the above.
PCT/JP2002/013758 2001-12-28 2002-12-27 Seal for rotating shaft and method for manufacture thereof WO2003062681A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001-400858 2001-12-28
JP2001400858A JP2003194231A (en) 2001-12-28 2001-12-28 Rotating shaft seal
JP2001-401237 2001-12-28
JP2001401237A JP2003194234A (en) 2001-12-28 2001-12-28 Manufacturing method for rotating shaft seal

Publications (1)

Publication Number Publication Date
WO2003062681A1 true WO2003062681A1 (en) 2003-07-31

Family

ID=27615650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/013758 WO2003062681A1 (en) 2001-12-28 2002-12-27 Seal for rotating shaft and method for manufacture thereof

Country Status (1)

Country Link
WO (1) WO2003062681A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1900982A1 (en) * 2006-09-15 2008-03-19 Mitsubishi Cable Industries, Ltd. Rotation shaft seal

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60188665A (en) * 1984-03-05 1985-09-26 Nok Corp Oil seal made of fluororesin
JPH04317776A (en) * 1991-04-16 1992-11-09 Dainippon Ink & Chem Inc Method for clear finish painting of metal base material
JPH05295349A (en) * 1992-04-24 1993-11-09 Ntn Corp Sealing material of universal coupling
JPH0583543U (en) * 1992-04-10 1993-11-12 イーグル工業株式会社 Lip seal
JPH0673370A (en) * 1992-08-27 1994-03-15 Ntn Corp Damper sealant
JPH06228536A (en) * 1993-01-29 1994-08-16 Ntn Corp O-ring of glove box damper mechanism
WO2000056825A1 (en) * 1999-03-19 2000-09-28 Daikin Industries, Ltd. Fluororubber coating composition and coated article
JP2000351882A (en) * 1999-06-14 2000-12-19 Daikin Ind Ltd Aqueous composition for fluororubber vulcanization, and coated article

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60188665A (en) * 1984-03-05 1985-09-26 Nok Corp Oil seal made of fluororesin
JPH04317776A (en) * 1991-04-16 1992-11-09 Dainippon Ink & Chem Inc Method for clear finish painting of metal base material
JPH0583543U (en) * 1992-04-10 1993-11-12 イーグル工業株式会社 Lip seal
JPH05295349A (en) * 1992-04-24 1993-11-09 Ntn Corp Sealing material of universal coupling
JPH0673370A (en) * 1992-08-27 1994-03-15 Ntn Corp Damper sealant
JPH06228536A (en) * 1993-01-29 1994-08-16 Ntn Corp O-ring of glove box damper mechanism
WO2000056825A1 (en) * 1999-03-19 2000-09-28 Daikin Industries, Ltd. Fluororubber coating composition and coated article
JP2000351882A (en) * 1999-06-14 2000-12-19 Daikin Ind Ltd Aqueous composition for fluororubber vulcanization, and coated article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1900982A1 (en) * 2006-09-15 2008-03-19 Mitsubishi Cable Industries, Ltd. Rotation shaft seal

Similar Documents

Publication Publication Date Title
KR100574843B1 (en) How to attach polytetrafluoroethylene to a material containing a substrate
US3946136A (en) Process for connecting shaped structures containing polytetrafluoroethylene
US6630047B2 (en) Fluoropolymer bonding composition and method
JP4873120B2 (en) Oil seal
US20120100379A1 (en) Fluoroelastomer bonding compositions suitable for high-temperature applications
JPH05112690A (en) Tetrafluoroethylene copolymer resin powder composition and its production
JP2004528205A (en) Method for bonding fluoropolymer to substrate and composite article obtained therefrom
JP4769809B2 (en) Perfluoroelastomer articles having good surface properties
JP5418743B1 (en) Fluororesin seal ring
WO2011123339A1 (en) Fluoroelastomer compositions having self-bonding characteristics and methods of making same
WO2014083978A1 (en) Sliding member
WO2003062681A1 (en) Seal for rotating shaft and method for manufacture thereof
KR101182687B1 (en) Bellows lining method
JP2003194231A (en) Rotating shaft seal
JP2009190171A (en) Laminated body whose surface is treated to be nonadhesive and use thereof
JP4725115B2 (en) Manufacturing method of lip seal made of polytetrafluoroethylene resin
JP2003194234A (en) Manufacturing method for rotating shaft seal
JPH11147291A (en) Modified fluoroplastic composite material
JP2003240127A (en) Method and device for manufacturing seal of rotating shaft
CN114787253A (en) Method for manufacturing sliding member and sliding member
JP5339620B2 (en) Annular sealing means and manufacturing method thereof
JP2002276819A (en) Oil seal
JP2003336744A (en) Manufacturing method of structure
JP7485170B1 (en) Method for manufacturing joined body and electric/electronic component
JP7485227B1 (en) Method for manufacturing joined body, joined body, and electric/electronic component

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase