WO2003060614A2 - Method for removal of pid dynamics from mpc models - Google Patents

Method for removal of pid dynamics from mpc models Download PDF

Info

Publication number
WO2003060614A2
WO2003060614A2 PCT/US2003/000575 US0300575W WO03060614A2 WO 2003060614 A2 WO2003060614 A2 WO 2003060614A2 US 0300575 W US0300575 W US 0300575W WO 03060614 A2 WO03060614 A2 WO 03060614A2
Authority
WO
WIPO (PCT)
Prior art keywords
variables
dynamic model
model
moves
variable
Prior art date
Application number
PCT/US2003/000575
Other languages
French (fr)
Other versions
WO2003060614A3 (en
Inventor
Charles R. Cutler
Original Assignee
Cutler Charles R
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cutler Charles R filed Critical Cutler Charles R
Priority to MXPA04006739A priority Critical patent/MXPA04006739A/en
Priority to KR1020047010379A priority patent/KR100977123B1/en
Priority to EP03707337A priority patent/EP1463979B1/en
Priority to JP2003560648A priority patent/JP2005526306A/en
Priority to DE60308143T priority patent/DE60308143T2/en
Priority to CA2472338A priority patent/CA2472338C/en
Priority to AU2003209193A priority patent/AU2003209193A1/en
Publication of WO2003060614A2 publication Critical patent/WO2003060614A2/en
Publication of WO2003060614A3 publication Critical patent/WO2003060614A3/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/048Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators using a predictor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B11/42Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.

Definitions

  • the instant invention relates to the technical field of multivariable control of complex processes such as chemical manufacturing plants or oil refineries.
  • a method is disclosed for removing the dynamics of the PID controllers from a Model Predictive Controller that was developed using identification testing of a process. This allows creation of valve-based off-line process simulators and provides methods to generate new MPC controllers for complex multivariable process control when a change has been made in any PID control configuration or tuning and to do so without having to conduct new identification testing of the process.
  • Model Predictive Control refers to a class of algorithms that compute a sequence of manipulated variable adjustments in order to optimize the future behavior of complex multivariable processes.
  • MPC Model Predictive Control
  • DMC Dynamic Matrix Control
  • the MPC Controller employs a software model of the process to predict the effect of past changes of manipulated variable and measurable disturbances on the output variables of interest.
  • the independent variables are computed so as to optimize future system behavior over a time interval known as the prediction horizon. In the general case any desired objective function can be used for the optimization.
  • the system dynamics are described by an explicit process model, which can take, in principle, a number of different mathematical forms. Process input and output constraints are included directly in the problem formulation so that future constraint violations are anticipated and prevented.
  • a linear model for the plant dynamics.
  • the linear model is developed in a first step by gathering data on the process by introducing test disturbances on the independent variables and measuring the effects of the disturbances on the dependent variables. This initial step is referred to as Identification and the novel use of this identification data is the essence of this invention.
  • DMC Dynamic Matrix Control
  • this Identification of process dynamics requires a pre-test in which the independent variables of the process are moved in some pattern to determine the effect on the dependent variables.
  • the independent variables include the PID (proportional-integral-derivative) controller set points for selected dependent variables, the valve positions of PID controllers in manual, and temperatures, material flows, pressures and compositions that are determined outside the scope of the controller's domain.
  • the independent variables are fixed for the analysis of the data. Further the tuning of any of the PID controllers in the domain of the MPC controller is fixed.
  • the MPC controller that is built to use the dynamic process models from the Identification must have exactly the same configuration of independent variables that existed when the Identification was performed. Thus the PID controller configuration that is present during Identification imbeds the PID controller dynamics in the dynamic model.
  • a survey of control rooms in the chemical process industry will reveal that they are rarely used after a start-up as the operating personnel learn that the simulator does not allow the operators to experiment with realistic control changes.
  • a training simulator based on an Identification model that has the fidelity to hold a process at constraints, display all temperatures, pressures, flows, and valve positions and allow the operator to switch any PID controller to manual or auto would be a powerful tool for training.
  • An object of this invention is to provide a method for removing the dynamics of the PID controllers from the MPC controller used in a multivariable control process. This allows creation of valve-based off-line process simulators.
  • a process simulator could be used for simulation in any controller configuration and with various tuning configurations on each individual controller.
  • a method used in model predictive control applications for removing PID controller dynamics from a controller model of a process having a plurality of independently controllable, manipulated variables and at least one controlled variable dependent upon the independently controllable, manipulated variables that includes at least the steps of: gathering data about the process by separately introducing a test disturbance in each of the manipulated variables and measuring the effect of the distur variable; using the effects of the disturbances on the controlled variable to generate a first linearized matrix model relating the at least one controlled variable to the independently controllable, manipulated variables; interchanging selected valve position controlled variables with their corresponding selected independently controllable, manipulated PID controller set point variables in the linearized model using matrix row elimination mathematics to generate a second linearized model that has a new set of independently controllable, manipulated variables, the second model having the dynamics of the selected independently controllable, manipulated PID controller set point variables removed from the model.
  • the method includes controlling a process having a plurality of independently controllable, manipulated variables and at least one controlled variable dependent upon the independently controllable, manipulated variables including the steps of: gathering data about the process by separately introducing a test disturbance in each of the manipulated variables and measuring the effect of the disturbances on the controlled variable; using the effects of the disturbances on the controlled variable to generate a first linearized dynamic model relating the at least one controlled variable to the independently controllable, manipulated variables; interchanging selected valve position controlled variables with their corresponding selected independently controllable, manipulated PID controller set point variables in the first linearized dynamic model using matrix row elimination mathematics to generate a second linearized dynamic model that has a new set of independently controllable, manipulated variables, the second linearized dynamic model having the dynamics of the selected independently controllable, manipulated PID controller set point variables removed from the second linearized dynamic model; measuring the present value of the variables; calculating for discrete intervals of time from the gathered data about the process, the measured present values and
  • At least one corresponding valve position as a new independently controllable, manipulated variable; then externally emulating new desired PID tuning via mathematical emulator to emulate the effect of the at least one PID controllers new tuning with the secondary linerarized dynamic model; then testing the secondary linearized dynamic model with it's emulated PID tuning by stepping each of it's manipulated variables to obtain the new linearized dynamic model that will now contain the dynamics of the at least one PID controllers.
  • a regulatory control scheme can be easily emulated external to the process model via a DCS console or console emulator available in modern control packages. This allows the operator to put PID controllers in Manual- mode, break cascades, retune PID controller, or even re-configure the regulatory control scheme.
  • a regulatory control scheme can be easily emulated external to the process model via a DCS console or console emulator available in modern control packages. This allows the operator to put PID controllers in Manual-mode, break cascades, retune PID controller, or even reconfigure the regulatory control scheme
  • DMI Dynamic Matrix Identification
  • Figure 1 is a flow schematic of a fractionator
  • Figure 2 is a simulation of the fractionator model based on valve positions
  • Figure 3 demonstrates the results from a plant test of the fractionator
  • Figure 4 is a simulation of the fractionator with the PID controllers
  • Figure 5 is a demonstration of the fractionator with the original and recovered values
  • the invention is a method used in conjunction with model predictive control for removing the dynamics of PID controllers from MPC controllers.
  • An MPC process model is a set of linear equations so it should be mathematically possible to interchange any independent variable with a dependent variable provided a relation exists between the independent and dependent variable.
  • a candidate set for that transformation is the set point (independent) for a PID controller and the associated valve position (dependent) for that PID controller.
  • An MPC controller is often based on a linear model of a process system.
  • the invention to be described here has applications in many fields the examples used will be from chemical and refinery process applications.
  • the independent variables are inputs to the system.
  • the independent variables are further divided into manipulated and disturbance (feedforward) variables.
  • Manipulated variables are those that can be changed by the human operator, such as valve positions or PID controller set points.
  • Disturbance variables are those independent variables that have an effect on the system, but cannot be changed by the human operator.
  • Variables such as feed composition, feed temperature, and ambient temperature are examples of disturbance variables.
  • Dependent variables are outputs from the system.
  • Dependent variables are affected by changes in the independent variables. The human operator cannot directly change them.
  • the values of dependent variables can be controlled, however, by correctly changing the values of the manipulated variables. Further, as disturbances enter the system, the manipulated variables must be correctly adjusted to counteract the disturbance.
  • Equation 1 Step Response Dynamic Matrix, Block Matrix Form
  • Step Response equation is the Finite Impulse Response (FIR) form. It can be derived from the Step Response form as described below.
  • FIR Finite Impulse Response
  • Equation 2 Finite Impulse Response Equations - Block Matrix Form
  • Multiply Equation-5 by 0.5 add it to Equation-1 and replace Equation-1 Multiply Equation-5 by 0.4, add it to Equation-2 and replace Equation-2 Multiply Equation-5 by 0.2, add it to Equation-3 and replace Equation-3 Multiply Equation-5 by 0.1 , add it to Equation-4 and replace Equation-4 Multiply Equation-5 by 0.25, add it to Equation-6 and replace Equation-6 Multiply Equation-5 by 0.15, add it to Equation-7 and replace Equation-7 Multiply Equation-5 by 0.05, add it to Equation-8 and replace Equation-8
  • Equation-5 Multiply Equation-5 by 0.4, add it to Equation-3 and replace Equation-3
  • Equation-5 Multiply Equation-5 by 0.2, add it to Equation-4 and replace Equation-4
  • Equation-5 Multiply Equation-5 by 0.25, add it to Equation-7 and replace Equation-7
  • Multiply Equation-5 by 0.5 add it to Equation-3 and replace Equation-3 Multiply Equation-5 by 0.4, add it to Equation-4 and replace Equation-4 Multiply Equation-5 by 0.25, add it to Equation-8 and replace Equation-8
  • Equation-5 Multiply Equation-5 by 0.5, add it to Equation-4 and replace Equation-4
  • Step-1 Convert new independent variable from "accumulative” to "delta” form.
  • Step-2 Convert new dependent variable from “delta” to "accumulative” form.
  • the equations for the new second dependent variable are written below. It is necessary to accumulate these equations to convert from the "delta” to the “accumulative” form.
  • Multiply Equation-5 by 0.5 add it to Equation-2 and replace Equation-2 Multiply Equation-5 by 0.9, add it to Equation-3 and replace Equation-3 Multiply Equation-5 by 1.1, add it to Equation-4 and replace Equation-4 Multiply Equation-5 by 1.0, add it to Equation-7 and replace Equation-7 Multiply Equation-5 by 1.15, add it to Equation-8 and replace Equation-8
  • Multiply Equation-5 by 0.5 add it to Equation-3 and replace Equation-3 Multiply Equation-5 by 0.9
  • Multiply Equation-5 by 1.0 add it to Equation-8 and replace Equation-8
  • Equation-5 Multiply Equation-5 by 0.5, add it to Equation-4 and replace Equation-4
  • an FIR model based on valve positions is used as the " process model to simulate the behavior of a complex fractionator.
  • the regulatory control for the fractionator consists of three PI (proportional/integral) feedback controllers.
  • a plant step test is performed on the simulation using the regulatory controller set points.
  • An FIR model is then obtained for the fractionator based on the set points of the PI controllers.
  • This model based on the regulatory control scheme is then input to the algorithm to remove the PI controller dynamics and recover the original FIR process model.
  • Finite Impulse Response (FIR) model is used to refer to the open-loop step response form of the models, since the step form could be directly calculated from the impulse coefficients.
  • FIG. 1 The schematic for the Complex Fractionator is shown in Figure 1.
  • the feed flow rate 5 is controlled by the upstream unit and is pre-heated in a furnace 6.
  • the fractionator 7 has a top, middle and bottom product.
  • the fractionator overhead temperature is controlled with a PI controller 8 moving the top reflux.
  • the middle product draw temperature is controlled with a PI controller 9 moving the middle product draw rate.
  • a third PI controller 10 moves the bottom product rate to control the fractionator bottoms level.
  • the bottom composition (light component) is measured with an analyzer 11. Description of Finite Impulse Response (FIR) Model
  • the process model used in this example is an open-loop, step response model based on the valve positions, summarized as follows:
  • the model Given the predicted future system response based on no further independent variable changes and given the constraints on all independent and dependent variables, the model can be used to plan a strategy of independent variable moves to keep all independent and dependent variables within constraints. This illustrates the use of the model for Control.
  • the model for this example has a steady state time of ninety (90) minutes. A three (3) minute time interval is used.
  • Step Response Coefficients for Dependent Variable-1 TIC-2001.PV DEG F
  • Step Response Coefficients for Dependent Variable-4 AI-2022.PV MOLE %
  • AI-2022.PV - Fractionator Bottoms Composition (Light Component) [00084] This illustrates the use of a valve-based FIR model as a process simulator. As described above, the PID control calculations were performed external to the process simulation.
  • the new algorithm to remove PID dynamics was applied to the model shown in FIG. 4, and this model with the PID dynamics removed is compared to the original simulation model. As can be seen in FIG. 5, the algorithm successfully recovers the original valve based model. Note that the steady state time of the recovered model is longer than the steady state time of the original model. This is a result of a longer steady state time for the model with the PID controllers.
  • the original valve-based simulation model had a steady state time of 90 minutes. When the PID controllers were configured and the plant step-test performed, it took 180 minutes for the process to reach steady state, due to having to wait for the PID feedback control to settle out.
  • the steady state time of the recovered valve-based model has the same steady state time as the model containing the PID dynamics from which it was generated. It can be seen, however, that the recovered model has reached steady state in 90 minutes, and if it were truncated at that point, would exactly match the original valve-based model.
  • This ability to remove PID dynamics allows creation of an off-line process simulator based only on valve positions instead of PID set points.
  • the plant test can be performed with any stable regulatory configuration and PID tuning and a corresponding mode) can be obtained.
  • the algorithm to remove the PID dynamics is then applied to the resulting model to remove the dynamics of all PID controllers and convert the model inputs from set points to valves.
  • the regulatory control scheme can then be emulated external to the process model via a DCS console or console emulator. This allows the operator to put PID controllers in Manual-mode, break cascades, retune PID controller, or even re-configure the regulatory control scheme.
  • FCCU Fluidized Bed Catalytic Cracking Unit
  • FCCU Fluidized Bed Catalytic Cracking Unit
  • the system pressure is controlled with a PID controller moving the speed of the Wet Gas Compressor.
  • the pressure is not directly controlled.
  • Testing the unit with the pressure off control is difficult.
  • the solution is to test the plant with the PID controller moving the compressor speed, keeping the speed on control.
  • the model is obtained, the pressure controller PID dynamics are removed and the model based control application will them move the compressor speed directly.
  • the model based control application controls the system pressure as an output by manipulating other inputs when the compressor speed is at maximum.
  • valves of certain PID controllers are driven off control during the plant test. At the present time, this data cannot be used in constructing the process model.
  • the new algorithm it is possible to use all the data, even when a PID controller is off control. This is done by first identifying the model as before using data only where the PID controller is on control. This model is then modified to remove the PID dynamics and the new data is "filtered into" the model.
  • this new invention will allow construction of high fidelity, useable off-line process simulators and will enhance the ability to implement and maintain model- based control applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Feedback Control In General (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

A method for removing the dynamics of PID controllers (8-10) from a Model Predictive Controller that was developed using identification testing of a process (fig. 1). This allows creation of valve-based off-line process simulators and provides methods to generate new MPC controllers for complex multivariate process control when a change has been made in any PID control configuration (8-10) or tuning and to do so without having to conduct new identification testing of the process.

Description

METHOD FOR REMOVAL OF PID DYNAMICS FROM MPC MODELS
***********************
TECHNICAL FIELD
[0001] The instant invention relates to the technical field of multivariable control of complex processes such as chemical manufacturing plants or oil refineries. A method is disclosed for removing the dynamics of the PID controllers from a Model Predictive Controller that was developed using identification testing of a process. This allows creation of valve-based off-line process simulators and provides methods to generate new MPC controllers for complex multivariable process control when a change has been made in any PID control configuration or tuning and to do so without having to conduct new identification testing of the process.
BACKGROUND ART
[ooo2] Model Predictive Control (MPC) refers to a class of algorithms that compute a sequence of manipulated variable adjustments in order to optimize the future behavior of complex multivariable processes. Originally developed to meet the needs of petroleum refineries and chemical processes, MPC can now be found in a wide variety of application areas including chemicals, food processing, automotive, aerospace, metallurgy, and pulp and paper. A well-known implementation of MPC in chemical and refinery applications is Dynamic Matrix Control or DMC.
[0003] The MPC Controller employs a software model of the process to predict the effect of past changes of manipulated variable and measurable disturbances on the output variables of interest. The independent variables are computed so as to optimize future system behavior over a time interval known as the prediction horizon. In the general case any desired objective function can be used for the optimization. The system dynamics are described by an explicit process model, which can take, in principle, a number of different mathematical forms. Process input and output constraints are included directly in the problem formulation so that future constraint violations are anticipated and prevented. [0004] In practice a number of different approaches have been developed and commercialized in implementing MPC Controllers. The most successful implementations have made use of a linear model for the plant dynamics. The linear model is developed in a first step by gathering data on the process by introducing test disturbances on the independent variables and measuring the effects of the disturbances on the dependent variables. This initial step is referred to as Identification and the novel use of this identification data is the essence of this invention.
[0005] U.S. Patents 4,349,869 and 4,616,308 describe an implementation of MPC control called Dynamic Matrix Control (DMC). These patents describe the MPC algorithms based on linear models of a plant and describe how process constraints are included in the problem formulation. Initial identification of the MPC controller using process data is also described.
[0006] By way of further background this Identification of process dynamics requires a pre-test in which the independent variables of the process are moved in some pattern to determine the effect on the dependent variables. In a chemical or refinery process the independent variables include the PID (proportional-integral-derivative) controller set points for selected dependent variables, the valve positions of PID controllers in manual, and temperatures, material flows, pressures and compositions that are determined outside the scope of the controller's domain. For any process Identification test, the independent variables are fixed for the analysis of the data. Further the tuning of any of the PID controllers in the domain of the MPC controller is fixed. The MPC controller that is built to use the dynamic process models from the Identification must have exactly the same configuration of independent variables that existed when the Identification was performed. Thus the PID controller configuration that is present during Identification imbeds the PID controller dynamics in the dynamic model.
[0007] This characteristic of current Identification technology represents an unsolved problem that is addressed by this invention. The problem creates a limitation on the use of MPC technology that manifests itself in two different areas. [0008] The first application area is MPC itself. Because the dynamics of the PID controllers are imbedded in the MPC model, any change in the tuning of a PID controller or changing of the PID state from auto to manual or vice versa changes the dynamic model. To correct this it has been required to retest the process unit with the changed conditions. A well-designed Identification test for a complex multivariable process might be a 2-3 week effort involving careful planning and skilled people.
[ooo9] The second application area is in the field of Operator Training Simulators. Effective training simulators are important to the chemical process industry. The large investments in new chemical processes and the safety implications of the complex processes require a well-trained operator group. This is important especially for process units that remain on computer control for extended periods of time, since the operators do not have the opportunity to control the unit. MPC models are used in creating training simulators but MPC models obtained from current Identification technology fall short of ideal because of the aforementioned problem that the PID controller configuration that is present during Identification imbeds the PID controller dynamics in the dynamic model. The result of this is that authentic training is difficult because the operators cannot change the state (auto or manual) of the PID controllers without reducing the fidelity of the model. A survey of control rooms in the chemical process industry will reveal that they are rarely used after a start-up as the operating personnel learn that the simulator does not allow the operators to experiment with realistic control changes. A training simulator based on an Identification model that has the fidelity to hold a process at constraints, display all temperatures, pressures, flows, and valve positions and allow the operator to switch any PID controller to manual or auto would be a powerful tool for training.
[00010] Numerous unsuccessful attempts have been made by practitioners in the field to address this identification issue. One approach would be to run the identification test with the regulatory control scheme in manual. This of course fails because the process does not reach any type of steady state. Other attempts have been made to conduct a standard identification test with the regulatory scheme in place but to then set up the model with the valve positions as the independent variables. These approaches always lead to failure with erratic results. It has become recognized that this approach fails because the valve positions are correlatei dynamics via measured and unmeasured disturbances that are always present in a real world identification test and are thus not independent.
[00011] The recognition of this fact and the method of removing the noise and unmeasured disturbances from the data set are the essence of the invention.
DISCLOSURE OF INVENTION
[oooi2] An object of this invention is to provide a method for removing the dynamics of the PID controllers from the MPC controller used in a multivariable control process. This allows creation of valve-based off-line process simulators.
[00013] It is a further object of this invention to provide such a method that can be used in various implementations of MPC controllers.
[oooi4] It is a further object of this invention to provide a method to generate new MPC controllers for complex multivariable process control when a change has been made in any PID control configuration or tuning and to do so without having to conduct new identification testing of the process.
[oooi5] It is a further object of this invention to generate a process simulator based on valve positions with the effect of unmeasured disturbances removed so that a high fidelity process simulator is available for process simulation and training. Such a simulator could be used for simulation in any controller configuration and with various tuning configurations on each individual controller.
[00016] In accordance with this invention there is provided a method used in model predictive control applications for removing PID controller dynamics from a controller model of a process having a plurality of independently controllable, manipulated variables and at least one controlled variable dependent upon the independently controllable, manipulated variables that includes at least the steps of: gathering data about the process by separately introducing a test disturbance in each of the manipulated variables and measuring the effect of the distur variable; using the effects of the disturbances on the controlled variable to generate a first linearized matrix model relating the at least one controlled variable to the independently controllable, manipulated variables; interchanging selected valve position controlled variables with their corresponding selected independently controllable, manipulated PID controller set point variables in the linearized model using matrix row elimination mathematics to generate a second linearized model that has a new set of independently controllable, manipulated variables, the second model having the dynamics of the selected independently controllable, manipulated PID controller set point variables removed from the model.
[00017] To use this model in a control context the method includes controlling a process having a plurality of independently controllable, manipulated variables and at least one controlled variable dependent upon the independently controllable, manipulated variables including the steps of: gathering data about the process by separately introducing a test disturbance in each of the manipulated variables and measuring the effect of the disturbances on the controlled variable; using the effects of the disturbances on the controlled variable to generate a first linearized dynamic model relating the at least one controlled variable to the independently controllable, manipulated variables; interchanging selected valve position controlled variables with their corresponding selected independently controllable, manipulated PID controller set point variables in the first linearized dynamic model using matrix row elimination mathematics to generate a second linearized dynamic model that has a new set of independently controllable, manipulated variables, the second linearized dynamic model having the dynamics of the selected independently controllable, manipulated PID controller set point variables removed from the second linearized dynamic model; measuring the present value of the variables; calculating for discrete intervals of time from the gathered data about the process, the measured present values and pre-selected operating constraints a set of moves for present and future times for at least the manipulated variables to obtain new values for the manipulated variables and to move the at least one dependent controllable variable towards at least one of the constraints; and changing the process by adjusting the manipulated variables for the set of moves for present and future times to cause the process to move the at least one dependent controllable variable towards at least one of the constraints. [00018] To use this invention to generate new MPC controllers for complex multivariable process control when a change has been made in any PID control configuration or tuning and to do so without having to conduct new identification testing of the process the following process can be used: by interchanging at least one PID controller set point variable in an original linearized dynamic model with its corresponding valve position controlled variable in the original linearized dynamic model using matrix row elimination mathematics to generate a secondary linearized dynamic model that has the. at least one corresponding valve position as a new independently controllable, manipulated variable; then externally emulating new desired PID tuning via mathematical emulator to emulate the effect of the at least one PID controllers new tuning with the secondary linerarized dynamic model; then testing the secondary linearized dynamic model with it's emulated PID tuning by stepping each of it's manipulated variables to obtain the new linearized dynamic model that will now contain the dynamics of the at least one PID controllers.
[oooi9] It should be noted that a regulatory control scheme can be easily emulated external to the process model via a DCS console or console emulator available in modern control packages. This allows the operator to put PID controllers in Manual- mode, break cascades, retune PID controller, or even re-configure the regulatory control scheme.
[00020] To use this invention to generate a process simulator based on valve positions with the effect of unmeasured disturbances removed so that a high fidelity process simulator is available for process simulation and training the following method is used: first gathering data about the process by separately introducing a test disturbance in each of the manipulated variables and measuring the effect of the disturbances on the controlled variable; then using the effects of the disturbances on the controlled variable to generate a first linearized dynamic model relating the at least one controlled variable to the independently controllable, manipulated variables; then interchanging each independently controllable, manipulated PID controller set point variable with its corresponding valve position controlled variable in the first linearized dynamic model using matrix row elimination mathematics to generate a second linearized dynamic model that has the corresponding valve positions as a new set of independently controllable, manipulated variables, the second linearized dynamic model having the dynamics of the selected indeper manipulated PID controller set point variables removed from the second linearized dynamic model; then externally emulating a desired regulatory control schemes via mathematical emulators to emulate PID controllers in either manual, cascade, or automatic modes. As before it should be noted that a regulatory control scheme can be easily emulated external to the process model via a DCS console or console emulator available in modern control packages. This allows the operator to put PID controllers in Manual-mode, break cascades, retune PID controller, or even reconfigure the regulatory control scheme
[00021] The most common method of Identification currently used in oil refining and chemical processes is the Dynamic Matrix Identification (DMI). DMI will be used to illustrate the methodology of this invention, but it should be understood that the invention is not limited to a specific Identification technique.
BRIEF DESCRIPTION OF DRAWINGS
[00022] Figure 1 is a flow schematic of a fractionator
[00023] Figure 2 is a simulation of the fractionator model based on valve positions
[00024] Figure 3 demonstrates the results from a plant test of the fractionator
[00025] Figure 4 is a simulation of the fractionator with the PID controllers
[00026] Figure 5 is a demonstration of the fractionator with the original and recovered values
BEST MODE FOR CARRYING OUT INVENTION
[00027] The invention is a method used in conjunction with model predictive control for removing the dynamics of PID controllers from MPC controllers.
[00028] An MPC process model is a set of linear equations so it should be mathematically possible to interchange any independent variable with a dependent variable provided a relation exists between the independent and dependent variable. A candidate set for that transformation is the set point (independent) for a PID controller and the associated valve position (dependent) for that PID controller.
[00029] An MPC controller is often based on a linear model of a process system. Although the invention to be described here has applications in many fields the examples used will be from chemical and refinery process applications.
[00030] There are two types of variables in any system; the independent variables and the dependent vanables. The independent variables are inputs to the system. The independent variables are further divided into manipulated and disturbance (feedforward) variables. Manipulated variables are those that can be changed by the human operator, such as valve positions or PID controller set points. Disturbance variables are those independent variables that have an effect on the system, but cannot be changed by the human operator. Variables such as feed composition, feed temperature, and ambient temperature are examples of disturbance variables.
[00031] Dependent variables are outputs from the system. Dependent variables are affected by changes in the independent variables. The human operator cannot directly change them. The values of dependent variables can be controlled, however, by correctly changing the values of the manipulated variables. Further, as disturbances enter the system, the manipulated variables must be correctly adjusted to counteract the disturbance.
[00032] The use of linear models allows the use of matrix mathematics in describing complex and multivariable control. There are several general formulations of MPC models. A general model for control is the step response model:
S = 4,1^1 + -- -+ A/Δ/,. + -+ A indMnind
δ Ot = At lMl + .. -+ AlιJΔΪJ + - ~+ Ai,nindMnilld
Ondep = AndeptlAIJ + • • •+ Andep jMj + • •+ Andep nindbdnind
Equation 1 : Step Response Dynamic Matrix, Block Matrix Form where,
, the accumulative change in the r dependent variable at each
Figure imgf000010_0001
Δ7 y.i
ΔJ J,2
Al M y.3 , the step change in the/ independent variable at each time step,
Δi 7.πeoe and
A, - , the Dynamic Matrix.
Figure imgf000010_0002
[00033] An alternate form of this Step Response equation is the Finite Impulse Response (FIR) form. It can be derived from the Step Response form as described below.
[00034] Recalling from the definitions that:
Figure imgf000010_0003
Kj,k = au,k ~ «,,,,(*-!) for * : 2 → ncoef and that
ΔC> " °ι,h ~ °ι k-i) for k ■ 1 → ncoef we can difference the above system of equations to give: 03 00575
Figure imgf000011_0001
AOndep Bndep,l- ll + B nd PJ^j ' + Bndep.mnd- li mnά
Equation 2: Finite Impulse Response Equations - Block Matrix Form
where
°..ι -°,o
AO = o,, - ol>2 , the change in the / dependent variable across each time ι,ncoef ι,(ncoef-\) interva
ΔJ 7,1
ΔJ
AI^ ΔJ 7.3 as above, and
ΔZ j.ncoef
^,7,1
Figure imgf000011_0002
„ - 'ιj.3 "ιj.2 ^.7.1 the model matrix of Impulse Coefficients.
®ι,j,ncoef
Figure imgf000011_0003
[00035] There are five forms of these equations, and we have shown only the first two. While these forms are mathematically equivalent, and while all forms may be used for identification prediction and control, they have very different properties.
δ O = AΔΪ - Most often used for control calculations. ΔO = BAΪ - Used for identification of steady state varia' ' ΔΔO = .5ΔΔJ - Used for identification of ramp variables. δ O = Bδ T - Not commonly used. Old IDCOM control formulation. ΔO = A /Ϊ - Not commonly used.
[00036] C. R. Cutler and C. R. Johnston discuss the properties of these forms of the matrix in a paper, "Analysis of the Forms of the Dynamic Matrix", in the Proceedings of the Instrument Society of America ISA 85 Advances in Instrumentation Volume 40, Number 1 - October 1985.
[00037] The use of these linear modeling techniques, including the identification of the model and the use of the model for control and the use in control with constraints is described in two U.S patents, 4,349,869 and 4,616,308. These patents are incorporated herein by reference.
[00038] We will now derive the algorithm of this invention to demonstrate the removal of the PID dynamics from the controller. The derivation is from the FIR model of equation 2. To derive the algorithm, we assume that the j th independent variable is the set point of a PID controller and the i th dependent is the PID valve response to that set point change. We wish to re-constitute the model so that the valve is the independent variable in the process model; that is to say, we wish to remove the dynamics of this PID controller from all affected model responses. This can be accomplished by interchanging the i th dependent variable with the j th dependent variable, as follows:
/ •• ■ 0 0 0 ••• 0 ΔO,
0 ' . / 0 0 ΔOi-.)
0 ' . 0 / 0 ΔO-
0 ' . 0 0 I ΔO (,>+i)
0 - 0 0 0 - I ΔO„.
Figure imgf000012_0001
Figure imgf000012_0002
, the Identity Matrix.
Figure imgf000013_0002
Note that this is nothing more than equation 2 above with an Identity matrix multiplying the ΔO's .
By performing row elimination operations (pivoting), we get;
Figure imgf000013_0001
Figure imgf000013_0003
Figure imgf000013_0004
Which can be re-written as:
Figure imgf000014_0003
Figure imgf000014_0001
Figure imgf000014_0004
Which can be rearranged to; xM m,nd
Figure imgf000014_0005
Figure imgf000014_0002
Figure imgf000014_0006
or reassembling the matrix equation we get;
Figure imgf000015_0001
[00039] Note that ΔO? and ΔJ- have been interchanged so that the valve position is now an independent variable and the PID set point is now a dependent variable. This illustrates removing the PID dynamics from only one PID controller, but the algorithm is cleariy general in that multiple independent/dependent variable pairs can be interchanged to remove the dynamics for multiple controllers.
[00040] By way of further illustration a numerical example problem will now be illustrated to show how this approach is applied to a model predictive controller to remove the dynamics of a particular PID controller.
[00041] Given an FIR model with two (2) independent variables, two (2) dependent variables and four (4) model coefficients, where the second independent variable is the set point of a PID controller and the second dependent variable is the valve position of the PID controller, we wish to re-constitute the model with the PID valve position as an independent variable instead of the PID set point. This requires that the dynamics of the PID controller be removed from all system responses according to the algorithm previously discussed. This example is also valid for the ΔO = τ5Δ7; , δ O = Bδ I , and ΔΔO = τ5ΔΔ7 forms of the equation.
Dependent Var-1 Independent Var-1 Independent Var-2
* >= °-5
Figure imgf000015_0002
>,.,3 = 0-2 V4= °-1 &1,2,4 = 0- 1
Dependent Var-2 Independent Var-1 Independent Var-2
Figure imgf000016_0001
[00042] The problem is specified in the matrix below.
Indicates Pivot Element
Figure imgf000016_0002
Multiply Equation-5 by (-1/0.75)
Figure imgf000016_0003
Multiply Equation-5 by 0.5, add it to Equation-1 and replace Equation-1 Multiply Equation-5 by 0.4, add it to Equation-2 and replace Equation-2 Multiply Equation-5 by 0.2, add it to Equation-3 and replace Equation-3 Multiply Equation-5 by 0.1 , add it to Equation-4 and replace Equation-4 Multiply Equation-5 by 0.25, add it to Equation-6 and replace Equation-6 Multiply Equation-5 by 0.15, add it to Equation-7 and replace Equation-7 Multiply Equation-5 by 0.05, add it to Equation-8 and replace Equation-8
1.7 0 0 0 0 0 0 0 1 0 0 0 -0.667 0 0 0
0.76 1.5 0 0 0 0.5 0 0 0 1 0 0 -0.533 0 0 0
0.28 0.6 1.5 0 0 0.4 0.5 0 0 0 1 0 -0.267 0 0 0
0.14 0.2 0.6 1.5 0 0.2 0.4 0.5 0 0 0 1 -0.133 0 0 0
0.4 0 0 0 -1 0 0 0 0 0 0 0 -1.333 0 0 0
-0.3 -0.3 0 0 0 0.75 0 0 0 0 0 0 -0.333 1 0 0
-0.04 -0.4 -0.3 0 0 0.25 0.75 0 0 0 0 0 -0.2 0 1 0
-0.03 -0.1 -0.4 -0.3 0 0.15 0.25 0.75 0 0 0 0 -0.067 0 0 1
Multiply Equation-6 by (-1/0.75)
1.7 0 0 0 0 0 0 0 1 0 0 0 -0.667 0 0 0
0.76 1.5 0 0 0 0.5 0 0 0 1 0 0 -0.533 0 0 0
0.28 0.6 1.5 0 0 0.4 0.5 0 0 0 1 0 -0.267 0 0 0
0.14 0.2 0.6 1.5 0 0.2 0.4 0.5 0 0 0 1 -0.133 0 0 0
0.4 0 0 0 -1 0 0 0 0 0 0 0 -1.333 0 0 0
0.4 0.4 0 0 0 -1 0 0 0 0 0 0 0.444 ■1.333 0 0
-0.04 -0.4 -0.3 0 0 0.25 0.75 0 0 0 0 0 -0.2 0 1 0
-0.03 -0.1 -0.4 -0.3 0 0.15 0.25 0.75 0 0 0 0 -0.067 0 0 1
Multiply Equation-5 by 0.5, add it to Equation-2 and replace Equation-2
Multiply Equation-5 by 0.4, add it to Equation-3 and replace Equation-3
Multiply Equation-5 by 0.2, add it to Equation-4 and replace Equation-4
Multiply Equation-5 by 0.25, add it to Equation-7 and replace Equation-7
Multiply Equation-5 by 0.15, add it to Equation-8 and replace Equation-8
1.7 0 0 0 0 0 0 0 1 0 0 0 -0.667 0 0 0
0.96 1.7 0 0 0 0 0 0 0 1 0 0 -0.311 -0.667 0 0
0.44 0.76 1.5 0 0 0 0.5 0 0 0 1 0 -0.089 -0.533 0 0
0.22 0.28 0.6 1.5 0 0 0.4 0.5 0 0 0 1 -0.044 -0.267 0 0
0.4 0 0 0 -1 0 0 0 0 0 0 0 -1.333 0 0 0
0.4 0.4 0 0 0 -1 0 0 0 0 0 0 0.444 -1.333 0 0
0.06 -0.3 -0.3 0 0 0 0.75 0 0 0 0 0 -0.089 -0.333 1 0
0.03 -0.04 -0.4 -0.3 0 0 0.25 0.75 0 0 0 0 0 -0.2 0 1
Multiply Equation-7 by (-1/0.75)
1.7 0 0 0 0 0 0 0 1 0 0 0 -0.667 0 0 0
0.96 1.7 0 0 0 0 0 0 0 1 0 0 -0.311 -0.667 0 0
0.44 0.76 1.5 0 0 0 0.5 0 0 0 1 0 -0.089 -0.533 0 0
0.22 0.28 0.6 1.5 0 0 0.4 0.5 0 0 0 1 -0.044 -0.267 0 0
0.4 0 0 0 -1 0 0 0 0 0 0 0 -1.333 0 0 0
0.4 0.4 0 0 0 -1 0 0 0 0 0 0 0.444 -1.333 0 0
-0.08 0.4 0.4 0 0 0 -1 0 0 n n n n -i -iQ n AAAA _•] 333 0 I 0.03 -0.04 -0.4 -0.31 0 0 0-25 0.75|| 0 0 0 θ| 0 -0.2
Multiply Equation-5 by 0.5, add it to Equation-3 and replace Equation-3 Multiply Equation-5 by 0.4, add it to Equation-4 and replace Equation-4 Multiply Equation-5 by 0.25, add it to Equation-8 and replace Equation-8
1.7 0 0 0 0 0 0 0 1 0 0 0 -0.667 0 0 0
0.96 1.7 0 0 0 0 0 0 0 1 0 0 -0.311 -0.667 0 0
0.4 0.96 1.7 0 0 0 0 0 0 0 1 0 -0.030 -0.311 -0.667 0
0.188 0.44 0.76 1.5 0 0 0 0.5 0 0 0 1 0.003 -0.089 -0.533 0
0.4 0 0 0 -1 0 0 0 0 0 0 0 -1.333 0 0 0
0.4 0.4 0 0 0 -1 0 0 0 0 0 0 0.444 -1.333 0 0
-0.08 0.4 0.4 0 0 0 -1 0 0 0 0 0 0.119 0.444 -1.333 0
0.01 0.06 -0.3 -0.3 0 0 0 0.75 0 0 0 0 0.030 -0.089 -0.333 1
Multiply Equation-8 by (-1/0.75)
1.7 0 0 0 0 0 0 0 1 0 0 0 -0.667 0 0 0
0.96 1.7 0 0 0 0 0 0 0 1 0 0 -0.311 -0.667 0 0
0.4 0.96 1.7 0 0 0 0 0 0 0 1 0 -0.030 -0.311 -0.667 0
0.188 0.44 0.76 1.5 0 0 0 0.5 0 0 0 1 0.003 -0.089 -0.533 0
0.4 0 0 0 -1 0 0 0 0 0 0 0 -1.333 0 0 0
0.4 0.4 0 0 0 -1 0 0 0 0 0 0 0.444 -1.333 0 0
-0.08 0.4 0.4 0 0 0 -1 0 0 0 0 0 0.119 0.444 -1.333 0
-0.013 -0.08 0.4 0.4 0 0 0 -1 0 0 0 0 -0.040 0.119 0.444 -1.333
Multiply Equation-5 by 0.5, add it to Equation-4 and replace Equation-4
1.7 0 0 0 0 0 0 0 1 0 0 0 -0.667 0 0 0
0.96 1.7 0 0 0 0 0 0 0 1 0 0 -0.311 -0.667 0 0
0.4 0.96 1.7 0 0 0 0 0 0 0 1 0 -0.030 -0.311 -0.667 0
0.181 0.4 0.96 1.7 0 0 0 0 0 0 0 1 -0.017 -0.030 -0.311 -0.667
0.4 0 0 0 -1 0 0 0 0 0 0 0 -1.333 0 0 0
0.4 0.4 0 0 0 -1 0 0 0 0 0 0 0.444 -1.333 0 0
-0.08 0.4 0.4 0 0 0 -1 0 0 0 0 0 0.119 0.444 -1.333 0
-0.013 -0.08 0.4 0.4 0 0 0 -1 0 0 0 0 -0.040 0.119 0.444 -1.333
Rearrange Equations
1.7 0 0 0 0.667 0 0 0 1 0 0 0 0 0 0 0
0.96 1.7 0 0 0.311 0.667 0 0 0 1 0 0 0 0 0 0
0.4 0.96 1.7 0 0.030 0.311 0.667 0 0 0 1 0 0 0 0 0
0.181 0.4 0.96 1.7 0.017 0.030 0.311 0.667 0 0 0 1 0 0 0 0
0.4 0 0 0 1.333 0 0 0 0 0 0 0 1 0 0 0 0.4 0.4 0 0 -0.444 1.333 0 0 0 n n n n 1 0 0 -0.08 0.4 0.4 θ) -0.119 -0.444 1.333 θl| 0 0 0 θ| J
The new model coefficients with the PID dynamics removed are as follows:
Dependent Var-1
Indepe Var-2
Figure imgf000019_0001
Dependent Var-2
Independent Var-1 Independent Var-2 h ^2,1,1 = 0.4 h = 1.333
Figure imgf000019_0002
,1,3 = -0-08 4,2,3 = -0-119 4.1,4 = -0.0133 42 4 = 0.040
[00043] Note that all the coefficient values changed. This new controller now has the dynamics of the second independent variable (a PID set point) removed. This controller can now be used to control the process and the development of this controller was done off line without having to do an additional time consuming expensive identification test on the process.
Algorithm to Remove PID Dynamics, Open-loop Step Response form
[00044] In the derivation and example, we discussed the algorithm to remove PID dynamics from an FIR model based on the impulse, or derivative, form of the equations. A similar algorithm can be derived for the Step coefficient form of the model, δ O = AM , as well, as we will now illustrate with a 2 independent, 2 dependent variable example problem. For purposes of this example, we will assume that the second independent and second dependents are to be exchanged. The problem can be written in matrix notation as:
Figure imgf000020_0002
[00045] We perform elimination operations (pivoting) to get:
Figure imgf000020_0003
[00046] Rearranging, we get:
Figure imgf000020_0004
[00047] Which can be written as:
AMX + BX2δ 02 = δOx B2 x + C2 δ02=M2
[00048] Recall that the Impulse coefficients are defined as:
Kj, = l,j, for* = l
Kj,k = a,j,k - aι,jik-i = a,jj for k : 2 → «cce/
[00049] Likewise, we define the second difference coefficients as: ,,J,k
Figure imgf000020_0001
l ctJjk = &', ,A " δ',,(t-i) = Kj,k for A : 2 → /icoςf
[00050] Note that:
Figure imgf000021_0001
[00051] Note that the matrix is now a mixed bag of Step response coefficients (A), Impulse coefficients (S), and 2nd difference coefficients (C). This is due to the fact that our new independent variable is in the "accumulative" form instead of the "delta" form and the new dependent variable is in the "delta" form instead of the "accumulative" form. To convert this system of equation to the Step form and thereby recover the Step coefficients, two steps must be performed:
[00052] Step-1 : Convert new independent variable from "accumulative" to "delta" form, δ 02 = ΔO2.
[00053] Step-2: Convert new dependent variable from "delta" to "accumulative" form, Δ72 =* <5 72.
[00054] Step-1 : Convert new independent variable from "accumulative" to "delta" form.
[00055] This step requires only a rearrangement of terms in the equations. Note that δδ2 appears in two sections of the matrix:
4,2,1 (p2,3 ~ Ο2,0 ) C2,2,l VO2.3 ~ O2.0 J
Figure imgf000021_0002
Since >J,k = a U,k fovk = l b U,k = u,k - ai,Mk-i) = Δ«,,7 fτk:2→ ncoef and
'U,k = b ',J,- fork = l ci ,k = KJ* -buk-i) = Δb,. ;, for : 2 → «coe/ we can write the above as:
Figure imgf000022_0001
Figure imgf000022_0002
Figure imgf000023_0001
Figure imgf000023_0002
[00056] Since , we can re-write the system of equations as:
Figure imgf000023_0004
Figure imgf000023_0003
[00057] This completes Step-1.
[00058] Step-2: Convert new dependent variable from "delta" to "accumulative" form. [00059] The equations for the new second dependent variable are written below. It is necessary to accumulate these equations to convert from the "delta" to the "accumulative" form.
Figure imgf000024_0001
Since by definition, bi X = aiJ , and fjX - IjQ = Δ7 = δ I] , the first equation becomes;
"2,1,1^1,1 + "2,2,1 Δ02,l = (5 /2,l
[00060] To obtain the second Step coefficient equation, add together the first two Impulse coefficient equations:
Y2,t,l + 2,1,2 , ,1 +
Figure imgf000024_0002
- 2,0
or,
"2,1,2^1,1 +"2,1,1^1,2 + "2,2,2 Δ02,l + "2,2,1 Δ02,2 = l5 2,2
[00061] To obtain the third Step coefficient equation, add together the first three Impulse coefficient equations:
Figure imgf000024_0003
= 2ι3 - 2,2 + 2,2 _ -< 2,1 + '2,1 _ ■* 2,0 = ^2,2 ~ * 2,0 or, «2|1,3Δ7 +ά2ιlι2Δ71>2 +β 2,ι,1Δ/lι322]3Δ 21 + α2,2,2 ΔC, 2,2 + "2,2,1^2,3 = 572>3
[00062] To obtain the fourth Step coefficient equation, add together the first four Impulse coefficient equations:
$2,1,1 +4,1,2 +4,1,3 +4,1,4 l + $2,1,1 +4,1,2 + 4,1,3 ,2 + $2,1,1 + 4,1,2 ,3 +
+ $2,2,1 + 4,2,2 + 4,2,3 + 4,2,4 A02,J + $2,2,1 + 4,2,2 + 4,2,3 02,2 + $2,2,1 + 4,2,2
Figure imgf000025_0001
= -'2,4 -'2,3 +'2,3 -^2,2 +'2,2 ~ 2,\ +'2,1 ""■'2,0 = -'2,4 ""■'2,0 or,
"2,1,4^1,1 + a 2,1,3 " ,2 + "2,1,2^1,3 +"2,1,1^ + α2>2>4 2jl + a 2,2,3 ^^2,2 +"2,2,2^^2,3 + a 2,2,1 Δ-'2,4 -" '2,4
[00063] So the system of equations for the new 2 dependent variable now becomes:
"2,l,l ,l +"2,2,1Δ02,1 _ 72,1 - S> ~ " ''2,1
"2,1,2^1,1 + "2,1,1^1,2 + "2,2,2ΔC>2,1 + "2,2,1ΔC,2,2 ~~ '2,2 - ■'2,0 - " *■•! . "2,1,3^1,1 + "2,1,2^1,2 + "2,1,1^1.3 + "2,2,3Δ02,1 + "2,2,2Δ02,2 + "2,2,1Δ02,3 ~ '2,3 _ -"2,0 = " ^2,3 "2,1,4^1,1 + "2,1,3^1,2 + "2,1,2^1,3 + "2,1,1^1,4 + "2,2,4ΔC>2,1 + "2,2,3Δ02,2 + "2,2,2Δ02,3 + "2,2,1Δ02,4 = .4 ~ 7>,0 = S ^2,4
[00064] And the overall system of equations becomes:
Figure imgf000025_0002
which can be re-written as:
AX XΔIX + AιaΔ02 = δ Ox A Mx + A2 02 = δ I2
[00065] To further illustrate the application of this invention another numerical example is given to demonstrate the use of the algorithm just derived for the open- loop step response model. This algorithm is applied to equations of the form δ 0 = AΔI . Given a model with two (2) independent variables, two (2) dependent variables and four (4) model coefficients, where the second independent variable is the set point of a PID controller and the second dependent variable is the valve position of the PID controller, we wish to re-constitute the model with the PID valve position as an independent variable instead of the PID set point. This requires that the dynamics of the PID controller be removed from all system responses according to the algorithm previously discussed. The underlying model in this example is the same as that used in Appendix-2.
Dependent Var-1
Independent Var-1 Independent Var-2 flu,ι " 1 -5 «1,2,1 = 0-5
Ωl,l,2 = 1 *1,2,2 0.9 α1 2 3 = 1.1 aU = 2-4 α1 2 4 = 1 .2
Dependent Var-2
Independent Var-1 Independent Var-2 β2,l,l = "0-3 α2 2 , = 0.75 a2 1 2 = "0-7 β2,2,2 = -0 β2,l,3 = -°-8 ^2,2,3 = 1 - 15 α2,ι,4 = -0-85 02 2 4 =1.2
[00066] The problem is specified in the matrix below. Indicates Pivot Element
1.5 0 0 0.5 0 0 1 2.1 1.5 0 0 0.9 0.5 0 0 0 1 0 0 0 0 0 0
2.3 2.1 1.5 0 1.1 0.9 0.5 0 0 0 1 0 0 0 0 0
2.4 2.3 2.1 1.5 1.2 1.1 0.9 0.5 0 0 0 1 0 0 0 0
-0.3 0 0 0 0.75 0 0 0 0 0 0 0 1 0 0 0
-0.7 -0.3 0 0 1 0.75 0 0 0 0 0 0 0 1 0 0
-0.8 -0.7 -0.3 0 1.15 1 0.75 0 0 0 0 0 0 0 1 0
-0.85 -0.8 -0.7 -0.3 1.2 1.15 1 0.75 0 0 0 0 0 0 0 1
Multiply Equation-5 by (-1/0.75)
Figure imgf000027_0001
Multi ply Equation-5 by 0.5, add it to Equation-1 and replace Equation-1 Multi ply Equation-5 by 0.9, add it to Equation-2 and replace Equation-2 Mult: ply Equation-5 by 1.1, add it to Equation-3 and replace Equation-3 Multi ply Equation-5 by 1.2, add it to Equation-4 and replace Equation-4 Multi ply Equation-5 by 1.0, add it to Equation-6 and replace Equation-6 Multi ply Equation-5 by 1.15, add it to Equation-7 and replace Equation-7 Mult ply Equation-5 by 1.2, add it to Equation-8 and replace Equation-8
1.7 0 0 0 0 0 0 0 1 0 0 0 -0.667 0 0 0
2.46 1.5 0 0 0 0.5 0 0 0 1 0 0 -1.200 0 0 0
2.74 2.1 1.5 0 0 0.9 0.5 0 0 0 1 0 -1.467 0 0 0
2.88 2.3 2.1 1.5 0 1.1 0.9 0.5 0 0 0 1 -1.600 0 0 0
0.4 0 0 0 -1 0 0 0 0 0 0 0 -1.333 0 0 0
-0.3 -0.3 0 0 0 0.75 0 0 0 0 0 0 -1.333 1 0 0
-0.34 -0.7 -0.3 0 0 1 0.75 0 0 0 0 0 -1.5 0 1 0
-0.37 -0.8 -0.7 -0.3 0 1.15 1 0.75 0 0 0 0 -1.600 0 0 1
Multiply Equation-6 by (-1/0.75)
1.7 0 0 0 0 0 0 0 1 0 0 0 -0.667 0 0 0
2.46 1.5 0 0 0 0.5 0 0 0 1 0 0 -1.200 0 0 0
2.74 2.1 1.5 0 0 0.9 0.5 0 0 0 1 0 -1.467 0 0 0
2.88 2.3 2.1 1.5 0 1.1 0.9 0.5 0 0 0 1 -1.600 0 0 0
0.4 0 0 0 -1 0 0 0 0 0 0 0 -1.333 0 0 0
0.4 0.4 0 0 0 -1 0 0 0 0 0 0 1.778 -1.333 0 0
-0.34 -0.7 -0.3 0 0 1 0.75 0 0 ) 1 0 -0.37 -0.8 -0.7 -0.3 0 1.15 1 0.75 0 0 0 0 -1.600
Multiply Equation-5 by 0.5, add it to Equation-2 and replace Equation-2 Multiply Equation-5 by 0.9, add it to Equation-3 and replace Equation-3 Multiply Equation-5 by 1.1, add it to Equation-4 and replace Equation-4 Multiply Equation-5 by 1.0, add it to Equation-7 and replace Equation-7 Multiply Equation-5 by 1.15, add it to Equation-8 and replace Equation-8
1.7 0 0 0 0 0 0 0 1 0 0 0 -0.667 0 0 0
2.66 1.7 0 0 0 0 0 0 0 1 0 0 -0.311 -0.667 0 0
3.1 2.46 1.5 0 0 0 0.5 0 0 0 1 0 0.133 -1.200 0 0
3.32 2.74 2.1 1.5 0 0 0.9 0.5 0 0 0 1 0.356 -1.467 0 0
0.4 0 0 0 -1 0 0 0 0 0 0 0 -1.333 0 0 0
0.4 0.4 0 0 0 -1 0 0 0 0 0 0 1.778 -1.333 0 0
0.06 -0.3 -0.3 0 0 0 0.75 0 0 0 0 0 0.244 -1.333 1 0
0.09 -0.34 -0.7 -0.3 0 0 1 0.75 0 0 0 0 0.444 -1.533 0 1
Multiply Equation-7 by (-1/0.75)
1.7 0 0 0 0 0 0 0 1 0 0 0 -0.667 0 0 0
2.66 1.7 0 0 0 0 0 0 0 1 0 0 -0.311 -0.667 0 0
3.1 2.46 1.5 0 0 0 0.5 0 0 0 1 0 0.133 -1.200 0 0
3.32 2.74 2.1 1.5 0 0 0.9 0.5 0 0 0 1 0.356 -1.467 0 0
0.4 0 0 0 -1 0 0 0 0 0 0 0 -1.333 0 0 0
0.4 0.4 0 0 0 -1 0 0 0 0 0 0 1.778 -1.333 0 0
-0.08 0.4 0.4 0 0 0 -1 0 0 0 0 0 -0.326 1.778 - 1.333 0
0.09 -0.34 -0.7 -0.3 0 0 1 0.75 0 0 0 0 0.444 -1.533 0 1
Multiply Equation-5 by 0.5, add it to Equation-3 and replace Equation-3 Multiply Equation-5 by 0.9, add it to Equation-4 and replace Equation-4 Multiply Equation-5 by 1.0, add it to Equation-8 and replace Equation-8
1.7 0 0 0 0 0 0 0 1 0 0 0 -0.667 0 0 0
2.66 1.7 0 0 0 0 0 0 0 1 0 0 -0.311 -0.667 0 0
3.06 2.66 1.7 0 0 0 0 0 0 0 1 0 -0.030 -0.311 -0.667 0
3.248 3.1 2.46 1.5 0 0 0 0.5 0 0 0 1 0.062 0.133 -1.200 0
0.4 0 0 0 -1 0 0 0 0 0 0 0 -1.333 0 0 0
0.4 0.4 0 0 0 -1 0 0 0 0 0 0 1.778 -1.333 0 0
-0.08 0.4 0.4 0 0 0 -1 0 0 0 0 0 -0.326 1.778 -1.333 0
0.01 0.06 -0.3 -0.3 0 0 0 0.75 0 0 0 0 0.119 0.244 -1.333 1
Multiply Equation-8 by (-1/0.75)
1.7 0 0 0 0 0 0 0 1 0 0 0 -0.667 0 0 0
2.66 1.7 0 0 0 0 0 0 0 1 0 0 -0.311 -0.667 0 0
3.06 2.66 1.7 0 0 0 0 0 0 1 -0.667 0 3.248 3.1 2.46 1.5 0 0 0 0.5 0 0 0 1 0.062 0.133 -1.200 0
0.4 0 0 0 -1 0 0 0 0 0 0 0 -1.333 0 0 0
0.4 0.4 0 0 0 -1 0 0 0 0 0 0 1.778 -1.333 0 0
-0.08 0.4 0.4 0 0 0 -1 0 0 0 0 0 -0.326 1.778 -1.333 0
-0.013 -0.08 0.4 0.4 0 0 0 -1 0 0 0 0 -0.158 -0.326 1.778 -1.333
Multiply Equation-5 by 0.5, add it to Equation-4 and replace Equation-4
1.7 0 0 0 0 0 0 0 1 0 0 0 -0.667 0 0 0
2.66 1.7 0 0 0 0 0 0 0 1 0 0 -0.311 -0.667 0 0
3.06 2.66 1.7 0 0 0 0 0 0 0 1 0 -0.030 -0.311 -0.667 0
3.241 3.06 2.66 1.7 0 0 0 0 0 0 0 1 -0.017 -0.030 -0.311 -0.667
0.4 0 0 0 -1 0 0 0 0 0 0 0 -1.333 0 0 0
0.4 0.4 0 0 0 -1 0 0 0 0 0 0 1.778 -1.333 0 0
-0.08 0.4 0.4 0 0 0 -1 0 0 0 0 0 -0.326 1.778 -1.333 0
-0.013 -0.08 0.4 0.4 0 0 0 -1 0 0 0 0 -0.158 -0.326 1.778 -1.333
Rearrange Equations
1.7 0 0 0 0.667 0 0 0 1 0 0 0 0 0 0 0
2.66 1.7 0 0 0.311 0.667 0 0 0 1 0 0 0 0 0 0
3.06 2.66 1.7 0 0.030 0.311 0.667 0 0 0 1 0 0 0 0 0
3.241 3.06 2.66 1.7 0.017 0.030 0.311 0.667 0 0 0 1 0 0 0 0
0.4 0 0 0 1.333 0 0 0 0 0 0 0 1 0 0 0
0.4 0.4 0 0 -1.778 1.333 0 0 0 0 0 0 0 1 0 0
-0.08 0.4 0.4 0 0.326 -1.778 1.333 0 0 0 0 0 0 0 1 0
-0.013 -0.08 0.4 0.4 0.158 0.326 -1.778 1.333 0 0 0 0 0 0 0 1
Accumulate coefficients for new 2nd independent variable
1.700 0.000 0.000 0.000 0.667 0.000 0.000 0.000
2.660 1.700 0.000 0.000 0.978 0.667 0.000 0.000
3.060 2.660 1.700 0.000 1.007 0.978 0.667 0.000
3.241 3.060 2.660 1.700 1.024 1.007 0.978 0.667
0.400 0.000 0.000 0.000 1.333 0.000 0.000 0.000
0.400 0.400 0.000 0.000 -0.444 1.333 0.000 0.000
-0.080 0.400 0.400 0.000 -0.119 -0.444 1.333 0.000
-0.013 -0.080 0.400 0.400 0.040 -0.119 -0.444 1.333
Accumulate coefficients for new 2nd independent variables
Figure imgf000029_0001
0.720 0.800 0.400 0.000 0.770 0.889 1.333 0.000 0.707 0.720 0.800 0.400 0.810 0.770 0.889 1.333
[0067] The new model coefficients with the PID dynamics removed are as follows:
Dependent Var-1
Independent Var-1 Independent Var-2 ax x= 1-700 α12ι == 00..666677 ax 2 = 2.660 "1,2,2 = 0.978 113= 3.060 123= 1.007 fl1>1>4= 3.241 aX24= 1.024
Dependent Var-2
Independent Var-1 Independent Var-2
Figure imgf000030_0001
a212=0.800 ^2,2,2 =0.889 a , 3 =0.720 β 2,2,3 =0.770 a2.ι,4 =0-707 a 24 =0.810
Note that all the coefficient values changed.
Check that corresponding Impulse coefficients match those identified with the FIR example.
Dependent Var-1
Independent Var-1 Independent Var-2 bw= 1.700 b12,= 0.667 b,,2= 0.960 b122= 0.311
Figure imgf000030_0002
Dependent Var-2
Independent Var-1 Independent Var-2 *2.ι,ι= -400 1 11 "" I .
^2,1,2 = °- 00 2,2,2 -0.444 b2>13= -0.080 6 2,2,3= -0.119 b12,lι4= -0.013 b2,4= 0.040 Column Simulation Example
[00068] Yet another embodiment of the use of the algorithm is demonstrated in the following example. This example will illustrate the following:
[00069] The use of a valve-based Finite Impulse Response (FIR) model as a process simulator.
[00070] Plant step-test and Identification of an FIR model based on a specific regulatory control configuration.
[00071] Use of the proposed algorithm to remove the PID controller dynamics and recover the underlying valve-based model.
[00072] In this example, an FIR model based on valve positions is used as the " process model to simulate the behavior of a complex fractionator. The regulatory control for the fractionator consists of three PI (proportional/integral) feedback controllers. A plant step test is performed on the simulation using the regulatory controller set points. An FIR model is then obtained for the fractionator based on the set points of the PI controllers. This model based on the regulatory control scheme is then input to the algorithm to remove the PI controller dynamics and recover the original FIR process model.
[000 3] It should be noted that the term Finite Impulse Response (FIR) model is used to refer to the open-loop step response form of the models, since the step form could be directly calculated from the impulse coefficients.
Description of Complex Fractionator Schematic
[ooo74] The schematic for the Complex Fractionator is shown in Figure 1. The feed flow rate 5 is controlled by the upstream unit and is pre-heated in a furnace 6. The fractionator 7 has a top, middle and bottom product. The fractionator overhead temperature is controlled with a PI controller 8 moving the top reflux. The middle product draw temperature is controlled with a PI controller 9 moving the middle product draw rate. A third PI controller 10 moves the bottom product rate to control the fractionator bottoms level. The bottom composition (light component) is measured with an analyzer 11. Description of Finite Impulse Response (FIR) Model
[00075] The process model used in this example is an open-loop, step response model based on the valve positions, summarized as follows:
Model Independent Variables TIC-2001.OP - Top Reflux Flow Valve TIC-2002.OP - Middle Product Flow Valve LIC-2007.OP - Bottoms Product Flow Valve FIC-2004.SP - Middle Reflux Flow Rate FI-2005.PV - Fractionator Feed Rate
Model Dependent Variables
TIC-2001.PV - Fractionator Overhead Temperature
TIC-2002.PV - Middle Product Draw Temperature
LIC-2007.PV - Fractionator Bottoms Level
AI-2022.PV - Fractionator Bottoms Composition (Light Component)
[00076] The open-loop step response model can be viewed in an idealized sense as being generated as follows. With the system at steady state, the first independent variables is increased by one engineering unit at time=0 while holding all other independent variables constant. The values for all dependent variables are then measured at equally spaced time intervals until the system reaches steady state again. The model response curves for each dependent variable with respect to the first independent variable are then calculated by subtracting the value of the dependent variable at time=0 from each of the measured values at each future time interval for that dependent variables. Essentially, a step response curve represents the effect on the dependent variable of a change in the independent variable. This process is then repeated successively for all the independent variables to generate the full model. The steady state time for the model is defined by the steady state time of the slowest response curve in the system.
[00077] Clearly in the real world, the model cannot be generated in this fashion since often the process is not at steady state. Further, it is imposs and unmeasured disturbances from affecting the system during an independent variable step. Generation of the model requires that multiple steps be made in each independent variable (plant step test). The data thus collected is then analyzed with a software package such as AspenTech's DMCplus Model program to calculate the open-loop step response model.
[00078] Once such a model has been identified, it can be used to predict future system response based on past changes in the independent variables. That is to say, if we know how all independent variables have changed for one steady-state time into the past, we can use the model to predict how the dependent variables will change for one steady-state time into the future, assuming no further independent variable changes. This illustrates the use of the model for Prediction. (This is the basis for using an FIR model as a process simulator).
[00079] Given the predicted future system response based on no further independent variable changes and given the constraints on all independent and dependent variables, the model can be used to plan a strategy of independent variable moves to keep all independent and dependent variables within constraints. This illustrates the use of the model for Control.
Using a Finite Impulse Response (FIR) Model as a Process Simulator
[00080] The model for this example has a steady state time of ninety (90) minutes. A three (3) minute time interval is used. The resulting response curves are each defined by a vector of thirty (30) numbers representing the accumulative change in that dependent variable across time with respect to a step change in the independent variable at time=0 while holding all other independent variables constant.
[00081] The model coefficients are shown in Table 1 and the model plots are shown in Figure 2. This model, based on valve positions, is used to predict future system behavior in the model dependent variables based on past and present changes in the model independent variables. Table 1 : Fractionator Simulation Valve-based Model Coefficients
Step Response Coefficients for Dependent Variable-1 : TIC-2001.PV DEG F
Figure imgf000034_0001
Figure imgf000034_0002
Figure imgf000035_0001
-Cont'd
Figure imgf000036_0001
Step Response Coefficients for Dependent Variable-4: AI-2022.PV MOLE %
Figure imgf000036_0002
[00082] As mentioned above, there are three PI (Proportional/Integral) controllers in the system. These PI controllers are configured as follows:
Table 2: Fractionator PID Controllers
Figure imgf000037_0001
[00083] A plant test was performed (data plots in FIG. 3) with these PI controllers regulating the process. The independent and dependent variables for the system were as follows:
Model Independent Variables
TIC-2001.SP - Top Reflux Flow Valve SP TIC-2002.SP - Middle Product Flow Valve SP LIC-2007.SP - Bottoms Product Flow Valve SP FIC-2004.SP - Middle Reflux Flow Rate FI-2005.PV - Fractionator Feed Rate
Model Dependent Variables
TIC-2001.PV - Fractionator Overhead Temperature
TIC-2002.PV - Middle Product Draw Temperature
LIC-2007.PV - Fractionator Bottoms Level
TIC-2001.OP - Top Reflux Flow Valve
TIC-2002.OP - Middle Product Flow Valve
LIC-2007.OP - Bottoms Product Flow Valve
AI-2022.PV - Fractionator Bottoms Composition (Light Component) [00084] This illustrates the use of a valve-based FIR model as a process simulator. As described above, the PID control calculations were performed external to the process simulation.
[00085] The resulting data were analyzed and a model based on this PID configuration was identified, as shown in FIG. 4.
[00086] The new algorithm to remove PID dynamics was applied to the model shown in FIG. 4, and this model with the PID dynamics removed is compared to the original simulation model. As can be seen in FIG. 5, the algorithm successfully recovers the original valve based model. Note that the steady state time of the recovered model is longer than the steady state time of the original model. This is a result of a longer steady state time for the model with the PID controllers. The original valve-based simulation model had a steady state time of 90 minutes. When the PID controllers were configured and the plant step-test performed, it took 180 minutes for the process to reach steady state, due to having to wait for the PID feedback control to settle out. The steady state time of the recovered valve-based model has the same steady state time as the model containing the PID dynamics from which it was generated. It can be seen, however, that the recovered model has reached steady state in 90 minutes, and if it were truncated at that point, would exactly match the original valve-based model.
INDUSTRIAL APPLICABILITY
[ooo87] In the past, when the PID controllers were re-tuned or when the regulatory control scheme was reconfigured, a new plant was performed and a new model constructed. The invention described in this document removes the PID controller dynamics without having to perform another plant test.
[00088] This ability to remove PID dynamics allows creation of an off-line process simulator based only on valve positions instead of PID set points. The plant test can be performed with any stable regulatory configuration and PID tuning and a corresponding mode) can be obtained. The algorithm to remove the PID dynamics is then applied to the resulting model to remove the dynamics of all PID controllers and convert the model inputs from set points to valves. The regulatory control scheme can then be emulated external to the process model via a DCS console or console emulator. This allows the operator to put PID controllers in Manual-mode, break cascades, retune PID controller, or even re-configure the regulatory control scheme.
[00089] With regard to model-based control applications, there are times when it is necessary to modify the PID tuning of a PID controller in the system. With the ability to remove the PID dynamics, a model can be generated which is based on the valve of this PID controller. The off-line simulation calculation can then be performed to generate a new process model that contains the new PID tuning, and this updated model can be incorporated into the model based controller, thus preventing a plant step test. This technique can also be applied if the regulatory control scheme is to be reconfigured. Assume that we have a temperature controller set point as an input to our model. If that valve is stuck and cannot be repaired without shutting the unit down, the algorithm could be applied to remove the dynamics of the temperature controller and the control application could continue to be used without the temperature controller.
[00090] Another advantage of this invention is that a process can be tested in one regulatory configuration and a model-based controller can be commissioned with a different configuration. An example is a Fluidized Bed Catalytic Cracking Unit (FCCU) where the system pressure is controlled with a PID controller moving the speed of the Wet Gas Compressor. Often the most economical place to run the unit is with the compressor at maximum speed, but in this case, the pressure is not directly controlled. Testing the unit with the pressure off control is difficult. The solution is to test the plant with the PID controller moving the compressor speed, keeping the speed on control. When the model is obtained, the pressure controller PID dynamics are removed and the model based control application will them move the compressor speed directly. In this example, the model based control application controls the system pressure as an output by manipulating other inputs when the compressor speed is at maximum.
[00091] Often when testing a unit, valves of certain PID controllers are driven off control during the plant test. At the present time, this data cannot be used in constructing the process model. With the new algorithm, it is possible to use all the data, even when a PID controller is off control. This is done by first identifying the model as before using data only where the PID controller is on control. This model is then modified to remove the PID dynamics and the new data is "filtered into" the model.
[00092] Thus, this new invention will allow construction of high fidelity, useable off-line process simulators and will enhance the ability to implement and maintain model- based control applications.
[00093] While a preferred form of the invention has been disclosed and described in the drawings, since variations in the preferred form will be evident to those skilled in the art, the invention should not be construed as limited to the specific forms shown and described, but instead is as set forth in the following claims when read in the light of the foregoing disclosure.

Claims

CLAIMS I claim:
1. A method used in model predictive control applications for removing the effect of unmeasured disturbances from the dynamics of a controller model of a process having a plurality of independently controllable, manipulated variables and at least one controlled variable dependent upon said independently controllable, manipulated variables comprising the steps of: gathering data about said process by separately introducing a test disturbance in each of said manipulated variables and measuring the effect of the disturbances on said controlled variable; using said effects of the disturbances on said controlled variable to generate a first linearized dynamic model relating said at least one controlled variable to said independently controllable, manipulated variables; interchanging selected valve position controlled variables with their corresponding selected independently controllable, manipulated PID controller set point variables in said first linearized dynamic model using matrix row elimination mathematics to generate a second linearized dynamic model that has a new set of independently controllable, manipulated variables, said second linearized dynamic model having the dynamics of said selected independently controllable, manipulated PID controller set point variables removed from said second dynamic model.
2. The method of claim 1 wherein said first linearized dynamic model is a step response model.
3. The method of claim 1 wherein said first linearized dynamic model is a finite impulse model.
4. A method for controlling a process having a plurality of independently controllable, manipulated variables and at least one controlled variable dependent upon said independently controllable, manipulated variables comprising the steps of: gathering data about said process by separately introducing a test disturbance in each of said manipulated variables and measuring the effect of the disturbances on said controlled variable; using said effects of the disturbances on said controlled variable to generate a first linearized dynamic model relating said at least one controlled variable to said independently controllable, manipulated variables; interchanging selected valve position controlled variables with their corresponding selected independently controllable, manipulated PID controller set point variables in said first linearized dynamic model using matrix row elimination mathematics to generate a second linearized dynamic model that has a new set of independently controllable, manipulated variables, said second linearized dynamic model having the dynamics of said selected independently controllable, manipulated PID controller set point variables removed from said second linearized dynamic model; measuring the present value of said variables; calculating for discrete intervals of time from said gathered data about said process, said measured present values and pre-selected operating constraints a set of moves for present and future times for at least said manipulated variables to obtain new values for said manipulated variables and to move said at least one dependent controllable variable towards at least one of said constraints; and changing said process by adjusting said manipulated variables for said set of moves for present and future times to cause said process to move said at least one dependent controllable variable towards at least one of said constraints.
The method of claim 4, wherein said process comprises at least one uncontrolled variable that is dependent on said manipulated variables and wherein said step of calculating said set of moves for present and future times further comprises calculating said set of moves such that said uncontrolled variable is limited to a predetermined constraint. The method of claim 5, wherein said step of calculating said set of moves for present and future times further comprises calculating said set of moves such that at least one of said manipulated variables is limited to a predetermined constraint. The method of claim 4, wherein said step of calculating said set of moves for present and future times comprises calculating said set of moves employing quadratic programming techniques. The method of claim 7, wherein said step of calculating said set of moves for present and future times further comprises calculating said set of moves such that at least one of said manipulated variables is limited to a predetermined constraint. The method of claim 7, wherein said process comprises at least one uncontrolled variable that is dependent on said manipulated variables and wherein said step of calculating said set of moves for present and future times further comprises calculating said set of moves such that said uncontrolled variable is limited to a predetermined constraint. The method of claim 4, wherein said step of calculating said set of moves for present and future times comprises calculating said set of moves employing linear programming techniques. The method of claim 10, wherein said step of calculating said set of moves for present and future times further comprises calculating said set of moves such that at least one of said manipulated variables is limited to a predetermined constraint. The method of claim 10, wherein said process comprises at least one uncontrolled variable that is dependent on said manipulated variables and wherein said step of calculating said set of moves for present and future times further comprises calculating said set of moves such that said uncontrolled variable is limited to a predetermined constraint. The method of claim 4, wherein said step of calculating said set of moves further comprises calculating said set of moves such that at least one of said manipulated variables is limited to a predetermined constraint. The method of claim 13, wherein said process comprises at least one uncontrolled variable that is dependent on said manipulated variables and wherein said step of calculating said set of moves for present and future times further comprises calculating said set of moves such that said uncontrolled variable is limited to a predetermined constraint.
A method for developing a new linearized dynamic model of a process without performing a new plant identification test when the tuning of at least one PID controller in said process is changed comprising the steps of: interchanging said at least one PID controller set point variable in an original linearized dynamic model with its corresponding valve position controlled variable in said original linearized dynamic model using matrix row elimination mathematics to generate a secondary linearized dynamic model that has said at least one corresponding valve position as a new independently controllable, manipulated variable externally emulating new desired PID tuning via mathematical emulator to emulate the effect of said at least one PID controllers new tuning with the secondary linerarized dynamic model testing the secondary linearized dynamic model with it's emulated PID tuning by stepping each of it's manipulated variables to obtain said new linearized dynamic model that will now contain the dynamics of said at least one PID controllers.
A method for creating an off-line process simulator for use in process simulation and for training simulators created by removing the effect of unmeasured disturbances from the dynamics of a controller model of a process having a plurality of independently controllable, manipulated variables and at least one controlled variable dependent upon said independently controllable, manipulated variables comprising the steps of: gathering data about said process by separately introducing a test disturbance in each of said manipulated variables and measuring the effect of the disturbances on said controlled variable; using said effects of the disturbances on said controlled variable to generate a first linearized dynamic model relating said at least one controlled variable to said independently controllable, manipulated variables; interchanging each independently controllable, manipulated PID controller set point variable with its corresponding valve position controlled variable in said first linearized dynamic model using matrix row elimination mathematics to generate a second linearized dynamic model that has said corresponding valve positions as a new set of independently controllable, manipulated variables, said second linearized dynamic model having the dynamics of said selected independently controllable, manipulated PID controller set point variables removed from said second linearized dynamic model; externally emulating desired regulatory control schemes via mathematical emulators to emulate PID controllers in either manual, cascade, or automatic modes. An off-line process simulator created from an empirical dynamic model by the method of claim 16.
PCT/US2003/000575 2002-01-10 2003-01-09 Method for removal of pid dynamics from mpc models WO2003060614A2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
MXPA04006739A MXPA04006739A (en) 2002-01-10 2003-01-09 Method for removal of pid dynamics from mpc models.
KR1020047010379A KR100977123B1 (en) 2002-01-10 2003-01-09 Method for removal of pid dynamics from mpc model
EP03707337A EP1463979B1 (en) 2002-01-10 2003-01-09 Method for removal of pid dynamics from mpc models
JP2003560648A JP2005526306A (en) 2002-01-10 2003-01-09 Method for removing PID dynamics from MPC model
DE60308143T DE60308143T2 (en) 2002-01-10 2003-01-09 PROCESS FOR REMOVING PID DYNAMICS FROM MPC MODELS
CA2472338A CA2472338C (en) 2002-01-10 2003-01-09 Method for removal of pid dynamics from mpc models
AU2003209193A AU2003209193A1 (en) 2002-01-10 2003-01-09 Method for removal of pid dynamics from mpc models

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/043,473 2002-01-10
US10/043,473 US6980938B2 (en) 2002-01-10 2002-01-10 Method for removal of PID dynamics from MPC models

Publications (2)

Publication Number Publication Date
WO2003060614A2 true WO2003060614A2 (en) 2003-07-24
WO2003060614A3 WO2003060614A3 (en) 2003-12-31

Family

ID=21927348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/000575 WO2003060614A2 (en) 2002-01-10 2003-01-09 Method for removal of pid dynamics from mpc models

Country Status (12)

Country Link
US (2) US6980938B2 (en)
EP (1) EP1463979B1 (en)
JP (1) JP2005526306A (en)
KR (1) KR100977123B1 (en)
CN (1) CN1695138A (en)
AT (1) ATE338967T1 (en)
AU (1) AU2003209193A1 (en)
CA (1) CA2472338C (en)
DE (1) DE60308143T2 (en)
ES (1) ES2271536T3 (en)
MX (1) MXPA04006739A (en)
WO (1) WO2003060614A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007024847A2 (en) 2005-08-26 2007-03-01 Cutler Charles R Adaptive multivariable mpc controller
JP2008544374A (en) * 2005-06-15 2008-12-04 カトラー,チャールズ,アール. Online dynamic advisor with MPC model

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100873237B1 (en) 2000-09-21 2008-12-10 지에스아이 루모닉스 코포레이션 Digital control servo system
JP4467815B2 (en) * 2001-02-26 2010-05-26 富士通マイクロエレクトロニクス株式会社 Nonvolatile semiconductor memory read operation method and nonvolatile semiconductor memory
US7376472B2 (en) * 2002-09-11 2008-05-20 Fisher-Rosemount Systems, Inc. Integrated model predictive control and optimization within a process control system
US7219040B2 (en) * 2002-11-05 2007-05-15 General Electric Company Method and system for model based control of heavy duty gas turbine
TWI225576B (en) * 2003-10-06 2004-12-21 Univ Tsinghua Process controlling method with merged two-control loops
ATE415643T1 (en) * 2004-01-23 2008-12-15 Gsi Group Corp SYSTEM AND METHOD FOR OPTIMIZING CHARACTER MARKING PERFORMANCE
US20060074598A1 (en) * 2004-09-10 2006-04-06 Emigholz Kenneth F Application of abnormal event detection technology to hydrocracking units
US7567887B2 (en) * 2004-09-10 2009-07-28 Exxonmobil Research And Engineering Company Application of abnormal event detection technology to fluidized catalytic cracking unit
US7424395B2 (en) * 2004-09-10 2008-09-09 Exxonmobil Research And Engineering Company Application of abnormal event detection technology to olefins recovery trains
US7349746B2 (en) * 2004-09-10 2008-03-25 Exxonmobil Research And Engineering Company System and method for abnormal event detection in the operation of continuous industrial processes
US7451004B2 (en) * 2005-09-30 2008-11-11 Fisher-Rosemount Systems, Inc. On-line adaptive model predictive control in a process control system
US7761172B2 (en) * 2006-03-21 2010-07-20 Exxonmobil Research And Engineering Company Application of abnormal event detection (AED) technology to polymers
US7720641B2 (en) * 2006-04-21 2010-05-18 Exxonmobil Research And Engineering Company Application of abnormal event detection technology to delayed coking unit
US8005575B2 (en) 2006-06-01 2011-08-23 General Electric Company Methods and apparatus for model predictive control in a real time controller
US20080071395A1 (en) * 2006-08-18 2008-03-20 Honeywell International Inc. Model predictive control with stochastic output limit handling
US7599751B2 (en) * 2006-10-13 2009-10-06 Cutler Technology Corporation Adaptive multivariable MPC controller with LP constraints
US7826909B2 (en) * 2006-12-11 2010-11-02 Fakhruddin T Attarwala Dynamic model predictive control
US7970482B2 (en) * 2007-08-09 2011-06-28 Honeywell International Inc. Method and system for process control
US20090054998A1 (en) * 2007-08-23 2009-02-26 Chevron U.S.A. Inc. System and process for optimizing process control
US7987145B2 (en) * 2008-03-19 2011-07-26 Honeywell Internationa Target trajectory generator for predictive control of nonlinear systems using extended Kalman filter
US8126575B2 (en) * 2008-03-26 2012-02-28 Fakhruddin T Attarwala Universal model predictive controller
EP2110722A1 (en) * 2008-04-17 2009-10-21 Siemens Aktiengesellschaft System for simulating automation systems
CN101286044B (en) * 2008-05-12 2010-06-16 杭州电子科技大学 Coal-burning boiler system steam-temperature mixing modeling method
US20100049561A1 (en) * 2008-08-22 2010-02-25 Alstom Technology Ltd. Fluidized bed combustion optimization tool and method thereof
US8775138B2 (en) * 2008-11-21 2014-07-08 Exxonmobil Chemical Patents Inc. Methods for handling withdrawal of streams from a linear programming model developed from a thermodynamically-based reference tool
US8862250B2 (en) 2010-05-07 2014-10-14 Exxonmobil Research And Engineering Company Integrated expert system for identifying abnormal events in an industrial plant
US8538597B2 (en) * 2010-07-27 2013-09-17 General Electric Company System and method for regulating temperature in a hot water heater
US20120215326A1 (en) * 2011-02-17 2012-08-23 Invensys Systems Inc. Distributed Proportional/Integral/Derivative Tuning
US10203667B2 (en) 2011-09-01 2019-02-12 Honeywell International Inc. Apparatus and method for predicting windup and improving process control in an industrial process control system
WO2013061126A1 (en) * 2011-10-24 2013-05-02 Abb Research Ltd A method and a system for tuning multivariable pid controller
DE102012104216A1 (en) * 2012-05-15 2013-11-21 Z & J Technologies Gmbh Method for solving a control task in a process plant
US9008807B2 (en) * 2012-05-25 2015-04-14 Statistics & Control, Inc. Method of large scale process optimization and optimal planning based on real time dynamic simulation
US9910413B2 (en) * 2013-09-10 2018-03-06 General Electric Technology Gmbh Automatic tuning control system for air pollution control systems
WO2016196746A1 (en) * 2015-06-05 2016-12-08 Shell Oil Company System and method for background element switching for models in model predictive estimation and control applications
CN106444388A (en) * 2016-12-06 2017-02-22 杭州电子科技大学 Distributed PID type dynamic matrix control method for furnace pressure of coke furnace

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5347446A (en) * 1991-02-08 1994-09-13 Kabushiki Kaisha Toshiba Model predictive control apparatus
US6056781A (en) * 1992-10-13 2000-05-02 The Dow Chemical Company Model predictive controller
US6088630A (en) * 1997-11-19 2000-07-11 Olin Corporation Automatic control system for unit operation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53125739A (en) * 1977-04-08 1978-11-02 Mitsubishi Electric Corp Operation simulator
US4349869A (en) * 1979-10-01 1982-09-14 Shell Oil Company Dynamic matrix control method
JPS59183409A (en) * 1983-04-01 1984-10-18 Mitsubishi Electric Corp Numerical controller
US4616308A (en) * 1983-11-15 1986-10-07 Shell Oil Company Dynamic process control
US5375448A (en) * 1987-08-12 1994-12-27 Hitachi, Ltd. Non-interference control method and device
US5568378A (en) * 1994-10-24 1996-10-22 Fisher-Rosemount Systems, Inc. Variable horizon predictor for controlling dead time dominant processes, multivariable interactive processes, and processes with time variant dynamics
US5566065A (en) * 1994-11-01 1996-10-15 The Foxboro Company Method and apparatus for controlling multivariable nonlinear processes
US6347254B1 (en) * 1998-12-31 2002-02-12 Honeywell Inc Process facility control systems using an efficient prediction form and methods of operating the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5347446A (en) * 1991-02-08 1994-09-13 Kabushiki Kaisha Toshiba Model predictive control apparatus
US6056781A (en) * 1992-10-13 2000-05-02 The Dow Chemical Company Model predictive controller
US6088630A (en) * 1997-11-19 2000-07-11 Olin Corporation Automatic control system for unit operation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATRY ET AL.: 'Model predictive controller design with process contraints and implicit economic criteria' IEEE INSTR. & MEAS. TECH. CONF. May 1997, pages 559 - 563, XP010233550 *
See also references of EP1463979A2 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008544374A (en) * 2005-06-15 2008-12-04 カトラー,チャールズ,アール. Online dynamic advisor with MPC model
WO2007024847A2 (en) 2005-08-26 2007-03-01 Cutler Charles R Adaptive multivariable mpc controller
EP1917563A2 (en) * 2005-08-26 2008-05-07 Charles R. Cutler Adaptive multivariable mpc controller
EP1917563A4 (en) * 2005-08-26 2010-02-10 Charles R Cutler Adaptive multivariable mpc controller

Also Published As

Publication number Publication date
JP2005526306A (en) 2005-09-02
EP1463979B1 (en) 2006-09-06
WO2003060614A3 (en) 2003-12-31
US7263473B2 (en) 2007-08-28
EP1463979A4 (en) 2005-04-06
US20050251271A1 (en) 2005-11-10
US20030195665A1 (en) 2003-10-16
KR100977123B1 (en) 2010-08-23
KR20040085144A (en) 2004-10-07
CN1695138A (en) 2005-11-09
CA2472338C (en) 2012-07-10
ES2271536T3 (en) 2007-04-16
MXPA04006739A (en) 2004-10-04
AU2003209193A8 (en) 2003-07-30
ATE338967T1 (en) 2006-09-15
EP1463979A2 (en) 2004-10-06
US6980938B2 (en) 2005-12-27
CA2472338A1 (en) 2003-07-24
DE60308143T2 (en) 2007-08-09
DE60308143D1 (en) 2006-10-19
AU2003209193A1 (en) 2003-07-30

Similar Documents

Publication Publication Date Title
WO2003060614A2 (en) Method for removal of pid dynamics from mpc models
EP1917563B1 (en) Adaptive multivariable mpc controller
EP1891489B1 (en) Online dynamic advisor from mpc models
CA2666526C (en) Adaptive multivariable mpc controller with lp constraints
Camacho et al. Constrained model predictive control
Qin et al. An overview of industrial model predictive control technology
Agachi et al. Model based control: case studies in process engineering
US20070168057A1 (en) Multi-objective predictive process optimization with concurrent process simulation
GB2394313A (en) Integrated model predictive control and optimization within a process control system
Abbas et al. DCS implementation of optimal operational policies: a crystallisation case study
Howes et al. Real-time dynamic process control loop identification, tuning and optimization software
Fuat Control of Inverse Response Process using Model Predictive Controller (Simulation)
Zhu Progress in MPC identification: A case study on totally closed-loop plant test
Keil et al. Predictive Control in Process Engineering
Lien et al. How much can we increase the efficiency of MPC identification?
Zenger A method for transforming time-variable models into a constant-coefficient form
a Constraint Adaptive Advanced Control in DCS or PLC
Rasmussen Dynamic Matrix Control of the Temperature Control Lab Device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AL AM AT AU AZ BA BG BR BY BZ CA CH CN CO CR CZ DE DK DM EC ES FI GB GE HU ID IL IN JP KR KZ MD MX NO NZ PH PL PT RO RU SE SG TJ TM TR UA VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1620/DELNP/2004

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2003560648

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020047010379

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2472338

Country of ref document: CA

Ref document number: 2003707337

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2004/006739

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 20038034824

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003707337

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2003707337

Country of ref document: EP