WO2003060376A2 - Lighting device, the corresponding installation and the use of same - Google Patents

Lighting device, the corresponding installation and the use of same Download PDF

Info

Publication number
WO2003060376A2
WO2003060376A2 PCT/FR2003/000137 FR0300137W WO03060376A2 WO 2003060376 A2 WO2003060376 A2 WO 2003060376A2 FR 0300137 W FR0300137 W FR 0300137W WO 03060376 A2 WO03060376 A2 WO 03060376A2
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
beams
distance
lighting
field
Prior art date
Application number
PCT/FR2003/000137
Other languages
French (fr)
Other versions
WO2003060376A3 (en
Inventor
Jérôme François Henri MONNOT
Sébastien BOUILHOL
Original Assignee
Alm
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alm filed Critical Alm
Publication of WO2003060376A2 publication Critical patent/WO2003060376A2/en
Publication of WO2003060376A3 publication Critical patent/WO2003060376A3/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1866Transmission gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/04Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for filtering out infrared radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/06Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for filtering out ultraviolet radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/20Lighting for medical use
    • F21W2131/205Lighting for medical use for operating theatres

Definitions

  • the present invention relates to a device for lighting an object, of the type comprising a light source suitable for emitting first and second electromagnetic beams, said first beams having a wavelength which is situated in a first range included in the visible spectrum, said second beams having a wavelength located in a second domain which is outside said first domain, the object being sensitive to the second beams, and a flux collector having a reference image distance from said first beams, and being adapted to direct the beams towards a field to be illuminated from the object.
  • Lighting devices are known that are used in operating rooms. Such devices are used to illuminate the field of intervention of the doctor on the patient.
  • the light sources used for this purpose emit rays of a spectrum which covers the infrared (IR), the ultraviolet (UV), as well as the visible spectrum.
  • IR infrared
  • UV ultraviolet
  • the patient's tissues at the intervention site are very sensitive to infrared and ultraviolet rays.
  • the object of the invention is to propose an inexpensive lighting device which makes it possible to illuminate an object sensitive to a domain of the spectrum with a low risk of degradation.
  • the subject of the invention is a device of the aforementioned type, characterized in that the flux collector comprises at least one diffractive optical element arranged in the path of the beams from the light source towards the field to be illuminated.
  • the device according to the invention comprises one or more of the following characteristics: the first domain is delimited by first lower and upper limit wavelengths, these first two wavelengths defining an average wavelength, said second domain is delimited by at least one second limit wavelength, and the image distance of the flux collector of the average wavelength and the image distance of the flux collector of said second limit wavelength differ from each other by at least 10% of the image distance the average wavelength;
  • the first lower and upper limit wavelengths are between 400 nm and 650 nm, and in particular between 500 and 600 nm;
  • the first domain has a spectrum width of at least 100 nm and preferably at most 400 nm;
  • the diffractive optical element has a reference wavelength comprised in said first range, in particular between 450 nm and 650 nm, and preferably comprised between 500 nm and 600 nm;
  • the focal length of the diffractive optical element as a function of the wavelength is inversely proportional to the wavelength; - the focal length of the diffractive optical element as a function of the
  • wavelength is where fo is the reference focal length and ⁇ o is the reference wavelength of the diffractive optical element;
  • the energy radiant of the device is less than 6mW / m 2 / Lux, and preferably less than 4mW / m 2 / Lux; and the device is a device for lighting a patient, in particular intended to be installed in an operating room.
  • the invention further relates to an installation comprising a support for an object to be lit, characterized in that it further comprises a lighting device as defined above.
  • the installation comprises the following characteristic: the lighting device and the support are movable relative to each other so that their mutual distance is adjustable, and it comprises means for limiting the relative displacement between the support and the lighting device, these limitation means being adapted to prevent movement of the support at a distance from the flow collector which is substantially different from the reference image distance from the collec - flow meter.
  • the subject of the invention is the use of a device as defined above for illuminating a field to be illuminated, characterized in that:
  • the object to be lit is arranged with its field to be lit at a distance which is substantially equal to the reference image distance from the flow collector;
  • - Figure 2 is a graph showing the focal distance and the efficiency of the diffractive lens of the installation of Figure 1 as a function of the wavelength
  • - Figure 3 is a graph showing the spectrum of an example of a halogen bulb used for the installation of Figure 1;
  • FIG. 1 an installation according to the invention, designated by the general reference 2.
  • This installation 2 is used in the medical field to allow a surgeon to intervene on a patient 3, in particular in a field of intervention 4 lit by the installation.
  • the installation 2 comprises a lighting device 8 and an operating table 10.
  • the lighting device 8 consists of a light source 12 and a diffractive flow collector 14.
  • the patient 3 is lying on the operating table 10.
  • the intervention field 4 is defined approximately by the plane P 0 .
  • the light source 12 is considered to be extended and is placed above the patient 3. It emits beams of electromagnetic rays towards the patient.
  • the light source 12 is a bulb which emits rays whose wavelength is located in the visible range, in the ultraviolet (UV) range and in the infrared (IR) range.
  • Such a light source 12 is a tungsten-halogen bulb of the HLX 64638 type from the company OSRAM.
  • the spectrum of such a bulb is shown in Figure 3.
  • the maximum intensity of the light flux from the bulb is 900 nm.
  • about 20% of the electromagnetic energy emitted by this bulb is contained in the visible spectrum (400 nm to 800 nm). The rest of the energy emitted is found in the ultraviolet and infrared spectra.
  • the flux collector 14 is arranged between the light source 12 and the patient 3, at a distance X from the light source 12.
  • the optical plane P of the flux collector 14 extends parallel to the plane Po.
  • the flux collector 14 allows, on the one hand, to guide and focus the visible beams on the intervention field 4, and, on the other hand, to attenuate in the intervention field the harmful UV / IR beams.
  • the flow collector 14 consists of a diffractive lens 16 whose optical plane is co-planar with the plane P.
  • the flow collector 14 also comprises other known optical elements, for example parabolic mirrors, which collect the flux of beams from the light source 12, or else a lens or any other optical component.
  • the reference wavelength is the wavelength for which the efficiency of the lens is maximum. This reference wavelength is preferably situated between 450 nm and 650 nm, in particular between 550 nm and 650 nm.
  • the focal length of the diffractive lens 16 is inversely proportional to the wavelength.
  • the intervention field 4 is located at a distance do from the plane P of the diffractive lens 16. This distance do is chosen to be identical to, or at the very least very close to the reference image distance X o flow collector 14 defined by the formula -
  • the beam F ⁇ 0 has a wavelength which is located in a first spectral range included in the visible spectrum, while the beams F ⁇ m j n and F ⁇ ma ⁇ have wavelengths which are located in outside this first spectral domain.
  • the first domain has a spectrum width between 100 nm and 400 nm.
  • the beam F ⁇ 0 is focused on the lighting field 4 which is in the plane Po. Consequently, the spectral illumination ( ⁇ ) of the beam F ⁇ o of wavelength ⁇ o is maximum in the plane P 0 , which leads to good lighting of the field of intervention 4 to be lit.
  • the efficiency ⁇ of the diffractive lens 16 for the beam F ⁇ o is close to 0.94 (see curve C2 in Fig. 2). Thus, this beam F ⁇ 0 is only very slightly attenuated.
  • the focal length f ⁇ m j n of the diffractive lens 16 is 2 xf 0 for the beam F ⁇ m i n of wavelength ⁇ m i n .
  • This beam F ⁇ min is therefore focused on a plane P m j n , which is seen, seen from the light source 12, behind the plane Po, at a distance of X ⁇ m j n from the plane P.
  • This distance X ⁇ rr ⁇ j n is the image distance of the flux collector for the rays of wavelength ⁇ min.
  • the beam F ⁇ rr ⁇ jn is distributed over a spot of diameter d ⁇ r ⁇ , i n , which makes the spectral illumination ⁇ - ( ⁇ ) of the beam
  • the beam F ⁇ ma ⁇ of wavelength ⁇ max is focused on a plane P max , located at a distance X ⁇ m a x from the diffractive lens 16, which is half the distance X ⁇ 0 between the diffractive lens 16 and the plane P 0 .
  • the beam F ⁇ m a x meets the plane P 0 , it is distributed over a spot of diameter ⁇ max-
  • the spectral illumination of the beam F ⁇ max inciding on the plane P 0 is then low for a given intensity of the light source 12 in this spectrum area.
  • the limit wavelengths of the first and second domains are chosen such that the image distance of the limit wavelength of the second domain differs by at least 10% from the image distance of the average wavelength ⁇ .
  • the energy radiant RE is the ratio of the energy illumination to the visual illumination of the field to be illuminated 4. This radiant is defined by the formula:
  • V ⁇ reference curve of the eye given by Cl.
  • the energy radiant R ⁇ of a lighting device must be as low as possible. In any event, it must be less than 6 mW / m 2 / lux, and preferably less than 4 mW / m 2 / lux.
  • the energy radiant RE of the installation 2 is represented, as a function of the reference wavelength ⁇ 0 of the diffractive lens 16.
  • the abscissa indicates the reference wavelength ⁇ o, while that the ordinate indicates the energy radiant RE.
  • the energy radiant is 1.75. It remains less than 6 for reference wavelengths between 400 nm and 620 nm.
  • the average transmission must be greater than 50%. Transmission is the ratio of the flux at the input of the diffractive lens 16 to the flux at the output of this lens.
  • the input flow is, and the output flow is
  • T ⁇ o P is the transmission of the material of the diffractive lens [in%],
  • the energy radiant RE is represented as a function of the reference focal length.
  • the distance do between the intervention field 4 and the diffractive lens is kept constant at 1000 mm and therefore x ⁇ 111 mm for focal length f 0 of 100 mm.
  • the reference wavelength ⁇ o of the diffractive lens 16 is kept constant.
  • the energy radiant RE increases with the reference focal distance f 0 for an object plane P 0 located at 1 m. It should be noted that the device according to the invention can be applied to fields other than the lighting of a field of operation, for example the lighting of works of art in a museum.
  • the installation also includes a safety device which ensures that the patient 3, or more precisely the lighting field 4, cannot be placed in the focal plane P m i n / Pmax of the UV / IR beams.
  • this safety device consists of two stops 20, 22 which limit the movement of the lighting device 8 so that the patient cannot be placed in the focal planes Pmin Pm a x-
  • the stops 20, 22 prevent movement of the support 10 and therefore of the lighting field 4 at a distance from the flow collector 14 which is clearly different from the reference image distance. Thus, the stops 20, 22 ensure that the distance between the flow collector 14 and the patient 3 remains substantially equal to the reference image distance X ⁇ o.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

The invention relates to a device that is used to illuminate an object, comprising a light source (12) which is adapted to emit first (F lambda 0) and second (F lambda min, F lambda max) electromagnetic beams. The aforementioned first beams (F lambda 0) have a wavelength that is located in a first domain within the visible spectrum while the second beams (F lambda min, F lambda max) have a wavelength ( lambda min, lambda max) that is located outside of said first domain. The inventive device comprises a flux collector (14) which is designed to direct the beams towards the field to be illuminated (4). Said flux collector (14) comprises a diffractive optical element (16) which is disposed in the course the beams follow from the light source (12) towards the field to be illuminated (4). The invention is suitable for lighting devices used in operating theatres.

Description

DISPOSITIF D'ECLAIRAGE. INSTALLATION CORRESPONDANTE ET SON UTILISATION LIGHTING DEVICE. CORRESPONDING INSTALLATION AND USE THEREOF
La présente invention concerne un dispositif d'éclairage d'un objet, du type comportant une source de lumière adaptée pour émettre des premiers et seconds faisceaux électromagnétiques, lesdits premiers faisceaux ayant une longueur d'onde qui est située dans un premier domaine compris dans le spectre visible, lesdits seconds faisceaux ayant une longueur d'onde située dans un second domaine qui se trouve en dehors dudit premier do- maine, l'objet étant sensible aux seconds faisceaux , et un collecteur de flux ayant une distance image de référence desdits premiers faisceaux, et étant adapté pour diriger les faisceaux vers un champ à éclairer de l'objet.The present invention relates to a device for lighting an object, of the type comprising a light source suitable for emitting first and second electromagnetic beams, said first beams having a wavelength which is situated in a first range included in the visible spectrum, said second beams having a wavelength located in a second domain which is outside said first domain, the object being sensitive to the second beams, and a flux collector having a reference image distance from said first beams, and being adapted to direct the beams towards a field to be illuminated from the object.
Elle s'applique notamment aux dispositifs d'éclairage dans des salles d'opérations. On connaît des dispositifs d'éclairage utilisés dans des salles d'opérations. De tels dispositifs sont utilisés afin d'éclairer le champ d'intervention du médecin sur le patient.It applies in particular to lighting devices in operating rooms. Lighting devices are known that are used in operating rooms. Such devices are used to illuminate the field of intervention of the doctor on the patient.
Les sources lumineuses utilisées à cet effet émettent des rayons d'un spectre qui couvre l'infrarouge (IR), l'ultraviolet (UV), ainsi que le spectre visible. Cependant, les tissus du patient à l'emplacement d'intervention sont très sensibles aux rayons infrarouges et ultraviolets.The light sources used for this purpose emit rays of a spectrum which covers the infrared (IR), the ultraviolet (UV), as well as the visible spectrum. However, the patient's tissues at the intervention site are very sensitive to infrared and ultraviolet rays.
C'est pourquoi les dispositifs d'éclairage du champ d'intervention comportent des filtres IR et UV, afin d'éliminer ces domaines du spectre. Toutefois, ces filtres sont très coûteux. L'invention a pour but de proposer un dispositif d'éclairage peu coûteux, qui permette d'éclairer un objet sensible à un domaine du spectre avec un faible risque de dégradation.This is why the lighting devices in the field of intervention include IR and UV filters, in order to eliminate these areas of the spectrum. However, these filters are very expensive. The object of the invention is to propose an inexpensive lighting device which makes it possible to illuminate an object sensitive to a domain of the spectrum with a low risk of degradation.
A cet effet, l'invention a pour objet un dispositif du type précité, caractérisé en ce que le collecteur de flux comprend au moins un élément optique diffractif disposé dans la marche des faisceaux de la source de lumière vers le champ à éclairer.To this end, the subject of the invention is a device of the aforementioned type, characterized in that the flux collector comprises at least one diffractive optical element arranged in the path of the beams from the light source towards the field to be illuminated.
Selon des modes particuliers de réalisation, le dispositif selon l'invention comporte l'une ou plusieurs des caractéristiques suivantes : - le premier domaine est délimité par des premières longueurs d'onde limite inférieure et supérieure, ces deux premières longueurs d'onde définissant une longueur d'onde moyenne, ledit second domaine est délimité par au moins une seconde longueur d'onde limite , et la distance image du col- lecteur de flux de la longueur d'onde moyenne et la distance image du collecteur de flux de ladite seconde longueur d'onde limite diffèrent l'une de l'autre d'au moins 10% de la distance image de la longueur d'onde moyenne ;According to particular embodiments, the device according to the invention comprises one or more of the following characteristics: the first domain is delimited by first lower and upper limit wavelengths, these first two wavelengths defining an average wavelength, said second domain is delimited by at least one second limit wavelength, and the image distance of the flux collector of the average wavelength and the image distance of the flux collector of said second limit wavelength differ from each other by at least 10% of the image distance the average wavelength;
- les premières longueurs d'onde limite inférieure et supérieure sont comprises entre 400 nm et 650 nm, et notamment entre 500 et 600 nm ;- The first lower and upper limit wavelengths are between 400 nm and 650 nm, and in particular between 500 and 600 nm;
- le premier domaine a une largeur de spectre d'au minimum 100 nm et de préférence d'au maximum 400 nm ;- The first domain has a spectrum width of at least 100 nm and preferably at most 400 nm;
- ladite seconde longueur d'onde limite est inférieure à 400 nm ou supérieure à 650 nm ; - l'élément optique diffractif présente une longueur d'onde de référence comprise dans ledit premier domaine, notamment entre 450 nm et 650 nm, et de préférence comprise entre 500 nm et 600 nm ;- Said second limit wavelength is less than 400 nm or more than 650 nm; the diffractive optical element has a reference wavelength comprised in said first range, in particular between 450 nm and 650 nm, and preferably comprised between 500 nm and 600 nm;
- la distance focale de l'élément optique diffractif en fonction de la longueur d'onde est inversement proportionnelle à la longueur d'onde ; - la distance focale de l'élément optique diffractif en fonction de lathe focal length of the diffractive optical element as a function of the wavelength is inversely proportional to the wavelength; - the focal length of the diffractive optical element as a function of the
longueur d'onde est où fo est la distance focale de référence et
Figure imgf000004_0001
λo est la longueur d'onde de référence de l'élément optique diffractif ;
wavelength is where fo is the reference focal length and
Figure imgf000004_0001
λo is the reference wavelength of the diffractive optical element;
- le radiant énergétique du dispositif est inférieur à 6mW/m2/Lux, et de préférence inférieur à 4mW/m2/Lux ; et - le dispositif est un dispositif d'éclairage d'un patient, notamment destiné à être installé dans une salle d'opération.- the energy radiant of the device is less than 6mW / m 2 / Lux, and preferably less than 4mW / m 2 / Lux; and the device is a device for lighting a patient, in particular intended to be installed in an operating room.
L'invention à en outre pour objet une installation comprenant un support pour un objet à éclairer, caractérisée en ce qu'elle comprend en outre un dispositif d'éclairage tel que défini ci-dessus. Selon un mode particulier de réalisation, l'installation comporte la caractéristique suivante : le dispositif d'éclairage et le support sont mobiles l'un par rapport à l'autre de telle sorte que leur distance mutuelle est réglable, et elle comprend des moyens de limitation du déplacement relatif entre le support et le dispositif d'éclairage, ces moyens de limitation étant adaptés pour empêcher un déplacement du support à une distance du collecteur de flux qui est sensiblement différente de la distance image de référence du collec- teur de flux.The invention further relates to an installation comprising a support for an object to be lit, characterized in that it further comprises a lighting device as defined above. According to a particular embodiment, the installation comprises the following characteristic: the lighting device and the support are movable relative to each other so that their mutual distance is adjustable, and it comprises means for limiting the relative displacement between the support and the lighting device, these limitation means being adapted to prevent movement of the support at a distance from the flow collector which is substantially different from the reference image distance from the collec - flow meter.
Par ailleurs, l'invention a pour objet l'utilisation d'un dispositif tel que défini ci-dessus pour éclairer un champ à éclairer, caractérisée en ce que :Furthermore, the subject of the invention is the use of a device as defined above for illuminating a field to be illuminated, characterized in that:
- on dispose l'objet à éclairer avec son champ à éclairer à une distance qui est sensiblement égale à la distance image de référence du collec- teur de flux; et- the object to be lit is arranged with its field to be lit at a distance which is substantially equal to the reference image distance from the flow collector; and
- on éclaire le champ d'éclairage par le dispositif d'éclairage. L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins sur lesquels : - la Figure 1 est une vue schématique d'une installation d'éclairage selon l'invention ;- the lighting field is illuminated by the lighting device. The invention will be better understood on reading the description which follows, given solely by way of example and made with reference to the drawings in which: - Figure 1 is a schematic view of a lighting installation according to the invention;
- la Figure 2 est un graphique montrant la distance focale et le rendement de la lentille diffractive de l'installation de la Figure 1 en fonction de la longueur d'onde ; - la Figure 3 est un graphique montrant le spectre d'un exemple d'une ampoule halogène utilisée pour l'installation de la Figure 1 ; et- Figure 2 is a graph showing the focal distance and the efficiency of the diffractive lens of the installation of Figure 1 as a function of the wavelength; - Figure 3 is a graph showing the spectrum of an example of a halogen bulb used for the installation of Figure 1; and
- les Figures 4 à 6 sont des graphiques montrant les rapports entre différentes paramètres du dispositif selon l'invention.- Figures 4 to 6 are graphs showing the relationships between different parameters of the device according to the invention.
Sur la Figure 1 est représentée une installation selon l'invention, dé- signée par la référence générale 2.In FIG. 1 is shown an installation according to the invention, designated by the general reference 2.
Cette installation 2 est utilisée dans le domaine médical pour permettre à un chirurgien d'intervenir sur un patient 3, notamment dans un champ d'intervention 4 éclairé par l'installation.This installation 2 is used in the medical field to allow a surgeon to intervene on a patient 3, in particular in a field of intervention 4 lit by the installation.
L'installation 2 comprend un dispositif d'éclairage 8 et une table d'opération 10. Le dispositif d'éclairage 8 est constitué d'une source de lumière 12 et d'un collecteur de flux diffractif 14.The installation 2 comprises a lighting device 8 and an operating table 10. The lighting device 8 consists of a light source 12 and a diffractive flow collector 14.
Le patient 3 est allongé sur la table d'opération 10. Le champ d'intervention 4 est défini approximativement par le plan P0. La source de lumière 12 est considérée comme étendue et est disposée au-dessus du patient 3. Elle émet des faisceaux de rayons électromagnétiques vers le patient.The patient 3 is lying on the operating table 10. The intervention field 4 is defined approximately by the plane P 0 . The light source 12 is considered to be extended and is placed above the patient 3. It emits beams of electromagnetic rays towards the patient.
La source de lumière 12 est une ampoule qui émet des rayons dont la longueur d'onde est située dans le domaine visible, dans le domaine ultraviolet (UV) et dans le domaine infrarouge (IR).The light source 12 is a bulb which emits rays whose wavelength is located in the visible range, in the ultraviolet (UV) range and in the infrared (IR) range.
Un exemple d'une telle source de lumière 12 est une ampoule tungstène-halogène du type HLX 64638 de l'entreprise OSRAM. Le spectre d'une telle ampoule est représentée sur la Figure 3. L'intensité maximale du flux lumineux de l'ampoule se trouve à 900 nm. Comme il ressort de la Figure 3, environ 20% de l'énergie électromagnétique émise par cette ampoule est contenue dans le spectre visible (400 nm à 800 nm). Le reste de l'énergie émise se trouve dans les spectres ultraviolet et infrarouge.An example of such a light source 12 is a tungsten-halogen bulb of the HLX 64638 type from the company OSRAM. The spectrum of such a bulb is shown in Figure 3. The maximum intensity of the light flux from the bulb is 900 nm. As shown in Figure 3, about 20% of the electromagnetic energy emitted by this bulb is contained in the visible spectrum (400 nm to 800 nm). The rest of the energy emitted is found in the ultraviolet and infrared spectra.
Uniquement les rayons compris dans le spectre visible sont utiles ef- fectivement à l'éclairage du champ d'intervention 4, tandis que les rayons infrarouges et ultraviolets sont nuisibles à ce dernier à cause des échauffe- ments des tissus.Only the rays included in the visible spectrum are effectively used for lighting the field of intervention 4, while the infrared and ultraviolet rays are harmful to the latter because of the heating of the tissues.
Le collecteur de flux 14 est disposé entre la source de lumière 12 et le patient 3, à une distance X de la source de lumière 12. Le plan optique P du collecteur de flux 14 s'étend parallèlement au plan Po. Le collecteur de flux 14 permet, d'une part, de guider et de focaliser les faisceaux visibles sur le champ d'intervention 4, et, d'autre part, d'atténuer dans le champ d'intervention les faisceaux UV/IR nuisibles.The flux collector 14 is arranged between the light source 12 and the patient 3, at a distance X from the light source 12. The optical plane P of the flux collector 14 extends parallel to the plane Po. The flux collector 14 allows, on the one hand, to guide and focus the visible beams on the intervention field 4, and, on the other hand, to attenuate in the intervention field the harmful UV / IR beams.
Pour des raisons de simplicité, dans le cas présent, le collecteur de flux 14 est constitué d'une lentille diffractive 16 dont le plan optique est co- planaire au plan P. En variante, le collecteur de flux 14 comporte en outre d'autres éléments optiques connus, par exemple des miroirs paraboliques, qui collectent le flux de faisceaux de la source de lumière 12, ou bien une lentille ou tout autre composant optique. La lentille diffractive 16 a une longueur d'onde de référence λ0, située dans le spectre visible, par exemple λ0 = 550 nm. La longueur d'onde de référence est la longueur d'onde pour laquelle le rendement de la lentille est maximal. Cette longueur d'onde de référence est située de préférence entre 450 nm et 650 nm, notamment entre 550 nm et 650 nm.For reasons of simplicity, in the present case, the flow collector 14 consists of a diffractive lens 16 whose optical plane is co-planar with the plane P. As a variant, the flow collector 14 also comprises other known optical elements, for example parabolic mirrors, which collect the flux of beams from the light source 12, or else a lens or any other optical component. The diffractive lens 16 has a reference wavelength λ 0 , located in the visible spectrum, for example λ 0 = 550 nm. The reference wavelength is the wavelength for which the efficiency of the lens is maximum. This reference wavelength is preferably situated between 450 nm and 650 nm, in particular between 550 nm and 650 nm.
La distance focale de référence de cette lentille, c'est-à-dire la distance pour le rayonnement dont la longueur d'onde est la longueur d'onde de référence, est notée f(λo) = fo-The reference focal distance of this lens, that is to say the distance for the radiation whose wavelength is the reference wavelength, is noted f (λo) = fo-
La distance focale de la lentille diffractive 16 est inversement proportionnelle à la longueur d'onde. En l'occurrence, la distance focale f de la len¬The focal length of the diffractive lens 16 is inversely proportional to the wavelength. In this case, the focal length f of the len¬
tille en fonction de la longueur d'onde λ est - Cette relation est
Figure imgf000007_0001
représentée par la courbe C1 de la Figure 2 pour une lentille diffractive de longueur d'onde de référence λ0 égale à 550 nm.
tille as a function of the wavelength λ is - This relation is
Figure imgf000007_0001
represented by the curve C1 in FIG. 2 for a diffractive lens with a reference wavelength λ 0 equal to 550 nm.
Le rendement idéal η(λ) de la lentille 16 en fonction de la longueurThe ideal yield η (λ) of the lens 16 as a function of the length
d'onde λ est donné par la formule Le rendement réel est représenté par la courbe C2 de la Figure 2. Pour la longueur d'onde de référence λo, le rendement η réel de la lentille 16 est de 0,94. Comme montré sur la Figure 1 , le champ d'intervention 4 est situé à une distance do du plan P de la lentille diffractive 16. Cette distance do est choisie identique à, ou à tout le moins très proche de la distance image de référence X o du collecteur de flux 14 définie par la formule -
Figure imgf000007_0003
wave λ is given by the formula The actual yield is represented by the curve C2 in FIG. 2. For the reference wavelength λo, the real efficiency η of the lens 16 is 0.94. As shown in Figure 1, the intervention field 4 is located at a distance do from the plane P of the diffractive lens 16. This distance do is chosen to be identical to, or at the very least very close to the reference image distance X o flow collector 14 defined by the formula -
Figure imgf000007_0003
Dans ce qui suit, les allures de trois faisceaux Fλ0, Fλmjn et Fλmax de différentes longueurs d'onde λ0, λmin = 0,5 x λ0, et λmax = 2 x λ0 seront décrites. De façon générale, le faisceau Fλ0 présente une longueur d'onde qui est située dans un premier domaine spectral compris dans le spectre visible, tandis que les faisceaux Fλmjn et Fλmaχ présentent des longueurs d'onde qui sont situées en dehors de ce premier domaine spectral. Le premier domaine est par exemple compris entre des longueurs d'onde limites inférieure Ai = 400 nm et supérieure λ - 800 nm, et notamment entre 500 nm et 600 nm. Le premier domaine a une largeur de spectre comprise entre 100 nm et 400 nm. Les longueurs d'ondes limites définissent également une longueur d'onde moyenne !=• &- . Dans le dernier cas, ~λ 00nm+600nm =55Qnm . De préférence, la longueur d'onde moyenne λ est choisie sensiblement identique à la longueur d'onde de référence λ0 Pour l'exemple donné λo =In the following, the paces of three beams F λ0 , F λm j n and F λ m ax of different wavelengths λ 0 , λ mi n = 0.5 x λ 0 , and λ max = 2 x λ 0 will be described. Generally, the beam F λ0 has a wavelength which is located in a first spectral range included in the visible spectrum, while the beams F λm j n and F λma χ have wavelengths which are located in outside this first spectral domain. The first domain is, for example, between the lower wavelength limits Ai = 400 nm and upper λ - 800 nm, and in particular between 500 nm and 600 nm. The first domain has a spectrum width between 100 nm and 400 nm. Limit wavelengths also define an average wavelength! = • & -. In the latter case, λ ~ 600nm 00nm + = 55Q nm. Preferably, the average wavelength λ is chosen to be substantially identical to the reference wavelength λ 0 For the example given λo =
550 nm (visible), λmin= 275 nm (ultraviolet), et λmaχ = 1100 nm (infrarouge).550 nm (visible), λ m i n = 275 nm (ultraviolet), and λ ma χ = 1100 nm (infrared).
Comme il ressort de la Figure 1 , le faisceau Fλ0 est focalisé sur le champ d'éclairage 4 qui se trouve dans le plan Po. En conséquence, l'éclairement spectrique (^) du faisceau Fλo de longueur d'onde λo est maximale dans le plan P0, ce qui conduit à un bon éclairage du champ d'intervention 4 à éclairer. De plus, le rendement η de la lentille diffractive 16 pour le faisceau Fλo est proche de 0,94 (voir courbe C2 de la Fig. 2). Ainsi, ce faisceau Fλ0 n'est atténué que très peu.As shown in Figure 1, the beam F λ0 is focused on the lighting field 4 which is in the plane Po. Consequently, the spectral illumination (^) of the beam F λ o of wavelength λo is maximum in the plane P 0 , which leads to good lighting of the field of intervention 4 to be lit. In addition, the efficiency η of the diffractive lens 16 for the beam F λ o is close to 0.94 (see curve C2 in Fig. 2). Thus, this beam F λ0 is only very slightly attenuated.
La distance focale fλmjn de la lentille diffractive 16 est 2 x f0 pour le faisceau Fλmin de longueur d'onde λmin. Ce faisceau Fλmin est donc focalisé sur un plan Pmjn, qui se trouve, vu à partir de la source de lumière 12, derrière le plan Po, à une distance de Xλmjn du plan P. Cette distance Xλrrιjn est la distance image du collecteur de flux pour les rayons de longueur d'onde λmin. A l'emplacement du plan Po, le faisceau Fλrrιjn est distribué sur une tache de diamètre dλrτ,in, ce qui rend l'éclairement spectrique §-(^) du fais¬The focal length f λm j n of the diffractive lens 16 is 2 xf 0 for the beam F λm i n of wavelength λ m i n . This beam F λmin is therefore focused on a plane P m j n , which is seen, seen from the light source 12, behind the plane Po, at a distance of X λm j n from the plane P. This distance X λrrι j n is the image distance of the flux collector for the rays of wavelength λmin. At the location of the plane Po, the beam F λrrι jn is distributed over a spot of diameter d λrτ , i n , which makes the spectral illumination § - (^) of the beam
ceau Fλmin faible à cet emplacement. De plus, comme il ressort de la Figure 2, le rendement η (λmin = 275 nm) de la lentille diffractive pour ces faisceaux Fλmin est de l'ordre de 1%. 99% de l'intensité de ce faisceau est donc réfléchie en partie par la lentille diffractive 16 vers l'intérieur du dispositif d'éclairage.f λ min weak at this location. In addition, as shown in Figure 2, the efficiency η (λ m i n = 275 nm) of the diffractive lens for these beams F λ min is of the order of 1%. 99% of the intensity of this beam is therefore partly reflected by the diffractive lens 16 towards the interior of the lighting device.
Le faisceau Fλmaχ de longueur d'onde λmax est focalisé sur un plan Pmax, situé à une distance Xλmax de la lentille diffractive 16, qui est la moitié de la distance Xλ0 entre la lentille diffractive 16 et le plan P0. Lorsque le faisceau Fλmax rencontre le plan P0, il est réparti sur une tache de diamètre λmax- L'éclairement spectrique du faisceau Fλmax incidant sur le plan P0 est alors faible pour une intensité donnée de la source de lumière 12 dans ce domaine du spectre. De plus, comme il ressort de la Figure 2, la lentille dif- fractive présente un rendement η(λmax = 1100 nm) d'environ 40%. Les longueurs d'onde limites des premier et second domaines sont choisies de telle sorte que la distance image de la longueur d'onde limite du second domaine diffère d'au moins 10% de la distance image de la longueur d'onde moyenne λ .The beam F λma χ of wavelength λ max is focused on a plane P max , located at a distance X λ m a x from the diffractive lens 16, which is half the distance X λ0 between the diffractive lens 16 and the plane P 0 . When the beam F λ m a x meets the plane P 0 , it is distributed over a spot of diameter λmax- The spectral illumination of the beam F λmax inciding on the plane P 0 is then low for a given intensity of the light source 12 in this spectrum area. In addition, as shown in Figure 2, the diffractive lens has an efficiency η (λ max = 1100 nm) of around 40%. The limit wavelengths of the first and second domains are chosen such that the image distance of the limit wavelength of the second domain differs by at least 10% from the image distance of the average wavelength λ.
Le radiant énergétique RE est le rapport de l'éclairement énergétique à l'éclairement visuel du champ à éclairer 4. Ce radiant est défini par la formule :The energy radiant RE is the ratio of the energy illumination to the visual illumination of the field to be illuminated 4. This radiant is defined by the formula:
Figure imgf000009_0001
et Vλ = courbe de référence de l'œil donnée par Cl.
Figure imgf000009_0001
and V λ = reference curve of the eye given by Cl.
Dans le domaine médical, le radiant énergétique RΕ d'un dispositif d'éclairage doit être le plus faible possible. En tout état de cause il doit être inférieur à 6 mW/m2/lux, et de préférence inférieur à 4 mW/m2/lux.In the medical field, the energy radiant RΕ of a lighting device must be as low as possible. In any event, it must be less than 6 mW / m 2 / lux, and preferably less than 4 mW / m 2 / lux.
Sur la Figure 4, il est représenté le radiant énergétique RE de l'installation 2, en fonction de la longueur d'onde de référence λ0 de la lentille diffractive 16. L'abscisse indique la longueur d'onde de référence λo, tandis que l'ordonnée indique le radiant énergétique RE. Comme il ressort de la Figure 4, pour une longueur d'onde de référence de 550 nm, le radiant énergétique est 1 ,75. Il reste inférieur à 6 pour des longueurs d'onde de référence compris entre 400 nm et 620 nm.In FIG. 4, the energy radiant RE of the installation 2 is represented, as a function of the reference wavelength λ 0 of the diffractive lens 16. The abscissa indicates the reference wavelength λo, while that the ordinate indicates the energy radiant RE. As shown in Figure 4, for a reference wavelength of 550 nm, the energy radiant is 1.75. It remains less than 6 for reference wavelengths between 400 nm and 620 nm.
Par ailleurs, pour des dispositifs d'éclairage du domaine médical, il est nécessaire que la transmission moyenne soit supérieure à 50%. La transmission est le rapport du flux à l'entrée de la lentille diffractive 16 au flux à la sortie de cette lentille.In addition, for lighting devices in the medical field, the average transmission must be greater than 50%. Transmission is the ratio of the flux at the input of the diffractive lens 16 to the flux at the output of this lens.
Le flux en entrée est , et le flux à la sortie est
Figure imgf000009_0002
The input flow is, and the output flow is
Figure imgf000009_0002
Figure imgf000009_0003
, TΛoP est la transmission de la matière de la lentille diffractive [en %],
Figure imgf000009_0003
, TΛo P is the transmission of the material of the diffractive lens [in%],
. „_Surfacedelasourcedelumière(12)xSurfacedelalentillediffractive(16). "_Surfacedelasourcedelumière (12) xSurfacedelalentillediffractive (16)
(Distanceentresourcedelumièreetlentillediffractive(X)f(Distanceentresourcedelumièreetlentillediffractive (X) f
(l'étendu géométrique du système optique [en m2])(the geometric extent of the optical system [in m 2 ])
Sur la Figure 5, il est porté en ordonnée la transmission de la lentille, tandis que l'abscisse indique la longueur d'onde de référence λ0. La transmission atteint un maximum de 63% avec une lentille diffractive de λ0 = 650 nm.In Figure 5, the transmission of the lens is plotted on the ordinate, while the abscissa indicates the reference wavelength λ 0 . Transmission reaches a maximum of 63% with a diffractive lens of λ 0 = 650 nm.
Sur la Figure 6, est représenté le radiant énergétique RE en fonction de la focale de référence. La distance do entre le champ d'intervention 4 et la lentille diffractive est maintenue constante à 1000 mm et donc x ~ 111 mm pour focale f0 de 100 mm. De même, la longueur d'onde de référence λo de la lentille diffractive 16 est maintenue constante.In Figure 6, the energy radiant RE is represented as a function of the reference focal length. The distance do between the intervention field 4 and the diffractive lens is kept constant at 1000 mm and therefore x ~ 111 mm for focal length f 0 of 100 mm. Likewise, the reference wavelength λo of the diffractive lens 16 is kept constant.
Le radiant énergétique RE augmente avec la distance focale f0 de référence pour un plan objet P0 situé à 1 m. II est à noter que le dispositif selon l'invention peut s'appliquer à d'autres domaines que l'éclairage d'un champ d'opération, par exemple l'éclairage d'œuvres d'art dans un musée.The energy radiant RE increases with the reference focal distance f 0 for an object plane P 0 located at 1 m. It should be noted that the device according to the invention can be applied to fields other than the lighting of a field of operation, for example the lighting of works of art in a museum.
L'installation comporte par ailleurs un dispositif de sécurité qui assure que le patient 3, ou plus précisément le champ d'éclairage 4, ne puisse pas être mis dans le plan focal Pmin/Pmax des faisceaux UV/IR. En l'occurrence, ce dispositif de sécurité est constitué de deux butées 20, 22 qui limitent le déplacement du dispositif d'éclairage 8 de telle sorte que le patient ne puisse pas être mis dans les plans focaux Pmin Pmax-The installation also includes a safety device which ensures that the patient 3, or more precisely the lighting field 4, cannot be placed in the focal plane P m i n / Pmax of the UV / IR beams. In this case, this safety device consists of two stops 20, 22 which limit the movement of the lighting device 8 so that the patient cannot be placed in the focal planes Pmin Pm a x-
Les butées 20, 22 empêchent un déplacement du support 10 et donc du champ d'éclairage 4 à une distance du collecteur de flux 14 qui est nettement différente de la distance image de référence. Ainsi, les butées 20, 22 assurent que la distance entre le collecteur du flux 14 et le patient 3 reste sensiblement égale à la distance image Xλo de référence. The stops 20, 22 prevent movement of the support 10 and therefore of the lighting field 4 at a distance from the flow collector 14 which is clearly different from the reference image distance. Thus, the stops 20, 22 ensure that the distance between the flow collector 14 and the patient 3 remains substantially equal to the reference image distance X λ o.

Claims

REVENDICATIONS
1. Dispositif d'éclairage d'un objet (3), du type comportant1. Device for lighting an object (3), of the type comprising
- une source de lumière (12) adaptée pour émettre des premiers et seconds faisceaux électromagnétiques, lesdits premiers faisceaux (Fλo) ayant une longueur d'onde qui est située dans un premier domaine compris dans le spectre visible, lesdits seconds faisceaux (Fλmjn, Fλmax) ayant une longueur d'onde (λmjn , λmax) située dans un second domaine qui se trouve en dehors dudit premier domaine, l'objet (3) étant sensible aux seconds faisceaux (Xλmin Xλmin); et - un collecteur de flux (14) ayant une distance image de référence- a light source (12) adapted to emit first and second electromagnetic beams, said first beams (F λ o) having a wavelength which is located in a first range included in the visible spectrum, said second beams (F λm j n , F λmax ) having a wavelength (λ m j n , λ max ) located in a second domain which is outside said first domain, the object (3) being sensitive to second beams (X λmi n Xλmin); and - a flow collector (14) having a reference image distance
(X o) desdits premiers faisceaux, et étant adapté pour diriger les faisceaux (Fλo, Fλmin, Fλmax) vers un champ à éclairer (4) de l'objet (3), caractérisé en ce que le collecteur de flux (14) comprend au moins un élément optique diffractif (16) disposé dans la marche des faisceaux de la source de lumière (12) vers le champ à éclairer (4).(X o) of said first beams, and being adapted to direct the beams (F λ o, F λmin , F λmax ) towards a field to be illuminated (4) of the object (3), characterized in that the flux collector (14) comprises at least one diffractive optical element (16) arranged in the path of the beams from the light source (12) towards the field to be illuminated (4).
2. Dispositif selon la revendication 1 , caractérisé en ce que le premier domaine est délimité par des premières longueurs d'onde limite inférieure (λi) et supérieure (λs), ces deux premières longueurs d'onde définissant une longueur d'onde moyenne (λ ), en ce que ledit second domaine est délimité par au moins une seconde longueur d'onde limite, et en ce que la distance image du collecteur de flux (14) de la longueur d'onde moyenne et la distance image du collecteur de flux (14) de ladite seconde longueur d'onde limite diffèrent l'une de l'autre d'au moins 10% de la distance image de la longueur d'onde moyenne. 2. Device according to claim 1, characterized in that the first domain is delimited by first lower (λi) and upper (λ s ) limit wavelengths, these two first wavelengths defining an average wavelength (λ), in that said second domain is delimited by at least a second limit wavelength, and in that the image distance of the flux collector (14) of the average wavelength and the image distance of the collector flux (14) of said second limit wavelength differ from each other by at least 10% of the image distance of the average wavelength.
3. Dispositif selon la revendication 2, caractérisé en ce que les premières longueurs d'onde limite inférieure (λj) et supérieure (λs) sont comprises entre 400 nm et 800 nm, et notamment entre 500 et 600 nm.3. Device according to claim 2, characterized in that the first lower (λj) and upper (λ s ) limit wavelengths are between 400 nm and 800 nm, and in particular between 500 and 600 nm.
4. Dispositif selon la revendication 2 ou 3, caractérisé en ce que le premier domaine a une largeur de spectre d'au minimum 100 nm et de pré- férence d'au maximum 400 nm. 4. Device according to claim 2 or 3, characterized in that the first domain has a spectrum width of at least 100 nm and preferably of at most 400 nm.
5. Dispositif selon l'une quelconque des revendications 2 à 4, caractérisé en ce que ladite seconde longueur d'onde limite est inférieure à 400 nm ou supérieure à 650 nm.5. Device according to any one of claims 2 to 4, characterized in that said second limit wavelength is less than 400 nm or greater than 650 nm.
6. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que l'élément optique diffractif (16) présente une longueur d'onde de référence (λ0) comprise dans ledit premier domaine, notamment entre 450 nm et 650 nm, et de préférence comprise entre 500 nm et 600 nm.6. Device according to any one of the preceding claims, characterized in that the diffractive optical element (16) has a reference wavelength (λ 0 ) included in said first range, in particular between 450 nm and 650 nm, and preferably between 500 nm and 600 nm.
7. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la distance focale de l'élément optique diffractif (16) en fonction de la longueur d'onde est inversement proportionnelle à la longueur d'onde.7. Device according to any one of the preceding claims, characterized in that the focal distance of the diffractive optical element (16) as a function of the wavelength is inversely proportional to the wavelength.
8. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la distance focale f de l'élément optique diffractif (16)8. Device according to any one of the preceding claims, characterized in that the focal distance f of the diffractive optical element (16)
en fonction de la longueur d'onde (λ) est f(λ)= f 2p, où fo est la distanceas a function of the wavelength (λ) is f (λ) = f 2p, where fo is the distance
focale de référence et λo est la longueur d'onde de référence de l'élément optique diffractif (16).reference focal length and λo is the reference wavelength of the diffractive optical element (16).
9. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le radiant énergétique (RE) du dispositif est inférieur à 6mW/m2/Lux, et de préférence inférieur à 4mW/m2/Lux. 9. Device according to any one of the preceding claims, characterized in that the energy radiant (RE) of the device is less than 6mW / m 2 / Lux, and preferably less than 4mW / m 2 / Lux.
10. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est un dispositif d'éclairage d'un patient, notamment destiné à être installé dans une salle d'opération.10. Device according to any one of the preceding claims, characterized in that it is a device for lighting a patient, in particular intended to be installed in an operating room.
11. Installation comprenant un support (10) pour un objet (3) à éclairer, caractérisée en ce qu'elle comprend en outre un dispositif d'éclairage (8) selon l'une quelconque des revendications 1 à 10.11. Installation comprising a support (10) for an object (3) to be lit, characterized in that it further comprises a lighting device (8) according to any one of claims 1 to 10.
12. Installation selon la revendication 11 , caractérisée en ce que le dispositif d'éclairage (8) et le support (10) sont mobiles l'un par rapport à l'autre de telle sorte que leur distance mutuelle est réglable, et en ce qu'elle comprend des moyens de limitation (20, 22) du déplacement relatif entre le support (10) et le dispositif d'éclairage (8), ces moyens de limitation (20, 22) étant adaptés pour empêcher un déplacement du support (10) à une dis- tance du collecteur de flux (8) qui est sensiblement différente de la distance image de référence (Xλo) du collecteur de flux (14).12. Installation according to claim 11, characterized in that the lighting device (8) and the support (10) are movable relative to each other so that their mutual distance is adjustable, and in that that it includes means for limiting (20, 22) the relative movement between the support (10) and the lighting device (8), these means for limiting (20, 22) being adapted to prevent movement of the support ( 10) at a tance of the flow collector (8) which is significantly different from the reference image distance (X λ o) of the flow collector (14).
13. Utilisation d'un dispositif selon l'une quelconque des revendications 1 à 10 pour éclairer un champ à éclairer (4), caractérisée en ce que : - on dispose l'objet à éclairer (3) avec son champ à éclairer (4) à une distance qui est sensiblement égale à la distance image de référence (Xλ0) du collecteur de flux (14) ; et13. Use of a device according to any one of claims 1 to 10 for lighting a field to be lit (4), characterized in that: - the object to be lit (3) is arranged with its field to be lit (4 ) at a distance which is substantially equal to the reference image distance (X λ0 ) of the flow collector (14); and
- on éclaire le champ à éclairer par le dispositif d'éclairage. - the field to be lit is illuminated by the lighting device.
PCT/FR2003/000137 2002-01-17 2003-01-16 Lighting device, the corresponding installation and the use of same WO2003060376A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0200559A FR2834772B1 (en) 2002-01-17 2002-01-17 LIGHTING DEVICE, CORRESPONDING INSTALLATION AND USE THEREOF
FR02/00559 2002-01-17

Publications (2)

Publication Number Publication Date
WO2003060376A2 true WO2003060376A2 (en) 2003-07-24
WO2003060376A3 WO2003060376A3 (en) 2004-03-11

Family

ID=8871334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/000137 WO2003060376A2 (en) 2002-01-17 2003-01-16 Lighting device, the corresponding installation and the use of same

Country Status (2)

Country Link
FR (1) FR2834772B1 (en)
WO (1) WO2003060376A2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5128848A (en) * 1989-03-31 1992-07-07 W.C. Heraeus Gmbh Operating light
US5199785A (en) * 1990-12-19 1993-04-06 Delma Elektro-Und Medizinische Geraetebau Gesellschaft Mbh Operating theater lamp
US6002520A (en) * 1997-04-25 1999-12-14 Hewlett-Packard Company Illumination system for creating a desired irradiance profile using diffractive optical elements
US6304381B1 (en) * 1999-02-17 2001-10-16 Minolta Co., Ltd. Illumination optical apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5128848A (en) * 1989-03-31 1992-07-07 W.C. Heraeus Gmbh Operating light
US5199785A (en) * 1990-12-19 1993-04-06 Delma Elektro-Und Medizinische Geraetebau Gesellschaft Mbh Operating theater lamp
US6002520A (en) * 1997-04-25 1999-12-14 Hewlett-Packard Company Illumination system for creating a desired irradiance profile using diffractive optical elements
US6304381B1 (en) * 1999-02-17 2001-10-16 Minolta Co., Ltd. Illumination optical apparatus

Also Published As

Publication number Publication date
FR2834772A1 (en) 2003-07-18
WO2003060376A3 (en) 2004-03-11
FR2834772B1 (en) 2004-04-16

Similar Documents

Publication Publication Date Title
EP2767751B1 (en) Secure adaptive lighting system
US9261259B2 (en) Laser-beam utilization device and vehicle headlight
EP2821692B1 (en) Secure optical module for a motor vehicle including a laser source
FR2823831A1 (en) Infrared irradiation lamp, for motor vehicle, has reflector which reflects infrared light guided through cylindrical globe covering light source to provide ring-shaped red light component
FR2808868A1 (en) LIGHTING INSTALLATION, PARTICULARLY VEHICLE LIGHTS
FR3061538A1 (en) LIGHTING DEVICE FOR A VEHICLE COMBINING TWO LIGHT SOURCES
FR2966902A1 (en) SCIALYTIC LAMP AND METHOD FOR LIGHTING AN OPERATING TABLE WITH A SCIALYTIC LAMP
EP2097227B1 (en) Glove-box with sealed illuminated containment
EP2767752A1 (en) Lighting and/or signalling device with toric lens
EP1156271B1 (en) Lighting system with failure detection
FR2925654A1 (en) HEADLIGHT FOR VEHICLES
EP3242079B1 (en) Light module comprising a laser element
FR2684746A1 (en) LAMP FOR OPERATING ROOM.
WO2003060376A2 (en) Lighting device, the corresponding installation and the use of same
FR3065056B1 (en) LUMINOUS DEVICE, SIGNALING APPARATUS, AND DIAGNOSTIC AND / OR SERVICING METHOD
FR2976999A1 (en) Lighting device for use in e.g. architectural lighting field, has cylinder lens whose curved face comprises radius of curvature, where radius of curvature in each point of face is provided such that luminous zone is uniformly illuminated
EP3241709B1 (en) Luminous module comprising a laser element
WO2004079259A1 (en) Illumination device
FR2642209A1 (en) Lighting device for a liquid crystal screen
WO1995010732A1 (en) Light generator with heat shield for lighting or illuminating unit having a light guide
FR3105350A1 (en) Light module for motor vehicle.
FR3068110B1 (en) LUMINOUS MODULE WITH VARIABLE LIGHTING
FR2776367A1 (en) PROJECTOR FOR A MOTOR VEHICLE COMBINED WITH A PARKING LIGHT
FR2935487A1 (en) DEVICE FOR DETERMINING THE ENTRY OF ELECTROMAGNETIC RADIATION
WO2020079341A1 (en) Light module providing two photometric functions having distinct light signatures

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP