WO2003059825A1 - Procede de traitement des boues et des dechets issus du traitement d'eaux usees - Google Patents

Procede de traitement des boues et des dechets issus du traitement d'eaux usees Download PDF

Info

Publication number
WO2003059825A1
WO2003059825A1 PCT/FR2002/004441 FR0204441W WO03059825A1 WO 2003059825 A1 WO2003059825 A1 WO 2003059825A1 FR 0204441 W FR0204441 W FR 0204441W WO 03059825 A1 WO03059825 A1 WO 03059825A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
enzymes
enzymatic
treatment
hydrolysis
Prior art date
Application number
PCT/FR2002/004441
Other languages
English (en)
Inventor
Serge Morgoun
Original Assignee
Ondeo Degremont
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ondeo Degremont filed Critical Ondeo Degremont
Priority to AU2002364327A priority Critical patent/AU2002364327A1/en
Publication of WO2003059825A1 publication Critical patent/WO2003059825A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/286Anaerobic digestion processes including two or more steps
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/342Biological treatment of water, waste water, or sewage characterised by the microorganisms used characterised by the enzymes used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates, in general, to the transformation of dissolved or suspended organic compounds in colloidal or particulate form, said compounds being associated with slowly biodegradable and assimilable organic matter, into easily biodegradable and assimilable compounds, considered by the invention.
  • skilled in the art as soluble COD skilled in the art as soluble COD.
  • the present invention relates to the treatment of sludge and waste from the treatment of waste water and it provides a process which is particularly suitable for the hydrolysis of grease or sludge from the treatment of domestic waste water and industrial waste water, in order on the one hand to optimize a sludge treatment process such as anaerobic digestion and anaerobic digestion, and on the other hand to produce within a water purification plant the carbon necessary for biological denitrification processes or dephosphatation.
  • the process according to the invention can also be used on concentrated liquid discharges, such as those from the food industry, and this as a preliminary step to a methanisation process, frequently used in these industries to produce biogas covering all or part energy needs of said industries.
  • the production of easily assimilated carbon can also be envisaged if the industry concerned has a purification station comprising biological processes of denitrification or dephosphatation.
  • sludge are produced during water treatment; generally the effluent undergoes a screen and possibly a desanding and degreasing, a primary decantation during which the water is recovered, a secondary treatment by free aerobic bacterial culture to eliminate the organic pollution of the water, and finally a secondary settling during which the purified water is separated from the activated secondary sludge.
  • sludge consists of polluting elements and their transformation products which are removed from the liquid phase during the purification of the water.
  • the primary sludge of gray or yellowish color, smelly, appears in a colloidal form; they contain mineral and organic particles, greases, detergents, vegetable debris, waste paper.
  • the activated sludge is brown in color and has a smell of humus; they are made up of organic matter, protozoa, bacteria.
  • Mixed sludge consists in variable proportions of thickened primary sludge and concentrated activated sludge (most often by flotation).
  • the sludge has a complex and variable structure depending on its nature. Overall, they consist of organic matter from both wastewater
  • microorganisms proteins, polysaccharides
  • metabolism or lysis of microorganisms proteins, polysaccharides, nucleic acids
  • Proteins constitute on average 30 to 35% of the insoluble organic matter of sludge from treatment plants (Chynoweth DP and Mah RA, 1971, Adv. Chemistry, 105, 41-54 "Volatile acid formation in sludge digestion. Anaerobic biological tretament processes "), but larger proportions can be found in biological and mixed sludges (Pavlostathis SG, 1988, J. Envir. Engng., 114, 575-592" Preliminary conversion mechanisms in anaerobic digestion of biological sludges ") .
  • the insoluble proteins of the floc are solubilized by bacterial exoproteases and hydrolyzed into peptides and amino acids (Hobson PN, Bousfield S., Summers R., 1974, Envir. Control, 131-191 "Anaerobic digestion of organic matter - Critical reviews” ).
  • Lipids are generally present in large proportion in primary sludge, from 28 to 30% (Chynoweth Op. Cit.) But constitute only 10% of the organic matter present in activated sludge.
  • the lipid fraction of the sludge essentially contains long chain fatty acids in free form or combined with glycerol to form glycerides (Novak JT, Carlson DA, 1970, JWPCF, 42, 1932-1943 "The kinetics of anaerobic long chain fatty acid degradation ").
  • Glycerides are hydrolyzed using lipases produced by lipolytic bacteria.
  • the carbohydrate fraction of the sludge is mainly composed of plant polysaccharides such as cellulose, whether encrusted with lignin or not, and hemicelluloses in less quantity (Couplet P., Albagnac G., 1978, Ann. Technol. Agric, 27, 2, 533-564 "Anaerobic digestion: application to the food industry").
  • Cellulose is generally considered to represent 25 to 35% of the organic matter in primary sludge from treatment plants, hemicelluloses 10% and lignin 15% (Chynoweth, Hobson, Op. Cit.).
  • the sludge treatments vary with the size of the treatment plant, the total production of sludge, the possibilities for recovery and disposal.
  • companies such as the present holder, propose an anaerobic digestion beforehand to reduce the weight of the sludge to be treated while supplying biogas to supply the dryer.
  • Anaerobic digestion aims to stabilize organic matter and reduce the mass of organic and microbial solids. It is a biological process of conversion of complex organic matter into methane and carbon dioxide under the action of several groups of bacteria in an anaerobic environment. This process includes, on the one hand a hydrolysis-acidification phase, and on the other hand a methanization phase.
  • the hydrolysis-acidification phase of complex organic materials makes it possible to convert them into smaller products and in a form capable of crossing the cell walls of bacteria in order to be used as a source of food or energy.
  • the organic matter is not stabilized (Parkin G.F., Owen W.F., 1986, J. Envir. Engng, 112, 867-901 "Fundamentals of anaerobic digestion of wastewater sludges").
  • This phase is accomplished by extracellular hydro lyric enzymes produced by the bacterial population.
  • the hydrolyzed organic complexes are then fermented into small organic acids such as propionic, butyric and valeric acids (Chynoweth Op. Cit.).
  • small organic acids such as propionic, butyric and valeric acids (Chynoweth Op. Cit.).
  • the bacterial population responsible for this transformation is made up of facultative anaerobic and strict anaerobic microorganisms.
  • the methanization phase consists in stabilizing the sludge by conversion of the organic acids formed into methane.
  • Other substrates such as methanol can be used as an energy source by methanogenic bacteria, strict anaerobic bacteria.
  • US-A-6.083.395 combines thermal and biological actions to dissolve solid materials during recirculation to the biological basin, and this with the introduction of an exogenous thermophilic bacterium, selected for its ability to extracellularly produce a thermostable protease.
  • the performance of denitrification depends on several factors, which in order of increasing influence are the pH, the temperature, the dissolved oxygen, the source of carbonaceous substrate, the concentration of organic carbon. It is the value of this last factor, corresponding to the carbon availability in the water to be treated and the quantity of nitrogen to be eliminated, most often expressed according to the BOD5 / N-NOx ratio, which conditions, for the '' skilled in the art, the choice of the biological denitrification process.
  • the external carbon source is generally the raw effluent itself, which corresponds to the so-called pre-denitrification process with anoxic zone at the top of the aeration tank, supplied with raw water, mixed liquor and recycled sludge at high flow rate, coming from the outlet of the aeration tank and the clarifier.
  • This method of treatment well known to those skilled in the art, has the disadvantage of cost, the recirculation rates often being 2 to 3 times greater than the nominal rate of the station, and the need to set up a system of control to control the recirculations in order to adjust the amount of nitrate and adapt it to the load variations commonly encountered in urban wastewater.
  • the quantities of assimilable organic carbon supplied by the effluent may be insufficient.
  • the carbon substrate influences by its nature.
  • the present invention provides a process for treating sludge, grease and other waste from the treatment of domestic and industrial wastewater, which is characterized in that the sludge, grease and other wastes are subjected to an enzymatic treatment, in the absence of aeration, replacing the hydrolysis and acidification stages prior to methanisation for the digestion of sludge, or even intensive biological oxidation of fats.
  • This hydrolysis treatment according to the invention is carried out in the presence of multi-enzymatic combinations of suitable compositions.
  • the hydrolysis yields of the fatty substances resulting from degreasing can be increased by a factor 1.5 to 2 by using a multi-enzymatic combination containing at least proteases and lipases, and not exclusively a lipase (depending on the state of the 'art), the hydrolysis yields of primary sludge are also significantly increased using a multi-enzymatic combination containing at least proteases, lipases and cellulases, and not exclusively cellulases (according to the state of the art) , this same multi-enzymatic combination being used for the hydrolysis of biological sludge with hydrolysis yields higher than those obtained with the exclusive use of proteases (according to the state of the art).
  • Another advantage of the process which is the subject of the invention is the control of the degree of hydrolysis and the absence of oxidation of the hydrolyzed substrate, thus making it possible to recover the organic matter resulting from the enzymatic treatment in order to use it. in biological processes requiring a biodegradable carbon source, easily assimilated.
  • exogenous multi-enzymatic combinations makes it possible to obtain higher solubilization yields than those obtained by other methods under otherwise comparable conditions (reaction time, temperature, etc.); - the addition of exogenous multi-enzymatic combinations to the medium makes it possible to carry out the hydrolysis of organic matter according to conditions laid down in pH and temperature, over a wide range of values, in the absence of oxygen, leading to a reduction significant treatment costs;
  • exogenous multi-enzymatic combinations make it possible to quickly adapt the treatment to the variations inherent in any sludge and grease treatment process or concentrated liquid discharge (variation in charge, variation in composition, presence of inhibitors ).
  • exogenous multi-enzymatic combinations makes it possible to get rid of the effects of sudden surges of charge, the hydrolysis is immediately operational, without acclimatization phase, and this, under largely facilitated control conditions. compared to conventional biological processes.
  • the present invention applies to all types of sludge, grease and other waste from the treatment of wastewater.
  • it relates to the transformation of organic compounds dissolved or in suspension in colloidal or particulate form, said compounds being slowly biodegradable and assimilable, into easily biodegradable and assimilable compounds, considered by the skilled person as soluble COD or BOD "short term (24 h or 48 h)".
  • These low molecular weight compounds, easily usable by the microbial flora are sugars, amino acids, volatile fatty acids, alcohols, etc.
  • the organic compounds contained in sludge and grease can be transformed into hydrolysates which can be reused for wastewater treatment processes such as anaerobic digestion, biological denitrification, biological dephosphatation, and any biological process requiring a source. easily assimilated carbon available on the site of production of said organic compounds.
  • the enzymes which enter into the composition of the mixture of enzymes used according to the invention are chosen according to the composition of the sludge, grease and waste to be treated, the pH and the temperature of desired reaction: however, any basic mixture will be made with proteases and lipases, one of the first basic variants consisting in adding cellulases to them.
  • the enzymes must be used rationally at pH and temperature values for which they display sufficient activity, therefore, as a general rule, at the optimal values for using the enzymes chosen.
  • the optimum pH and temperature ranges for the various enzymes are known and offer a wide range of use.
  • alkaline proteases have a maximum efficiency between pH 8 and 13.
  • the optimum efficiency of neutral proteases is located at pH between 6 and 8.5, while acid proteases have their maximum effectiveness at a pH between 2 and 7.
  • the other parameters will also be adapted to the usual conditions of the enzyme systems used.
  • the temperature of the sludge to be treated with the mixtures of enzymes will generally be between 15 and 55 ° C., preferably between 25 and 40 ° C.
  • the enzymes used may be of plant or microbial origin, derived from bacteria, yeasts or fungi, in particular from the Bacillus, Yarrowia, Aspergillus, Penicillium species.
  • the process according to the invention takes place by gentle action, at pH and temperature conditions specific to the sludge to be treated, and, as mentioned above, in the absence of aeration to prevent any oxidation of the carbon substrates obtained by hydrolysis.
  • the composition of the mixture initially containing proteases and lipases, will be adapted to the biochemical and physicochemical characteristics of the sludge to be treated, according to good enzymatic practices known to those skilled in the art.
  • the quantity of proteases and lipases contained in the basic mixture will be adjusted according to the contents of animal and vegetable proteins and the contents of fats of animal and vegetable origin present in the substrate to be hydrolyzed.
  • the quantity of enzymes used in the composition of the enzyme solutions used in the process according to the invention is dosed as a function of the activity of said enzymes.
  • the percentage of enzymes in the enzyme mixture will be from 0.01 to about 10% by volume.
  • the addition of chelating agents or permeabilizers causing the weakening of the structure of the cell walls of microorganisms will promote the dissolution of the solid materials contained in biological sludge.
  • Other “stresses” leading to autolysis of microorganisms such as a rise in temperature or the injection of ozone may be applied.
  • the proteins may possibly be subject to acid or alkaline denaturation at high temperature. Solid materials such as cellulosic debris may eventually be crushed.
  • hydrolysis can be carried out by using membrane bioreactors to recycle the enzymes.
  • Ultrafiltration is a process which uses semi-permeable membranes for the separation of macro-molecules according to their molecular weight and their configuration.
  • the use of a membrane which has a specific cutoff threshold in order to retain the enzymes in the reactor makes it possible to eliminate the products of the reaction which may be retro-inhibitors.
  • Ultrafiltration also has another advantage: since the enzymes are retained inside the system, the same quantity of enzymes can treat several reactor volumes.
  • the use of a tubular membrane with a large passage section in an external casing or the use of a membrane immersed in the reactor seem to be the best choices to avoid premature blockages.
  • the membranes chosen will preferably be mineral or made of organic polymer.
  • Biocatalytic membrane reactors such as those developed for the food industry or the pharmaceutical industry, can also be adapted to the treatment of effluents.
  • an enzymatic reactor is set up on a conventional treatment system, to collect the sludge from the primary clarifier as well as the lipid materials from degreasing.
  • This reactor is only regulated in pH (7.3 ⁇ 0.2). Its volume was calculated for a treatment of
  • the enzyme solution used is the basic mixture containing 60% of neutral and alkaline proteases and 40% of protease-resistant lipases.
  • an enzymatic reactor is set up on a treatment system for mixed sludge (primary sludge + biological sludge).
  • This reactor is regulated in pH (7.3 ⁇ 0.2) and in temperature (35 ⁇ 5 ° C). Its volume is calculated over a reaction residence time of six hours, with an initial supply of 3% by volume of enzymatic solution.
  • This reactor is of the BRM type, with immersed ultrafiltration membranes to retain only the macromolecules including the enzymes, and not the soluble particles which result from the hydrolysis.
  • the mixture of the enzymatic solution used is the basic mixture containing 80% 0 of neutral and alkaline proteases and 20%> of protease-resistant lipases, commercially available.
  • a solution containing only volatile fatty acids, small peptides and sugars linked to proteins is extracted continuously. Part of the solution obtained is used to feed a post-denitrification and the excess is used to feed a methanisation reactor supplying the energy necessary to maintain the temperature of the enzymatic reactor.
  • This exemplary embodiment according to FIG. 3 can also be applied to the treatment of an effluent from the dairy industry.
  • a membrane bioreactor is also used, but the enzymatic solution used is the basic mixture containing 10% acid and neutral proteases and 90% o of lipases, a mixture to which is added ⁇ -galactosidase activity.
  • the choice of composition is adapted to the industrial effluent and more particularly to the amount of fat present.
  • the bioreactor was locally placed in a short loop at the station producing the most rejects to be treated.
  • the solution from enzymatic hydrolysis is used to feed a methanizer.
  • the enzymatic reactor is positioned on the line for recirculating biological sludge.
  • the enzymes entering into the composition of the enzymatic solution are immobilized on an appropriate support (for example the biolite of a size allowing its retention in the fluidized bed reactor using a grid).
  • an appropriate support for example the biolite of a size allowing its retention in the fluidized bed reactor using a grid.
  • the reactor assimilated to a fixed bed undergoes a piston flow.
  • the reactor is filled according to the desired hydrolysis steps.
  • the first support layers are characterized by a cellulolytic activity, the second by a lipolytic activity and the third by a proteolytic activity.
  • This distribution of enzymes and the thickness of each layer are defined by a person skilled in the art, according to the characteristics of the biological sludge to be hydrolyzed and the degree of hydrolysis desired.
  • the diameter of the reactor is calculated to guarantee a residence time of a few hours for a temperature between 40 and 50 ° C. At the outlet of the reactor, a solubilization of 35%) of the total COD is measured, with a significant reduction in Solid Materials.
  • the solution is recirculated at the head of the tank containing the activated sludge at the level of the anaerobic zone to supply the carbon easily assimilated to denitrifying bacteria.
  • hydrolysis is carried out with a commercial cellulase solution (activity 300 IU, NOVOZYMES producer) at 3%> v / v, for 24 hours, at a temperature at 50 ° C. and at pH 6.
  • the quantity of enzyme and the duration of the reaction having been reduced compared to test 1, the hydrolysis yield is logically limited to 14%.
  • 3% v / v of a commercial protease solution activity 10,000 IU, producer NOVOZYMES
  • the treatment therefore eliminates, under these conditions, a total of 25% of the volatile materials initially present.
  • the cellulase treatment effluent, described in test 2 is transferred to a membrane bioreactor (BRM), 3% v / v of a commercial protease + lipase solution (50%) is added to it > of each enzyme, activity 10,000 IU, protease-resistant lipase, producer NOVOZYMES), and is maintained for 24 hours at a temperature of 50 ° C. and at pH 6. Consequence of the diffusion of the products of the reaction through the BRM membrane, the retro-inhibition effects are minimized and the hydrolysis yield in this stage amounts to 42%, ie a total yield of the two stages, cellulase + protease-lipase, of 56%.
  • BRM membrane bioreactor

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Treatment Of Sludge (AREA)

Abstract

Procédé de traitement des boues, graisses et autres déchets issus du traitement des eaux usées domestiques et industrielles, caractérisé en ce que les boues, graisses et autres déchets sont soumis à un traitement enzymatique, en l'absence d'aération, se substituant aux étapes d'hydrolyse et d'acidification préalables à la méthanisation pour la digestion des boues, ce traitement, assurant une hydrolyse des boues, étant effectué par des combinaisons pluri-enzymatiques choisies selon la composition des boues à traiter, le pH et la température de réaction correspondant aux valeurs optimales d'utilisation des enzymes choisis.

Description

Procédé de traitement des boues et des déchets issus du traitement d'eaux usées
La présente invention concerne, d'une façon générale, la transformation des composés organiques dissous ou en suspension sous forme colloïdale ou particulaire, lesdits composés étant associés à de la matière organique lentement biodégradable et assimilable, en composés facilement biodégradables et assimilables, considérés par l'homme du métier comme de la DCO soluble.
Plus particulièrement, la présente invention concerne le traitement des boues et déchets issus du traitement des eaux usées et elle apporte un procédé qui est particulièrement approprié à l'hydrolyse des graisses ou des boues issues du traitement des eaux usées domestiques et des eaux usées industrielles, afin d'une part d'optimiser un procédé de traitement des boues comme la digestion anaérobie et la méthanisation, et d'autre part de produire au sein d'une station d'épuration d'eaux le carbone nécessaire aux procédés biologiques de dénitrification ou de déphosphatation.
Le procédé conforme à l'invention peut aussi être employé sur des rejets liquides concentrés, tels que ceux de l'industrie agroalimentaire, et ce comme étape préliminaire à un procédé de méthanisation, fréquemment utilisé dans ces industries pour produire du biogaz couvrant tout ou partie des besoins énergétiques desdites industries. La production de carbone facilement assimilable peut aussi être envisagée si l'industrie concernée dispose d'une station d'épuration comportant des procédés biologiques de dénitrification ou de déphosphatation.
Le traitement des effluents, qu'ils soient d'origine industrielle ou domestique, consiste en un transfert de matières polluantes dissoutes dans l'eau sous forme de gaz et de solides appelés "boues" et qui constituent des déchets ultimes. La production annuelle réelle de boues urbaines et assimilées, sur le territoire français, qui ne cesse de croître chaque année, est estimée pour 2005 à 1,3 millions de tonnes de matières sèches (950.000 t actuellement). A cela, il faut rajouter les boues industrielles qui en 1994 représentaient en France un tonnage de 1,8 millions de tonnes dont 50% produites par les industries agroalimentaire et papetière.
Au niveau européen, la production devrait passer de 10 à 15 millions de tonnes de matières sèches dans les cinq années à venir.
Différents types de boues sont produits au cours du traitement des eaux; de façon générale l'effluent subit un dégrillage et éventuellement un dessablage et un dégraissage, une décantation primaire au cours de laquelle l'eau est récupérée, un traitement secondaire par culture bactérienne aérobie libre pour éliminer la pollution organique de l'eau, et enfin une décantation secondaire au cours de laquelle l'eau épurée est séparée des boues secondaires activées.
Sur la figure 1 des dessins annexés, on a représenté un schéma simplifié d'une station d'épuration, sur lequel on a figuré les différentes étapes de traitement rappelées ci-dessus.
Plusieurs types de boues sont apparus au cours du traitement : les boues primaires, les boues secondaires dites biologiques ou activées, les boues mixtes, les boues extraites. Les boues sont constituées des éléments polluants et de leurs produits de transformation qui sont retirés de la phase liquide au cours de l'épuration de l'eau.
Les boues primaires, de couleur grise ou jaunâtre, malodorantes, se présentent sous une forme colloïdale ; elles renferment des particules minérales et organiques, des graisses, des détergents, des débris végétaux, des déchets de papier.
Les boues activées sont de couleur brune et ont une odeur d'humus; elles sont composées de matières organiques, de protozoaires, de bactéries. Les boues mixtes sont constituées en proportions variables de boues primaires épaissies et boues activées concentrées (le plus souvent par flottation).
Les boues ont une structure complexe et variable suivant leur nature. De façon globale, elles sont constituées de matières organiques provenant à la fois de l'eau usée
(acides mimiques, protéines, polysaccharides ...) et du métabolisme ou de la lyse des microorganismes (protéines, polysaccharides, acides nucléiques ...) dans des proportions variables en fonction du type de boues.
Les protéines constituent en moyenne 30 à 35% de la matière organique insoluble des boues des stations d'épuration (Chynoweth D.P. et Mah R.A., 1971, Adv. Chemistry, 105, 41-54 "Volatile acid formation in sludge digestion. Anaerobic biological tretament processes"), mais des proportions plus importantes peuvent être trouvées dans les boues biologiques et les boues mixtes (Pavlostathis S. G., 1988, J. Envir. Engng., 114, 575-592 "Preliminary conversion mechanisms in anaerobic digestion of biological sludges"). Les protéines insolubles du floc sont solubilisées par des exoprotéases bactériennes et hydrolysées en peptides et en acides aminés (Hobson P.N., Bousfield S., Summers R., 1974, Envir. Control, 131-191 "Anaerobic digestion of organic matter - Critical reviews").
Les lipides sont présents en général en large proportion dans les boues primaires, de 28 à 30% (Chynoweth Op. Cit.) mais ne constituent que 10% de la matière organique présente dans les boues activées. La fraction lipidique des boues renferme essentiellement des acides gras à longue chaîne sous forme libre ou combinée avec du glycerol pour former des glycérides (Novak J.T., Carlson D.A., 1970, J.W.P.C.F., 42, 1932-1943 « The kinetics of anaerobic long chain fatty acid dégradation »). Les glycérides sont hydrolyses grâce aux lipases produites par les bactéries lipolytiques. Ces lipases séparent les acides gras du glycerol et après phosphorylation, le glycerol rejoint la voie d'Embden-Mayerhof assurant sa transformation en pyruvate lui-même fermenté en acides gras volatils. La fraction glucidique des boues est composée essentiellement de polysaccharides végétaux comme la cellulose incrustée ou non de lignine, et des hémicelluloses en quantité moindre (Couplet P., Albagnac G., 1978, Ann. Technol. Agric, 27, 2, 533-564 « La digestion anaérobie: application aux industries agro alimentaires »). On considère généralement que la cellulose représente 25 à 35% de la matière organique des boues primaires des stations d'épuration, les hémicelluloses 10% et la lignine 15% (Chynoweth, Hobson, Op. Cit.).
Les traitements des boues varient avec l'importance de la station d'épuration, la production totale de boues, les possibilités de valorisation et d'évacuation.
En France, 15% des boues résiduelles sont incinérées, 35% mises en décharge et 50%) épandues sur les terres agricoles et forestières. La mise en décharge des boues, hormis les déchets ultimes, sera restreinte en 2002 et la valorisation agricole des boues devient de plus en plus aléatoire, suite au refus grandissant des différents acteurs du monde agricole pour l'épandage des boues. La réglementation oblige désormais à prévoir des solutions alternatives pour l'élimination des boues destinées à l'épandage. On peut citer par exemple l'incinération sur lit fluidisé ou l'oxydation par voie humide ; on constate aussi un essor du séchage thermique, traitement permettant de diminuer sensiblement le volume de boues, ce qui facilite transport et stockage, mais ce type de traitement constitue une charge d'exploitation importante, de l'ordre de 220 à 320 Euros/t MS.
De ce fait, des entreprises comme la présente titulaire, proposent une digestion anaérobie préalable pour réduire le poids des boues à traiter tout en fournissant du biogaz pour alimenter le sécheur.
La digestion anaérobie a pour objectif de stabiliser la matière organique et de réduire la masse de solides organiques et microbienne. Il s'agit d'un processus biologique de conversion de matières organiques complexes en méthane et en dioxyde de carbone sous l'action de plusieurs groupes de bactéries en milieu anaérobie. Ce processus comprend, d'une part une phase d'hydrolyse-acidification, et d'autre part une phase de méthanisation.
La phase d'hydrolyse-acidification des matières organiques complexes permet de les convertir en des produits de plus petite taille et sous une forme capable de traverser les parois cellulaires des bactéries afin d'être utilisés comme source d'alimentation ou d'énergie. A ce stade, la matière organique n'est pas stabilisée (Parkin G.F., Owen W.F., 1986, J. Envir. Engng, 112, 867-901 "Fundamentals of anaerobic digestion of wastewater sludges"). Cette phase est accomplie par des enzymes hydro lyriques extracellulaires produites par la population bactérienne.
Les complexes organiques hydrolyses sont ensuite fermentes en acides organiques de petite taille tels que les acides propionique, butyrique et valérique (Chynoweth Op. Cit.). La population bactérienne responsable de cette transformation est composée de microorganismes anaérobies facultatifs et anaérobies stricts.
La phase de méthanisation consiste à stabiliser les boues par conversion en méthane des acides organiques formés. D'autres substrats comme le méthanol peuvent être utilisés comme source d'énergie par les bactéries méthanogènes, bactéries anaérobies strictes.
L'homme de l'art sait que l'hydrolyse constitue l'étape limitante d'un tel processus (De Baere L., Rozzi A., 1984, Trib. Du Cébed., 484, 37, 75-81 "Solubilization of particulate organic matter as the rate-limiting step in anaerobic digestion loading"). L'état de l'art met en évidence la limitation de la dégradation des constituants des boues par ordre d'importance décroissante : cellulose, lipides, lignine, hémicellulose, protéines. Pour cette raison, les deux étapes de la digestion anaérobie ont été dissociées physiquement, afin d'optimiser la phase d'hydrolyse et d'acidification. Ceci a permis d'obtenir des périodes de démarrage moins longues, un rendement d'hydrolyse des matières organiques plus important, une production plus importante de biogaz et un temps total de réaction réduit de moitié (Ghosh S., 1987, 60th Annual Conférence W.P.C.F., Philadelphia « Two-stage anaerobic sludge digestion with cellulase, cellobiase and lipase treatment »).
Face à l'augmentation de la production de boues prévue pour les prochaines années, une réduction des volumes de boues et une plus grande dégradation des matières organiques doivent être envisagées.
Parmi les solutions proposées, US-A-6.083.395 associe les actions thermique et biologique pour solubiliser les matières solides lors de la recirculation vers le bassin biologique, et ce avec l'introduction d'une bactérie thermophile exogène, sélectionnée pour sa capacité à produire de façon extracellulaire une protéase thermostable.
Parmi les voies supplémentaires explorées en traitement de boues, l'une d'entre elles serait de renforcer les procédés existants par ajout d'enzymes exogènes aux boues. Jusqu'à présent, rares sont les travaux se rapportant à l'action d'enzymes dans des milieux aussi peu définis que sont les boues. Des études ont surtout été envisagées pour des effluents spécifiques ou pour des boues provenant d'industrie dont les substrats sont connus.
On peut cependant rapporter les travaux de Ghosh (Op. Cit.), qui par traitement des boues mixtes par des cellulases, avant leur entrée en digestion anaérobie, augmente le taux de conversion de la fraction saccharidique dans le réacteur d'acidification et réduit le temps de réaction d'un facteur 5. (Lagerkvist A., Chen H., 1993, Wat. Sci. Tech., 27, 2, 47-56 "Control of two step anaerobic dégradation of municipal solid waste (MSW) by enzyme addition") rapporte aussi une meilleure dégradation de déchets municipaux solides en ajoutant des enzymes cellulolytiques. L'ajout d'enzymes peut aussi permettre d'optimiser la déshydratation des boues (Thomas L., Jungschaffer G., Sprossler B., 1993, Wat. Sci. Technol., 28, 189-192 "Improved sludge dewatering by enzymatic treatment").
Depuis de nombreuses années la technologie enzymatique s'est particulièrement développée dans le secteur agroalimentaire, domaine dans lequel on utilise les enzymes comme adjuvants technologiques, additifs ou catalyseurs pour améliorer les procédés de fabrication ou donner naissance à de nouveaux produits.
Au contraire et de façon paradoxale, la technologie enzymatique n'a jamais été proposée pour le traitement des effluents ou rejets issus de ces industries, alors que cela représente des solutions concentrées en substrat carboné, contenant, selon les industries, des proportions variables en glucides, matières grasses, matières protéiques. Ceci est d'autant plus paradoxal que ces effluents ou rejets font le plus souvent l'objet d'un traitement biologique y intégrant un procédé de méthanisation afin de satisfaire aux besoins caloriques élevés desdites industries.
Afin de rendre l'hydrolyse des boues plus efficaces en termes de cinétique (temps de réaction) ou de rendement accru de la matière organique, la présente titulaire a eu l'idée d'ajouter au milieu réactionnel, des combinaisons pluri-enzymatiques exogènes, afin d'obtenir des rendements de solubilisation supérieurs à ceux obtenus par d'autres procédés, dans des conditions ménagées de pH et de température. Ce procédé de traitement enzymatique peut alors se substituer aux étapes d'hydrolyse et d'acidification préalables à la méthanisation pour la digestion anaérobie des boues. Le carbone, obtenu lors de la mise en œuvre de ce procédé de traitement enzymatique, considéré comme facilement assimilable biologiquement, peut aussi avoir d'autres débouchés d'utilisation.
Pendant de longues années, seule l'élimination de la pollution carbonée a été recherchée. Puis, compte tenu de la progression des connaissances sur le sujet, et également de l'impact de la pollution azotée et du phosphore sur le milieu récepteur, il a été demandé de plus en plus aux traiteurs d'eaux de s'intéresser à l'élimination de ces deux formes de pollution.
Ainsi, les procédés biologiques de déphosphatation et de dénitrification tendent à se développer pour répondre aux nouveaux critères de rejet (niveaux NGL.l et NGL.2, niveaux PT1 et PT2). Lorsqu'il est rejeté sans traitement spécifique dans le milieu naturel, le phosphore devient de plus en plus fréquemment le facteur de déclenchement des phénomènes d'eutrophisation avec une croissance excessive en algues planctoniques et en plantes aquatiques, dont les conséquences néfastes sur les plans économique et environnemental ne sont plus à démontrer. L'expérience montre qu'en dessous d'un certain seuil de concentration en source carbonée facilement assimilable (représentée par la fraction soluble de la Demande Chimique en Oxygène DCO), les réactions biologiques de la déphosphatation sont notablement ralenties. L'efficacité de cette filière est très dépendante de la qualité de l'effluent, obligeant à tester son aptitude à être soumis à une déphosphatation biologique. D'autre part, elle reste difficilement contrôlable dans le temps (variation de charge au cours des week-end avec une diminution de la concentration en pollution carbonée cumulée à un accroissement de la concentration en orthophosphates probablement consécutif aux lessives). Pour assurer de façon continue les niveaux de rejet, il est nécessaire de réaliser des apports de carbone assimilable, sous forme de dopages en acétate.
Durant les deux dernières décennies, la plupart des rivières et certaines nappes phréatiques ont vu leurs teneurs en nitrates considérablement augmentées. L'origine des nitrates dans les nappes phréatiques est connue; elle provient essentiellement de l'utilisation massive d'engrais azotés dans la pratique agricole, mais on ne doit pas non plus négliger les rejets des eaux usées et particulièrement les rejets urbains. Ainsi, une agglomération de 50.000 habitants rejette 100 tonnes par an d'azote ammoniacal.
Pour faire face à ce problème, des procédés biologiques de dénitrification ont été développés. Ces procédés se basent sur les potentialités biologiques de certains microorganismes ou bactéries à réduire les nitrates en azote moléculaire gazeux. Ces bactéries peuvent être autotrophes, c'est-à-dire utilisant le carbone minéral, mais leur activité est faible. C'est la raison pour laquelle on met généralement en œuvre des bactéries hétérotrophes , qui oxydent le carbone organique en dioxyde de carbone et en eau, en utilisant l'oxygène des nitrates. Compte-tenu des directives européennes de plus en en plus sévères sur les teneurs en azote des rejets urbains, se pose la question de l'optimisation des traitements biologiques de dénitrification hétérotrophe.
Les performances de la dénitrification dépendent de plusieurs facteurs, qui par ordre d'influence croissante sont le pH, la température, l'oxygène dissous, la source de substrat carboné, la concentration en carbone organique. C'est la valeur de ce dernier facteur, correspondant à la disponibilité en carbone dans l'eau à traiter et à la quantité d'azote à éliminer, le plus souvent exprimé selon le ratio DBO5/N-NOx, qui conditionne, pour l'homme du métier, le choix du procédé de dénitrification biologique.
La source extérieure de carbone est généralement l'effluent brut lui-même, ce qui correspond au procédé dit de pré-dénitrification avec zone d'anoxie en tête du bassin d'aération, alimentée en eau brute, en liqueur mixte et en boues recyclées à fort débit, en provenance de la sortie du bassin d'aération et du clarifïcateur. Ce mode de traitement, bien connu de l'homme de l'art, a pour inconvénient le coût, les débits de recirculation étant souvent 2 à 3 fois supérieurs au débit nominal de la station, et la nécessité de mettre en place un système de contrôle pour asservir les recirculations afin d'ajuster la quantité de nitrate et de l'adapter aux variations de charge couramment rencontrées en eaux résiduaires urbaines.
Dans certains cas, les quantités de carbone organique assimilable apportées par l'effluent peuvent être insuffisantes. Tel est le cas des installations d'épuration à boues activées à deux étages, dans lesquelles le deuxième stade de traitement de l'azote suit un premier stade d'élimination de la pollution carbonée (décantation primaire par exemple). Il en est de même pour certains effluents industriels riches en éléments azotés et pauvres en éléments carbonés ou les liqueurs ammoniacales issues du traitement des boues.
Dans le cas d'un effluent peu chargé en carbone organique ou ayant une forte teneur en azote ammoniacal, l'homme de l'art choisira alors un procédé dit de post- dénitrification, l'obligeant alors à avoir recours à une source de carbone extérieure. Pour des raisons économiques, et tant qu'aucune autre source de carbone ne sera pas directement disponible sur la station d'épuration, le substrat utilisé sera le méthanol. Ce dernier procédé conduit à des coûts d'exploitation élevés, compensés en partie par la mise en œuvre de procédés intensifs avec des cinétiques de nitrifïcation élevées et des ouvrages compacts, tout en garantissant facilement la teneur en azote du rejet grâce à la mise en place de systèmes de régulation.
Le substrat carboné influe par sa nature. Le « Mémento Technique de l'Eau » 1989, 9eme édition, publié par Degrémont, donne pour quelques substrats les cinétiques de réduction des nitrates, montrant que l'utilisation du carbone organique contenu dans un effluent urbain conduit à des cinétiques inférieures à celles obtenues avec des produits facilement biodégradables comme l'éthanol ou les acides gras volatils ; il s'avère aussi que le méthanol conduit à des cinétiques de faibles valeurs (deux fois moindre que l'éthanol ou l'acétate, et 1,5 fois moindre que l'eau brute).
De nombreux travaux ont porté sur la recherche d'alternatives au méthanol, notamment en vue de réduire les coûts d'exploitation (Monteith H.D., Bridle T.R., Sutton P.M., 1980, Prog. Wat. Tech., 12, 127-141, « fridustrial waste carbon sources for biological dénitrification » Skrinde J.R., Bhagat S.R., 1982, Journal WPCF, 54, 4, 370- 377 « Industrial wastes as carbon sources in biological dénitrification ») mais aucune de ces alternatives n'était directement disponible sur le lieu de traitement car issue de sous produits industriels (liqueurs de maïs, d'amidon, lactosérum).
Plus récemment, certains chercheurs ont cherché à utiliser des hydrolysats de boue comme source de carbone, rendant la source disponible directement sur site.
Tous les traitements hydrolytiques proposés à ce jour sont biologiques (Aesoy A., Odegaard H., 1994, Wat. Sci. Tech., 30, 6, 63-71 "Nitrogen removal efficiency and capacity in biofilms with biologically hydrolysed sludge as a carbon source"), thermiques (Barlindhaug J., Odegaard H., 1996, Wat. Sci. Tech., 33, 12, 99-108 "Thermal hydrolysate as a carbon source for dénitrification") ou une combinaison physico-chimique (Smith G., Gδransson J., 1992, Wat. Sci. Tech., 25, 4-5, 211-218 "Génération of an effective internai carbon source for dénitrification through thermal hydrolysis of pre-precipitated sludge").
Tous ces procédés ont pour défaut le coût énergétique (des températures supérieures à 150°C sont nécessaires), ou de très faibles rendements de solubilisation (10%) pour la voie biologique, 30% pour la voie thermique).
Partant de l'état antérieur de la technique rappelé ci-dessus, la présente invention apporte un procédé de traitement des boues, graisses et autres déchets issus du traitement des eaux usées domestiques et industrielles, qui est caractérisé en ce que les boues, graisses et autres déchets sont soumis à un traitement enzymatique, en l'absence d'aération, se substituant aux étapes d'hydrolyse et d'acidification préalables à la méthanisation pour la digestion des boues, ou encore à l'oxydation biologique intensive des graisses. Ce traitement d'hydrolyse selon l'invention est effectué en présence de combinaisons pluri-enzymatiques de compositions appropriées.
A la grande surprise de la présente titulaire, il s'est avéré que l'emploi de mélanges enzymatiques donnait de meilleurs rendements d'hydrolyse que l'emploi d'enzymes censés être le plus adapté aux substrats à traiter. Ainsi les rendements d'hydrolyse des matières grasses issues du dégraissage peuvent être augmentés d'un facteur 1.5 à 2 en utilisant un combinaison pluri-enzymatique contenant au minimum des protéases et des lipases, et non exclusivement une lipase (selon l'état de l'art), les rendements d'hydrolyse des boues primaires sont aussi augmentés de façon significative en utilisant une combinaison pluri-enzymatique contenant au minimum des protéases, lipases et cellulases, et non exclusivement des cellulases (selon l'état de l'art), cette même combinaison pluri-enzymatique étant employée pour l'hydrolyse de boues biologiques avec des rendements d'hydrolyse supérieurs à ceux obtenus avec l'emploi exclusif de protéases (selon l'état de l'art).
Un autre avantage du procédé objet de l'invention est la maîtrise du degré d'hydrolyse et l'absence d'oxydation du substrat hydrolyse, permettant ainsi de récupérer la matière organique résultant du traitement enzymatique afin de l'utiliser dans des procédés biologiques nécessitant une source carbonée biodégradable, facilement assimilable.
D'autre part, le procédé objet de l'invention apporte d'autres avantages, notamment :
- l'addition de combinaisons pluri-enzymatiques exogènes au milieu permet d'obtenir des rendements de solubilisation supérieurs à ceux obtenus par d'autres procédés dans des conditions par ailleurs comparables (temps de réaction, température...) ; - l'addition de combinaisons pluri-enzymatiques exogènes au milieu permet de réaliser l'hydrolyse de la matière organique selon des conditions ménagées en pH et température, sur une large plage de valeurs, en l'absence d'oxygène, conduisant à une réduction significative des coûts de traitement ;
- l'addition de combinaisons pluri-enzymatiques exogènes au milieu permet d'adapter très rapidement le traitement aux variations inhérentes à tout procédé de traitement des boues et des graisses ou rejet liquide concentré (variation de charge, variation de composition, présence d'inhibiteurs...). Ainsi, l'utilisation de combinaisons pluri-enzymatiques exogènes permet de s'affranchir des effets d' à-coups de charge, l'hydrolyse est immédiatement opérationnelle, sans phase d'acclimatation, et ce, dans des conditions- de contrôle largement facilitées par rapport aux procédés biologiques conventionnels.
La présente invention s'applique à tout type de boues, graisses et autres déchets issus du traitement des eaux usées. D'une manière générale, elle concerne la transformation des composés organiques dissous ou en suspension sous forme colloïdale ou particulaire, lesdits composés étant lentement biodégradables et assimilables, en composés facilement biodégradables et assimilables, considérés par l'homme du métier comme de la DCO soluble ou de la DBO « court terme (24 h ou 48 h) ». Ces composés de faible poids moléculaire, facilement utilisables par la flore microbienne sont des sucres, des acides aminés, des acides gras volatils, des alcools, etc.... Grâce à l'invention, les composés organiques contenus dans les boues et les graisses peuvent être transformés en hydrolysats valorisables pour des procédés d'épuration des eaux usées comme la méthanisation, la dénitrification biologique, la déphosphatation biologique, et tout procédé biologique nécessitant une source de carbone facilement assimilable et disponible sur le site même de production desdits composés organiques.
Ainsi qu'on l'a mentionné ci-dessus, les enzymes qui entrent dans la composition du mélange d'enzymes utilisé selon l'invention, sont choisis selon la composition des boues, graisses et déchets à traiter, le pH et la température de réaction souhaitée : cependant, tout mélange de base se fera avec des protéases et des lipases, l'une des premières variantes de base consistant à leur adjoindre des cellulases. Les enzymes devront être utilisés de façon rationnelle à des valeurs de pH et de température pour lesquelles ils déploient une activité suffisante, donc, en règle générale, aux valeurs optimales d'utilisation des enzymes choisis. Les plages de pH et de température optima pour les différents enzymes sont connues et offrent un large domaine d'utilisation. Ainsi, par exemple, les protéases alcalines présentent un maximum d'efficacité entre pH 8 et 13. L'optimum d'efficacité des protéases neutres se situe à des pH compris entre 6 et 8.5, alors que les protéases acides ont leur maximum d'efficacité à un pH entre 2 et 7.
Selon le procédé objet de l'invention, les autres paramètres seront également adaptés aux conditions usuelles des systèmes d'enzymes utilisés. Ainsi, la température des boues à traiter par les mélanges d'enzymes sera comprise en général entre 15 et 55°C, de préférence entre 25 et 40°C.
Les enzymes utilisés pourront être d'origine végétale ou microbienne, issus de bactéries, levures ou de champignons, en particulier des espèces Bacillus, Yarrowia, Aspergillus, Pénicillium.
On remarquera que, pris dans son ensemble, le procédé selon l'invention se déroule par action ménagée, à des conditions de pH et de températures propres aux boues à traiter, et, ainsi qu'on l'a mentionné ci-dessus, en l'absence d'aération pour empêcher toute oxydation des substrats carbonés obtenus par hydrolyse.
Selon la présente invention, la composition du mélange, contenant initialement des protéases et des lipases, sera adaptée aux caractéristiques biochimiques et physicochimiques de la boue à traiter, selon les bonnes pratiques enzymatiques connues de l'homme de l'art.
La quantité de protéases et de lipases contenue dans le mélange de base sera ajustée selon les teneurs de protéines animales et végétales et les teneurs de graisses d'origine animale et végétale présentes dans le substrat à hydrolyser.
On pourra aussi bénéficier des récents développements en industrie des détergents en utilisant préférentiellement des lipases résistantes aux protéases.
Pour dégrader les matières cellulosiques tel que le coton ou le papier, on pourra utiliser des préparations enzymatiques contenant les activités cellulase et ou hémi- cellulase et/ou cellobiase et/ou amylase et/ou phytase et/ou xylanase et optionnellement des activités ligninase, peroxydase, gluco-amylase et β-glucanase en complément. Le procédé pourra aussi bénéficier du développement des nouvelles enzymes cellulolytiques capables de réduire le coût de la conversion des matières cellulosiques en sucres.
Dans le cas particulier d' effluents chargés en amidon ou en glycogène, on pourra aussi ajouter une activité amylase.
La quantité d'enzymes entrant dans la composition des solutions enzymatiques mises en œuvre dans le procédé selon l'invention est dosée en fonction de l'activité desdits enzymes. En général, le pourcentage en enzymes du mélange enzymatique sera de 0,01 à environ 10% en volume. Afin de réduire les durées de contact ou la quantité d'enzymes à fournir pour hydrolyser les composés organiques, on pourra réaliser un prétraitement approprié, mécanique, physique ou chimique en fonction des caractéristiques des composés organiques à hydrolyser. Ainsi, par exemple l'ajout de chélatants ou de perméabilisants occasionnant l'affaiblissement de la structure des parois cellulaires des microorganismes favorisera la dissolution des matières solides contenues dans les boues biologiques. D'autres « stress » conduisant à une autolyse des microorganismes comme l'élévation de température ou l'injection d'ozone pourront être appliqués.
Les protéines pourront éventuellement faire l'objet d'une dénaturation acide ou alcaline à température élevée. Les matières solides comme les débris cellulosiques pourront éventuellement faire l'objet d'un broyage.
Afin de réduire le coût des enzymes, les hydrolyses peuvent être réalisées en mettant en œuvre des bioréacteurs à membrane pour recycler les enzymes.
L'ultrafiltration est un procédé qui utilise des membranes semi-perméables pour la séparation de macro-molécules en fonction de leur poids moléculaire et de leur configuration. L'utilisation d'une membrane qui possède un seuil de coupure spécifique afin de retenir les enzymes dans le réacteur permet d'éliminer les produits de la réaction qui peuvent être rétroinhibiteurs. L'ultrafiltration présente aussi un autre avantage: les enzymes étant retenus à l'intérieur du système, la même quantité d'enzymes peut traiter plusieurs volumes de réacteur. L'utilisation d'une membrane tubulaire de section de passage importante en carter externe ou l'utilisation d'une membrane immergée dans le réacteur semblent être les meilleurs choix pour éviter les colmatages prématurés. Les membranes choisies seront de préférence minérale ou en polymère organique.
Le procédé objet de l'invention peut mettre en œuvre tout autre moyen d'immobilisation ou de rétention des enzymes connu par l'homme de l'art
(Biotechnologie, 4eme édition, Lavoisier Tec&Doc, Partie III). On peut citer à titre d'exemple l'immobilisation par adsorption sur support minéral ou organique, ou par inclusion dans des gels organiques. Des réacteurs à membrane biocatalytique, tels que ceux développés pour l'industrie agro-alimentaire ou l'industrie pharmaceutique, pourront aussi être adaptés au traitement des effluents.
Sur les figures 2 à 4 des dessins annexés, on a représenté de façon schématique des modes de réalisation de dispositifs mettant en œuvre la présente invention.
Dans l'exemple de réalisation illustré par la figue 2, un réacteur enzymatique est mis en place sur une filière de traitement classique, pour collecter les boues issues du clarificateur primaire ainsi que les matières lipidiques issues du dégraissage. Ce réacteur est uniquement régulé en pH (7,3 ± 0.2). Son volume a été calculé pour un traitement de
72h, avec l'apport de 1% (v/v) de solution enzymatique.
La solution enzymatique employée est le mélange de base contenant 60% de protéases neutres et alcalines et 40% de lipases résistantes aux protéases.
A la fin du traitement, 15% de la DCO contenue dans le réacteur a été solubilisée en acides gras volatils, petits peptides, acides aminés et sucres liés aux protéines. Le contenu du réacteur est ensuite utilisé comme source de carbone pour la dénitrification des liqueurs ammoniacales issues du traitement des boues.
Dans le mode de réalisation illustré par la figure 3, un réacteur enzymatique est mis en place sur une filière de traitement des boues mixtes (boues primaires + boues biologiques). Ce réacteur est régulé en pH (7,3 ± 0.2) et en température (35 ± 5°C). Son volume est calculé sur un temps de séjour reactionnel de six heures, avec un apport initial de 3% en volume de solution enzymatique. Ce réacteur est du type BRM, avec des membranes d'ultrafiltration immergées pour ne retenir que les macromolécules dont les enzymes, et non les particules solubles qui sont issues de l'hydrolyse.
Le mélange de la solution enzymatique employée est le mélange de base contenant 80%0 de protéases neutres et alcalines et 20%> de lipases résistantes aux protéases, commercialement disponibles. On extrait, de façon continue, une solution ne contenant que des acides gras volatils, petits peptides et sucres liés aux protéines. Une partie de la solution obtenue est utilisée pour alimenter une post-dénitrification et l'excédent est utilisé afin d'alimenter un réacteur de méthanisation fournissant l'énergie nécessaire au maintien de la température du réacteur enzymatique.
Cet exemple de réalisation selon la figure 3 peut également s'appliquer au traitement d'un effluent issu de l'industrie laitière. Dans ce mode de réalisation, on met également en œuvre un bioréacteur à membranes, mais la solution enzymatique employée est le mélange de base contenant 10% protéases acides et neutres et 90%o de lipases, mélange auquel est ajoutée une activité β-galactosidase. Le choix de la composition est adapté à l'effluent industriel et plus particulièrement à la quantité de matières grasses présentes. A la différence de l'exemple de réalisation précédemment décrit, le bioréacteur a été mis localement en boucle courte au niveau du poste produisant le plus de rejets à traiter. La solution issue de l'hydrolyse enzymatique sert à alimenter un méthaniseur.
Dans le mode de réalisation illustré par la figure 4, le réacteur enzymatique est positionné sur la ligne de recirculation des boues biologiques.
Les enzymes entrant dans la composition de la solution enzymatique sont immobilisés sur un support approprié (par exemple la biolite d'une taille permettant sa rétention dans le réacteur à lit fluidisé à l'aide d'une grille). Le réacteur assimilé à un lit fixe subit un écoulement piston.
Le remplissage du réacteur s'effectue selon les étapes d'hydrolyse souhaitées. Ainsi, les premières couches de supports, selon le sens d'écoulement, sont caractérisées par une activité cellulolytique, les secondes par une activité lipolytique et les troisièmes par une activité proteolytique. Cette répartition des enzymes et l'épaisseur de chaque couche sont définies par l'homme de métier, selon les caractéristiques des boues biologiques à hydrolyser et le degré d'hydrolyse souhaité. Le diamètre du réacteur est calculé pour garantir un temps de séjour de quelques heures pour une température comprise entre 40 et 50°C. En sortie de réacteur, on mesure une solubilisation de 35%) de la DCO totale, avec une réduction significative des Matières Solides. La solution est recirculée en tête du bassin contenant les boues activées au niveau de la zone anaérobie pour fournir le carbone facilement assimilable aux bactéries dénitrifiantes.
On a donné ci-après, à titre non limitatif, un exemple de mise en œuvre du procédé selon 1 ' invention.
EXEMPLE
1 - L'hydrolyse d'une boue primaire (40g/l de matières sèches) est réalisée avec une solution commerciale de cellulase (activité 300 U.I., NOVOZYMES producteur) à 10%o v/v, à 50°C et pH 6. Après 48 heures d'hydrolyse, on effectue le dosage des matières volatiles éliminées et la quantité de sucres réducteurs produits (Nota : pour mesurer l'effet des seuls enzymes exogènes, un témoin « boue sans addition d'enzyme » a aussi été effectué, la boue pouvant contenir des enzymes endogènes. La valeur obtenue pour le témoin est ôtée de celle obtenue avec la solution enzymatique).
Dans les conditions ci-dessus, le rendement d'élimination des matières volatiles est de 35%.
2 - Sur la même boue primaire (40 g/1 de matières sèches) on réalise l'hydrolyse avec une solution commerciale de cellulase (activité 300 U.I., NOVOZYMES producteur) à 3%> v/v, pendant 24 heures, à une température de 50°C et à pH 6. La quantité d'enzyme et la durée de la réaction ayant été réduites par rapport à l'essai 1, le rendement d'hydrolyse est, logiquement, limité à 14%. Sur l'effluent de ce traitement à la cellulase, on ajoute 3% v/v d'une solution de protéase commerciale (activité 10 000 U.I., NOVOZYMES producteur) et on maintient pendant 24 heures à une température de 50°C et à pH 6. On constate alors une nouvelle élimination de matières volatiles, de 11%, résultant de l'hydrolyse partielle de la fraction protéique de la boue primaire. Le traitement élimine donc, dans ces conditions, un total de 25 % des matières volatiles initialement présentes.
3 - Sur l'effluent du traitement par la cellulase, décrit à l'essai 2, on ajoute 3%> v/v d'une solution de protéase + lipase, commerciale (50%> de chaque enzyme, (activité 10 000 U.I., lipase résistante à la protéase, NOVOZYMES producteur), et on maintient pendant 24 heures à une température de 50°C et à pH 6. On constate alors une nouvelle élimination de matières volatiles, avec un rendement mesuré de 20%, ce qui conduit à un rendement global de 34%>, tout à fait comparable à celui du premier essai, mais en mettant enjeu une quantité d'enzymes bien inférieure.
4 - L'effluent du traitement par la cellulase, décrit à l'essai 2, est transféré dans un bioréacteur à membranes (BRM), on y ajoute 3% v/v d'une solution de protéase + lipase, commerciale (50%> de chaque enzyme, activité 10 000 U.I., lipase résistante à la protéase, NOVOZYMES producteur), et on maintient pendant 24 heures à une température de 50°C et à pH 6. Conséquence de la diffusion des produits de la réaction au travers de la membrane du BRM, les effets de rétro-inhibition sont minimisés et le rendement d'hydrolyse dans cette étape, s'élève à 42%, soit un rendement total des deux étapes, cellulase + protéase-lipase, de 56%.
Il demeure bien entendu que la présente invention n'est pas limitée aux exemples de réalisation décrits et représentés ci-dessus, mais qu'elle en englobe toutes les variantes.

Claims

REVENDICATIONS
1 - Procédé de traitement des boues, graisses et autres déchets issus du traitement des eaux usées domestiques et industrielles, caractérisé en ce que les boues, graisses et autres déchets sont soumis à un traitement enzymatique, en l'absence d'aération, se substituant aux étapes d'hydrolyse et d'acidification préalables à la méthanisation pour la digestion des boues, ce traitement, assurant une hydrolyse des boues, étant effectué par des combinaisons pluri-enzymatiques choisies selon la composition des boues à traiter, le pH et la température de réaction correspondant aux valeurs optimales d'utilisation des enzymes choisis.
2 - Procédé selon la revendication 1, caractérisé en ce que la température des boues soumises au traitement enzymatique est de l'ordre de 15 à 55°C, de préférence de l'ordre de 25 à 40°C, et leur pH est compris entre 5,5 et 8,5.
3 — Procédé selon la revendication 1, caractérisé en ce que la combinaison pluri- enzymatique comprend des enzymes d'origine végétale ou microbienne, issus de bactéries, levures, champignons.
4 - Procédé selon la revendication 1, caractérisé en ce que la combinaison pluri- enzymatique comprend des enzymes choisis notamment parmi ceux présentant des activités protéase et/ou lipase.
5 - Procédé selon la revendication 1, caractérisé en ce que la combinaison pluri- enzymatique contient des enzymes cellulolytiques.
6 - Procédé selon l'une des revendication 4 ou 5, caractérisé en ce que la combinaison pluri-enzymatique contient des enzymes à activité phytase, ligninase, xylanases, peroxydase, gluco-amylase et β-glucanase. 7- Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le pourcentage en enzymes de la combinaison pluri-enzymatique est de l'ordre de 0,01 à 10% en volume.
8 - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'hydrolyse des boues est réalisée à l'aide de bioréacteurs de membranes permettant de recycler les enzymes.
9 - Procédé selon la revendication 8, caractérisé en ce que le remplissage du réacteur enzymatique est effectué selon les étapes d'hydrolyse souhaitées, les couches successives d'enzymes, immobilisés sur un support approprié, étant réparties dans le réacteur selon leur activité.
PCT/FR2002/004441 2002-01-02 2002-12-18 Procede de traitement des boues et des dechets issus du traitement d'eaux usees WO2003059825A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002364327A AU2002364327A1 (en) 2002-01-02 2002-12-18 Method for treating sludge and waste derived from wastewater treatment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0200007A FR2834285B1 (fr) 2002-01-02 2002-01-02 Procede de traitement des boues et des dechets issus du traitement d'eaux usees
FR02/00007 2002-01-02

Publications (1)

Publication Number Publication Date
WO2003059825A1 true WO2003059825A1 (fr) 2003-07-24

Family

ID=8871137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/004441 WO2003059825A1 (fr) 2002-01-02 2002-12-18 Procede de traitement des boues et des dechets issus du traitement d'eaux usees

Country Status (3)

Country Link
AU (1) AU2002364327A1 (fr)
FR (1) FR2834285B1 (fr)
WO (1) WO2003059825A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004013322A2 (fr) * 2002-08-02 2004-02-12 Klenzyme, Ltd. Degradation de matieres cellulosiques
WO2004024640A1 (fr) * 2002-09-13 2004-03-25 Kemira Oyj Procede de digestion des boues dans une purification de l'eau
WO2008147296A1 (fr) * 2007-05-31 2008-12-04 Kemira Oyj Procédé de traitement enzymatique d'une boue dans la purification de l'eau
CN102714662A (zh) * 2010-01-18 2012-10-03 瑞典爱立信有限公司 用于http媒体流分发的方法和装置
CN102786200A (zh) * 2012-08-29 2012-11-21 天津科技大学 一种污泥生物干化方法
WO2013000928A1 (fr) * 2011-06-29 2013-01-03 Dsm Ip Assets B.V. Procédé de digestion d'une matière organique
WO2013000927A1 (fr) * 2011-06-29 2013-01-03 Dsm Ip Assets B.V. Procédé de traitement d'une boue ou d'une autre matière organique
FR2990689A1 (fr) * 2012-05-16 2013-11-22 Ondeo Ind Solutions Procede et installation de traitement d'eau residuaire urbaine et/ou industrielle contenant des graisses et/ou des huiles a eliminer
US9328323B2 (en) 2011-07-08 2016-05-03 Aikan North America, Inc. Systems and methods for digestion of solid waste
CN106745750A (zh) * 2017-01-19 2017-05-31 上海电气集团股份有限公司 一种处理工业园区废水的系统及其方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109502764A (zh) * 2018-12-25 2019-03-22 山东华泰纸业股份有限公司 一种生物酶制剂及利用其提高造纸业混合废水处理效率的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988004282A1 (fr) * 1986-12-08 1988-06-16 Waste=Energy Corporation Procede de restructuration et de conversion de boues
DE4141832C1 (en) * 1991-12-18 1993-05-19 Dauber, Siegfried Reinhard, Dipl.-Ing., 5100 Aachen, De Waste water process and appts. treats mixt. of activated and primary sludges
EP0761608A2 (fr) * 1995-09-01 1997-03-12 Water Research Commission Méthode de production de métabolites secondaires
WO1999029633A1 (fr) * 1997-12-05 1999-06-17 Stork Mps B.V. Procede permettant de liberer dans une phase aqueuse une ou plusieurs substances impossibles ou difficiles a biodegrader, presentes dans une matiere composee non hydrosoluble

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988004282A1 (fr) * 1986-12-08 1988-06-16 Waste=Energy Corporation Procede de restructuration et de conversion de boues
DE4141832C1 (en) * 1991-12-18 1993-05-19 Dauber, Siegfried Reinhard, Dipl.-Ing., 5100 Aachen, De Waste water process and appts. treats mixt. of activated and primary sludges
EP0761608A2 (fr) * 1995-09-01 1997-03-12 Water Research Commission Méthode de production de métabolites secondaires
WO1999029633A1 (fr) * 1997-12-05 1999-06-17 Stork Mps B.V. Procede permettant de liberer dans une phase aqueuse une ou plusieurs substances impossibles ou difficiles a biodegrader, presentes dans une matiere composee non hydrosoluble

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004013322A2 (fr) * 2002-08-02 2004-02-12 Klenzyme, Ltd. Degradation de matieres cellulosiques
WO2004013322A3 (fr) * 2002-08-02 2004-07-29 Klenzyme Ltd Degradation de matieres cellulosiques
WO2004024640A1 (fr) * 2002-09-13 2004-03-25 Kemira Oyj Procede de digestion des boues dans une purification de l'eau
WO2008147296A1 (fr) * 2007-05-31 2008-12-04 Kemira Oyj Procédé de traitement enzymatique d'une boue dans la purification de l'eau
CN102714662A (zh) * 2010-01-18 2012-10-03 瑞典爱立信有限公司 用于http媒体流分发的方法和装置
CN102714662B (zh) * 2010-01-18 2017-06-09 瑞典爱立信有限公司 用于http媒体流分发的方法和装置
WO2013000928A1 (fr) * 2011-06-29 2013-01-03 Dsm Ip Assets B.V. Procédé de digestion d'une matière organique
WO2013000927A1 (fr) * 2011-06-29 2013-01-03 Dsm Ip Assets B.V. Procédé de traitement d'une boue ou d'une autre matière organique
US9328323B2 (en) 2011-07-08 2016-05-03 Aikan North America, Inc. Systems and methods for digestion of solid waste
FR2990689A1 (fr) * 2012-05-16 2013-11-22 Ondeo Ind Solutions Procede et installation de traitement d'eau residuaire urbaine et/ou industrielle contenant des graisses et/ou des huiles a eliminer
CN102786200B (zh) * 2012-08-29 2013-12-11 天津科技大学 一种污泥生物干化方法
CN102786200A (zh) * 2012-08-29 2012-11-21 天津科技大学 一种污泥生物干化方法
CN106745750A (zh) * 2017-01-19 2017-05-31 上海电气集团股份有限公司 一种处理工业园区废水的系统及其方法

Also Published As

Publication number Publication date
FR2834285A1 (fr) 2003-07-04
FR2834285B1 (fr) 2004-10-01
AU2002364327A1 (en) 2003-07-30

Similar Documents

Publication Publication Date Title
EP2456724B1 (fr) Procédé de méthanisation comprenant une séparation des métabolites inhibant ladite méthanisation
EP1527022B1 (fr) Procede et installation de traitement des boues provenant des installations d epuration biologique des eaux
Ahmad et al. Bioenergy from anaerobic degradation of lipids in palm oil mill effluent
EP1654374B1 (fr) Processus de fermentation pour la production de l'éthanol
CA2687512C (fr) Procede de traitement enzymatique d'une boue dans la purification de l'eau
JP6605326B2 (ja) 有機材料を処理するためのプロセス
FR2701704A1 (fr) Procédé de traitement des déchets organiques par oxydation.
EP3500533B1 (fr) Procédé et installation pour récupérer du phosphore sur une station d'épuration avec traitement avance des boues
FR2924441A1 (fr) Procede de bio-traitement de matieres organiques a des fins de production de bio-gaz et de compost
WO1980001922A1 (fr) Procede de traitement des fumiers
EP0817760B1 (fr) Procede de stabilisation de boues
WO2003059825A1 (fr) Procede de traitement des boues et des dechets issus du traitement d'eaux usees
FR2836910A1 (fr) Procede de degradation de la matiere organique par voie mycelienne
WO2001042150A1 (fr) Procede et installation de traitement d'eaux residuaires comprenant un traitement additionnel des boues par ozonation
Kanimozhi et al. An overview of wastewater treatment in distillery industry
FR2880552A1 (fr) Procede de detoxification de fluide charge en metaux dans un reacteur de traitement
NL1025346C2 (nl) Een werkwijze voor het behandelen van organisch slib.
WO2002010078A1 (fr) Composition bacterienne, procede et installation pour le pre-traitement des effluents charges en matieres grasses organiques
EP1444324A2 (fr) Dispositif et procede de destruction de valeurs mobilieres
FR3123066A1 (fr) Procédé pour le traitement biologique des eaux usées
FR2709304A1 (fr) Procédé et installation de stabilisation et de concentration des boues par les oxydes d'azote.
BE1029409A1 (fr) Procédé pour le traitement biologique des eaux usées
EP1693446A1 (fr) Composition - substrat pour microorganismes denitrifiants
WO2006008347A1 (fr) Procede de degradation de la matiere organique par voie mycelienne potentialise par adjonction de micromycetes mesophiles ou thermophiles

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP