WO2003057064A1 - Orthodontic appliances - Google Patents

Orthodontic appliances Download PDF

Info

Publication number
WO2003057064A1
WO2003057064A1 PCT/US2002/037313 US0237313W WO03057064A1 WO 2003057064 A1 WO2003057064 A1 WO 2003057064A1 US 0237313 W US0237313 W US 0237313W WO 03057064 A1 WO03057064 A1 WO 03057064A1
Authority
WO
WIPO (PCT)
Prior art keywords
appliance
ceramic material
orthodontic
aluminum oxide
orthodontic appliance
Prior art date
Application number
PCT/US2002/037313
Other languages
French (fr)
Inventor
Darren T. Castro
Richard P. Rusin
William E. Ii Wyllie
Original Assignee
3M Innovative Properties Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Company filed Critical 3M Innovative Properties Company
Priority to EP02784526A priority Critical patent/EP1460958B1/en
Priority to DE60215857T priority patent/DE60215857T2/en
Priority to JP2003557427A priority patent/JP4429017B2/en
Priority to AU2002346462A priority patent/AU2002346462A1/en
Publication of WO2003057064A1 publication Critical patent/WO2003057064A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C7/00Orthodontics, i.e. obtaining or maintaining the desired position of teeth, e.g. by straightening, evening, regulating, separating, or by correcting malocclusions
    • A61C7/12Brackets; Arch wires; Combinations thereof; Accessories therefor
    • A61C7/14Brackets; Fixing brackets to teeth
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/20Preparing or treating the raw materials individually or as batches for dry-pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/30Drying methods
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/32Burning methods
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/115Translucent or transparent products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9661Colour

Definitions

  • This invention relates to orthodontic appliances, particularly to orthodontic appliances that include a polycrystalline alumina-based ceramic material that has a relatively small grain size yet generally high translucency.
  • Plastic is not an ideal material because it lacks the structural strength of metal, and is susceptible to staining and other problems. Ceramics such as sapphire or other transparent crystalline materials have undesirable prismatic effects. Also, single crystal aluminum oxide appliances are subject to cleavage under the loads that occur in the course of orthodontic treatment. Other ceramics have been largely opaque so that they either do not match tooth color or require coloring.
  • U.S. Pat. No. 4,954,080 (Kelly et al.) describes orthodontic appliances made from a polycrystalline ceramic material such as alumina. The ceramic material of the appliances described in this patent transmits sufficient light to enable the appliance to pick up the color of the tooth. While the appliances described are considered satisfactory, there is a need in the art for orthodontic appliances made of a ceramic material that is stronger.
  • the present invention is directed to orthodontic appliances that include a polycrystalline ceramic material that has a desirable translucent quality. This is particularly advantageous for use in orthodontic appliances to achieve further cosmetic improvement by having a translucent quality that picks up the color of the underlying tooth to make the orthodontic appliance blend with the tooth.
  • the material has a Contrast Ratio value of less than about 0.7.
  • the polycrystalline translucent ceramic material is formed by pressing a powder material, such as high purity aluminum oxide, into a desired shape, sintering the shaped material to provide closed porosity, and subjecting the sintered material to hot isostatic pressing to yield a single phase material having substantially zero porosity and an average grain size of no greater than 1.0 micrometer (i.e., micron).
  • This small grain size contributes to a stronger material than conventional ceramic materials without detrimentally effecting translucency. This is surprising as small grain size is often considered to prevent relatively high translucency.
  • the material has a flexure strength of at least about 400 MPa.
  • the present invention provides an orthodontic appliance that includes a polycrystalline translucent aluminum oxide ceramic material having an average grain size of no greater than 1.0 micron and a Contrast Ratio value of less than about 0.7.
  • the present invention also provides a kit that includes a plurality of orthodontic appliances, wherein at least one of the appliances includes a polycrystalline translucent aluminum oxide ceramic material having an average grain size of no greater than 1.0 micron and a Contrast Ratio value of less than about 0.7.
  • the kit preferably further includes a component selected from the group consisting of an orthodontic adhesive, an adhesive primer, an appliance positioning tool, and combinations thereof.
  • the present invention also provides a method for making an orthodontic appliance or appliance perform that includes a polycrystalline translucent aluminum oxide ceramic material having a grain size of no greater than 1.0 micron and a Contrast Ratio value of less than about 0.7.
  • the method includes: providing an aluminum oxide powder; forming the powder into an article having a desired shape; sintering the shaped article to obtain a sintered article having closed porosity; and subjecting the sintered article to hot isostatic pressing to further density and form an orthodontic appliance or appliance perform comprising polycrystalline translucent aluminum oxide ceramic material having a grain size of no greater than 1.0 micron and a Contrast Ratio value of less than about 0.7.
  • the method preferably further includes deagglomerating the aluminum oxide powder prior to forming the powder into an article having a desired shape. This is preferably accomplished by subjecting the aluminum oxide powder to ultra-sonication. Further details of the invention are defined in the features of the claims.
  • FIG. 1 is a pictorial view of an orthodontic bracket according to one embodiment of the invention.
  • FIG. 2 depicts a qualitative translucency assessment of Example 1 ceramic material.
  • FIG. 3 is a Scanning Electron Microscopy (SEM) image (2000x) of a cross-section of the Example 1 ceramic material.
  • FIG. 4 is an SEM image (2,000x) of a cross-section of the Example 2 ceramic material.
  • FIG. 5 is an SEM image (2,000x) of a cross-section of the Comparative Example A ceramic material.
  • FIG. 6a is an SEM image (2,500x) of a cross-section of the Example 3 ceramic material.
  • FIG. 6b is an SEM image (10,000x) of a cross-section of the Example 3 ceramic material.
  • FIG. 7 is an SEM image (2,500x) of a cross-section of the Comparative Example C ceramic material.
  • FIG. 8a is an SEM image (2,500x) of a cross-section of the Comparative Example D ceramic material.
  • FIG. 8b is an SEM image (10,000x) of a cross-section of the Comparative Example D ceramic material.
  • FIG. 9a is an SEM image (2,500x) of a cross-section of the Comparative Example E ceramic material.
  • FIG. 9b is an SEM image (10,000x) of a cross-section of the Comparative Example E ceramic material.
  • FIG. 10 is a graphical representation of Light Transmittance ( ) versus
  • the present invention is directed to an orthodontic appliance that includes a polycrystalline aluminum oxide ceramic material that has an average grain size of no greater than 1.0 micrometer (i.e., micron). This small grain size contributes to a stronger material than conventional ceramic materials without detrimentally affecting translucency. As a result of the high strength and translucency, the material of the present invention is particularly advantageous for use in orthodontic appliances.
  • the ceramic material of the present invention is a translucent polycrystalline material.
  • a “ceramic” refers to an inorganic nonmetallic material and "crystalline” refers to material that shows crystalline diffraction peaks when subjected to a bulk powder x-ray diffraction scan and is essentially free of glass.
  • a polycrystalline material has a multiplicity of randomly oriented crystals joined at grain boundaries.
  • the ceramic material includes at least 99% polycrystalline ceramic having at least 99% theoretical density.
  • the ceramic for the present invention is aluminum oxide.
  • Aluminum oxide is desirable since it is strong, hard, colorless, and readily available. It is desirable that the aluminum oxide be relatively high purity (preferably at least about 99.5% pure and more preferably at least about 99.9% pure) for generally high strength and significant freedom from chromatic effects.
  • the ceramic material of the orthodontic appliances of the present invention is substantially nonporous to maintain a high degree of optical translucency.
  • the average grain size of the ceramic material be no greater than 1.0 micrometer (i.e., micron).
  • no greater than 10% (i.e., number percent) of the grains as measured on a polished, etched surface of the material has a largest dimension (not actual grain size) greater than 1.0 micron.
  • no greater than 20% (i.e., number percent) of the grains as measured on a polished, etched surface of the material has a largest dimension greater than 0.9 micron.
  • the ceramic material of the orthodontic appliances of the present invention is translucent.
  • Translucency is the property of a specimen by which it transmits light diffusely without permitting a clear view of objects beyond the specimen and not in contact with it.
  • a translucent material is an advantage because an orthodontic appliance formed from such a material effectively blends in with its surroundings and assumes the color of the underlying teeth. This can provide improved aesthetics as compared to more opaque materials. That is, an orthodontic appliance would be more aesthetically pleasing if it were nearly indistinguishable and unnoticeable. Particularly desirable materials should be neutral, and neither add color to the light passing through nor subtract color by appreciable absorption.
  • the ceramic material of the present invention is preferably an alpha aluminum oxide.
  • Aluminum oxide is particularly desirable since its optical transrnittance is substantially constant throughout the visible spectrum and it therefore does not change the color of light passing through.
  • a substantial amount of the incident light should pass through the appliance, albeit diffused, to the base for reflection off of the tooth surface, and then be retransmitted through the appliance to be emitted from the front surface.
  • the appliance is translucent rather than transparent, a portion of the light is backscattered by the internal grain boundaries of the ceramic as well as by impurities in the article. The backscattering due to impurities is preferably minimized since such backscattered light tends to be white and will almost invariably be different from the tooth color.
  • a translucent ceramic material many of the optical properties of the tooth are mimicked. It is significant that the translucence be a bulk property of the material rather than a surface effect.
  • Some light diffusion can be obtained by roughening a surface as, for example, with frosted glass. This is not completely satisfactory in an orthodontic appliance, however, since the surface is continually wet, and the principal change in the index of refraction occurs at the air-liquid interface, which is nearly smooth. Further, it is undesirable to have roughened surfaces on orthodontic appliances, which can provide a site for the build-up of plaque. Also, rough surfaces may also have imperfections, which serve as a source for initiation of cracks. Since ceramics do not have the ductility of metals, roughness can significantly degrade strength.
  • the Contrast Ratio value of a material is a measure of the opacity of the material as a ratio of the reflectance through the material on a black substrate to that of an identical material on a white substrate. Contrast Ratio values can be measured using a technique based on Section 3.2.1 of ASTM-D2805-95, modified for samples of about 1 millimeter (mm) thick. This test method is provided below. Lower values of Contrast Ratio indicate greater levels of light transmissivity.
  • Ceramic materials used in the orthodontic appliances of the present invention have a Contrast Ratio value less than about 0.7, preferably less than about 0.6, even more preferably less than about 0.5, and most preferably less than about 0.4.
  • the transrnittance of a material is a measure of the opacity of the material as a percentage of light at a particular wavelength that passes through the material. Percent transrnittance can be measured using a technique based on the published standard method DIN EN 1184, modified for samples of about 1 millimeter (mm) thick. The samples can be evaluated wet or dry. This test method is provided in the Examples Section.
  • Ceramic materials, and articles made from such materials, according to the present invention preferably have a wet transrnittance of at least about 40% at about 550 nm. More preferably, the wet transrnittance is at least about 50% at about 650 nm. Alternatively stated, the wet transrnittance curve over a range of about 475 nm to about 650 nm has an integrated area of greater than about 70% T-nm (i.e., units of %
  • the ceramic material used in the orthodontic appliances of the present invention also offers other desirable properties such as high flexure strength. Flexure strength can be measured according to the test methods described in the Examples Section. It is desirable that the material of an orthodontic appliance has high strength and reliable mechanical properties when machined into a complex shape and subjected to complex stresses. For example, point sources of very high magnitude are applied to orthodontic appliances by loading of the associated arch wire and tie wings, and also during chewing. Flexure strength indicates the ability for a ceramic material to withstand forces exerted during orthodontic treatment. Materials used in the orthodontic appliances of the present invention exhibit excellent flexure strength. Preferably, they possess a flexure strength of at least about 400 MPa (megapascals), more preferably at least about 500 MPa, and most preferably at least about 600 MPa.
  • the relatively high flexure strength of the appliances of the present invention is a significant advantage, because the overall size of the appliance as well as the size of protruding sections of the appliance (such as tie wings or hooks) can be reduced without significantly increasing the likelihood of breakage during use. Moreover, the increased strength enables the design and use of relatively complex shapes without fear of breakage. The resultant smaller size further increases the aesthetic appearance of the appliance because it is more difficult to see in the oral cavity. In addition, the smaller overall size reduces the likelihood that the appliance will contact opposing dentition, appliances mounted on opposing dentition or adjacent soft tissue.
  • additives may be included in the ceramic material. These include dopants, colorants, and processing additives. Colorants can be used to achieve desired shades. Examples of suitable colorants include iron oxide, rare earth oxides, and bismuth oxide. Processing additives include, for example, sintering aids such as magnesium oxide, yttrium oxide, zirconium oxide, hafnium oxide, and calcium oxide. Various combinations of such additives can be used if desired. If used, such additives are present in an amount up to about 0.5 percent by weight (wt-%).
  • the resultant material can be in the final desired shape or it can be partially in the form of an appliance (a "perform") that is subjected to further machining, for example. These processes are well known for their use in making ceramic materials.
  • a method for making a polycrystalline translucent aluminum oxide ceramic material as described herein includes: providing an aluminum oxide powder; forming the powder into an article having a desired shape; sintering the shaped article to obtain a sintered article having closed porosity; and subjecting the sintered article to hot isostatic pressing to further densify and form an orthodontic appliance or appliance preform that includes polycrystalline translucent aluminum oxide ceramic material.
  • forming the powder into an article having a desired shape includes forming an appliance or appliance preform that includes ceramic material in a green stage. The green-stage appliance or appliance preform can be machined into a desired shape prior to sintering the shaped article.
  • the sintered article (appliance) can be carved prior to subjecting it to hot isostatic pressing to further densify the article.
  • the densified article (appliance) can be carved into a desired shape.
  • a preferred method of making the ceramic material used in making the orthodontic appliances of the present invention involves initially combining powdered aluminum oxide in water and treating to deagglomerate the particles. This treatment is preferably done using ultra-sonication.
  • a sample of aluminum oxide is combined with water (generally distilled or deionized water) to form a slurry of about 25 wt-% to about 40 wt-% solids and sonicated for a period of time effective to deagglomerate the particles
  • the pH of the slurry can be adjusted for enhancing the dispersibility of the powder using, for example, ammonium citrate.
  • the aluminum oxide powder is preferably at least about 99.5% pure, more preferably at least about 99.9% pure, and most preferably at least about 99.99% pure.
  • the powder includes particles having an average particle size (e.g., an average diameter) of no greater than about 0.5 micron and a surface area of greater than about 10 square meters per gram (m 2 /g), preferably greater than about 14 m 2 /g.
  • m 2 /g square meters per gram
  • submicron size particles are used. This provides an active sintering process and allows one to achieve substantially theoretical density in the sintered, hot isostatic pressed compact.
  • This material is then typically combined with a small amount of a temporary organic binder, such as an acrylic binder or paraffin wax, optionally with a plasticizer such as polyethylene glycol, and then shaped.
  • a temporary organic binder such as an acrylic binder or paraffin wax
  • a plasticizer such as polyethylene glycol
  • about 5 weight percent (wt-%) to about 13 wt-% binder is applied by well-known methods (e.g., milling, spray drying) to the ceramic powder.
  • Such binder is generally removed in subsequent processing operations.
  • the mixture is typically then pressed into cylindrical pellets (typically of a diameter of about 10 mm to about 50 mm and a height of about 1 cm to about 100 cm) at room temperature under a pressure of about 100 MPa to about 350 MPa.
  • the pressed pellets are then subjected to cold isostatic pressing ("ClPing") at room temperature under a pressure of about 100 MPa to about 350 MPa.
  • This material is typically referred to as the "green stage” of the material with binder and is relatively porous (e.g., at least about 25% porosity).
  • This green stage material is then heated under conditions to remove substantially all the organic binder. Typically, this occurs at a temperature of about 600°C to about 700°C, preferably at atmospheric pressure, and for a time of about 1 hour to about 3 hours.
  • the material is also often referred to as the "green stage.”
  • the "green density" of the material at this stage is at least about 58% of full density.
  • the material is then subjected to heating (i.e., firing or sintering) to densify the material.
  • heating involves a multi-step process.
  • the material can be sintered at a temperature of about 1200°C to about 1300°C in air for about 1 hour to about 3 hours.
  • the sintered material is preferably at about 96-98% of full density and generally has a bright white, opaque appearance.
  • This sintered material which typically includes closed pores, may also then be heated under conditions to further densify the material and remove substantially all the pores. Typically, this occurs at a temperature of about 1200°C to about 1450°C for a time of about 1 hour to about 3 hours and typically results in a material of very low porosity.
  • This final heating step preferably includes hot isostatic pressing ("HIPing") to accelerate the heating process and achieve full translucency.
  • Isostatic pressure (provided by an inert gas, typically argon) is applied while the material is heated to the HIPing temperature.
  • the combination of high temperature and high pressure compacts the material to have substantially zero porosity.
  • U.S. Pat. No. 4,954,080 (Kelly et al.) provides further discussion as to hot isostatic pressing aluminum oxide.
  • Preferred HIPing conditions include a temperature of about 1200°C to about 1300°C for about 30 minutes to about 120 minutes under about 100 MPa to about 210 MPa of an inert gas (e.g., argon).
  • the aluminum oxide ceramic material is preferably fully sintered and HlPed to achieve greater than about 99.8% of the theoretical density of the ceramic material.
  • the process of the present invention can be carried out in air or an inert gas without the use of any sintering additive.
  • Sintering aids can be used, if desired, in an amount up to about 0.5 wt-% total.
  • suitable sintering aids include magnesium oxide, yttrium oxide, zirconium oxide, hafnium oxide, and calcium oxide, which can be used in combination.
  • orthodontic appliance is herein used in a broad sense to include any device intended for mounting on a tooth, and used to transmit to the tooth corrective force from an arch wire, spring, elastic, or other force-applying component.
  • suitable appliances include brackets (including self-ligating brackets), buccal tubes, cleats and buttons.
  • arch-wire slot is used broadly to designate any structure that receives or couples with the arch wire.
  • FIG. 1 shows an exemplary orthodontic appliance in the form of an orthodontic bracket 10.
  • the bracket has a base 11 suitable for either direct bonding to a tooth or attachment to any kind of mounting fixture.
  • a tooth-facing surface 12 of the base 11 is preferably conventionally concavely curved about both a mesiodistal axis and an apical axis to match the natural convexity of the tooth labial surface.
  • a bracket body 13 extends from the base 11 to define bracket tie wings 14 for ligature anchorage, and a mesiodistally oriented arch- wire slot 15 extending from an outer body surface 16 into the bracket body.
  • the presence or absence of tie wings is not a feature of the invention, and the base and arch- wire slot may be angulated as desired to minimize or eliminate torquing or other bends of the arch wire.
  • the orthodontic appliance may include an arch wire slot liner, such as described in U.S. Patent Nos. 5,380,196 (Kelly et al.) and 5,358,402 (Reed et al.).
  • the appliance may also include a debonding channel as described in U.S. Patent Nos. 5,439,379 (Hansen) and 5,380,196.
  • a preferred orthodontic appliance is made by pressing, sintering, and HIPing aluminum oxide as described above. The parts are preferably fabricated by pressing powder to a desired shape and sintering the pressed compact at temperatures such that the ceramic densifies.
  • high purity aluminum oxide powder is placed in the die cavity of a high-pressure hydraulic press.
  • the die has a cavity with a cross section corresponding to the desired cross section of the appliance being formed.
  • the arch wire slot in the appliance may be completely or partially formed in this operation, or may be ground later. Undercuts beneath the tie wings are ground in later.
  • a punch having the cross section of the die cavity is pressed into the powder in the cavity at about 70 MPa to about 140 MPa to tightly pack it.
  • a lateral slide is also employed for forming the curved base of the appliance.
  • Such punches, dies, and slides are conventionally used for pressing a broad variety of metals or ceramics to desired shapes.
  • multiple die cavities are used in commercial operations for high productivity.
  • such powder may be placed in a latex mold and isostatically pressed at about 140 MPa to about 310 MPa to form a green compact.
  • the green compact is made by "injection molding" the powder by conventional means at about 100 MPa.
  • a ceramic orthodontic appliance is secured to a tooth structure with an orthodontic adhesive substance.
  • Good bonding of the adhesive to the base of the appliance is important so that it can withstand high occlusal forces and the stress of orthodontic correction. Controlled roughness of the base of the appliance may therefore be desirable to enhance bonding strength of the adhesive to the appliance.
  • a polycrystalline ceramic orthodontic appliance may be made by compressing powder in a die.
  • a quantity of alumina particles such as small, irregular alumina shards are fixed to the base to enhance the bond between the appliance and the patient's tooth.
  • the shards are secured to the base by first applying a glass frit to the base, then applying the shards to the frit, and then heating the assembly of the ceramic body, glass frit and shards in an oven. Once the glass softens, the shards become embedded in the glass and will remain securely connected to the base after the glass cools.
  • Other surfaces of the orthodontic appliance should be smooth.
  • smoothness is promoted by employing polished dies and punches in the pressing operation.
  • the surfaces may be smoothed by grinding or by ultrasonic or abrasive polishing after sintering.
  • Conventional flux polishing may also be used. In one such technique the appliance is immersed for up to thirty minutes in molten flux under conventional conditions.
  • the pressing and sintering technique for forming a polycrystalline ceramic article from ceramic powder can result in an orthodontic appliance with rather precise dimensions. Precision is enhanced by careful control of the pressing operation for forming green compacts and the mix of particle sizes in the ceramic powder.
  • the sintering , operation inherently causes shrinkage from the green compact to the finished article. The proportion of shrinkage can be known from carefully controlled particle size, mold geometry and pressure in green compact pressing. Care in these conventional techniques can produce finished orthodontic appliances well within acceptable tolerance limits.
  • An important consideration on the orthodontic appliance is the archwire slot. If desired the slot may be ground into the appliance after pressing and sintering. Optionally, such grinding can be expedited by pressing in an undersized slot that is enlarged to the final desired configuration by grinding.
  • the orthodontic appliances of the present invention can be incorporated into a kit, wherein at least one of the appliances includes a polycrystalline translucent aluminum oxide ceramic material having an average grain size of no greater than 1.0 micron and a Contrast Ratio value of less than about 0.7.
  • the kit can include one or more other components such as an orthodontic adhesive, an adhesive primer, an appliance positioning tool, and combinations thereof.
  • the mounted sample was polished using diamond lapping film (obtained under the trade designation "IMPERIAL DIAMOND LAPPING FILM” from the 3M Company, St. Paul,
  • test bars were soaked in distilled water at 37°C for 24 hours prior to testing.
  • a 3-point beam bend test configuration with a span of 10.0 mm was employed.
  • the crosshead test speed was 0.75 mm/min.
  • An Instron 4505 test frame (Instron Corporation, Canton, MA) was utilized. Flexure Strength results were reported in units of MPa as minimum, maximum, and average strength values. Average strength values are an average of 5 measurements.
  • ceramic discs with 2 parallel flat surfaces, a thickness of 1.0 ⁇ 0.03 mm, and various diameters ranging from 12 to 15 mm were prepared by cutting discs at a speed of 2500 rpm and a load of 1000 grams using a Buehler Isomet 2000 Precision Saw (Buehler Co., Lake Bluff, IL) and a Buehler Series 15-LC diamond wafering blade (15.24 cm, #11-4276). Both surfaces (front and back of disc) were made uniform by passing them back and forth 10 times over an approximately 7.6-cm path along 600-grit sandpaper (3M Wetordry Tri-M-Ite, #438Q; 3M
  • ASTM-D2805-95 test method was modified to measure the Contrast Ratio (or opacity) of the discs.
  • Y-tristimulus values for the discs were measured on an Ultrascan XE Colorimeter (Hunter Associates Laboratory, Reston, VA) with a 0.953-cm aperture using separate white and black backgrounds. The D65 IUuminant was used with no filters for all measurements. A 10° angle of view was used.
  • the Contrast Ratio or opacity, C was calculated as the ratio of the reflectance through a material on a black substrate to that of an identical material on a white substrate. Reflectance is defined as equal to the Y- tristimulus value.
  • Reported Contrast Ratio values are the results of single measurements. Lower values are indicative of greater translucency (i.e., transmission of light).
  • the translucency of small test samples was quantitatively measured according to the following method that is a modification of the published standard method, "Materials and Articles in Contact with Foodstuffs: Test Methods for Translucency of Ceramic Articles"; DLN EN 1184; August, 1997.
  • Small test samples for example ceramic orthodontic brackets, were cleaned with ethanol, and dried in a stream of anhydrous nitrogen. The dried samples were sputter coated with approximately 40 nm of Au/Pd, and mounted into 2.54-cm phenolic rings using Buehler-
  • samples were hand ground on 600-grit SiC grinding paper on a Buehler Ecomet 4 (Buehler Co., Lake Bluff, IL). A Fowler micrometer caliper was used to monitor progress of material removal. Once samples were ground to within approximately 20-30% of ideal width (1000 ⁇ m), samples were polished using 3M
  • Visible light micro-spectrophotometry was done using a Leica Orthoplan Microscope, an 16X/0.30NA objective, 0.30 substage condenser, and a Leica MPV-Combi spectrophotometer. Section 4.3 Preparation of test specimen. For the data reported herein, the specimens were 1.00-mm thick rather than 2.00-mm thick.
  • the average grain size of an alumina test sample was determined from Scanning Electron Microscopy (SEM) images. Prior to scanning, the sample was mounted and polished as described above for hardness testing. Following polishing, the sample was removed from the mounting media, cleaned and immersed for 1 minute in an aqueous supersaturated borax (sodium borate) solution at 80°C. The sample, coated with the sodium borate solution, was then heated at 5°C/min to 900°C and soaked at 900°C for 30 minutes in flowing air. The borax solution reacted with the alumina to form a glass at the polished surface grain boundaries. Upon cooling, the polished surface was etched for 1 minute in a boiling 12 % HC1 acid solution to remove the resultant glass.
  • SEM Scanning Electron Microscopy
  • the powder was reported by the manufacturer to have a nominal composition of 99.99 wt-% Al 2 O 3 , with the balance being comprised of impurities of the following metals/oxides: Na (5 ppm), K (1 ppm), Fe (4 ppm), Ca (1 ppm), Mg (1 ppm) and Si (2 ppm).
  • the nominal surface area of this powder was 14.8 m 2 /g with an average particle size of 0.18 ⁇ m (manufacturer's data).
  • the TM-DAR alumina powder as received was de-agglomerated and prepared for subsequent processing as follows.
  • the powder was mixed with distilled water (in an amount equal to approximately 42% by weight of the powder) and ammonium hydrogen citrate powder (Sigma- Aldrich Chemical Company, St. Louis, MO) (in an amount equal to approximately 0.45% by weight of the powder) in a polyethylene bottle.
  • the bottle was placed in an ultrasonic water bath at room temperature and the powder slurry was ultrasonicated for 2 hours.
  • ammonium hydroxide Alfa Aesar, Ward
  • Carbowax Polyethylene Glycol 400 a plasticizer from Union Carbide, (Danbury, CT) was added to the slurry in an amount equal to approximately 1.1% by weight of the powder.
  • the Carbowax 400 Prior to adding the Carbowax 400 to the powder-binder slurry, the Carbowax 400 was diluted with approximately 4.5 parts distilled water to 1 part Carbowax 400.
  • the free-flowing alumina powder was uniaxially pressed into 10.25-g cylindrical pellets by using a die with a diameter of 16.6 mm and an applied pressure of approximately 310 MPa. (Press was obtained from Carver Laboratory Press, Model M, Carver, Inc., Wabash, IN). The resulting pellets were then cold isostatically pressed (CIPed) at approximately 170 MPa (Model #IP4-22-60, Autoclave Engineers, Erie, PA).
  • the CIPed pellets (or ceramic parts of other shapes) were burned out in air at 690°C for 1 hour to remove the organic components added to facilitate dispersion and spray drying.
  • the ramp rate to 690°C was approximately l°C/min. After a 1 hour soak at 690°C, the furnace power was shut-off and the furnace cooled at its own rate.) Following binder burnout, the ceramic parts typically had a "green" (non-sintered) density in excess of 58% (on a theoretical density basis of 3.98 g/cm 3 ).
  • the ceramic parts were sintered at 1235°C in air for 2 hours with ramp and cool rates of 20°C/min.
  • This pressureless, sintering process typically produced ceramic parts having a density of approximately 3.83 g/cm , approximately 96% of their theoretical density. At approximately 96% of full density, these ceramic parts were bright white and opaque in appearance. Additionally, the ceramic parts had reached closed porosity at this point in the process, as indicated by near equivalence in their dry weights and saturated weights as determined by the Archimedes density technique Once closed porosity was reached, the sintered ceramic parts were capable of being hot isostatically pressed (HlPed) without encapsulation
  • Example 1 Translucent Alumina had a final density of approximately 3.98 g/cm 3 (essentially 100% of its theoretical density, based on atomic packing considerations) and were translucent in appearance.
  • a qualitative assessment of Example 1 translucency was made as shown in FIG. 2, demonstrating that printed text could readily be read through a 1-mm thick disc of the material. The average grain size of the Example 1
  • Example 1 Alumina was measured according to the test method provided herein and was determined to be 0.8 ⁇ m.
  • a Scanning Electron Microscopy (SEM) image (2,000x) of the Example 1 Alumina is shown in FIG. 3.
  • the hardness of the Example 1 Alumina was measured according to the test method provided herein and was found to be 22.1 ⁇ 0.5 GPa.
  • Example 2 Polycrystalline Translucent Alumina Preparation
  • the TM-DAR alumina powder was processed as described for Example 1, except that the sintered pellets (or ceramic parts) were HlPed at 1375°C (as compared to 1275°C in Example 1) for 30 minutes (as compared to 65 minutes in Example 1).
  • the resulting ceramic parts had a final density of approximately 3.99 g/cm 3 (slightly greater than 100% of what was believed to be its theoretical density) and were translucent in appearance, appearing visually to be of a similar translucency to Example 1 Alumina.
  • the average grain size of the Example 2 Alumina was measured according to the test method provided herein and determined to be 0.9 ⁇ m.
  • a Scanning Electron Microscopy image (2,000x) is shown in FIG. 4.
  • the hardness of the Example 2 Alumina was measured according to the test method provided herein and was found to be 21.7 ⁇ 0.7 GPa.
  • Example 3 Polycrystalline Translucent Alumina Preparation In order to prepare larger quantities of the polycrystalline translucent alumina and to ensure that all parts were uniformly processed, the following modified process was employed.
  • the TM-DAR alumina powder as received was processed as described for Example 1, except that the binder burn-out at 690°C was extended to 2 hours (from 1 hour) and the pressureless, sintering temperature was raised to 1250°C (from 1235°C) to ensure that all ceramic parts reached closed porosity prior to subsequent HIPing. It is believed that the ceramic parts and physical properties produced under these modified conditions do not differ appreciably from those described in Example 1. Rather, it is believed that it is the typical scale-up, "mass" effects (e.g., air flow and/or thermal effects) that require the extension of burn-out time and the increase in sintering temperature to ensure uniform processing results. Properties and additional characterization of Example 3 Translucent Alumina are included below.
  • Comparative Example A is a translucent alumina available from Ceradyne, Inc., Costa Mesa, CA, and sold under the tradename TRANSTAR.
  • the grain size of the TRANSTAR ceramic was measured according to the test method provided herein and found to be 30.0 microns.
  • the hardness of the TRANSTAR ceramic was measured according to the test method provided herein and found to be 19.7 ⁇ 0.8 GPa.
  • a Scanning Electron Microscopy image (2,000x) of Comparative Example A is shown in FIG. 5.
  • Comparative Example B is an opaque (ivory-colored) alumina, available under the trade designation of "998" from Vesuvius McDanel, Beaver Falls, PA.
  • Comparative Example C is translucent alumina available from Ceradyne, Inc., and sold under the tradename "CERADYNE TPA.” This material is used to produce the 3M
  • Comparative Example D is a commercially available translucent alumina orthodontic bracket, available under the trade designation of "CONTOUR Ceramic
  • Comparative Example E is a commercially available translucent alumina orthodontic bracket, available under the trade designation of "MXi" from TP Orthodontics,
  • Example 1 The results in Table 1 indicate that the Flexure Strength of the Example 1 translucent alumina is approximately 2 times that of the Comparative Example A translucent material. It should be noted that the large standard deviation in the Example 1 values likely resulted from the difficulties experienced in machining this material. The fine-grained structure and high strength/hardness made defect-free machining of Example 1 flexure bars very challenging. However, the demonstrated strength of Example 1 may allow smaller, less bulky translucent orthodontic brackets to be constructed from such material.
  • Hardness and Grain Size were determined according to the Test Methods described herein and the results for Example 3, Comparative Example C, and the two bracket samples (Comparative Examples D and E) are reported in Table 3.
  • Examples of the SEM images (2,500x and 10,000x) used to determine the average grain sizes of the Example 3, Comparative Example C, Comparative Example D, and Comparative Example E samples are shown in FIG. 6a and 6b, FIG. 7 (2500x only), FIG. 8a and 8b, and FIG. 9a and 9b, respectively.
  • Example 3 grains appeared visually to be more uniform or unimodal in size, while the Comparative Example D and E samples had a broader, distribution of grain sizes, with a greater number of larger single grains. Because of the smaller and more uniform grain composition of the Example 3 sample, articles constructed from this material would be expected to have improved physical and mechanical properties.
  • VanVlack "Elements of Materials Science and Engineering," 6 th Edition, 217-219, 1989) state, "The mean chord length, L, is an index of grain size.” As noted above, this mean chord or intercept length must be multiplied by a proportionality constant to determine an actual grain size. However, Pham goes on to report this index of grain size (chord length) as the actual grain size, without multiplying by the needed proportionality constant. Furthermore, the VanVlack reference states that is determined “by placing a random line of known length across & polished and etched microstructure,” as was done in the technique described herein. However, Pham states, "Brackets of each brand were then notched with a diamond disk and fractured with a chisel.
  • Translucency was determined according to the "Translucency of Small Samples (Wet Transrnittance)" Test Method described herein and the results for Example 3, and Comparative Examples C, D and E are reported in tabular form (Table 4) as well as in graphical form ( Figure 10).
  • Example 3 sample is appreciably more translucent than the other three materials.
  • the wet transmittance of the Example 3 sample is about 2 times greater than the wet transmittance of Comparative Example D and E samples at lower wavelengths and 25-50 % greater at longer wavelengths.
  • the integrated area under a wet transmittance vs wavelength curve, another measure of the translucency of these materials, is reported in Table 5 (in units of Percent Wet Transmittance x Light Wavelength (nm) or %T-nm). Table 5. Integrated Translucency (between 475 and 650 nm)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Thermal Sciences (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Dental Preparations (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Machines For Manufacturing Corrugated Board In Mechanical Paper-Making Processes (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Steroid Compounds (AREA)

Abstract

An orthodontic appliance that includes a polycrystalline translucent aluminum oxide ceramic material having an average grain size of no greater than 1.0 micron and a Contrast Ratio value of less than about 0.7.

Description

ORTHODONTIC APPLIANCE
Field of the Invention
This invention relates to orthodontic appliances, particularly to orthodontic appliances that include a polycrystalline alumina-based ceramic material that has a relatively small grain size yet generally high translucency.
Background
Although performance and durability are highly desirable characteristics of orthodontic brackets, for example, they alone are not the sole concern for practitioners and patients. Aesthetic value, or how orthodontic materials look inside the mouth is just as desirable. For orthodontic devices (typically, brackets, which are small slotted bodies for holding a curved arch wire, and associated tooth bands if banded attachment is used), stainless steel is an ideal material because it is strong, nonabsorbent, weldable, and relatively easy to form and machine. A significant drawback of metal appliances, however, relates to cosmetic appearance when the patient smiles. Adults and older children undergoing orthodontic treatment are often embarrassed by the "metallic smile" appearance of metal bands and brackets, and this problem has led to various improvements in recent years.
One area of improvement involves use of nonmetal materials. Both plastic and ceramic materials present an improved appearance in the mouth, and often the only significantly visible metal components are thin arch wires that are cosmetically acceptable.
Plastic is not an ideal material because it lacks the structural strength of metal, and is susceptible to staining and other problems. Ceramics such as sapphire or other transparent crystalline materials have undesirable prismatic effects. Also, single crystal aluminum oxide appliances are subject to cleavage under the loads that occur in the course of orthodontic treatment. Other ceramics have been largely opaque so that they either do not match tooth color or require coloring. U.S. Pat. No. 4,954,080 (Kelly et al.) describes orthodontic appliances made from a polycrystalline ceramic material such as alumina. The ceramic material of the appliances described in this patent transmits sufficient light to enable the appliance to pick up the color of the tooth. While the appliances described are considered satisfactory, there is a need in the art for orthodontic appliances made of a ceramic material that is stronger.
In such an appliance, it would also be advantageous to have a material with no predetermined color and the ability to blend with or color-match the adjacent dentition.
Summary of the invention The present invention is directed to orthodontic appliances that include a polycrystalline ceramic material that has a desirable translucent quality. This is particularly advantageous for use in orthodontic appliances to achieve further cosmetic improvement by having a translucent quality that picks up the color of the underlying tooth to make the orthodontic appliance blend with the tooth. Preferably, the material has a Contrast Ratio value of less than about 0.7.
The polycrystalline translucent ceramic material is formed by pressing a powder material, such as high purity aluminum oxide, into a desired shape, sintering the shaped material to provide closed porosity, and subjecting the sintered material to hot isostatic pressing to yield a single phase material having substantially zero porosity and an average grain size of no greater than 1.0 micrometer (i.e., micron). This small grain size contributes to a stronger material than conventional ceramic materials without detrimentally effecting translucency. This is surprising as small grain size is often considered to prevent relatively high translucency. Preferably, the material has a flexure strength of at least about 400 MPa. Thus, in one embodiment the present invention provides an orthodontic appliance that includes a polycrystalline translucent aluminum oxide ceramic material having an average grain size of no greater than 1.0 micron and a Contrast Ratio value of less than about 0.7.
The present invention also provides a kit that includes a plurality of orthodontic appliances, wherein at least one of the appliances includes a polycrystalline translucent aluminum oxide ceramic material having an average grain size of no greater than 1.0 micron and a Contrast Ratio value of less than about 0.7. The kit preferably further includes a component selected from the group consisting of an orthodontic adhesive, an adhesive primer, an appliance positioning tool, and combinations thereof.
The present invention also provides a method for making an orthodontic appliance or appliance perform that includes a polycrystalline translucent aluminum oxide ceramic material having a grain size of no greater than 1.0 micron and a Contrast Ratio value of less than about 0.7. The method includes: providing an aluminum oxide powder; forming the powder into an article having a desired shape; sintering the shaped article to obtain a sintered article having closed porosity; and subjecting the sintered article to hot isostatic pressing to further density and form an orthodontic appliance or appliance perform comprising polycrystalline translucent aluminum oxide ceramic material having a grain size of no greater than 1.0 micron and a Contrast Ratio value of less than about 0.7. The method preferably further includes deagglomerating the aluminum oxide powder prior to forming the powder into an article having a desired shape. This is preferably accomplished by subjecting the aluminum oxide powder to ultra-sonication. Further details of the invention are defined in the features of the claims.
Brief Description of the Drawings Those skilled in the art may recognize that various modifications and additions may be employed in connection with the specific, presently preferred embodiments described and illustrated below in the accompanying drawings. As such, the invention should not be deemed limited to the particular embodiments set out in detail, but instead only by a fair scope of the claims that follow along with their equivalents.
FIG. 1 is a pictorial view of an orthodontic bracket according to one embodiment of the invention. FIG. 2 depicts a qualitative translucency assessment of Example 1 ceramic material.
FIG. 3 is a Scanning Electron Microscopy (SEM) image (2000x) of a cross-section of the Example 1 ceramic material.
FIG. 4 is an SEM image (2,000x) of a cross-section of the Example 2 ceramic material.
FIG. 5 is an SEM image (2,000x) of a cross-section of the Comparative Example A ceramic material. FIG. 6a is an SEM image (2,500x) of a cross-section of the Example 3 ceramic material.
FIG. 6b is an SEM image (10,000x) of a cross-section of the Example 3 ceramic material. FIG. 7 is an SEM image (2,500x) of a cross-section of the Comparative Example C ceramic material.
FIG. 8a is an SEM image (2,500x) of a cross-section of the Comparative Example D ceramic material.
FIG. 8b is an SEM image (10,000x) of a cross-section of the Comparative Example D ceramic material.
FIG. 9a is an SEM image (2,500x) of a cross-section of the Comparative Example E ceramic material.
FIG. 9b is an SEM image (10,000x) of a cross-section of the Comparative Example E ceramic material. FIG. 10 is a graphical representation of Light Transmittance ( ) versus
Wavelength (nm) for Example 3, Comparative Example C, Comparative Example D, and Comparative Example E ceramic materials.
Detailed Description of Preferred Embodiments The present invention is directed to an orthodontic appliance that includes a polycrystalline aluminum oxide ceramic material that has an average grain size of no greater than 1.0 micrometer (i.e., micron). This small grain size contributes to a stronger material than conventional ceramic materials without detrimentally affecting translucency. As a result of the high strength and translucency, the material of the present invention is particularly advantageous for use in orthodontic appliances.
Ceramic Material
The ceramic material of the present invention is a translucent polycrystalline material. A "ceramic" refers to an inorganic nonmetallic material and "crystalline" refers to material that shows crystalline diffraction peaks when subjected to a bulk powder x-ray diffraction scan and is essentially free of glass. A polycrystalline material has a multiplicity of randomly oriented crystals joined at grain boundaries. Preferably, the ceramic material includes at least 99% polycrystalline ceramic having at least 99% theoretical density.
The ceramic for the present invention is aluminum oxide. Aluminum oxide is desirable since it is strong, hard, colorless, and readily available. It is desirable that the aluminum oxide be relatively high purity (preferably at least about 99.5% pure and more preferably at least about 99.9% pure) for generally high strength and significant freedom from chromatic effects.
Preferably, the ceramic material of the orthodontic appliances of the present invention is substantially nonporous to maintain a high degree of optical translucency. Furthermore, it is preferred that the average grain size of the ceramic material be no greater than 1.0 micrometer (i.e., micron). Preferably, no greater than 10% (i.e., number percent) of the grains as measured on a polished, etched surface of the material has a largest dimension (not actual grain size) greater than 1.0 micron. Preferably, no greater than 20% (i.e., number percent) of the grains as measured on a polished, etched surface of the material has a largest dimension greater than 0.9 micron.
This is significant because most conventional ceramic orthodontic appliances have a significantly larger average grain size (e.g., 10-50 microns) and/or a significantly larger amount (e.g., 50-90%) of the grains as measured on a polished, etched surface having a largest dimension (not actual grain size) of greater than 0.8 micron. The smaller grain size of the polycrystalline material of the orthodontic appliances of the present invention contributes to the significant strength of the material without detrimentally affecting the translucency.
Thus, the ceramic material of the orthodontic appliances of the present invention is translucent. Translucency is the property of a specimen by which it transmits light diffusely without permitting a clear view of objects beyond the specimen and not in contact with it.
A translucent material is an advantage because an orthodontic appliance formed from such a material effectively blends in with its surroundings and assumes the color of the underlying teeth. This can provide improved aesthetics as compared to more opaque materials. That is, an orthodontic appliance would be more aesthetically pleasing if it were nearly indistinguishable and unnoticeable. Particularly desirable materials should be neutral, and neither add color to the light passing through nor subtract color by appreciable absorption.
The ceramic material of the present invention is preferably an alpha aluminum oxide. Aluminum oxide is particularly desirable since its optical transrnittance is substantially constant throughout the visible spectrum and it therefore does not change the color of light passing through.
In order for the orthodontic appliance to assume the color of the underlying tooth, it is important that sufficient light seen from the front surface of the appliance attached to the tooth be light that has been transmitted from the tooth surface, and that the tooth color is not overwhelmed by light backscattered from optical irregularities within the appliance.
In other words, a substantial amount of the incident light should pass through the appliance, albeit diffused, to the base for reflection off of the tooth surface, and then be retransmitted through the appliance to be emitted from the front surface. Since the appliance is translucent rather than transparent, a portion of the light is backscattered by the internal grain boundaries of the ceramic as well as by impurities in the article. The backscattering due to impurities is preferably minimized since such backscattered light tends to be white and will almost invariably be different from the tooth color. Further, by using a translucent ceramic material, many of the optical properties of the tooth are mimicked. It is significant that the translucence be a bulk property of the material rather than a surface effect. Some light diffusion can be obtained by roughening a surface as, for example, with frosted glass. This is not completely satisfactory in an orthodontic appliance, however, since the surface is continually wet, and the principal change in the index of refraction occurs at the air-liquid interface, which is nearly smooth. Further, it is undesirable to have roughened surfaces on orthodontic appliances, which can provide a site for the build-up of plaque. Also, rough surfaces may also have imperfections, which serve as a source for initiation of cracks. Since ceramics do not have the ductility of metals, roughness can significantly degrade strength.
The Contrast Ratio value of a material is a measure of the opacity of the material as a ratio of the reflectance through the material on a black substrate to that of an identical material on a white substrate. Contrast Ratio values can be measured using a technique based on Section 3.2.1 of ASTM-D2805-95, modified for samples of about 1 millimeter (mm) thick. This test method is provided below. Lower values of Contrast Ratio indicate greater levels of light transmissivity.
Ceramic materials used in the orthodontic appliances of the present invention have a Contrast Ratio value less than about 0.7, preferably less than about 0.6, even more preferably less than about 0.5, and most preferably less than about 0.4.
The transrnittance of a material is a measure of the opacity of the material as a percentage of light at a particular wavelength that passes through the material. Percent transrnittance can be measured using a technique based on the published standard method DIN EN 1184, modified for samples of about 1 millimeter (mm) thick. The samples can be evaluated wet or dry. This test method is provided in the Examples Section.
Ceramic materials, and articles made from such materials, according to the present invention preferably have a wet transrnittance of at least about 40% at about 550 nm. More preferably, the wet transrnittance is at least about 50% at about 650 nm. Alternatively stated, the wet transrnittance curve over a range of about 475 nm to about 650 nm has an integrated area of greater than about 70% T-nm (i.e., units of %
Transrnittance x Wavelength (nm)).
The ceramic material used in the orthodontic appliances of the present invention also offers other desirable properties such as high flexure strength. Flexure strength can be measured according to the test methods described in the Examples Section. It is desirable that the material of an orthodontic appliance has high strength and reliable mechanical properties when machined into a complex shape and subjected to complex stresses. For example, point sources of very high magnitude are applied to orthodontic appliances by loading of the associated arch wire and tie wings, and also during chewing. Flexure strength indicates the ability for a ceramic material to withstand forces exerted during orthodontic treatment. Materials used in the orthodontic appliances of the present invention exhibit excellent flexure strength. Preferably, they possess a flexure strength of at least about 400 MPa (megapascals), more preferably at least about 500 MPa, and most preferably at least about 600 MPa. Having these strengths ensures that orthodontic appliances according to the invention are durable under typical use conditions. The relatively high flexure strength of the appliances of the present invention is a significant advantage, because the overall size of the appliance as well as the size of protruding sections of the appliance (such as tie wings or hooks) can be reduced without significantly increasing the likelihood of breakage during use. Moreover, the increased strength enables the design and use of relatively complex shapes without fear of breakage. The resultant smaller size further increases the aesthetic appearance of the appliance because it is more difficult to see in the oral cavity. In addition, the smaller overall size reduces the likelihood that the appliance will contact opposing dentition, appliances mounted on opposing dentition or adjacent soft tissue.
Although the ceramic material used in an orthodontic appliance of the present invention is preferably at least about 99.5% pure (by weight), and more preferably at least about 99.9% pure, if desired, additives may be included in the ceramic material. These include dopants, colorants, and processing additives. Colorants can be used to achieve desired shades. Examples of suitable colorants include iron oxide, rare earth oxides, and bismuth oxide. Processing additives include, for example, sintering aids such as magnesium oxide, yttrium oxide, zirconium oxide, hafnium oxide, and calcium oxide. Various combinations of such additives can be used if desired. If used, such additives are present in an amount up to about 0.5 percent by weight (wt-%).
Methods of Making Ceramic Material
Various methods of shaping the ceramic material used in making the orthodontic appliances of the present invention may be employed, including die pressing, slurry casting, injection molding, extrusion processes, and rapid prototyping. The resultant material can be in the final desired shape or it can be partially in the form of an appliance (a "perform") that is subjected to further machining, for example. These processes are well known for their use in making ceramic materials.
Generally, a method for making a polycrystalline translucent aluminum oxide ceramic material as described herein includes: providing an aluminum oxide powder; forming the powder into an article having a desired shape; sintering the shaped article to obtain a sintered article having closed porosity; and subjecting the sintered article to hot isostatic pressing to further densify and form an orthodontic appliance or appliance preform that includes polycrystalline translucent aluminum oxide ceramic material. In one embodiment, forming the powder into an article having a desired shape includes forming an appliance or appliance preform that includes ceramic material in a green stage. The green-stage appliance or appliance preform can be machined into a desired shape prior to sintering the shaped article. Alternatively, the sintered article (appliance) can be carved prior to subjecting it to hot isostatic pressing to further densify the article. Alternatively, the densified article (appliance) can be carved into a desired shape. A preferred method of making the ceramic material used in making the orthodontic appliances of the present invention involves initially combining powdered aluminum oxide in water and treating to deagglomerate the particles. This treatment is preferably done using ultra-sonication. Typically, a sample of aluminum oxide is combined with water (generally distilled or deionized water) to form a slurry of about 25 wt-% to about 40 wt-% solids and sonicated for a period of time effective to deagglomerate the particles
(typically about 1 hour to about 3 hours). If desired, the pH of the slurry can be adjusted for enhancing the dispersibility of the powder using, for example, ammonium citrate.
The aluminum oxide powder is preferably at least about 99.5% pure, more preferably at least about 99.9% pure, and most preferably at least about 99.99% pure. Typically, the powder includes particles having an average particle size (e.g., an average diameter) of no greater than about 0.5 micron and a surface area of greater than about 10 square meters per gram (m2/g), preferably greater than about 14 m2/g. Preferably, submicron size particles are used. This provides an active sintering process and allows one to achieve substantially theoretical density in the sintered, hot isostatic pressed compact. This material is then typically combined with a small amount of a temporary organic binder, such as an acrylic binder or paraffin wax, optionally with a plasticizer such as polyethylene glycol, and then shaped. Preferably, about 5 weight percent (wt-%) to about 13 wt-% binder is applied by well-known methods (e.g., milling, spray drying) to the ceramic powder. Such binder is generally removed in subsequent processing operations. The mixture is typically then pressed into cylindrical pellets (typically of a diameter of about 10 mm to about 50 mm and a height of about 1 cm to about 100 cm) at room temperature under a pressure of about 100 MPa to about 350 MPa. Preferably, the pressed pellets are then subjected to cold isostatic pressing ("ClPing") at room temperature under a pressure of about 100 MPa to about 350 MPa. This material is typically referred to as the "green stage" of the material with binder and is relatively porous (e.g., at least about 25% porosity). This green stage material is then heated under conditions to remove substantially all the organic binder. Typically, this occurs at a temperature of about 600°C to about 700°C, preferably at atmospheric pressure, and for a time of about 1 hour to about 3 hours. After removal of the binder, the material is also often referred to as the "green stage." Preferably, the "green density" of the material at this stage is at least about 58% of full density.
This material is then subjected to heating (i.e., firing or sintering) to densify the material. Typically, heating involves a multi-step process. For example, the material can be sintered at a temperature of about 1200°C to about 1300°C in air for about 1 hour to about 3 hours. At this stage, the sintered material is preferably at about 96-98% of full density and generally has a bright white, opaque appearance.
This sintered material, which typically includes closed pores, may also then be heated under conditions to further densify the material and remove substantially all the pores. Typically, this occurs at a temperature of about 1200°C to about 1450°C for a time of about 1 hour to about 3 hours and typically results in a material of very low porosity.
This final heating step preferably includes hot isostatic pressing ("HIPing") to accelerate the heating process and achieve full translucency. Isostatic pressure (provided by an inert gas, typically argon) is applied while the material is heated to the HIPing temperature. The combination of high temperature and high pressure compacts the material to have substantially zero porosity. U.S. Pat. No. 4,954,080 (Kelly et al.) provides further discussion as to hot isostatic pressing aluminum oxide. Preferred HIPing conditions include a temperature of about 1200°C to about 1300°C for about 30 minutes to about 120 minutes under about 100 MPa to about 210 MPa of an inert gas (e.g., argon). The aluminum oxide ceramic material is preferably fully sintered and HlPed to achieve greater than about 99.8% of the theoretical density of the ceramic material.
Significantly, the process of the present invention can be carried out in air or an inert gas without the use of any sintering additive. Sintering aids can be used, if desired, in an amount up to about 0.5 wt-% total. Examples of suitable sintering aids include magnesium oxide, yttrium oxide, zirconium oxide, hafnium oxide, and calcium oxide, which can be used in combination. Orthodontic Appliances
The term "orthodontic appliance" is herein used in a broad sense to include any device intended for mounting on a tooth, and used to transmit to the tooth corrective force from an arch wire, spring, elastic, or other force-applying component. Examples of suitable appliances include brackets (including self-ligating brackets), buccal tubes, cleats and buttons. The term "arch-wire slot" is used broadly to designate any structure that receives or couples with the arch wire.
FIG. 1 shows an exemplary orthodontic appliance in the form of an orthodontic bracket 10. The bracket has a base 11 suitable for either direct bonding to a tooth or attachment to any kind of mounting fixture. In instances where the base 11 is adapted for direct bonding to a tooth, a tooth-facing surface 12 of the base 11 is preferably conventionally concavely curved about both a mesiodistal axis and an apical axis to match the natural convexity of the tooth labial surface. However, other curvatures can be used to accommodate lingual bracket positioning. A bracket body 13 extends from the base 11 to define bracket tie wings 14 for ligature anchorage, and a mesiodistally oriented arch- wire slot 15 extending from an outer body surface 16 into the bracket body. The presence or absence of tie wings (of either single- or twin- wing configuration) is not a feature of the invention, and the base and arch- wire slot may be angulated as desired to minimize or eliminate torquing or other bends of the arch wire.
A variety of other constructions are also possible. For example, the orthodontic appliance may include an arch wire slot liner, such as described in U.S. Patent Nos. 5,380,196 (Kelly et al.) and 5,358,402 (Reed et al.). The appliance may also include a debonding channel as described in U.S. Patent Nos. 5,439,379 (Hansen) and 5,380,196. A preferred orthodontic appliance is made by pressing, sintering, and HIPing aluminum oxide as described above. The parts are preferably fabricated by pressing powder to a desired shape and sintering the pressed compact at temperatures such that the ceramic densifies.
In one such manufacturing technique, high purity aluminum oxide powder is placed in the die cavity of a high-pressure hydraulic press. The die has a cavity with a cross section corresponding to the desired cross section of the appliance being formed. The arch wire slot in the appliance may be completely or partially formed in this operation, or may be ground later. Undercuts beneath the tie wings are ground in later. A punch having the cross section of the die cavity is pressed into the powder in the cavity at about 70 MPa to about 140 MPa to tightly pack it. Optionally, a lateral slide is also employed for forming the curved base of the appliance. Such punches, dies, and slides are conventionally used for pressing a broad variety of metals or ceramics to desired shapes.
Preferably, multiple die cavities are used in commercial operations for high productivity. Alternatively, such powder may be placed in a latex mold and isostatically pressed at about 140 MPa to about 310 MPa to form a green compact. In still another technique the green compact is made by "injection molding" the powder by conventional means at about 100 MPa.
A ceramic orthodontic appliance is secured to a tooth structure with an orthodontic adhesive substance. Good bonding of the adhesive to the base of the appliance is important so that it can withstand high occlusal forces and the stress of orthodontic correction. Controlled roughness of the base of the appliance may therefore be desirable to enhance bonding strength of the adhesive to the appliance.
As mentioned above, a polycrystalline ceramic orthodontic appliance may be made by compressing powder in a die. Preferably, a quantity of alumina particles such as small, irregular alumina shards are fixed to the base to enhance the bond between the appliance and the patient's tooth. The shards are secured to the base by first applying a glass frit to the base, then applying the shards to the frit, and then heating the assembly of the ceramic body, glass frit and shards in an oven. Once the glass softens, the shards become embedded in the glass and will remain securely connected to the base after the glass cools.
Other surfaces of the orthodontic appliance should be smooth. Optionally, smoothness is promoted by employing polished dies and punches in the pressing operation. The surfaces may be smoothed by grinding or by ultrasonic or abrasive polishing after sintering. Conventional flux polishing may also be used. In one such technique the appliance is immersed for up to thirty minutes in molten flux under conventional conditions.
The pressing and sintering technique for forming a polycrystalline ceramic article from ceramic powder can result in an orthodontic appliance with rather precise dimensions. Precision is enhanced by careful control of the pressing operation for forming green compacts and the mix of particle sizes in the ceramic powder. The sintering , operation inherently causes shrinkage from the green compact to the finished article. The proportion of shrinkage can be known from carefully controlled particle size, mold geometry and pressure in green compact pressing. Care in these conventional techniques can produce finished orthodontic appliances well within acceptable tolerance limits. An important consideration on the orthodontic appliance is the archwire slot. If desired the slot may be ground into the appliance after pressing and sintering. Optionally, such grinding can be expedited by pressing in an undersized slot that is enlarged to the final desired configuration by grinding.
The orthodontic appliances of the present invention can be incorporated into a kit, wherein at least one of the appliances includes a polycrystalline translucent aluminum oxide ceramic material having an average grain size of no greater than 1.0 micron and a Contrast Ratio value of less than about 0.7. The kit can include one or more other components such as an orthodontic adhesive, an adhesive primer, an appliance positioning tool, and combinations thereof.
Examples Objects and advantages of this invention are further illustrated by the following examples, but the particular materials and amounts thereof recited in these examples, as well as other conditions and details, should not be construed to unduly limit this invention. Unless otherwise indicated, all parts and percentages are by weight and all molecular weights are weight average molecular weight.
Test Methods
Hardness The average microhardness of example materials was measured by mounting processed ceramic parts in mounting resin (obtained under the trade designation
"EPOXIDE" from Buehler Ltd., Lake Bluff, IL). More specifically, materials were secured in a 3.18-cm (1.25-inch) diameter, 1.9-cm (0.75-inch) tall cylinder of the resin.
The mounted sample was polished using diamond lapping film (obtained under the trade designation "IMPERIAL DIAMOND LAPPING FILM" from the 3M Company, St. Paul,
MN), with the final polishing step using a 0.5 micrometer diamond film to obtain polished cross-sections of the samples. Hardness measurements were made using a conventional microhardness tester obtained under the trade designation "MLTUTOYO MVK-VL" from Mitutoyo Corp. of Tokyo, Japan) fitted with a Vickers indenter using a 500-gram indent load. The hardness measurements were made according to the guidelines stated in ASTM Test Method E384 Test Methods for Microhardness of Materials (1991). The reported hardness values are an average of 10 measurements.
Flexure Strength
Test bars measuring 2.5-mm wide x 1.5-mm thick x 12.0-mm long, with 0.15 ± 0.05 mm x 45° chamfers, were machined by Chand Kare Technical Ceramics, Worcester,
MA. The test bars were soaked in distilled water at 37°C for 24 hours prior to testing. A 3-point beam bend test configuration with a span of 10.0 mm was employed. The crosshead test speed was 0.75 mm/min. An Instron 4505 test frame (Instron Corporation, Canton, MA) was utilized. Flexure Strength results were reported in units of MPa as minimum, maximum, and average strength values. Average strength values are an average of 5 measurements.
Contrast Ratio
In order to quantitatively assess translucency of a material, ceramic discs with 2 parallel flat surfaces, a thickness of 1.0 ± 0.03 mm, and various diameters ranging from 12 to 15 mm were prepared by cutting discs at a speed of 2500 rpm and a load of 1000 grams using a Buehler Isomet 2000 Precision Saw (Buehler Co., Lake Bluff, IL) and a Buehler Series 15-LC diamond wafering blade (15.24 cm, #11-4276). Both surfaces (front and back of disc) were made uniform by passing them back and forth 10 times over an approximately 7.6-cm path along 600-grit sandpaper (3M Wetordry Tri-M-Ite, #438Q; 3M
Company, St. Paul, MN). Distilled water was used as a lubricant and to rinse the sample discs.
ASTM-D2805-95 test method was modified to measure the Contrast Ratio (or opacity) of the discs. Y-tristimulus values for the discs were measured on an Ultrascan XE Colorimeter (Hunter Associates Laboratory, Reston, VA) with a 0.953-cm aperture using separate white and black backgrounds. The D65 IUuminant was used with no filters for all measurements. A 10° angle of view was used. The Contrast Ratio or opacity, C, was calculated as the ratio of the reflectance through a material on a black substrate to that of an identical material on a white substrate. Reflectance is defined as equal to the Y- tristimulus value. Thus, C = RB/RW, where RB = reflectance through a ceramic disc on a black substrate and RW = reflectance through the same disc on a white substrate. Reported Contrast Ratio values are the results of single measurements. Lower values are indicative of greater translucency (i.e., transmission of light).
Translucency of Small Samples (Wet Transrnittance)
The translucency of small test samples, e.g., the size of an orthodontic bracket, was quantitatively measured according to the following method that is a modification of the published standard method, "Materials and Articles in Contact with Foodstuffs: Test Methods for Translucency of Ceramic Articles"; DLN EN 1184; August, 1997. Small test samples, for example ceramic orthodontic brackets, were cleaned with ethanol, and dried in a stream of anhydrous nitrogen. The dried samples were sputter coated with approximately 40 nm of Au/Pd, and mounted into 2.54-cm phenolic rings using Buehler-
Two Part Epoxy (Buehler Co., Lake Bluff, BL). Special attention was paid to the mounting orientation of the samples to ensure that a representative cross-section of the sample would be created, and that any non-alumina materials (such as glass frit coatings) would be removed during the sectioning process. The mounts were allowed to cure overnight at room temperature. The cured mounts were sectioned to between approximately 1.5 to 5- mm widths with a Struers Accutom-50 high-speed diamond saw.
Following sectioning, samples were hand ground on 600-grit SiC grinding paper on a Buehler Ecomet 4 (Buehler Co., Lake Bluff, IL). A Fowler micrometer caliper was used to monitor progress of material removal. Once samples were ground to within approximately 20-30% of ideal width (1000 μm), samples were polished using 3M
Imperial Diamond Lapping Film (9 μm) placed on a flat table. Small amounts of water and Buehler Metadi Fluid (diamond extender) were used as lubricants for the grinding and polishing steps. Final widths of all samples through the plane of interest were 1000 μm (+/- 2%). The test procedure used was based on DIN EN 1184 - 1997 "Materials and articles in contact with foodstuffs: Test methods for translucency of ceramic articles," (August, 1997). This DIN standard procedure was modified as follows: Section 4.2.1 Photometer - a spectrophotometer rather than a photometer was used. Visible light micro-spectrophotometry was done using a Leica Orthoplan Microscope, an 16X/0.30NA objective, 0.30 substage condenser, and a Leica MPV-Combi spectrophotometer. Section 4.3 Preparation of test specimen. For the data reported herein, the specimens were 1.00-mm thick rather than 2.00-mm thick.
Measurements were made for each sample by utilizing the 16X/0.30NA objective to produce a light source with a half angle of 17 degrees. A "wet" reading was taken by submerging (in immersion oil) each sample in a well slide. This well slide was made by the 3M Glass Shop and consisted of a standard microscope slide with 0.6-cm glass cylinder attached to create a flat bottom well. The operating conditions of the Leica MPV were: scan range of 350 nm to 800 nm, 2X integration, 300-hz filter edge, and 4 scan averaging. Four locations on the polished bracket were scanned (4 scans at each location) and the results were averaged in the reported data. The system was calibrated following the manufacturers instructions. The calibration condition for 100% transmission was defined as the well slide filled with immersion oil.
Grain Size
The average grain size of an alumina test sample was determined from Scanning Electron Microscopy (SEM) images. Prior to scanning, the sample was mounted and polished as described above for hardness testing. Following polishing, the sample was removed from the mounting media, cleaned and immersed for 1 minute in an aqueous supersaturated borax (sodium borate) solution at 80°C. The sample, coated with the sodium borate solution, was then heated at 5°C/min to 900°C and soaked at 900°C for 30 minutes in flowing air. The borax solution reacted with the alumina to form a glass at the polished surface grain boundaries. Upon cooling, the polished surface was etched for 1 minute in a boiling 12 % HC1 acid solution to remove the resultant glass. This procedure served to reveal the grain structure of the sample without doing a higher temperature thermal etch that might have altered the existing microstructure. Following rinsing with deionized water and drying in air, the sample was mounted on aluminum SEM stubs and coated with a thin layer of Au/Pd. The samples were viewed at an angle normal to the polished surface using a scanning electron microscope (obtained under the trade designation " JEOL Model JSM 6400" from JEOL, Ltd. of Akishima, Japan). The average grain size of the sample was determined using the linear-intercept method on the plane of polish as described by M.I. Mendelson, "Average Grain Size in Polycrystalline Ceramics," Journal of the American Ceramic Society, 52 [8] 443-446 (1969), using a proportionality constant (k) of 1.56, which relates the average grain size
(D) to the average intercept length (L): D = 1.56 .
Starting Materials Alumina Powder Starting alumina (Al2O3) powder was obtained from Taimei Chemicals Co.,
Tokyo, Japan and designated TM-DAR. The powder was reported by the manufacturer to have a nominal composition of 99.99 wt-% Al2O3, with the balance being comprised of impurities of the following metals/oxides: Na (5 ppm), K (1 ppm), Fe (4 ppm), Ca (1 ppm), Mg (1 ppm) and Si (2 ppm). The nominal surface area of this powder was 14.8 m2/g with an average particle size of 0.18 μm (manufacturer's data).
Example 1 - Polycrystalline Translucent Alumina Preparation Initial Alumina Powder Treatment
The TM-DAR alumina powder as received was de-agglomerated and prepared for subsequent processing as follows. The powder was mixed with distilled water (in an amount equal to approximately 42% by weight of the powder) and ammonium hydrogen citrate powder (Sigma- Aldrich Chemical Company, St. Louis, MO) (in an amount equal to approximately 0.45% by weight of the powder) in a polyethylene bottle. The bottle was placed in an ultrasonic water bath at room temperature and the powder slurry was ultrasonicated for 2 hours. Following sonication, ammonium hydroxide (Alfa Aesar, Ward
Hill, MA) was added in an amount equal to approximately 0.3% by weight of the powder to raise the pH of the solution. The resulting slurry was then further prepared for spray drying by adding DURAMAX B-1000 binder, an acrylic resin manufactured by Rohm and Haas Company, (Philadelphia, PA). Prior to adding the binder (in an amount equal to approximately 9.7% by weight of the powder), the binder was diluted with approximately
2 parts distilled water to 1 part binder. Next, Carbowax Polyethylene Glycol 400, a plasticizer from Union Carbide, (Danbury, CT) was added to the slurry in an amount equal to approximately 1.1% by weight of the powder. Prior to adding the Carbowax 400 to the powder-binder slurry, the Carbowax 400 was diluted with approximately 4.5 parts distilled water to 1 part Carbowax 400. The resulting slurry was mixed with a magnetic stirbar and spray dried (Buchi Mini Spray Dryer B-191, obtained from Brinkman Instruments, Westbury, NY; Inlet Temperature = 195°C, Outlet Temperature = 100°C) to produce a fine, free-flowing powder suitable for further processing.
Powder Formation Processing
The free-flowing alumina powder was uniaxially pressed into 10.25-g cylindrical pellets by using a die with a diameter of 16.6 mm and an applied pressure of approximately 310 MPa. (Press was obtained from Carver Laboratory Press, Model M, Carver, Inc., Wabash, IN). The resulting pellets were then cold isostatically pressed (CIPed) at approximately 170 MPa (Model #IP4-22-60, Autoclave Engineers, Erie, PA).
Binder Burn-out Processing
The CIPed pellets (or ceramic parts of other shapes) were burned out in air at 690°C for 1 hour to remove the organic components added to facilitate dispersion and spray drying. (The ramp rate to 690°C was approximately l°C/min. After a 1 hour soak at 690°C, the furnace power was shut-off and the furnace cooled at its own rate.) Following binder burnout, the ceramic parts typically had a "green" (non-sintered) density in excess of 58% (on a theoretical density basis of 3.98 g/cm3).
Sintering Processing
Following binder burn-out processing, the ceramic parts were sintered at 1235°C in air for 2 hours with ramp and cool rates of 20°C/min. This pressureless, sintering process typically produced ceramic parts having a density of approximately 3.83 g/cm , approximately 96% of their theoretical density. At approximately 96% of full density, these ceramic parts were bright white and opaque in appearance. Additionally, the ceramic parts had reached closed porosity at this point in the process, as indicated by near equivalence in their dry weights and saturated weights as determined by the Archimedes density technique Once closed porosity was reached, the sintered ceramic parts were capable of being hot isostatically pressed (HlPed) without encapsulation
Hot Isostatically Pressed Powder Processing
The sintered ceramic parts were HJPed at 1275°C for 65 minutes with an applied argon pressure of 207 MPa and heating ramp rates of 20°C/min below 1200°C and 13°C/min above 1200°C. The cooling rate was approximately 25°C/min. The resulting ceramic parts (Example 1 Translucent Alumina) had a final density of approximately 3.98 g/cm3 (essentially 100% of its theoretical density, based on atomic packing considerations) and were translucent in appearance. A qualitative assessment of Example 1 translucency was made as shown in FIG. 2, demonstrating that printed text could readily be read through a 1-mm thick disc of the material. The average grain size of the Example 1
Alumina was measured according to the test method provided herein and was determined to be 0.8 μm. A Scanning Electron Microscopy (SEM) image (2,000x) of the Example 1 Alumina is shown in FIG. 3. The hardness of the Example 1 Alumina was measured according to the test method provided herein and was found to be 22.1 ± 0.5 GPa.
Example 2 - Polycrystalline Translucent Alumina Preparation The TM-DAR alumina powder was processed as described for Example 1, except that the sintered pellets (or ceramic parts) were HlPed at 1375°C (as compared to 1275°C in Example 1) for 30 minutes (as compared to 65 minutes in Example 1). The resulting ceramic parts (Example 2 Translucent Alumina) had a final density of approximately 3.99 g/cm3 (slightly greater than 100% of what was believed to be its theoretical density) and were translucent in appearance, appearing visually to be of a similar translucency to Example 1 Alumina. The average grain size of the Example 2 Alumina was measured according to the test method provided herein and determined to be 0.9 μm. A Scanning Electron Microscopy image (2,000x) is shown in FIG. 4. The hardness of the Example 2 Alumina was measured according to the test method provided herein and was found to be 21.7 ± 0.7 GPa.
Example 3 - Polycrystalline Translucent Alumina Preparation In order to prepare larger quantities of the polycrystalline translucent alumina and to ensure that all parts were uniformly processed, the following modified process was employed.
The TM-DAR alumina powder as received was processed as described for Example 1, except that the binder burn-out at 690°C was extended to 2 hours (from 1 hour) and the pressureless, sintering temperature was raised to 1250°C (from 1235°C) to ensure that all ceramic parts reached closed porosity prior to subsequent HIPing. It is believed that the ceramic parts and physical properties produced under these modified conditions do not differ appreciably from those described in Example 1. Rather, it is believed that it is the typical scale-up, "mass" effects (e.g., air flow and/or thermal effects) that require the extension of burn-out time and the increase in sintering temperature to ensure uniform processing results. Properties and additional characterization of Example 3 Translucent Alumina are included below.
In order to compare the translucent alumina materials of this invention with commercially available translucent and opaque aluminas, the following comparative examples were characterized as described below.
Comparative Example A Comparative Example A is a translucent alumina available from Ceradyne, Inc., Costa Mesa, CA, and sold under the tradename TRANSTAR. The grain size of the TRANSTAR ceramic was measured according to the test method provided herein and found to be 30.0 microns. The hardness of the TRANSTAR ceramic was measured according to the test method provided herein and found to be 19.7 ± 0.8 GPa. A Scanning Electron Microscopy image (2,000x) of Comparative Example A is shown in FIG. 5.
Comparative Example B Comparative Example B is an opaque (ivory-colored) alumina, available under the trade designation of "998" from Vesuvius McDanel, Beaver Falls, PA.
Comparative Example C Comparative Example C is translucent alumina available from Ceradyne, Inc., and sold under the tradename "CERADYNE TPA." This material is used to produce the 3M
CLARITY line of orthodontic brackets (3M Unitek, Monrovia, CA).
Comparative Example D Comparative Example D is a commercially available translucent alumina orthodontic bracket, available under the trade designation of "CONTOUR Ceramic
Brackets" from Class One Orthodontics, Lubbock, TX.
Comparative Example E Comparative Example E is a commercially available translucent alumina orthodontic bracket, available under the trade designation of "MXi" from TP Orthodontics,
Inc., LaPorte, IN.
Test Evaluations and Results
In order to compare the fine-grained translucent alumina materials of the present invention with other commercially available aluminas, the characterization outlined below was completed. This work compared the translucent alumina of the present invention to both coarse- and fine-grained translucent alumina as well as to coarse-grained opaque alumina.
Flexure Strength
Flexure Strength was measured according to the Test Method described herein and the test results for Example 1 and Comparative Examples A and B are reported in Table 1.
Table 1. Flexure Strength
Figure imgf000024_0001
The results in Table 1 indicate that the Flexure Strength of the Example 1 translucent alumina is approximately 2 times that of the Comparative Example A translucent material. It should be noted that the large standard deviation in the Example 1 values likely resulted from the difficulties experienced in machining this material. The fine-grained structure and high strength/hardness made defect-free machining of Example 1 flexure bars very challenging. However, the demonstrated strength of Example 1 may allow smaller, less bulky translucent orthodontic brackets to be constructed from such material.
Translucency: Contrast Ratio In order to quantitatively assess the translucency of ceramic samples, Contrast
Ratio was measured according to the Test Method described herein and the test results for Example 3, and Comparative Examples A and B are reported in Table 2. Table 2. Translucency
Figure imgf000025_0001
The results in Table 2 indicate that the translucency of the Example 3 Alumina exceeds that of the Comparative Example A material and thus would be very suitable for highly aesthetic dental articles, e.g., dental prostheses or orthodontic brackets, that allow natural tooth color to diffusely show through the article. This result was surprising in that it had been previously reported (e.g., U. S. Patent No. 4,954,080) that if the average grain size of a ceramic appliance was less than about two microns, then optical effects due to adjacent grain boundaries might interfere with good light transmission through the appliance.
Hardness and Grain Size Comparison of Ceramic Samples
Hardness and Grain Size were determined according to the Test Methods described herein and the results for Example 3, Comparative Example C, and the two bracket samples (Comparative Examples D and E) are reported in Table 3. Examples of the SEM images (2,500x and 10,000x) used to determine the average grain sizes of the Example 3, Comparative Example C, Comparative Example D, and Comparative Example E samples are shown in FIG. 6a and 6b, FIG. 7 (2500x only), FIG. 8a and 8b, and FIG. 9a and 9b, respectively.
Table 3. Hardness and Grain Size of Ceramic Samples
Figure imgf000025_0002
The results in Table 3 indicate that the hardness of the Example 3, Comparative Example D, and Comparative Example E samples are statistically equivalent and that all three of these "fine-grained" samples have larger hardness values (and therefore may be expected to be stronger) than the "coarser-grained" Comparative Example C sample. The average grain size of the Comparative Example C sample was about 18 times larger than the Example 3 sample. The average grain sizes of the Comparative Example D and E samples were similar and about 50% larger than the Example 3 sample. Additionally, it is clear from the SEM images (FIGs. 6a, 6b, 8a, 8b, 9a, and 9b) that the Example 3 grains appeared visually to be more uniform or unimodal in size, while the Comparative Example D and E samples had a broader, distribution of grain sizes, with a greater number of larger single grains. Because of the smaller and more uniform grain composition of the Example 3 sample, articles constructed from this material would be expected to have improved physical and mechanical properties.
It should be noted that grain sizes different than those stated above for the Comparative Examples D and E materials have been previously reported (Giao (Robert)
Ngoc Pham, "Fracture Characteristics, Hardness, and Grain Size of Five Polycrystalline Alumina Orthodontic Brackets," Ohio State University Master's thesis, 1999). In that report Pham states that the "grain size" of Comparative Example D (CONTOUR) is 0.57 microns and that the "grain size" of Comparative Example E (MXi) is 0.65 microns. However, both Pham and the reference he cites describing his "grain size" measurement technique, (L.H. VanVlack, "Elements of Materials Science and Engineering," 6th Edition, 217-219, 1989) state, "The mean chord length, L, is an index of grain size." As noted above, this mean chord or intercept length must be multiplied by a proportionality constant to determine an actual grain size. However, Pham goes on to report this index of grain size (chord length) as the actual grain size, without multiplying by the needed proportionality constant. Furthermore, the VanVlack reference states that is determined "by placing a random line of known length across & polished and etched microstructure," as was done in the technique described herein. However, Pham states, "Brackets of each brand were then notched with a diamond disk and fractured with a chisel. These fractured bracket halves were also mounted and coated with a gold-palladium film. The. fracture surface morphology of each bracket was observed, and representative SEM photomicrographs were taken. The mean grain sizes of the five polycrystalline brackets were calculated directly from the SEM photomicrographs using a modified intercept method." The differences between examining a polished surface (as called for in the referenced standard) and a fractured surface (as Pham did), as well as Pham's failure to apply the proportionality constant, likely lead to the discrepancies in reported grain size for Comparative Examples D and E herein and in Pham's report.
Translucency: Bracket-Sized Samples
Translucency was determined according to the "Translucency of Small Samples (Wet Transrnittance)" Test Method described herein and the results for Example 3, and Comparative Examples C, D and E are reported in tabular form (Table 4) as well as in graphical form (Figure 10).
Figure imgf000028_0001
The results in Table 4 and FIG 10 indicate that the Example 3 sample is appreciably more translucent than the other three materials. The wet transmittance of the Example 3 sample is about 2 times greater than the wet transmittance of Comparative Example D and E samples at lower wavelengths and 25-50 % greater at longer wavelengths. The integrated area under a wet transmittance vs wavelength curve, another measure of the translucency of these materials, is reported in Table 5 (in units of Percent Wet Transmittance x Light Wavelength (nm) or %T-nm). Table 5. Integrated Translucency (between 475 and 650 nm)
Figure imgf000029_0001
The complete disclosures of the patents, patent documents, and publications cited herein are incorporated by reference in their entirety as if each were individually incorporated. Various modifications and alterations to this invention will become apparent to those skilled in the art without departing from the scope and spirit of this invention. It should be understood that this invention is not intended to be unduly limited by the illustrative embodiments and examples set forth herein and that such examples and embodiments are presented by way of example only with the scope of the invention intended to be limited only by the claims set forth herein as follows.

Claims

What is claimed is:
1. An orthodontic appliance comprising a polycrystalline translucent aluminum oxide ceramic material having an average grain size of no greater than 1.0 micron and a Contrast
Ratio value of less than about 0.7.
2. The orthodontic appliance of claim 1 wherein the appliance is attached to a tooth structure with an orthodontic adhesive.
3. The orthodontic appliance of claim 1 wherein no greater than 10% of the grains of a polished surface of the ceramic material has a largest dimension greater than 1.0 micron.
4. The orthodontic appliance of claim 1 wherein the ceramic material has a wet transmittance of at least about 40% at about 550 nm.
5. The orthodontic appliance of claim 4 wherein the ceramic material has a wet transmittance of at least about 50% at about 650 nm.
6. The orthodontic appliance of claim 1 wherein a wet transmittance curve of the ceramic material over a range of about 475 nm to about 650 nm has an integrated area of greater than about 70%T-nm.
7. The orthodontic appliance of claim 1 wherein the ceramic material has a Contrast Ratio value of less than about 0.5.
8. The orthodontic appliance of claim 7 wherein the ceramic material has a Contrast Ratio value of less than about 0.4.
9. The orthodontic appliance of claim 1 wherein the ceramic material has a flexure strength of at least about 400 MPa.
10. The orthodontic appliance of claim 9 wherein the ceramic material has a flexure strength of at least about 600 MPa.
11. The orthodontic appliance of claim 1 wherein the ceramic material has a purity of at least about 99.5 wt-%.
12. The orthodontic appliance of claim 11 wherein the ceramic material comprises up to about 0.5 wt-% of magnesium oxide, yttrium oxide, zirconium oxide, hafnium oxide, calcium oxide, or combinations thereof.
13. The orthodontic appliance of claim 1 wherein the appliance includes a base, and further including an adhesive applied to the base.
14. A kit comprising a plurality of orthodontic appliances, wherein at least one of the appliances comprise a polycrystalline translucent aluminum oxide ceramic material having an average grain size of no greater than 1.0 micron and a Contrast Ratio value of less than about 0.7.
15. The kit of claim 14 further comprising a component selected from the group consisting of an orthodontic adhesive, an adhesive primer, an appliance positioning tool, and combinations thereof.
16. The kit of claim 15 wherein each appliance includes a base, and wherein the kit additionally includes an orthodontic adhesive applied to the base of one or more appliances.
17. A method for making an orthodontic appliance or appliance perform comprising a polycrystalline translucent aluminum oxide ceramic material having a grain size of no greater than 1.0 micron and a Contrast Ratio value of less than about 0.7, the method comprising: providing an aluminum oxide powder; forming the powder into an article having a desired shape; sintering the shaped article to obtain a sintered article having closed porosity; and subjecting the sintered article to hot isostatic pressing to further densify and form an orthodontic appliance or appliance perform comprising polycrystalline translucent aluminum oxide ceramic material having a grain size of no greater than 1.0 micron and a Contrast Ratio value of less than about 0.7.
18. The method of claim 17 further comprising deagglomerating the aluminum oxide powder prior to forming the powder into an article having a desired shape.
19. The method of claim 18 wherein deagglomerating the aluminum oxide powder comprises subjecting the aluminum oxide powder to ultra-sonication.
20. The method of claim 17 wherein subjecting the sintered article to hot isostatic pressing comprises subjecting the sintered article to hot isostatic pressing at a temperature of about 1200°C to about 1300°C for about 30 minutes to about 120 minutes under about
100 MPa to about 210 MPa of an inert gas.
21. The method of claim 17 wherein the aluminum oxide powder has a surface area of greater than about 10 m2/g.
22. The method of claim 21 wherein the aluminum oxide powder has a surface area of greater than about 14 m /g.
23. The method of claim 17 wherein the aluminum oxide powder has a purity of at least about 99.5%.
PCT/US2002/037313 2001-12-28 2002-11-11 Orthodontic appliances WO2003057064A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP02784526A EP1460958B1 (en) 2001-12-28 2002-11-11 Orthodontic appliance
DE60215857T DE60215857T2 (en) 2001-12-28 2002-11-11 ORTHODONTE DEVICE
JP2003557427A JP4429017B2 (en) 2001-12-28 2002-11-11 Orthodontic appliance
AU2002346462A AU2002346462A1 (en) 2001-12-28 2002-11-11 Orthodontic appliances

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/034,997 US6648638B2 (en) 2001-12-28 2001-12-28 Orthodontic appliances including polycrystalline alumina-based ceramic material, kits, and methods
US10/034,997 2001-12-28

Publications (1)

Publication Number Publication Date
WO2003057064A1 true WO2003057064A1 (en) 2003-07-17

Family

ID=21879994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/037313 WO2003057064A1 (en) 2001-12-28 2002-11-11 Orthodontic appliances

Country Status (7)

Country Link
US (1) US6648638B2 (en)
EP (1) EP1460958B1 (en)
JP (1) JP4429017B2 (en)
AT (1) ATE343978T1 (en)
AU (1) AU2002346462A1 (en)
DE (1) DE60215857T2 (en)
WO (1) WO2003057064A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006087915A (en) * 2004-08-27 2006-04-06 Tosoh Corp Orthodontic bracket and manufacturing method thereof
EP1787601A1 (en) * 2004-08-27 2007-05-23 Tosoh Corporation Orthodontic bracket and process for producing the same
EP2068749A1 (en) * 2006-09-29 2009-06-17 3M Innovative Properties Company Orthodontic bracket with brazed archwire slot liner

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6878456B2 (en) * 2001-12-28 2005-04-12 3M Innovative Properties Co. Polycrystalline translucent alumina-based ceramic material, uses, and methods
US6984261B2 (en) * 2003-02-05 2006-01-10 3M Innovative Properties Company Use of ceramics in dental and orthodontic applications
US7318302B2 (en) * 2003-07-10 2008-01-15 Opperman Investments, Ltd. Equipment support for a metal building
US7192274B2 (en) 2003-12-08 2007-03-20 3M Innovative Properties Company Ceramic orthodontic appliance with archwire slot liner
US7140875B2 (en) * 2004-02-03 2006-11-28 3M Innovative Properties Company Orthodontic bracket with reinforced tiewings
WO2005084575A1 (en) * 2004-03-08 2005-09-15 Ceramic Sciences, Inc. Orthodontic bracket
US20070178422A1 (en) * 2004-03-08 2007-08-02 Ceramic Sciences, Inc. Orthodontic bracket
KR100592118B1 (en) 2004-04-29 2006-06-21 주식회사 에이치티 Orthodontic Bracket Manufacturing Method
US7153130B2 (en) * 2004-06-10 2006-12-26 3M Innovative Properties Company Orthodontic appliance with removable insert
US20050277084A1 (en) 2004-06-10 2005-12-15 3M Innovative Properties Company Orthodontic brace with polymeric arch member
US7134872B2 (en) * 2004-09-02 2006-11-14 Norbert Abels Colored orthodontic brackets
US7234936B2 (en) * 2004-11-08 2007-06-26 3M Innovative Properties Company Orthodontic systems with resilient appliances
US20060099545A1 (en) * 2004-11-08 2006-05-11 3M Innovative Properties Company Methods of orthodontic treatment
US20060105179A1 (en) * 2004-11-17 2006-05-18 Hofman Gerald R A Elastomeric dental article with a protective fluoropolymer layer
US7367800B2 (en) * 2005-02-02 2008-05-06 3M Innovative Properties Company Pre-torqued orthodontic appliance with archwire retaining latch
JP5084155B2 (en) * 2005-03-11 2012-11-28 日本碍子株式会社 Alumina sintered body and method for manufacturing the same, electrostatic chuck using the alumina sintered body, and method for manufacturing the same
WO2007075347A2 (en) * 2005-12-14 2007-07-05 3M Innovative Properties Company Orthodontic articles with zirconium oxide coatings
US7377777B2 (en) * 2005-12-23 2008-05-27 3M Innovative Properties Company Orthodontic appliance with archwire-engaging clip
US20080138757A1 (en) * 2006-12-12 2008-06-12 3M Innovative Properties Company Orthodontic brace with reduced profile
US20100129764A1 (en) * 2007-04-30 2010-05-27 Pospisil Jirina V Ceramic orthodontic bracket with improved debonding characteristics
US20080283522A1 (en) * 2007-05-14 2008-11-20 Shuyl Qin Translucent polycrystalline alumina ceramic
US7678725B2 (en) * 2007-05-14 2010-03-16 General Electric Company Translucent polycrystalline alumina ceramic
US7686613B2 (en) * 2007-07-10 2010-03-30 3M Innovative Properties Company Narrow ceramic self-ligating orthodontic bracket
JP4983545B2 (en) 2007-10-30 2012-07-25 東ソー株式会社 High-toughness translucent alumina sintered body, manufacturing method and use thereof
US7857618B2 (en) * 2007-11-27 2010-12-28 Ultradent Products, Inc. Orthodontic bracket including mechanism for reducing slot width for early torque control
US20090215003A1 (en) 2008-02-27 2009-08-27 Ryan B. Swain Orthodontic kit and methods for same
EP2157067B1 (en) * 2008-07-30 2012-09-12 Ivoclar Vivadent AG Primary particle coated with a colouring component
RU2011109216A (en) 2008-08-13 2012-09-20 Ормко Корпорейшн (Us) AESTHETIC ORTHODONTIC BRACKET AND METHOD OF ITS MANUFACTURE
AU2009238317B2 (en) 2008-11-14 2011-10-06 Ormco Corporation Surface treated polycrystalline ceramic orthodontic bracket and method of making same
US20100151403A1 (en) * 2008-12-12 2010-06-17 Tuneberg Lee H Bracket with improved arch wire slot liner
WO2010114691A1 (en) * 2009-04-03 2010-10-07 Ultradent Products, Inc. Coordinated metal and ceramic orthodontic bracket systems
WO2010114692A1 (en) * 2009-04-03 2010-10-07 Ultradent Products, Inc. Orthodontic brackets with pointed tie wings for improved ligation
DE102009054096A1 (en) * 2009-11-12 2011-05-19 Dentaurum Gmbh & Co. Kg Method of making an orthodontic element
US9539182B2 (en) 2010-08-30 2017-01-10 Geoffrey P. Morris Coated dental articles and related methods of manufacture
CN103857356A (en) 2011-10-10 2014-06-11 3M创新有限公司 Orthodontic appliances with tapered archwire slots
CN104822339B (en) 2012-07-23 2018-03-27 3M创新有限公司 Self-ligating orthodontic bracket
US9504539B2 (en) 2012-07-23 2016-11-29 3M Innovative Properties Company Self-ligating orthodontic bracket
KR101316946B1 (en) 2013-03-15 2013-10-11 이향이 Ceramic compositions for orthodontics brackets, orthodontics brackets manufactured using the same and preparation method thereof
KR101676610B1 (en) * 2013-09-10 2016-11-16 주식회사 하스 Method of Manufacturing Preformed Ceramic Tooth Restoration
JP1517556S (en) * 2013-12-20 2015-02-16
US8899318B1 (en) 2014-04-24 2014-12-02 Ronald C. Parsons Applying an aggregate to expandable tubular
US10123854B2 (en) 2014-07-09 2018-11-13 3M Innovative Properties Company Self-ligating orthodontic bracket with positive rotation lock
US9287106B1 (en) 2014-11-10 2016-03-15 Corning Incorporated Translucent alumina filaments and tape cast methods for making
US10241499B1 (en) * 2015-02-11 2019-03-26 Lightforce Orthodontics, Inc. Ceramic processing for the direct manufacture of customized labial and lingual orthodontic brackets
BR112018010320A2 (en) 2015-11-19 2018-12-04 3M Innovative Properties Co self-ligating orthodontic bracket
EP3397191B1 (en) 2015-12-29 2021-09-29 3M Innovative Properties Company Aesthetic orthodontic ligature
US11553991B2 (en) 2016-06-30 2023-01-17 3M Innovative Properties Company Self-ligating orthodontic bracket
WO2018106527A2 (en) 2016-12-09 2018-06-14 3M Innovative Properties Company Elastomeric orthodontic bracket
JP7153648B2 (en) 2016-12-16 2022-10-14 スリーエム イノベイティブ プロパティズ カンパニー orthodontic bracket footing
USD854163S1 (en) * 2017-02-09 2019-07-16 Centro de Innovacion en Ortodoncia, S.L. Dental appliance
US10964872B2 (en) 2017-03-20 2021-03-30 West Virginia University Compositions and methods for thermoelectric ceramics
JP7326300B2 (en) 2018-02-02 2023-08-15 スリーエム イノベイティブ プロパティズ カンパニー Ceramic self-ligating bracket with high labial tensile strength
EP3764939B1 (en) 2018-03-12 2023-01-04 3M Innovative Properties Company Packaged orthodontic appliances
US11872101B2 (en) 2018-04-25 2024-01-16 Lightforce Orthodontics, Inc. Manufacture of patient-specific orthodontic brackets with improved base and retentive features
US11890157B2 (en) 2018-06-12 2024-02-06 Lightforce Orthodontics, Inc. Ceramic processing and design for the direct manufacture of customized labial and lingual orthodontic clear aligner attachments
WO2020223564A1 (en) 2019-05-02 2020-11-05 World Class Technology Corporation Orthodontic bracket with a biased ligating member
US20230380939A1 (en) 2021-01-08 2023-11-30 3M Innovative Properties Company Prescription attachments for use in each phase of combination orthodontic treatment
JP1708551S (en) * 2021-03-26 2022-02-28 Orthodontic aid
EP4119089A1 (en) * 2021-07-14 2023-01-18 Said Anjary Orthodontic bracket system
CN114948304B (en) * 2022-06-08 2024-09-24 中航迈特粉冶科技(北京)有限公司 Preparation process of porcelain metal, porcelain metal and porcelain tooth
WO2024052875A1 (en) 2022-09-09 2024-03-14 Solventum Intellectual Properties Company Transfer apparatus for orthodontic appliances and related methods of manufacturing
WO2024127105A1 (en) 2022-12-14 2024-06-20 Solventum Intellectual Properties Company Transfer apparatus for orthodontic appliances and related methods of manufacturing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989008085A1 (en) * 1988-03-02 1989-09-08 Unitek Corporation Method for making ceramic orthodontic brackets
US4988293A (en) * 1988-11-07 1991-01-29 Union Carbide Chemicals And Plastics Company Inc. Toughness coating for crystalline orthodontic brackets
EP0430654A1 (en) * 1989-11-29 1991-06-05 Tosoh Corporation Orthodontic bracket and process for its production

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2926422A (en) 1959-01-06 1960-03-01 Wallshein Melvin Orthodontic brackets
US3026210A (en) 1961-01-03 1962-03-20 Gen Electric Transparent alumina and method of preparation
US3181240A (en) 1961-06-30 1965-05-04 Zahnfabrik Wienand Sohne & Com Ceramic artificial teeth and method of their manufacture
GB1105111A (en) 1963-10-08 1968-03-06 Nat Res Dev Improvements in dental materials
DE1228754B (en) 1964-02-20 1966-11-17 Dr Gerhard Mueller Process for attaching orthodontic or orthodontic appliances and removable dentures using so-called >> attachments << and devices for this
US3423833A (en) 1967-08-15 1969-01-28 Lawrence Pearlman Adjustable orthodontic device
US3541688A (en) 1968-10-25 1970-11-24 Nat Res Dev Dental restorations
US3578744A (en) 1969-09-12 1971-05-18 Alexo Corp Method and apparatus for orthodontic treatment
USRE28889E (en) 1969-09-12 1976-07-06 Consyne Corporation Method and apparatus for orthodontic treatment
US3842503A (en) 1970-05-27 1974-10-22 Silverado Industries Method for orthodontic treatment
US3732087A (en) 1971-02-24 1973-05-08 Corning Glass Works Tetrasilicic mica glass-ceramic method
GB1428673A (en) 1972-06-02 1976-03-17 Amalgamated Dental Co Ltd Orthodontics
JPS51107683A (en) 1975-03-18 1976-09-24 Ngk Insulators Ltd Taketsushotomeiaruminahatsukokan
DE2554145A1 (en) 1975-11-28 1977-06-08 Company Inc A Reinforced tooth clasp support with tie wings - has reinforcement core embedded into less rigid non-metallic support material
SE414399B (en) 1976-03-16 1980-07-28 Hans Scheicher CERAMIC MATERIAL FOR USE IN MEDICINE, IN PARTICULAR FOR MANUFACTURE OF IMPLANTS, FOREIGN ODONTOLOGICAL IMPLANTS AND SET FOR MANUFACTURING THE MATERIAL
US4097935A (en) 1976-07-21 1978-07-04 Sterling Drug Inc. Hydroxylapatite ceramic
US4322206A (en) 1978-08-03 1982-03-30 Zulauf Inc. Orthodontic appliance
US4878840B1 (en) 1978-08-03 1995-06-13 Class One Orthodontics Inc Orthodontic appliance
US4216583A (en) 1978-08-03 1980-08-12 Zulauf Inc. Orthodontic appliance
US4219617A (en) 1978-08-09 1980-08-26 Melvin Wallshein Ceramic orthodontic bracket
US4310306A (en) 1978-11-13 1982-01-12 Melvin Wallshein Multi-purpose orthodontic bracket
ATE15588T1 (en) 1979-07-13 1985-10-15 Corning Glass Works ARTIFICIAL TEETH AND DENTAL TOOLS AND THEIR MANUFACTURE.
US4285732A (en) 1980-03-11 1981-08-25 General Electric Company Alumina ceramic
US4575805A (en) 1980-12-24 1986-03-11 Moermann Werner H Method and apparatus for the fabrication of custom-shaped implants
US4460336A (en) 1982-07-27 1984-07-17 Smith Dennis C Orthodontic attachments
US4927361A (en) 1982-07-27 1990-05-22 Smith Dennis C Orthodontic attachments
US4544359A (en) 1984-01-13 1985-10-01 Pentron Corporation Dental restorative material
US4681538A (en) 1984-04-23 1987-07-21 Johnson & Johnson Dental Products, Company Crystalline alumina composites
ATE134861T1 (en) 1984-04-23 1996-03-15 Johnson & Johnson Dental Prod ORTHODONTIC BRACKET MADE OF CRYSTALLINE ALUMINUM OXIDE
US4595598A (en) 1984-04-23 1986-06-17 Johnson & Johnson Dental Products Company Crystalline alumina composites
US4797238A (en) 1985-11-27 1989-01-10 Gte Laboratories Incorporated Rapid-sintering of alumina
CA1326382C (en) 1986-05-08 1994-01-25 John Steven Kelly Ceramic orthodontic appliance
CH672722A5 (en) 1986-06-24 1989-12-29 Marco Brandestini
KR910009894B1 (en) 1987-03-26 1991-12-03 도도 기끼 가부시끼가이샤 Ceramic products and process for producing the same
US5244849A (en) 1987-05-06 1993-09-14 Coors Porcelain Company Method for producing transparent polycrystalline body with high ultraviolet transmittance
FR2627377B1 (en) 1988-02-19 1990-07-27 Sadoun Michael ARTHODONTICS ARC FIXING DEVICE
DE3811902A1 (en) 1988-04-09 1989-10-19 Winkelstroeter Dentaurum METHOD FOR PRODUCING MOLDED BODIES FROM TRANSPARENT, POLYCRYSTALLINE ALUMINUM OXIDE
US5242298A (en) 1988-04-09 1993-09-07 Dentaurum J. P. Winkelstroeter Kg Shaped bodies of transparent, polycrystalline alumina
US5096862A (en) 1990-08-09 1992-03-17 Minnesota Mining And Manufacturing Company Transparent ceramic composite article comprising aluminum oxide and aluminum magnesium oxynitride
US5231062A (en) 1990-08-09 1993-07-27 Minnesota Mining And Manufacturing Company Transparent aluminum oxynitride-based ceramic article
AT401227B (en) 1991-07-09 1996-07-25 Hat Entwicklungs Gmbh TOOTH REGULATION DEVICE WITH A CERAMIC TOOTH ADAPTER
DE4135434A1 (en) 1991-10-26 1993-04-29 Winkelstroeter Dentaurum ORTHODONTIC AUXILIARY PART
US5382556A (en) 1992-04-22 1995-01-17 Sumitomo Chemical Company, Limited Translucent polycrystalline alumina and process for producing the same
US5380196A (en) 1993-05-13 1995-01-10 Minnesota Mining And Manufacturing Company Orthodontic bracket with archwire slot liner
US5358402A (en) 1993-05-13 1994-10-25 Minnesota Mining & Manufacturing Company Ceramic orthodontic bracket with archwire slot liner
US5439379A (en) 1993-11-29 1995-08-08 Minnesota Mining And Manufacturing Company Ceramic orthodontic bracket with debonding channel
US5376606A (en) 1993-12-30 1994-12-27 Korea Institute Of Science And Technology Light-transmissive polycrystalline alumina ceramics
US5587346A (en) 1995-06-16 1996-12-24 Osram Sylvania, Inc. Translucent polycrystalline alumina
JP4151813B2 (en) 1999-07-23 2008-09-17 トミー株式会社 Orthodontic member and manufacturing method thereof
US6648645B1 (en) 1999-09-02 2003-11-18 Jeneric/Pentron Incorporated Method for manufacturing dental restorations

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989008085A1 (en) * 1988-03-02 1989-09-08 Unitek Corporation Method for making ceramic orthodontic brackets
US4988293A (en) * 1988-11-07 1991-01-29 Union Carbide Chemicals And Plastics Company Inc. Toughness coating for crystalline orthodontic brackets
EP0430654A1 (en) * 1989-11-29 1991-06-05 Tosoh Corporation Orthodontic bracket and process for its production

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006087915A (en) * 2004-08-27 2006-04-06 Tosoh Corp Orthodontic bracket and manufacturing method thereof
EP1787601A1 (en) * 2004-08-27 2007-05-23 Tosoh Corporation Orthodontic bracket and process for producing the same
EP1787601A4 (en) * 2004-08-27 2008-10-01 Tosoh Corp Orthodontic bracket and process for producing the same
US8133051B2 (en) 2004-08-27 2012-03-13 Tosoh Corporation Orthodontic bracket and process for producing the same
US8215019B2 (en) 2004-08-27 2012-07-10 Tosoh Corporation Process for producing an orthodontic bracket
EP2068749A1 (en) * 2006-09-29 2009-06-17 3M Innovative Properties Company Orthodontic bracket with brazed archwire slot liner
EP2068749A4 (en) * 2006-09-29 2014-06-25 3M Innovative Properties Co Orthodontic bracket with brazed archwire slot liner

Also Published As

Publication number Publication date
EP1460958A1 (en) 2004-09-29
US20030165790A1 (en) 2003-09-04
US6648638B2 (en) 2003-11-18
AU2002346462A1 (en) 2003-07-24
ATE343978T1 (en) 2006-11-15
JP4429017B2 (en) 2010-03-10
DE60215857D1 (en) 2006-12-14
EP1460958B1 (en) 2006-11-02
JP2005514103A (en) 2005-05-19
DE60215857T2 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
US6648638B2 (en) Orthodontic appliances including polycrystalline alumina-based ceramic material, kits, and methods
US6878456B2 (en) Polycrystalline translucent alumina-based ceramic material, uses, and methods
JP5396691B2 (en) Translucent yttria-containing zirconia sintered body, method for producing the same, and use thereof
JP5973546B2 (en) Processable zirconia and process for producing processable zirconia
JP7005819B2 (en) Manufacturing method of zirconia sintered body
JP4983545B2 (en) High-toughness translucent alumina sintered body, manufacturing method and use thereof
JP5018142B2 (en) Translucent zirconia sintered body and method for producing the same
US20220055948A1 (en) Aluminium Oxide Ceramic Material
JP2022525738A (en) How to make colored dental zirconia articles
EP4219425A1 (en) Method for producing zirconia sintered compact
JP2024009816A (en) Kit of parts and process for fast firing porous zirconia article in combination with surface treating agent containing glass powder
JPH11276504A (en) Orthodontic bracket and method for manufacturing the same
EP2808313B1 (en) Colored alumina sintered body of high toughness and high translucency, and its production method and its uses
JP2020117495A (en) High speed sintering-capable high-transparency zirconia blank
JP5458553B2 (en) Highly tough and translucent colored alumina sintered body, method for producing the same, and use
Zhou et al. Effects of BN content on the mechanical properties of nanocrystalline 3Y-TZP/Al 2 O 3/BN dental ceramics
JP2022547966A (en) Dental mill blank of porous zirconia material containing oxides of Tb, Er and Cr, method of making same, and use thereof
Rao et al. An overview on zirconia
WO2023127793A1 (en) Zirconia sintered body and method for producing same
EP4438027A1 (en) Alumina workable body for dental use
EP4360588A1 (en) Bulk block for manufacturing dental prosthesis
WO2023127564A1 (en) Alumina workable body for dental use
JP2006290854A (en) Whisker-reinforced ceramic for dental use and method for producing the same under normal pressure
Skienhe et al. Research Article Evaluation of the Effect of Different Types of Abrasive Surface Treatment before and after Zirconia Sintering on Its Structural Composition and Bond Strength with Resin Cement
SILVA et al. Mechanical and optical properties of a borosilicate glass used to improve the finishing of 3Y-TZP restorations

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003557427

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002784526

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002784526

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002784526

Country of ref document: EP