WO2003054596A2 - Integrated optics component comprising at least an optical relief with gradual efficacy, and method for making same - Google Patents

Integrated optics component comprising at least an optical relief with gradual efficacy, and method for making same Download PDF

Info

Publication number
WO2003054596A2
WO2003054596A2 PCT/FR2002/004503 FR0204503W WO03054596A2 WO 2003054596 A2 WO2003054596 A2 WO 2003054596A2 FR 0204503 W FR0204503 W FR 0204503W WO 03054596 A2 WO03054596 A2 WO 03054596A2
Authority
WO
WIPO (PCT)
Prior art keywords
optical
guide
network
burial
substrate
Prior art date
Application number
PCT/FR2002/004503
Other languages
French (fr)
Other versions
WO2003054596A3 (en
Inventor
Christophe Martinez
Jérôme HAZART
Vincent Minier
Original Assignee
Teem Photonics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teem Photonics filed Critical Teem Photonics
Priority to EP02805412A priority Critical patent/EP1472559A2/en
Publication of WO2003054596A2 publication Critical patent/WO2003054596A2/en
Publication of WO2003054596A3 publication Critical patent/WO2003054596A3/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12107Grating

Definitions

  • the present invention relates to an integrated optical component comprising one or more optical guides associated with one or more optical reliefs. It also applies to a process for manufacturing such a component.
  • optical relief is understood to mean a part of a substrate or of an element attached to the substrate which exhibits optical inhomogeneity liable to affect an optical wave guided in its vicinity.
  • the optical inhomogeneity can be an inhomogeneity of form, such as a succession of ' grooves or projecting parts,' for example. It can also be an inhomogeneity of index formed, for example, by local variations of optical index.
  • the invention finds applications in the field of integrated optics and optical telecommunications, for example, for the formation of filters or insertion-extraction devices.
  • Diffraction gratings are generally associated with optical guides and are liable to modify their guiding properties.
  • Guided waves undergo, for example, spectral filtering under the effect of the network.
  • spectral filtering under the effect of the network.
  • a coupling takes place between a propagation mode and a wave counter-propagation mode.
  • the filtering takes place around a wavelength called the Bragg wavelength, and denoted ⁇ B. More precisely, a resonance of the Bragg grating takes place for wavelengths ⁇ B , p such that:
  • p is an integer indicating the order of resonance, n eff the effective optical index seen by the wave, and ⁇ , the pitch of the grating.
  • Figure 1 attached indicates, in free scale, the spectral distribution of the response of a Bragg grating around the Bragg wavelength ⁇ B.
  • the shape of the spectral response evokes that of a diffraction pattern with a main lobe 1 centered on the wavelength ⁇ B , and several secondary lobes 2 of lower amplitude.
  • Apodization To obtain a response more centered on the desired frequency band, an attempt is made to eliminate the side lobes of the spectral response. This operation is called "apodization". It allows to obtain a spectral response 3 indicated on the Figure 1 in broken lines. Apodization of the spectrum can be obtained by taking care to provide a gentle variation between a region of propagation of the wave in guided mode and a region where the influence of the network is exerted.
  • Figure 2 attached is a schematic section of a component with a network adapted for an apodization of the spectrum.
  • the component comprises a substrate 20 traversed by an optical guide 22 and provided, on one of its faces, with a periodic network 24.
  • the network is formed by a periodic succession of indentations 26. It extends in the vicinity of the guide 22 and is thus optically coupled to the latter.
  • a smooth transition is provided between regions not coupled to the network, in this case the parts of the guide facing the ends of the network, and the strongly coupled central region. This is obtained by varying the depth envelope of the indentations 26.
  • An apodization of the response spectrum can also be obtained by varying the filling ratio of the region forming the network.
  • the filling cycle (duty cycle) is understood as the relative width of the teeth of the network compared to the width of the space separating two consecutive teeth. This ratio can be modified, for example from 0 to ⁇ / 2, without modifying the spatial period ⁇ of the network.
  • the realization of networks with a modulation of the depth or of the filling ratio of the indentation generates related difficulties essentially techniques for engraving patterns. Indeed the spatial period of the networks can be very weak. It is, for example, of the order of 500 nm.
  • the object of the invention is to propose optical components which do not have the difficulties and limitations mentioned above.
  • One aim is in particular to propose components with an “apodized” spectral response, the production of which does not pose problems of etching control.
  • a goal is also, more generally, to provide components adapted to the spectral requirements of optical telecommunications, and allowing operation on close transmission channels with reduced crosstalk.
  • Crosstalk is understood here as the disturbance of a channel by a neighboring channel.
  • the invention also aims to provide a method of manufacturing such components.
  • the invention more specifically relates to an optical component having at least one optical relief and at least one optical guide associated with the optical relief, and in which the optical guide is a buried guide, with variable burial, having minus a stretch of interaction with the optical relief, said section comprising at least a portion of section with variable burial, the optical relief being an optical network.
  • the optical guide is considered buried when at least part of the guide is not flush.
  • optical relief means any structure capable of modifying the properties of guiding an optical wave through the optical guide. It can be a structure modifying the propagation mode of a wave.
  • the optical network can be periodic or not, with regular or variable pitch, or even a more complex structure, described in the rest of the text, comprising a succession of elementary networks advantageously tuned. Thanks to the invention, the coupling between the optical relief and the optical guide can be adjusted by simply adjusting the burial of the guide under the optical relief. This makes it possible to dispense with the production of the optical relief from control operations such as, for example, controlling the dimension or the depth of an etching pattern.
  • the interaction section can itself include one or more parts with variable burial, that is to say whose depth of burial varies.
  • the variable burial parts connect, for example, a region of the guide which is not influenced by the optical relief to a region which is fully influenced by it.
  • the variable burial thus makes it possible to graduate the coupling of the guide to the optical relief. This favors, the if necessary, obtaining a response spectrum of the apodized component.
  • apodization can be obtained in spite of an optical relief whose depth is constant, that is to say whose extension from the surface of the substrate to the optical guide, is constant.
  • An optical relief at constant depth can be produced more easily than a relief as mentioned in relation to FIG. 2.
  • the relief can be in the form of re-entrant or projecting grooves on the surface of the substrate. It can however also include an alternating succession of zones having different optical indices.
  • the optical component of the invention can comprise a single optical guide or a plurality of optical guides, with variable burial, at least in interaction sections, said sections possibly having respectively different couplings with the optical relief.
  • One or more optical switches can be associated with the different guides so as to distribute a signal to one of the interaction sections, and / or so as to collect a signal from one of the sections.
  • the interaction section of the optical guide may include a variable section in a direction of propagation of a wave, in particular to compensate for variations in effective index of the guided mode which may be due to variable burial.
  • the invention also relates to a method of manufacturing an optical component, and in particular a component as described above, with the following steps: a) the manufacture of at least one optical guide in a substrate, b) l burial of at least part of the guide, said burial being a variable burial on at least part of an interaction section of the guide, c) the manufacture of an optical network in a region of substrate covering, at least in part, the interaction segment.
  • the method according to the invention is carried out according to the order of these steps but of course, it can be carried out in a different order.
  • the optical guide can be formed for example by the introduction of ions into the substrate (ion exchange, ion implantation in particular).
  • the optical guide can be buried by ion migration, generally assisted by an electric field.
  • the interaction section is located in the vicinity of a face of the substrate receiving the optical network so as to allow interaction of a guided wave with the relief.
  • variable burial In order to obtain a variable burial, it is possible to apply a non-uniform migration electric field to the substrate.
  • the variable burial can be obtained by means of a mask formed on a face of the substrate opposite to the manufacturing region of the optical relief. A uniform electric field is thus made non-uniform by the mask.
  • the optical network can be formed, for example, by etching, by laser ablation, by ion exchange and / or by photo-inscription.
  • the optical network can also be attached to the substrate or formed in an element attached to the substrate.
  • the added element is, for example a layer, a stack of layers or another substrate.
  • the invention finally relates to an insertion-extraction module comprising a two-arm Mach-Zehnder type interferometer in which each arm comprises an optical component according to the invention.
  • FIG. 3 is a schematic longitudinal section of an optical component according to
  • FIG. 5 is a schematic longitudinal section of another component according to the invention. - -
  • FIG. 6 is a schematic longitudinal section of yet another component according to one invention.
  • FIG. 7 is a schematic representation of a multi-channel component, according to
  • FIGS 8, 9 and 10 are schematic representations of substrates illustrating successive stages of a method of manufacturing a component according to the invention.
  • Figure 11 is a schematic representation of a component illustrating a variant of the manufacturing process.
  • FIG. 12 is a schematic representation of an ach Zehnder interferometer according to the invention.
  • the component of Figure 3 comprises a substrate 120, for example a glass substrate, in which extends an optical guide 122.
  • the optical guide is formed, for example, by ions locally modifying the optical index of the substrate.
  • One of the faces 123 of the substrate has an optical relief 124, in the form of a network formed a succession of indentations 126. It is a regular succession of indentations of steps ⁇ .
  • the optical relief extends over the whole of the face 123. It may however only extend over part of it.
  • the indentation of the optical relief 124 extends over a substantially constant depth denoted h.
  • the optical guide 122 has end sections 122e which are buried in the substrate 120 at a sufficient depth so that an optical wave 0 transmitted in the guide does not interact with the network 124.
  • the burial of the end sections may also in certain cases allow easier connection of the guides to other optical components.
  • a central section 122c, of length L eff on the other hand, has less burial and is separated from the optical relief by a distance that is sufficiently small that an interaction can be established between the guided mode of a wave and the optical relief 124
  • the central section 122c is connected to the end sections 122e continuously.
  • the optical guide has transition parts 122t having a variable burial and continuously connecting the central section to the end sections.
  • This characteristic can be taken advantage of when • one wishes to obtain a component with an apodized spectral response.
  • a wave 0 propagating in one direction has been represented symbolically. indicated by arrows. The direction of propagation indicated by the arrows is not however imperative. Reverse propagations, as well as reflections, can take place.
  • ⁇ '' The coupling coefficient g between a guided wave and the optical relief is linked in particular to parameter D.
  • the coupling coefficient g between a guided wave in TE mode and the optical relief is of the following form: g (D) ⁇ T- exp (-2 ⁇ -D) -h.
  • D expresses the distance separating the guide 122 from the network 124
  • K is a constant of attenuation of the wave outside the guide
  • h is the depth of the indentations 126
  • T is a factor function of propagation coefficients of the optical guide.
  • the expression of the coupling coefficient g shows that the influence of the network on a buried guide is an exponential function, decreasing with the burial depth.
  • g 0 is a maximum dimension constant corresponding to a minimum burial of the guide; and z 0 an origin of the positions taken at the top of the Gaussian.
  • Figure 4 shows a cross section IV-IV of the component of Figure 3 along a plane perpendicular to the axis z. It shows that the optical guide 122 is a lateral confinement guide. It therefore takes the form of a ribbon which runs through the substrate.
  • the invention however applies identically to components provided with a planar optical guide, that is to say an optical guide in which there is no lateral confinement.
  • a pattern in; broken line marks the amplitude of burial of the optical guide 122, between its most and least buried parts.
  • I (z) a dimension of the optical guide 122 as a function of the dimension z.
  • This dimension can be variable along the guide and in particular in the part corresponding to the central section so as to optimize the spectral response of the component.
  • Figure 5 shows another possibility of producing a component according to the invention.
  • the component of Figure 5 is substantially identical to that of Figure 3 except that the optical relief is not a regular pitch network but a variable pitch network.
  • the pitch ⁇ (z) of the indentations 126 depends on the dimension z measured along the guide.
  • FIG. 6 shows yet another possible embodiment in which the optical relief has a succession of ranges with indentations periodic (succession of elementary networks) of period ⁇ constant or not.
  • h (z) represents the envelope function of the elementary networks of length ⁇ L
  • p (z) represents a comb function at step M corresponding to the repetition period of the elementary networks
  • f (z) represents the envelope general of the coupling coefficient dictated by the burial of the optical guide 122.
  • the symbols * and X respectively indicate a product of convolution and a simple product.
  • the spectral response of such an optical relief in superstructure is a spectral comb with reflection peaks regularly spaced by a value ⁇ , where ⁇ is a wavelength. ⁇ is a value which is inversely proportional to M.
  • Each peak has a spectral envelope having the form of the Fourier transform of f (z), that is to say of a Gaussian in the case of apodization.
  • the entire spectrum covers a frequency band inversely proportional to the width ⁇ L.
  • FIG. 7 is a component according to the invention comprising, in a substrate 120, a plurality of optical guides 122 coupled to an array 124.
  • the different guides have different spectral responses, for example due to different couplings with the network 124, and / or due to different sections.
  • the reference 130 designates a multi-channel optical switch connected at a first end of the component.
  • the switch 130 makes it possible to optically connect, for example an optical fiber 132, respectively to one of the optical guides 122 of the component.
  • an anti-reflective blade 134 can be provided at a second end, opposite the first end. This avoids stray reflections. Spurious reflections can also be avoided by bevelling the side face opposite to the face receiving the optical switch.
  • the component operates in reflective filtering mode of the network 124.
  • the signal from the optical fiber 132 is returned to the same optical fiber 132, by reflection.
  • a multi-way output switch 130a can also be provided at the end of the component opposite the input end, so as to optically connect the component to an optical fiber 132a. In this case, the component operates in a transmission mode.
  • FIG. 8 shows the manufacture of waveguides in a substrate 120.
  • the substrate for example made of glass or of crystalline material is conditioned for the introduction of ions, for example an ion exchange. In particular, it is cleaned and polished.
  • a mask 140 is then deposited on one of its faces 123.
  • the mask for example made of photosensitive resin, serves as a diffusion mask. It has a certain number of longitudinal slots, rectilinear in the example illustrated, which fix the layout of the optical guides 122 which it is desired to make in the substrate.
  • the substrate is then immersed in a first bath of molten salts capable of causing an ion exchange with ions previously contained in the substrate.
  • molten salts capable of causing an ion exchange with ions previously contained in the substrate.
  • It is, for example, an ion exchange Na + / Ag + (other pairs of ions can be used such as Na + / K + , Na + / Tl + ').
  • the ion exchange is continued until the formation in the substrate of optical guides 122 having the desired properties and in particular a desired optical index.
  • the substrate is then removed from the bath and the diffusion mask is removed.
  • the molten salt baths are simply represented by a dotted shading.
  • a second step shown in FIG. 9, consists in causing the optical guides 122 previously formed to be buried.
  • the two faces of the substrate are immersed in two separate baths of molten salts containing identical or different ions.
  • a mask 150 for disturbing the electric field is formed on the face 125 of the substrate opposite the face 123 for forming the optical guides.
  • the mask 150 for disturbing the field leads to variable burial of the optical guides 122.
  • the disturbance mask is preferably a mask which does not degrade during burial, and, for example, a metallic or dielectric mask such as, for example , an aluminum or alumina mask. It has a width equal to the length Leff of the interaction sections with which the guides are to be fitted and which coincide with the location of the mask 150.
  • a field disturbance • mask may also be formed on the first side of the substrate 123. This however leads to a landfill less progressive optical waveguides and therefore poorer apodization of the response spectrum of the finally obtained component when this apodization is sought.
  • the sections 122c of the optical guides which have only slightly migrated and which remain in the vicinity of the first face.
  • the end sections 122e are buried.
  • the mask 150 is generally removed.
  • FIG. 10 shows a last step which is the formation in the substrate of an optical relief 124.
  • An optical relief is formed on at least one of the faces, and in this case on the first face 123, that is to say the face closest to the central sections 122c of the optical guides.
  • the optical relief can be produced in various ways known per se.
  • the optical relief can in particular be obtained by etching, by ion exchange, by photo-inscription, by ablation or by deposition of a structure. In the latter case, the optical relief can be formed before or after the deposition of the structure.
  • Figure 11 illustrates a variant of the process step described with reference to Figure 9.
  • the disturbance of the mask 150 'device of Figure 11 is located on the first face 123 of the substrate 120, and not on the second face 125.
  • the optical guide and the mask are substantially rectilinear. They form an angle ⁇ between them, inscribed in a plane parallel to the main faces 123, 125.
  • the angle that the mask 150 forms with the direction of the optical guide 122 makes it possible to provide a smooth transition between the interaction section and the other parts of the optical guide. This promotes a possible "apodization" of the response spectrum.
  • FIG. 12 represents a particular application of the invention for the manufacture of a wavelength insertion-extraction module in the form of an ach-Zehnder interferometer.
  • the module comprises a substrate ⁇ with two optical guides 122a and 122b.
  • the optical guides each have a local interaction section 122c. This section is located in the vicinity of an optical relief 124 in the form of a Bragg grating. Reference may be made to the above figures, on either side of these sections, there are also coupling zones 162 and 164 between the two optical guides.
  • a wave tuned to the Bragg wavelength and entering through an end Ei is reflected.
  • the reflection takes place on the two interaction sections 122c.
  • the reflected waves interfere constructively and exit the component through the end E 2 .
  • Waves tuned to other wavelengths pass through the component without reflection and exit through the end E 4 .
  • the ends Ei and E 3 are interchangeable, as are the ends E 2 and E 4 .
  • Multiwavelength Grating Reflectors for idely Tunable Laser by A. Talneau et al., IEEE PHOTONICS TECHNOLOGY LETTERS, vol.8, n ° 4, April 1996.
  • a tap coupler for integrated optics formed by ion-exchange under a non-uniform electric field by A.A. LIPOVSKII, OPTICS COMMUNICATIONS, vol. 61, n ° 1, pp. 11-15. (10)

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Eyeglasses (AREA)

Abstract

The invention concerns an optics component having at least a surface optical relief (124) and at least an optical guide (122) associated with the optical relief (124). The invention is characterized in that the optical guide is an embedded guide with variable embedment and has at least an interactive section (122c) with the optical relief, said section comprising at least a variable embedment part. The invention is useful for making optical filters.

Description

COMPOSANT D'OPTIQUE INTEGREE COMPORTANT AU MOINS UN INTEGRATED OPTICAL COMPONENT HAVING AT LEAST ONE
RELIEF OPTIQUE A EFFICACITE GRADUELLE, ET PROCEDE DEOPTICAL RELIEF WITH GRADUAL EFFICIENCY, AND METHOD FOR
REALISATION D'UN TEL COMPOSANT.PRODUCTION OF SUCH A COMPONENT.
Domaine techniqueTechnical area
La présente invention concerne un composant d'optique intégrée comprenant un ou plusieurs guides optiques associés à un ou plusieurs reliefs optiques. Elle s'applique également à un procédé de fabrication d'un tel composant. On entend par relief optique une partie d'un substrat ou d'un élément rapporté au substrat qui présente une inhomogénéité optique susceptible d'affecter une onde optique guidée en son voisinage. L' inhomogénéité optique peut être une inhomogénéité de forme, telle qu'une succession ' de rainures ou de parties saillantes,' par exemple. Elle peut aussi être une inhomogénéité d'indice formée, par exemple, par des variations locales d'indice optique.The present invention relates to an integrated optical component comprising one or more optical guides associated with one or more optical reliefs. It also applies to a process for manufacturing such a component. The term optical relief is understood to mean a part of a substrate or of an element attached to the substrate which exhibits optical inhomogeneity liable to affect an optical wave guided in its vicinity. The optical inhomogeneity can be an inhomogeneity of form, such as a succession of ' grooves or projecting parts,' for example. It can also be an inhomogeneity of index formed, for example, by local variations of optical index.
L'invention trouve des applications dans le domaine de l'optique intégrée et des télécommunications optiques, par exemple, pour la formation de filtres ou de dispositifs d'insertion-extraction.The invention finds applications in the field of integrated optics and optical telecommunications, for example, for the formation of filters or insertion-extraction devices.
Etat de la technique antérieure . Les composants de filtrage les plus communément utilisés dans le domaine de l'optique intégrée, sont les réseaux de diffraction. Les réseaux de diffraction sont généralement associés à des guides optiques et sont susceptibles d'en modifier les propriétés de guidage. Les ondes guidées subissent, par exemple, un filtrage spectral sous l'effet du réseau. Dans le cas particulier d'un réseau dit de Bragg, un couplage a lieu entre un mode de propagation et un mode de contre-propagation d'une onde. Le filtrage a lieu autour d'une longueur d'onde appelée longueur d'onde de Bragg, et notée λB. De façon plus précise, une résonance du réseau de Bragg a lieu pour des longueurs d'onde λB,p telles que :
Figure imgf000004_0001
State of the prior art. The most commonly used filtering components in the field of integrated optics are diffraction gratings. Diffraction gratings are generally associated with optical guides and are liable to modify their guiding properties. Guided waves undergo, for example, spectral filtering under the effect of the network. In the particular case of a so-called Bragg grating, a coupling takes place between a propagation mode and a wave counter-propagation mode. The filtering takes place around a wavelength called the Bragg wavelength, and denoted λ B. More precisely, a resonance of the Bragg grating takes place for wavelengths λ B , p such that:
Figure imgf000004_0001
Dans cette expression p est un nombre entier indiquant l'ordre de la résonance, neff l'indice optique effectif vu par l'onde, et Λ, le pas du réseau.In this expression p is an integer indicating the order of resonance, n eff the effective optical index seen by the wave, and Λ, the pitch of the grating.
La figure 1 annexée indique, en échelle libre, la distribution spectrale de la réponse d'un réseau de Bragg autour de la longueur d'onde de Bragg λB. La forme de la réponse spectrale évoque celle d'une figure de diffraction avec un lobe principal 1 centré sur la longueur d'onde λB, et plusieurs lobes secondaires 2 de plus faible amplitude.Figure 1 attached indicates, in free scale, the spectral distribution of the response of a Bragg grating around the Bragg wavelength λ B. The shape of the spectral response evokes that of a diffraction pattern with a main lobe 1 centered on the wavelength λ B , and several secondary lobes 2 of lower amplitude.
Dans le domaine des télécommunications optiques, la mise en place de systèmes de transmission par multiplexage dense en longueur d'onde, et le rapprochement des canaux de transmission qui en résulte, sont incompatibles avec la présence des lobes secondaires de la réponse spectrale des réseaux. L'étalement spectral de ces lobes est en effet trop large .In the field of optical telecommunications, the installation of transmission systems by dense wavelength division multiplexing, and the resulting approximation of the transmission channels, are incompatible with the presence of the secondary lobes of the spectral response of the networks. The spectral spread of these lobes is indeed too wide.
Pour obtenir une réponse plus centrée sur la bande de fréquence souhaitée, on tente d'éliminer les lobes secondaires de la réponse spectrale. Cette opération est désignée par « apodisation ». Elle permet d'obtenir une réponse spectrale 3 indiquée sur la figure 1 en trait discontinu. Une apodisation du spectre peut être obtenue en veillant à ménager une variation douce entre une région de propagation de l'onde en mode guidé et une région où s'exerce l'influence du réseau.To obtain a response more centered on the desired frequency band, an attempt is made to eliminate the side lobes of the spectral response. This operation is called "apodization". It allows to obtain a spectral response 3 indicated on the Figure 1 in broken lines. Apodization of the spectrum can be obtained by taking care to provide a gentle variation between a region of propagation of the wave in guided mode and a region where the influence of the network is exerted.
La figure 2 annexée est une coupe schématique d'un composant avec un réseau adapté en vue d'une apodisation du spectre. Le composant comprend un substrat 20 parcouru par un guide optique 22 et pourvu, sur l'une de ses faces, d'un réseau périodique 24. Le réseau est formé par une succession périodique d' indentations 26. Il s'étend au voisinage du guide 22 et est ainsi optiquement couplé à ce dernier. Une transition douce est prévue entre des régions non couplées au réseau, en l'occurrence les parties du guide en regard des extrémités du réseau, et la région centrale fortement couplée. Celle-ci est obtenue par variation de l'enveloppe de profondeur des indentations 26. Une apodisation du spectre de réponse peut aussi être obtenue en faisant varier le rapport de remplissage de la région formant le réseau. Le rapport de remplissage (duty cycle) est compris comme la largeur relative des dents du réseau par rapport à la largeur de l'espacement séparant deux dents consécutives. Ce rapport peut être modifié, par exemple de 0 à Λ/2, sans pour autant modifier la période spatiale Λ du réseau.Figure 2 attached is a schematic section of a component with a network adapted for an apodization of the spectrum. The component comprises a substrate 20 traversed by an optical guide 22 and provided, on one of its faces, with a periodic network 24. The network is formed by a periodic succession of indentations 26. It extends in the vicinity of the guide 22 and is thus optically coupled to the latter. A smooth transition is provided between regions not coupled to the network, in this case the parts of the guide facing the ends of the network, and the strongly coupled central region. This is obtained by varying the depth envelope of the indentations 26. An apodization of the response spectrum can also be obtained by varying the filling ratio of the region forming the network. The filling cycle (duty cycle) is understood as the relative width of the teeth of the network compared to the width of the space separating two consecutive teeth. This ratio can be modified, for example from 0 to Λ / 2, without modifying the spatial period Λ of the network.
La réalisation de réseaux avec une modulation de la profondeur ou du rapport de remplissage de 1' indentation, engendre des difficultés liées essentiellement aux techniques de gravure des motifs. En effet la période spatiale des réseaux peut être très faible. Elle est, par exemple, de l'ordre de 500 nm.The realization of networks with a modulation of the depth or of the filling ratio of the indentation, generates related difficulties essentially techniques for engraving patterns. Indeed the spatial period of the networks can be very weak. It is, for example, of the order of 500 nm.
Une illustration de l'état de la technique antérieure peut être trouvée dans les documents (1) à (10) dont les références complètes sont précisées à la fin de la description.An illustration of the state of the prior art can be found in documents (1) to (10), the full references of which are given at the end of the description.
Exposé de l'invention. L'invention a pour but de proposer des composants optiques ne présentant pas les difficultés et limitations mentionnées ci-dessus.Statement of the invention. The object of the invention is to propose optical components which do not have the difficulties and limitations mentioned above.
Un but est en particulier de proposer des composants avec une réponse spectrale « apodisée » dont la réalisation ne pose pas de problèmes de contrôle de gravure .One aim is in particular to propose components with an “apodized” spectral response, the production of which does not pose problems of etching control.
Un but est aussi, de façon plus générale, de proposer des composants adaptés aux exigences spectrales des télécommunications optiques, et autorisant un fonctionnement sur des canaux de transmission rapprochés avec une diaphonie réduite. La diaphonie est comprise ici comme la perturbation d'un canal par un canal voisin.A goal is also, more generally, to provide components adapted to the spectral requirements of optical telecommunications, and allowing operation on close transmission channels with reduced crosstalk. Crosstalk is understood here as the disturbance of a channel by a neighboring channel.
L'invention a également pour but de proposer un procédé de fabrication de tels composants.The invention also aims to provide a method of manufacturing such components.
Pour atteindre ces buts, l'invention a plus précisément pour objet un composant optique présentant au moins un relief optique et au moins un guide optique associé au relief optique, et dans lequel le guide optique est un guide enfoui, à enfouissement variable, présentant au moins un tronçon d' interaction avec le relief optique, ledit tronçon comprenant au moins une partie de tronçon à enfouissement variable, le relief optique étant un réseau optique. Le guide optique est considéré comme enfoui lorsqu'au moins une partie du guide n'est pas affleurante.To achieve these aims, the invention more specifically relates to an optical component having at least one optical relief and at least one optical guide associated with the optical relief, and in which the optical guide is a buried guide, with variable burial, having minus a stretch of interaction with the optical relief, said section comprising at least a portion of section with variable burial, the optical relief being an optical network. The optical guide is considered buried when at least part of the guide is not flush.
Comme indiqué dans la partie introductive du texte, on entend par « relief optique » toute structure susceptible de modifier les propriétés de guidage d'une onde optique à travers le guide optique. Il peut s'agir d'une structure modifiant le mode de propagation d'une onde. A titre d'exemple, le réseau optique peut être périodique ou non, à pas régulier ou variable, ou encore une structure plus complexe, décrite dans la suite du texte, comprenant une succession de réseaux élémentaires avantageusement accordés. Grâce à l'invention, on peut régler le couplage entre le relief optique et le guide optique- en ajustant simplement l'enfouissement du guide sous le relief optique. Ceci permet d'affranchir la réalisation du relief optique des opérations de contrôle telles que, par exemple, le contrôle de la dimension ou de la profondeur d'un motif de gravure .As indicated in the introductory part of the text, “optical relief” means any structure capable of modifying the properties of guiding an optical wave through the optical guide. It can be a structure modifying the propagation mode of a wave. For example, the optical network can be periodic or not, with regular or variable pitch, or even a more complex structure, described in the rest of the text, comprising a succession of elementary networks advantageously tuned. Thanks to the invention, the coupling between the optical relief and the optical guide can be adjusted by simply adjusting the burial of the guide under the optical relief. This makes it possible to dispense with the production of the optical relief from control operations such as, for example, controlling the dimension or the depth of an etching pattern.
Le tronçon d' interaction peut lui-même comporter une ou plusieurs parties à enfouissement variable, c'est-à-dire dont la profondeur d'enfouissement varie. Les parties à enfouissement variable relient, par exemple, une région du guide ne subissant pas l'influence du relief optique à une région qui en subit pleinement l'influence. L'enfouissement variable permet ainsi de graduer le couplage du guide au relief optique. Ceci favorise, le cas échéant, l'obtention d'un spectre de réponse du composant apodisé.The interaction section can itself include one or more parts with variable burial, that is to say whose depth of burial varies. The variable burial parts connect, for example, a region of the guide which is not influenced by the optical relief to a region which is fully influenced by it. The variable burial thus makes it possible to graduate the coupling of the guide to the optical relief. This favors, the if necessary, obtaining a response spectrum of the apodized component.
Ainsi, l' apodisation peut être obtenue en dépit d'un relief optique dont la profondeur est constante, c'est-à-dire dont l'extension depuis la surface du substrat vers le guide optique, est constante. Un relief optique à profondeur constante peut être réalisé plus facilement qu'un relief tel qu'évoqué en relation avec la figure 2. Le relief peut se présenter sous la forme de rainures rentrantes ou saillantes à la surface du substrat. Il peut cependant aussi comprendre une succession alternée de zones présentant différents indices optiques. Le composant optique de l'invention peut comporter un seul guide optique ou une pluralité de guides optiques, à enfouissement variable, au moins dans des tronçons d'interaction, lesdits tronçons pouvant présenter respectivement des couplages différents avec le relief optique.Thus, apodization can be obtained in spite of an optical relief whose depth is constant, that is to say whose extension from the surface of the substrate to the optical guide, is constant. An optical relief at constant depth can be produced more easily than a relief as mentioned in relation to FIG. 2. The relief can be in the form of re-entrant or projecting grooves on the surface of the substrate. It can however also include an alternating succession of zones having different optical indices. The optical component of the invention can comprise a single optical guide or a plurality of optical guides, with variable burial, at least in interaction sections, said sections possibly having respectively different couplings with the optical relief.
Un ou plusieurs commutateurs optiques peuvent être associés aux différents guides de façon à distribuer un signal vers l'un des tronçons d'interaction, et/ou de façon à collecter un signal en provenance de l'un des tronçons.One or more optical switches can be associated with the different guides so as to distribute a signal to one of the interaction sections, and / or so as to collect a signal from one of the sections.
Dans des réalisations particulières du composant, le tronçon d'interaction du guide optique peut comporter une section variable dans une direction de propagation d'une onde, notamment pour compenser les variations d'indice effectif du mode guidé pouvant être dues à l'enfouissement variable. L'invention concerne également un procédé de fabrication d'un composant optique, et en particulier un composant tel que décrit ci-dessus, avec les étapes suivantes : a) la fabrication d'au moins un guide optique dans un substrat, b) l'enfouissement d'au moins une partie du guide, ledit enfouissement étant un enfouissement variable sur au moins une partie d'un tronçon d'interaction du guide, c) la fabrication d'un réseau optique en une région de substrat recouvrant, au moins en partie, le tronçon d' interaction.In particular embodiments of the component, the interaction section of the optical guide may include a variable section in a direction of propagation of a wave, in particular to compensate for variations in effective index of the guided mode which may be due to variable burial. . The invention also relates to a method of manufacturing an optical component, and in particular a component as described above, with the following steps: a) the manufacture of at least one optical guide in a substrate, b) l burial of at least part of the guide, said burial being a variable burial on at least part of an interaction section of the guide, c) the manufacture of an optical network in a region of substrate covering, at least in part, the interaction segment.
Le procédé selon l'invention est réalisé selon l'ordre de ces étapes mais bien entendu, il peut être réalisé dans un ordre différent.The method according to the invention is carried out according to the order of these steps but of course, it can be carried out in a different order.
Le gμide optique peut être formé par exemple par l'introduction d'ions dans le substrat (échange d'ions, implantation ionique notamment).The optical guide can be formed for example by the introduction of ions into the substrate (ion exchange, ion implantation in particular).
L'enfouissement du guide optique peut être réalisé par une migration des ions, assistée généralement par un champ électrique. Le tronçon d'interaction est situé au voisinage d'une face du substrat recevant le réseau optique de façon à autoriser une interaction d'une onde guidée avec le relief.The optical guide can be buried by ion migration, generally assisted by an electric field. The interaction section is located in the vicinity of a face of the substrate receiving the optical network so as to allow interaction of a guided wave with the relief.
Afin d'obtenir un enfouissement variable, il est possible d'appliquer un champ électrique de migration non -uniforme au substrat. En particulier selon une mise en œuvre avantageuse du procédé, l'enfouissement variable peut être obtenu au moyen d'un masque formé sur une face du substrat opposée à la région de fabrication du relief optique. Un champ électrique uniforme est ainsi rendu non-uniforme par le masque .In order to obtain a variable burial, it is possible to apply a non-uniform migration electric field to the substrate. In particular, according to an advantageous implementation of the method, the variable burial can be obtained by means of a mask formed on a face of the substrate opposite to the manufacturing region of the optical relief. A uniform electric field is thus made non-uniform by the mask.
Le réseau optique peut être formé par exemple, par gravure, par ablation laser, par échange d'ions et/ou par photo-inscription. Le réseau optique peut aussi être rapporté au substrat ou formé dans un élément rapporté au substrat. L'élément rapporté est, par exemple une couche, un empilement de couches ou un autre substrat.The optical network can be formed, for example, by etching, by laser ablation, by ion exchange and / or by photo-inscription. The optical network can also be attached to the substrate or formed in an element attached to the substrate. The added element is, for example a layer, a stack of layers or another substrate.
L' invention concerne enfin un module d'insertion-extraction comprenant un interféromètre de type Mach-Zehnder à deux bras dans lequel chaque bras comprend un composant optique conforme l'invention. D'autres caractéristiques et avantages de l'invention ressortiront de la description qui va suivre, en référence aux figures des" dessins annexés. Cette description est donnée à titre purement illustratif et non limitatif.The invention finally relates to an insertion-extraction module comprising a two-arm Mach-Zehnder type interferometer in which each arm comprises an optical component according to the invention. Other characteristics and advantages of the invention will emerge from the description which follows, with reference to the figures of the "appended drawings. This description is given purely by way of non-limiting illustration.
Brève description des figures.Brief description of the figures.
- La figure 1, déjà décrite, est un graphique indiquant, en échelle libre, une réponse spectrale en réflexion d'un réseau de Bragg, et une réponse spectrale d'un réseau « apodisé ».- Figure 1, already described, is a graph indicating, in free scale, a spectral response in reflection of a Bragg grating, and a spectral response of an "apodized" grating.
- La figure 2, déjà décrite, est une coupe schématique simplifiée d'un composant optique à réponse spectrale « apodisée ».- Figure 2, already described, is a simplified schematic section of an optical component with an "apodized" spectral response.
- La figure 3 est une coupe schématique longitudinale d'un composant optique conforme à- Figure 3 is a schematic longitudinal section of an optical component according to
1' invention. - La figure 4 est une coupe schématique transversale IV-IV du composant de la figure 3.1 invention. - Figure 4 is a schematic cross section IV-IV of the component of Figure 3.
- La figure 5 est une coupe schématique longitudinale d'un autre composant conforme à l'invention. - --- Figure 5 is a schematic longitudinal section of another component according to the invention. - -
- La figure 6 est une coupe schématique longitudinale d'encore un autre composant conforme à 1' invention.- Figure 6 is a schematic longitudinal section of yet another component according to one invention.
- La figure 7 est une représentation schématique d'un composant multivoie, conforme à- Figure 7 is a schematic representation of a multi-channel component, according to
1' invention.1 invention.
- Les figures 8, 9 et 10 sont des représentations schématiques de substrats illustrant des étapes successives d'un procédé de fabrication d'un composant conforme à l'invention.- Figures 8, 9 and 10 are schematic representations of substrates illustrating successive stages of a method of manufacturing a component according to the invention.
- La figure 11 est une représentation schématique d'un composant illustrant une variante du procédé de fabrication.- Figure 11 is a schematic representation of a component illustrating a variant of the manufacturing process.
- La figure 12 est une représentation schématique d'un interféromêtre de ach Zehnder conforme à l'invention.- Figure 12 is a schematic representation of an ach Zehnder interferometer according to the invention.
Description détaillée de modes de mise en œuyre deDetailed description of modes of implementation of
1 ' invention Le composant de la figure 3 comprend un substrat 120, par exemple un substrat en verre, dans lequel s'étend un guide optique 122. Le guide optique est formé, par exemple, par des ions modifiant localement l'indice optique du substrat. L'une des faces 123 du substrat présente un relief optique 124, sous la forme d'un réseau formé d'une succession d' indentations 126. Il s'agit d'une succession régulière d' indentations de pas Λ. Dans l'exemple illustré, le relief optique s'étend sur l'ensemble de la face 123. Il peut toutefois ne s'étendre que sur une partie de celle-ci.1 invention The component of Figure 3 comprises a substrate 120, for example a glass substrate, in which extends an optical guide 122. The optical guide is formed, for example, by ions locally modifying the optical index of the substrate. One of the faces 123 of the substrate has an optical relief 124, in the form of a network formed a succession of indentations 126. It is a regular succession of indentations of steps Λ. In the example illustrated, the optical relief extends over the whole of the face 123. It may however only extend over part of it.
Contrairement à celle du composant représenté à la figure 2, l' indentation du relief optique 124 s'étend ici sur une profondeur sensiblement constante notée h. Le guide optique 122 présente des tronçons d'extrémité 122e qui sont enfouis dans le substrat 120 à une profondeur suffisante pour qu'une onde optique 0 transmise dans le guide n' interagisse pas avec le réseau 124. L'enfouissement des tronçons d'extrémité peut aussi dans certains cas permettre une connexion facilitée des guides à d'autres composants optiques. Un tronçon central 122c, de longueur Leff, en revanche, présente un enfouissement moindre et est séparé du relief optique par une distance suffisamment faible pour qu'une interaction puisse s'établir entre le mode guidé d'une onde et le relief optique 124. Le tronçon central 122c est relié aux tronçons d'extrémité 122e de façon continue. En d'autres termes, le guide optique présente des parties de transition 122t présentant un enfouissement variable et reliant sans discontinuité le tronçon central aux tronçons d'extrémité. Cette caractéristique peut être mise • à profit lorsqu'on souhaite obtenir un composant avec une réponse spectrale apodisëe. Sur la figure 3, on a représenté de façon symbolique une onde 0 se propageant dans une direction indiquée par des flèches. Le sens de propagation indiqué par les flèches n'est toutefois pas impératif. Des propagations en sens inverse, de même que des réflexions, peuvent avoir lieu. ~ ' ' Le coefficient de couplage g entre une onde guidée et le relief optique est lié en particulier au paramètre D. A titre d'exemple, lorsque le guide optique est plan, le coefficient de couplage g entre une onde guidée en mode TE et le relief optique est de la forme suivante : g(D) ≈ T- exp(-2κ-D)-h. D exprime la distance séparant le guide 122 du réseau 124, K est une constante d'atténuation de l'onde hors du guide, h est la profondeur des indentations 126 et T est un facteur fonction de coefficients de propagation du guide optique. On peut se reporter, au sujet de cette formule, au document (10) dont les références sont indiquées à la fin de la description.Unlike that of the component shown in FIG. 2, the indentation of the optical relief 124 here extends over a substantially constant depth denoted h. The optical guide 122 has end sections 122e which are buried in the substrate 120 at a sufficient depth so that an optical wave 0 transmitted in the guide does not interact with the network 124. The burial of the end sections may also in certain cases allow easier connection of the guides to other optical components. A central section 122c, of length L eff , on the other hand, has less burial and is separated from the optical relief by a distance that is sufficiently small that an interaction can be established between the guided mode of a wave and the optical relief 124 The central section 122c is connected to the end sections 122e continuously. In other words, the optical guide has transition parts 122t having a variable burial and continuously connecting the central section to the end sections. This characteristic can be taken advantage of when • one wishes to obtain a component with an apodized spectral response. In FIG. 3, a wave 0 propagating in one direction has been represented symbolically. indicated by arrows. The direction of propagation indicated by the arrows is not however imperative. Reverse propagations, as well as reflections, can take place. ~ '' The coupling coefficient g between a guided wave and the optical relief is linked in particular to parameter D. For example, when the optical guide is planar, the coupling coefficient g between a guided wave in TE mode and the optical relief is of the following form: g (D) ≈ T- exp (-2κ-D) -h. D expresses the distance separating the guide 122 from the network 124, K is a constant of attenuation of the wave outside the guide, h is the depth of the indentations 126 and T is a factor function of propagation coefficients of the optical guide. Reference may be made, with regard to this formula, to document (10), the references of which are given at the end of the description.
L'expression du coefficient de couplage g montre que l'influence du réseau sur un guide enfoui est une fonction exponentielle, décroissante avec la profondeur d'enfouissement.The expression of the coupling coefficient g shows that the influence of the network on a buried guide is an exponential function, decreasing with the burial depth.
Afin de parfaire l' apodisation du spectre de réponse du composant, l'enfouissement du guide D(z), en fonction d'une coordonnée z mesurée selon un axe z entre les deux extrémités du guide 122e, est ajustée de préférence de façon à conférer au coefficient de couplage une forme, répartie en z, qui s'approche d'une fonction gaussienne du type : g(z)= g0-exp(-(z-Zo)2/Leff 2) Dans cette expression, g0 est une constante de cote maximale correspondant à un enfouissement minimal du guide ; et z0 une origine des positions prise au sommet de la gaussienne. La figure 4 montre une coupe transversale IV-IV du composant de la figure 3 selon un plan perpendiculaire à l'axe z. Elle montre que le guide optique 122 est un guide à confinement latéral. Il se présente donc sous la forme d'un ruban qui parcourt le substrat. L'invention s'applique toutefois de manière identique à des composants pourvus d'un guide optique planaire c'est-à-dire d'un guide optique dans lequel il n'y a pas de confinement latéral.In order to perfect the apodization of the response spectrum of the component, the burial of the guide D (z), as a function of a coordinate z measured along an axis z between the two ends of the guide 122e, is preferably adjusted so as to give the coupling coefficient a form, distributed in z, which approximates a Gaussian function of the type: g (z) = g 0 -exp (- (zZ o ) 2 / L eff 2 ) In this expression, g 0 is a maximum dimension constant corresponding to a minimum burial of the guide; and z 0 an origin of the positions taken at the top of the Gaussian. Figure 4 shows a cross section IV-IV of the component of Figure 3 along a plane perpendicular to the axis z. It shows that the optical guide 122 is a lateral confinement guide. It therefore takes the form of a ribbon which runs through the substrate. The invention however applies identically to components provided with a planar optical guide, that is to say an optical guide in which there is no lateral confinement.
Un motif en; trait discontinu marque l'amplitude d'enfouissement du guide optique 122, entre ses parties les plus et les moins enfouies.A pattern in; broken line marks the amplitude of burial of the optical guide 122, between its most and least buried parts.
On indique par I(z) une dimension du guide optique 122 en fonction de la côte z. Cette dimension peut être variable le long du guide et notamment dans la partie correspondant au tronçon central de manière à optimiser la réponse spectrale du composant.We indicate by I (z) a dimension of the optical guide 122 as a function of the dimension z. This dimension can be variable along the guide and in particular in the part corresponding to the central section so as to optimize the spectral response of the component.
La figure 5 montre une autre possibilité de réalisation d'un composant conforme à l'invention. Le composant de la figure 5 est sensiblement identique à celui de la figure 3 à l'exception du fait que le relief optique n'est pas un réseau à pas régulier mais un réseau a pas variable. Le pas Λ(z) des indentations 126 dépend de la côte z mesurée le long du guide.Figure 5 shows another possibility of producing a component according to the invention. The component of Figure 5 is substantially identical to that of Figure 3 except that the optical relief is not a regular pitch network but a variable pitch network. The pitch Λ (z) of the indentations 126 depends on the dimension z measured along the guide.
La figure 6 montre encore une autre possibilité de réalisation dans laquelle le relief optique présente une succession de plages avec des indentations périodiques (succession de réseaux élémentaires) de période Λ constante ou non. Les plages, de largeur δL, se succèdent selon un pas M et sont séparées par des plages sans indentations. Ces paramètres sont ajustés généralement pour accorder les plages en phase entre- elles.FIG. 6 shows yet another possible embodiment in which the optical relief has a succession of ranges with indentations periodic (succession of elementary networks) of period Λ constant or not. The ranges, of width δL, follow one another at a pitch M and are separated by ranges without indentations. These parameters are generally adjusted to tune the tracks in phase with each other.
La fonction de couplage du guide optique au relief optique est de la forme g(z) = (h(z) *p (z) )xf (z) .The coupling function of the optical guide to the optical relief is of the form g (z) = (h (z) * p (z)) xf (z).
Dans cette expression h(z) représente la fonction d'enveloppe des réseaux élémentaires de longueur ÔL, p(z) représente une fonction en peigne au pas M correspondant à la période de répétition des réseaux élémentaires et f(z) représente l'enveloppe générale du coefficient de couplage dicté par l'enfouissement du guide optique 122. Les symboles * et X indiquent respectivement un produit de convolution et un produit simple.In this expression h (z) represents the envelope function of the elementary networks of length ÔL, p (z) represents a comb function at step M corresponding to the repetition period of the elementary networks and f (z) represents the envelope general of the coupling coefficient dictated by the burial of the optical guide 122. The symbols * and X respectively indicate a product of convolution and a simple product.
La réponse spectrale d'un tel relief optique en superstructure est un peigne spectral avec des pics de réflexion régulièrement espacés d'une valeur Δλ, où λ est une longueur d'onde. Δλ est une valeur qui est inversement proportionnelle à M. Chaque pic a une enveloppe spectrale ayant la forme de la transformée de Fourier de f(z), c'est-à-dire d'une gaussienne dans le cas de 1 ' apodisation. L'ensemble du spectre couvre une bande de fréquence inversement proportionnelle à la largeur δL.The spectral response of such an optical relief in superstructure is a spectral comb with reflection peaks regularly spaced by a value Δλ, where λ is a wavelength. Δλ is a value which is inversely proportional to M. Each peak has a spectral envelope having the form of the Fourier transform of f (z), that is to say of a Gaussian in the case of apodization. The entire spectrum covers a frequency band inversely proportional to the width δL.
La figure 7 est un composant conforme à l'invention comprenant dans un substrat 120 une pluralité de guides optiques 122 couplés à un réseau 124. Les différents guides présentent des réponses spectrales différentes, par exemple en raison de couplages différents avec le réseau 124, et/ou en raison de sections différentes. La référence 130 désigne un commutateur optique multivoie connecté en une première extrémité du composant. Le commutateur 130 permet de relier optiquement, par exemple une fibre optique 132, respectivement à l'un des guides optiques 122 du composant. En une deuxième extrémité, opposée à la première extrémité, une lame 134 anti-réfléchissanté peut être prévue. Celle-ci permet d'éviter des réflexions parasites. Des réflexions parasites peuvent également être évitées en biseautant la face latérale opposée à la face recevant le commutateur optique. Dans cet exemple de réalisation, le composant fonctionne en mode de filtrage réflectif du réseau 124. Le signal en provenance de la fibre optique 132 est retourné vers la même fibre optique 132, par réflexion. Dans un autre exemple, indiqué en trait discontinu sur la même figure, un commutateur multivoie de sortie 130a peut également être prévu à l'extrémité du composant opposée à l'extrémité d'entrée, de façon à relier optiquement le composant à une fibre optique de sortie 132a. Dans ce cas, le composant fonctionne dans un mode de transmission.FIG. 7 is a component according to the invention comprising, in a substrate 120, a plurality of optical guides 122 coupled to an array 124. The different guides have different spectral responses, for example due to different couplings with the network 124, and / or due to different sections. The reference 130 designates a multi-channel optical switch connected at a first end of the component. The switch 130 makes it possible to optically connect, for example an optical fiber 132, respectively to one of the optical guides 122 of the component. At a second end, opposite the first end, an anti-reflective blade 134 can be provided. This avoids stray reflections. Spurious reflections can also be avoided by bevelling the side face opposite to the face receiving the optical switch. In this exemplary embodiment, the component operates in reflective filtering mode of the network 124. The signal from the optical fiber 132 is returned to the same optical fiber 132, by reflection. In another example, indicated in broken lines in the same figure, a multi-way output switch 130a can also be provided at the end of the component opposite the input end, so as to optically connect the component to an optical fiber 132a. In this case, the component operates in a transmission mode.
On décrit à présent, en référence aux figures 8 à 10, • les principales étapes de fabrication d'un composant tel que décrit précédemment .We will now describe, with reference to Figures 8 to 10, • the main stages of manufacturing a component as described above.
La figure 8 montre la fabrication de guides d'ondes dans un substrat 120. Le substrat, par exemple en verre ou en matériau cristallin est conditionné pour l'introduction d'ions, par exemple un échange d'ions. Il est en particulier nettoyé et poli. Un masque 140 est ensuite déposé sur l'une de ses faces 123. Le masque, par exemple en résine photosensible, sert de masque de diffusion. Il présente un certain nombre de fentes longitudinales, rectilignes dans l'exemple illustré, qui fixent le tracé des guides optiques 122 que l'on souhaite réaliser dans le substrat.FIG. 8 shows the manufacture of waveguides in a substrate 120. The substrate, for example made of glass or of crystalline material is conditioned for the introduction of ions, for example an ion exchange. In particular, it is cleaned and polished. A mask 140 is then deposited on one of its faces 123. The mask, for example made of photosensitive resin, serves as a diffusion mask. It has a certain number of longitudinal slots, rectilinear in the example illustrated, which fix the layout of the optical guides 122 which it is desired to make in the substrate.
Le substrat est ensuite plongé dans un premier bain de sels fondus susceptible de provoquer un échange ionique avec des ions préalablement contenus dans le substrat. Il s'agit, par exemple d'un échange d'ions Na+/Ag+ (d'autres couples d'ions peuvent être utilisés tels que Na+/K+, Na+/Tl+' ...) . L'échange d'ions est poursuivi jusqu'à la formation dans le substrat de guides optiques 122 présentant les propriétés souhaitées et en particulier un indice optique souhaité. Le substrat est ensuite retiré du bain et le masque de diffusion est éliminé. Sur la figure 8 et sur les figures 9 et 11 décrites ci-après les bains de sels fondus sont simplement représentés par un ombrage pointillé.The substrate is then immersed in a first bath of molten salts capable of causing an ion exchange with ions previously contained in the substrate. It is, for example, an ion exchange Na + / Ag + (other pairs of ions can be used such as Na + / K + , Na + / Tl + '...). The ion exchange is continued until the formation in the substrate of optical guides 122 having the desired properties and in particular a desired optical index. The substrate is then removed from the bath and the diffusion mask is removed. In FIG. 8 and in FIGS. 9 and 11 described below, the molten salt baths are simply represented by a dotted shading.
Une deuxième étape, représentée à la figure 9, consiste à provoquer un enfouissement des guides optiques 122 préalablement formés. Les deux faces du substrat sont immergées dans deux bains séparés de sels fondus contenant des ions identiques ou différents.A second step, shown in FIG. 9, consists in causing the optical guides 122 previously formed to be buried. The two faces of the substrate are immersed in two separate baths of molten salts containing identical or different ions.
Il s'agit, par exemple, d'ions Na+ pour les deux bains. Pendant l'immersion, une différence de potentiel V0 de migration est appliquée entre les deux bains à des électrodes 146, 148 respectivement en regard avec la première face 123 du substrat présentant les guides optiques 122 et la face 125 qui y est opposée .These are, for example, Na + ions for both baths. During immersion, a difference in migration potential V 0 is applied between the two baths to electrodes 146, 148 respectively in look with the first face 123 of the substrate having the optical guides 122 and the face 125 which is opposite thereto.
Avant l'immersion du substrat, un masque 150 de perturbation du champ électrique est formé sur la face 125 du substrat opposée à la face 123 de formation des guides optiques. Le masque 150 de perturbation du champ conduit à un enfouissement variable des guides optiques 122. Le masque de perturbation est de préférence un masque ne se dégradant pas durant l'enfouissement, et, par exemple, un masque métallique ou diélectrique tel que, par exemple, un masque d'aluminium ou d'alumine. Il présente une largeur égale à la longueur Leff des tronçons d' interaction dont on veut doter les guides et qui coïncident avec l'emplacement du masque 150.Before the substrate is immersed, a mask 150 for disturbing the electric field is formed on the face 125 of the substrate opposite the face 123 for forming the optical guides. The mask 150 for disturbing the field leads to variable burial of the optical guides 122. The disturbance mask is preferably a mask which does not degrade during burial, and, for example, a metallic or dielectric mask such as, for example , an aluminum or alumina mask. It has a width equal to the length Leff of the interaction sections with which the guides are to be fitted and which coincide with the location of the mask 150.
Il convient de noter qu'un masque de perturbation du champ peut aussi être formé sur la première face 123 du substrat. Ceci conduit cependant à un enfouissement moins progressif des guides optiques et donc à une moins bonne' apodisation du spectre de réponse du composant finalement obtenu, lorsque cette apodisation est recherchée.Note that a field disturbance mask may also be formed on the first side of the substrate 123. This however leads to a landfill less progressive optical waveguides and therefore poorer apodization of the response spectrum of the finally obtained component when this apodization is sought.
Au terme de la migration des guides optiques on peut distinguer les tronçons 122c des guides optiques qui n'ont que faiblement migré et qui restent au voisinage de la première face. Les tronçons d'extrémité 122e, en revanche, se trouvent enfouis. Après la migration, le masque 150 est généralement éliminé.At the end of the migration of the optical guides, it is possible to distinguish the sections 122c of the optical guides which have only slightly migrated and which remain in the vicinity of the first face. The end sections 122e, on the other hand, are buried. After migration, the mask 150 is generally removed.
La figure 10 montre une dernière étape qui est la formation dans le substrat d'un relief optique 124. Un relief optique est formé sur au moins l'une des faces, et en l'occurrence sur la première face 123, c'est-à-dire la face la plus proche des tronçons centraux 122c des guides optiques. Comme indiqué précédemment, le relief optique peut être réalisé de différentes manières connues en soi. Le relief optique peut en particulier être obtenu par gravure, par échange d'ions, par photo-inscription, par ablation ou encore par dépôt d'une structure. Dans ce dernier cas, le relief optique peut être formé avant ou après le dépôt de la structure. Au sujet des techniques de fabrication de reliefs optiques, on peut se référer aux documents (4), (5), (6) et (7), par exemple.FIG. 10 shows a last step which is the formation in the substrate of an optical relief 124. An optical relief is formed on at least one of the faces, and in this case on the first face 123, that is to say the face closest to the central sections 122c of the optical guides. As indicated above, the optical relief can be produced in various ways known per se. The optical relief can in particular be obtained by etching, by ion exchange, by photo-inscription, by ablation or by deposition of a structure. In the latter case, the optical relief can be formed before or after the deposition of the structure. On the subject of techniques for manufacturing optical reliefs, reference may be made to documents (4), (5), (6) and (7), for example.
La figure 11 illustre une variante de l'étape du procédé décrite en référence à la figure 9. Contrairement au masque de perturbation de champ de la figure 9, le masque de perturbation 150 du 'dispositif de la figure 11 se trouve sur la première face 123 du substrat 120, et non sur la deuxième face 125.Figure 11 illustrates a variant of the process step described with reference to Figure 9. In contrast to field disturbance mask of Figure 9, the disturbance of the mask 150 'device of Figure 11 is located on the first face 123 of the substrate 120, and not on the second face 125.
Le guide optique et le masque sont sensiblement rectilignes. Ils forment entre eux, un angle θ, inscrit dans un plan parallèle aux faces principales 123, 125.The optical guide and the mask are substantially rectilinear. They form an angle θ between them, inscribed in a plane parallel to the main faces 123, 125.
L'angle que forme le masque 150 avec la direction du guide optique 122 permet de ménager une transition douce entre le tronçon d' interaction et les autres parties du guide optique. Celle-ci favorise une éventuelle « apodisation » du spectre de réponse.The angle that the mask 150 forms with the direction of the optical guide 122 makes it possible to provide a smooth transition between the interaction section and the other parts of the optical guide. This promotes a possible "apodization" of the response spectrum.
L'enfouissement du guide a finalement lieu sous l'application d'un champ électrique de la façon déjà décrite en référence à la figure 9. On peut se reporter aussi, à ce sujet, au document (8) déjà mentionné. La figure 12 représente une application particulière de l'invention pour la fabrication d'un module d'insertion-extraction de longueur d'onde- sous la forme d'un interféromètre de ach-Zehnder. " Le module comprend un substrat ~ avec deux guides optiques 122a et 122b. Les guides optiques présentent chacun un tronçon d'interaction 122c local. Ce tronçon est situé au voisinage d'un relief optique 124 sous la forme d'un réseau de Bragg. On peut se reporter à ce sujet aux figures qui précèdent. De part et d'autre de ces tronçons, on trouve également des zones de couplage 162 et 164 entre les deux guides optiques.The burial of the guide finally takes place under the application of an electric field in the manner already described with reference to FIG. 9. We can also refer, on this subject, to the document (8) already mentioned. FIG. 12 represents a particular application of the invention for the manufacture of a wavelength insertion-extraction module in the form of an ach-Zehnder interferometer. " The module comprises a substrate ~ with two optical guides 122a and 122b. The optical guides each have a local interaction section 122c. This section is located in the vicinity of an optical relief 124 in the form of a Bragg grating. Reference may be made to the above figures, on either side of these sections, there are also coupling zones 162 and 164 between the two optical guides.
Une onde accordée à la longueur d'onde de Bragg et entrant par une extrémité Ei est réfléchie. La réflexion a lieu sur les deux tronçons d'interaction 122c. Les ondes réfléchies interfèrent de façon constructive et sortent du composant par l'extrémité E2. Des ondes accordées sur d'autres longueurs d'onde traversent le composant sans réflexion et sortent par l'extrémité E4. Il convient de préciser que les extrémités Ei et E3 sont interchangeables, de même que les extrémités E2 et E4. A wave tuned to the Bragg wavelength and entering through an end Ei is reflected. The reflection takes place on the two interaction sections 122c. The reflected waves interfere constructively and exit the component through the end E 2 . Waves tuned to other wavelengths pass through the component without reflection and exit through the end E 4 . It should be noted that the ends Ei and E 3 are interchangeable, as are the ends E 2 and E 4 .
DOCUMENTS CITESCITED DOCUMENTS
(D(D
« Multiwavelength Grating Reflectors for idely Tunable Laser » de A. Talneau et al., IEEE PHOTONICS TECHNOLOGY LETTERS, vol.8, n° 4, April 1996."Multiwavelength Grating Reflectors for idely Tunable Laser" by A. Talneau et al., IEEE PHOTONICS TECHNOLOGY LETTERS, vol.8, n ° 4, April 1996.
(2) US-5 943 554 (3)(2) US-5,943,554 (3)
« Apodized Surface-corrugated Gratings with V arying duty cycles » de D. iesmann et al., IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 12, n° 6, june 2000, p.639. (4)"Apodized Surface-corrugated Gratings with V arying duty cycles" by D. iesmann et al., IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 12, n ° 6, june 2000, p.639. (4)
« Holographie lithography with thick photoresist » de Hrik H. Anderson et al., Appl . Phys . Lett . 43(9), 1 november 1983, p. 874."Holographie lithography with thick photoresist" by Hrik H. Anderson et al., Appl. Phys. Lett. 43 (9), November 1, 1983, p. 874.
(5)(5)
US-5 080 503US-5,080,503
(6)(6)
« Gratings photowritten in ion-exchanged- glass channel waveguides » de D.F. Geraghty et al., ELECTRONICS LETTERS, lst april 1999, vol. 35, n° 7, p.585-586. (7)"Gratings photowritten in ion-channel glass waveguides exchanged-" DF Geraghty et al., Electronics Letters, the st april 1999, Vol. 35, n ° 7, p.585-586. (7)
« Direct formation of a surface-relief grating on glass by ultraviolet-visible laser irradiation » de Keiji Tsunetomo et al., OPTICS LETTERS, March 15, 1997, vol. 22, n° 22, p. 411. ( 8 )"Direct formation of a surface-relief grating on glass by ultraviolet-visible laser irradiation" by Keiji Tsunetomo et al., OPTICS LETTERS, March 15, 1997, vol. 22, n ° 22, p. 411. (8)
« A new fabrication method for waveguides with controlled surface- interaction length » de F. Rehouma et al., Sensors and Actuators B 29 (1995) 406-409."A new fabrication method for waveguides with controlled surface- interaction length" by F. Rehouma et al., Sensors and Actuators B 29 (1995) 406-409.
(9)(9)
« A taper coupler for integrated optics formed by ion-exchange under a non-uniform electric field » de A.A. LIPOVSKII, OPTICS COMMUNICATIONS , vol. 61, n° 1, pp. 11-15. (10)"A tap coupler for integrated optics formed by ion-exchange under a non-uniform electric field" by A.A. LIPOVSKII, OPTICS COMMUNICATIONS, vol. 61, n ° 1, pp. 11-15. (10)
E. Rosencher et al., "Optoélectronique", éd. Masson ISBN 2-225-82935-7, p. 341. E. Rosencher et al., "Optoelectronics", ed. Masson ISBN 2-225-82935-7, p. 341.

Claims

REVENDICATIONS
1. Composant optique présentant au moins un relief optique (124) et au moins un guide optique (122) associé au relief optique (124) , caractérisé en ce que le guide optique est un guide enfoui, à enfouissement variable, présentant au moins un tronçon d'interaction1. Optical component having at least one optical relief (124) and at least one optical guide (122) associated with the optical relief (124), characterized in that the optical guide is a buried guide, with variable burial, having at least one interaction segment
(122c) avec le relief optique, et dans lequel le tronçon d'interaction comprend au moins une partie de tronçon (122t) à enfouissement variable, le relief optique (124) étant un réseau optique.(122c) with the optical relief, and in which the interaction segment comprises at least one portion of segment (122t) with variable burial, the optical relief (124) being an optical network.
2. Composant optique selon la revendication 1, dans lequel le guide à enfouissement variable est apte à permettre une apodisation d'une réponse spectrale du composant.2. Optical component according to claim 1, in which the variable burial guide is capable of allowing apodization of a spectral response of the component.
3. Composant optique selon la revendication 1, dans lequel le réseau optique (124) est un réseau périodique .3. The optical component according to claim 1, in which the optical network (124) is a periodic network.
4. Composant optique selon la revendication 3, dans lequel le réseau optique présente un pas variable.4. An optical component according to claim 3, in which the optical network has a variable pitch.
5. Composant optique selon la revendication 1, dans lequel le réseau optique est un réseau pséudo- périodique comprenant une succession de réseaux élémentaires .5. The optical component as claimed in claim 1, in which the optical network is a pseudo-periodic network comprising a succession of elementary networks.
6. Composant selon la- revendication 1, dans lequel le réseau optique (124) présente une profondeur6. Component according to claim 1, in which the optical network (124) has a depth
(h) constante. (h) constant.
7. Composant optique selon la revendication 1, dans lequel le guide optique présente un tronçon d'interaction (122c) avec une section variable.7. The optical component as claimed in claim 1, in which the optical guide has an interaction section (122c) with a variable section.
8. Composant selon la revendication 1, dans lequel le réseau optique (124) comprend une succession de rainures pratiquées dans un substrat (120) .8. Component according to claim 1, in which the optical network (124) comprises a succession of grooves made in a substrate (120).
9. Composant selon la revendication 1, dans lequel le relief optique comprend une succession alternée de zones du substrat (120) présentant différents indices optiques.9. Component according to claim 1, in which the optical relief comprises an alternating succession of regions of the substrate (120) having different optical indices.
10. Composant optique selon la revendication 1, comprenant une pluralité de guides optiques (122) à enfouissement variable, au moins dans des tronçons d' interaction.10. An optical component according to claim 1, comprising a plurality of optical guides (122) with variable burial, at least in interaction sections.
11. Composant optique selon la revendication11. Optical component according to claim
10, dans lequel les tronçons d'interaction (122c) présentent respectivement des couplages différents avec le réseau optique (124) .10, in which the interaction sections (122c) respectively have different couplings with the optical network (124).
12. Composant selon la revendication 11, comprenant au moins un commutateur optique multivoie (130, 130a) associé à la pluralité de guides optiques.12. Component according to claim 11, comprising at least one multi-channel optical switch (130, 130a) associated with the plurality of optical guides.
13. Procédé de fabrication d'un composant optique comprenant les étapes suivantes : a) la fabrication d'au moins un guide optique (122) dans un substrat, b) l'enfouissement d'au moins une partie du guide, ledit enfouissement étant un enfouissement variable sur au moins une partie d'un tronçon d'interaction du guide, c) la fabrication d'un réseau optique (124) en une région du substrat recouvrant, au moins en partie, le tronçon d'interaction.13. Method of manufacturing an optical component comprising the following steps: a) the manufacture of at least one optical guide (122) in a substrate, b) the burial of at least part of the guide, said burial being a variable burial on at least part of an interaction section of the guide, c) the manufacture of an optical network (124) in a region of the substrate covering, at least in part, the interaction section.
14. Procédé selon la revendication 13, dans lequel on forme le guide optique par introduction d'ions dans le substrat.14. The method of claim 13, wherein the optical guide is formed by introducing ions into the substrate.
15. Procédé selon la revendication 13, dans lequel on réalise l'enfouissement par migration assistée sous champ électrique.15. The method of claim 13, wherein the burial is carried out by assisted migration under electric field.
16. Procédé selon la revendication 13, comprenant, avant l'enfouissement, la formation d'un masque (150) sur une face (125) du substrat opposée à la région de fabrication du relief optique.16. The method of claim 13, comprising, before burial, the formation of a mask (150) on a face (125) of the substrate opposite the region for manufacturing the optical relief.
17. Procédé selon la revendication 13, dans lequel la fabrication du réseau a lieu par gravure, par ablation laser, par échange d'ions et/ou par photoinscription.17. The method of claim 13, wherein the manufacturing of the network takes place by etching, by laser ablation, by ion exchange and / or by photoinscription.
18. Procédé selon la revendication 13, dans lequel le réseau est formé dans un élément rapporté au substrat . 18. The method of claim 13, wherein the network is formed in an element attached to the substrate.
19. Procédé selon la revendication 13, comprenant avant l'enfouissement, la formation d'un masque sur une face (123) du substrat recevant le réseau optique (124) , dans lequel le masque forme un angle avec le guide optique.19. The method of claim 13, comprising before burial, the formation of a mask on a face (123) of the substrate receiving the optical network (124), in which the mask forms an angle with the optical guide.
20. Module d'insertion extraction comprenant un interféromètre de type Mach-Zehnder à deux bras dans lequel chaque bras comprend un composant optique conforme à la revendication 1. 20. Extraction insertion module comprising a two-arm Mach-Zehnder type interferometer in which each arm comprises an optical component according to claim 1.
PCT/FR2002/004503 2001-12-21 2002-12-20 Integrated optics component comprising at least an optical relief with gradual efficacy, and method for making same WO2003054596A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02805412A EP1472559A2 (en) 2001-12-21 2002-12-20 Integrated optics component comprising at least an optical relief with gradual efficacy, and method for making same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR01/16684 2001-12-21
FR0116684A FR2834076B1 (en) 2001-12-21 2001-12-21 INTEGRATED OPTICAL COMPONENT HAVING AT LEAST ONE GRADUAL EFFICIENCY OPTICAL RELIEF, AND METHOD FOR PRODUCING SUCH A COMPONENT

Publications (2)

Publication Number Publication Date
WO2003054596A2 true WO2003054596A2 (en) 2003-07-03
WO2003054596A3 WO2003054596A3 (en) 2003-12-18

Family

ID=8870851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/004503 WO2003054596A2 (en) 2001-12-21 2002-12-20 Integrated optics component comprising at least an optical relief with gradual efficacy, and method for making same

Country Status (3)

Country Link
EP (1) EP1472559A2 (en)
FR (1) FR2834076B1 (en)
WO (1) WO2003054596A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015007664A1 (en) 2013-07-15 2015-01-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Optical coupler provided with a structuration
FR3140451A1 (en) * 2022-10-04 2024-04-05 Universite Grenoble Alpes Optical substrate with integrated antennas and spectrometer comprising it

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5058977A (en) * 1987-01-20 1991-10-22 Hewlett-Packard Company Broadband tunable in-line filter for fiber optics
US5668900A (en) * 1995-11-01 1997-09-16 Northern Telecom Limited Taper shapes for sidelobe suppression and bandwidth minimization in distributed feedback optical reflection filters
US5805751A (en) * 1995-08-29 1998-09-08 Arroyo Optics, Inc. Wavelength selective optical couplers
US5817537A (en) * 1995-12-28 1998-10-06 Alcatel Optronics Method for integrating a localized bragg grating into a semiconductor
US5943554A (en) * 1995-12-28 1999-08-24 Lucent Technologies Inc. Method of making distributed feedback laser having spatial variation of grating coupling along laser cavity length
US6221565B1 (en) * 1998-02-09 2001-04-24 University Of New Mexico Tunable bragg gratings and devices employing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5058977A (en) * 1987-01-20 1991-10-22 Hewlett-Packard Company Broadband tunable in-line filter for fiber optics
US5805751A (en) * 1995-08-29 1998-09-08 Arroyo Optics, Inc. Wavelength selective optical couplers
US5668900A (en) * 1995-11-01 1997-09-16 Northern Telecom Limited Taper shapes for sidelobe suppression and bandwidth minimization in distributed feedback optical reflection filters
US5817537A (en) * 1995-12-28 1998-10-06 Alcatel Optronics Method for integrating a localized bragg grating into a semiconductor
US5943554A (en) * 1995-12-28 1999-08-24 Lucent Technologies Inc. Method of making distributed feedback laser having spatial variation of grating coupling along laser cavity length
US6221565B1 (en) * 1998-02-09 2001-04-24 University Of New Mexico Tunable bragg gratings and devices employing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
REHOUMA F ET AL: "A new fabrication method for waveguides with controlled surface-interaction length" SENSORS AND ACTUATORS B, ELSEVIER SEQUOIA S.A., LAUSANNE, CH, vol. 29, no. 1, 1 octobre 1995 (1995-10-01), pages 406-409, XP004000904 ISSN: 0925-4005 cité dans la demande *
TSUNETOMO K ET AL: "DIRECT FORMULATION OF A SURFACE-RELIEF GRATING ON GLASS BY ULTRAVIOLET-VISIBLE LASER IRRADIATION" OPTICS LETTERS, OPTICAL SOCIETY OF AMERICA, WASHINGTON, US, vol. 22, no. 6, 15 mars 1997 (1997-03-15), pages 411-413, XP000690339 ISSN: 0146-9592 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015007664A1 (en) 2013-07-15 2015-01-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Optical coupler provided with a structuration
US11048046B2 (en) 2013-07-15 2021-06-29 Commissariat A L'energie Atomique Et Aux Energies Alternatives Optical coupler provided with a structuration
FR3140451A1 (en) * 2022-10-04 2024-04-05 Universite Grenoble Alpes Optical substrate with integrated antennas and spectrometer comprising it
WO2024074241A1 (en) * 2022-10-04 2024-04-11 Universite Grenoble Alpes Optical substrate having integrated antennas, and spectrometer comprising same

Also Published As

Publication number Publication date
FR2834076B1 (en) 2004-03-12
FR2834076A1 (en) 2003-06-27
WO2003054596A3 (en) 2003-12-18
EP1472559A2 (en) 2004-11-03

Similar Documents

Publication Publication Date Title
EP0126686B1 (en) Optical waveguide employing a diffraction grating
EP2141520A1 (en) Coupling device with compensated birefringence
CA2262129A1 (en) Semiconductor optical reflector and its manufacturing process
EP0324694B1 (en) Integrated-optics device for the separation of the polarization components of an electromagnetic field, and method for manufacturing it
EP0968446B1 (en) Device for demultiplexing light paths contained in an optical spectrum
EP0736785A1 (en) Polarisation insensitive demultiplexer and manufacturing method
EP0668517A1 (en) Procedure for optimizing shape of an optical guide, and an optical guide obtained by this procedure
EP3491438B1 (en) Multi-spectral optical coupler with low receive losses
FR2764376A1 (en) INTEGRATED DEVICE FOR READING SPECTRAL RAYS CONTAINED IN AN OPTICAL SPECTRUM
EP1092167B1 (en) Optical filter with apodized spectral response
EP0736786B1 (en) Polarisation-independant multi-wavelength filter and manufacturing process
WO2003054596A2 (en) Integrated optics component comprising at least an optical relief with gradual efficacy, and method for making same
FR2742882A1 (en) WAVELENGTH DEMULTIPLEXER, REALIZED IN INTEGRATED OPTICS
EP0707224A1 (en) Wavelength selective optical coupler
EP0786100B1 (en) Optical filter for a plurality of guided wavelengths
EP1058138A1 (en) Multiplexer/demultiplexer having three waveguides
WO2004057390A1 (en) Integrated optics coupling element comprising a grating produced in a cladding and method for making same
EP1504294A2 (en) Integrated optics component comprising a cladding and method for making same
FR3041115A1 (en) INTEGRATED ELECTRO-OPTICAL MODULATOR
EP1621906A1 (en) Device including a flush-mounted optoelectronic element covered by a waveguide
RU2205438C2 (en) Narrow-band fiber-optical filter for demultiplexing and multiplexing optical signals in high-speed multichannel fiber-optical information networks
WO2004057388A2 (en) Integrated optics filtering component comprising an optical cladding and method for making same
WO2004059356A2 (en) Artificial cladding grating in integrated optics comprising a coupling variation and production method thereof
CA2498349A1 (en) Flat top optical filtering component
FR2826193A1 (en) Wavelength multiplexing dense telecommunications laser networks having coherent light transmitter block/external cavities coupled and optical guide/narrow band filter facing cavities.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002805412

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002805412

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2002805412

Country of ref document: EP