WO2003053466A1 - Skin barrier function repair accelerators - Google Patents

Skin barrier function repair accelerators Download PDF

Info

Publication number
WO2003053466A1
WO2003053466A1 PCT/JP2002/012945 JP0212945W WO03053466A1 WO 2003053466 A1 WO2003053466 A1 WO 2003053466A1 JP 0212945 W JP0212945 W JP 0212945W WO 03053466 A1 WO03053466 A1 WO 03053466A1
Authority
WO
WIPO (PCT)
Prior art keywords
receptor
skin
recovery
function
substance
Prior art date
Application number
PCT/JP2002/012945
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeyoshi Fujiwara
Mitsuhiro Denda
Kaori Inoue
Original Assignee
Shiseido Company, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiseido Company, Ltd. filed Critical Shiseido Company, Ltd.
Priority to JP2003554223A priority Critical patent/JPWO2003053466A1/en
Publication of WO2003053466A1 publication Critical patent/WO2003053466A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/46Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur
    • A61K8/466Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur containing sulfonic acid derivatives; Salts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/255Esters, e.g. nitroglycerine, selenocyanates of sulfoxy acids or sulfur analogues thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/675Phosphorus compounds having nitrogen as a ring hetero atom, e.g. pyridoxal phosphate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7076Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines containing purines, e.g. adenosine, adenylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/44Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/4906Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with one nitrogen as the only hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/16Emollients or protectives, e.g. against radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings

Definitions

  • the present invention relates to a skin parer function recovery promoter containing an excitatory cell receptor agonist or an inhibitory cell receptor agonist, and a method for screening a substance having a skin parer function recovery promoting activity.
  • TEWL transepidermal water loss
  • NMF Natural Moisturizing Fac
  • Skin cells like nerve cells, consume energy and create potential differences inside and outside the cell membrane. This potential difference is mainly due to the opening and closing of Ca 2+ , Na + , and CI ion channels by various receptors on the cell surface.
  • Japanese Patent Application Laid-Open No. 2000-290135 discloses a Ca 2+ channel inhibitor or a metal salt having a Ca 2+ channel inhibitory action, for example, manganese salt, strontium Salt, lanthanum salt, cobalt salt, zinc salt, magnesium salt, iron salt, norium salt, jill thiazem and its salt, verapamil and its salt, difedipin and its It is disclosed that salt and the like can restore damaged skin barrier function in a very short time.
  • the present invention provides, in the first aspect, an agent for promoting the recovery of skin pariar function, which comprises an agonist of an excitatory cell receptor or an agonist of an inhibitory cell receptor.
  • the excitatory cell receptor is a glutamate receptor
  • ATP receptor ATP receptor
  • heat-stimulated receptor ATP receptor
  • adrenaline ⁇ 2 receptor ATP receptor
  • the glutamate receptor is an NMD A (N-methyl-D-aspartate) receptor.
  • the NMDA receptor antagonist is MK-801 (dizocilpine) or D-AP5 (D- (1-)-2-amimino 5-phosphonopentanoic acid).
  • the ATP receptor is P2X (capriogenic purino receptor), preferably a P2X3 receptor (modotropic purino receptor subtype 3).
  • the antagonist of the ATP receptor is suramin, PPADS (pyridoxal phosphate-16-azophenyl).
  • TNP-ATP trinitrophone ATP
  • the heat-stimulated receptor is VR-1 (vanilloid receptor subtype 1).
  • the VR-1 antagonist is capsazepine.
  • the antagonist of the adrenerin 32 receptor is ICI-118, 551 ((chi) -1-1_ [2,3-— (dihid mouth_7-methyl-1H— Indene 4- (yl) oxy] — 3 — [(1-methylethyl) amino] -12-butanol).
  • the inhibitory cell receptor is a GABA ( ⁇ -aminobutyric acid) receptor or a glycine receptor.
  • the GA receptor is a type I GAB receptor (a C1-channel-incorporated bicycline-sensitive receptor).
  • the agonist of the type A-GABA receptor is GABA, muscimol or isogpasin.
  • the skin barrier function recovery promoter is an external preparation for skin.
  • the present invention relates to a method for screening a skin-parallel function-recovery activity promoting substance, which comprises suppressing or suppressing the excitatory activity of an excitatory cell receptor.
  • Select a candidate substance that promotes inhibitory activity apply the substance to mammalian skin, and A substance that reduces the transepidermal water loss or a substance that reduces or suppresses the increase in the thickness of the skin subjected to dry stimulation.
  • the selection of a substance that suppresses the excitatory activity of the excitatory cell receptor or promotes the inhibitory activity of the inhibitory cell receptor is performed by selecting a substance that is a calcium ion or sodium ion in the cell. Or, evaluate the effect on chloride ion concentration.
  • the excitatory cell receptor is a glutamate receptor
  • An ATP receptor, a heat-stimulated receptor or an adrenaline j32 receptor, and the inhibitory cell receptor is a ⁇ -aminobutyric acid receptor or a glycine receptor.
  • the present invention relates to a method for screening a substance for promoting skin pariole function recovery activity, which comprises causing a substance which is a candidate for a skin parier function recovery activity promoter to act on a mammalian cell, and thereafter, It is intended to provide a method comprising measuring a chlorine ion concentration and selecting a substance which increases the intracellular chloride ion concentration as a substance promoting the recovery of the skin parer function.
  • human epidermal keratinocytes are used as the cells.
  • the present invention relates to a method of screening a substance for promoting skin pariole function recovery activity, which comprises causing a substance that is a candidate for a skin parier function recovery activity promoter to act on mammalian cells, and then in the cell.
  • Providing a method comprising measuring calcium or sodium ion concentration and selecting a substance which reduces the intracellular calcium or sodium ion concentration as a substance which promotes the recovery of skin barrier function. .
  • human epidermal keratinocytes are used as the cells.
  • the present invention relates to a method for improving skin, comprising: It is intended to provide a method characterized by applying a skin external preparation containing an agonist of an inciting cell receptor or an agonist of an inhibitory cell receptor to promote the recovery of the skin parier function.
  • FIG. 1 is a graph showing the relationship between D-glutamic acid, L-glutamic acid and L-aspartic acid and the recovery of skin parier function.
  • Fig. 2 is a graph showing the relationship between the excitatory receptors antagonist MK-801 and agonist NMDA and the recovery of skin paria function.
  • Fig. 3 shows that MK-801 and NMDA are simultaneously applied to the skin. It is a rough showing skin PARIA function recovery when applied.
  • FIG. 4 is a Draf showing the relationship between the excitatory receptor antagonist D—AP5 and the recovery of skin parier function.
  • FIG. 5 is a graph showing the relationship between the excitatory receptors antagonist MK-801 and agonist NMDA and the thickness of the skin subjected to the dry stimulus.
  • FIG. 6 is a graph showing the relationship between the excitatory receptors antagonist MK-801 and agonist NMDA and intracellular Ca 2+ concentration.
  • FIG. 7 is a graph showing the relationship between the excitatory receptor, an ionotropic ATP receptor P2X3, and skin barrier recovery.
  • Figure 8 shows the function of the skin barrier when suramin, PPADS, and TNP—ATP, the antagonists of the ionotropic ATP receptor excitatory receptor, are applied to the skin. It is a graph which shows recovery.
  • FIG. 9 is a graph showing the relationship between ptsazepine, which is an antagonist of the excitatory receptor VR-1, and cabsaicin, which is an agonist, and the recovery of skin paria function.
  • FIG. 10 is a graph showing the relationship between the antagonist and agonist of each of adrenalin j31 and ⁇ 2 receptors, which are excitatory receptors, and the recovery of the skin barrier function.
  • FIG. 11 is a graph showing the relationship between the type I GAB II receptor, which is an inhibitory receptor, and the recovery of skin parer function.
  • FIG. 12 is a graph showing the recovery of skin parier function when GABA, an inhibitory receptor agonist, and bicuclimetmet bromide, an agonist, are simultaneously applied to the skin.
  • FIG. 13 is a graph showing the relationship between the inhibitory receptor agonist GABA and antagonist BM and the thickness of the skin subjected to the dry stimulus.
  • FIG. 14 shows the inhibitory receptor agonist GABA and 4 is a graph showing the relationship between antagonist BM and intracellular C 1— concentration.
  • FIG. 15 is a graph showing the relationship between glycine receptors, which are excitatory receptors, which are inhibitory receptors, and skin barrier recovery.
  • FIG. 16 is a graph showing the relationship between the influx of chloride ions or calcium ions into cells and the recovery of skin barrier function.
  • FIG. 17 is a histological observation photograph showing the relationship between the influx of chloride ions or calcium ions into cells and the recovery of skin parer function.
  • A is the result of the control with only the acetone treatment (magnification X7,500)
  • B is the result of the C 1 -ionophore treatment (magnification X7,500)
  • D is the enlarged view of (B).
  • C is the result of Ca 2+ ionophore treatment (magnification X7,500)
  • E is an enlarged view of (C) (magnification X75,000).
  • excitatory cell receptor refers to a skin cell, i.e., a cell constituting the stratum corneum, epidermis, basement membrane, dermis, etc.
  • Excitatory receptor Such excitation is caused by the Ca 2+ and Na + ions flowing into the cells by binding of the agonist to the receptor.
  • excitable cell receptors that are currently found in skin cells include, for example, glutamate (NMDA) receptor, ATP receptor, heat-stimulated receptor, and adrenaline] 8 Receptor, acetylcholine • Nicotinic acid-like receptor, serotonin receptor and the like.
  • glutamate (NMDA type) receptor NMDA type receptor
  • ATP receptor ATP receptor
  • heat-stimulated receptor for example, VR-1, or adrenaline
  • the present invention is not limited to the above-mentioned excitatory receptors and the excitatory receptors presently present in skin cells, but extends to other receptors and receptors whose presence is to be found in the future. It is.
  • Antagonists of glutamate (NMDA type) receptor include MK_801, D-AP5, D-AP7, Conantokin T, (R) -CPP and the like. In the present invention, MK-801 or 0-5 is preferred.
  • Antagonists of the ATP receptor include suramin, PPADS, TNP-STP and the like.
  • Antagonists of VR-1 which is a thermal stimulus receptor include cabsazepine and the like.
  • Antagonists of nicotinic acid-like receptors include benzoquinodinum, conde 1 phine, ⁇ ; Antagonists of serotonin receptors include MDL-7222, Y-251300, metoclopramide and the like. It is to be understood that the present invention is not limited to the above-mentioned antagonists or antagonists of excitatory receptors presently present in skin cells, but also to other and future antagonists whose presence is to be found. .
  • the term "inhibitory cell receptor” refers to an inhibitory receptor present on the surface of cells constituting skin cells, for example, keratinocytes, that induces cells from an excited state to a suppressed state. Such suppression is caused by the entry of C1- into cells by binding of the agonist to the receptor.
  • Such suppressor cell receptors that are currently found in skin cells include, for example, GABA receptors, glycine receptors, and the like. It is to be understood that the present invention is not limited to inhibitory receptors present in skin cells at present, but extends to receptors found in the future.
  • GABA receptor agonists include GABA, muscimol, isogpasin, TACA or THIP, and the like.
  • Glycine receptor agonists include glycine, alanine, hypotaurine, serine, taurine and the like. In the present invention, glycine is preferred. It is to be understood that the present invention is not limited to the agonists described above and those of the inhibitory receptors presently present in skin cells, but also extends to other and future agonist receptors.
  • the effect of promoting the recovery of skin parer function can be evaluated by various methods.
  • the effect of tape stripping on the skin of mammals eg, humans, mice, rats, rabbits, etc.
  • the process of restoring the function of the damaged skin barrier to its original state is evaluated quantitatively or qualitatively by evaluating the amount of transepidermal water loss (TEWL) as an index.
  • TEWL transepidermal water loss
  • TEWL transdermal water loss
  • test sample at an appropriate concentration (eg, 1 mM) in an appropriate amount (eg, 100 ⁇ l) on an appropriate substrate, eg, plastic wrap, and affix it to the back of the mammal for an appropriate amount of time. After 5 minutes, remove it.
  • concentration eg, 1 mM
  • amount eg, 100 ⁇ l
  • the amount of water loss Measure TEWL is calculated by subtracting the TEWL value before the removal of the stratum corneum from the measured value at each time.
  • the recovery rate can be determined according to the following equation:
  • promoting the recovery of the skin barrier function means that the transepidermal water loss (TEWL) immediately after the tape stripping of the skin is 0% and the value before the tape stripping is 10%.
  • a value of 0% means that the value of TEWL at each measurement time clearly has a significant difference when compared with the control, and has an effect of promoting the ⁇ EWL recovery rate.
  • the skin is treated with a Cot ton ball impregnated with a 4% aqueous solution of sodium dodecyl sulfate (SDS) to make a judgment. different.
  • the effect of promoting the recovery of skin parrier function can also be determined based on the measurement of skin thickness.
  • a dry stimulus is applied to the skin, the skin tissue is damaged and the skin parrier function is reduced, and as a result, the thickness of the skin increases due to abnormal proliferation of epidermal cells. Therefore, a decrease in the function of skin Paria can be measured by histological observation of skin thickness.
  • Such a histological observation may be performed, for example, as follows. Mammals, preferably hairless mice, are bred in advance in dry conditions, for example in an environment at room temperature and a humidity of 10% or less, until the TEWL reaches a desired level, for example, about 2.5 to 3.5 mg / cni 2 / h.
  • the test substance is dropped on the treated skin, and after that, the skin is cultivated in the above-mentioned environment for an appropriate time to give a dry stimulus, and then the skin of the treated portion is collected, and the skin sample is stained or the like.
  • the thickness of the epidermis is measured by microscopic observation.
  • the agonist of the excitatory cell receptor or the agonist of the suppressive cell receptor according to the present invention significantly promotes the recovery of the skin pariar function, thereby significantly suppressing abnormal epidermal proliferation caused by dry stimulation. However, it can even reduce the thickness of the skin.
  • a method for screening the substance for promoting skin PAR recovery is to select a substance that is a candidate for an agonist of an exciting cell receptor or an agonist of an inhibitory cell receptor, and apply the substance to mammalian skin. This can be achieved by selecting a substance that reduces the transepidermal water loss of the skin.
  • the excitatory receptor binds to the agonist and causes the influx of Ca 2+ and Na + ions into the cell, thereby inducing the cell to an excitable state
  • the receptor binds the agonist to the cell, causing the influx of C 1 -ions into the cell, and inducing the cell from an excited state to a suppressed state.
  • Antagonist an excitatory receptor
  • Antagonist has the opposite effect to agonist, i.e., it causes a decrease in intracellular Ca 2+ and Na + ions, so the candidate substance is intracellular Ca2 + or Na +. It can be selected by evaluating the decrease of the ion and the increase of the C1-ion.
  • candidate substances include an increase in intracellular C 1 -ion, Ca 2+ and It can be selected by evaluating the decrease in Na + ion.
  • the concentration of intracellular Ca 2+ , Na + ions, and CI ions can be measured by conventional methods.
  • a method for screening receptor agonists by assessing calcium ion concentration on the cell surface is described. Specifically, in this application, it is a stimulus receptor on the surface of epithelial cells.
  • VR1 receptor vanilloid receptor subtype 1
  • P2X receptor agonists increase intracellular calcium ion concentration.
  • a method for screening the agonist of the receptor by evaluating the increase in the calcium ion concentration in epithelial cells due to the effect of a test substance is disclosed.
  • a predetermined quinoline derivative is often used as an indicator of cr ion.
  • Such a quinoline derivative is used as an indicator of cr ion based on its decay-causing function of fluorescence due to the presence of a haptogenide ion.
  • Such quinoline derivatives include SPQ (6-Methoxy-N- (3-sulfopropyl) quinolinium 'monohydrate) and MQA E (N-Ethoxycarbonylmethyl-6-methoxyquinodium bromide).
  • DiH—MEQ (6-Methoxy N-ethylquinoline iodide) and the like.
  • DiH-MEQ is available from Molecular Probes as its oxidized form, MEQ (6-Methoxy-1-N-ethylquinoline). Therefore, for example, selection of a test substance that is a candidate for an antagonist of the excitatory cell receptor or an agonist of the inhibitory cell receptor is performed by evaluating the intracellular calcium ion concentration as described below. be able to.
  • epidermal cells for example, epidermal keratinocytes
  • a suitable cell culture medium for example, KGM medium according to a conventional method.
  • the day before the measurement of calcium ion inoculate the cultured cells into a 96-well plate at an appropriate cell concentration (for example, about 2 ⁇ 10 5 cells / well).
  • an appropriate cell concentration for example, about 2 ⁇ 10 5 cells / well.
  • an appropriate buffer for example, BBS (Balanced salt solution) and a calcium-sensitive fluorescent dye, for example, Fluo 3-AM (Dainippon Pharmaceutical) are added to the cultured epidermal keratinocytes (for example, Incubate (for example, at 37 ° C for 60 minutes) under appropriate conditions, and transfer this fluorescent dye into the above cultured keratinocytes. Is taken.
  • Other pigments include calcium-sensitive fluorescent dyes such as Quin 2, Quin 2—AM, Fura_2, Fura-2_AM, Indo—l, Fluo-3, Rhod-2.
  • a calcium-sensitive photoprotein such as E. coli or a reagent used for nuclear magnetic resonance with 19 F such as 5-FBAPTA may be used.
  • the cells are washed, freshly buffered with the same buffer (BBS) is added, and the mixture is allowed to stand (for example, 15 minutes). Thereafter, the buffer is removed from the cultured epidermal keratinocytes, and a test substance dissolved in the same buffer is added to the cells to stimulate the cells. As a control, add the same buffer in which the test substance is not dissolved to the cells.
  • BBS buffered bovine serum
  • Fluorescence is measured in a conventional manner using a fluorescence microplate reader at excitation and emission wavelengths corresponding to the colorants, for example, over time.
  • the intracellular calcium ion concentration can be calculated according to the following equation.
  • F nin Fluorescence value of dye when EDTA is added and Ca 2+ is blocked (minimum fluorescence intensity)
  • F max fluorescence values of the dye in the excess presence of C a 2+ (Yabu ⁇ cell membranes Ri by the surfactant) (the maximum fluorescence intensity)
  • the test substance is expected to be an agonist of an excitatory cell receptor or an agonist of an inhibitory cell receptor.
  • test substance that is a candidate for an agonist of an excitatory cell receptor or an agonist of an inhibitory cell receptor is performed by using, for example, DiH-MEQ as described below. It can also be done by evaluating the concentration.
  • Stimulation of cells with a test substance can be performed in the same manner as described for the evaluation of intracellular calcium concentration.
  • DiH-MEQ (6-Methoxy-N-ethylquinoline iodide), in a suitable physiological buffer (eg PBS) and fill it with 25-50 ⁇ 5 DiH-MEQ.
  • a suitable physiological buffer eg PBS
  • DiH—MEQU can be prepared as described in Molecular Probes, Inc., Molecular Probes Product Information (Revised January 31, 2001) MP06886.
  • DiH-MEQ may be prepared in DMSO (dimethylsulfoxide) into a concentrated stock solution (25-50 mM), and the stock solution may be diluted in physiological buffer.
  • test substance is expected to be a candidate for the agonist of the excitatory cell receptor or the agonist of the inhibitory cell receptor.
  • the substance selected as the agonist of the excitatory cell receptor or the agonist of the inhibitory cell receptor selected in this manner was subjected to the above-mentioned effect of promoting the recovery of skin parier function, thereby reducing the amount of transdermal water loss.
  • Antagonists of excitatory cell receptors and agonists of inhibitory cell receptors can be screened by selecting substances that reduce or suppress the increase in the thickness of the skin subject to the dry stimulus. You can lean.
  • the substance for promoting recovery of the function of the skin paria of the present invention that is, the agonist of the excitatory cell receptor or the agonist of the inhibitory cell receptor is, for example, an ointment, a cream, an emulsion, a lotion, a pack, a bath agent, etc. It can be incorporated into cosmetics, pharmaceuticals, and quasi-drugs, and can be applied to the skin, preferably as an external preparation for skin.
  • the blending amount is not particularly limited, but based on the total amount of these bases, 0.001 mM to: LM, preferably 0.01 to: L 0 0 mM, more preferably 0.1 to: L will be around 0 mM.
  • the effect of promoting the recovery of skin pari function was based on the skin pari function destroyed by applying tape stripping to the skin of hairless mice (Type HR-1, HOSHINO, Japan).
  • the process of recovery to the state was evaluated using the transepidermal water loss (TEWL) as an index, as follows.
  • T EWL transepidermal water loss
  • ME ECO water loss measuring device
  • the value at this time is assumed to be a TE WL recovery rate of 100%.
  • the skin is destroyed by peeling off the stratum corneum of the hairless mouse using cellophane tape. At this time, this operation is repeated until the value of TEWL becomes approximately 800 to 900.
  • the value obtained by subtracting the measurement value before peeling off the stratum corneum from the measurement value after peeling off the stratum corneum is defined as the deepest damage state, that is, the recovery rate of 0%.
  • test sample placed on a plastic wrap at 100 ⁇ m with ImM, affix it to the back, and peel it off after 5 minutes.
  • the recovery rate is calculated according to the following formula:
  • D-, L-glutamic acid and L-aspartic acid are known to be neurotransmitters that bind to glutamate receptors in vivo and exert a neuroexcitatory action.
  • D-glutamic acid promotes the recovery of skin pallia
  • L-glutamic acid and L-aspara Formic acid delayed skin recovery. Therefore, it was suggested that glutamate receptor, which is an excitatory receptor, is involved in the recovery of paria from skin.
  • Antagonist MK-801 promotes skin barrier recovery, while agonist NMDA slows the recovery of the barrier.
  • Antagonist MK-801 an excitatory acid receptor having the effect of promoting the recovery of skin function on skin, on the skin thickness was observed histologically.
  • Hairless mice were bred in advance in an environment at a temperature of 22 to 25 ° C and a humidity of 10% or less.
  • the barrier on the back skin of the hairless mouse was destroyed using acetone until the TEWL became 2.5 to 3.5 mg / cm 2 / h.
  • an aqueous solution of MK_801, NMDA or AMPA ( ⁇ -amino-3-hydroxy-15-methinole-4-isoxazolepropionic acid) in 200 mM was dropped on the skin 200 ⁇ l each, Thereafter, the skin was bred in the above environment for 48 hours to give a dry stimulus, and the skin of the treated portion was collected.
  • ⁇ ⁇ is a ligand specific to the ionotropin glutamate receptor, similar to NMDA.
  • the control is uncoated with any solution.
  • the results are shown in Fig. 5.
  • the results in Fig. 5 show that the application of 8-801 significantly reduces the thickness of the skin compared to the control, and thus the antagonist of the excitatory acid receptor It was demonstrated that ⁇ -801 significantly suppressed the abnormal epidermal proliferation caused by the dry stimulus and improved the skin parrier effect.
  • AMP A like NMDA, is a ligand specific for the ionotropic glutamate receptor, but does not significantly increase skin thickness compared to control. It was shown to behave differently from NMDA.
  • NHEK Normal human epidermal keratinocytes
  • Humedia — KB 2 Humedia — KB 2 (Kurabo Co., Ltd.) containing drocortisone (0.5 ⁇ g / ml), gentamicin (50 ⁇ g / ml) and amphotericin-I B (50 ng / ml)
  • the culture medium of cells grown on force glass was first replaced with a BSS buffer of the following composition: (all in mM) NaCl 150; KC 15; CaCl 2 1.8; MgCl 2 1.2; N_2- Hydroxicetyl piperazine-N 2-ethanesulfonic acid (HEPES) 25; D-glucose 10 (pH 7.4) 0
  • the cells were converted to 5 ⁇ M dye fura-2 acetomethyl methyl ester (fur a-2AM) (molecular
  • the cells were loaded with fura-2 by incubating in BSS for 45 minutes at room temperature (20-22 ° C) at room temperature (Probes). The cells were then washed with BSS buffer and incubated for a further 15 minutes to deesterify the loaded dye.
  • the BSS buffer was removed from the cells, and a test substance (NMDA or MK-801 + NMDA: lmM, respectively) dissolved in the buffer was added to the cells, and the cells were tested for about 30 minutes. The substance was stimulated.
  • a test substance NMDA or MK-801 + NMDA: lmM, respectively
  • the cover glass was mounted on an inverted fluorescence microscope (TMD-130; Nikon) equipped with a 75 W xenon lamp and a band pass filter of 34O and 36OnM, and the measurement was performed at room temperature.
  • the image data was recorded using a high-sensitivity silicon intensifier and target camera (C-2741-08; Hamamatsu Photonitas Co., Ltd.), and a Ca 2+ analysis system (Full Sawa Laboratories Appliance) And prayed for each other.
  • Figure 6 shows the results.
  • NMDA-type glutamate receptor agonist NMDA exerts an effect of significantly increasing the intracellular Ca 2+ concentration. It was also suggested that antagonist MK-801 offset such effects of NMDA, and that MK-801 significantly reduced intracellular Ca 2+ concentration. Therefore, it was demonstrated that the test substance can be identified in vitro as an excitatory receptor agonist or antagonist through measurement of increase and decrease of intracellular Ca 2+ concentration. Was done.
  • thermoreceptor VR-1 Evaluation of the relationship between thermoreceptor VR-1 and recovery of skin paria function
  • a mixed aqueous solution of Samoterol hemi-fumarate and betataxol hydrochloride hemihydrate (ImM each) was applied to the skin of hairless mice as described in the above test method, and a TEWL test was performed.
  • procaterol hydrochloride (Tocris) aqueous solution (ImM), which is an agonist of the drenerin ⁇ 2 receptor
  • IC 1-118,551 (Tocris) aqueous solution (1 mM)
  • a mixed aqueous solution (1 mM each) of ICI-118 and 551 with hydrochloric acid and potassium hydroxide was applied to the epidermis of hairless mice as described in the above test method, and a TEWL test was performed.
  • GABA receptor is an inhibitory neuronal receptor and has a C1-channel.
  • Bicucliline-sensitive A-type GABA
  • G-protein coupled B-type GABA
  • C-type GAB A C-type GAB A
  • Hairless mice were bred in advance in an environment at a temperature of 22 to 25 ° C and a humidity of 10% or less.
  • the barrier on the back skin of the hairless mouse was ruptured using acetone until the TEWL became 2.5 to 3.5 mg / cm 2 / h.
  • a 1 mM aqueous solution of GABA, a mixed aqueous solution of GABA and BM (ImM each), or water was added dropwise to the skin at 200 ⁇ each, and then raised for 48 hours in the above environment. After applying the dry stimulus, the skin of the treated area was collected.
  • GABA GABA receptor agonist
  • BM BM
  • C 1 -imaging was performed by dissolving DiH—MEQ (Molekiura Iprobe) in PBS to prepare a 25-50 solution of 0111—1 ⁇ £ Q.
  • DiH-MEQ was prepared as described in Molecular Probes Product Information (Revised January 31, 2001) MP06886 from Molecular Probes' MEQ force. If necessary, prepare DiH-MEQ into a concentrated stock solution (25-50 mM) using DMSO (dimethylsulfoxide), and transfer the stock solution to physiological buffer. May be diluted.
  • the cells are incubated with the DiH-MEQ-filled solution for 5 minutes, then GABA or GABA + BM (1 mM aqueous solution each) is added to the cells, and the cells are incubated for about 5 minutes. Incubation.
  • This example demonstrates the relationship between the influx of various ions into cells and the recovery of skin paria function.
  • C 1 -ionophore chloride ionophore 1 (Fluka, Switzerland) or Ca 2 + ionophore (ionomycin) (Wako Pure Chemical Industries, Ltd.) was used as described in the above test method and the skin of hairless mice And subjected to a TEWL test.
  • Figure 16 shows the results.
  • C 1 -ionophore is a compound that promotes the influx of chloride ions into cells.
  • the skin parrier function was significantly restored in the skin of mice treated with C 1 -ionophore as compared to the case where only control (water) was applied. Therefore, it was clarified that the influx of chloride ions into cells restored the function of the skin barrier, and by measuring the increase or decrease of intracellular C1-concentration, the substance that promotes the recovery of skin function was in vitro. It has been confirmed that ro can be screened.
  • hairless mice were raised in advance in an environment at a temperature of 22 to 25 ° C and a humidity of 10% or less, as in Example 8, until the TEWL reached 2.5 to 3.5 mg / cm 2 / h. and Yabu ⁇ the path Ria one hairless mouse dorsal skin with seton, then CI - droplet 1 mu Micromax aqueous or C a 2 + Ionofoa of 1 mu Micromax aqueous solution to 2 0 0 ⁇ 1 skin respective Ionofoa After that, the animals were bred for 48 hours in the above environment to give a dry stimulus, and then the skin of the treated portion was collected.
  • FIG. 17 (A) shows the result of the control with only the acetate treatment (magnification X7,500), (B) shows the result of the C 1 -ionophore treatment (magnification X7, 500), and (D) shows the result. (B) Magnified view (magnification X75,000), (C) Ca2 + ionophore treatment result (magnification X7,500), (E) Magnified view of (C) (magnification ⁇ 75,000) Is shown.
  • the stratum corneum that prevents the loss of water from living organisms in mammals.
  • the stratum corneum is constantly renewed, and in healthy skin these structures continue to form without interruption.
  • the lamellar granules containing lipids are formed in the granular layer, and lipids inside the lamellar granules are released extracellularly by exocytosis as the cells become keratinized, forming a layered structure of lipids in the intercellular space (Mitsuhiro Denda) , "Skin" Vol. 41, No. 5, pp. 518-523, October 1999).
  • the lipid layer is a major component of the stratum corneum, which is responsible for the function of the skin paria. The thicker the lipid layer, the higher the parier function.
  • FIG. 18 shows (A) the control in which only acetone was treated in FIG.
  • the agonist of the excitatory cell receptor and the agonist of the inhibitory cell receptor are effective in promoting the recovery of the skin parrier function. According to the present invention, there is provided a novel and effective skin barrier function recovery promoter.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Dermatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Birds (AREA)
  • Engineering & Computer Science (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Molecular Biology (AREA)
  • Toxicology (AREA)
  • Emergency Medicine (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Cosmetics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

It is intended to provide skin barrier function repair accelerators containing an excitation cell receptor antagonist or a regulatory cell receptor agonist and a method of screening a substance having an activity of accelerating the repair of skin barrier function.

Description

明 細 書 皮膚パリァー機能回復促進剤 技術分野  Description Skin PARIA function recovery promoter Technical field
本発明は、 興奮性細胞受容体のアンタゴニス ト又は抑制性細胞受 容体のァゴニス トを含有する皮膚パリァー機能回復促進剤及び皮膚 パリァー機能回復促進活性を有する物質のスク リーニング方法に関 する。 背景技術  TECHNICAL FIELD The present invention relates to a skin parer function recovery promoter containing an excitatory cell receptor agonist or an inhibitory cell receptor agonist, and a method for screening a substance having a skin parer function recovery promoting activity. Background art
種々の皮膚疾患、 例えば、 ア ト ピー性皮膚炎、 乾癬、 接触性皮膚 炎等に見られる肌荒れ症状においては、 皮膚からの水分の消失が、 健常な皮膚に比べて盛んであることが知られている。 このいわゆる 経皮水分蒸散量 (T EWL) の増加には、 皮膚内において水分の保 持ゃパリア一と しての機能を担ってレ、ると考えられる成分の減少が 関与しているものと考えられてきた。  It is known that the loss of moisture from the skin is more active in healthy skin symptoms in various skin diseases such as atopic dermatitis, psoriasis, and contact dermatitis. ing. This so-called increase in transepidermal water loss (TEWL) is attributed to a decrease in components that are thought to play a role in retaining moisture in the skin and as one of the main functions. Has been considered.
従来、 皮膚疾患や肌荒れに対して改善 · 予防効果を有する有効成 分と して、 水分保持機能や皮膚パリア一機能を担う皮膚内成分を皮 膚に補充するという観点から、 NMF (Natural Moisturizing Fac tor) としてのアミ ノ酸や、 角質細胞間脂質と しての脂質類、 その 他ヒアル口ン酸等のムコ多糖あるいはこれらの類似物質が、 安全性 も高いことから、 化粧料や皮膚外用剤に配合されている。  Conventionally, NMF (Natural Moisturizing Fac) has been used as an active ingredient that has the effect of improving and preventing skin diseases and rough skin from the viewpoint of replenishing the skin with components that are responsible for water retention and skin parietal function. amino acids as tor), lipids as keratinocyte intercellular lipids, and other mucopolysaccharides such as hyaluronic acid, or similar substances, are also highly safe. It is blended in.
また、 最近では、 皮膚パリア一機能を担う皮膚内成分の生合成を 活性化させるような特定の物質が、 肌荒れに対して改善効果を有す るという報告もなされている (特開平 9 一 2 9 5 2号公報) 。  Recently, it has been reported that a specific substance that activates the biosynthesis of a component in the skin responsible for one function of the skin has an effect of improving skin roughness (Japanese Patent Application Laid-Open No. 912/1990). No. 952).
肌荒れ改善 · 予防効果を有する物質については多くの研究がなさ れてきたが、 皮膚バリァー機能の改善若しく は回復効果を有する物 質についての研究は十分ではなく、 皮膚パリ ァー機能に対する改善 効果と肌荒れ改善 · 予防効果との関係は明らかになっていないため 、 肌荒れ改善 · 予防効果がある物質が必ずしも皮膚パリァー機能に 対する改善効果があるとは限らない。 Improvement of rough skin · There is not much research on substances with preventive effects. However, studies on substances that have an effect of improving or recovering skin barrier function are not sufficient, and the relationship between the effect of improving skin barrier function and the effect of improving and preventing skin roughness is not clear. Therefore, a substance having the effect of improving and preventing rough skin does not always have the effect of improving the skin parer function.
一方、 皮膚パリ ア一機能が低下すると、 皮膚の皮膚機能が低下し 、 皮膚增殖性異常等が起こることが報告されている。 特に、 高齢者 の場合は、 低下した皮膚バリ ァー機能の回復には長い時間がかかり 、 加齢に伴う皮膚の皮膚機能の低下による皮膚増殖性異常等を防止 するために有効な新規の皮膚バリァー機能回復促進剤に開発が要望 されていた。  On the other hand, it has been reported that when the function of the skin barrier is reduced, the skin function of the skin is reduced, and abnormal skin reproductivity occurs. In particular, in the case of the elderly, it takes a long time to recover the decreased skin barrier function, and new skin is effective to prevent abnormal skin proliferation due to a decrease in skin function with aging. Development of a barrier function recovery accelerator was requested.
ところで、 哺乳動物の皮膚細胞表層にも、 神経細胞表層において 認められる各種神経細胞受容体と同等のものが存在することが近年 見出されている ( enever , et. al. The Journal of Investigative Dermatology (1999), Vol.112, pp, 337-341)。 神経細胞の化学的 シナプスにおける情報伝達を担う神経細胞におけるこのよ うな興奮 性受容体及び抑制性受容体の作用機序についてはかなり解明される に至っているが、 皮膚細胞におけるそれらの働きについてはほとん ど研究されていない。  By the way, it has recently been found that mammalian skin cell surfaces also have an equivalent of various neuronal receptors found on the nerve cell surface (enever, et.al. The Journal of Investigative Dermatology ( 1999), Vol.112, pp, 337-341). The mechanism of action of these excitatory and inhibitory receptors in neurons responsible for signaling at the chemical synapse of neurons has been largely elucidated, but their function in skin cells is largely unknown. Not studied.
皮膚細胞も神経細胞等と同様にエネルギーを消費しながら細胞膜 内外において電位差を造っている。 かかる電位差は、 主と して細胞 表層上の各種受容体による Ca2+、 Na+ 、 CI—イオンチャネルの開閉 によるものである。 特開平 2 0 0 0 - 2 9 0 1 3 5号公報において は、 一定の Ca2+チャネルの阻害剤又は Ca2+チャネルの阻害作用を有 する金属塩、 例えば、 マンガン塩、 ス ト ロ ンチウム塩、 ランタン塩 、 コバルト塩、 亜鉛塩、 マグネシウム塩、 鉄塩、 ノ リ ウム塩、 ジル チアゼム及びその塩、 ベラパミル及びその塩、 二フエジピン及びそ の塩等がダメージを受けた皮膚パリ ア一機能を極めて短時間のうち に回復させることが開示されている。 かかる金属塩が皮膚パリ ア一 機能の回復を促進するメ力ニズム及び作用機序については不明とさ れているが、 金属塩による外部電位の負荷と皮膚パリ ァー回復機能 の促進との間に何らかの関係があることがある程度想定できる。 本発明者は、 このよ う に、 皮膚細胞にも神経細胞表層に存在する 受容体が存在し、 また細胞内外電位変化によ り皮膚バリァー機能回 復が図れるという事実から、 皮膚細胞に存在する興奮性 ·抑制性受 容体の皮膚パリア一機能回復への関与を調べ、 更にかかる細胞受容 体の作用機序の観点から、 従来にはない新規な皮膚パリア一機能回 復促進剤を発見できるかどうかを検討した。 発明の開示 Skin cells, like nerve cells, consume energy and create potential differences inside and outside the cell membrane. This potential difference is mainly due to the opening and closing of Ca 2+ , Na + , and CI ion channels by various receptors on the cell surface. Japanese Patent Application Laid-Open No. 2000-290135 discloses a Ca 2+ channel inhibitor or a metal salt having a Ca 2+ channel inhibitory action, for example, manganese salt, strontium Salt, lanthanum salt, cobalt salt, zinc salt, magnesium salt, iron salt, norium salt, jill thiazem and its salt, verapamil and its salt, difedipin and its It is disclosed that salt and the like can restore damaged skin barrier function in a very short time. The mechanism and mechanism of action by which such metal salts promote the recovery of skin barrier function is not known, but between the loading of external potential by metal salts and the promotion of skin barrier recovery function. It can be assumed that there is some relationship between The inventor of the present invention has found that skin cells have receptors present on the surface of nerve cells, and that skin barrier cells can be recovered by changes in intracellular and extracellular potentials. Investigate the involvement of excitatory and inhibitory receptors in the recovery of skin paria function, and from the viewpoint of the mechanism of action of such cell receptors, can a new, novel skin paria function recovery promoter be discovered? We examined whether. Disclosure of the invention
鋭意研究の結果、 本発明者は、 興奮性細胞受容体のアンタゴニス ト又は抑制性細胞受容体のァゴニス トが、 皮膚パリ ァー機能回復促 進に有効であることを見出した。  As a result of intensive studies, the present inventors have found that antagonists of excitatory cell receptors or agonists of inhibitory cell receptors are effective in promoting the recovery of skin parier function.
従って、 本発明は、 第一の態様において、 興奮性細胞受容体のァ ンタゴニス ト又は抑制性細胞受容体のァゴニス トを含有することを 特徴とする皮膚パリ ァー機能回復促進剤を提供する。  Accordingly, the present invention provides, in the first aspect, an agent for promoting the recovery of skin pariar function, which comprises an agonist of an excitatory cell receptor or an agonist of an inhibitory cell receptor.
一の観点において、 前記興奮性細胞受容体はグルタミ ン酸受容体 In one aspect, the excitatory cell receptor is a glutamate receptor
、 A T P受容体、 熱刺激受容体及びァ ドレナリ ン β 2受容体から成 る群から選ばれる。 , ATP receptor, heat-stimulated receptor, and adrenaline β2 receptor.
更なる観点において、 前記グルタミン酸受容体は N M D A ( N— メチルー D—ァスパラギン酸) 受容体である。  In a further aspect, the glutamate receptor is an NMD A (N-methyl-D-aspartate) receptor.
更なる観点において、 前記 N M D A受容体のアンタゴニス トは M K一 8 0 1 (ジゾシルピン) 又は D— A P 5 ( D - (一) — 2 —ァ ミ ノー 5—ホスホノペンタン酸) である。 更なる観点において、 前記 AT P受容体は P 2 X (変カ性プリ ノ 受容体) 、 好ましくは P 2 X 3受容体 (変カ性プリ ノ受容体サブタ イブ 3 ) である。 In a further aspect, the NMDA receptor antagonist is MK-801 (dizocilpine) or D-AP5 (D- (1-)-2-amimino 5-phosphonopentanoic acid). In a further aspect, the ATP receptor is P2X (capriogenic purino receptor), preferably a P2X3 receptor (modotropic purino receptor subtype 3).
更なる観点において、 前記 A T P受容体のアンタゴニス トはスラ ミ ン、 P P AD S (ピリ ドキサルホスフェー ト 一 6—ァゾフエニル In a further aspect, the antagonist of the ATP receptor is suramin, PPADS (pyridoxal phosphate-16-azophenyl).
2, , 4, 一ジスルホン酸) 又は TN P—AT P ( ト リニ ト ロフ ヱ二ノレ一 AT P) である。 2, 2, 4, or 1-disulfonic acid) or TNP-ATP (trinitrophone ATP).
更なる観点において、 前記熱刺激受容体は VR— 1 (バニロイ ド 受容体サブタイプ 1 ) である。  In a further aspect, the heat-stimulated receptor is VR-1 (vanilloid receptor subtype 1).
更なる観点において、 前記 V R— 1のアンタゴニス トはカプサゼ ピンである。  In a further aspect, the VR-1 antagonist is capsazepine.
更なる観点において、 前記ァ ドレナリ ン 3 2受容体のアンタゴニ ス トは I C I 一 1 1 8, 5 5 1 ( (士) 一 1 _ [ 2, 3— (ジヒ ド 口 _ 7—メチルー 1 H—イ ンデンー 4一ィル) ォキシ] — 3— [ ( 1 ーメチルェチル) ァミ ノ ] 一 2—ブタノール) である。  In a further aspect, the antagonist of the adrenerin 32 receptor is ICI-118, 551 ((chi) -1-1_ [2,3-— (dihid mouth_7-methyl-1H— Indene 4- (yl) oxy] — 3 — [(1-methylethyl) amino] -12-butanol).
別の観点において、 前記抑制性細胞受容体は GAB A ( γ—アミ ノ酪酸) 受容体又はグリシン受容体である。  In another aspect, the inhibitory cell receptor is a GABA (γ-aminobutyric acid) receptor or a glycine receptor.
更なる観点において、 前記 G A Β Α受容体は Α型一 GAB Α受容 体 (C 1—チャネル内蔵型ビクク リ ン感受性型受容体) である。  In a further aspect, the GA receptor is a type I GAB receptor (a C1-channel-incorporated bicycline-sensitive receptor).
別の観点において、 前記 A型一 G A B A受容体のァゴニス トは G A B A, ムシモール又はイ ソグパシンである。  In another aspect, the agonist of the type A-GABA receptor is GABA, muscimol or isogpasin.
好ましく は、 前記皮膚パリ ァー機能回復促進剤は皮膚外用剤であ る。  Preferably, the skin barrier function recovery promoter is an external preparation for skin.
本発明は、 第二の態様において、 皮膚パリ ア一機能回復活促進物 質をスク リーニングする方法であって、 興奮性細胞受容体の興奮活 性を抑制する、 又は抑制.性細胞受容体の抑制活性を促進する候補と なる物質を選定し、 当該物質を哺乳動物の皮膚に塗布して当該皮膚 の経皮水分蒸散量を減少させる物質又は乾燥刺激を受けた当該皮膚 の厚みを減少させるもしく はその増大を抑制する物質を選定するこ とを含んで成る方法を提供する。 In a second aspect, the present invention relates to a method for screening a skin-parallel function-recovery activity promoting substance, which comprises suppressing or suppressing the excitatory activity of an excitatory cell receptor. Select a candidate substance that promotes inhibitory activity, apply the substance to mammalian skin, and A substance that reduces the transepidermal water loss or a substance that reduces or suppresses the increase in the thickness of the skin subjected to dry stimulation.
一の観点において、 前記興奮性細胞受容体の興奮活性を抑制する 又は抑制性細胞受容体の抑制活性を促進する候補となる物質の選定 を、 当該物質が細胞内のカルシウムイオンもしく はナトリウムィォ ン又は塩素イオン濃度に対して及ぼす影響を評価することで実施す る。  In one aspect, the selection of a substance that suppresses the excitatory activity of the excitatory cell receptor or promotes the inhibitory activity of the inhibitory cell receptor is performed by selecting a substance that is a calcium ion or sodium ion in the cell. Or, evaluate the effect on chloride ion concentration.
別の観点において、 前記興奮性細胞受容体はグルタミン酸受容体 In another aspect, the excitatory cell receptor is a glutamate receptor
、 A T P受容体、 熱刺激受容体又はァ ドレナリ ン j3 2受容体であり 、 前記抑制性細胞受容体は γ—ァミ ノ酪酸受容体又はグリシン受容 体である。 An ATP receptor, a heat-stimulated receptor or an adrenaline j32 receptor, and the inhibitory cell receptor is a γ-aminobutyric acid receptor or a glycine receptor.
更に、 本発明は、 皮膚パリア一機能回復活促進物質をスク リー二 ングする方法であって、 皮膚パリァー機能回復活促進物質の候補と なる物質を哺乳動物細胞に作用させ、 しかる後に当該細胞内塩素ィ オン濃度を測定し、 当該細胞内塩素イオン濃度を上昇させる物質を 皮膚パリ ァー機能回復活促進物質として選定することを含んで成る 方法を提供する。  Furthermore, the present invention relates to a method for screening a substance for promoting skin pariole function recovery activity, which comprises causing a substance which is a candidate for a skin parier function recovery activity promoter to act on a mammalian cell, and thereafter, It is intended to provide a method comprising measuring a chlorine ion concentration and selecting a substance which increases the intracellular chloride ion concentration as a substance promoting the recovery of the skin parer function.
好ましく は、 細胞と してヒ ト表皮角化細胞を使用する。  Preferably, human epidermal keratinocytes are used as the cells.
更に、 本発明は、 皮膚パリア一機能回復活促進物質をスク リー- ングする方法であって、 皮膚パリァー機能回復活促進物質の候補と なる物質を哺乳動物細胞に作用させ、 しかる後に当該細胞内カルシ ゥム又はナト リ ゥムイオン濃度を測定し、 当該細胞内カルシゥム又 はナト リ ゥムイオン濃度を低下させる物質を皮膚パリ ア一機能回復 活促進物質と して選定することを含んで成る方法を提供する。  Furthermore, the present invention relates to a method of screening a substance for promoting skin pariole function recovery activity, which comprises causing a substance that is a candidate for a skin parier function recovery activity promoter to act on mammalian cells, and then in the cell. Providing a method comprising measuring calcium or sodium ion concentration and selecting a substance which reduces the intracellular calcium or sodium ion concentration as a substance which promotes the recovery of skin barrier function. .
好ましく は、 細胞としてヒ ト表皮角化細胞を使用する。  Preferably, human epidermal keratinocytes are used as the cells.
本発明は、 第三の態様において、 肌改善方法であって、 皮膚に興 奮性細胞受容体のアンタゴニス ト又は抑制性細胞受容体のァゴニス トを含有する皮膚外用剤を塗布して皮膚パリァー機能を回復促進さ せることを特徴とする方法を提供する。 図面の簡単な説明 In a third aspect, the present invention relates to a method for improving skin, comprising: It is intended to provide a method characterized by applying a skin external preparation containing an agonist of an inciting cell receptor or an agonist of an inhibitory cell receptor to promote the recovery of the skin parier function. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 D—グルタミ ン酸、 L一グルタミン酸及び L—ァスパラ ギン酸と皮膚のパリァー機能回復との関係を示すダラフである。  FIG. 1 is a graph showing the relationship between D-glutamic acid, L-glutamic acid and L-aspartic acid and the recovery of skin parier function.
図 2は、 興奮性受容体のアンタゴニス ト MK— 8 0 1及びァゴニ ス ト NMDAと皮膚パリア一機能回復との関係を示すグラフである 図 3は、 MK— 8 0 1 と NMDAを同時に皮膚に塗布した場合の 皮膚パリァー機能回復を示すダラフである。  Fig. 2 is a graph showing the relationship between the excitatory receptors antagonist MK-801 and agonist NMDA and the recovery of skin paria function. Fig. 3 shows that MK-801 and NMDA are simultaneously applied to the skin. It is a rough showing skin PARIA function recovery when applied.
図 4は、 興奮性受容体のァンタゴニス ト D— A P 5 と皮膚パリ ァ 一機能回復との関係を示すダラフである。  FIG. 4 is a Draf showing the relationship between the excitatory receptor antagonist D—AP5 and the recovery of skin parier function.
図 5は、 興奮性受容体のアンタゴニス ト MK— 8 0 1及びァゴニ ス ト NMDAと乾燥刺激を与えた皮膚の厚みとの関係を示すグラフ である。  FIG. 5 is a graph showing the relationship between the excitatory receptors antagonist MK-801 and agonist NMDA and the thickness of the skin subjected to the dry stimulus.
図 6は、 興奮性受容体のアンタゴニス ト MK— 8 0 1及びァゴニ ス ト NMDAと細胞内 C a 2+濃度との関係を示すグラフである。 図 7は、 興奮性受容体であるィオンチャネル型 AT P受容体 P2X3 と皮膚バリアー回復との関係を示すグラフである。 FIG. 6 is a graph showing the relationship between the excitatory receptors antagonist MK-801 and agonist NMDA and intracellular Ca 2+ concentration. FIG. 7 is a graph showing the relationship between the excitatory receptor, an ionotropic ATP receptor P2X3, and skin barrier recovery.
図 8は、 興奮性受容体であるィオンチャネル型 AT P受容体のァ ンタ ゴ二ス トであるスラミ ン、 P P AD S、 TN P—AT Pを皮膚 に塗布した場合の皮膚パリ ア一機能回復を示すグラフである。  Figure 8 shows the function of the skin barrier when suramin, PPADS, and TNP—ATP, the antagonists of the ionotropic ATP receptor excitatory receptor, are applied to the skin. It is a graph which shows recovery.
図 9は、 興奮性受容体 V R - 1のアンタゴニス トである力プサゼ ピン及びァゴニス トであるカブサイシンと皮膚パリア一機能回復と の関係を示すグラフである。 図 1 0は、 興奮性受容体であるア ドレナリ ン j3 1及び β 2受容体 各々のアンタゴニス ト及びァゴニス ト と皮膚パリ ア一機能回復との 関係を示すグラフである。 FIG. 9 is a graph showing the relationship between ptsazepine, which is an antagonist of the excitatory receptor VR-1, and cabsaicin, which is an agonist, and the recovery of skin paria function. FIG. 10 is a graph showing the relationship between the antagonist and agonist of each of adrenalin j31 and β2 receptors, which are excitatory receptors, and the recovery of the skin barrier function.
図 1 1 は、 抑制性受容体である Α型一 GA B Α受容体と皮膚パリ ァー機能回復との関係を示すグラフである。  FIG. 11 is a graph showing the relationship between the type I GAB II receptor, which is an inhibitory receptor, and the recovery of skin parer function.
図 1 2は、 抑制性受容体のァゴニス トである GA B Aとアンタゴ 二ス トであるビクク リ ンメ トブロ ミ ドを同時に皮膚に塗布した場合 の皮膚パリ ァー機能回復を示すグラフである。  FIG. 12 is a graph showing the recovery of skin parier function when GABA, an inhibitory receptor agonist, and bicuclimetmet bromide, an agonist, are simultaneously applied to the skin.
図 1 3は、 抑制性受容体のァゴニス ト GA B A及びアンタゴニス ト BMと乾燥刺激を与えた皮膚の厚みとの関係を示すグラフである 図 1 4は、 抑制性受容体のァゴニス ト GA B A及びアンタゴニス ト BMと細胞内 C 1—濃度との関係を示すグラフである。  FIG. 13 is a graph showing the relationship between the inhibitory receptor agonist GABA and antagonist BM and the thickness of the skin subjected to the dry stimulus.FIG. 14 shows the inhibitory receptor agonist GABA and 4 is a graph showing the relationship between antagonist BM and intracellular C 1— concentration.
図 1 5は、 抑制性受容体である興奮性受容体であるグリシン受容 体と皮膚バリ アー回復との関係を示すグラフである。  FIG. 15 is a graph showing the relationship between glycine receptors, which are excitatory receptors, which are inhibitory receptors, and skin barrier recovery.
図 1 6は、 塩素イオン又はカルシウムイオンの細胞内流入と皮膚 パリ ア一機能回復との関係を示すグラフである。  FIG. 16 is a graph showing the relationship between the influx of chloride ions or calcium ions into cells and the recovery of skin barrier function.
図 1 7は、 塩素イオン又はカルシウムイオンの細胞内流入と皮膚 パリ ァー機能回復との関係を示す組織学的観察写真である。 (A)は アセ トン処理のみをしたコントロールの結果 (倍率 X7,500) 、 (B )は C 1 -ィオノフォア処理を施した結果 (倍率 X7,500) 、 (D)は (B)の拡大図 (倍率 X75,000) 、 (C)は Ca2 +ィオノフォア処理を施 した結果 (倍率 X7,500) 、 (E)は (C)の拡大図 (倍率 X75,000) 図 1 8は、 図 1 7中の (A)ァセ トン処理のみをしたコント 口ール 、 (B) C 1—ィオノフォア処理、 (C)Ca2 +ィオノフォア処理の組織 学的観察写真において認められる脂質部分の面積の定量比較を示す グラフである。 発明を実施するための最良の形態 FIG. 17 is a histological observation photograph showing the relationship between the influx of chloride ions or calcium ions into cells and the recovery of skin parer function. (A) is the result of the control with only the acetone treatment (magnification X7,500), (B) is the result of the C 1 -ionophore treatment (magnification X7,500), and (D) is the enlarged view of (B). (Magnification X75,000), (C) is the result of Ca 2+ ionophore treatment (magnification X7,500), (E) is an enlarged view of (C) (magnification X75,000). Quantification of the area of the lipid part observed in the histological observation photographs of (A) the control only treated with acetone, (B) the C1-ionophore treatment, and (C) the Ca2 + ionophore treatment in 7 It is a graph which shows a comparison. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の構成について詳述する。  Hereinafter, the configuration of the present invention will be described in detail.
興騫性細胞受容体 Xingyuan cell receptor
本発明でいう 「興奮性細胞受容体」 とは、 皮膚細胞、 即ち、 角層 、 表皮、 基底膜、 真皮等を構成する細胞、 例えばケラチノサイ トの 表層において存在する、 細胞を興奮状態へと誘導する興奮性受容体 をいう。 かかる興奮は、 上記受容体にそのァゴ-ス トが結合するこ とで Ca2 +や Na+ィオンが細胞内に流入することによ り引き起こされ る。 このよ うな興奮性細胞受容体であって現在皮膚細胞に見出され ているものには、 例えばグルタミ ン酸 (NMDA型) 受容体、 AT P受容体、 熱刺激受容体、 ア ドレナリ ン ]8受容体、 アセチルコ リ ン • ニコチン酸様受容体、 セロ トニン受容体等が挙げられる。 本発明 においては、 グルタ ミ ン酸 (NMDA型) 受容体、 AT P受容体、 熱刺激受容体、 例えば VR— 1、 又はア ドレナリ ン ]3 2受容体が好 ましい。 本発明は、 上記の興奮性受容体や現在皮膚細胞において存 在する興奮性受容体に限定されず、 その他の受容体及び将来その存 在が見出される受容体にも及ぶものと理解されるべきである。 The term "excitatory cell receptor" as used herein refers to a skin cell, i.e., a cell constituting the stratum corneum, epidermis, basement membrane, dermis, etc. Excitatory receptor Such excitation is caused by the Ca 2+ and Na + ions flowing into the cells by binding of the agonist to the receptor. Such excitable cell receptors that are currently found in skin cells include, for example, glutamate (NMDA) receptor, ATP receptor, heat-stimulated receptor, and adrenaline] 8 Receptor, acetylcholine • Nicotinic acid-like receptor, serotonin receptor and the like. In the present invention, glutamate (NMDA type) receptor, ATP receptor, heat-stimulated receptor, for example, VR-1, or adrenaline] 32 receptor is preferred. It is to be understood that the present invention is not limited to the above-mentioned excitatory receptors and the excitatory receptors presently present in skin cells, but extends to other receptors and receptors whose presence is to be found in the future. It is.
かかる興奮性受容体は、 各々固有のアンタゴニス トが細胞周囲に 存在することでその活性は抑制される。 グルタミ ン酸 (NMDA型 ) 受容体のアンタゴニス トには、 MK _ 8 0 1 、 D— A P 5、 D - A P 7、 コナン トキン (Conantokin T)、 (R) - C P P等が挙げ られる。 本発明においては、 MK— 8 0 1又は0— 5が好まし い。 AT P受容体のアンタゴニス トには、 スラミ ン、 P PAD S、 TN P— S T P等が挙げられる。 熱刺激受容体である VR— 1のァ ンタゴニス トにはカブサゼピン等が挙げられる。 ァ ドレナリ ン β 2 受容体のアンタゴニス トには I C I — 1 1 8, 5 5 1、 アルプレノ ロール、 (土) 一ァテノ ロール、 S (一) ーァテノ ロ一ノレ、 ブロモ ァセチルアルプレノ ロールメ ンタン、 (土) - C G P - 1 2 1 7 7 A、 I C I 一 8 9 4 0 6、 プラク ト ロール、 プロネタノール、 DL - プロプラノ ロール塩酸塩、 プロプラノ ロール、 R— ( + ) プロブラ ノ ロール、 S — (一) プロプラノ ロール、 ソタロール、 S — (一) リス リ ド等が挙げられる。 アセチルコ リ ン . ニコチン酸様受容体の アンタゴニス トには、 ベンゾキノ二ゥム、 コンデノレフィ ン ( Conde 1 phine)、 ο; —コノ トキシン一 E l ( a -Cono toxin El)等が挙げられ る。 セロ トニン受容体のアンタゴニス トには、 MD L — 7 2 2 2 2 、 Y— 2 5 1 3 0、 メ トクロプラミ ド(Metoclopramide)等が挙げら れる。 本発明は、 上記のアンタゴニス トや現在皮膚細胞において存 在する興奮性受容体のアンタゴニス トに限定されず、 その他及び将 来その存在が見出されるアンタゴニス トにも及ぶものと理解される べきである。 The activity of each of these excitatory receptors is suppressed by the presence of a specific antagonist around cells. Antagonists of glutamate (NMDA type) receptor include MK_801, D-AP5, D-AP7, Conantokin T, (R) -CPP and the like. In the present invention, MK-801 or 0-5 is preferred. Antagonists of the ATP receptor include suramin, PPADS, TNP-STP and the like. Antagonists of VR-1 which is a thermal stimulus receptor include cabsazepine and the like. ICI — 118, 551, alprenolol, (sat) monoatenolol, S (one) athenolol, bromo Acetylalprenolol methane, (Sat)-CGP-12 17 7 A, ICI 18 946, practrol, pronetanol, DL-propranolol hydrochloride, propranolol, R-(+ ) Probranolol, S — (1) Propranolol, sotalol, S — (1) Lithride, etc. Acetylcholine. Antagonists of nicotinic acid-like receptors include benzoquinodinum, conde 1 phine, ο; Antagonists of serotonin receptors include MDL-7222, Y-251300, metoclopramide and the like. It is to be understood that the present invention is not limited to the above-mentioned antagonists or antagonists of excitatory receptors presently present in skin cells, but also to other and future antagonists whose presence is to be found. .
抑制性神経細胞受容体 Inhibitory neuronal receptor
本発明でいう 「抑制性細胞受容体」 とは、 皮膚細胞を構成する細 胞、 例えばケラチノサイ トの表層において存在する、 細胞を興奮状 態から抑制状態へと誘導する抑制性受容体をいう。 かかる抑制は、 上記受容体にそのァゴニス トが結合することで C1—が細胞内に流入 することによ り引き起こされる。 このような抑制細胞受容体であつ て現在皮膚細胞に見出されているものには、 例えば G A B A受容体 、 グリ シン受容体、 等が挙げられる。 本発明は、 現在皮膚細胞にお いて存在する抑制性受容体に限定されず、 将来見出される受容体に も及ぶものと理解されるべきである。  As used herein, the term "inhibitory cell receptor" refers to an inhibitory receptor present on the surface of cells constituting skin cells, for example, keratinocytes, that induces cells from an excited state to a suppressed state. Such suppression is caused by the entry of C1- into cells by binding of the agonist to the receptor. Such suppressor cell receptors that are currently found in skin cells include, for example, GABA receptors, glycine receptors, and the like. It is to be understood that the present invention is not limited to inhibitory receptors present in skin cells at present, but extends to receptors found in the future.
かかる抑制性受容体は、 各々固有のァゴニス トが結合することで その活性は抑制される。 G A B A受容体のァゴニス ト には、 G A B A、 ムシモール、 イ ソグパシン、 T A C A又は T H I P等が挙げら れる。 本発明においては、 G A B A、 ムシモール又はイソグパシン が好ましい。 グリ シン受容体のァゴニス トには、 グリシン、 ァラニ ン、 ヒ ポタウ リ ン、 セ リ ン、 タウリ ン等が挙げられる。 本発明にお いては、 グリ シンが好ましい。 本発明は、 上記のァゴニス トや現在 皮膚細胞において存在する抑制性受容体のァゴニス トに限定されず 、 その他及び将来見出されるァゴニス ト受容体にも及ぶものと理解 されるべきである。 The activity of such inhibitory receptors is suppressed by the binding of their respective agonists. Examples of GABA receptor agonists include GABA, muscimol, isogpasin, TACA or THIP, and the like. In the present invention, GABA, muscimol or isogpasin Is preferred. Glycine receptor agonists include glycine, alanine, hypotaurine, serine, taurine and the like. In the present invention, glycine is preferred. It is to be understood that the present invention is not limited to the agonists described above and those of the inhibitory receptors presently present in skin cells, but also extends to other and future agonist receptors.
皮膚パリ ァー機能回復促進効果試験 Skin parer function recovery promotion effect test
本発明において、 皮膚パリァー機能回復促進効果は様々な方法で 評価することができ、 例えば、 哺乳動物 (例えばヒ ト、 マウス、 ラ ッ ト、 ゥサギ等) の皮膚にテープス ト リ ツビングを施すことによつ て破壊された皮膚パリ ア一機能がもとの状態へ回復していく過程を 経皮水分蒸散量 (T EWL) を指標と して評価することによ り、 定 量的又は定性的に測定することができる。 かかる測定は、 例えば下 記の通りにして実施することができる。  In the present invention, the effect of promoting the recovery of skin parer function can be evaluated by various methods. For example, the effect of tape stripping on the skin of mammals (eg, humans, mice, rats, rabbits, etc.) can be evaluated. The process of restoring the function of the damaged skin barrier to its original state is evaluated quantitatively or qualitatively by evaluating the amount of transepidermal water loss (TEWL) as an index. Can be measured. Such a measurement can be performed, for example, as described below.
1. 水分蒸散量測定装置によりへアレスマウス背部付近の経皮水分 蒸散量 (T EWL) を測定する。 この際の値を T E WLの回復率 1 0 0 %とする。  1. Measure the transdermal water loss (TEWL) near the back of the hairless mouse using a water loss measurement device. The value at this time is assumed to be a TEWL recovery rate of 100%.
2. 皮膚のバリアーを、 セロファンテープ等を使用し、 ヘアレスマ ゥスの表皮角層を剥がすことにより破壊する。 このとき T EWLの 値が約 8 0 0〜 9 0 0 となるまでこの作業を繰り返すのが好ましい 。 角層を剥がした後の測定値から角層を剥がす前の測定値を差し引 いた値を、 最もダメージの深い状態、 即ち回復率 0 %とする。  2. Destroy the skin barrier by peeling off the stratum corneum of the hairless mouse using cellophane tape or the like. At this time, it is preferable to repeat this operation until the value of TEWL becomes about 800 to 900. The value obtained by subtracting the measured value before peeling the horny layer from the measured value after peeling off the horny layer is defined as the deepest damage state, that is, the recovery rate of 0%.
3. 試験試料を適宜の濃度 (例えば 1 mM) で適量 (例えば 1 0 0 μ 1 ) にて適当な基材、 例えばプラスチックラップの上に載せ、 哺 乳動物の背部に貼付し、 適当な時間 (例えば 5分) 経過後、 それを 剥がす。  3. Place the test sample at an appropriate concentration (eg, 1 mM) in an appropriate amount (eg, 100 μl) on an appropriate substrate, eg, plastic wrap, and affix it to the back of the mammal for an appropriate amount of time. After 5 minutes, remove it.
4. 適当な時間 (例えば 0、 2、 4、 6時間) 経過後、 水分蒸散量 測定装置によ り T EWLを測定する。 角層除去時と同様、 各時間の 測定値から角層除去前の T EWL値を差し引き、 回復率を算出する 4. After a suitable time (eg, 0, 2, 4, 6 hours), the amount of water loss Measure TEWL using a measuring device. As in the case of removing the stratum corneum, the recovery rate is calculated by subtracting the TEWL value before the removal of the stratum corneum from the measured value at each time.
、即ち、 回復率は下記の式に従いもとめることができる : That is, the recovery rate can be determined according to the following equation:
回復率 (%) Recovery rate (%)
(角層除去後、 各時間の TEWL) ― (角層除去前の TEWL)  (TEWL at each time after removing stratum corneum)-(TEWL before removing stratum corneum)
= = X100  == X100
(角層除去直後の TEWL) — (角層除去前の TEWL)  (TEWL immediately after removing the stratum corneum) — (TEWL before removing the stratum corneum)
本発明において、 「皮膚バリアー機能の回復を促進する」 とは、 皮膚のテープス ト リ ツビング直後の経皮水分蒸散量 (T EWL) の 値を 0 %、 テープス ト リ ツビング前の値を 1 0 0 %として、 各測定 時間における T E W Lの値が、 コントロールと比較した場合に明ら かに有意差が認められ、 τ EWL回復率を促進させる効果を有する ことを意味し、 A n d r e wらの方法 (J Invest Dermatol , 86; 598 ,1986) に従って、 4 %の ドデシル硫酸ナト リ ウム ( S D S ) 水溶 液をしみ込ませた Cot ton ballにより皮膚を処理して判定を行うい わゆる肌荒れ改善防止効果とは異なる。  In the present invention, “promoting the recovery of the skin barrier function” means that the transepidermal water loss (TEWL) immediately after the tape stripping of the skin is 0% and the value before the tape stripping is 10%. A value of 0% means that the value of TEWL at each measurement time clearly has a significant difference when compared with the control, and has an effect of promoting the τ EWL recovery rate. According to J Invest Dermatol, 86; 598, 1986), the skin is treated with a Cot ton ball impregnated with a 4% aqueous solution of sodium dodecyl sulfate (SDS) to make a judgment. different.
皮膚厚み測定試験 Skin thickness measurement test
皮膚パリァー機能回復促進効果は皮膚の厚みの測定に基づき行な う こともできる。 皮膚に乾燥刺激を与えると皮膚組織が損傷して皮 膚パリァー機能が低下し、 その結果表皮細胞の増殖異常により皮膚 の厚みが増大する。 従って、 皮膚のパリア一機能の低下は皮膚の厚 みの組織学的観察により測定することができる。 かかる組織学的観 察は、 例えば次のよ うにして実施してよい。 哺乳動物、 好ましく は ヘアレスマウスを乾燥条件、 例えば室温、 湿度 1 0 %以下の環境に て前もって飼育し、 T EWLが所望の程度、 例えば 2.5~3.5mg/cni2 /h程度になるまでァセ トンを用いて皮膚のパリ ァーを破壌する。 次 に、 被験物質をその処置皮膚に滴下し、 しかる後に上記環境下にて 適当な時間飼育して乾燥刺激を与えた後、 処置した部分の皮膚を採 取し、 そしてその皮膚試料を染色等して顕微鏡観察によ り表皮の厚 みを計測する。 The effect of promoting the recovery of skin parrier function can also be determined based on the measurement of skin thickness. When a dry stimulus is applied to the skin, the skin tissue is damaged and the skin parrier function is reduced, and as a result, the thickness of the skin increases due to abnormal proliferation of epidermal cells. Therefore, a decrease in the function of skin Paria can be measured by histological observation of skin thickness. Such a histological observation may be performed, for example, as follows. Mammals, preferably hairless mice, are bred in advance in dry conditions, for example in an environment at room temperature and a humidity of 10% or less, until the TEWL reaches a desired level, for example, about 2.5 to 3.5 mg / cni 2 / h. Use a ton to break down the skin pariers. Next Then, the test substance is dropped on the treated skin, and after that, the skin is cultivated in the above-mentioned environment for an appropriate time to give a dry stimulus, and then the skin of the treated portion is collected, and the skin sample is stained or the like. The thickness of the epidermis is measured by microscopic observation.
本発明に係る興奮性細胞受容体のアンタゴニス ト又は抑制性細胞 受容体のァゴニス トは皮膚パリ ァー機能を回復促進させることで、 乾燥刺激によ り惹起される表皮増殖異常を有意に抑制し、 さ らには 皮膚の厚みを減少させることさえもできる。  The agonist of the excitatory cell receptor or the agonist of the suppressive cell receptor according to the present invention significantly promotes the recovery of the skin pariar function, thereby significantly suppressing abnormal epidermal proliferation caused by dry stimulation. However, it can even reduce the thickness of the skin.
スク リ 一二ング方法 Screening method
皮膚パリァー機能回復促進物質をスク リーニングする方法は、 興 奮性細胞受容体のアンタゴニス ト又は抑制性細胞受容体のァゴニス トの候補となる物質を選定し、 当該物質を哺乳動物の皮膚に塗布し て当該皮膚の経皮水分蒸散量を減少させる物質を選定することによ り実施できる。 冒頭でも述べた通り、 興奮性受容体はァゴ-ス トが それに結合することで Ca2 +や Na+ィオンの細胞内流入を引き起こし 、 細胞を興奮状態へと誘導するものであり、 また抑制性受容体はァ ゴニス トがそれに結合するこ とで C 1—イオンの細胞内流入を引き起 こし、 細胞を興奮状態から抑制状態へと誘導するものである。 興奮 性受容体のアンタゴニス トはァゴニス トとは逆の作用、 即ち細胞内 の Ca2 +や Na+ィオンの減少を引き起こすものであることから、 その 候補となる物質は細胞内の Ca2 +や Na+ィオンの減少や、 C 1—イオンの 増加を評価すること等で選定できる。 また、 抑制性受容体のァゴ- ス トは細胞内の C 1—ィオンの増加を引き起こすものであることから 、 その候補となる物質は細胞内の C 1—ィオンの増加や Ca2 +や Na+ィォ ンの減少を評価すること等で選定できる。 A method for screening the substance for promoting skin PAR recovery is to select a substance that is a candidate for an agonist of an exciting cell receptor or an agonist of an inhibitory cell receptor, and apply the substance to mammalian skin. This can be achieved by selecting a substance that reduces the transepidermal water loss of the skin. As mentioned at the beginning, the excitatory receptor binds to the agonist and causes the influx of Ca 2+ and Na + ions into the cell, thereby inducing the cell to an excitable state, The receptor binds the agonist to the cell, causing the influx of C 1 -ions into the cell, and inducing the cell from an excited state to a suppressed state. Antagonist, an excitatory receptor, has the opposite effect to agonist, i.e., it causes a decrease in intracellular Ca 2+ and Na + ions, so the candidate substance is intracellular Ca2 + or Na +. It can be selected by evaluating the decrease of the ion and the increase of the C1-ion. In addition, since the inhibitory receptor agonist causes an increase in intracellular C 1 -ion, candidate substances include an increase in intracellular C 1 -ion, Ca 2+ and It can be selected by evaluating the decrease in Na + ion.
細胞内の Ca2 +や Na+ィオン、 C I—イオンの濃度は慣用の方法で測定 することができる。 例えば、 特願 2001 - 180366においては、 上皮系 細胞表面上のカルシウムィオン濃度を評価するこ とで、 受容体のァ ゴニス トをスク リーニングする方法が記載されている。 詳しくは、 この出願明細書においては、 上皮系細胞表面上の刺激受容体であるThe concentration of intracellular Ca 2+ , Na + ions, and CI ions can be measured by conventional methods. For example, in Japanese Patent Application No. 2001-180366, A method for screening receptor agonists by assessing calcium ion concentration on the cell surface is described. Specifically, in this application, it is a stimulus receptor on the surface of epithelial cells.
VR 1受容体 (バニロイ ド受容体サブタイプ 1 ) や P 2 X受容体の ァゴニス トが細胞内のカルシウムイオン濃度を上昇させることからVR1 receptor (vanilloid receptor subtype 1) and P2X receptor agonists increase intracellular calcium ion concentration.
、 被験物質の作用による上皮系細胞内のカルシウムイオン濃度の上 昇を評価することで、 上記受容体のァゴニス トをスク リーニングす る方法が開示されている。 また、 細胞内の crイオンの指標と して は例えば所定のキノ リ ン誘導体がよく利用されている。 かかるキノ リ ン誘導体はハ口ゲン化物イオンの存在によるその蛍光の崩壌的消 失機能に基づき crイオンの指標と して利用される。 このようなキ ノ リ ン誘導体には S P Q ( 6—メ トキシー N— ( 3—スルフォプロ ピル) キノ リニゥム ' 1水和物) 、 MQA E (N—エ トキシカルボ 二ルメチルー 6—メ トキシキノ リュウムブロ ミ ド) 、 D i H— ME Q ( 6—メ トキシー N—ェチルキノ リニゥムアイオダイ ド) 等があ る。 D i H—ME Qは Molecular Probes 社よりその酸化形態 ME Q ( 6—メ トキシ一 N—ェチルキノ リニゥム) として入手できる。 従って、 例えば、 興奮性細胞受容体のアンタゴニス トや抑制性細 胞受容体のァゴニス トの候補となる被験物質の選定は、 下記の通り にして、 細胞内のカルシウムイオン濃度を評価することで行なう こ とができる。 A method for screening the agonist of the receptor by evaluating the increase in the calcium ion concentration in epithelial cells due to the effect of a test substance is disclosed. As an indicator of intracellular cr ion, for example, a predetermined quinoline derivative is often used. Such a quinoline derivative is used as an indicator of cr ion based on its decay-causing function of fluorescence due to the presence of a haptogenide ion. Such quinoline derivatives include SPQ (6-Methoxy-N- (3-sulfopropyl) quinolinium 'monohydrate) and MQA E (N-Ethoxycarbonylmethyl-6-methoxyquinodium bromide). , DiH—MEQ (6-Methoxy N-ethylquinoline iodide) and the like. DiH-MEQ is available from Molecular Probes as its oxidized form, MEQ (6-Methoxy-1-N-ethylquinoline). Therefore, for example, selection of a test substance that is a candidate for an antagonist of the excitatory cell receptor or an agonist of the inhibitory cell receptor is performed by evaluating the intracellular calcium ion concentration as described below. be able to.
1 ) 被験物質による細胞の刺激  1) Stimulation of cells by test substance
まず、 表皮細胞、 例えば表皮角化細胞を適当な細胞培養培地、 例 えば K GM培地で常法に従い培養する。 カルシウムィオンの測定を 行なう前日に、 この培養細胞を 9 6穴ゥエルプレートに適当な細胞 濃度 (例えば 2 X 1 05cell/well個程度) において播種する。 翌日 、 細胞が剥がれないようにして、 上記の培養液を静かにピぺッ トで 吸い取る。 次に、 適当な緩衝液、 例えば、 BBS (Balanced salt sol ution)及びカルシウム感受性蛍光色素、 例えば F l u o 3— AM ( 大日本製薬製) を、 上記培養表皮角化細胞に添加し (例えば、 ゥェ ル内に 5 μ Mとなるように添加) 、 適当な条件下でインキュベーシ ヨ ン (例えば 3 7 °Cで 6 0分) を行い、 この蛍光色素を上記培養表 皮角化細胞内への取込みを行なう。 色素と しては、 他に Q u i n 2 、 Q u i n 2— AM、 F u r a _ 2、 F u r a — 2 _AM、 I n d o— l、 F l u o— 3、 R h o d— 2等のカルシウム感受性蛍光色 素、 ェクオリ ン等のカルシウム感受性発光タンパク質、 5— F B A P TA等の19 Fによる核磁気共鳴法に用いる試薬等を使用してよい 。 取込み終了後、 細胞を洗浄し、 新鮮な同緩衝液 (B B S ) を加え 、 放置する (例えば 1 5分) 。 その後、 緩衝液を上記培養表皮角化 細胞から取り除き、 同緩衝液に溶解した被験物質を細胞に添加し、 細胞を被験物質刺激する。 コント ロールと して、 被験物質の溶解し ていない同緩衝液を細胞に添加する。 First, epidermal cells, for example, epidermal keratinocytes, are cultured in a suitable cell culture medium, for example, KGM medium according to a conventional method. The day before the measurement of calcium ion, inoculate the cultured cells into a 96-well plate at an appropriate cell concentration (for example, about 2 × 10 5 cells / well). On the next day, gently pipet the above culture solution so that the cells do not detach. Absorb. Next, an appropriate buffer, for example, BBS (Balanced salt solution) and a calcium-sensitive fluorescent dye, for example, Fluo 3-AM (Dainippon Pharmaceutical) are added to the cultured epidermal keratinocytes (for example, Incubate (for example, at 37 ° C for 60 minutes) under appropriate conditions, and transfer this fluorescent dye into the above cultured keratinocytes. Is taken. Other pigments include calcium-sensitive fluorescent dyes such as Quin 2, Quin 2—AM, Fura_2, Fura-2_AM, Indo—l, Fluo-3, Rhod-2. For example, a calcium-sensitive photoprotein such as E. coli or a reagent used for nuclear magnetic resonance with 19 F such as 5-FBAPTA may be used. After the uptake, the cells are washed, freshly buffered with the same buffer (BBS) is added, and the mixture is allowed to stand (for example, 15 minutes). Thereafter, the buffer is removed from the cultured epidermal keratinocytes, and a test substance dissolved in the same buffer is added to the cells to stimulate the cells. As a control, add the same buffer in which the test substance is not dissolved to the cells.
2 ) 細胞内のカルシウムイオン濃度の測定 2) Measurement of intracellular calcium ion concentration
蛍光測定は、 常法に従い、 蛍光マイク ロプレート リーダーで、 色 素に応じた励起及び発光波長において、 例えば経時的に測定するこ とで行なう。  Fluorescence is measured in a conventional manner using a fluorescence microplate reader at excitation and emission wavelengths corresponding to the colorants, for example, over time.
細胞内のカルシウムイオン濃度は下記の式に従って算出できる。 The intracellular calcium ion concentration can be calculated according to the following equation.
C a 2+ M) = (A F - Fffli n/Fnax- A F) K d C a 2+ M) = (AF-F fflin / F nax -AF) K d
Fn i n : E D TAを加え、 C a 2 +をブロ ック したときの色素の蛍 光値 (最小蛍光強度) F nin : Fluorescence value of dye when EDTA is added and Ca 2+ is blocked (minimum fluorescence intensity)
Fmax : C a 2+の過剰存在下での色素の蛍光値 (界面活性剤によ り細胞膜を破壌) (最大蛍光強度) F max: fluorescence values of the dye in the excess presence of C a 2+ (Yabu壌cell membranes Ri by the surfactant) (the maximum fluorescence intensity)
K d : 色素と C a 2+の解離定数 (例えば色素が F 1 u o 3 - AM の場合、 3 9 0 n M) これによ り、 細胞内のカルシウムィオン濃度を有意に減少させれ ば、 被験物質は興奮性細胞受容体のアンタゴニス ト又は抑制性細胞 受容体のァゴニス トであると期待される。 K d: dissociation constant between the dye and C a 2+ (for example, 390 nM when the dye is F 1 uo 3-AM) Thus, if the intracellular calcium ion concentration is significantly reduced, the test substance is expected to be an agonist of an excitatory cell receptor or an agonist of an inhibitory cell receptor.
また、 興奮性細胞受容体のアンタゴニス ト又は抑制性細胞受容体 のァゴニス トの候補となる被験物質の選定は、 例えば D i H -ME Qを利用し、 下記の通りにして細胞内の塩素ィオン濃度を評価する ことで行なう こともできる。  In addition, the selection of a test substance that is a candidate for an agonist of an excitatory cell receptor or an agonist of an inhibitory cell receptor is performed by using, for example, DiH-MEQ as described below. It can also be done by evaluating the concentration.
1 ) 被験物質による細胞の刺激  1) Stimulation of cells by test substance
被験物質による細胞の刺激は細胞内カルシウム濃度の評価に関し て記載した方法と同様にして実施することができる。  Stimulation of cells with a test substance can be performed in the same manner as described for the evaluation of intracellular calcium concentration.
2 ) 細胞内の塩素イオン濃度の測定  2) Measurement of intracellular chloride ion concentration
黄色油の D i H— ME Q ( 6—メ トキシ一 N—ェチルキノ リニゥ ムアイオダイ ド) を適当な生理緩衝液 (例えば P B S ) に溶解して 2 5〜 5 0 μΜの D i H— ME Q充填溶液を調製する。 尚、 D i H —M E Qは Molecular Probes 社の M E Q力、ら Molecular Probes Pr oduct Information (Revised January 31, 2001) MP06886に記載の 通りにして調製することができる。 必要ならば、 D i H— ME Qを DM S O (ジメチルスルホキシド) により濃厚ス トック溶液に調製 し ( 2 5〜 5 0 mM) 、 そのス ト ック溶液を生理緩衝液に希釈して よい。  Dilute yellow oil, DiH-MEQ (6-Methoxy-N-ethylquinoline iodide), in a suitable physiological buffer (eg PBS) and fill it with 25-50 μ 5 DiH-MEQ. Prepare solution. Note that DiH—MEQU can be prepared as described in Molecular Probes, Inc., Molecular Probes Product Information (Revised January 31, 2001) MP06886. If necessary, DiH-MEQ may be prepared in DMSO (dimethylsulfoxide) into a concentrated stock solution (25-50 mM), and the stock solution may be diluted in physiological buffer.
上記刺激した細胞を D i H _ M E Q充填溶液と 5〜 1 0分インキ ュベーショ ンする。  Incubate the stimulated cells with DiH_MEQU filling solution for 5-10 minutes.
その細胞を生理緩衝液で洗浄し ( 2回程度) 、 そして 3 7 °Cで 1 5分ィンキュベーショ ンしてこの色素を均一に分散させ、 次いで M E Qの最大励起及び発光波長 (例えばそれぞれ約 3 4 4 n m及び約 4 4 0 n m) 用のフィルターを用いて蛍光顕微鏡観察する。 蛍光の 有意な消失が認められたら、 細胞内の C1—イオンの増加が引き起こ されたことを意味し、 被験物質は興奮性細胞受容体のアンタゴ -ス ト又は抑制性細胞受容体のァゴニス トの候補として期待される。 このようにして選定された興奮性細胞受容体のアンタゴニス ト又 は抑制性細胞受容体のァゴニス トの候補となる物質を上述の皮膚パ リァー機能回復促進効果試験にかけ、 経皮水分蒸散量を減少させる 物質又は乾燥刺激を受けた当該皮膚の厚みを減少させるもしくはそ の増大を抑制する物質を選定することによ り、 興奮性細胞受容体の アンタゴニス ト及び抑制性細胞受容体のァゴニス ト をスク リーニン グすることができる。 The cells are washed with physiological buffer (about twice) and incubated at 37 ° C for 15 minutes to disperse the dye uniformly, then the maximum excitation and emission wavelength of the MEQ (eg, about 34 Observe with a fluorescence microscope using filters for 4 nm and about 450 nm. Significant loss of fluorescence causes an increase in intracellular C1-ion This means that the test substance is expected to be a candidate for the agonist of the excitatory cell receptor or the agonist of the inhibitory cell receptor. The substance selected as the agonist of the excitatory cell receptor or the agonist of the inhibitory cell receptor selected in this manner was subjected to the above-mentioned effect of promoting the recovery of skin parier function, thereby reducing the amount of transdermal water loss. Antagonists of excitatory cell receptors and agonists of inhibitory cell receptors can be screened by selecting substances that reduce or suppress the increase in the thickness of the skin subject to the dry stimulus. You can lean.
本発明の皮膚パリア一機能回復促進物質、 即ち、 興奮性細胞受容 体のアンタゴニス ト又は抑制性細胞受容体のァゴニス トは、 例えば 、 軟膏、 ク リーム、 乳液、 ローシ ョ ン、 パック、 浴用剤等の化粧料 、 医薬品、 医薬部外品に配合されて、 好ましくは皮膚外用剤として 皮膚に適用することが出来る。 その配合量は特に制限がないが、 こ れらの基剤全量に基づき 0. O O l mM〜: L M、 好ましくは 0. 0 1〜: L 0 0 mM、 よ り好ましく は 0. 1〜: L 0 mM程度であろう。 実施例  The substance for promoting recovery of the function of the skin paria of the present invention, that is, the agonist of the excitatory cell receptor or the agonist of the inhibitory cell receptor is, for example, an ointment, a cream, an emulsion, a lotion, a pack, a bath agent, etc. It can be incorporated into cosmetics, pharmaceuticals, and quasi-drugs, and can be applied to the skin, preferably as an external preparation for skin. The blending amount is not particularly limited, but based on the total amount of these bases, 0.001 mM to: LM, preferably 0.01 to: L 0 0 mM, more preferably 0.1 to: L will be around 0 mM. Example
皮膚パリァー機能回復促進効果試験方法 Test method for promoting recovery of skin parrier function
以降の各実験において、 皮膚パリア一機能回復促進効果は、 ヘア レスマウス (Type HR-1, HOSHINO, Japan)の皮膚にテープス ト リ ツ ビングを施すことによって破壊された皮膚パリア一機能がもとの状 態へ回復していく過程を経皮水分蒸散量 (T EWL) を指標とし、 以下の通り評価した。  In each of the subsequent experiments, the effect of promoting the recovery of skin pari function was based on the skin pari function destroyed by applying tape stripping to the skin of hairless mice (Type HR-1, HOSHINO, Japan). The process of recovery to the state was evaluated using the transepidermal water loss (TEWL) as an index, as follows.
1 . 水分蒸散量測定装置 ME E C O (Meeco社製, Warrington, PA, USA) によ りへアレスマウス背部付近の経皮水分蒸散量 (T EWL ) を測定する。 この際の値を T E WLの回復率 1 0 0 %とする。 2. 皮膚のパリア一を、 セロファンテープを使用し、 ヘアレスマウ スの表皮角層を剥がすこ とによ り破壊する。 このとき T EWLの値 が約 8 0 0〜 9 0 0 となるまでこの作業を繰り返す。 角層を剥がし た後の測定値から角層を剥がす前の測定値を差し引いた値を、 最も ダメージの深い状態、 即ち回復率 0 %とする。 1. Measure transepidermal water loss (T EWL) near the back of the hairless mouse using a water loss measuring device ME ECO (Meeco, Warrington, PA, USA). The value at this time is assumed to be a TE WL recovery rate of 100%. 2. The skin is destroyed by peeling off the stratum corneum of the hairless mouse using cellophane tape. At this time, this operation is repeated until the value of TEWL becomes approximately 800 to 900. The value obtained by subtracting the measurement value before peeling off the stratum corneum from the measurement value after peeling off the stratum corneum is defined as the deepest damage state, that is, the recovery rate of 0%.
3 , 試験試料を I mMで 1 0 0 μ 1 にてプラスチックラップの上に 載せ、 背部に貼付し、 5分後、 それを剥がす。  3. Place the test sample on a plastic wrap at 100 μm with ImM, affix it to the back, and peel it off after 5 minutes.
4. 0、 2、 4、 6又は 0、 1、 3、 6時間経過後、 ME E C Oに より T EWLを測定する。 角層除去時と同様、 各時間の測定値から 角層除去前の T EWL値を差し引き、 回復率をもとめる。  4. After 0, 2, 4, 6 or 0, 1, 3, 6 hours, measure TEWL by MEECO. As in the case of removing the stratum corneum, the TEWL value before the removal of the stratum corneum is subtracted from the measured value at each time to determine the recovery rate.
即ち、 回復率は下記の式に従い算出する :  That is, the recovery rate is calculated according to the following formula:
回復率 (%) Recovery rate (%)
(角層除去後、 各時間の TEWL) — (角層除去前の TEWL)  (TEWL at each time after removing stratum corneum) — (TEWL before removing stratum corneum)
= = X 100  = = X 100
(角層除去直後の TEWL) - (角層除去前の TEWL)  (TEWL immediately after removal of stratum corneum)-(TEWL before removal of stratum corneum)
1 ) 興奮性受容体の検討 1) Examination of excitatory receptors
実施例 1 Example 1
グルタミ ン酸受容体と皮膚パリァー機能回復との関係の検討 Examination of the relationship between glutamate receptor and recovery of skin parrier function
実験 a ) D—、 L—グルタミ ン酸及び L—ァスパラギン酸は生体 内でグルタミ ン酸受容体に結合して神経興奮作用を発揮させる神経 伝達物質であることが知られる。 Experiment a) D-, L-glutamic acid and L-aspartic acid are known to be neurotransmitters that bind to glutamate receptors in vivo and exert a neuroexcitatory action.
D—グルタミ ン酸 (和光純薬 (株) ) 、 L一グルタミン酸 (和光 純薬 (株) ) 及び Lーァスパラギン酸 (和光純薬 (株) ) の各水溶 液を上記試験方法に記載の通りにしてへアレスマウスの表皮にそれ ぞれ塗布し、 T EWL試験を行った。 その結果を図 1 に示す。  The aqueous solutions of D-glutamic acid (Wako Pure Chemical Co., Ltd.), L-glutamic acid (Wako Pure Chemical Co., Ltd.) and L-aspartic acid (Wako Pure Chemical Co., Ltd.) were prepared as described in the above test method. Each hairless mouse was applied to the epidermis, and a TEWL test was performed. Figure 1 shows the results.
図 1の結果から明らかな通り、 D—グルタミン酸は皮膚のパリ ァ 一回復を促進させるのに対し、 L一グルタミ ン酸及び Lーァスパラ ギン酸は皮膚のパリ ア一回復を遅延させた。 従って、 興奮性受容体 であるグルタミ ン酸受容体が皮膚のパリア一回復に関与しているこ とが示唆された。 As is evident from the results in Fig. 1, D-glutamic acid promotes the recovery of skin pallia, while L-glutamic acid and L-aspara Formic acid delayed skin recovery. Therefore, it was suggested that glutamate receptor, which is an excitatory receptor, is involved in the recovery of paria from skin.
実験 b ) NMD A型グルタミ ン酸受容体のァンタゴニス トである MK— 8 0 1 (Tocris社) 及びァゴニス トである NMD A (Tocris 社) のそれぞれの水溶液を、 上記試験方法に記載の通りにしてそれ ぞれヘアレスマウスの表皮に塗布し、 T EWL試験を行った。 その 結果を図 2に示す。 Experiment b) The aqueous solutions of MK-801 (Tocris), an antagonist of NMD type A glutamate receptor, and NMDA (Tocris), an agonist, were prepared as described in the above test method. Each was applied to the epidermis of a hairless mouse, and a TEWL test was performed. Figure 2 shows the results.
図 2の結果から、 アンタゴニス ト MK— 8 0 1 は皮膚のバリ アー 回復を促進させるが、 ァゴニス ト NMDAはパリ ア一回復を遅延さ せることが明らかとなった。  From the results in Figure 2, it was revealed that Antagonist MK-801 promotes skin barrier recovery, while agonist NMDA slows the recovery of the barrier.
実験 c ) 次に、 MK— 8 0 1及び NMD Aを混合し、 上記試験方 法に記載の通りにしてヘアレスマウスの表皮に塗布し、 T EWL試 験を行った。 その結果を図 3に示す。 Experiment c) Next, MK-801 and NMDA were mixed, applied to the epidermis of a hairless mouse as described in the above test method, and a TEWL test was performed. Figure 3 shows the results.
図 3の結果から、 MK— 8 0 1及び NMDAを同時にマウスの表 皮に塗布すると、 NMD Aによるバリァー効果の遅延効果が MK _ 8 0 1により解消されることも認められた。  From the results shown in FIG. 3, it was also confirmed that when MK-801 and NMDA were simultaneously applied to the epidermis of mice, the delay effect of the barrier effect of NMDA was eliminated by MK_801.
実験 d ) NMDA型グルタミ ン酸受容体のアンタゴニス トである D - A P 5 (Tocris社) についても、 その水溶液を上記試験方法に 記載の通りにしてヘアレスマウスの表皮に塗布し、 T EWL試験を 行った。 その結果を図 4に示す。 Experiment d) For the NMDA-type glutamate receptor antagonist D-AP5 (Tocris), the aqueous solution was applied to the epidermis of hairless mice as described in the above test method, and the TEWL test was performed. went. Fig. 4 shows the results.
図 4の結果から、 アンタゴニス ト D— A P 5は皮膚のパリ ァ一回 復を促進させることが明らかとなった。  From the results in FIG. 4, it was clarified that Antagonist D—AP5 promoted skin reparation.
以上の結果をまとめると、 興奮性細胞受容体である NMD A型グ ルタミン酸受容体の活性を抑制することで皮膚のパリ ア一機能の回 復を促進させることができ、 NMDA型グルタミ ン酸受容体のアン タゴニス トが皮膚のパリア一機能の回復に有効であることが明らか となった。 Summarizing the above results, inhibition of the excitatory cell receptor, NMD type A glutamate receptor, can promote the restoration of skin pariole function, and NMDA type glutamate Receptor antagonists are found to be effective in restoring skin Paria function It became.
実施例 2 Example 2
皮膚厚み測定試験 Skin thickness measurement test
前述の通り、 皮膚に乾燥刺激を与えると皮膚組織が損傷して皮膚 パリァー機能が低下し、 その結果表皮増殖異常により皮膚の厚みが 増大する。 従って、 皮膚のパリア一機能回復促進効果を有する興奮 性酸受容体のアンタゴニス ト MK— 8 0 1の皮膚の厚みに対する効 果を組織学的観察した。  As mentioned above, when a dry stimulus is applied to the skin, the skin tissue is damaged and the skin parer function is reduced. As a result, the thickness of the skin increases due to abnormal epidermal proliferation. Therefore, the effect of Antagonist MK-801, an excitatory acid receptor having the effect of promoting the recovery of skin function on skin, on the skin thickness was observed histologically.
ヘアレスマウスを温度 2 2 〜 2 5 °C、 湿度 1 0 %以下の環境にて 前もって飼育した。 T E W Lが 2.5〜3.5mg/cm2/hになるまでァセ ト ンを用いてヘアレスマウス背部皮膚のバリ ァーを破壊した。 次いで MK _ 8 0 1 、 NMD A又は AM P A ( α—アミノー 3—ヒ ドロキ シ一 5—メチノレー 4ーィ ソキサゾールプロ ピオン酸) の I mMの水 溶液をそれぞれ 2 0 0 μ 1皮膚に滴下し、 しかる後に上記環境下に て 4 8時間飼育して乾燥刺激を与えた後、 処置した部分の皮膚を採 取した。 4 %のパラフオルムアルデヒ ドで固定後、 ノ、。ラフィ ン包埋 し、 4 μ πΐの切片にし、 へマ トキシリ ン一ェォシン染色し、 顕微鏡 にて表皮の厚みを計測した。 ΑΜ Ρ Αは NMD Aと同様ィオノ トロ ープグルタミ ン酸受容体に特異的なリガンドである。 コント口ール はいずれの溶液も塗布してないものである。 その結果を図 5に示す 図 5の結果から、 コン ト ロールと比べ、 ΜΚ— 8 0 1 を塗布する と皮膚の厚みが有意に減少することが示され、 従って興奮性酸受容 体のアンタゴニス ト ΜΚ— 8 0 1 は乾燥刺激によ り惹起される表皮 増殖異常を有意に抑制し、 皮膚パリァー効果を改善することが実証 された。 また驚くべきことに、 興奮性酸受容体のァゴ-ス ト NMD Αを塗布した場合、 コン ト ロールと比べ皮膚の厚みが有意に増大し 、 従って乾燥刺激によ り惹起される表皮増殖異常を有意に促進し、 皮膚の状態を悪化させることが明らかとなった。 更に驚くべきこと に、 AMP Aは NMDAと同様ィオノ ト ロープグルタミ ン酸受容体 に特異的なリガンドであるにもかかわらず、 コント口ールと比べ皮 膚の厚みを有意に増大することがなく、 NMDAとは異なる挙動を 示すことが示された。 Hairless mice were bred in advance in an environment at a temperature of 22 to 25 ° C and a humidity of 10% or less. The barrier on the back skin of the hairless mouse was destroyed using acetone until the TEWL became 2.5 to 3.5 mg / cm 2 / h. Then, an aqueous solution of MK_801, NMDA or AMPA (α-amino-3-hydroxy-15-methinole-4-isoxazolepropionic acid) in 200 mM was dropped on the skin 200 μl each, Thereafter, the skin was bred in the above environment for 48 hours to give a dry stimulus, and the skin of the treated portion was collected. After fixing with 4% paraformaldehyde, The cells were embedded in raffin, cut into 4 μπ μ sections, stained with hematoxylin and eosin, and the epidermal thickness was measured with a microscope. ΑΜ Ρ is a ligand specific to the ionotropin glutamate receptor, similar to NMDA. The control is uncoated with any solution. The results are shown in Fig. 5. The results in Fig. 5 show that the application of 8-801 significantly reduces the thickness of the skin compared to the control, and thus the antagonist of the excitatory acid receptor It was demonstrated that 有意 -801 significantly suppressed the abnormal epidermal proliferation caused by the dry stimulus and improved the skin parrier effect. Surprisingly, the application of the excitatory acid receptor agonist NMD II significantly increased the skin thickness compared to the control. Therefore, it was revealed that the abnormal epidermal proliferation caused by the dry stimulus was significantly promoted and the skin condition was deteriorated. Even more surprising, AMP A, like NMDA, is a ligand specific for the ionotropic glutamate receptor, but does not significantly increase skin thickness compared to control. It was shown to behave differently from NMDA.
実施例 3 Example 3
NMDA型グルタ ミ ン酸受容体のァゴニス ト及びアンタゴニス トの 細胞内のカルシウムィオン濃度に対する影響  Effect of NMDA glutamate receptor agonist and antagonist on intracellular calcium ion concentration
次に、 興奮性細胞受容体である NMD A型グルタミ ン酸受容体の ァゴニス ト NMDA及びアンタゴニス ト MK— 8 0 1が細胞内カル シゥム濃度に対しどのような影響を及ぼすかを検討した。  Next, the effects of agonist NMDA and antagonist MK-801 of the NMD type A glutamate receptor, which are excitatory cell receptors, on the intracellular calcium concentration were examined.
細胞及びその培養 Cells and their culture
正常ヒ ト表皮角化細胞 (NH E K) を新生児包皮由来の低温保存 した一次継代細胞 (クラボウ社) から獲得した。 この細胞をコラー ゲン被覆カバーガラスに载せ、 ゥシ下垂体エキス (0.4容量%) 、 ヒ ト組換え表皮成長因子 (0.1ng/ml)、 イ ンスリ ン (10/xg/ml)、 ヒ ドロ コルチゾン (0.5 μ g/ml)、 ゲンタマイシン (50 μ g/ml)及びァ ンフォテリ シン一 B (50ng/ml)Aり の H u m e d i a — KB 2 (ク ラボゥ社) から成る無血清表皮角化細胞培養培地の中で培養した。 単独の表皮角化細胞の C a 2 +イメージング Normal human epidermal keratinocytes (NHEK) were obtained from cryopreserved primary passage cells (Kurabo) from neonatal foreskin. The cells were placed on a collagen-coated cover glass, pituitary gland extract (0.4% by volume), human recombinant epidermal growth factor (0.1 ng / ml), insulin (10 / xg / ml), human Serum-free epidermal keratinocytes consisting of Humedia — KB 2 (Kurabo Co., Ltd.) containing drocortisone (0.5 μg / ml), gentamicin (50 μg / ml) and amphotericin-I B (50 ng / ml) A Cultured in culture medium. Ca2 + imaging of single epidermal keratinocytes
単独の細胞内の [C a 2 + ]の変化を、 f u r a _ 2法(Grynkicwicz , G. et. al. (Ι98ΰ A new generation of Ca indicators with g reat ly improved f luor escene properties, J. Biol. し]em. 260 , 3440- 3450)を若干改良した方法(Koizumi, S. et. al. (1997) Inhi bit ion by ATP of calcium oscillation in rat cultured hippoca mpal neurons. Br. J. Pharmacol. 122, 5:L - 58)によ り測定した。 簡単には、 まず、 力パーガラス上で培養した細胞の培養培地を以下 の組成の B S S緩衝液と交換した : (全て mM表示) NaCl 150; KC 1 5; CaCl2 1.8; MgCl2 1.2; N_2 -ヒ ドロキシェチルピペラジン- N 2-エタンスルホン酸 (HEPES) 25; D-グルコース 10 (pH 7.4)0 この細胞を 5 μ Mの色素 fura- 2 ァセ トキシメチルエステル (fur a-2AM) (モレキュラープローブス社) と室温 ( 2 0〜 2 2°C) にお いて、 B S Sの中で 4 5分間イ ンキュベーショ ンすることにより、 fura-2を細胞に装填した。 次に細胞を B S S緩衝液で洗い、 更に 1 5分間インキュベーショ ンして装填した色素の脱エステル化を図つ た。 Changes in [C a 2 + ] in a single cell were determined by the fura _2 method (Grynkicwicz, G. et.al. (Ι98ΰ A new generation of Ca indicators with g reat ly improved fluid escene properties, J. Biol. 260, 3440-3450) (Koizumi, S. et. Al. (1997) Inhi bit ion by ATP of calcium oscillation in rat cultured hippoca mpal neurons. Br. J. Pharmacol. 122, 5: L-58). Briefly, the culture medium of cells grown on force glass was first replaced with a BSS buffer of the following composition: (all in mM) NaCl 150; KC 15; CaCl 2 1.8; MgCl 2 1.2; N_2- Hydroxicetyl piperazine-N 2-ethanesulfonic acid (HEPES) 25; D-glucose 10 (pH 7.4) 0 The cells were converted to 5 μM dye fura-2 acetomethyl methyl ester (fur a-2AM) (molecular The cells were loaded with fura-2 by incubating in BSS for 45 minutes at room temperature (20-22 ° C) at room temperature (Probes). The cells were then washed with BSS buffer and incubated for a further 15 minutes to deesterify the loaded dye.
次に、 B S S緩衝液を上記細胞から取り除き、 同緩衝液に溶解し た被験物質 (NMDA又は MK— 8 0 1 +NMDA : それぞれ l m M) を細胞に添加し、 細胞を約 3 0分、 被験物質刺激した。  Next, the BSS buffer was removed from the cells, and a test substance (NMDA or MK-801 + NMDA: lmM, respectively) dissolved in the buffer was added to the cells, and the cells were tested for about 30 minutes. The substance was stimulated.
このカバーガラスを 7 5 Wのキセノンランプ並びに 3 4 0及び 3 6 O nMのバン ドパスフィルターを備えた倒立蛍光顕微鏡 (TMD 一 3 0 0 ; ニコン社) に載せ、 測定を室温で行なった。 イメージデ 一ターを高感度シリ コン · イ ンテンシファイア一 · ターゲッ トカメ ラ (C- 2741-08;浜松ホ トニタス (株) ) を用いて記録し、 Ca2 +分析 システム (フルサワラボラ ト リースアプライアンス社) を用いて分 祈した。 その結果を図 6に示す。 The cover glass was mounted on an inverted fluorescence microscope (TMD-130; Nikon) equipped with a 75 W xenon lamp and a band pass filter of 34O and 36OnM, and the measurement was performed at room temperature. The image data was recorded using a high-sensitivity silicon intensifier and target camera (C-2741-08; Hamamatsu Photonitas Co., Ltd.), and a Ca 2+ analysis system (Full Sawa Laboratories Appliance) And prayed for each other. Figure 6 shows the results.
図 6の結果から、 NMDA型グルタミ ン酸受容体のァゴ-ス ト N MD Aは細胞内 Ca2 +濃度を有意に増大させる効果を発揮することが 示された。 また、 NMDAのそのような効果をアンタゴニス トであ る MK— 8 0 1が相殺し、 MK— 8 0 1が細胞内 C a 2 +濃度を有意 に低下させることも示唆された。 従って、 細胞内 Ca2 +濃度の増減の 測定を介し、 被験物質が興奮性受容体のァゴニス ト又はアンタゴ- ス 卜のいずれであるかを i n v i t r oで同定できることが実証 された。 The results in FIG. 6 indicate that NMDA-type glutamate receptor agonist NMDA exerts an effect of significantly increasing the intracellular Ca 2+ concentration. It was also suggested that antagonist MK-801 offset such effects of NMDA, and that MK-801 significantly reduced intracellular Ca 2+ concentration. Therefore, it was demonstrated that the test substance can be identified in vitro as an excitatory receptor agonist or antagonist through measurement of increase and decrease of intracellular Ca 2+ concentration. Was done.
実施例 4 Example 4
イオンチャネル型 AT P受容体と皮膚バリ アー機能回復との関係の 検討 Examination of the relationship between ion channel type ATP receptor and restoration of skin barrier function
実験 a ) 皮膚においてイオンチャネル型 A T P受容体 P2X3の存在 が証明されている。 従って、 表皮においてもこれらの受容体が興奮 を誘導している可能性があると考えられる。 Experiment a) The presence of the ion channel type ATP receptor P2X3 in the skin has been demonstrated. Therefore, it is considered that these receptors may also induce excitement in the epidermis.
P2X3のァゴニス トである A T P (和光純薬 (株) ) の水溶液を上 記試験方法に記載の通りにしてへアレスマウスの表皮に塗布し、 T EWL試験を行った。 その結果を図 7に示す。  An aqueous solution of ATP (Wako Pure Chemical Industries, Ltd.), an agonist of P2X3, was applied to the epidermis of hairless mice as described in the above test method, and a TEWL test was performed. Figure 7 shows the results.
図 7の結果から、 AT Pは皮膚バリ アー回復を遅延させることが 明らかとなった。 従って、 興奮性細胞受容体であるイオンチャネル 型 A T P受容体 P2X3の活性を抑制するこ とで皮膚のパリ ア一機能の 回復を促進させることができ、 その結果 A T P受容体のアンタゴニ ス トも皮膚のパリア一機能の回復に有効であると考えられる。  The results in FIG. 7 revealed that ATP delayed skin barrier recovery. Therefore, by suppressing the activity of the excitatory cell receptor, the ion channel-type ATP receptor P2X3, it is possible to promote the restoration of skin parietal function, and consequently the antagonism of the ATP receptor Is thought to be effective in restoring the function of Paria.
実験 b ) 次に、 AT P受容体のアンタゴ-ス トである P P AD S (シグマ社) 、 TN P— AT P (モレキュラープローブ社) 及びス ラミ ン (シグマ社) の各水溶液をそれぞれ上記試験方法に記載の通 り にしてヘアレスマウスの表皮に塗布し、 T EWL試験を行った。 その結果を図 8に示す。 尚、 P P A D S及び T N P— A T Pは P2X3 型受容体に対して特異性を示すが、 スラ ミ ンは P2X3型受容体に対す る特異性を示さない AT P受容体アンタゴニス トである。 Experiment b) Next, each of the aqueous solutions of the ATP receptor antagonists PP ADS (Sigma), TNP-ATP (Molecular Probes) and suramin (Sigma) was subjected to the above tests. Hairless mice were applied to the epidermis as described in the method and subjected to a TEWL test. Figure 8 shows the results. In addition, PPADS and TNP-ATP show specificity for P2X3-type receptor, but suramin is an ATP receptor antagonist which does not show specificity for P2X3-type receptor.
図 8に示す結果から、 P P AD S、 TN P— AT P及びスラ ミ ン の全てが皮膚のバリ アー機能を回復させ、 AT P受容体アンタゴ- ス トが皮膚パリア一機能の回復に有効であることが実証された。 ま た、 P2X3型受容体に対して特異性な P P A D S及び T N P— A T P と特異性を示さないスラ ミ ンとの間でパリ ア一回復率において有意 差がないことから、 A T P受容体アンタ ゴニス トは、 P2X3型受容体 に対する特異性に関係なく、 皮膚バリ ァー機能回復に有効であるこ とが示された。 From the results shown in Fig. 8, it can be seen that PP AD S, TNP-ATP and suramin all restored the barrier function of the skin, and that the ATP receptor antagonist was effective in restoring the function of the skin paria. It has been proven. In addition, PPADS and TNP specific for P2X3 type receptor are significantly different in recovery rate between ATP and non-specific suramin. The absence of a difference indicated that the ATP receptor antagonist was effective in restoring skin barrier function irrespective of specificity for the P2X3-type receptor.
実施例 5 Example 5
熱受容体 VR— 1 と皮膚パリア一機能回復との関係の検討 Examination of the relationship between thermoreceptor VR-1 and recovery of skin paria function
上述の通り、 熱受容体である VR— 1は上皮細胞表面上において 発現されることが知られている。 従って、 表皮においてもこれらの 受容体が興奮を誘導しているか検討した。  As described above, it is known that the heat receptor VR-1 is expressed on the epithelial cell surface. Therefore, it was examined whether these receptors also induce excitation in the epidermis.
V R - 1のァゴニス トであるカプサイシン (Tocris社) 水溶液 ( 1 mM) 、 アンタゴニス トである力プサゼピン (Tocris社) 水溶液 ( I mM) 及びカブサイシンと力プサゼピンとの混合水溶液 (各々 1 mM) を上記試験方法に記載の通りにしてへアレスマウスの表皮 に塗布し、 T EWL試験を行った。 その結果を図 9に示す。  An aqueous solution (1 mM) of capsaicin (Tocris), which is an agonist of VR-1, an aqueous solution (ImM) of antagonist, and a mixed aqueous solution (1 mM each) of cabsaicin and forcepsazepine Hairless mice were applied to the epidermis as described in the test method, and a TEWL test was performed. Figure 9 shows the results.
図 9の結果から、 カブサイシン (C P C) は皮膚バリ アー回復を 遅延させるが、 アンタゴニス トである力プサゼピン (C P Z ) は皮 膚のパリア一機能の回復を促進させた。 また、 力プサゼピンにカブ サイシンを組合わせると (C P C + C P Z) 、 力プサゼピンに基づ くの皮膚のパリア一機能回復効果は低下した。 従って、 熱受容体で ある VR— 1のアンタゴニス トが皮膚パリァー機能回復に有効であ ることが示された。  From the results in Fig. 9, it was found that cabsaicin (CPC) delayed the recovery of the skin barrier, but that the antagonist, ptsazepine (CPZ), promoted the recovery of the skin function. In addition, when cubsaicin was combined with forcepsazepine (CPC + CPZ), the effect of skin force-based recovery on forcepsazepine was reduced. Therefore, it was shown that antagonist of VR-1 which is a heat receptor is effective for restoring skin parrier function.
実施例 6 Example 6
ア ドレナリ ン ι3受容体と皮膚パリァー機能回復との関係の検討 Examination of the relationship between adrenaline ι3 receptor and recovery of skin parier function
次に、 ア ドレナリ ン ]3受容体と皮膚パリ ァー機能回復との関係に ついても検討した。  Next, the relationship between the [adrenerin] 3 receptor and the recovery of the skin pariar function was also examined.
ァ ドレナリ ン i3 1受容体のァゴニス トであるキサモテロール半フ マル酸塩 (Tocris社) 水溶液 ( I mM) 、 アンタゴニス トである塩 酸べ一タキソロール半水和物 (Tocris社) 水溶液 ( I mM) 及びキ サモテロール半フマル酸塩と塩酸べ一タキソロール半水和物との混 合水溶液 (各々 I mM) を上記試験方法に記載の通りにしてへァレ スマウスの表皮に塗布し、 T E W L試験を行った。 Axenaterol hemi-fumarate (Tocris) aqueous solution (ImM), an agonist of adrenaline i31 receptor, Betataxol hydrochloride hemihydrate (Tocris) aqueous solution (ImM), an antagonist And key A mixed aqueous solution of Samoterol hemi-fumarate and betataxol hydrochloride hemihydrate (ImM each) was applied to the skin of hairless mice as described in the above test method, and a TEWL test was performed.
また、 了 ドレナリ ン β 2受容体のァゴニス トである塩酸プロカテ ロール (Tocris社) 水溶液 ( I mM) 、 アンタゴニス トである I C 1 — 1 1 8, 5 5 1 (Tocris社) 水溶液 ( 1 mM) 及び塩酸プロ力 テ口ールと I C I — 1 1 8 , 5 5 1 との混合水溶液 (各々 1 mM) を上記試験方法に記載の通りにしてへアレスマウスの表皮に塗布し 、 T E W L試験を行った。  Also, procaterol hydrochloride (Tocris) aqueous solution (ImM), which is an agonist of the drenerin β2 receptor, and IC 1-118,551 (Tocris) aqueous solution (1 mM), which is an agonist. A mixed aqueous solution (1 mM each) of ICI-118 and 551 with hydrochloric acid and potassium hydroxide was applied to the epidermis of hairless mice as described in the above test method, and a TEWL test was performed. Was.
その結果を図 1 0に示す。  The results are shown in FIG.
図 1 0の結果からア ドレナリ ン ]3 2受容体に関し、 ァゴニス トで ある塩酸プロ力テロール ( ]3 2 G ) は皮膚バリアー回復を遅延させ るが、 アンタゴニス トである I C I 一 1 1 8, 5 5 1 ( β 2 N) は 皮膚のパリア一機能の回復を促進させた。 また、 塩酸プロ力テロ一 ルに I C I 一 1 1 8, 5 5 1 を組合わせると ( ]3 2 G + Ν) 、 I C 1 - 1 1 8 , 5 5 1 に基づく皮膚のパリ ァー機能回復効果は低下し た。 従って、 ア ドレナリ ン J3 2受容体のアンタゴニス トが皮膚パリ ァー機能回復に有効であることが示された。 一方、 ア ドレナリ ン 1受容体に関しては、 そのァゴニス ト ( JS I G ) 及びアンタゴニス ト ( 1 N) は共に皮膚パリア一機能回復に対し顕著な効果を示さ なかった。  From the results in Figure 10, the agonist propoterol hydrochloride (] 32G) delays the recovery of the skin barrier, but the antagonist ICI-118, 55 1 (β 2 N) promoted the recovery of skin paria function. Also, when ICI-118, 551 is combined with pro-titanium hydrochloride (] 32 G + Ν), skin parer function recovery based on IC 1-118, 551 is achieved. The effect has decreased. Therefore, it was shown that antagonist of the adrenaline J32 receptor is effective in restoring the skin pariar function. On the other hand, with respect to the adrenaline 1 receptor, neither the agonist (JSIG) nor the antagonist (1N) showed a significant effect on the recovery of skin paria monofunction.
抑制性受容体の検討 Examination of inhibitory receptors
実施例 7 Example 7
G A B A受容体と皮膚パリァー機能回復との関係の検討  Examination of the relationship between GABA receptor and recovery of skin parrier function
G A B A受容体は抑制性神経細胞受容体であり、 C 1—チャネル 内蔵 . ビクク リ ン感受性型 (A型一 G A B A) 、 Gタンパク質連関 型 (B型一 G A B A ) 及び C 1 —チャネル内蔵 ' ビクク リ ン非感受 性型 (C型一 GAB A) が存在する。 GABA receptor is an inhibitory neuronal receptor and has a C1-channel. Bicucliline-sensitive (A-type GABA), G-protein coupled (B-type GABA) and C1-channel Insensitive There is a gender type (C-type GAB A).
実験 a ) C l _チャネル内蔵 · ビクク リ ン感受性型受容体のァゴ 二ス トである GAB A (和光純薬 (株) ) 、 ムシモール (MU S) (Tocris社) 、 イ ソグパシン (Tocris社) 、 及びそのアンタゴニス トであるビクク リ ンメ トブロ ミ ド (BM) (ICN BioMedical社) の 各水溶液を上記試験方法に記載の通りにしてへアレスマウスの表皮 にそれぞれ塗布し、 T EWL試験を行った。 また、 GAB Aとビク ク リ ンメ トブロ ミ ドを混合し、 上記試験方法に記載の通りにしてへ アレスマウスの表皮に塗布し、 T EWL試験を行った。 その結果を 図 1 1及び 1 2に示す。 Experiment a) GAB A (Wako Pure Chemical Industries, Ltd.), Muscimol (MUS) (Tocris), Isogpasin (Tocris) ), And its antagonist, biculine metbromide (BM) (ICN BioMedical), were applied to the epidermis of hairless mice as described in the test method above, and a TEWL test was performed. Was. Further, GAB A and biculine met bromide were mixed, applied to the epidermis of hairless mice as described in the above test method, and subjected to a TEWL test. The results are shown in Figures 11 and 12.
図 1 1及び 1 2の結果から、 ァゴ-ス トである GAB A、 ムシモ ール (MU S ) 、 イソグパシン ( I G) は皮膚のバリ アー回復を促 進させるが、 アンタゴニス トであるビクク リ ンメ トブロ ミ ド (BM ) はパリァー機能の回復を促進させることはないことが明らかとな つた。  From the results of Figs. 11 and 12, the avatars GABA, musmol (MUS) and isogpasin (IG) promote barrier recovery of the skin, while the antagonist vikcuri It was found that methmetromide (BM) did not promote the restoration of parier function.
実験 b ) また、 GA B Aと ビクク リ ンメ トプロ ミ ドとを同時にマ ウスの表皮に塗布し、 T EWL試験を行った。 その結果を図 1 2に 示す。 Experiment b) In addition, GABA and biculine metromide were simultaneously applied to the mouse epidermis, and a TEWL test was performed. Figure 12 shows the results.
図 1 2の結果から、 GAB Aのパリ ァー機能回復促進効果がビク ク リ ンメ トプロ ミ ドにより阻害されることも認められた。  From the results in FIG. 12, it was also confirmed that GABA A promoted the recovery of the parer function, and that it was inhibited by viklimmetromide.
以上をまとめると、 抑制性細胞受容体である C 1—チャネル内蔵 型ビクタ リ ン感受性受容体を活性化することで皮膚のパリァー機能 の回復を促進させることができ、 その結果 C 1—チャネル内蔵型ビ クク リ ン感受性受容体のァゴニス トが皮膚のパリア一機能の回復に 有効であることが明らかとなった。  Summarizing the above, activation of the inhibitory cell receptor, C1-channel-incorporated victorin-sensitive receptor, can promote the restoration of skin parier function. It has been clarified that agonist, a type of viklin-sensitive receptor, is effective in restoring the paria function of the skin.
実施例 8 Example 8
皮 Jt厚み測定試験 実施例 2 と同様にして抑制性受容体のァゴニス ト G A B Aについ て皮膚厚み測定試験を行なった。 即ち、 皮膚のパリア一機能回復促 進効果を有する GAB Aの皮膚の厚みに対する効果を組織学的観察 した。 Leather Jt thickness measurement test A skin thickness measurement test was performed on agonist GABA as an inhibitory receptor in the same manner as in Example 2. That is, histological observation was made of the effect of GABA, which has an effect of promoting the recovery of skin function on skin, on skin thickness.
ヘアレスマウスを温度 2 2〜 2 5 °C、 湿度 1 0 %以下の環境にて 前もって飼育した。 T EWLが 2.5〜3.5mg/cm2/hになるまでァセ ト ンを用いてヘアレスマウス背部皮膚のバリ ァーを破壌した。 次いで G A B Aの 1 mMの水溶液、 G A B Aと B Mとの混合水溶液 (それ ぞれ I mM) 、 又は水をそれぞれ 2 0 0 μ ΐ皮膚に滴下し、 しかる 後に上記環境下にて 4 8時間飼育して乾燥刺激を与えた後、 処置し た部分の皮膚を採取した。 4 %のパラフオルムアルデヒ ドで固定後 、 パラフィ ン包埋し、 4 ii mの切片にし、 へマ トキシリ ンーェオシ ン染色し、 顕微鏡にて表皮の厚みを計測した。 コ ン ト ロールはいず れの溶液も塗布してないものである。 その結果を図 1 4に示す。 Hairless mice were bred in advance in an environment at a temperature of 22 to 25 ° C and a humidity of 10% or less. The barrier on the back skin of the hairless mouse was ruptured using acetone until the TEWL became 2.5 to 3.5 mg / cm 2 / h. Next, a 1 mM aqueous solution of GABA, a mixed aqueous solution of GABA and BM (ImM each), or water was added dropwise to the skin at 200 μΐ each, and then raised for 48 hours in the above environment. After applying the dry stimulus, the skin of the treated area was collected. After fixation with 4% paraformaldehyde, it was embedded in paraffin, cut into 4-im sections, stained with hematoxylin-eosin, and the thickness of the epidermis was measured with a microscope. The controls are uncoated with any solution. Figure 14 shows the results.
図 1 4の結果から、 水を塗布した場合、 皮膚の厚みが有意に増大 し、 乾燥刺激によ り惹起される表皮増殖異常が有意に促進され、 G A B Aを塗布するとそのような皮膚の厚みの'増大が生ぜず、 乾燥刺 激によ り惹起される表皮増殖異常を有意に抑制できることが示され た。 そして、 GAB Aに BMを混合すると皮膚の厚みは水を塗布し た場合と同程度にまで増大し、 GAB Aによる表皮増殖異常抑制効 果が B Mにより解消されてしまう ことも明らかとなった。  From the results shown in Fig. 14, it can be seen that when water was applied, the skin thickness was significantly increased, and the epidermal proliferation abnormality caused by the dry stimulus was significantly promoted. 'It was shown that the growth did not occur and that the abnormal epidermal proliferation caused by the dry stimulation could be significantly suppressed. It was also clarified that when BM was mixed with GAB A, the skin thickness increased to the same level as when water was applied, and that the effect of GAB A on suppressing abnormal epidermal proliferation was eliminated by BM.
実施例 9 Example 9
GA B A受容体のァゴニス ト及びアンタゴニス トの細胞内の塩素ィ オン濃度に対する影響  Effect of agonist and antagonist of GABAA receptor on intracellular chloride concentration
次に、 抑制性細胞受容体である G A B A受容体のァゴニス ト (G A B A) 及びアンタゴニス ト (BM) が細胞内塩素濃度に対しどの よ うな影響を及ぼすかを検討した。 実施例 3 と同様にして正常ヒ ト表皮角化細胞 (NH E K) を無血 清表皮角化細胞培養培地の中で培養し、 その C 1—イメージングを 行なった。 Next, we investigated how the inhibitory cell receptors GABA receptor agonist (GABA) and antagonist (BM) affect the intracellular chloride concentration. In the same manner as in Example 3, normal human epidermal keratinocytes (NHEK) were cultured in a serum-free epidermal keratinocyte culture medium, and the C1-imaging was performed.
C 1 -イメージングは、 簡単には、 D i H— ME Q (モレキユラ 一プローブ社) を P B Sに溶解して 2 5〜5 0 の0 1 11—1^£ Q充填溶液を調製した。 尚、 D i H— ME Qは Molecular Probes 社の M E Q力 ら Molecular Probes Product Information (Revised January 31, 2001) MP06886に記載の通りにして調製した。 必要な らば、 D i H -ME Qを DMS O (ジメチルスルホキシド) によ り 濃厚ス ト ック溶液に調製し ( 2 5〜5 0 mM) 、 そのス ト ック溶液 を生理緩衝液に希釈してよい。  Briefly, C 1 -imaging was performed by dissolving DiH—MEQ (Molekiura Iprobe) in PBS to prepare a 25-50 solution of 0111—1 ^ £ Q. In addition, DiH-MEQ was prepared as described in Molecular Probes Product Information (Revised January 31, 2001) MP06886 from Molecular Probes' MEQ force. If necessary, prepare DiH-MEQ into a concentrated stock solution (25-50 mM) using DMSO (dimethylsulfoxide), and transfer the stock solution to physiological buffer. May be diluted.
被験物質による細胞刺激は、 細胞を D i H— ME Q充填溶液と 5 分間インキュベーショ ンし、 続いて GAB A又は GA B A+ BM ( それぞれ 1 mMの水溶液) を細胞に添加し、 約 5分イ ンキュベーシ ョ ンした。  To stimulate the cells with the test substance, the cells are incubated with the DiH-MEQ-filled solution for 5 minutes, then GABA or GABA + BM (1 mM aqueous solution each) is added to the cells, and the cells are incubated for about 5 minutes. Incubation.
その細胞を生理緩衝液で洗浄し ( 2回程度) 、 そして 3 7 °Cで 1 5分ィンキュベーショ ンしてこの色素を均一に分散させた。 次いで ME Qの最大励起及び発光波長 (それぞれ 3 4 4 n m及び 4 4 〇 n m) 用のフィルターを用いて蛍光顕微鏡観察した。 その結果を図 1 4に示す。  The cells were washed with physiological buffer (about twice) and incubated at 37 ° C for 15 minutes to uniformly disperse the dye. Then, fluorescence microscopy was performed using filters for the maximum excitation and emission wavelengths of MEQ (344 nm and 44 nm, respectively). Figure 14 shows the results.
図 1 4の結果から、 GA B A受容体のァゴニス ト GAB Aは細胞 内 C 1—濃度を有意に上昇させる効果を発揮し、 そして GAB Aの そのような効果をアンタゴニス トである BMが相殺することが示さ れた。 従って、 細胞内 C 1—濃度の増減の測定を介し、 被験物質が 抑制性受容体のァゴニス ト又はアンタゴニス トのいずれであるかを in vitroで同定できることが実証された。  From the results in Figure 14, the GABA receptor agonist GAB A exerts a significant increase in intracellular C1-concentration, and the antagonist BM counteracts such an effect of GAB A It was shown that. Therefore, it was demonstrated that whether the test substance was an inhibitory receptor agonist or antagonist could be identified in vitro by measuring the increase or decrease of the intracellular C1-concentration.
実施例 1 0 ダリ シン受容体と皮膚パリァー機能回復との関係の検討 表皮細胞に存在することの認められているダリ シン受容体のァゴ 二ス トであるグリ シン (和光純薬 (株) ) を、 上記試験方法に記载 の通りにしてへアレスマウスの表皮に塗布し、 T E W L試験を行つ た。 その結果を図 1 5示す。 Example 10 Investigation of the relationship between daricin receptor and recovery of skin parier function Glycine (Wako Pure Chemical Industries, Ltd.), an agonist of daricin receptor that is recognized to be present in epidermal cells, was Hairless mice were applied to the epidermis as described in the test method, and a TEWL test was performed. Figure 15 shows the results.
図 1 5の結果から、 ァゴニス トであるダリ シンは皮膚のバリ ァー 回復を促進させることが認められた。 従って、 抑制性細胞受容体で あるダリ シン受容体を活性化することで皮膚のパリ ア一機能の回復 を促進させることができ、 その結果グリ シン受容体のァゴニス トも 皮膚のバリ アー機能の回復に有効であることが明らかとなった。 実施例 1 1  From the results shown in Fig. 15, it was confirmed that arginist, daricin, promotes skin barrier recovery. Therefore, activation of the inhibitory cell receptor daricin receptor can promote the recovery of skin barrier function, and as a result, the glycine receptor agonist also promotes skin barrier function. It proved to be effective for recovery. Example 1 1
本実施例は、 各種ィオンの細胞内流入と皮膚パリア一機能回復と の関係を実証する。  This example demonstrates the relationship between the influx of various ions into cells and the recovery of skin paria function.
C 1 -ィオノ フォア (クロライ ドィオノ フォア 1) ( Fluka , スィ ス国)又は Ca2 +ィオノフォア (ィオノマイシン) (和光純薬工業 ( 株) ) を上記試験方法に記載の通りにしてへアレスマウスの表皮に 塗布し、 T E W L試験を行った。 その結果を図 1 6に示す。 C 1 -ionophore (chloride ionophore 1) (Fluka, Switzerland) or Ca 2 + ionophore (ionomycin) (Wako Pure Chemical Industries, Ltd.) was used as described in the above test method and the skin of hairless mice And subjected to a TEWL test. Figure 16 shows the results.
C 1 -ィオノフォアは細胞内への塩素イオンの流入を促進する化 合物である。 図 1 6の結果から明らかなとおり、 C 1 -ィオノ フォ ァで処理したマウスの皮膚のおいては、 コント ロール (水) のみを 塗布した場合と比べ有意に皮膚パリァー機能が回復した。 従って、 細胞内への塩素イオンの流入が皮膚バリ ア一の機能を回復させるこ とが明らかとなり、 細胞内 C 1—濃度の増減の測定を介し、 皮膚パ リァー機能回復促進物質を in vi t roでスク リーニングできることが 確認された。  C 1 -ionophore is a compound that promotes the influx of chloride ions into cells. As is evident from the results in FIG. 16, the skin parrier function was significantly restored in the skin of mice treated with C 1 -ionophore as compared to the case where only control (water) was applied. Therefore, it was clarified that the influx of chloride ions into cells restored the function of the skin barrier, and by measuring the increase or decrease of intracellular C1-concentration, the substance that promotes the recovery of skin function was in vitro. It has been confirmed that ro can be screened.
それに対し、 細胞内へのカルシウムィオンの流入を促進する Ca2 + ィオノフォアで処理したマウスの皮膚では、 コントロール (水) の みを塗布した場合と比べ有意に皮膚パリァー機能が低下した。 従つ て、 細胞内へのカルシウムイオンの流入が皮膚パリ ァ一の機能を低 下させることが明らかとなった。 In contrast, in the skin of mice treated with Ca 2+ ionophore, which promotes the influx of calcium ions into cells, control (water) The skin parrier function was significantly reduced as compared with the case where only the skin was applied. Therefore, it was clarified that the influx of calcium ions into the cells reduced the function of the skin barrier.
更に、 イオンの細胞内流入と皮膚パリァー機能回復との関係を組 織学的観察により確認した。  Furthermore, the relationship between the influx of ions into cells and the recovery of skin parrier function was confirmed by histological observation.
詳しくは、 実施例 8 と同様にへアレスマウスを温度 2 2〜 2 5 °C 、 湿度 1 0 %以下の環境にて前もって飼育し、 T E W Lが 2.5〜3.5 mg/cm2/hになるまでァセ トンを用いてヘアレスマウス背部皮膚のパ リァ一を破壌し、 次いで C I -ィオノフォアの 1 μ Μの水溶液又は C a2 +ィオノフォアの 1 μ Μの水溶液をそれぞれ 2 0 0 μ 1皮膚に滴 下し、 しかる後に上記環境下にて 4 8時間飼育して乾燥刺激を与え た後、 処置した部分の皮膚を採取した。 4 %のパラフオルムアルデ ヒ ドで固定後、 パラフィ ン包埋し、 4 μ ιηの切片にし、 へマ トキシ リ ンーェォシン染色し、 顕微鏡にて表皮の厚みを計測した。 コント ロールはいずれの溶液も塗布してないものである。 その結果を図 1 7に示す。 Specifically, hairless mice were raised in advance in an environment at a temperature of 22 to 25 ° C and a humidity of 10% or less, as in Example 8, until the TEWL reached 2.5 to 3.5 mg / cm 2 / h. and Yabu壌the path Ria one hairless mouse dorsal skin with seton, then CI - droplet 1 mu Micromax aqueous or C a 2 + Ionofoa of 1 mu Micromax aqueous solution to 2 0 0 μ 1 skin respective Ionofoa After that, the animals were bred for 48 hours in the above environment to give a dry stimulus, and then the skin of the treated portion was collected. After fixing with 4% paraformaldehyde, the cells were embedded in paraffin, cut into 4 μιη sections, stained with hematoxylin-eosin, and the epidermal thickness was measured with a microscope. Controls were not coated with any solution. Figure 17 shows the results.
図 1 7 (A)はアセ ト ン処理のみをしたコン ト ロールの結果 (倍率 X7,500) 、 (B)は C 1 -ィオノフォア処理を施した結果 (倍率 X7, 500) 、 (D)は (B)の拡大図 (倍率 X75,000) 、 (C)は Ca2 +ィオノ フォア処理を施した結果 (倍率 X7,500) 、 (E)は (C)の拡大図 ( 倍率 Χ75,000) を示す。 Fig. 17 (A) shows the result of the control with only the acetate treatment (magnification X7,500), (B) shows the result of the C 1 -ionophore treatment (magnification X7, 500), and (D) shows the result. (B) Magnified view (magnification X75,000), (C) Ca2 + ionophore treatment result (magnification X7,500), (E) Magnified view of (C) (magnification Χ75,000) Is shown.
哺乳類において生体から水分が失われるのを防いでいるのが角質 層である。 角質層は常に更新され、 健康な皮膚ではこれらの構造は 間断なく形成され続けている。 顆粒層において脂質を含むラメラ顆 粒が造られ、 細胞の角化に伴いラメラ顆粒の内部の脂質はェキソサ ィ トーシスによって細胞外に放出され、 細胞間隙で脂質の層状構造 を形成する (傳田光洋著、 「皮膚」 第 41巻、 第 5号、 第 518-523頁、 1999年 10月) 。 脂質層は皮膚パリア一機能を担う角質層の主要構成 成分であり、 その厚みがあるほどパリァー機能は高まる。 It is the stratum corneum that prevents the loss of water from living organisms in mammals. The stratum corneum is constantly renewed, and in healthy skin these structures continue to form without interruption. The lamellar granules containing lipids are formed in the granular layer, and lipids inside the lamellar granules are released extracellularly by exocytosis as the cells become keratinized, forming a layered structure of lipids in the intercellular space (Mitsuhiro Denda) , "Skin" Vol. 41, No. 5, pp. 518-523, October 1999). The lipid layer is a major component of the stratum corneum, which is responsible for the function of the skin paria. The thicker the lipid layer, the higher the parier function.
C 1—ィオノフォア処理を施した場合 (B )、 コン ト ロール (A )と 比べ、 脂質層 ( (B )において△で示す) が有意に肥厚化しているの が観察された。 従って、 細胞内への塩素イオンの流入により皮膚パ リア一機能が回復することが組織学的観察によっても明らかにされ た。 また、 コント 口ールでは、 脂質含有ラメラ顆粒のェキソサイ ト 一シス ( (A)において矢印で示す) が多数認められた。 Ca2 +ィオノ フォア処理の結果を示す (C )を参照すると、 脂質層 ( (C )において 矢印で示す) が薄くなつているのが観察され、 細胞内へのカルシゥ ムイオンの流入によ り皮膚パリア一の機能が低下することが明らか となった。 特に、 C 1—ィオノフォア処理の結果の拡大図を示す (D )と Ca2 +ィオノフォア処理の結果の拡大図を示す (E )を比較すると 、 脂質層の厚みの差が顕著にわかる ( (D )において脂質層を *で示 し、 (E )においては矢印で示す) 。 また、 (C) においては脂質含 有ラメラ顆粒の多数の存在が認められた ( (C )において△で示す) 図 1 8は図 1 7 中の (A )アセ トン処理のみをしたコント ロール、 ( B ) C 1—ィオノ フォア処理、 (C ) Ca2 +ィオノ フォア処理の組織学 的観察写真において認められる脂質部分の面積を定量比較した結果 である。 C 1—ィオノフォア処理をした場合、 脂質部分の面積がコ ントロールに比べ有意に増大し、 また Ca2 +ィオノフオア処理をした 場合、 脂質部分の面積がコント口ールに比べ有意に減少することが 定量的に明らかとされた。 When C 1 -ionophore treatment was performed (B), the lipid layer (indicated by △ in (B)) was significantly thickened compared to the control (A). Therefore, histological observations revealed that the influx of chloride ions into the cells restored the function of the skin panel. In control, a large number of exocytosis (shown by arrows in (A)) of lipid-containing lamellar granules was observed. Referring to (C), which shows the results of Ca 2+ ionophore treatment, it was observed that the lipid layer (indicated by the arrow in (C)) became thinner, and the influx of calcium ions into the cells caused the skin to lose its thickness. It became clear that the function of Paria was reduced. In particular, when comparing (D) showing an enlarged view of the result of the C 1 -ionophore treatment with (E) showing an enlarged view of the result of the Ca 2 + ionophore treatment, the difference in the thickness of the lipid layer can be clearly seen ((D )), The lipid layer is indicated by *, and in (E), an arrow is indicated). In addition, in (C), a large number of lipid-containing lamella granules were observed (indicated by (△) in (C)). FIG. 18 shows (A) the control in which only acetone was treated in FIG. (B) The results of quantitative comparison of the area of the lipid portion observed in the histological observation photographs of the treatment with C 1 -ionophore and the treatment with (C) Ca 2 + ionophore. When treated with C 1 -ionophore, the lipid area increases significantly compared to the control, and when treated with Ca 2 + ionophore, the lipid area decreases significantly compared to the control. It was clarified quantitatively.
従って、 組織学的観察によっても細胞内塩素イオン濃度の上昇が 脂質層の増大、 ひいては皮膚パリア一機能の回復をもたらし、 反対 に細胞内カルシウムイオン濃度の上昇が皮膚パリア一機能を低下さ せることが明確に示された。 よって、 細胞内の各種イオン濃度の測 定を介し、 皮膚パリ ア一機能の有効な物質のスク リーニングが可能 であることが組織学的観察によっても裏づけされたこととなる。 産業上の利用の可能性 Therefore, according to histological observation, an increase in intracellular chloride ion concentration leads to an increase in lipid layer and, consequently, recovery of skin pariole function, and conversely, an increase in intracellular calcium ion concentration decreases skin pariole function. It was clearly shown that Thus, histological observations support that it is possible to screen effective substances with one function of skin barrier through measurement of various ion concentrations in cells. Industrial applicability
以上の結果から、 興奮性細胞受容体のアンタゴニス ト及び抑制性 細胞受容体のァゴニス トは皮膚パリァー機能の回復促進に有効であ ることが明らかにされた。 本願発明に従う と、 新規且つ有効な皮膚 パリ ァー機能回復促進剤が提供される。  From the above results, it has been clarified that the agonist of the excitatory cell receptor and the agonist of the inhibitory cell receptor are effective in promoting the recovery of the skin parrier function. According to the present invention, there is provided a novel and effective skin barrier function recovery promoter.

Claims

請 求 の 範 囲 The scope of the claims
1. 興奮性細胞受容体のアンタゴニス ト又は抑制性細胞受容体の ァゴ-ス トを含有することを特徴とする、 皮膚パリ ァー機能回復促 進剤。 1. An agent for promoting the recovery of skin pariar function, which comprises an agonist of an excitatory cell receptor or an agonist of an inhibitory cell receptor.
2. 前記興奮性細胞受容体がグルタミ ン酸受容体、 AT P受容体 、 熱刺激受容体及びァ ドレナリ ン )3 2受容体から成る群から選ばれ る、 請求項 1記載の皮膚パリア一機能回復促進剤。  2. The skin pall function according to claim 1, wherein the excitatory cell receptor is selected from the group consisting of a glutamate receptor, an ATP receptor, a heat-stimulated receptor and an adrenaline) 32 receptor. Recovery promoter.
3. 前記グルタミ ン酸受容体が NMD A (N_メチル _D—ァス パラギン酸) 受容体である、 請求項 2記載の皮膚パリア一機能回復 促進剤。  3. The agent of claim 2, wherein the glutamate receptor is an NMD A (N_methyl_D-aspartate) receptor.
4. 前記 NMDA受容体のアンタゴニス トが MK— 8 0 1 (ジゾ シルビン) 又は D— A P 5 ( D - (一) — 2—ァミ ノ _ 5—ホスホ ノペンタン酸) である、 請求項 3記載の皮膚パリ ア一機能回復促進 剤。  4. The NMDA receptor antagonist is MK-801 (dizosylvin) or D-AP5 (D- (1-)-2-amino_5-phosphonopentanoic acid). The skin para-functional recovery promoter according to the above.
5. 前記 AT P受容体が P 2 X受容体 (変力性プリ ノ レセプター ) である、 請求項 2記載の皮膚バリ アー機能回復促進剤。  5. The skin barrier function recovery promoter according to claim 2, wherein the ATP receptor is a P 2 X receptor (inotropic purino receptor).
6. 前記 AT P受容体のアンタゴニス トがスラミ ン、 P P AD S (ピリ ドキサルホスフェー ト一 6—ァゾフエニル 2, , 4, ージ スルホン酸) 又は TN P— AT P ( ト リニ ト ロフエ二ルー AT P) である、 請求項 2記載の皮膚パリア一機能回復促進剤。  6. The antagonist of the ATP receptor is suramin, PPADS (pyridoxal phosphate-16-azophenyl 2,4,4, disulfonic acid) or TNP-ATP (trinitrophene). 3. The agent for promoting the recovery of skin paria monofunction according to claim 2, which is Lou ATP).
7. 前記熱刺激受容体が VR— 1 (バニロイ ド受容体サブタイプ 1 ) である、 請求項 2記載の皮膚パリア一機能回復促進剤。  7. The skin barrier monofunctional recovery promoter according to claim 2, wherein the thermal stimulus receptor is VR-1 (vanilloid receptor subtype 1).
8. 前記 V R _ 1のアンタゴニス トが力プサゼピンである、 請求 項 7記載の皮膚バリァー機能回復促進剤。  8. The skin barrier function recovery promoter according to claim 7, wherein the antagonist of VR_1 is ptsazepine.
9. 前記ァ ドレナリ ン ] 3 2受容体のアンタゴニス トが I C I — 1 1 8, 5 5 1 ( (土) 一 1 — [ 2 , 3 - (ジヒ ドロー 7—メチル一 1 H—イ ンデンー 4—ィル) 才キシ] 一 3— [ ( 1 一メチルェチル ) ァミ ノ ] 一 2—ブタノール) である、 請求項 2記載の皮膚パリア 一機能回復促進剤。 9. Antagonist of the adrenerin] 32 receptor is ICI — 118, 55 1 (Sat) 1 1 — [2,3- 3. The skin paria monofunctional recovery promoter according to claim 2, which is 1 H-indene-4-yl) -3-[(1-methylethyl) amino] -12-butanol. 4.
1 0. 前記抑制性細胞受容体が GAB A ( τ;—ァミ ノ酪酸) 受容 体又はダリ シン受容体である、 請求項 1記載の皮膚パリ ァー機能回 復促進剤。  10. The agent for promoting the recovery of skin parer function according to claim 1, wherein the inhibitory cell receptor is a GAB A (τ; -aminobutyric acid) receptor or a daricin receptor.
1 1 . 前記 GAB Α受容体が Α型 _ GAB Α受容体 (Crチヤネ ル内蔵型ビクク リ ン感受性型受容体) である、 請求項 1 0記載の皮 膚バリ ァー機能回復促進剤。  11. The skin barrier function recovery promoter according to claim 10, wherein the GABΑ receptor is a Α type_GABΑ receptor (a bicycline-sensitive receptor having a built-in Cr channel).
1 2. 前記 A型一 GAB A受容体のァゴニス トが GAB A、 ムシ モール又はィソグパシンである、 請求項 1 1記載の皮膚パリァ一機 能回復促進剤。  12. The skin PARIA function recovery promoter according to claim 11, wherein the agonist of the type A-GAB A receptor is GAB A, muscimol or isogpasin.
1 3. 皮膚外用剤である、 請求項 1〜 1 2のいずれか 1項記載の 皮膚バリ ァー機能回復促進剤。  1 3. The skin barrier function recovery promoter according to any one of claims 1 to 12, which is a skin external preparation.
1 4. 皮膚パリァー機能回復促進物質をスク リーニングする方法 であって、 興奮性細胞受容体の興奮活性を抑制する、 又は抑制性細 胞受容体の抑制活性を促進する候補となる物質を選定し、 当該物質 を哺乳動物の皮膚に塗布して当該皮膚の経皮水分蒸散量を減少させ る物質又は乾燥刺激を受けた当該皮膚の厚みを減少させるもしくは その増大を抑制する物質を選定することを含んで成る方法。  1 4. A method for screening a substance that promotes the recovery of cutaneous parier function, which selects a substance that suppresses the excitatory activity of an excitatory cell receptor or that promotes the inhibitory activity of an inhibitory cell receptor. It is necessary to select a substance that reduces the transdermal water loss of the skin by applying the substance to the skin of a mammal or that reduces or suppresses the increase in the thickness of the skin exposed to dryness. Comprising a method.
1 5. 前記興奮性細胞受容体の興奮活性を抑制する又は抑制性細 胞受容体の抑制活性を促進する候補となる物質の選定を、 当該物質 が細胞内のカルシゥムイオンもしく はナト リ ゥムィォン又は塩素ィ オン濃度に対して及ぼす影響を評価することで実施する、 請求項 1 4記載のスク リ一二ング方法。  1 5. The selection of a candidate substance that suppresses the excitatory activity of the excitatory cell receptor or promotes the inhibitory activity of the inhibitory cell receptor is performed by selecting a calcium ion or a sodium ion in the cell. 15. The screening method according to claim 14, wherein the method is performed by evaluating an influence on a chlorine ion concentration.
1 6. 前記興奮性細胞受容体がグルタ ミ ン酸受容体、 AT P受容 体、 熱刺激受容体又はア ドレナリ ン 3 2受容体であり、 前記抑制性 細胞受容体が γ —アミ ノ酪酸受容体又はダリ シン受容体である、 請 求項 1 4記載のスク リーニング方法。 1 6. The excitatory cell receptor is a glutamate receptor, an ATP receptor, a heat-stimulated receptor or an adrenaline 32 receptor; 15. The screening method according to claim 14, wherein the cell receptor is a γ-aminobutyric acid receptor or a daricin receptor.
1 7 . 皮膚パリァー機能回復活促進物質をスク リーユングする方 法であって、 皮膚パリァー機能回復活促進物質の候補となる物質を 哺乳動物細胞に作用させ、 しかる後に当該細胞内塩素ィオン濃度を 測定し、 当該細胞内塩素イオン濃度を上昇させる物質を皮膚パリァ 一機能回復活促進物質と して選定することを含んで成る方法。  17. A method for screening a skin-parer function recovery activity promoting substance, in which a candidate substance for a skin-parer function recovery activity promoting substance is allowed to act on mammalian cells, and then the intracellular chlorine ion concentration is measured. And selecting the substance that increases the intracellular chloride ion concentration as a substance for promoting the function of restoring the function of the skin pariers.
1 8 . 皮膚パリァー機能回復活促進物質をスク リーユングする方 法であって、 皮膚バリァー機能回復活促進物質の候補となる物質を 哺乳動物細胞に作用させ、 しかる後に当該細胞内カルシウム又はナ ト リ ウムイオン濃度を測定し、 当該細胞内カルシウム又はナト リ ウ. ムイオン濃度を低下させる物質を皮膚パリァー機能回復活促進物質 と して選定することを含んで成る方法。  18. A method for screening a skin barrier function recovery activity promoting substance, in which a substance that is a candidate for a skin barrier function recovery activity promoting substance is allowed to act on a mammalian cell, and thereafter, the calcium or sodium in the cell is used. A method for measuring the concentration of calcium ions and selecting a substance that reduces the concentration of intracellular calcium or sodium ions as a substance for promoting the activity of restoring the skin parier function.
1 9 . 肌改善方法であって、 皮膚に興奮性細胞受容体のアンタゴ ニス ト又は抑制性細胞受容体のァゴニス トを含有する皮膚外用剤を 塗布して皮膚バリァー機能を回復促進させることを特徴とする、 方 法。  19. A method for improving the skin, characterized in that a skin external preparation containing an agonist of an excitatory cell receptor or an agonist of an inhibitory cell receptor is applied to the skin to promote the recovery of the skin barrier function. The method.
PCT/JP2002/012945 2001-12-13 2002-12-11 Skin barrier function repair accelerators WO2003053466A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003554223A JPWO2003053466A1 (en) 2001-12-13 2002-12-11 Skin barrier function recovery accelerator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001-380204 2001-12-13
JP2001380204 2001-12-13
JP2002119361 2002-04-22
JP2002-119361 2002-04-22

Publications (1)

Publication Number Publication Date
WO2003053466A1 true WO2003053466A1 (en) 2003-07-03

Family

ID=26625043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/012945 WO2003053466A1 (en) 2001-12-13 2002-12-11 Skin barrier function repair accelerators

Country Status (2)

Country Link
JP (1) JPWO2003053466A1 (en)
WO (1) WO2003053466A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342195A (en) * 2002-05-28 2003-12-03 Shiseido Co Ltd Inhibitor for parakeratosis, pore reducing agent and external preparation for skin
WO2008046788A1 (en) * 2006-10-18 2008-04-24 Unilever Plc Skin benefit compositions with a vanilloid receptor antagonist
WO2008114732A1 (en) * 2007-03-16 2008-09-25 Shiseido Company Ltd. Wrinkling-preventing and -modifying agent
JP2014185141A (en) * 2013-02-22 2014-10-02 Mikimoto Pharmaceut Co Ltd Involucrin production promoter, skin keratinization promoter
CN117442598A (en) * 2023-12-25 2024-01-26 天津嘉氏堂科技有限公司 Application of nitrate compound in preparation of sensitive muscle epidermis barrier improving product

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51148041A (en) * 1975-06-13 1976-12-18 Kanebo Ltd Toiletry
JPH092952A (en) * 1995-04-17 1997-01-07 Kanebo Ltd Promoter for synthesis of ceramide
JPH1017457A (en) * 1996-06-25 1998-01-20 Kanebo Ltd Percutaneous absorption-stimulating preparation for external use for skin
US5976559A (en) * 1994-09-30 1999-11-02 L'oreal Compositions and methods for treating wrinkles and/or fine lines of the skin
EP1009379A1 (en) * 1997-09-01 2000-06-21 L'oreal Use of a substance agonist of a receptor associated with a chlorine or potassium canal for treating sensitive skins
JP2000290135A (en) * 1998-03-05 2000-10-17 Shiseido Co Ltd Agent for promoting restoration of skin barrier function

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51148041A (en) * 1975-06-13 1976-12-18 Kanebo Ltd Toiletry
US5976559A (en) * 1994-09-30 1999-11-02 L'oreal Compositions and methods for treating wrinkles and/or fine lines of the skin
JPH092952A (en) * 1995-04-17 1997-01-07 Kanebo Ltd Promoter for synthesis of ceramide
JPH1017457A (en) * 1996-06-25 1998-01-20 Kanebo Ltd Percutaneous absorption-stimulating preparation for external use for skin
EP1009379A1 (en) * 1997-09-01 2000-06-21 L'oreal Use of a substance agonist of a receptor associated with a chlorine or potassium canal for treating sensitive skins
JP2000290135A (en) * 1998-03-05 2000-10-17 Shiseido Co Ltd Agent for promoting restoration of skin barrier function

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
ASHIDA Y. ET AL.: "Histamine H1 and H2 receptor antagonists accelerate skin barrier repair and prevent epidermal hyperplasia induced by barrier disruption in a dry environment", J. INVEST. DERMATOL., vol. 116, no. 2, February 2001 (2001-02-01), pages 261 - 265, XP002966360 *
DENDA M. ET AL.: "Gamma-Aminobutyric acid (A) receptor agonists accelerate cutaneous barrier revocery and prevent epidermal hyperplasia induced by barrier disruption", J. INVEST. DERMATOL., vol. 119, no. 5, November 2002 (2002-11-01), pages 1041 - 1047, XP002966358 *
DENDA M. ET AL.: "Low humidity stimulates epidermal DNA synthesis and amplifies the hyperproliferative response to barrier disruption: implication for seasonal exacerbations of inflammatory dermatoses", J. INVEST. DERMATOL., vol. 111, no. 5, 1998, pages 873 - 878, XP002966365 *
DENDA M. ET AL.: "P2X purinergic receptor antagonist accelerates skin barrier repair and prevents epidermal hyperplasia induced gamma skin barrier discuption", J. INVEST. DERMATOL., vol. 119, no. 5, November 2002 (2002-11-01), pages 1034 - 1040, XP002966357 *
DENDA M. ET AL.: "Trans-4-(aminomethyl)cyclohexane carboxylic acid(T-AMCHA), an anti-fibrinolytic agent, accelerates barrier recovery and prevents the epidermal hyperplasia induced by epidermal injury in hairless mice and humans", J. INVEST. DERMATOL., vol. 109, no. 1, 1997, pages 84 - 90, XP002966364 *
DIXON C.J. ET AL.: "Regulation of epidermal homeostasis through P2Y2 receptors", BR. J. PHARMACOL., vol. 127, 1999, pages 1680 - 1686, XP002966362 *
FUJIWARA S. ET AL.: "NMDA type glutamate receptor is associated with cutaneous barrier homeostasis", J. INVEST. DERMATOL., vol. 119, no. 1, July 2002 (2002-07-01), pages 256, XP002966359 *
GENEVER P.G. ET AL.: "Evidence for a novel glutamate-mediated signaling pathway in keratinocytes", J. INVEST. DERMATOL., vol. 112, no. 3, 1999, pages 337 - 342, XP002966361 *
LEE S.H. ET AL.: "A role for ions in barrier recovery after acute pertubation", J. INVEST. DERMATOL., vol. 102, 1994, pages 976 - 979, XP002966366 *
PILLAI S. ET AL.: "Adenosine triphosphate stimulates phosphoinositide metabolism, mobilizes intravellular calcium and inhibits terminal differentiation of human epidermal keratin ocytes", J. CLIN. INVEST., vol. 90, 1992, pages 42 - 51, XP002074020 *
SHEPHERD G.M.: "Synaptic potentials and synaptic integration", NEUROBIOLOGY OXFORD, 1994, OXFORD UNIVERSITY PRESS, pages 132 - 159, XP002966368 *
SHEPHERD G.M.: "The synapse", NEUROBIOLOGY OXFORD, 1994, OXFORD UNIVERSITY PRESS, pages 102 - 131, XP002966367 *
STOEBNER P.E.: "The expression of peripheral benzodiazepine receptors in human skin: the relationship with epidermal cell differentiation", BR. J. DERMATOL., vol. 140, 1999, pages 1010 - 1016, XP002966363 *
TAKESHI HARIYA ET AL.: "Iwayuru binkanhada no kakushitsuchu IL-1 receptor antagonist/IL-1alpha ratio ni kansuru kento", HIFU, vol. 43, no. 1, February 2001 (2001-02-01), pages 10 - 18, XP002966899 *
TETSUJI HIRAO: "Kakushitsu cytokine", JOURNAL OF JAPANESE COSMETIC SCIENCE SOCIETY, vol. 24, no. 4, 2000, pages 329 - 333, XP002966900 *
YUSPA S.H. ET AL.: "Signal transduction for proliferation and differentiation in keratinocytes", AM. N.Y. ACAD. SCI., vol. 548, 1988, pages 191 - 196, XP002966369 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342195A (en) * 2002-05-28 2003-12-03 Shiseido Co Ltd Inhibitor for parakeratosis, pore reducing agent and external preparation for skin
WO2003099327A1 (en) * 2002-05-28 2003-12-04 Shiseido Company, Ltd. Parakeratosis inhibitor, pore-shrinking agent and skin preparation for external use
WO2008046788A1 (en) * 2006-10-18 2008-04-24 Unilever Plc Skin benefit compositions with a vanilloid receptor antagonist
WO2008114732A1 (en) * 2007-03-16 2008-09-25 Shiseido Company Ltd. Wrinkling-preventing and -modifying agent
US8173705B2 (en) 2007-03-16 2012-05-08 Shiseido Company Ltd. Agent for alleviating wrinkles
JP5501758B2 (en) * 2007-03-16 2014-05-28 株式会社 資生堂 Anti-wrinkle / improving agent
KR101560840B1 (en) 2007-03-16 2015-10-15 가부시키가이샤 시세이도 Wrinklingpreventing and modifying agent
JP2014185141A (en) * 2013-02-22 2014-10-02 Mikimoto Pharmaceut Co Ltd Involucrin production promoter, skin keratinization promoter
CN117442598A (en) * 2023-12-25 2024-01-26 天津嘉氏堂科技有限公司 Application of nitrate compound in preparation of sensitive muscle epidermis barrier improving product
CN117442598B (en) * 2023-12-25 2024-03-12 天津嘉氏堂科技有限公司 Application of nitrate compound in preparation of sensitive muscle epidermis barrier improving product

Also Published As

Publication number Publication date
JPWO2003053466A1 (en) 2005-04-28

Similar Documents

Publication Publication Date Title
Yeung et al. Effects of stretch‐activated channel blockers on [Ca2+] i and muscle damage in the mdx mouse
Braet et al. Pharmacological sensitivity of ATP release triggered by photoliberation of inositol‐1, 4, 5‐trisphosphate and zero extracellular calcium in brain endothelial cells
Bayliss et al. Inhibition of N‐and P‐type calcium currents and the after‐hyperpolarization in rat motoneurones by serotonin.
Rammes et al. The anti-craving compound acamprosate acts as a weak NMDA-receptor antagonist, but modulates NMDA-receptor subunit expression similar to memantine and MK-801
Smaili et al. Permeability transition pore regulates both mitochondrial membrane potential and agonist-evoked Ca2+ signals in oligodendrocyte progenitors
Grilli et al. Somatostatin inhibits glutamate release from mouse cerebrocortical nerve endings through presynaptic sst2 receptors linked to the adenylyl cyclase–protein kinase A pathway
Grzelka et al. Noradrenaline modulates the membrane potential and holding current of medial prefrontal cortex pyramidal neurons via β1-adrenergic receptors and HCN channels
Janssen et al. Regulation of [Ca2+] i in canine airway smooth muscle by Ca (2+)-ATPase and Na+/Ca2+ exchange mechanisms
Terracciano et al. Effects of acidosis on Na+/Ca2+ exchange and consequences for relaxation in guinea pig cardiac myocytes
Saulle et al. Neuronal vulnerability following inhibition of mitochondrial complex II: a possible ionic mechanism for Huntington's disease
Pham et al. Astrocytes respond to a neurotoxic Aβ fragment with state-dependent Ca 2+ alteration and multiphasic transmitter release
Mukhutdinova et al. Oxysterol modulates neurotransmission via liver-X receptor/NO synthase-dependent pathway at the mouse neuromuscular junctions
Ba et al. The role of Ca2+ channel modulation in the neuroprotective actions of estrogen in β-amyloid protein and 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) cytotoxic models
WO2003053466A1 (en) Skin barrier function repair accelerators
Alonso et al. Evidence for Modulation of DoDamine‐neuronal Function by Tachykinin NK3 Receptor Stimulation in Gerbil Mesencephalic Cell Cultures
JP2011500738A (en) Use of norgestimate as a selective inhibitor of TRPC3, TRPC6 and TRPC7 ion channels
Sun et al. GPR84-mediated signal transduction affects metabolic function by promoting brown adipocyte activity
Oba et al. Cellular redox state protects acetaldehyde-induced alteration in cardiomyocyte function by modifying Ca2+ release from sarcoplasmic reticulum
Nakamura et al. Cytosolic calcium elevation induced by orexin/hypocretin in granule cell domain cells of the rat cochlear nucleus in vitro
Failli et al. Taurine antagonizes the increase in intracellular calcium concentration induced by α-adrenergic stimulation in freshly isolated guinea-pig cardiomyocytes
JP5933240B2 (en) Evaluation method, screening method, antipruritic substance and antipruritic agent
MANGINI et al. Sodium-calcium exchanger in cultured human retinal pigment epithelium
Easaw et al. Zinc modulation of ionic currents in the horizontal limb of the diagonal band of Broca
Brotto et al. The effect of 2, 3-butanedione 2-monoxime (BDM) on ventricular trabeculae from the avian heart
Karadas et al. Effects of formoterol and BRL 37344 on human umbilical arteries in vitro in normotensive and pre-eclamptic pregnancy

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003554223

Country of ref document: JP

122 Ep: pct application non-entry in european phase