WO2003048785A1 - Falling detection device - Google Patents

Falling detection device Download PDF

Info

Publication number
WO2003048785A1
WO2003048785A1 PCT/JP2002/012730 JP0212730W WO03048785A1 WO 2003048785 A1 WO2003048785 A1 WO 2003048785A1 JP 0212730 W JP0212730 W JP 0212730W WO 03048785 A1 WO03048785 A1 WO 03048785A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
acceleration
drop
closed container
sensor
Prior art date
Application number
PCT/JP2002/012730
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Teranishi
Original Assignee
Ubukata Industries Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ubukata Industries Co.,Ltd. filed Critical Ubukata Industries Co.,Ltd.
Priority to AU2002357585A priority Critical patent/AU2002357585A1/en
Priority to JP2003549929A priority patent/JP4005561B2/en
Publication of WO2003048785A1 publication Critical patent/WO2003048785A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/135Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by making use of contacts which are actuated by a movable inertial mass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H35/00Switches operated by change of a physical condition
    • H01H35/14Switches operated by change of acceleration, e.g. by shock or vibration, inertia switch

Definitions

  • the present invention relates to a fall detection device for performing appropriate processing such as detecting a fall of a device to be protected and operating a protection device.
  • semiconductor-type three-axis acceleration sensors with high input resolution are often used because the detected acceleration change is as small as 1 G or less.
  • the signal output from the acceleration sensor is amplified by an amplifier circuit, processed by an AZD converter, and determined by a determination circuit.
  • the protection device is configured to be activated.
  • the semiconductor type three-axis acceleration sensor has high accuracy and is expensive.
  • the power consumption of the signal processing circuit is large, the usable time is shortened when power cannot be obtained directly from a commercial power supply, for example, when a portable power supply is configured using a battery as a power supply. For this reason, there is a problem that frequent charging and battery replacement are required.
  • the drop sensor 1 having the above-described configuration, a configuration that constantly changes the contact state against gravity by an elastic body such as a spring is required.
  • the elastic body In order to detect a change in gravity, the elastic body is held at a predetermined position by receiving the weight of the inertial body that is hung by 1 G of gravity when stationary, and the apparent weight of the inertial body is determined by dropping or the like.
  • the value When the value is reduced to a value, it must be configured so that contacts and the like are operated immediately.
  • the mass of the inertial body also decreases, so it is necessary to make the elastic body that supports it flexible. Therefore, the smaller the sensor, the more difficult it is to design the sensor.
  • the elastic body is made flexible, there is a problem that the elastic body is easily deformed even with an impact acceleration applied to normal handling. For this reason, from the viewpoint of the strength setting and durability of the elastic body, for example, horizontal vibration It is difficult to convert an acceleration sensor that detects such things as a fall sensor that detects acceleration in the direction of gravity by simply arranging it horizontally.
  • a unidirectional mechanical accelerometer with a simple structure could be used as the drop sensor.
  • an object of the present invention is to provide a fall detecting device which can accurately detect a fall of a target device in any posture, and has a simple configuration and excellent impact resistance. Disclosure of the invention
  • the fall detection device of the present invention is provided with a metal cylindrical closed container, a movable contact provided in the closed container and having a plurality of contact portions arranged at equal intervals, and provided on an inner peripheral surface of the closed container.
  • a plurality of mechanical drop sensors comprising: a fixed contact that can be separated from and contacted with the movable contact; and a permanent body that is housed in the hermetically sealed container and that pushes down the movable contact by its own weight to contact the fixed contact. I have one.
  • the drop sensor has the same characteristics in all directions around the central axis of the cylindrical closed container, and when in a normal posture in which the central axis of the closed container is a horizontal axis and in a stationary state, When the inertial body deflects the movable contact and comes into contact with the fixed contact, and when the apparent weight of the inertial body is reduced to a predetermined value or less due to dropping or the like, the movable contact is opposed to the weight of the inertial body. Are configured to be separated from the fixed contact. For this reason, the plurality of drop sensors are the same as at least one of the other drop sensors by changing the inclination angle of the central axis of the closed container so that a part of the allowable tilt range for the normal posture overlaps.
  • the posture By arranging on a flat surface, the posture However, a fall can be detected with high accuracy. Moreover, since the drop sensor has the same characteristics in all directions around the central axis of the closed container, the number of drop sensors used is reduced as compared with the case of using a unidirectional drop sensor. Can be. In addition, since a plurality of drop sensors can be arranged on the same plane, the configuration and manufacturing are simplified. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a diagram showing the entire configuration of a fall detection device according to a first embodiment of the present invention
  • FIG. 2 is a vertical side view of the fall sensor 1
  • Fig. 3 is a vertical sectional view of the drop sensor shown in Fig. 2 along the line 3-3.
  • FIG. 4 is a diagram corresponding to FIG. 1 showing a second embodiment of the present invention
  • FIG. 5 is a diagram corresponding to FIG. 1 showing a third embodiment of the present invention.
  • FIGS. 1 to 3 show a first embodiment of the present invention.
  • a fall detection device 1 includes a signal processing circuit 100 including a plurality of components on a substrate 4 housed in a device to be protected 2 and a plurality of fall sensors 3. Etc. are arranged.
  • the drop sensor 3 is a small accelerometer, for example, as disclosed in Japanese Patent Application Laid-open No. 2001-19464 It has substantially the same configuration as the illustrated acceleration sensor.
  • FIG. 2 is a longitudinal sectional view of the drop sensor 3
  • FIG. 3 is a sectional view taken along line 3-3 in FIG.
  • the drop sensor 3 is provided with a closed container 101 comprising a bottomed cylindrical metal container 31 and a lid plate 32 airtightly fixed to the opening thereof.
  • the outer diameter of the closed container 101 is 3.3 mm
  • the length is The modulus is set to 6.2 mm.
  • the inner peripheral surface 31 A of the metal container 31 is a fixed contact.
  • the cover plate 32 includes a metal plate 32 B having a through hole 32 A, and a rod-shaped conductive terminal 3 air-tightly fixed to the through hole 32 A with an electrically insulating material 34 such as glass. It consists of three.
  • a metal movable contact 35 having a plurality of movable portions 35 A having a panel property is conductively fixed to a tip inside the container 31 of the conductive terminal 33.
  • the movable contact 35 is configured such that a movable portion 35A radially extends from the center thereof.
  • the movable contact 35 is welded and fixed to the conductive terminal 33 with its center portion sandwiched between the end surface of the conductive terminal 33 and the metal backing plate 39. It is fixed to the conductive terminal 33. Further, by sandwiching the movable contact point 35 between the backing plate 39 and the resin insulation holder 38, the movable portion 35A is bent at a predetermined angle with respect to the center of the movable contact 35. -Will be kept.
  • the movable portion 35A when the movable portion 35A is in a free state without an inertia body 36 described later, the movable portion 35A extends along the longitudinal direction (the left-right direction in FIG. 2) of the inner peripheral surface 31A of the container 31. They are arranged at equal intervals in the circumferential direction. The tip of each movable portion 35A is bent toward the inner peripheral surface 31A of the container 31 to form a contact portion 35B.
  • the movable portion 35A contacts the inner peripheral surface 31A of the metal container 31 which is a fixed contact at the tip of the contact portion 35B. Therefore, since the contact portion 35B contacts the inner peripheral surface 31A with a small area close to the point contact, the contact pressure is increased, and a contact failure due to contamination of the inner peripheral surface 31A of the container is prevented. I'm sorry.
  • a metal inertia body 36 is disposed inside the container 31.
  • the diameter of the inertial body 36 is set to 2.4 mm.
  • the posture of the drop sensor 3 when the metal container 31 (closed container 101) is arranged so that the central axis thereof is the horizontal axis is the normal posture.
  • the inertial body 36 bends the movable portion 35 A by its own weight. While pressing down, the contact portion 35 B contacts the inner peripheral surface 31 A of the metal container 31. Therefore, normally, the metal container 31 and the conductive terminal 33 are electrically connected.
  • An electric insulator 37 such as a resin is disposed on the closed bottom surface of the metal container 31.
  • the movable contact 35 is made of a very thin metal plate having conductivity, in this embodiment, a phosphor bronze plate having a thickness of 12 Aim. Therefore, if it is repeatedly caught between the inertial body 36 and the inner surface of the container, it may be deformed by extension. In addition, when the drop sensor 3 'receives an impact acceleration and the inertial body 36 hits the movable contact 35 near the holding portion between the insulating holder 38 and the contact plate 39, the movable contact 3'5 is elastically deformed. There is a possibility of plastic deformation beyond the region. Therefore, in the present embodiment, the protrusion 38 A is provided on the insulating holder 38.
  • the inertia body 36 moves to the backing plate 39 side, the inertia body 36 comes into contact with the protruding portion 38A, so that the movable contact 35 by the holding portion 38 and the backing plate 39 is formed. Does not hit near the holding part. Therefore, even when the drop sensor 13 receives an impact acceleration, the inertial body 36 does not apply excessive stress to the movable portion 35 A, and the plastic deformation of the movable contact 35 and the characteristic change accompanying it are prevented. Can be prevented.
  • a plurality of columnar portions 31B are provided at equal intervals on the inner peripheral surface 31A of the metal container 31.
  • the columnar portion 31B projects in a columnar shape inside the container 31.
  • the size and height of the adjacent columnar part 31B are such that when the inertial body 36 and the columnar part 31B come into contact with each other, the inertial body 36 It is set not to reach 1 A.
  • the movable portion 35A of the movable contact 35 is disposed between the adjacent columnar portions 31B. Thereby, even when the movable part 35 A and the inertial body 36 come into contact with each other, a gap always occurs between the inner surface 31 A of the container 31 and the inertial body 36.
  • the fall sensor 3 uses a semiconductor type acceleration sensor because of its structure, it does not change its characteristics even under the impact acceleration given in normal handling or long-term use. No special handling is required.
  • the bent movable portion 35 A pushes the inertial body 36 back to the center of the container 31.
  • the contact with the inner peripheral surface 31A of the container 31 is released. Therefore, conduction between the metal container 31 and the conductive terminal 33 is cut off. In this way, the contact state can be reliably switched when the fall sensor 3 is in the fall state.
  • the inclination of the central axis of the container 31 is set within a predetermined angle with respect to the horizontal axis, and the movable part 35 A is sufficiently bent by the inertial body 36.
  • the inertial body 36 must be brought into contact with the inner peripheral surface 31 A of the metal container 31.
  • the inertia body 36 The weight does not work sufficiently in the direction of contacting the bottom surface and bending the movable part 35 A. Therefore, the contact part 35 B is moved from the inner peripheral surface 31 A by a slight change in gravity due to vertical movement.
  • the drop detecting device 1 is configured such that the plurality of drop sensors 3 are arranged on the substrate 4 and the center axes of the containers 31 of the plurality of drop sensors 3 are located on the same plane.
  • the drop sensor 3 is arranged while changing the inclination angle within the allowable inclination angle so that at least one of the other drop sensors 3 overlaps the range where the normal operation is performed.
  • each drop sensor 3 is cylindrical and has uniform characteristics in all directions with respect to its central axis, so that the substrate 4 can be rotated about any axis parallel to the substrate surface. Even if is changed, the inclination of at least one central axis of the drop sensor 3 with respect to the horizontal axis falls within the allowable error.
  • the drop sensor 3 since the drop sensor 3 has the same characteristics in all directions with respect to its central axis, the front and back and the lateral inclination of the sensor 3 do not matter when placed on a substrate or the like. Considering only the direction of the shaft makes handling easy. When a unidirectional mechanical acceleration sensor is used, it is necessary to arrange the sensor three-dimensionally in order to have sufficient sensitivity in all directions around the three axes. In the case of the drop sensor 3, the central axes can be aligned on the same plane, which facilitates manufacturing.
  • the drop sensors 3 are all arranged in parallel on a circuit to form an OR circuit, so that an ON signal can be always input to the signal processing circuit 100 when in a stationary state. Then, as described above, when the fall detection device 1 falls and the apparent weight decreases, the fall sensor 3 in the normal posture moves the movable portion 35 A to the inertial body 36. Since the contact part 35 B is pushed back to the center of the container 31 and the contact part 35 B is separated from the metal container 31, the output is reliably turned off. In addition, the drop sensor 3 tilted beyond the allowable tilt range is distributed faster than the drop sensor 3 in the normal posture because the weight of the inertial body 36 is dispersed from the direction perpendicular to the movable part 35 A.
  • the signal processing circuit 100 determines that the fall detection device 1 has entered the fall state.
  • the signal processing circuit 100 since the signal from the drop sensor 13 does not need to be particularly amplified or A / D converted, the signal processing circuit 100 is simpler than when a semiconductor sensor is used and also consumes less power. It can be kept low. Therefore, for example, even when the power source is a battery, it can be used for a long time.
  • the drop sensor 3 has a switch structure which is very sensitive to a change in gravity but has contacts at the same time.
  • the inertial body 36 may oscillate and repeat contact opening and closing even with the normal use of the equipment to be protected, and such an OFF signal may cause a false determination of a drop. is there.
  • the signal processing circuit 100 of the drop detecting device 1 does not simply look at the off state of the drop sensor 13, but the state where the signal from the drop sensor 3 is turned off has reached a predetermined time. It is determined whether or not to perform the protection operation based on whether or not. That is, if the signal from the drop sensor 13 is turned off within a predetermined time even if it is once turned off, it is determined that there is no problem due to normal use. On the other hand, if the signal from the drop sensor 13 has been turned off for more than a predetermined time, it is determined that the drop state has continued and the drop has a height that requires protection. Appropriate protection processing is performed on the devices to be protected, for example, by temporarily stopping the recording operation for the device overnight or turning off the power.
  • FIG. 4 shows a second embodiment of the present invention, and different points from the first embodiment will be described.
  • the same parts as those in the first embodiment are denoted by the same reference numerals.
  • the fall detection device 11 according to the present embodiment is the same as the first embodiment in that it is incorporated in a portable device such as a notebook personal computer (hereinafter referred to as a notebook personal computer), for example. It detects the acceleration in the upward direction and can perform protection processing on the equipment to be protected. ⁇ Especially when using a laptop computer on a desk, the power cable, LAN cable, and connection cables to various external devices are connected. If these cables are inadvertently pulled and the portable device falls, the fall time is shorter than a simple drop because the cable is pulled strongly first and has an initial velocity.
  • the fall detection device may not be able to perform protection processing because fall detection is not in time. Therefore, in the present embodiment, it is possible to detect that horizontal or upward acceleration that may lead to a drop is applied to the device to be protected, and to perform quicker processing.
  • two acceleration sensors 5 are arranged on the substrate 14 in addition to the plurality of drop sensors 3.
  • the two acceleration sensors 5 are arranged such that their central axes are perpendicular to each other.
  • the board 14 is arranged horizontally and the acceleration sensor 5 is arranged in parallel with the surface of the board 14.
  • the fall detection device 11 can detect acceleration applied in the horizontal and upward directions. it can.
  • one acceleration sensor 5 is arranged so that its central axis is parallel to the central axis of a housing of a notebook computer or the like to be protected.
  • the acceleration sensor 15 has the same configuration as that of the acceleration sensor disclosed in Japanese Patent Application No. 2001-176640 filed earlier by the present applicant, for example.
  • the acceleration sensor 5 has substantially the same shape as the above-mentioned fall sensor 3, but has a normal posture in which the central axis coincides with the horizontal axis and is in a stationary state by increasing the spring property of the movable contact.
  • the contact portion does not contact the container against the weight of the inertial body.
  • the contact portion is separated from the inner surface of the container with a slight gap by balancing the radius by the weight of the inertial body, and when the equipment to be protected receives a large acceleration in the horizontal direction or
  • the contact part comes into contact with the metal container and turns on.
  • the movable contact is balanced so that it does not contact the fixed contact point at an acceleration of 1 G due to gravity, and the contact between the contacts is increased when the acceleration applied to the inertial body increases to 1.5 G or more. Has been.
  • the drop sensor 3 opens the contact point when the apparent gravity decreases below a set value for a simple drop, and the drop sensor 3 opens its contact point. If it is determined that the signal processing circuit 100 has dropped or dropped from the duration or the like, a signal is input to the protection processing device to perform appropriate protection processing.
  • the protection processing device to perform appropriate protection processing.
  • the device to be protected is accelerated in the direction of water square, the gravity applied to the drop sensor 3 does not change.
  • the apparent gravity increases, so that the drop sensor 3 maintains the contact state of the contact points.
  • the acceleration sensor 15 is always off type, and when a horizontal or upward acceleration is applied to the device to be protected, and when the acceleration exceeds a predetermined value, the contact is closed. For example, if the power cable is pulled and the device to be protected is subjected to a sudden acceleration that causes the device to fall, the acceleration sensor 5 closes the contact. Then, the signal processing circuit 100 that has received the signal from the acceleration sensor 5 outputs an acceleration detection signal, and the protection processing device that has received this signal performs appropriate protection processing. Also, if sudden acceleration is applied upward, In this case, similar detection and protection processing can be performed.
  • the drop detector 11 is substantially more sensitive to the acceleration in the direction of gravity.
  • a device to be protected such as a notebook computer
  • the fall detecting device 11 is configured to more sensitively detect the acceleration due to the upward movement, it is possible to prepare for a danger of falling.
  • the two acceleration sensors 5 are arranged so that their central axes are orthogonal to each other, and these acceleration sensors 5 ′ are connected in parallel on a circuit, so that the devices to be protected can be protected.
  • the acceleration applied to the front and rear and the acceleration applied to the left and right can be detected in the same way.
  • only one acceleration sensor 15 can be used.
  • uniform characteristics can be provided in all directions in the horizontal plane.
  • FIG. 5 shows a third embodiment of the present invention, and different points from the second embodiment will be described.
  • the same parts as those of the second embodiment are denoted by the same reference numerals.
  • a lifeline has been used as a protective device for workers at high places, for example, to hold the worker's body and prevent it from falling.
  • a fall accident still occurs.
  • impacts such as wearable airbags and auxiliary nets deployed around the workplace have been used to reduce the impact of a fall in a fall accident.
  • Absorption aids have been proposed.
  • the shock absorbing auxiliary device operates by receiving a fall detection signal from the fall detection device 21 worn by the worker to be protected, thereby allowing the worker to fall. It is possible to prevent lowering and reduce the impact when falling.
  • the drop detecting device 21 is provided with a belt (corresponding to a mounting means) 7 for mounting on a worker. That is, as shown in FIG. 5, in the drop detecting device 21, a substrate 24 is housed in a case 6 attached to a belt 7. The fall detection device 21 is attached via a belt 7 near the center of the body, which is least susceptible to vibrations and acceleration / deceleration movements due to normal work, for example, near the waist of the worker.
  • the fall detection device is attached to the worker's arm, not only will the fall detection device become an obstacle during the work, but acceleration and deceleration due to the movement of the arm will be repeated in any work, causing malfunction.
  • a similar problem occurs when the fall detection device is attached to the worker's foot.
  • the worker's torso especially the lower back, which is the center of movement, sudden movement is unlikely to occur normally, and vibration and acceleration that may cause the drop sensor 3 to malfunction, including intentional cases. Is unlikely to be given.
  • the drop detection device 21 is attached to the waist via the belt 7, the posture in which the substrate 24 arranged in the case 6 follows the body becomes the normal posture.
  • the normal posture of the substrate 24 is almost vertical. Even if the substrate 24 is arranged in such a posture, the fall sensor 13 is arranged on the substrate 24 so that the normal operation range overlaps with at least one of the other fall sensors 3. At rest, at least one sensor 3 always has its contacts closed. Also, when the operator changes his posture, such as bending down or lying down, one drop sensor 3 always closes the contacts as described above.
  • the signal processing circuit 100 If the state does not continue for a predetermined time after all the signals are turned off, a fall signal is not output.
  • a malfunction may occur when jumping. For example, when the wearer jumps on the spot or jumps over a small step, the wearer is in a free fall state from when the foot leaves the ground until it reaches the ground again. Therefore, if this time exceeds a predetermined time, it is erroneously determined to be a fall. This is because the predetermined time is set on the assumption that the vehicle accelerates by free fall, such as jumping off a step or falling. In the case of a leap, deceleration is continued from the moment the foot is released from the ground to the highest point, and acceleration is continued until landing from the highest point.
  • the acceleration sensor 5 is used as a sensor for detecting a jump.
  • the contact portion is separated from the inner surface of the container with a slight gap by balancing the radius with the weight of the inertial body.
  • the inertial body When the apparent gravity of the inertial body increases due to the upward acceleration, the inertial body further deflects the contact portion to contact the metal container, and turns on the contact points.
  • the movable contact and the fixed contact are balanced so that they do not come into contact with each other at an acceleration of 1 G due to gravity.
  • the acceleration increases by 0.5 G or more, conduction is established between the contacts. ing.
  • the acceleration sensor 5 is configured to be turned on when the apparent weight of the inertial body becomes 1.5 times.
  • Signal from accelerometer 5 is signal processed
  • the fall detection device 21 determines that the wearer has jumped and ignores the signal from the fall sensor 13 for a certain period of time so as not to perform signal processing. ing. Therefore, the free fall time due to jumping is ignored. If the falling state continues for longer than the free fall time due to jumping, the signal processing circuit 100 normally processes the signal from the drop sensor 5 to detect the fall, so that a protection operation must be performed. Can be.
  • the drop sensor 3 is arranged in plurality in consideration of the posture of the worker, only one acceleration sensor 5 is arranged. This is for the following reason. In other words, the worker may work while standing upright or close to that, and bend his hips or lie on his stomach. Therefore, it is necessary to operate any one of the drop sensors 3 for various postures of the worker. On the other hand, the worker's posture during the jump JS is upright or close to it, and jumping in a posture in which the body, especially the waist, etc., is extremely inclined or laid down is usually impossible. Therefore, basically, only one acceleration sensor 5 is required so that detection can be performed in the normal posture.
  • the drop sensor 13 and the acceleration sensor 5 used for the drop detectors 11 and 21 are designed to prevent the inertial body from applying excessive stress to the movable part as described for the drop detector 1. It is configured. As a result, the sensor itself will not be destroyed or the operating characteristics will not be offset if the device to be protected falls within a range that will not be destroyed, as well as the impact acceleration in normal handling. Therefore, for example, there is no problem even if the operator throws the fall detection device lightly with normal handling, and the fall sensor itself is broken while protecting the equipment to be protected in the event of a fall. No events will occur that could damage or offset the use of the protected equipment. Industrial applicability
  • the fall detection device is built in or attached to a portable device such as a notebook type personal convenience store or a protected object such as a worker at a high place, and detects a drop of the protected object by detecting the fall of the protected object. It is useful for activating the protection device.

Abstract

A falling detection device (1), comprising a plurality of falling sensors (3) having movable contacts (35) disposed in metal cylindrical closed containers (101) and having contact parts provided at equal intervals and inertia bodies (36) stored in the closed containers, wherein the inertia bodies (36) press down the movable contacts (35) by their own weights to bring the contacts into contact with fixed contacts (31A) which are the inner peripheral surfaces of the closed containers, whereby the falling sensors can provide the same characteristics in all directions around the center axis of the closed containers.

Description

明 細 書 落下検出装置 技術分野  Description Drop detection device Technical field
この発明は、 保護対象機器の落下を検出して保護装置を動作させるなど適切な 処理を行なうための落下検出装置に関する。 背景技術  The present invention relates to a fall detection device for performing appropriate processing such as detecting a fall of a device to be protected and operating a protection device. Background art
従来の落下検出用のセンサーとしては、 検出する加速度変化が 1 G以下と小さ いことなどから、 入力に対する分解能の高い半導体式 3軸加速度センサーが多く 使用されている。 前記加速度センサーからの信号出力は増幅回路で増幅され、 A ZDコンバータで処理された後に判定回路で判定される。 . このように半導体式 3軸加速度センサーからの信号を信号処理回路 1 0 0·で処 理する事によって、 保護対象機器などの位置変化や移動方.向 ·移動速度などを割 り出すことができる。 そして、 その結果から所定値以上の距離を落下していると 判断された場合には、 保護装置が起動するように構成されていた。  As conventional sensors for drop detection, semiconductor-type three-axis acceleration sensors with high input resolution are often used because the detected acceleration change is as small as 1 G or less. The signal output from the acceleration sensor is amplified by an amplifier circuit, processed by an AZD converter, and determined by a determination circuit. By processing the signal from the semiconductor type 3-axis acceleration sensor in the signal processing circuit 100 in this way, it is possible to determine the position change, movement direction, movement speed, etc. of the device to be protected. it can. Then, when it is determined from the result that the vehicle has fallen by a distance equal to or greater than a predetermined value, the protection device is configured to be activated.
しかし、 前記半導体式 3軸加速度センサーは精度が高く高価である。 さらに、 センサー出力を処理するための増幅回路や AZDコンバータを 3軸それそれに対 して一つずつ設ける必要があり、 信号処理回路全体も高価になる。 そのため、 落 下検出装置全体が高価になることは避けられない。 また、 信号処理回路の消費電 力も大きいため、 電源として電池を使用して携帯用に構成する場合等、 直接、 商 用電源から電力を得られない場合には、 使用可能時間が短くなる。 このため、 頻 繁な充電や電池交換が必要になるという問題がある。  However, the semiconductor type three-axis acceleration sensor has high accuracy and is expensive. In addition, it is necessary to provide an amplifier circuit and an AZD converter for processing the sensor output, one for each of the three axes, which makes the entire signal processing circuit expensive. For this reason, it is inevitable that the entire fall detection device will be expensive. In addition, since the power consumption of the signal processing circuit is large, the usable time is shortened when power cannot be obtained directly from a commercial power supply, for example, when a portable power supply is configured using a battery as a power supply. For this reason, there is a problem that frequent charging and battery replacement are required.
また、 半導体センサーは衝撃による過大な加速度に対して弱く、 慎重な取扱い を必要とする。 そのため携帯可能な装置に採用した場合には、 例えば落下時の衝 撃でセンサー出力がオフセットしたり、 センサー自体が破壊されたりするという 問題があった。 そのため落下に対して保護対象機器を保護できても、 その後にセ ンサ一が誤動作することで保護対象機器の使用に支障をきたす可能性がある。 ま た落下検出装置を繰り返し使用することにも問題がある。 In addition, semiconductor sensors are vulnerable to excessive acceleration due to impact, and are handled with care. Need. For this reason, when used in a portable device, there has been a problem that the sensor output is offset due to, for example, an impact at the time of a fall or the sensor itself is destroyed. Therefore, even if the device to be protected can be protected against falling, the malfunction of the sensor may hinder the use of the device to be protected. There is also a problem with repeated use of the drop detector.
前記半導体センサーに代えて機械式の加速度センサーを落下センサーとして使 用することも考えられるが、 ほとんどの機械式加速度センサーは、 充分な精度で 重力変化を検出できない。 例えば中空の球体内面に複数の電極を設け、 内部に配 置した導電性の球体等で前記電極間を短絡する構成の落下センサ一がいくつも提 案されている。 しかし、 実際には上記構成の落下センサーは、 製造は困難であり 現実的ではない。 また、 導電体或いは電極に対して、 互いに離れようとする方向 の偏倚力を常に与えていなければ、 導電体の重量が見かけ上減少しても接触圧力 が減少するだけで電極間の接触状態が維持されてしまう。 .このため、 落下センサ 一として機能しない。 上記した問題は、 球体型に限らず、 容器底面の電極上に導 電体を配置した 1方向性のセンサーであっても同様に生じる。  Although it is conceivable to use a mechanical acceleration sensor as a fall sensor instead of the semiconductor sensor, most mechanical acceleration sensors cannot detect a change in gravity with sufficient accuracy. For example, several drop sensors have been proposed in which a plurality of electrodes are provided on the inner surface of a hollow sphere and the electrodes are short-circuited by a conductive sphere or the like disposed inside. However, in practice, the fall sensor having the above configuration is difficult and difficult to manufacture. In addition, unless a biasing force is applied to the conductor or the electrode in a direction of moving away from each other, even if the weight of the conductor is apparently reduced, only the contact pressure is reduced and the contact state between the electrodes is reduced. Will be maintained. Therefore, it does not function as a drop sensor. The above-mentioned problem is not limited to the spherical type, but also occurs in a unidirectional sensor in which a conductor is disposed on an electrode on the bottom of the container.
そこで、 上記構成の落下センサ一では、 バネなどの弾性体により常に重力に抗 して接点状態を変えようとする構成が必要となる。重力変化を検出するためには、 前記弾性体を、 静止時には 1 Gの重力によって掛けられる慣性体の重量を受けて 所定位置に保持し、 落下などによつて慣性体の見かけ上の重量が所定値まで減少 した時には速やかに接点などを動作させるように構成しなければならなない。 特に、 センサーを小型化すると慣性体の質量も少なくなるので、 それを支える 弾性体をしなやかなものとする必要がある。 そのためセンサ一を小型化すればす るほどセンサ一の設計は困難になる。 また弾性体をしなやかなものとすると、 通 常の取扱いで加わる程度の衝撃加速度でも弾性体が変形し易いという問題が出て くる。 このため、 弾性体の強度の設定や耐久性の点から、 例えば水平方向の振動 などを検出する加速度センサーを、 単に横向きに配置することによって重力方向 の加速度を検出する落下センサ一に転用することは難しい。 Therefore, in the drop sensor 1 having the above-described configuration, a configuration that constantly changes the contact state against gravity by an elastic body such as a spring is required. In order to detect a change in gravity, the elastic body is held at a predetermined position by receiving the weight of the inertial body that is hung by 1 G of gravity when stationary, and the apparent weight of the inertial body is determined by dropping or the like. When the value is reduced to a value, it must be configured so that contacts and the like are operated immediately. In particular, as the size of the sensor is reduced, the mass of the inertial body also decreases, so it is necessary to make the elastic body that supports it flexible. Therefore, the smaller the sensor, the more difficult it is to design the sensor. In addition, if the elastic body is made flexible, there is a problem that the elastic body is easily deformed even with an impact acceleration applied to normal handling. For this reason, from the viewpoint of the strength setting and durability of the elastic body, for example, horizontal vibration It is difficult to convert an acceleration sensor that detects such things as a fall sensor that detects acceleration in the direction of gravity by simply arranging it horizontally.
さらに、 落下センサーとして、 構造が簡単な 1方向性の機械式加速度センサー を使用することも考えられる。 しかし、 センサーが取り付けられる機器のあらゆ る姿勢での落下を検出するためには、 多くのセンサーを基板に対して立体的に配 置して全方向に感度を持たせる必要がある。 そのため部品の配置が複雑になり、 製造が容易ではなくなる。  In addition, a unidirectional mechanical accelerometer with a simple structure could be used as the drop sensor. However, in order to detect the fall of the device to which the sensor is attached in any posture, it is necessary to arrange many sensors three-dimensionally with respect to the board to have sensitivity in all directions. This complicates the arrangement of parts and makes manufacturing difficult.
そこで、 本発明は、 対象機器のあらゆる姿勢での落下を精度良く検出すること ができ、 しかも、 構成が簡単で耐衝撃性に優れた落下検出装置を提供することを 目的としている。 発明の開示  Therefore, an object of the present invention is to provide a fall detecting device which can accurately detect a fall of a target device in any posture, and has a simple configuration and excellent impact resistance. Disclosure of the invention
本発明の落下検出装置は、 金属製の円筒型密閉容器と、 この密閉容器中に設け られ等間隔に配置された複数の接触部を有する可動接点と、 前記密閉容器の内周 面に設けられ前記可動接点と接離可能な固定接点と、 前記密閉容器'中に収納され 自己の重量によって前記可動接点を押し下げて前記固定接点と接触させる憒性体 とを備えた機械式の落下センサーを複数個備えている。 前記落下センサーは、 前 記円筒型密閉容器の中心軸周りの全方向について同一の特性を有すると共に、 前 記密閉容器の中心軸が水平軸となる正規姿勢にあり且つ静止状態にあるときは前 記慣性体が前記可動接点を撓めて前記固定接点と接触させ、 落下などにより前記 慣性体の見かけ上の重量が所定値以下に減少したときは前記慣性体の重量に抗し て前記可動接点が前記固定接点から離れるように構成されている。 このため、 前 記複数の落下センサーは、 他の落下センサーの少なくとも一つと正規姿勢に対す る許容傾斜範囲の一部が重複するように前記密閉容器の中心軸の傾斜角度を異な らせて同一平面上に配置することにより、 保護対象機器がどのような姿勢であつ ても、 落下を精度良く検出することができる。 しかも、 前記落下センサ一は前記 密閉容器の中心軸周りの全方向に対して同一の特性を有するため、 一方向性の落 下センサーを用いる場合に比べて使用する落下センサーの個数を少なくすること ができる。また、複数の落下センサ一を同一平面上に配置することができるため、 構成及び製造が簡単になる。 図面の簡単な説明 The fall detection device of the present invention is provided with a metal cylindrical closed container, a movable contact provided in the closed container and having a plurality of contact portions arranged at equal intervals, and provided on an inner peripheral surface of the closed container. A plurality of mechanical drop sensors comprising: a fixed contact that can be separated from and contacted with the movable contact; and a permanent body that is housed in the hermetically sealed container and that pushes down the movable contact by its own weight to contact the fixed contact. I have one. The drop sensor has the same characteristics in all directions around the central axis of the cylindrical closed container, and when in a normal posture in which the central axis of the closed container is a horizontal axis and in a stationary state, When the inertial body deflects the movable contact and comes into contact with the fixed contact, and when the apparent weight of the inertial body is reduced to a predetermined value or less due to dropping or the like, the movable contact is opposed to the weight of the inertial body. Are configured to be separated from the fixed contact. For this reason, the plurality of drop sensors are the same as at least one of the other drop sensors by changing the inclination angle of the central axis of the closed container so that a part of the allowable tilt range for the normal posture overlaps. By arranging on a flat surface, the posture However, a fall can be detected with high accuracy. Moreover, since the drop sensor has the same characteristics in all directions around the central axis of the closed container, the number of drop sensors used is reduced as compared with the case of using a unidirectional drop sensor. Can be. In addition, since a plurality of drop sensors can be arranged on the same plane, the configuration and manufacturing are simplified. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の第 1の実施例に係る落下検出装置の全体構成を示す図、 図 2は落下センサ一の縦断側面図、  FIG. 1 is a diagram showing the entire configuration of a fall detection device according to a first embodiment of the present invention, FIG. 2 is a vertical side view of the fall sensor 1,
図 3は図 2に示す落下センサーの 3— 3線に沿う縦断面図、  Fig. 3 is a vertical sectional view of the drop sensor shown in Fig. 2 along the line 3-3.
図 4は本発明の第 2の実施例を示す図 1相当図、 - 図 5は本発明の第 3の実施例を示す図 1相当図である。 発明を実施するための最良の形態 .  FIG. 4 is a diagram corresponding to FIG. 1 showing a second embodiment of the present invention, and FIG. 5 is a diagram corresponding to FIG. 1 showing a third embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明をより詳細に説述するために、 添付の図面に従ってこれを説明する.。 ま ず、 図 1ないし図 3は本発明の第 1の実施例を示すものである。 図 1に示すよう に、 本実施例に係る落下検出装置 1は、 保護対象装置 2に納められた基板 4に複 数の部品で構成された信号処理回路 1 0 0や、 複数の落下センサー 3等が配置さ れて構成されている。 前記落下センサー 3は小型の加速度センサーであり、 例え ば出願人が先に出願した特開 2 0 0 1 - 1 9 4 3 8 2公報ゃ特願 2 0 0 1 - 2 5 . 6 1 9 に示されている加速度センサ一とほぼ同じ構成を有している。  The present invention will be described in more detail with reference to the accompanying drawings. First, FIGS. 1 to 3 show a first embodiment of the present invention. As shown in FIG. 1, a fall detection device 1 according to the present embodiment includes a signal processing circuit 100 including a plurality of components on a substrate 4 housed in a device to be protected 2 and a plurality of fall sensors 3. Etc. are arranged. The drop sensor 3 is a small accelerometer, for example, as disclosed in Japanese Patent Application Laid-open No. 2001-19464 It has substantially the same configuration as the illustrated acceleration sensor.
図 2に前記落下センサー 3の縦断面図、 図 3に図 2中 3— 3線に沿う断面図を 示す。 これら図 2及び図 3に示すように、 落下センサー 3は有底円筒状の金属容 器 3 1とその開口部に気密に固着された蓋板 3 2とからなる密閉容器 1 0 1を備 えている。 本実施例では、 前記密閉容器 1 0 1の外径寸法は 3 . 3 m m, 長さ寸 法は 6 . 2 m mに設定されている。 前記金属容器 3 1の内周面 3 1 Aは固定接点 とされている。 前記蓋板 3 2は、 貫通孔 3 2 Aを有する金属板 3 2 Bと、 前記貫 通孔 3 2 Aにガラスなどの電気絶縁材料 3 4によって気密に揷通固定された棒状 の導電端子 3 3とから構成されている。 FIG. 2 is a longitudinal sectional view of the drop sensor 3, and FIG. 3 is a sectional view taken along line 3-3 in FIG. As shown in FIGS. 2 and 3, the drop sensor 3 is provided with a closed container 101 comprising a bottomed cylindrical metal container 31 and a lid plate 32 airtightly fixed to the opening thereof. I have. In this embodiment, the outer diameter of the closed container 101 is 3.3 mm, and the length is The modulus is set to 6.2 mm. The inner peripheral surface 31 A of the metal container 31 is a fixed contact. The cover plate 32 includes a metal plate 32 B having a through hole 32 A, and a rod-shaped conductive terminal 3 air-tightly fixed to the through hole 32 A with an electrically insulating material 34 such as glass. It consists of three.
導電端子 3 3の容器 3 1内側の先端には、 パネ性を持つ複数の可動部 3 5 Aを 有する金属製の可動接点 3 5が導電的に固定されている。 組み付け前の平面状態 においては、 前記可動接点 3 5は、 その中心部から可動部 3 5 Aが放射状に延び るように構成されている。 前記可動接点 3 5は、 その中心部を導電端子 3 3の端 面と金属製の当て板 3 9との間に挟んだ状態で前記当て板 3 9を導電端子 3 3に 溶接固定することにより前記導電端子 3 3に固定されている。 また、 前記可動接 点 3 5を当て板 3 9と樹脂製の絶縁保持体 3 8との間に挟み込むことによって、 可動部 3 5 Aは可動接点 3 5の中心に対して所定角度に曲げられて保持される-。 本実施例では、 前記可動部 3 5 Aは後述の慣性体 3 6が無い自由状態にある時 には容器 3 1の内周面 3 1 Aの長手方向 (図 2において左右方向) に沿うと共に 円周方向に均等な間隔で配置される。 また、 各可動部 3 5 Aの先端は容器 3 1の 内周面 3 1 A側に曲げられ接触部 3 5 Bとされている。 上記構成により、 可動部 3 5 Aは接触部 3 5 Bの先端部で、 固定接点である金属容器 3 1の内周面 3 1 A と接触する。 従って、 接触部 3 5 Bは内周面 3 1 Aと点接触に近い小さな面積で 接触するため接触圧力が高くなり、 容器内周面 3 1 Aの汚れなどによって接触不 良が起きないようになつている。  A metal movable contact 35 having a plurality of movable portions 35 A having a panel property is conductively fixed to a tip inside the container 31 of the conductive terminal 33. In a planar state before assembly, the movable contact 35 is configured such that a movable portion 35A radially extends from the center thereof. The movable contact 35 is welded and fixed to the conductive terminal 33 with its center portion sandwiched between the end surface of the conductive terminal 33 and the metal backing plate 39. It is fixed to the conductive terminal 33. Further, by sandwiching the movable contact point 35 between the backing plate 39 and the resin insulation holder 38, the movable portion 35A is bent at a predetermined angle with respect to the center of the movable contact 35. -Will be kept. In this embodiment, when the movable portion 35A is in a free state without an inertia body 36 described later, the movable portion 35A extends along the longitudinal direction (the left-right direction in FIG. 2) of the inner peripheral surface 31A of the container 31. They are arranged at equal intervals in the circumferential direction. The tip of each movable portion 35A is bent toward the inner peripheral surface 31A of the container 31 to form a contact portion 35B. With the above configuration, the movable portion 35A contacts the inner peripheral surface 31A of the metal container 31 which is a fixed contact at the tip of the contact portion 35B. Therefore, since the contact portion 35B contacts the inner peripheral surface 31A with a small area close to the point contact, the contact pressure is increased, and a contact failure due to contamination of the inner peripheral surface 31A of the container is prevented. I'm sorry.
容器 3 1の内部には金属製の慣性体 3 6が配置されている。 本実施例では、 前 記慣性体 3 6の直径は 2 . 4 m mに設定されている。 前記落下センサー 3は、 金 属容器 3 1 (密閉容器 1 0 1 ) の中心軸が水平軸となるように配置されたときの 姿勢が正規姿勢とされている。 前記慣性体 3 6は、 落下センサー 3が正規姿勢に 配置され且つ静止しているときに、 自己の重量によって前記可動部 3 5 Aを橈め ながら押し下げて接触部 3 5 Bを金属容器 3 1の内周面 3 1 Aに接触させる。 従 つて、 通常は金属容器 3 1 と導電端子 3 3との間は電気的に導通状態とされてい る。 金属容器 3 1の閉塞側底面には樹脂等の電気絶縁物 3 7が配置されている。 これにより、 接触部 3 5 Bが容器内面 3 1 Aから離れた時に可動接点 3 5と金属 容器 3 1 との間が慣性体 3 6を通して導通状態になることを防いでいる。 なお、 慣性体 3 7の表面を電気絶縁物で覆ったり、 慣性体 3 7全体を電気絶縁物で構成 したりした場合には電気絶縁物 3 7は省略することができる。 A metal inertia body 36 is disposed inside the container 31. In the present embodiment, the diameter of the inertial body 36 is set to 2.4 mm. The posture of the drop sensor 3 when the metal container 31 (closed container 101) is arranged so that the central axis thereof is the horizontal axis is the normal posture. When the drop sensor 3 is arranged in a normal posture and is stationary, the inertial body 36 bends the movable portion 35 A by its own weight. While pressing down, the contact portion 35 B contacts the inner peripheral surface 31 A of the metal container 31. Therefore, normally, the metal container 31 and the conductive terminal 33 are electrically connected. An electric insulator 37 such as a resin is disposed on the closed bottom surface of the metal container 31. This prevents conduction between the movable contact 35 and the metal container 31 through the inertial body 36 when the contact portion 35B is separated from the container inner surface 31A. When the surface of the inertial body 37 is covered with an electrical insulator, or when the entire inertial body 37 is made of an electrical insulator, the electrical insulator 37 can be omitted.
前記可動接点 3 5は非常に薄い導電性を有する金属板、 実施例では厚さが 1 2 Ai mのリン青銅板で構成されている。 そのため慣性体 3 6と容器内面などで繰り 返し挟まれると延展による変形を起こす可能性がある。 また落下センサー 3'が衝 撃加速度を受けて、 慣性体 3 6が可動接点 3 5のうち絶縁保持体 3 8と当て板 3 9との挟持部近傍などに当たると可動接点 3 '5が弾性変形領域を越えて塑性変形 する可能性がある。 そこで本実施例では、 絶縁保持体 3 8に突起部 3 8 Aを設け ている。 これにより、.慣性体 3 6が当て板 3 9側に移動しても、 慣性体 3 6は突 起部 3 8 Aに当接するため保持部 3 8と当て板 3 9による可動接点 3 5の挟持部 近傍に当ちない。 そのため、 落下センサ一 3が衝撃加速度を受けた場合でも、 慣 性体 3 6が可動部 3 5 Aに過大な応力を与える事が無く、 可動接点 3 5の塑性変 形とそれに伴う特性変化を防止する事ができる。  The movable contact 35 is made of a very thin metal plate having conductivity, in this embodiment, a phosphor bronze plate having a thickness of 12 Aim. Therefore, if it is repeatedly caught between the inertial body 36 and the inner surface of the container, it may be deformed by extension. In addition, when the drop sensor 3 'receives an impact acceleration and the inertial body 36 hits the movable contact 35 near the holding portion between the insulating holder 38 and the contact plate 39, the movable contact 3'5 is elastically deformed. There is a possibility of plastic deformation beyond the region. Therefore, in the present embodiment, the protrusion 38 A is provided on the insulating holder 38. As a result, even if the inertia body 36 moves to the backing plate 39 side, the inertia body 36 comes into contact with the protruding portion 38A, so that the movable contact 35 by the holding portion 38 and the backing plate 39 is formed. Does not hit near the holding part. Therefore, even when the drop sensor 13 receives an impact acceleration, the inertial body 36 does not apply excessive stress to the movable portion 35 A, and the plastic deformation of the movable contact 35 and the characteristic change accompanying it are prevented. Can be prevented.
また、 金属容器 3 1の内周面 3 1 Aには複数の柱状部 3 1 Bが等間隔で設けら れている。 前記柱状部 3 1 Bは容器 3 1の内側に柱状に突き出している。 図 3に 示すように、 隣り合う柱状部 3 1 Bの大きさと高さは、 慣性体 3 6と柱状部 3 1 Bとが接触した時に前記慣性体 3 6が容器 3 1の内周面 3 1 Aに達しないように 設定されている。 更に、 可動接点 3 5の可動部 3 5 Aは隣接する柱状部 3 1 Bの 間に配置されている。 これにより、 可動部 3 5 Aと慣性体 3 6との接触時にも、 容器 3 1の内面 3 1 Aと慣性体 3 6との間には必ず隙間が生ずる。 このため、 長 期の使用においても可動部 3 5 Aの延展やそれに伴う変形及び特性変化が起こる ことを防ぐことができる。 このように、 本実施例に係る落下センサー 3は、 その 構造上、 通常の取扱いで与えられる衝撃加速度や長期間の使用に対しても特性変 化を起こす事が無く、 半導体式加速度センサーを使用したもののような特別な取 扱いが不要となる。 Further, a plurality of columnar portions 31B are provided at equal intervals on the inner peripheral surface 31A of the metal container 31. The columnar portion 31B projects in a columnar shape inside the container 31. As shown in FIG. 3, the size and height of the adjacent columnar part 31B are such that when the inertial body 36 and the columnar part 31B come into contact with each other, the inertial body 36 It is set not to reach 1 A. Further, the movable portion 35A of the movable contact 35 is disposed between the adjacent columnar portions 31B. Thereby, even when the movable part 35 A and the inertial body 36 come into contact with each other, a gap always occurs between the inner surface 31 A of the container 31 and the inertial body 36. Because of this, In this case, it is possible to prevent the movable portion 35 A from being extended and from being deformed or changed in characteristics. As described above, the fall sensor 3 according to the present embodiment uses a semiconductor type acceleration sensor because of its structure, it does not change its characteristics even under the impact acceleration given in normal handling or long-term use. No special handling is required.
前記落下センサ一 3においては、 落下状態になると慣性体 3 6の見かけ上の重 量が減少するため、 橈められていた可動部 3 5 Aは慣性体 3 6を容器 3 1中央部 に押し戻すと共に容器 3 1の内周面 3 1 Aとの接触を解除する。 そのため金属容 器 3 1と導電端子 3 3との間の導通は遮断される。 こうして落下センサー 3は落 下状態となった時に確実に接点状態を切り替える事ができる。  In the drop sensor 13, since the apparent weight of the inertial body 36 decreases in the fall state, the bent movable portion 35 A pushes the inertial body 36 back to the center of the container 31. At the same time, the contact with the inner peripheral surface 31A of the container 31 is released. Therefore, conduction between the metal container 31 and the conductive terminal 33 is cut off. In this way, the contact state can be reliably switched when the fall sensor 3 is in the fall state.
落下センサー 3は重力によってオン状態とするためには、 容器 3 1の中心軸の 傾きを水平軸に対して所定の角度以内として慣性体 3 6により可動部 3 5 Aを充 " 分に撓ませて金属容器 3 1の内周面 3 1 Aに接触させなければならない。 例えば 落下センサー 3の中心軸が水平軸に対して所定の角度以上傾いた場合には慣性体 3 6は容器 3 1の底面などと接触してその重量が可動部 3 5 Aを撓ませる方向に は充分働かない。 このため、 上下方向の動きによる僅かな重力変化で接触部 3 5 Bは内周面 3 1 Aから離れて導通は遮断される。 さらに、 落下センサー 3の中心 軸の傾きが大きくなると可動部 3 5 Aによって慣性体 3 6は容器 3 1中央に寄せ られるため、 重力の大小に関わらず接触部 3 5 Bは金属容器 3 1に接触しなくな る。 そのため一つの落下センサー 3だけでは、 容器 3 1の中心軸を中心として傾 いた場合には問題がないが、 中心軸が傾いた場合には誤動作を起こす可能性があ る。  In order for the drop sensor 3 to be turned on by gravity, the inclination of the central axis of the container 31 is set within a predetermined angle with respect to the horizontal axis, and the movable part 35 A is sufficiently bent by the inertial body 36. Must be brought into contact with the inner peripheral surface 31 A of the metal container 31. For example, if the center axis of the drop sensor 3 is inclined by a predetermined angle or more with respect to the horizontal axis, the inertia body 36 The weight does not work sufficiently in the direction of contacting the bottom surface and bending the movable part 35 A. Therefore, the contact part 35 B is moved from the inner peripheral surface 31 A by a slight change in gravity due to vertical movement. Furthermore, when the inclination of the central axis of the drop sensor 3 increases, the inertia body 36 is moved to the center of the container 31 by the movable portion 35 A, so that the contact portion 3 is provided regardless of the magnitude of gravity. 5 B does not contact the metal container 31. Therefore, only one drop sensor 3 Is no problem if you were inclined about the central axis of the container 3 1, if the central axis is inclined Ru can be permanently malfunction.
そこで、 前記落下検出装置 1では、 基板 4に複数の落下センサー 3を配置する と共に、 前記複数の落下センサー 3の容器 3 1の中心軸が同一平面上に位置する ように構成している。 また、 各落下センサー 3の動作許容範囲の上限及び下限に おいて、 他の落下センサー 3の少なくとも一つが正規動作をする範囲と重複する ように、 前記落下センサー 3は許容傾斜角度以内で傾斜角度を変えながら配置さ れている。 In view of this, the drop detecting device 1 is configured such that the plurality of drop sensors 3 are arranged on the substrate 4 and the center axes of the containers 31 of the plurality of drop sensors 3 are located on the same plane. In addition, the upper and lower limits of the permissible range of operation of each Here, the drop sensor 3 is arranged while changing the inclination angle within the allowable inclination angle so that at least one of the other drop sensors 3 overlaps the range where the normal operation is performed.
上記構成により、 例えばノートパソコン等の保護対象機器に前記落下検出装置 1を基板 4が水平になるように配置した場合には、 すべての落下センサー 3の中 心 rtが水平になる。このため、静止時にはすベての落下センサー 3が接点を閉じ、 落下時にはすベての落下センサー 3が接点を開く。 それそれの落下センサー 3は 円筒形であり、 その中心軸に対して全方向に均一な特性を有しているので、 基板 4を基板の面に対して平行な任意の軸を回転軸として角度を変えた場合にも、 落 下センサー 3の少なくとも一つの中心軸の水平軸に対する傾きは許容誤差内に収 まる。  According to the above configuration, for example, when the drop detection device 1 is disposed on a device to be protected such as a notebook computer so that the substrate 4 is horizontal, the centers rt of all the drop sensors 3 are horizontal. For this reason, all the fall sensors 3 close the contacts when stationary, and all the fall sensors 3 open the contacts when falling. Each drop sensor 3 is cylindrical and has uniform characteristics in all directions with respect to its central axis, so that the substrate 4 can be rotated about any axis parallel to the substrate surface. Even if is changed, the inclination of at least one central axis of the drop sensor 3 with respect to the horizontal axis falls within the allowable error.
そのため保護対象機器が傾斜状態で使用されたり、 基板が傾斜状態若し.くは垂 直状態で配置されたり している場合にも、 静止状態においては常に少なくとも一 つの落下センサ一 3が接点を接触状態に保つ事ができるどともに、 落下に対して 正常な動作を行うことができる。 また落下センサー 3は、 その中心軸に対して全 方向に同一の特性を持っため、 基板等に配置する場^ Γ.にセンサー 3の表裏や横方 向の傾きなどは問題にならず、 中心軸の向きだけを配慮すればよく取扱いが容易 になる。 また、 1方向性の機械式加速度センサーを使用した場合においては 3軸 を中心としたすべての方向に対して充分な感度を持たせるためにセンサ一を立体 的な配置にする必要があるが、 前記落下センサー 3の場合には中心軸を同一平面 上に揃えることができ、 製造が容易になる。  Therefore, even when the equipment to be protected is used in an inclined state, or when the board is placed in an inclined state or in a vertical state, at least one drop sensor 13 always contacts the contacts in a stationary state. While keeping the contact state, it can perform normal operation against falling. In addition, since the drop sensor 3 has the same characteristics in all directions with respect to its central axis, the front and back and the lateral inclination of the sensor 3 do not matter when placed on a substrate or the like. Considering only the direction of the shaft makes handling easy. When a unidirectional mechanical acceleration sensor is used, it is necessary to arrange the sensor three-dimensionally in order to have sufficient sensitivity in all directions around the three axes. In the case of the drop sensor 3, the central axes can be aligned on the same plane, which facilitates manufacturing.
前記落下センサー 3は、 回路上すベて並列に配置して 0 R回路とすることによ つて静止状態にある時には信号処理回路 1 0 0に常にオン信号を入力する事がで きる。 そして、 前述したように、 落下検出装置 1が落下状態となり見かけ上の重 力が減少すると、 正規姿勢の落下センサー 3は、 可動部 3 5 Aが慣性体 3 6を容 器 3 1中央に押し戻すとともに接触部 3 5 Bが金属容器 3 1から離れるため、 出 力は確実にオフとなる。また許容傾斜範囲を超えて傾いている落下センサー 3は、 慣性体 3 6の重量が可動部 3 5 Aに対して直角方向からかからず分散されるため、 正規姿勢の落下センサー 3よりも早く接点を開くか、 始めから接点を開いたまま となる。 こうして全ての落下センサー 3からの信号がオフとなることで信号処理 回路 1 0 0は落下検出装置 1が落下状態に入ったと判定をする。 ここで落下セン サ一 3からの信号は特に増幅したり A/D変換したりする必要がないので、 信号 処理回路 1 0 0は半導体センサーを使用する場合よりも簡単になると共に消費電 力を低く抑えることができる。 このため、 例えば電源が電池である場合でも長期 に亘り使用することができる。 The drop sensors 3 are all arranged in parallel on a circuit to form an OR circuit, so that an ON signal can be always input to the signal processing circuit 100 when in a stationary state. Then, as described above, when the fall detection device 1 falls and the apparent weight decreases, the fall sensor 3 in the normal posture moves the movable portion 35 A to the inertial body 36. Since the contact part 35 B is pushed back to the center of the container 31 and the contact part 35 B is separated from the metal container 31, the output is reliably turned off. In addition, the drop sensor 3 tilted beyond the allowable tilt range is distributed faster than the drop sensor 3 in the normal posture because the weight of the inertial body 36 is dispersed from the direction perpendicular to the movable part 35 A. Open contacts or keep contacts open from the beginning. When the signals from all of the fall sensors 3 are turned off in this way, the signal processing circuit 100 determines that the fall detection device 1 has entered the fall state. Here, since the signal from the drop sensor 13 does not need to be particularly amplified or A / D converted, the signal processing circuit 100 is simpler than when a semiconductor sensor is used and also consumes less power. It can be kept low. Therefore, for example, even when the power source is a battery, it can be used for a long time.
ところで、 前記落下センサー 3は重力変化に非常に敏感であるど同時に接点を 有するスィッチ構造である。 このため、 保護対象機器の通常の使用によ.る振動で も慣性体 3 6が揺動し接点開閉を繰り返してしまう場合があり、 このようなオフ 信号によって落下と誤判定される可能性がある。  By the way, the drop sensor 3 has a switch structure which is very sensitive to a change in gravity but has contacts at the same time. As a result, the inertial body 36 may oscillate and repeat contact opening and closing even with the normal use of the equipment to be protected, and such an OFF signal may cause a false determination of a drop. is there.
そこで、 前記落下検出装置 1の信号処理回路 1 0 0は、 単に落下センサ一 3の オフ状態を見るのではなく、 落下センサー 3からの信号がオフとなった状態が所 '定時間に達したかどうかで保護動作を行うかどうかの判定を行っている。 つまり 落下センサ一 3からの信号が一旦オフになっても所定時間以内にオンになった場 合には通常の使用による問題のない振動として判定する。 一方、 落下センサ一 3 からの信号が所定時間を超えてォフ状態になつた場合には落下状態が継続してお り保護を必要とする高さの落下であると判定する。 そして、 保護対象機器の例え ばデ一夕の記録作業などを一時的に停止したり電源を落としたりするなどして保 護対象機器に対して適切な保護処理を行う。 さらにそれぞれの落下センサー 3か らの信号を各個にフィルタリング処理することにより、 慣性体 3 6が移動する途 中で発生する接点接触状態が不安定な間隔が非常に短いノイズ信号を検出しない ようにして保護回路の誤動作及び不動作をそれぞれ防止する事ができる。 Therefore, the signal processing circuit 100 of the drop detecting device 1 does not simply look at the off state of the drop sensor 13, but the state where the signal from the drop sensor 3 is turned off has reached a predetermined time. It is determined whether or not to perform the protection operation based on whether or not. That is, if the signal from the drop sensor 13 is turned off within a predetermined time even if it is once turned off, it is determined that there is no problem due to normal use. On the other hand, if the signal from the drop sensor 13 has been turned off for more than a predetermined time, it is determined that the drop state has continued and the drop has a height that requires protection. Appropriate protection processing is performed on the devices to be protected, for example, by temporarily stopping the recording operation for the device overnight or turning off the power. Furthermore, by filtering the signal from each of the drop sensors 3 individually, noise signals with extremely short intervals at which the contact state of the contact that occurs during the movement of the inertial body 36 is unstable are not detected. In this way, malfunction and non-operation of the protection circuit can be prevented.
図 4は本発明の第 2の実施例を示すものであり、 第 1の実施例と異なるところ を説明する。 尚、 第 1の実施例と同一部分には同一符号を付している。 本実施例 に係る落下検出装置 1 1は、 例えばノート型パーソナルコンピュータ (以下ノー トパソコン) のような携帯機器などに組み込まれる点では第 1の実施例と同じだ が、 落下の他に水平方向や上方向への加速度も検出して、 保護対象機器の保護処 理を行うことができるようにしたものである。 · 特にノートパソコンなどは机上で使用する場合に電源ケーブルを初めとして L A Nケーブルや各種外部装置との接続ケーブルが接続される。 これらのケーブル が不注意で引張られて携帯機器が落下に至る場合は、 最初にケーブルが強く引か れた分、 初速を持っているため、 単純な落下と比較して落下時間が短くなる。 こ のため、 第 1の実施例に係る落下検出装置では落下検出が間に合わず保護処理が 行なえない可能性がある。 そこで、 本実施例では、 落下に至る可能性のある水平 方向や上方向の加速度が保護対象機器に加えられたことを検出してより素早い処 理を行なうことができるようにしている。  FIG. 4 shows a second embodiment of the present invention, and different points from the first embodiment will be described. The same parts as those in the first embodiment are denoted by the same reference numerals. The fall detection device 11 according to the present embodiment is the same as the first embodiment in that it is incorporated in a portable device such as a notebook personal computer (hereinafter referred to as a notebook personal computer), for example. It detects the acceleration in the upward direction and can perform protection processing on the equipment to be protected. · Especially when using a laptop computer on a desk, the power cable, LAN cable, and connection cables to various external devices are connected. If these cables are inadvertently pulled and the portable device falls, the fall time is shorter than a simple drop because the cable is pulled strongly first and has an initial velocity. For this reason, the fall detection device according to the first embodiment may not be able to perform protection processing because fall detection is not in time. Therefore, in the present embodiment, it is possible to detect that horizontal or upward acceleration that may lead to a drop is applied to the device to be protected, and to perform quicker processing.
即ち、前記落下検出装置 1 1は、基板 1 4に対して複数の落下センサー 3の他、 2個の加速度センサー 5が配置されている。 2個の加速度センサー 5は、 互いの 中心軸が垂直になるように配置されている。 本実施例では、 前記基板 1 4は水平 に配置されると共に前記加速度センサー 5はこの基板 1 4の表面に並行に配置さ れる。  That is, in the drop detecting device 11, two acceleration sensors 5 are arranged on the substrate 14 in addition to the plurality of drop sensors 3. The two acceleration sensors 5 are arranged such that their central axes are perpendicular to each other. In this embodiment, the board 14 is arranged horizontally and the acceleration sensor 5 is arranged in parallel with the surface of the board 14.
このように、 保護対象機器の使用状態において加速度センサー 5の中心軸が水 平になるように構成したことで、 落下検出装置 1 1は水平方向及び上方向に加え られた加速度を検出することができる。 この実施例においては一方の加速度セン サー 5はその中心軸が保護対象となるノートパソコンなどの筐体の中心軸と並行 に配置されている。 前記加速度センサ一 5は、 例えば本出願人が先に出願した特願 2 0 0 1— 1 7 6 4 0 1に開示されている加速度センサ一と同様の構成を有している。 前記加速 度センサー 5は前述の落下センサー 3とほぼ同一の形状をしているが、 可動接点 のバネ性を高くすることで、 中心軸が水平軸と一致する通常姿勢にあり且つ静止 状態にあるときは、 慣性体の重量に抗して接触部が容器と接触しない所謂常時ォ フ型のセンサ一である。 この状態においては接触部が慣性体の重量で橈み量をバ ランスさせて容器内面と僅かな間隙をもって開離しており、 保護対象機器が水平 方向に大きな加速度を受けた場合や、 重力方向の加速を受けて慣性体の見かけ上 の重力が増加した場合には接触部が金属容器と接触してォン状態となるようにさ れている。 本実施例では、 例えば重力による 1 Gの加速度では可動接点が固定接 点に接触しないようにパランスしており、 慣性体にかかる加速度が 1 . 5 G以上 に増加した時に接点間が導通する様にされている。 In this way, by configuring the center axis of the acceleration sensor 5 to be horizontal when the device to be protected is in use, the fall detection device 11 can detect acceleration applied in the horizontal and upward directions. it can. In this embodiment, one acceleration sensor 5 is arranged so that its central axis is parallel to the central axis of a housing of a notebook computer or the like to be protected. The acceleration sensor 15 has the same configuration as that of the acceleration sensor disclosed in Japanese Patent Application No. 2001-176640 filed earlier by the present applicant, for example. The acceleration sensor 5 has substantially the same shape as the above-mentioned fall sensor 3, but has a normal posture in which the central axis coincides with the horizontal axis and is in a stationary state by increasing the spring property of the movable contact. Sometimes, it is a so-called always-off type sensor in which the contact portion does not contact the container against the weight of the inertial body. In this state, the contact portion is separated from the inner surface of the container with a slight gap by balancing the radius by the weight of the inertial body, and when the equipment to be protected receives a large acceleration in the horizontal direction or When the apparent gravity of the inertial body increases due to acceleration, the contact part comes into contact with the metal container and turns on. In the present embodiment, for example, the movable contact is balanced so that it does not contact the fixed contact point at an acceleration of 1 G due to gravity, and the contact between the contacts is increased when the acceleration applied to the inertial body increases to 1.5 G or more. Has been.
この落下検出装置 1 1は第 1の実施例に係る落下検出装置 1と同様に、 単純な 落下に対しては見かけ上の重力が設定値以下に減少すると落下センサー 3がその 接点を開き、 その継続時間などから信号処理回路 1 0 0が落 ·下と判定すれば保護 処理装置に信号を入力して適切な保護処理が行われる。 ここで保護対象機器が水 平方,向に加速を受けた場合には落下センサー 3にかかる重力は変化しない。 また 上方向に加速を受けた場合は見かけ上の重力が増加するため、 落下センサー 3は 接点の接触状態を維持する。  Like the drop detector 1 according to the first embodiment, the drop sensor 3 opens the contact point when the apparent gravity decreases below a set value for a simple drop, and the drop sensor 3 opens its contact point. If it is determined that the signal processing circuit 100 has dropped or dropped from the duration or the like, a signal is input to the protection processing device to perform appropriate protection processing. Here, when the device to be protected is accelerated in the direction of water square, the gravity applied to the drop sensor 3 does not change. When the vehicle is accelerated upward, the apparent gravity increases, so that the drop sensor 3 maintains the contact state of the contact points.
しかし加速度センサ一 5は常時オフ型であり、 保護対象機器に水平方向或いは 上方向の加速度が加えられ、 それが所定の値を越えた場合には接点を閉じる。 例 えば電源ケーブルなどを引かれ、 保護対象機器が落下に至るような急激な加速度 を受けた場合には加速度センサー 5は接点を閉じる。 そして、 加速度センサー 5 からの信号を受けた信号処理回路 1 0 0は加速検出信号を出力し、 この信号を受 けた保護処理装置は適切な保護処理を行う。 また上方向へ急激な加速度が加えら れた場合にも同様な検知と保護処理を行なうことができる。 However, the acceleration sensor 15 is always off type, and when a horizontal or upward acceleration is applied to the device to be protected, and when the acceleration exceeds a predetermined value, the contact is closed. For example, if the power cable is pulled and the device to be protected is subjected to a sudden acceleration that causes the device to fall, the acceleration sensor 5 closes the contact. Then, the signal processing circuit 100 that has received the signal from the acceleration sensor 5 outputs an acceleration detection signal, and the protection processing device that has received this signal performs appropriate protection processing. Also, if sudden acceleration is applied upward, In this case, similar detection and protection processing can be performed.
尚、 通常は、 保護対象機器に対して水平方向の加速度はかからず、 垂直方向の 重力加速度がかかっている。 従って、 落下検出装置 1 1は実質的に重力方向の加 速度に対してより敏感になる。 しかしノートパソコンなどの保護対象機器を使用 中に机の上などで横方向に移動することは比較的頻繁に行なわれるが、 上下方向 に移動することは少なく、 また機器の位置が上に移動すると言うことは落下の危 険が生ずると言うことでもある。 そこで、 落下検出装置 1 1を、'上方向への移動 による加速度をより敏感に検出するように構成すれば、 落下の危険に備えること ができる。  Normally, horizontal acceleration is not applied to the device to be protected, but vertical gravitational acceleration is applied. Therefore, the drop detector 11 is substantially more sensitive to the acceleration in the direction of gravity. However, while a device to be protected, such as a notebook computer, is used to move laterally on a desk or the like relatively frequently, it is rarely moved up and down. It also means that there is a danger of falling. Therefore, if the fall detecting device 11 is configured to more sensitively detect the acceleration due to the upward movement, it is possible to prepare for a danger of falling.
また、 上記実施例においては 2つの加速度センサー 5をその中心軸が互いに直 交するように配置すると共に、 これらの加速度センサー 5'を回路上並列に接続す ることにより、 保護対象機器に対して前後に加わる加速度と左右に加わる加速度 を同様に検出できる様にした。 これに対して、 例えば想定される水平方向の加速 の向きを左右、または前後に限定する場合には加速度センサ一 5を一つにできる。 さらに、 落下センザ一 3と同様に中心軸の角度を変えながら加速度センサ一 5を 複数配置することで、 水平面の全方向に対して均一な特性を持たせることもでき る。  In the above embodiment, the two acceleration sensors 5 are arranged so that their central axes are orthogonal to each other, and these acceleration sensors 5 ′ are connected in parallel on a circuit, so that the devices to be protected can be protected. The acceleration applied to the front and rear and the acceleration applied to the left and right can be detected in the same way. On the other hand, for example, when the assumed horizontal acceleration direction is limited to left and right or front and rear, only one acceleration sensor 15 can be used. Furthermore, by arranging a plurality of acceleration sensors 15 while changing the angle of the central axis as in the case of the drop sensor 13, uniform characteristics can be provided in all directions in the horizontal plane.
' 図 5は本発明の第 3の実施例を示すものであり、 第 2の実施例と異なるところ を説明する。 尚、 第 2の実施例と同一部分には同一符号を付している。  FIG. 5 shows a third embodiment of the present invention, and different points from the second embodiment will be described. The same parts as those of the second embodiment are denoted by the same reference numerals.
従来から高所作業者の保護器具として、 作業者の身体を保持し、 落下を防ぐ例 えば命綱が使用されている。 しかしながら、 命綱を用いても依然として落下事故 は発生しており、 近年では、 落下事故における落下時の衝撃を和らげるために装 着型のエアバッグや作業場の周りに展開される補助ネッ ト等の衝撃吸収補助器具 が提案されている。 前記衝撃吸収補助器具は、 保護対象となる作業者が装着した 落下検出装置 2 1からの落下検出信号を受けて動作することにより、 作業者の落 下を防止したり落下時の衝撃を緩和したりすることができる。 For example, a lifeline has been used as a protective device for workers at high places, for example, to hold the worker's body and prevent it from falling. However, even with a lifeline, a fall accident still occurs.In recent years, impacts such as wearable airbags and auxiliary nets deployed around the workplace have been used to reduce the impact of a fall in a fall accident. Absorption aids have been proposed. The shock absorbing auxiliary device operates by receiving a fall detection signal from the fall detection device 21 worn by the worker to be protected, thereby allowing the worker to fall. It is possible to prevent lowering and reduce the impact when falling.
そこで、 本実施例に係る落下検出装置 2 1は、 作業者に装着するためのベルト (装着手段に相当) 7を備えて構成されている。 即ち、 図 5に示すように、 前記 落下検出装置 2 1は、 ベルト 7に取付けられたケース 6内に基板 2 4が収容され ている。 落下検出装置 2 1は、 通常の作業による振動や加速 ·減速運動の影響を 最も受けにくい身体の中心部付近、 例えば作業者の腰部付近にベルト 7を介して 装着される。  Therefore, the drop detecting device 21 according to the present embodiment is provided with a belt (corresponding to a mounting means) 7 for mounting on a worker. That is, as shown in FIG. 5, in the drop detecting device 21, a substrate 24 is housed in a case 6 attached to a belt 7. The fall detection device 21 is attached via a belt 7 near the center of the body, which is least susceptible to vibrations and acceleration / deceleration movements due to normal work, for example, near the waist of the worker.
尚、 落下検出装置を作業者の腕に取り付けた場合は、 作業時に落下検出装置が 邪魔になるだけでなく、 あらゆる作業において腕の動きに伴う加速 ·減速が繰り 返されるため誤動作の原因どなる。 また、 落下検出装置を作業者の足に取り付け た場合にも同様の問題がある。 これに対して作業者の胴体、 特に動きの中心とな る腰部であれば、 通常時は急激な動きは起き難く、 意図的な場合を含めて落下セ ンサー 3が誤動作するような振動や加速度が与えられる可能性は低い。 - 落下検出装置 2 1は、 ベルト 7を介して腰部に取り付けられたときにケース 6 の中に配置された基板 2 4が身体に沿う姿勢が正規姿勢となる。 つまり作業者が 直立状態にあるとき、 基板 2 4の正規姿勢はほぼ垂直状態とされる。 このような 姿勢で基板 2 4が配置されても、 落下センサ一 3は他の落下センサ 3の少なく 'とも一つと正規動作をする範囲が重複する様に基板 2 4上に配置されているので、 静止状態において少なく とも一つのセンサー 3は必ず接点が閉じられている。 ま た作業者が屈み込んだり横になつたりするなど姿勢を変えた場合も前述した様に 必ず一つの落下センサー 3は接点を閉じている。  If the fall detection device is attached to the worker's arm, not only will the fall detection device become an obstacle during the work, but acceleration and deceleration due to the movement of the arm will be repeated in any work, causing malfunction. A similar problem occurs when the fall detection device is attached to the worker's foot. On the other hand, in the case of the worker's torso, especially the lower back, which is the center of movement, sudden movement is unlikely to occur normally, and vibration and acceleration that may cause the drop sensor 3 to malfunction, including intentional cases. Is unlikely to be given. -When the drop detection device 21 is attached to the waist via the belt 7, the posture in which the substrate 24 arranged in the case 6 follows the body becomes the normal posture. That is, when the worker is in the upright state, the normal posture of the substrate 24 is almost vertical. Even if the substrate 24 is arranged in such a posture, the fall sensor 13 is arranged on the substrate 24 so that the normal operation range overlaps with at least one of the other fall sensors 3. At rest, at least one sensor 3 always has its contacts closed. Also, when the operator changes his posture, such as bending down or lying down, one drop sensor 3 always closes the contacts as described above.
落下検出装置 2 1を高所作業者に装着する場合は、 保護を行うべき落下とそれ .以外の動作を区別する必要がある。 例えぱ危険のない小さな段差を降りる際など には短時間の落下状態となるが、 このような場合に保護装置を動作させる必要は ない。 そこで本実施例においても、 信号処理回路 1 0 0は落下センサー 3からの 信号が全部オフになつてからその状態が所定時間継続しなければ落下信号を出力 しないように構成されている。 When attaching the fall detector 21 to a worker at a high place, it is necessary to distinguish between the fall to be protected and other operations. For example, when you get off a small step with no danger, you will fall for a short time. In such a case, you do not need to operate the protective device. Therefore, also in this embodiment, the signal processing circuit 100 If the state does not continue for a predetermined time after all the signals are turned off, a fall signal is not output.
但し、 前述した落下検出装置 1の構成では跳躍時に誤動作を起こす可能性があ る。 例えば被装着者がその場でジャンプした場合や小さな段差を飛び越える場合 は足が地面から離れてから再び着地するまでの間は自由落下状態である。従って、 この時間が所定時間を超えると落下と誤判定されてしまう。 これは、 例えば段差 の飛び降りや落下のように自由落下で加速して行く事を想定して前記所定時間が 設定されるからである。 跳躍の場合は地面から足が離れた瞬間から最高点に至る までは減速を続け、 最高点から着地するまでは加速を続ける。 'そのため継続時間 が同じでもその移動距離は違い、 飛び降りの際の落下距離に対してジャンプの高 さ自体は 1 / 4になる。 従って、 例えば l mの段差を飛び降りた場合には動作し ないように所定時間を設定しても、 2 5 c m程度の跳躍で落下センサ一 3のオフ 時間が所定時間に達し、 落下状態に陥ったと判定されてしまうことになる。 そこで、 前記落下検出装置 2 1においては加速度センサー 5を跳躍を検出する ためのセンサーとして使用している。 加速度センサー 5では、 正規姿勢にあり且 つ静止状態にあるときは接触部が慣性体の重量で橈み量をバランスさせて容器内 面と僅かな間隙をもって開離している。 そして、 上方向への加速を受けて慣性体 の見かけ上の重力が増加した場合には、 慣性体が接触部をさらに撓めて金属容器 と接触させ、 接点間をオン状態にする。 例えば第 2の実施例では、 重力による 1 Gの加速度においては可動接点と固定接点とが接触しないようにバランスしてお り、 加速度が 0 . 5 G以上増加すると接点間が導通するようにされている。  However, in the configuration of the above-described fall detection device 1, a malfunction may occur when jumping. For example, when the wearer jumps on the spot or jumps over a small step, the wearer is in a free fall state from when the foot leaves the ground until it reaches the ground again. Therefore, if this time exceeds a predetermined time, it is erroneously determined to be a fall. This is because the predetermined time is set on the assumption that the vehicle accelerates by free fall, such as jumping off a step or falling. In the case of a leap, deceleration is continued from the moment the foot is released from the ground to the highest point, and acceleration is continued until landing from the highest point. 'Therefore, even if the duration is the same, the movement distance is different, and the jump height itself is 1/4 of the fall distance when jumping down. Therefore, for example, even if the predetermined time is set so as not to operate when jumping off the step of lm, the off-time of the drop sensor 13 reaches the predetermined time by a jump of about 25 cm, and the vehicle falls into a falling state. It will be judged. Therefore, in the fall detecting device 21, the acceleration sensor 5 is used as a sensor for detecting a jump. In the acceleration sensor 5, when in the normal posture and in the stationary state, the contact portion is separated from the inner surface of the container with a slight gap by balancing the radius with the weight of the inertial body. When the apparent gravity of the inertial body increases due to the upward acceleration, the inertial body further deflects the contact portion to contact the metal container, and turns on the contact points. For example, in the second embodiment, the movable contact and the fixed contact are balanced so that they do not come into contact with each other at an acceleration of 1 G due to gravity. When the acceleration increases by 0.5 G or more, conduction is established between the contacts. ing.
跳躍時は身体を重力に抗して加速させるため、 この加速度と重力加速度とが共 に加速度センサー 5に加わり、 慎性体の見かけ上の重量は增える。 そこで、 本実 施例では慣性体の見かけ上の重量が 1 . 5倍になったときに加速度センサー 5は オン状態となるように構成されている。 加速度センサー 5からの信号が信号処理 回路 1 0 0に入力されると、 落下検出装置 2 1は被装着者が跳躍を行なったと判 断し、 落下センサ一 3からの信号を一定時間無視して信号処理を行わないように 構成されている。 このため、 跳躍による自由落下時間が無視される。 そして、 跳 躍による自由落下時間を超えて落下状態が続く場合には、 信号処理回路 1 0 0に よって落下センサー 5からの信号が通常に処理されて落下が検出されるため保護 動作を行うことができる。 こうして跳躍時の誤判定を防止する事ができる。 尚、 落下センサー 3は作業者の姿勢などを考慮して複数配置しているのに対し て、加速度センサー 5は一つしか配置していない。これは、次の理由からである。 つまり、 作業者は、 直立かそれに近い姿勢の他、 腰を大きく屈めたり腹ばいにな つたり して作業する場合がある。 このため、 作業者の様々な姿勢に対して落下セ ンサー 3のいずれか一つを動作させる必要がある。 これに対して、 跳 JS時の作業 者の姿勢は直立かそれに近い姿勢であり、 身体、 特に腰,,を極端に傾けたり横にな つたり した姿勢での跳躍は通常有り得ない。 そこで加速度センサー 5は正規姿勢 での検出ができるように基本的には一つあれば良い。 When jumping, the body is accelerated against the gravity, and this acceleration and the gravitational acceleration are added to the acceleration sensor 5, so that the apparent weight of the humble body increases. Therefore, in the present embodiment, the acceleration sensor 5 is configured to be turned on when the apparent weight of the inertial body becomes 1.5 times. Signal from accelerometer 5 is signal processed When input to the circuit 100, the fall detection device 21 determines that the wearer has jumped and ignores the signal from the fall sensor 13 for a certain period of time so as not to perform signal processing. ing. Therefore, the free fall time due to jumping is ignored. If the falling state continues for longer than the free fall time due to jumping, the signal processing circuit 100 normally processes the signal from the drop sensor 5 to detect the fall, so that a protection operation must be performed. Can be. In this way, erroneous determination at the time of jump can be prevented. In addition, while the drop sensor 3 is arranged in plurality in consideration of the posture of the worker, only one acceleration sensor 5 is arranged. This is for the following reason. In other words, the worker may work while standing upright or close to that, and bend his hips or lie on his stomach. Therefore, it is necessary to operate any one of the drop sensors 3 for various postures of the worker. On the other hand, the worker's posture during the jump JS is upright or close to it, and jumping in a posture in which the body, especially the waist, etc., is extremely inclined or laid down is usually impossible. Therefore, basically, only one acceleration sensor 5 is required so that detection can be performed in the normal posture.
また、 動作加速度の違う複数の加速度センサーを使用して跳躍時の加速度の違 いから跳躍の高さを推定し保護動作を変化させることもできる。 更に、 センサー の許容傾斜角度が、 実際に起こり得る装着部の傾斜角度よりも小さい場合には加 速度センサーを複数設けてもよい。  It is also possible to change the protection operation by estimating the height of the jump from the difference in acceleration when jumping, using a plurality of acceleration sensors with different operation accelerations. Further, when the allowable inclination angle of the sensor is smaller than the actual inclination angle of the mounting portion, a plurality of acceleration sensors may be provided.
また、 落下検出装置 1 1及び 2 1に使用される落下センサ一 3及び加速度セン サー 5は、 落下検出装置 1で説明したように、 慣性体が可動部に過大な応力を与 えないように構成されている。 これにより、 通常の取扱いにおける衝撃加速度な どはもちろん、 保護対象機器そのものが破壊されない範囲の落下であればセンサ 一が破壊したり、 動作特性のオフセットが発生したりする事は無い。 そのため、 例えば作業者が落下検出装置を通常の取扱い程度で軽く放り投げた場合において も問題はなく、 落下の際に保護対象機器を保護しながらも落下センサー自体が破 壊されたりオフセットされたり して保護対象機器の使用に支障をきたすような事 態は発生しない。 産業上の利用可能性 Also, the drop sensor 13 and the acceleration sensor 5 used for the drop detectors 11 and 21 are designed to prevent the inertial body from applying excessive stress to the movable part as described for the drop detector 1. It is configured. As a result, the sensor itself will not be destroyed or the operating characteristics will not be offset if the device to be protected falls within a range that will not be destroyed, as well as the impact acceleration in normal handling. Therefore, for example, there is no problem even if the operator throws the fall detection device lightly with normal handling, and the fall sensor itself is broken while protecting the equipment to be protected in the event of a fall. No events will occur that could damage or offset the use of the protected equipment. Industrial applicability
以上のように、 本発明にかかる落下検出装置は、 ノート型パーソナルコンビュ 一夕等の携帯機器や高所作業者等の保護対象物に内蔵或いは装着されて前記保護 対象物の落下を検出することにより、 保護装置を起動させるものとして有用であ る。  As described above, the fall detection device according to the present invention is built in or attached to a portable device such as a notebook type personal convenience store or a protected object such as a worker at a high place, and detects a drop of the protected object by detecting the fall of the protected object. It is useful for activating the protection device.

Claims

請 求 の 範 囲 The scope of the claims
1 . 重力方向の加速度が見かけ上減少したことを検出する複数の落下センサ一を 備え、 1. Equipped with a plurality of drop sensors that detect that the acceleration in the direction of gravity has apparently decreased,
前記落下センサーは、 金属製の円筒型密閉容器と、 前記密閉容器中に設けられ 等間隔に配置された複数の接触部を有する可動接点と、 前記密閉容器の内周面に 設けられ前記可動接点と接離可能な固定接点と、 前記密閉容器中.に収納され自己 の重量によって前記可動接点を押し下げて前記固定接点と接触させる慣性体とを 備え、 前記円筒型密閉容器の中心軸周りの全方向について同一の特性を有すると 共に、 前記密閉容器の中心軸が水平軸となる正規姿勢にあり且つ静止状態にある ときは前記慣性体は前記可動接点を撓めて前記固定接点と接触させ、 落下などに より前記慣性体の見かけ上の重量が所定値以下に減少した.ときは前記慣性体の重 量に杭して前記可動接点が前記固定接点から離れるように構成され、  The drop sensor includes a metal cylindrical closed container, a movable contact provided in the closed container and having a plurality of contact portions disposed at equal intervals, and a movable contact provided on an inner peripheral surface of the closed container. A fixed contact that can be brought into contact with and separated from the movable container; and an inertial body that is housed in the closed container and that presses down the movable contact by its own weight to make contact with the fixed contact. In addition to having the same characteristics with respect to the direction, when the closed container is in a normal posture in which the central axis is the horizontal axis and is in a stationary state, the inertial body flexes the movable contact to contact the fixed contact, When the apparent weight of the inertial body has decreased to a predetermined value or less due to a drop or the like, the movable contact is separated from the fixed contact by staking the weight of the inertial body,
前記複数の落下センサ一は、 他の落下センサーの少なくと ·も一つと正規姿勢に 対する許容傾斜範囲の一部が重複するように前記密閉容器の中心軸の傾斜角度を 異ならせて同一平面上に配置されていることを特徴とする落下検出装置。  The plurality of drop sensors are at least one of the other drop sensors, and the inclination angle of the central axis of the closed container is made different from each other so that a part of the allowable inclination range with respect to the normal posture is overlapped. A drop detecting device, wherein the drop detecting device is disposed in the device.
2 . クレーム 1の落下検出装置において、  2. In the fall detection device of claim 1,
加速度が増加したことを検出する加速度センサーを有し、  An acceleration sensor that detects that the acceleration has increased,
前記加速度センサーは、 金属製の円筒型密閉容器と、 前記密閉容器中に設けら れ複数の接触部を有する可動接点と、 前記密閉容器の内周面に設けられ前記可動 接点と接離可能な固定接点と、 前記密閉容器中に収納され自己の重量によって前 記可動接点を橈ませる慣性体とを備え、 前記加速度センサーの可動接点は、 静止 時には前記慣性体の重量に杭して前記固定接点と非接触状態になり、 前記密閉容 器の中心軸に対して垂直方向の加速度成分が所定値以上増加して前記慣性体の見 かけ上の重量が増加したときには前記固定接点と接触するように構成されている。 The acceleration sensor includes a metal cylindrical closed container, a movable contact provided in the closed container and having a plurality of contact portions, and a movable contact provided on an inner peripheral surface of the closed container and capable of contacting and separating with the movable contact. A fixed contact, and an inertial body accommodated in the closed container and extending the movable contact by its own weight, wherein the movable contact of the acceleration sensor is piled on the weight of the inertial body when stationary, and the fixed contact is When the apparent weight of the inertial body increases due to an increase in the acceleration component in a direction perpendicular to the central axis of the sealed container by a predetermined value or more, the fixed contact comes into contact with the fixed contact. It is configured.
3 . クレーム 2の落下検出装置において、 3. In the fall detection device of claim 2,
前記加速度センサーを複数個備え、  Comprising a plurality of the acceleration sensor,
前記複数の加速 センサ一は、 他の加速度センサーの少なくとも一つと正規姿 勢に対する許容傾斜範囲の一部が重複するように前記密閉容器の中心軸の傾斜角 度を異ならせて同一平面上に配置されている。  The plurality of acceleration sensors are arranged on the same plane with different inclination angles of the central axis of the closed container so that at least one of the other acceleration sensors overlaps part of the allowable inclination range with respect to the normal posture. Have been.
4 . クレーム 2の落下検出装置において、  4. In the fall detection device of claim 2,
作業者に装着するための装着手段を備え、  Equipped with mounting means for mounting on the worker,
前記装着手段は、 前記起立状態にある作業者に装着したときに、 前記加速度セ ンサ一の中心軸が水平軸となり、 前記作業者の跳躍などによる重力方向の加速度 を検出するように構成されている。  The mounting means is configured such that, when mounted on the worker in the standing state, the center axis of the acceleration sensor is a horizontal axis, and the acceleration in the direction of gravity due to jumping of the worker is detected. I have.
PCT/JP2002/012730 2001-12-07 2002-12-04 Falling detection device WO2003048785A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2002357585A AU2002357585A1 (en) 2001-12-07 2002-12-04 Falling detection device
JP2003549929A JP4005561B2 (en) 2001-12-07 2002-12-04 Fall detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001374805 2001-12-07
JP2001/374805 2001-12-07

Publications (1)

Publication Number Publication Date
WO2003048785A1 true WO2003048785A1 (en) 2003-06-12

Family

ID=19183309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/012730 WO2003048785A1 (en) 2001-12-07 2002-12-04 Falling detection device

Country Status (3)

Country Link
JP (1) JP4005561B2 (en)
AU (1) AU2002357585A1 (en)
WO (1) WO2003048785A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60233563A (en) * 1984-05-02 1985-11-20 Tokyo Keiki Co Ltd Instrument for measuring acceleration
JP2000283995A (en) * 1999-03-31 2000-10-13 Ntt Advanced Technology Corp Fall detection sensor
JP2001194382A (en) * 2000-01-12 2001-07-19 Ubukata Industries Co Ltd Falling sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60233563A (en) * 1984-05-02 1985-11-20 Tokyo Keiki Co Ltd Instrument for measuring acceleration
JP2000283995A (en) * 1999-03-31 2000-10-13 Ntt Advanced Technology Corp Fall detection sensor
JP2001194382A (en) * 2000-01-12 2001-07-19 Ubukata Industries Co Ltd Falling sensor

Also Published As

Publication number Publication date
AU2002357585A1 (en) 2003-06-17
JP4005561B2 (en) 2007-11-07
JPWO2003048785A1 (en) 2005-04-14

Similar Documents

Publication Publication Date Title
CA2330512C (en) Free fall sensor
US8237521B1 (en) Triaxial MEMS acceleration switch
JP2002008336A (en) Fall sensing sensor and information processor using the same
WO2007010992A1 (en) Acceleration switch
JPS62129763A (en) Inertia detector
US3835273A (en) Pendulum-type inertia sensor switch
EP1519165A2 (en) Piezoelectric vibration sensor
US11964381B2 (en) Device for controlling a handling device
WO2003048785A1 (en) Falling detection device
US7084759B2 (en) Drop detection device
JP2002208239A (en) Magnetic disk device protective mechanism
US8829373B2 (en) Three-axis acceleration switch array
TW201544444A (en) Microelectromechanical structure with frames
JP3313261B2 (en) Shock sensor
JP3006828B2 (en) Motion detection device
CN218476721U (en) Protective device, radar device, and robot
CN217168571U (en) Robot and collision detection device thereof
KR102572865B1 (en) Soft pressure sensor and safety skin for robot using the same
JP2007040933A (en) Acceleration sensor
KR20050109888A (en) Impact sensing apparatus
JP2892559B2 (en) Seismic sensor
KR200361323Y1 (en) Vibration detecting switch and it's set
WO2019180674A1 (en) Smart case
JP3874331B2 (en) Acceleration switch
CN116338245A (en) Sensor system and method for protecting a sensor system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003549929

Country of ref document: JP

122 Ep: pct application non-entry in european phase