WO2003046537A1 - Method and system for voltammetric characterization of a liquid sample - Google Patents

Method and system for voltammetric characterization of a liquid sample Download PDF

Info

Publication number
WO2003046537A1
WO2003046537A1 PCT/SE2002/002135 SE0202135W WO03046537A1 WO 2003046537 A1 WO2003046537 A1 WO 2003046537A1 SE 0202135 W SE0202135 W SE 0202135W WO 03046537 A1 WO03046537 A1 WO 03046537A1
Authority
WO
WIPO (PCT)
Prior art keywords
potential
voltammetric
working
unit
characterization
Prior art date
Application number
PCT/SE2002/002135
Other languages
French (fr)
Inventor
Arnold Olofsson
Original Assignee
Otre Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SE0104005A external-priority patent/SE523245C2/en
Priority claimed from US10/025,565 external-priority patent/US6664776B2/en
Application filed by Otre Ab filed Critical Otre Ab
Priority to AU2002365536A priority Critical patent/AU2002365536A1/en
Priority to EP02791133A priority patent/EP1448981A1/en
Publication of WO2003046537A1 publication Critical patent/WO2003046537A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Definitions

  • the present invention relates to a method and a system for detecting different characteristics indicative of a desired property of a sample, and in particular to a method and a system for voltammetric characterization of a liquid sample.
  • WO 99/13325 there is disclosed a method for detecting different characteristics indicative of a desired property of a sample, such as the concentration of an analyte, pH etc. Said method is based on voltage pulses according to a pulse-sequence comprising a plurality of pulses in sequence and at different amplitudes, being applied to electrodes. The obtained response signals are used as input to a pattern recognition program in a computer for interpretation and for outputting results. The analysis is based on multivariate methods, such as PCA (Principal Component Analysis). A brief account of PCA is given in an article by F. Winquist et al in "An electronic tongue based on voltammetry", Analytica Chimica Acta, 357 (1997) 21-31. This article and the WO publication are both incorporated herein in their entirety by reference.
  • PCA Principal Component Analysis
  • the above method is essentially characterized by.
  • said method teaches that only or mainly the first part of the response transient is measured and used. Thereby, a very rapid testing or tasting can be carried out since the first part of the transient is of a very short duration. With the first part is here meant the initial rising slope up to the peak.
  • EP application number: 00128297.9 hereafter referred to as EP '297
  • the applicants disclose an ozone sensor based on the ideas of WO 99/13325. It is shown in EP '297 that satisfying results concerning detection of ozone may be achieved by performing pulsed voltammetric measurements using a single working electrode of Rh. But it is further shown that the overall performance of a four-electrode sensor is better than a sensor with a single electrode of Rh. Therefore, the preferred embodiment of this novel ozone sensor is a sensor device with a multiple working-electrode arrangement, wherein each working electrode is made of a different material than the others.
  • the EP '297 publication is incorporated herein in its entirety by reference.
  • pulse-sequences for voltammetric measurements shown both in WO 99/13325 and EP '297 involve many pulse-steps and are therefore time consuming, especially if multi- electrode arrangements are used, whereby each pulse-sequence have to be repeated for each electrode.
  • the object of the invention is to provide a new method for voltammetric characterization of a liquid sample and a system for voltammetric characterization, which method and system overcomes one or more drawbacks of the prior art.
  • This is achieved by the method for voltammetric characterization of a liquid sample, using a voltammetric setup comprising at least two working electrodes and a counter electrode that are placed in contact with the liquid sample, the method comprising the steps of: a. applying a first potential on all working- electrodes, b. performing a number of voltammetric cycles according to a predetermined pulse-sequence, each comprising the steps of: i. applying a second potential on the counter electrode according to the pulse-sequence, ii.
  • performing a predetermined number of measurement procedures each comprising the steps of: removing said applied first potential from all but one of the working electrodes, registering the current passing through the working electrode still having said first potential applied thereto, storing the registered value in a data storage unit, applying the first potential on all working electrodes, and c. analyzing said stored values using a predetermined mathematical model to produce a result.
  • a system for voltammetric characterization comprising: at least two working electrodes, a working electrode selecting unit enabling connection and disconnection of one or more of the working electrodes to a first potential, a counter electrode connected to a second potential, a current registration unit, arranged to register the current passed through the working electrode(s) connected to said first potential, a control unit arranged to control said second potential, said working electrode selecting unit and to read current values from said current registration unit at predetermined points in time, a data storage unit for storing said current values, and a processing unit arranged to analyze the stored current values using a predetermined mathematical model, and to output the result from the analysis.
  • One advantage with such a method and system is that the time needed for the voltammetric detections is reduced to a great extent.
  • Another advantage is that the system may be produced as an integrated device, thus providing a fully functional, compact system at a low cost.
  • Fig. 1 schematically shows a system according to the present invention.
  • Fig. 2 is a schematic diagram of a preferred embodiment of the method according to the present invention.
  • Fig. 3 shows a pulse sequence usable with the invention.
  • Fig. 4 shows an exemplary voltammetric cycle for four working electrodes.
  • Fig. 5 illustrates two measurement procedures according to the method of the present invention. Detailed Description of Preferred Embodiments
  • the present invention is aimed at facilitating voltammetric characterization according to WO 99/13325 and or EP '297 utilizing multiple working-electrodes, i.e. two or more working electrodes.
  • the number of working-electrodes in such systems may be very large, but in order to keep the amount of registered data at a reasonable level a preferred embodiment of the sensor device comprises four working-electrodes.
  • the setup includes a sample reservoir 10 containing a sample 20 that is to be analyzed.
  • This reservoir 10 can be of a stationary type or designed as a flow cell.
  • Four working electrodes El, E2, E3 and E4 are immersed in the sample liquid 20.
  • the working-electrodes El - E4 can be made of any metal or alloy that yields the desired effect; preferably each of the electrodes is made of a different material.
  • the measurement set up further comprises a counter electrode 30 (auxiliary electrode) (i.e. a standard two-electrode voltammetric setup).
  • auxiliary electrode i.e. a standard three-electrode system
  • working electrodes El - E4 a counter electrode 30 and a reference electrode.
  • the apparatus housing could be used as counter electrode 30.
  • Other materials for the counter electrode 30 are of course conceivable, e.g. Pt, Au.
  • the working electrodes El - E4 are preferably integrated in a sensor device and possibly also the counter electrode 30.
  • the method for voltammetric characterization according to the present invention enables parallel measurements on a plurality of working electrodes El - E4 during the same pulse- sequence.
  • a schematic diagram of a preferred embodiment of the method is shown in fig. 2 and it comprises the following steps:
  • the predefined pulse-sequence used may comprise any suitable pulse-sequence.
  • Fig. 3 shows an exemplary pulse-sequence, which may be referred to as Large Amplitude Pulse Voltammetry (LAPV)
  • the LAPV pulse-sequence shown in fig.3 has a pulse-duration of 0.5 s and the first pulse has a potential of -2.1 V.
  • the potential of the subsequent pulses is thereafter raised 300 mV for each pulse until 0 V is reached. After each pulse the potential is set to 0 V for 0.5 s before the next pulse starts.
  • a voltammetric cycle Fig. 4 shows an exemplary voltammetric cycle, wherein El - E4 refers to the four working electrodes respectively.
  • the potentials prescribed in the pulse-sequence refer to the difference between the first and the second potential (PI - P2) in the above method.
  • the first potential PI is set to 0 V (ground) and the second potential P2 is varied according to the pulse-sequence.
  • Fig. 5 illustrates two measurement procedures during a part of a voltammetric cycle. It has been shown that measurement procedures with duration in the range of 150 ⁇ s fulfill this requirement.
  • each working electrode El - E4 requires a separate current registration unit, which may lead to calibration errors due to small differences in the characteristics of the separate current registration units, compared to the setup according to the present invention where one single current registration unit us used for all four working electrodes (see below for detailed description).
  • the number of measurement procedures and timing of the same during the voltammetric cycle is adapted to the specific case, and is not critical to the method.
  • the number of measurement procedures needed to achieve a desired accuracy can be very different from case to case. In certain cases perhaps it is sufficient with four points, in other circumstances of the order of 100 points could be relevant. If, for example, 19 measurement procedures are performed for each working electrode El - E4 in a 4 working electrode arrangement, the total number of recorded current values for each voltammetric cycle is 76, and if the pulse- sequence comprises 7 pulses, this results in 532 current values.
  • the measurement procedures may be performed in a straightforward repetitive sequence for the four working electrodes El to E4.
  • the measurement procedures for each working electrode El - E4 are performed independently of the measurement procedures for the other working electrodes El - E4, such that optimum results are acquired for each electrode.
  • the recorded current values are analyzed according to the teaching of WO 99/13325 and EP '297.
  • a large number of experimental data sets are used to produce a mathematical model that eliminates the time consuming step of multivariate analysis to achieve a result.
  • the mathematical model may for instance have the form:
  • Y is a number that for instance indicates the concentration of the species to be detected, e.g. ozone, urea...
  • XI ... are the recorded current values for the measurement procedure of the same number
  • BO, Bl ... are fitted constants for each recorded current value of same number.
  • Such parameters may be temperature and conductivity.
  • the temperature of the medium is preferably recorded by adding a temperature sensor to the sensor device.
  • the conductivity is preferably recorded using the existing electrode arrangement before the voltammetric characterization is initiated.
  • the conductivity may for instance be determined using a pulse-sequence consisting of 10 pulses with alternating potentials of ⁇ 200 mV and duration of 50 ms.
  • a system for voltammetric characterization 40 comprises a working electrode selecting unit 50, a current registration unit 60, a control unit 70, a data storage unit 80 and a processing unit 90 (fig. 1).
  • the working electrode selecting unit 5 is connected to the four working electrodes El - E4 and to the first potential PI, and it is arranged to connect one or more of the working electrodes El - E4 to the first potential PI. In a normal mode all four working electrodes El - E4 are connected to the first potential PI, but during the current registration step of the measurement procedure three of the working electrodes El - E4 are disconnected. As mentioned above, one primary requirement on the working electrode selecting unit 50 is that the connection disconnection of working electrodes El - E4 is extremely fast.
  • connection/disconnection time or switch time for the working electrode selecting unit 5 has to be less than 10 ⁇ s, preferably less than 1 ⁇ s, and more preferably less than 100 ns to allow sufficient time for current measurements between the disconnection and reconnection of the working electrodes El - E4.
  • the working electrode selecting unit 50 is comprised of a commercially available four channel analog switch, such as max 312 from MAXIM.
  • the current registration unit 60 is arranged to register the current flowing between said first potential PI to the working electrode selecting unit 50.
  • the registered current is the same that is passed through the connected working electrode(s) El - E4, and as only one electrode is connected during the current registration step of each measurement procedure, the value registered by the current registration unit is the current value used for the voltammetric characterization.
  • the current registration unit 60 is comprised of a current amplifier, producing an output representative of the current.
  • the control unit 70 is arranged to control said second potential P2, said working electrode selecting unit and to read current values from said current registration unit 60 at predetermined points in time.
  • a control cycle (according to the method of the invention) for the control unit comprises, setting the second potential P2, controlling the working electrode selecting unit 50 to connect/disconnect working electrodes El - E4, and reading current values from the current registration unit 60.
  • the control unit 70 either comprises a memory unit wherein control software is stored, or a control-interface such that it in turn is controlled by an external process control system.
  • the control unit 70 is comprised of a commercially available micro controller unit (MCU) such as PIF 16C877 from Microchip.
  • MCU micro controller unit
  • the second potential P2 is preferably supplied by a controllable variable potential source 100.
  • a suitable potential source 100 is an 8-bit digital to analogue converter combined with an amplifier capable of setting the polarity of the potential, and finally a buffer capable of producing a stable output.
  • the data storage unit 80 is used for storing the recorded current values, and in one preferred embodiment, it is comprised of a commercially available memory circuit such as D43256 from NEC.
  • the processing unit 90 is arranged to analyze the stored current values using a predetermined mathematical model, such as the one specified above. The result from the analysis is thereafter output as a digital or analogue value, via a display or the like.
  • the processing unit 90 is comprised of a commercially available micro controller unit (MCU) such as PIF 16C877 from Microchip.
  • MCU micro controller unit
  • the working electrode selecting unit 50, the current registration unit 60, and the control unit 70 are integrated as one measuring device that is arranged to output the read current values to an external data storage 80 and processing unit 90.
  • This embodiment may further include that the control unit is externally controlled by said external data storage 80 and processing unit 90, whereby an inexpensive and extremely versatile system for voltammetric characterization 40 is achieved.
  • Such a system 40 may further be used to find appropriate pulse-sequence and voltammetric settings when preparing the system 40 for use with new working electrode arrangements, sample types, species to detect, or the like. The ways by which such adaptations are performed are clear from WO 99/13325 and EP '297.
  • Systems for voltammetric characterization 40 that are designated for characterizing of specified species in a specific medium are preferably fully integrated, i.e. the working electrode selecting unit 50, the current registration unit 60, the control unit 70, the data storage unit 80 and the processing unit 90 are all integrated as one characterization device arranged to output the result from the analysis.
  • Such systems 40 are especially suitable as "embedded" sensors in larger systems where it is of importance to continuously analyze the process or the like, e.g. ozone sensor in a system for sterilization of materials, (e.g. preparations for medical use) where ozone is used for eliminating harmful and unwanted species.
  • the output from such an embedded sensor is then used as input in the system control for controlling the process.
  • the skilled man could envisage several other variations and modifications of the actual arrangement and configuration of the method and the system according to the present invention, all of which are intended to fall within the scope of the attached claims.
  • a great advantage of the method and system according to the present invention is that it is suitable for on-line measurements, such as monitoring of quality in a food manufacturing process, concentration of a specific species in a chemical process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

The method for voltammetric characterization according to the present invention enables parallel measurements on a plurality of working electrodes El - E4 during the same pulse-sequence by, during each cycle of a predetermined pulse-sequence, performing a predetermined number of measurement procedures, each comprising the steps of: 1) removing said applied first potential P1 from all but one of the working electrodes E1 - E4, 2) registering the current passing through the working electrode E1, E2, E3 or E4 still having said first potential P1 applied thereto, 3) storing the registered value in a data storage unit, 4) applying the first potential P1 on all working electrodes. Thereafter, said stored values are analyzed using a predetermined mathematical model to produce a result. Furthermore, a system for voltammetric characterization, capable of performing the method, is disclosed.

Description

METHOD AND SYSTEM FOR VOLTAMMETRIC CHARACTERIZATION OF A LIQUID SAMPLE
The present invention relates to a method and a system for detecting different characteristics indicative of a desired property of a sample, and in particular to a method and a system for voltammetric characterization of a liquid sample.
Background of the Invention
In WO 99/13325 there is disclosed a method for detecting different characteristics indicative of a desired property of a sample, such as the concentration of an analyte, pH etc. Said method is based on voltage pulses according to a pulse-sequence comprising a plurality of pulses in sequence and at different amplitudes, being applied to electrodes. The obtained response signals are used as input to a pattern recognition program in a computer for interpretation and for outputting results. The analysis is based on multivariate methods, such as PCA (Principal Component Analysis). A brief account of PCA is given in an article by F. Winquist et al in "An electronic tongue based on voltammetry", Analytica Chimica Acta, 357 (1997) 21-31. This article and the WO publication are both incorporated herein in their entirety by reference.
The above method is essentially characterized by.
• Use of pulse voltammetry (or other electrical measurement methods) to obtain information (transient curves);
• Use of different electrode materials, modified electrodes or pulse-sequences etc. to induce different chemical reactions so as to vary the transients;
• Use of curve fitting methods to extract or sample information from the obtained set of transients;
• Use of various multivariate signal-processing methods to interpret the information gained thereby.
Particularly, said method teaches that only or mainly the first part of the response transient is measured and used. Thereby, a very rapid testing or tasting can be carried out since the first part of the transient is of a very short duration. With the first part is here meant the initial rising slope up to the peak. In EP application number: 00128297.9 (hereafter referred to as EP '297) the applicants disclose an ozone sensor based on the ideas of WO 99/13325. It is shown in EP '297 that satisfying results concerning detection of ozone may be achieved by performing pulsed voltammetric measurements using a single working electrode of Rh. But it is further shown that the overall performance of a four-electrode sensor is better than a sensor with a single electrode of Rh. Therefore, the preferred embodiment of this novel ozone sensor is a sensor device with a multiple working-electrode arrangement, wherein each working electrode is made of a different material than the others. The EP '297 publication is incorporated herein in its entirety by reference.
However, the pulse-sequences for voltammetric measurements shown both in WO 99/13325 and EP '297 involve many pulse-steps and are therefore time consuming, especially if multi- electrode arrangements are used, whereby each pulse-sequence have to be repeated for each electrode.
Summary of the Invention
The object of the invention is to provide a new method for voltammetric characterization of a liquid sample and a system for voltammetric characterization, which method and system overcomes one or more drawbacks of the prior art. This is achieved by the method for voltammetric characterization of a liquid sample, using a voltammetric setup comprising at least two working electrodes and a counter electrode that are placed in contact with the liquid sample, the method comprising the steps of: a. applying a first potential on all working- electrodes, b. performing a number of voltammetric cycles according to a predetermined pulse-sequence, each comprising the steps of: i. applying a second potential on the counter electrode according to the pulse-sequence, ii. performing a predetermined number of measurement procedures, each comprising the steps of: removing said applied first potential from all but one of the working electrodes, registering the current passing through the working electrode still having said first potential applied thereto, storing the registered value in a data storage unit, applying the first potential on all working electrodes, and c. analyzing said stored values using a predetermined mathematical model to produce a result. There is also provided a system for voltammetric characterization, comprising: at least two working electrodes, a working electrode selecting unit enabling connection and disconnection of one or more of the working electrodes to a first potential, a counter electrode connected to a second potential, a current registration unit, arranged to register the current passed through the working electrode(s) connected to said first potential, a control unit arranged to control said second potential, said working electrode selecting unit and to read current values from said current registration unit at predetermined points in time, a data storage unit for storing said current values, and a processing unit arranged to analyze the stored current values using a predetermined mathematical model, and to output the result from the analysis.
One advantage with such a method and system is that the time needed for the voltammetric detections is reduced to a great extent.
Another advantage is that the system may be produced as an integrated device, thus providing a fully functional, compact system at a low cost.
Embodiments of the invention are defined in the dependent claims.
Brief Description of the Drawings
The invention will be described in detail below with reference to the drawings, in which
Fig. 1 schematically shows a system according to the present invention.
Fig. 2 is a schematic diagram of a preferred embodiment of the method according to the present invention.
Fig. 3 shows a pulse sequence usable with the invention.
Fig. 4 shows an exemplary voltammetric cycle for four working electrodes.
Fig. 5 illustrates two measurement procedures according to the method of the present invention. Detailed Description of Preferred Embodiments
The present invention is aimed at facilitating voltammetric characterization according to WO 99/13325 and or EP '297 utilizing multiple working-electrodes, i.e. two or more working electrodes. As mentioned above, the number of working-electrodes in such systems may be very large, but in order to keep the amount of registered data at a reasonable level a preferred embodiment of the sensor device comprises four working-electrodes.
The invention will now be described with reference to an embodiment of a voltammetric system comprising four working-electrodes as is shown in Fig. 1. The setup includes a sample reservoir 10 containing a sample 20 that is to be analyzed. This reservoir 10 can be of a stationary type or designed as a flow cell. Four working electrodes El, E2, E3 and E4 are immersed in the sample liquid 20. The working-electrodes El - E4 can be made of any metal or alloy that yields the desired effect; preferably each of the electrodes is made of a different material.
In a preferred embodiment, the measurement set up further comprises a counter electrode 30 (auxiliary electrode) (i.e. a standard two-electrode voltammetric setup). Alternatively a standard three-electrode system can be employed, i.e. working electrodes El - E4, a counter electrode 30 and a reference electrode. If the apparatus or system, in which the invention is implemented, is itself made of e.g. stainless steel, the apparatus housing could be used as counter electrode 30. Other materials for the counter electrode 30 are of course conceivable, e.g. Pt, Au. The working electrodes El - E4 are preferably integrated in a sensor device and possibly also the counter electrode 30.
The method for voltammetric characterization according to the present invention enables parallel measurements on a plurality of working electrodes El - E4 during the same pulse- sequence. A schematic diagram of a preferred embodiment of the method is shown in fig. 2 and it comprises the following steps:
a applying a first potential PI on all working-electrodes El - E4, b performing a number of voltammetric cycles according to a predetermined pulse- sequence, each comprising the steps of:
i applying a second potential P2 on the counter electrode 30 according to the pulse-sequence,
ii performing a predetermined number of measurement procedures, each comprising the steps of:
removing said applied first potential PI from all but one of the working electrodes El - E4,
registering the current passing through the working electrode El , E2, E3 or E4 still having said first potential PI applied thereto,
storing the registered value in a data storage unit,
applying the first potential PI on all working electrodes,
and
c analyzing said stored values using a predetermined mathematical model to produce a result.
As is described both in WO 99/13325 and EP '297 the predefined pulse-sequence used may comprise any suitable pulse-sequence. Fig. 3 shows an exemplary pulse-sequence, which may be referred to as Large Amplitude Pulse Voltammetry (LAPV)
The LAPV pulse-sequence shown in fig.3 has a pulse-duration of 0.5 s and the first pulse has a potential of -2.1 V. The potential of the subsequent pulses is thereafter raised 300 mV for each pulse until 0 V is reached. After each pulse the potential is set to 0 V for 0.5 s before the next pulse starts. Throughout this application the voltammetric measurements that are performed during one pulse in the pulse-sequence is referred to as a voltammetric cycle. Fig. 4 shows an exemplary voltammetric cycle, wherein El - E4 refers to the four working electrodes respectively. Further, the potentials prescribed in the pulse-sequence refer to the difference between the first and the second potential (PI - P2) in the above method. Preferably, the first potential PI is set to 0 V (ground) and the second potential P2 is varied according to the pulse-sequence. However, it may also be the other way around, which is obvious for anyone familiar with the field of voltammetry.
The main requirement on the method according to the invention is that each measurement procedure is fast enough, such that the voltammetric cycles for the "disconnected" working electrodes are essentially unaffected. Fig. 5 illustrates two measurement procedures during a part of a voltammetric cycle. It has been shown that measurement procedures with duration in the range of 150 μs fulfill this requirement.
Alternatively one could envisage a method wherein the measurement procedure is performed in a parallel mode for all four working electrodes El - E4 where all electrodes are connected to the first potential PI throughout the whole voltammetric cycle. However, such a method may encounter problems associated with interaction between the working electrodes El - E4, as all working electrodes El - E4 are participating in the electrochemical process during the measurement. Furthermore, in such a system each working electrode El - E4 requires a separate current registration unit, which may lead to calibration errors due to small differences in the characteristics of the separate current registration units, compared to the setup according to the present invention where one single current registration unit us used for all four working electrodes (see below for detailed description).
The number of measurement procedures and timing of the same during the voltammetric cycle is adapted to the specific case, and is not critical to the method. The number of measurement procedures needed to achieve a desired accuracy can be very different from case to case. In certain cases perhaps it is sufficient with four points, in other circumstances of the order of 100 points could be relevant. If, for example, 19 measurement procedures are performed for each working electrode El - E4 in a 4 working electrode arrangement, the total number of recorded current values for each voltammetric cycle is 76, and if the pulse- sequence comprises 7 pulses, this results in 532 current values. In one embodiment the measurement procedures may be performed in a straightforward repetitive sequence for the four working electrodes El to E4. Alternatively the measurement procedures for each working electrode El - E4 are performed independently of the measurement procedures for the other working electrodes El - E4, such that optimum results are acquired for each electrode.
In the last step of the method the recorded current values are analyzed according to the teaching of WO 99/13325 and EP '297. Alternatively a large number of experimental data sets are used to produce a mathematical model that eliminates the time consuming step of multivariate analysis to achieve a result. The mathematical model may for instance have the form:
Y = B0 + BI - X1 + B2 - X2 + B3 X3
where Y is a number that for instance indicates the concentration of the species to be detected, e.g. ozone, urea..., XI ... are the recorded current values for the measurement procedure of the same number, BO, Bl ... are fitted constants for each recorded current value of same number. To further reduce the complexity of the mathematical model the least significant terms in the above expression may be omitted.
In order to optimize the result obtained from the method it may be necessary to record a number of other parameters for the medium to be characterized. Such parameters may be temperature and conductivity. The temperature of the medium is preferably recorded by adding a temperature sensor to the sensor device. The conductivity is preferably recorded using the existing electrode arrangement before the voltammetric characterization is initiated. The conductivity may for instance be determined using a pulse-sequence consisting of 10 pulses with alternating potentials of ±200 mV and duration of 50 ms.
In order to perform said method for voltammetric characterization, a system for voltammetric characterization 40 has been developed. One preferred embodiment of this system 40 comprises a working electrode selecting unit 50, a current registration unit 60, a control unit 70, a data storage unit 80 and a processing unit 90 (fig. 1).
The working electrode selecting unit 5 is connected to the four working electrodes El - E4 and to the first potential PI, and it is arranged to connect one or more of the working electrodes El - E4 to the first potential PI. In a normal mode all four working electrodes El - E4 are connected to the first potential PI, but during the current registration step of the measurement procedure three of the working electrodes El - E4 are disconnected. As mentioned above, one primary requirement on the working electrode selecting unit 50 is that the connection disconnection of working electrodes El - E4 is extremely fast. As each measurement procedure has duration of about 150 μs the connection/disconnection time or switch time for the working electrode selecting unit 5 has to be less than 10 μs, preferably less than 1 μs, and more preferably less than 100 ns to allow sufficient time for current measurements between the disconnection and reconnection of the working electrodes El - E4. In one preferred embodiment, the working electrode selecting unit 50 is comprised of a commercially available four channel analog switch, such as max 312 from MAXIM.
The current registration unit 60 is arranged to register the current flowing between said first potential PI to the working electrode selecting unit 50. The registered current is the same that is passed through the connected working electrode(s) El - E4, and as only one electrode is connected during the current registration step of each measurement procedure, the value registered by the current registration unit is the current value used for the voltammetric characterization. In one preferred embodiment, the current registration unit 60 is comprised of a current amplifier, producing an output representative of the current.
The control unit 70 is arranged to control said second potential P2, said working electrode selecting unit and to read current values from said current registration unit 60 at predetermined points in time. Hence, a control cycle (according to the method of the invention) for the control unit comprises, setting the second potential P2, controlling the working electrode selecting unit 50 to connect/disconnect working electrodes El - E4, and reading current values from the current registration unit 60. To achieve this, the control unit 70 either comprises a memory unit wherein control software is stored, or a control-interface such that it in turn is controlled by an external process control system. In one preferred embodiment, the control unit 70 is comprised of a commercially available micro controller unit (MCU) such as PIF 16C877 from Microchip.
The second potential P2 is preferably supplied by a controllable variable potential source 100. One preferred embodiment of a suitable potential source 100 is an 8-bit digital to analogue converter combined with an amplifier capable of setting the polarity of the potential, and finally a buffer capable of producing a stable output. The data storage unit 80 is used for storing the recorded current values, and in one preferred embodiment, it is comprised of a commercially available memory circuit such as D43256 from NEC.
The processing unit 90 is arranged to analyze the stored current values using a predetermined mathematical model, such as the one specified above. The result from the analysis is thereafter output as a digital or analogue value, via a display or the like. In one preferred embodiment, the processing unit 90 is comprised of a commercially available micro controller unit (MCU) such as PIF 16C877 from Microchip.
In another embodiment of the invention, the working electrode selecting unit 50, the current registration unit 60, and the control unit 70 are integrated as one measuring device that is arranged to output the read current values to an external data storage 80 and processing unit 90. This embodiment may further include that the control unit is externally controlled by said external data storage 80 and processing unit 90, whereby an inexpensive and extremely versatile system for voltammetric characterization 40 is achieved. Such a system 40 may further be used to find appropriate pulse-sequence and voltammetric settings when preparing the system 40 for use with new working electrode arrangements, sample types, species to detect, or the like. The ways by which such adaptations are performed are clear from WO 99/13325 and EP '297.
Systems for voltammetric characterization 40 that are designated for characterizing of specified species in a specific medium are preferably fully integrated, i.e. the working electrode selecting unit 50, the current registration unit 60, the control unit 70, the data storage unit 80 and the processing unit 90 are all integrated as one characterization device arranged to output the result from the analysis. Such systems 40 are especially suitable as "embedded" sensors in larger systems where it is of importance to continuously analyze the process or the like, e.g. ozone sensor in a system for sterilization of materials, (e.g. preparations for medical use) where ozone is used for eliminating harmful and unwanted species. The output from such an embedded sensor is then used as input in the system control for controlling the process. The skilled man could envisage several other variations and modifications of the actual arrangement and configuration of the method and the system according to the present invention, all of which are intended to fall within the scope of the attached claims.
A great advantage of the method and system according to the present invention is that it is suitable for on-line measurements, such as monitoring of quality in a food manufacturing process, concentration of a specific species in a chemical process.

Claims

CLAIMS:
1. Method for voltammetric characterization of a liquid sample, using a voltammetric setup comprising at least two working electrodes (El - E4) and a counter electrode (30) that are placed in contact with the liquid sample (20), the method comprising the steps of:
a. applying a first potential (PI) on all working-electrodes (El - E4),
b. performing a number of voltammetric cycles according to a predetermined pulse-sequence, each comprising the steps of:
i. applying a second potential (P2) on the counter electrode (30) according to the pulse-sequence,
ii. performing a predetermined number of measurement procedures, each comprising the steps of:
removing said applied first potential (PI) from all but one of the working electrodes (El - E4),
registering the current passing through the working electrode (El - E4) still having said first potential applied thereto,
storing the registered value in a data storage unit (80),
applying the first potential (PI) on all working electrodes (El -
E4),
and
c. analyzing said stored values using a predetermined mathematical model to produce a result.
2. Method for voltammetric characterization according to claim 1 characterized in that the first potential (PI) is zero volt.
3. Method for voltammetric characterization according to claim 1 characterized in that the predetermined mathematical model is produced using multivariate analysis on a large number of experimental data sets.
4. Method for voltammetric characterization according to claim 1 characterized in that the result is the concentration of one specific species in the sample.
5. Method for voltammetric characterization according to claim 1 characterized in that the result is the concentration of ozone in the sample.
6. Method for voltammetric characterization according to claim 1 characterized in that the result is the concentration of urea in the sample.
7. System for voltammetric characterization (40) according to the method of claim 1, comprising:
at least two working electrodes (El - E4),
a working electrode selecting unit (50) enabling connection and disconnection of one or more of the working electrodes (El - E4) to a first potential (PI),
a counter electrode (30) connected to a second potential (P2),
a current registration unit (60), arranged to register the cunent passed through the working electrode(s) (El - E4) connected to said first potential (PI),
a control unit (70) arranged to control said second potential (P2), said working electrode selecting unit (50) and to read cunent values from said current registration unit (60) at predetermined points in time, a data storage unit (80) for storing said current values, and
a processing unit (90) arranged to analyze the stored current values using a predetermined mathematical model , and to output the result from the analysis.
8. System for voltammetric characterization (40) according to claim 7,characterized in that the working electrode selecting unit (50) is arranged such that it can connect all working electrodes (El - E4) to the first potential (PI) at the same time, and that it can disconnect all but one of the working electrodes (El - E4) during a measurement procedure.
9. System for voltammetric characterization (40) according to claim 7 or 8, characterized in that the working electrode selecting unit (50) has a switch time that is less than 10 μs, preferably less than 1 μs, and more preferably less than 100 ns.
10. System for voltammetric characterization (40) according to any of the claims 7 to 9, characterized in that the working electrode selecting unit (50), the current registration unit (60), and the control unit (70) are integrated as one measuring device arranged to output the read current values to an external data storage unit (80) and processing unit (90).
11. System for voltammetric characterization (40) according to any of the claims 7 to 10, characterized in that the working electrode selecting unit (50), the current registration unit (60), the control unit (70), the data storage unit (80) and the processing unit (90) are integrated as one characterization device aπanged to output the result from the analysis.
PCT/SE2002/002135 2001-11-29 2002-11-22 Method and system for voltammetric characterization of a liquid sample WO2003046537A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2002365536A AU2002365536A1 (en) 2001-11-29 2002-11-22 Method and system for voltammetric characterization of a liquid sample
EP02791133A EP1448981A1 (en) 2001-11-29 2002-11-22 Method and system for voltammetric characterization of a liquid sample

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
SE0104005A SE523245C2 (en) 2001-11-29 2001-11-29 Voltammetric system for characterization of liquid sample, e.g. monitoring quality in food manufacture, has working electrodes, electrode selecting unit, counter electrode, current registration unit, data storage unit and processing unit
SE0104005-4 2001-11-29
US10/025,565 US6664776B2 (en) 2001-12-18 2001-12-18 Method and system for voltammetric characterization of a liquid sample
US10/025,565 2001-12-18

Publications (1)

Publication Number Publication Date
WO2003046537A1 true WO2003046537A1 (en) 2003-06-05

Family

ID=26655607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE2002/002135 WO2003046537A1 (en) 2001-11-29 2002-11-22 Method and system for voltammetric characterization of a liquid sample

Country Status (3)

Country Link
EP (1) EP1448981A1 (en)
AU (1) AU2002365536A1 (en)
WO (1) WO2003046537A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210278389A1 (en) * 2016-07-13 2021-09-09 Ams Trace Metals, Inc. Techniques for toxic metal detection and speciation in aqueous matrices

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000067011A1 (en) * 1999-04-30 2000-11-09 Hw Electrochem Technology Pte Ltd. Apparatus for voltammetric analysis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000067011A1 (en) * 1999-04-30 2000-11-09 Hw Electrochem Technology Pte Ltd. Apparatus for voltammetric analysis

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HOLMIN SUSANNE ET AL.: "Compression of electronic tongue data based on voltammetry - a comparative study", SENSORS AND ACTUATORS B, vol. 76, 1 June 2001 (2001-06-01), pages 455 - 464, XP004241157 *
IVARSSON PATRIK ET AL.: "Discrimination of tea by means of a voltammetric electronic tongue and different applied waveforms", SENSORS AND ACTU BORS, vol. 76, 1 June 2001 (2001-06-01), pages 449 - 454, XP004241156 *
WINQUIST F. ET AL.: "Monitoring of freshness of milk by an alectronic tongue on the basis of voltammetry", MEAS. SCI. TECHNOL., 1998, pages 1937 - 1946, XP000861720 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210278389A1 (en) * 2016-07-13 2021-09-09 Ams Trace Metals, Inc. Techniques for toxic metal detection and speciation in aqueous matrices
US11650191B2 (en) * 2016-07-13 2023-05-16 Ams Trace Metals, Inc. Techniques for toxic metal detection and speciation in aqueous matrices

Also Published As

Publication number Publication date
AU2002365536A1 (en) 2003-06-10
EP1448981A1 (en) 2004-08-25

Similar Documents

Publication Publication Date Title
KR101256133B1 (en) Method and apparatus for detection of abnormal traces during electrochemical analyte detection
EP0540691B1 (en) Method for analytically utilizing microfabricated sensors during wet-up
EP1272833B1 (en) Electrochemical biosensor readout meter
US10809221B2 (en) Methods of electrochemically measuring an analyte with a test sequence having a pulsed DC block as well as devices, apparatuses and systems incorporating the same
EP1010005B1 (en) Electronic tongue
JP2001033419A (en) Detection of sample for starting timing of electrochemical measurement
US6664776B2 (en) Method and system for voltammetric characterization of a liquid sample
KR101771829B1 (en) Descriptor-based methods of electrochemically measuring an analyte as well as devices, apparatuses and systems incoporating the same
Wongkittisuksa et al. Development and application of a real-time capacitive sensor
WO2003046537A1 (en) Method and system for voltammetric characterization of a liquid sample
US7467048B2 (en) Electrochemical sensor
Kumar et al. Development of electronic interface for sensing applications with voltammetric electronic tongue
DE102006014825B4 (en) Circuit arrangement and method for the voltametric signal processing of biosensors
SE523245C2 (en) Voltammetric system for characterization of liquid sample, e.g. monitoring quality in food manufacture, has working electrodes, electrode selecting unit, counter electrode, current registration unit, data storage unit and processing unit
KR20050096490A (en) Electrochemical biosensor readout meter
JPH0736009B2 (en) Ion concentration measuring device
JP2002116170A (en) Improved system for electronically monitoring and recording cell culture

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002791133

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002791133

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2002791133

Country of ref document: EP

Ref document number: JP