WO2003045498A1 - Machine de thermotherapie a ultrasons et procede de prevision de la temperature de foyer - Google Patents

Machine de thermotherapie a ultrasons et procede de prevision de la temperature de foyer Download PDF

Info

Publication number
WO2003045498A1
WO2003045498A1 PCT/CN2002/000165 CN0200165W WO03045498A1 WO 2003045498 A1 WO2003045498 A1 WO 2003045498A1 CN 0200165 W CN0200165 W CN 0200165W WO 03045498 A1 WO03045498 A1 WO 03045498A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
focus
wave source
comparison table
theoretical
Prior art date
Application number
PCT/CN2002/000165
Other languages
English (en)
French (fr)
Inventor
Shenxu He
Jinsheng Yu
Jiang Lan
Xiaodong Wu
Original Assignee
Beijing Yuande Biomedical Project Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Yuande Biomedical Project Co., Ltd. filed Critical Beijing Yuande Biomedical Project Co., Ltd.
Priority to AU2002242588A priority Critical patent/AU2002242588A1/en
Publication of WO2003045498A1 publication Critical patent/WO2003045498A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/378Surgical systems with images on a monitor during operation using ultrasound

Definitions

  • the invention relates to a medical device for killing a diseased tissue by utilizing the effect of a high-energy focused ultrasonic wave emitted from a patient's external ultrasound (HIFU) wave source, and specifically relates to an ultrasonic hyperthermia machine and a method for predicting a focal temperature thereof.
  • HIFU external ultrasound
  • HIFU treatment device is one of the hot spots in medical research at home and abroad, and the clinical application has obtained good results.
  • Practical external HIFU hyperthermia machines generally consist of the following parts:
  • High-energy focused ultrasound source and driving circuit are used to generate high-energy focused ultrasound waves.
  • Positioning system one by one is used to find the treatment target and move it to the focal point of the ultrasonic transducer. It includes a medical imaging system (mostly a B ultrasound machine), a patient-carrying device (such as a bed surface), and a displacement system that spatially moves the device relative to the wave source.
  • a medical imaging system mostly a B ultrasound machine
  • a patient-carrying device such as a bed surface
  • a displacement system that spatially moves the device relative to the wave source.
  • High-energy ultrasonic conductive structure and conductive medium processing system-Since the ultrasonic waves applicable to HIFU must be introduced into the patient's body through a special conductive medium (multi-purpose degassed water), there must be a Structures that contain conductive media (such as water tanks, leeches, etc.), and devices that add and discharge conductive media and process the media.
  • a special conductive medium multi-purpose degassed water
  • conductive media such as water tanks, leeches, etc.
  • thermotherapy machine the most direct method to obtain the temperature at the focal point of the thermotherapy machine is physical measurement, which is divided into two types: non-destructive temperature measurement and non-destructive temperature measurement:
  • Non-destructive temperature measurement is relatively simple, in which a temperature sensor is directly inserted into the human body to obtain the temperature at the focal point. Since it is directly measured, the focal point can be accurately obtained temperature.
  • this method requires the temperature sensor to be inserted into the human body, this not only causes patient pain, but also brings wound infection, so direct physical measurement methods are difficult to apply to the actual treatment of the hyperthermia machine.
  • Nondestructive temperature measurement is a method that directly obtains the temperature in the human body without causing physical harm to the human body. There are many principles of nondestructive temperature measurement, such as CT and ultrasound, but they are currently in the theoretical research stage.
  • the purpose of the present invention is to provide a hyperthermia machine which can avoid the use of destructive temperature measurement to a patient and can obtain the focus temperature more accurately, and a method for predicting the focus temperature thereof, wherein the temperature at the focus is predicted by computer simulation calculation.
  • the ultrasonic thermotherapy machine of the present invention includes: a high-energy focused ultrasound source, a B-ultrasound probe installed inside the wave source, a computer, and a console, wherein: the computer includes an input for inputting treatment parameters A unit, a focus temperature query unit connected to the input unit for querying the corrected temperature comparison table to obtain the focus temperature according to the input parameters, and an output unit for outputting the focus temperature.
  • the method for predicting the focus temperature of the thermotherapy machine includes the following steps: inputting a treatment parameter to a focus temperature query unit through an input unit; and according to the input condition, the focus temperature query unit queries the stored corrected focus temperature comparison The table obtains the focus temperature; and outputs the focus temperature through an output unit.
  • the present invention Since the present invention does not need to directly measure the temperature at the focal point, the present invention is free of In addition to the patient's pain caused by inserting the temperature sensor into the human body, there is no problem of wound infection. In addition, it also overcomes the problem of large arbitrariness in the selection of treatment parameters in the prior art hyperthermia machines. Since the principle of the hyperthermia machine is to kill the tumor cells by using the high temperature generated by ultrasound focusing, therefore, in practice, using this hyperthermia machine and its temperature measurement method, doctors can adjust the treatment parameters according to the focus temperature provided by the invention In order to ensure that the focus has a sufficiently high temperature, this improves the actual treatment effect. BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a structural barrel diagram of a hyperthermia machine according to the present invention
  • FIG. 2 is a main configuration diagram of a computer of a hyperthermia machine according to the present invention.
  • FIG. 3 is a diagram used in the calculation of the sound intensity of a wafer used in the present invention.
  • FIG. 4 is a diagram used in the calculation of the sound intensity of the wave source of the present invention.
  • FIG. 6 is a schematic diagram for calculating a corrected temperature comparison table according to the present invention.
  • FIG. 7 is a schematic diagram of a method for predicting a focal temperature of a hyperthermia machine according to the present invention. detailed description
  • reference numeral 1 is the console of the hyperthermia machine
  • reference numeral 2 is the computer on the console
  • reference numeral 3 is the B-ultrasound display
  • reference numeral 12 is the bed surface of the treatment bed for carrying the patient
  • a mechanism for displacement in both horizontal and vertical directions reference numeral 9 is a high-energy focused ultrasonic source
  • reference numeral 7 is a B-ultrasound probe installed inside the wave source
  • reference numerals 6 and 8 respectively drive the B-ultrasound probe to rotate and lift in the wave source.
  • the computer of the present invention will be described in detail below.
  • the computer of the thermotherapy machine of the present invention has a function for predicting a focus temperature, and its main structure is shown in FIG. 2, which mainly includes an input unit 21, a focus temperature query unit, and an output unit 22.
  • An input unit (such as a keyboard) is used to enter treatment parameters.
  • the focus temperature query unit 23 is connected to the input unit for querying the corrected temperature comparison table according to the input parameters to output the focus temperature.
  • the output unit may be a display or other well-known output device for outputting (or displaying) the focus temperature queried by the focus temperature query unit.
  • the treatment parameters are input through an input unit (such as a keyboard), and the parameters may be parameters that directly affect the temperature at the focal point, such as: input electric power, transmitter conversion efficiency, transmission parameters, tissue characteristics, target skin distance, and wave source characteristics.
  • the transmission parameters include: transmission time, interval time, and number of single-point transmissions.
  • the characteristics of the wave source include: the radius of the disc, the start and end angles of the wave source distribution, and the number of discs. Since a wave source is used in actual use, the wave source parameters and the conversion efficiency of the transmitter are fixed. Then execute the following algorithm:
  • the algorithm mainly consists of two parts: the calculation of the sound field distribution of the wave source and the calculation of the temperature field distribution.
  • the surface of the wafer is divided into an infinite number of small facets. Every small facet It can be regarded as a point source.
  • the sound pressure generated by the surface element at the observation point P is: dp:) ⁇ u a dS ⁇
  • the entire wave source is composed of 300-500 small discs. According to the principle of acoustic wave superposition, the field strength at any point in time is the superposition of these hundreds of small discs.
  • the sound intensity of any small disc in space can be determined by ( 3), as shown in FIG. 4.
  • the small discs are uniformly distributed on a sphere with a radius R, the initial distribution angle is ⁇ 1, the end distribution angle is ⁇ 2, and the total number of discs is N.
  • the wave source parameters are as follows:
  • the heat conduction equation in the tissue is (assuming that the biological tissue is isotropic):
  • p, C, and K are the effective density, specific heat, and thermal conductivity of the human tissue
  • Wb and Cb are the blood flow rate and the specific heat of the blood flow
  • Tb is the blood temperature entering the heating zone
  • T is the tissue temperature
  • Qm Qv is the volumetric heat source brought by the conversion of acoustic energy, which is the heat generation rate of biological metabolism.
  • T 0 ⁇ T b Q (W h0 C b )
  • FIG. 5 shows a flowchart of the above-mentioned calculation of the theoretical focus temperature.
  • the theoretical calculation module by changing parameters such as input electric power, emission parameters, tissue characteristics, and target skin pitch, the above method is used to obtain the theoretical focus temperature under different conditions.
  • liver From 600w to launch time, it is divided into: liver, pancreas, from 50mm to
  • interval lOOw break time from 150ms bladder, rectum, front 130 mm, interval 10
  • FIG. 6 and FIG. 7 respectively show a flowchart of calculating the corrected temperature comparison table and a schematic diagram of predicting a focus temperature.
  • the doctor inputs the treatment parameters into the computer; the computer output calculates the sound field distribution and temperature field of the patient through the focus temperature query unit; the doctor can adjust according to the calculation results
  • the treatment parameters are re-checked and calculated until the results meet the expectations. After the treatment parameters are selected, the doctor starts the treatment.

Description

超声波热疗机及其
焦点温度的预测方法 技术领域
本发明涉及一种利用患者体外的超声波(HIFU ) 波源发出高 能聚焦超声波在焦点产生的效应杀灭病变组织的医疗装置, 具体 地, 涉及超声波热疗机及其焦点温度的预测方法。 背景技术
目前, HIFU治疗装置是国内外医疗研究的热点之一, 临床应 用已获得很好的效果。 实用的体外 HIFU热疗机一般由下述几个 部分构成:
A. 高能聚焦超声波源及驱动电路一一用以产生高能聚焦超声. 波。
B. 定位系统一一用于寻找治疗目标并将其移至超声换能器焦 点处。 包括一个医用影象系统(多为 B超机) , 一个承载患者的 装置(例如床面) , 及将这个装置与波源间作空间相对位移的位 移系统。
C. 高能超声波传导结构及传导介质处理系统一一由于 HIFU 适用的超声波必须通过特殊传导介质(多用经脱气处理的水) 传 入患者体内, 故在高能聚焦超声波源发射面的前方必须有一个容 纳传导介质的结构 (如水槽、 水嚢等) 以及加入、 排出传导介质 及对介质进行处理的装置。
使用上述热疗机期间, 要得到热疗机焦点处温度的最直接方 法就是做物理测量, 其中又分为有损测温和无损测温两种:
有损测温比较简单, 其中将温度传感器直接插入人体体内, 从而获得焦点处的温度, 由于是直接测量, 可以精确得到焦点处 的温度。 但是, 由于这种方法需要将温度传感器插入人体体内, 这不仅会引起病人痛苦, 而且会带来伤口感染, 所以直接的物理 测量方法难以应用到热疗机的实际治疗中。
而无损测温就是不对人体造成物理伤害, 而直接得到人体内 温度的方法, 无损测温的原理很多, 如 CT、 超声波等, 但目前都 处于理论研究阶段。
实际上, 医生通常根据自己的实际治疗经验来确认治疗时所 采用的参数, 因此治疗参数选择的随意性很大, 不能保证每次的 治疗参数都能达到最佳的治疗效果。
这就需要一种克服上述现有技术中的缺陷的超声波热疗机 及其焦点温度的预测方法, 从而直接指导医生的临床治疗。 发明内容
本发明的目的在于提供一种能避免对患者使用有损测温并 能比较准确得得到焦点温度的热疗机及其焦点温度预测方法, 其 中通过计算机模拟计算来预测焦点处的温度。
为了实现本发明的上述目的, 本发明的超声波热疗机包括: 高能聚焦超声波源、 安装于波源内部的 B超机探头、 计算机以及 控制台, 其中: 所述计算机包括用于输入治疗参数的输入单元、 与输入单元相连用于根据输入参数查询修正后的温度对照表以得 到焦点温度的焦点温度查询单元、 以及用于输出所述焦点温度的 输出单元。
此外, 根据本发明的热疗机焦点温度预测方法包括下面的步 骤: 通过输入单元将治疗参数输入到焦点温度查询单元; 根据输 入的条件, 焦点温度查询单元查询所存储的修正后的焦点温度对 照表得到焦点温度; 将所述焦点温度通过输出单元输出。
由于本发明不用直接物理测量焦点处的温度, 所以本发明免 除了由于将温度传感器插入人体体内引起的病人痛苦,并且也不 存在伤口感染问题。 此外, 也克服了在现有技术的热疗机中出现 的治疗参数选择的随意性大的问题。 由于热疗机的原理就是利用 超声聚焦所产生的高温来杀死肿瘤细胞, 因此, 在实际中应用本 热疗机及其测温方法, 医生可以根据本发明所提供的焦点温度来 调整治疗参数, 以保证焦点处有足够高的温度, 这样就提高了实 际治疗效果。 附图说明
图 1是本发明热疗机的结构筒图;
图 2是本发明热疗机的计算机的主要构成图;
图 3是用于本发明的圆片声强的计算中的示图;
图 4是用于本发明的波源声强计算中的示图;
图 5是本发明用于计算焦点温度的流程图;
图 6是本发明用于计算修正后温度对照表的示意图;
图 7是本发明热疗机焦点温度的预测方法的示意图。 具体实施方式
参考图 1来具体描述一个 HIFU热疗机实例。 图中标号 1为热 疗机控制台; 标号 2为控制台上的计算机; 标号 3为 B超机显 示器; 标号 12为治疗床床面, 用于承载患者; 标号 4、 5分別为 驱动床面沿水平纵、 横两个方向位移的机构; 标号 9为高能聚焦 超声波源, 标号 7为安装于波源内部的 B超机探头; 标号 6、 8 分别为驱动 B超探头在波源内作旋转、 升降移动的机构; 标号 10 为波源上方容纳传导介质的水槽; 以及标号 11为驱动波源上下移 动的机构。 对于已有技术的内容, 在此不再详述。 下面将详细描 述本发明的计算机。 本发明热疗机的计算机具有焦点温度的预测功能, 其主要构 成如图 2所示, 主要包括输入单元 21、 焦点温度查询单元和输出 单元 22。 输入单元(如键盘) 用于输入治疗参数。 焦点温度查询 单元 23 与输入单元相连用于根据输入参数查询修正后的温度对 照表以输出焦点温度, 其与用于根据实际测量的温度修正理论温 度对照表的温度对照表修正模块 25相连,通过与输入单元相连的 用于计算不同条件下的理论焦点温度以获得热疗机的焦点温度对 照表的理论计算模块 24和实际测量部分 26在修正模块 25得到修 正后的焦点温度并将其存储在焦点温度查询单元 23中。输出单元 可以是显示器或其它公知的输出装置, 用于输出 (或显示) 通过 焦点温度查询单元查询到的焦点温度。
理论计算模块的具体工作过程如下所述:
首先通过输入单元(如键盘) 输入治疗参数, 所述参数可以 是直接影响焦点处温度的参数, 例如: 输入电功率、 发射器转换 效率、 发射参数、 组织特性、 靶皮距、 波源特性。 其中发射参数 包括: 发射时间、 间歇时间、 单点发射次数。 波源特性包括: 圆 片半径、 波源分布的起始角和终止角、 圆片个数。 由于实际使用 中采用的为一种波源, 因此波源参数和发射器转换效率固定。 然 后执行如下算法:
该算法主要有两个部分组成: 波源声场分布计算和温度场分 布计算。
1. 波源声场分布计算
计算焦点温度, 首先必须计算波源的声场分布。
由于实际波源是由许多小圆片组成, 故首先研究单个小圆片 在空间所产生的声强。
圆片声强的计算方法
如图 3 所示, 将圆片表面分成无限多小面元。 每一个小面元 可以看作一个点源, 位于极径为 P , 极角为 Φ处的面元 dS, 其 点源强度为 dQ=UadS, 该面元在观察点 P产生的声压为: dp : ) ^^ uadS~
(1) 根据波源机械参数分布计算圓片位置分布, 再根据声波叠加 原理计算波源的声压:
Figure imgf000007_0001
当 r»a时,得到 p的积分为:
P = J(o
Figure imgf000007_0002
Figure imgf000007_0003
接着, 进行波源声强计算
整个波源由 300-500个小圆片组合而成, 根据声波叠加原理, 间任意一点的场强为这几百个小圆片的叠加, 其中任意一个小 圆片在空间的声强可以由 (3 ) 式来得到, 如图 4所示。
空间任意一点 A的场强为:
2J} (ka sin Θ)
P二∑
2r ka sin Θ 小圆片在半径为 R的球面上均匀分布, 起始分布角为 Φ1, 终止分布角为 Φ2, 圆片总个数为 Ν。
波源参数如下:
波源振动频率: f=lMHz 静态密度 : P 0=998 kg/m3 声速 : c0=1483m/s
圆片半径 : a=6mm 球面半径 R=340mm 圆频率 : ω =2 π f 波数 k= ω /c0
2. 温度场分布计算
首先设定温度场的初始值(初始温度为零) , 根据下面的计 算原理, 通过差分叠代法计算温度场的分布:
用超声波加热组织时, 組织内的热传导方程为 (假设生物组 织为各向同性):
Figure imgf000008_0001
其中 p,C,K分别为人体組织的有效密度、 比热、 导热系数, Wb和 Cb分别为血流率和血流的比热, Tb为进入加热区的血液 温度, T为组织温度, Qm为生物代谢生热率, Qv为声能转换带 来的容积热源。
假定加热前, 组织内各点温度为 T0, 血流率为 WbO, 进入加 热区的血液温度与加热无关, 则有:
T0~Tb=Q (Wh0Cb)
(7) 引 入温升 † = T-T0 变量: 则热传导方程可以化为:
Figure imgf000009_0001
假设血流率恒定, 可以不考虑 Qm 的影响, 由于声场具有轴 对称性, 采用柱坐标, 热传导方程可以变化为:
1 5 . d†、 d , 3Γ、 , „ ττ-÷ „dT
~—(Kr—) +— (j—) + Qv-WbCbT = pC—
r or or oz oz ot ( 9 ) 其中,
Qv=(a/pc)pp* (10) 用差分法解方程(9) , 可以得到温度场随时间变化的分布图。 在实际治疗过程中, 采用的是间断发射, 在发射间歇时, 由 于没有声场分布, 此时
Qv=0„
图 5 示出了上述计算焦点的理论温度的流程图, 在理论计算 模块中, 通过改变输入电功率、 发射参数、 组织特性和靶皮距等 参数, 应用上述方法来得到不同条件下的理论焦点温度以获得热 疗机的焦点温度对照表, 并存储所得到的对照表数据, 其中的条 件改变范围如下表所示:
输入电功率 发射参数 组织特性 皮距
从 600w 到 发射时间,间 分为:肝、胰、 从 50 亳米到
2000w,间隔 lOOw 歇时间从 150ms 膀胱、 直肠、前列 130毫米,间隔 10
到 1000ms,间隔 腺 ¾米
50 毫秒, 发射次
数从 20次到 100
次, 间隔 5次 由于计算结果可能与实际焦点温度有差异, 为了保证预测结 果的精确性, 因此需要根据实际试验的结果对计算结果进行一些 修正。 因此, 在温度对照表修正模块, 对所存储的温度对照表进 行修正处理。 但是, 由于温度计算的条件非常多, 实际试验无法 对这些不同的条件——验证, 因此选取了几种典型条件进行修正。
本修正模块的执行流程如下:
1. 分别通过有损测温实验获得不同组织在 lOOOw发射功率条 件下的实际焦点温度;
2- 将实际试验结果与上述理论计算模块的计算结果相比较, 如果不相同, 则修正该组织的特性参数, 重新计算, 使之与实验 结果相匹配;
3. 重新利用经过修正的特性参数计算修正后的焦点温度对照 表。
图 6和图 7分别示出了上述计算修正后温度对照表的流程图 以及预测焦点温度的示意图。 在进行 HIFU治疗前, 医生将治疗 参数输入计算机; 通过焦点温度查询单元, 计算机输出计算出患 者体内的声场分布、 温度场变化情况; 医生可根据计算结果调整 治疗参数重新查表计算, 直至结果符合期望; 选定治疗参数后, 医生开始治疗。 尽管已对本发明进行了描述, 但其只是为了说明的目的, 本 发明不限于上述结合附图的描述, 本领域普通技术人员可对其进 行不脱离本发明精神的各种改变, 此外, 本发明的保护范围由后 附的权利要求书限定。

Claims

权 利 要 求 书
1、 一种超声波热疗机, 其包括: 高能聚焦超声波源、 安装于 波源内部的 B超机探头、 计算机以及控制台, 其中: 所述计算机 包括用于输入治疗参数的输入单元、 与输入单元相连用于根据输 入参数查询修正后的温度对照表以获得焦点温度的焦点温度查询 单元、 以及用于输出所述焦点温度的输出单元。
2、 根据权利要求 1所述的超声波热疗机, 其特征在于所述焦 点温度查询单元包括: 理论计算模块, 用于计算不同条件下的理 论焦点温度以获得热疗机的焦点温度对照表, 以及温度对照表修 正模块, 用于根据实际测量的温度修正理论温度对照表, 其中所 述理论计算模块执行下述运算: 根据波源圆片的分布情况, 计算 波源声场分布, 和通过得到的声场分布用差分叠代法计算温度场 分布。
3、 根据权利要求 1或 2所述的超声波热疗机, 其特征在于: 所述输入参数在下面的组中选择的: 输入电功率、 发射器转换效 率、 发射参数、 組织特性、 靶皮距、 波源特性。
4、 一种热疗机焦点温度领测方法, 其中包括下面的步骤: 通过输入单元将治疗参数输入到焦点温度查询单元;
根据输入的条件, 焦点温度查询单元查询所存储的修正后的焦点 温度对照表得到焦点温度;
将所述焦点温度通过输出单元输出。
5、 根据权利要求 4所述的热疗机焦点温度预测方法, 其特征 在于所述焦点温度查询步骤中的修正后的温度对照表是这样得到 的: 首先计算不同条件下的理论焦点温度, 以获得热疗机的理论 焦点温度对照表; 根据实际测量的温度, 修正理论温度对照表; 以及存储所述修正后的温度对照表。
6、 根据权利要求 5所述的热疗机焦点温度预测方法, 其特 征在于所述计算理论焦点温度包括: 根据波源圆片的分布情况, 计算波源声场分布的步骤, 和通过得到的声场分布来计算温度场 分布的步骤。
7、 根据权利要求 6所述的热疗机焦点温度预测方法, 其特征 在于所述波源声场分布处理进一步包括应用无限元法来计算波源 圆片声强分布的步骤和通过叠加来计算波源声强的步骤。
8、 根据权利要求 4-7中的任何一项权利要求所述的热疗机焦 点温度预测方法,其特征在于所迷输入参数在下面的组中选择的: 输入电功率、 发射器转换效率、 发射参数、 组织特性、 靶皮距、 波源特性。
PCT/CN2002/000165 2001-11-28 2002-03-15 Machine de thermotherapie a ultrasons et procede de prevision de la temperature de foyer WO2003045498A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002242588A AU2002242588A1 (en) 2001-11-28 2002-03-15 An ultrasonic heat therapeutic machine and a predicting method of focus's temperature

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB011397160A CN1160136C (zh) 2001-11-28 2001-11-28 超声波热疗机及其焦点温度的预测方法
CN01139716.0 2001-11-28

Publications (1)

Publication Number Publication Date
WO2003045498A1 true WO2003045498A1 (fr) 2003-06-05

Family

ID=4675358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2002/000165 WO2003045498A1 (fr) 2001-11-28 2002-03-15 Machine de thermotherapie a ultrasons et procede de prevision de la temperature de foyer

Country Status (3)

Country Link
CN (1) CN1160136C (zh)
AU (1) AU2002242588A1 (zh)
WO (1) WO2003045498A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100401975C (zh) * 2004-06-04 2008-07-16 北京源德生物医学工程有限公司 超声反演法测量人或动物体内的温度
WO2010033940A1 (en) * 2008-09-22 2010-03-25 Minnow Medical, Inc Inducing desirable temperature effects on body tissue using alternate energy sources
CN102284136B (zh) * 2011-05-11 2014-06-25 常州瑞神安医疗器械有限公司 一种用于植入式医疗仪器的体外程控设备
EP2638932A1 (en) * 2012-03-14 2013-09-18 Theraclion Device for therapeutic treatment and method for controlling a treatment device
CN109960293B (zh) * 2017-12-26 2021-07-20 深圳先进技术研究院 一种热疗的温度控制方法、装置及系统
CN109999376B (zh) * 2019-03-19 2021-06-29 深圳市声科生物医学研究院 一种hifu设备控制系统及其无损测温方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0468847A1 (fr) * 1990-07-23 1992-01-29 Edap International Appareil d'hyperthermie ultrasonore extracorporelle ultrarapide
US5558092A (en) * 1995-06-06 1996-09-24 Imarx Pharmaceutical Corp. Methods and apparatus for performing diagnostic and therapeutic ultrasound simultaneously
CN1265929A (zh) * 1999-03-09 2000-09-13 北京贝仪医疗设备厂 高能超声体外聚焦热疗机功率超声发射器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0468847A1 (fr) * 1990-07-23 1992-01-29 Edap International Appareil d'hyperthermie ultrasonore extracorporelle ultrarapide
US5558092A (en) * 1995-06-06 1996-09-24 Imarx Pharmaceutical Corp. Methods and apparatus for performing diagnostic and therapeutic ultrasound simultaneously
CN1265929A (zh) * 1999-03-09 2000-09-13 北京贝仪医疗设备厂 高能超声体外聚焦热疗机功率超声发射器

Also Published As

Publication number Publication date
CN1358549A (zh) 2002-07-17
CN1160136C (zh) 2004-08-04
AU2002242588A1 (en) 2003-06-10

Similar Documents

Publication Publication Date Title
US20190308038A1 (en) Ultrasound autofocusing using reflections
KR102548194B1 (ko) 경두개 초음파 치료 및 영상화 절차 수행을 위한 시스템 및 방법
CN111712300B (zh) 动态变化介质中的超声聚焦
US10575816B2 (en) Cavitation localization
CN103025381B (zh) 用hifu治疗子宫肌瘤或其它组织的办公室用系统
NL2014025B1 (en) High intensity focused ultrasound apparatus.
RU2594429C2 (ru) Катетер, содержащий емкостные микромашинные ультразвуковые преобразователи, с регулируемым фокусом
JP2013022450A (ja) 集束超音波治療装置及びその焦点制御方法
Ramaekers et al. Evaluation of a novel therapeutic focused ultrasound transducer based on Fermat’s spiral
JP2023134811A (ja) 多周波数超音波トランスデューサ
Firouzi et al. Efficient transcranial ultrasound delivery via excitation of lamb waves: Concept and preliminary results
Ellens et al. Frequency considerations for deep ablation with high‐intensity focused ultrasound: a simulation study
Karzova et al. Shock formation and nonlinear saturation effects in the ultrasound field of a diagnostic curvilinear probe
WO2003045498A1 (fr) Machine de thermotherapie a ultrasons et procede de prevision de la temperature de foyer
Hutchinson et al. Intracavitary ultrasound phased arrays for prostate thermal therapies: MRI compatibility and in vivo testing
Lafond et al. Numerical study of a confocal ultrasonic setup for cavitation creation
Kyriakou Multi-physics computational modeling of focused ultrasound therapies
Qiao et al. Transcostal high-intensity focused ultrasound treatment using phased array with geometric correction
WO2003039676A1 (fr) Source ultrasonore a focalisation
CN101683550B (zh) 高能聚焦超声波治疗机及其治疗参数的确定方法
Zhang et al. Numerical simulation of the transient temperature field from an annular focused ultrasonic transducer
Gutiérrez et al. Acoustic field modeling of focused ultrasound transducers using non-uniform radiation distributions
Adams et al. Integration of deployable fluid lenses and reflectors with endoluminal therapeutic ultrasound applicators: Preliminary investigations of enhanced penetration depth and focal gain
Chitnis et al. Customization of the acoustic field produced by a piezoelectric array through interelement delays
Bouchoux et al. Interstitial thermal ablation with a fast rotating dual-mode transducer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP