WO2003043788A1 - Two-legged walking type human-shaped robot - Google Patents

Two-legged walking type human-shaped robot Download PDF

Info

Publication number
WO2003043788A1
WO2003043788A1 PCT/JP2002/012055 JP0212055W WO03043788A1 WO 2003043788 A1 WO2003043788 A1 WO 2003043788A1 JP 0212055 W JP0212055 W JP 0212055W WO 03043788 A1 WO03043788 A1 WO 03043788A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
sub
control
control unit
main control
Prior art date
Application number
PCT/JP2002/012055
Other languages
French (fr)
Japanese (ja)
Inventor
Takayuki Furuta
Yu Okumura
Tetsuo Tawara
Hiroaki Kitano
Original Assignee
Japan Science And Technology Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Corporation filed Critical Japan Science And Technology Corporation
Publication of WO2003043788A1 publication Critical patent/WO2003043788A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/032Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid

Definitions

  • the present invention relates to a biped walking humanoid robot, and more particularly to a biped walking humanoid robot capable of simplifying wiring of an operation control device and enabling smooth operation.
  • a so-called bipedal walking humanoid robot generates a predetermined walking pattern (hereinafter referred to as a gait) data and performs walking control in accordance with the gait data to generate a predetermined walking zone. By moving the legs in turns, biped walking is realized. At that time, in order to stabilize the walking posture, the point at which the combined moment of the floor reaction force and gravity at the sole of the robot becomes zero (hereafter referred to as ZMP (Zero Moment Point)). The robot is stabilized according to the ZMP standard by performing so-called ZMP compensation that converges to the value.
  • ZMP Zero Moment Point
  • each sub-control unit is provided with its own.
  • Each is connected to the main control unit in a star configuration.
  • each sub-control unit is configured as a single-axis motor driver dedicated circuit, and is provided for each driving means in each joint unit.
  • the drive control signal is output from the main control unit to each sub-control unit, so that each sub-control unit drives and controls the corresponding driving unit.
  • the joints of the biped humanoid robot are driven by the control, and the biped humanoid robot performs a motion such as walking.
  • an object of the present invention is to provide a bipedal walking humanoid robot that simplifies wiring of an operation control device and enables smooth operation.
  • a body a leg having a knee and a foot at a lower end, which can swing at both lower sides of the body, and a swing at both upper sides of the body. It has an arm with an elbow, a hand at the lower end, and a head attached to the upper end of the torso.
  • Each of which has an operation control device for controlling the drive, wherein the operation control device comprises a main control unit provided on the body and a plurality of sub-control units distributed and arranged adjacent to each driving means.
  • the operation control device comprises a main control unit provided on the body and a plurality of sub-control units distributed and arranged adjacent to each driving means.
  • each sub-control unit calculates a control signal for at least one corresponding drive unit based on a drive control signal from the main control unit, and responds based on control signals from the processor unit.
  • a driver unit for driving the driving means.
  • the driver unit includes a position control mode, a torque control mode, a free mode, and a brake mode as control modes for driving the driving means,
  • the main control section outputs a control mode selection signal and a control signal to the driver section based on the gait data.
  • each of the sub-control units includes one driver unit for a corresponding driving unit.
  • the control unit is network-connected to the main control unit.
  • the processor unit of each of the sub-control units outputs the angular position and the current value of the control mode input from the corresponding driving unit to the main control unit.
  • the processor unit of each sub-control unit is connected to the main control unit or another sub-control unit via an input / output bus.
  • the main control unit detects an angle position of each joint, an angle measurement unit, and each angle position detected by the angle measurement unit. And a compensator that corrects the gait data based on the floor reaction force detected behind and outputs it to the sub-controller.
  • the processor unit of each of the sub-control units is configured as a digital circuit, and the dryno unit generates a motor drive signal that is an analog signal based on a digital signal from the processor unit. .
  • the main control unit of the motion control device drives the respective driving means based on the gait data corresponding to the requested motion. Is generated and output via the LAN to the parallel control unit associated with the corresponding driving means.
  • the sub-controller calculates a control signal for each corresponding driving means by the processor based on the driving control signal from the main control unit, and outputs the control signal to the driver corresponding to each driving means. Then, the driver unit drives the corresponding driving unit based on the control signal from the processor unit.
  • each of the joints operates to realize the gait data by driving each of the driving means by the corresponding driver, and as a whole, a bipedal walking humanoid robot is provided. Perform the desired whole body exercise.
  • each sub-control unit of the motion control device is provided corresponding to each of the plurality of joints, compared to the conventional case where each joint is provided with one sub-joint.
  • the number of sub-control units is reduced. Therefore, the number of wires between the main control unit and each of the sub-control units is reduced, so that the wires are simplified and the joints are smoothly driven.
  • the driver unit includes a position control mode, A torque control mode, a free mode, and a brake mode are provided.
  • the main control unit When the main control unit outputs a control mode selection signal and a control signal to a driver unit based on gait data, the main control unit uses the control mode.
  • the joint driven by the driving means acts as a driving joint, and in particular, for example, a sudden external event during normal operation may occur. When it occurs, it is driven rapidly by temporarily increasing the torque in the torque control mode in order to cope with it, and agile operation can be obtained.
  • the joint acts as a passive joint and the joint moves freely, and in the brake mode, the joint is fixed so as to maintain the current angular position. Is done.
  • the same joint is appropriately driven and controlled in each control mode, so that normal driving or abrupt driving is performed, or the joint can be fixedly held or freely moved.
  • Various actions of a biped humanoid robot such as catching a flying object or falling objects, are possible.
  • the driving means is loosely driven by the position control mode to reduce the power consumption, the load applied to the mechanism is reduced, and the driving means is rapidly driven in the torque control mode. And quick operation becomes possible.
  • each of the sub-control units has one driver unit for the corresponding driving unit
  • one sub-control unit drives a plurality of driving units by mounting a plurality of driver units. This makes it possible to reduce the number of sub-control units as compared with a case where a conventional ij control unit is provided for each driving unit. Therefore, the number of parts is reduced, and the cost of parts and the cost of assembly are reduced. '
  • each of the sub-control units When each of the sub-control units is network-connected to the main control unit, the main control unit and each of the sub-control units are continuously connected by, for example, a connection of the main control unit.
  • the sub-control unit In the case where the number of wirings for connecting to each sub-control unit is small and wiring saving is realized, and the sub-control unit is provided for each conventional driving means by the connection type Since the number of sub-control units is smaller than that of, the number of wires for connecting the main control unit and each sub-control unit is reduced, and wiring is reduced.
  • the processor unit of each of the sub-control units determines the angular position inputted from the corresponding driving unit
  • the main control unit outputs the current angular position of the drive unit and the current control mode input from each drive unit via the processor unit of the sub control unit.
  • the angle and control mode of each joint can be detected from the value.
  • the main control unit corrects the gait data based on the angle measurement unit detecting the angular position of each joint, the angle position detected by the angle measurement unit and the floor reaction force detected at the sole. And a compensating unit that outputs the gait data to the sub-control unit, the main control unit uses the compensating unit to convert the gait data based on the floor reaction force of the sole and each angular position.
  • the corrected and output to the sub-control unit enables so-called ZMP standard walking control.
  • each sub-control unit When the processor unit of each sub-control unit is connected to the main control unit or another sub-control unit via the input / output bus, each sub-control unit is connected to the main control unit or The other sub-control units are connected to the network, specifically, to the LAN, and can use the mutual communication function to input and output signals.
  • each of the sub-control units is configured as a digital circuit
  • the driver unit generates an analog drive signal, which is an analog signal, based on the digital signal from the processor unit
  • the analog signal is limited to only the dryno section, so that the analog signal does not pass through the processor section, and only the digital signal flows in the processor section. Therefore, generation of noise and malfunction due to the passage of the analog signal through the processor section is prevented.
  • FIG. 1 shows the appearance of a biped humanoid robot according to an embodiment of the present invention, in which (A) is a schematic front view and (B) is a schematic side view.
  • FIG. 2 is a schematic diagram showing the mechanical configuration of the biped humanoid robot of FIG.
  • FIG. 3 is a block diagram showing an electrical configuration of the biped walking humanoid robot of FIG.
  • FIG. 4 is a block diagram showing a configuration of a sub-control unit in the biped walking humanoid robot of FIG.
  • FIG. 5 is a flowchart showing the sub-controller command processing of the motion control device in the biped walking humanoid robot of FIG.
  • FIG. 6 is a flowchart showing a motor drive process of the sub-control unit of the motion control device in the bipedal walking humanoid robot of FIG.
  • FIG. 7 is a schematic diagram sequentially illustrating the gripping operation of a falling object by the biped walking humanoid robot of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • a bipedal walking humanoid robot 10 has a torso 11, legs 12 L, 12 R attached to both lower sides of the torso 11, and attached to both upper sides of the torso. Arm 13 L, 13 R provided and a head 14 attached to the upper end of the torso.
  • the torso 11 is divided into an upper chest 11a and a lower waist 1lb, and the chest 11a swings forward and backward with respect to the waist 11b at the forward bending portion 1c. It is supported so as to be movable, in particular to bend forward, and to be able to turn left and right. Further, a walking control device 50, which will be described later, is built in the chest 11a of the body 11 described above.
  • the forward bending portion 11c is a joint 11d for swinging back and forth and a joint for turning left and right.
  • each joint 11d and 11e are connected to a joint drive motor, respectively.
  • the legs 12 L, 12 R are composed of thighs 15 L, 15 R, lower legs 16 L, 16 R, and feet 17 L, 17 R, respectively. .
  • the legs 12 L and 12 R are used to rotate the legs 11 to the waist 11 b of the body 11 in order from six joints, that is, from the top.
  • Joints 18 L, 18 R one leg 19L, 19R in the joint direction (around the x axis), 20L, 20R in the pitch direction of the leg (around the y axis), 15L, 15R, and the lower leg in the thigh Pitch direction of the ankle with respect to the joints 22 L, 22 R and the feet 17 L, 17 R in the pitch direction of the knee 21 L, 21 R, which is the connection part of 16 L, 16 R 23L and 23R of the ankle, and the joints 24L and 24R of the ankle in the roll direction.
  • Each of the joints 18L, 18R to 24L, 24R is composed of a joint slaughter movement mode.
  • the hip joint is composed of the above-mentioned joints 1 1d, 1 1e
  • the hip joint is composed of the above-mentioned joints IH 8L, 18R, 19L, 19R, 20L, 2OR
  • the ankle joint consists of 23 L, 23 R, 24 L, and 24 R joints.
  • the left and right legs 12 L and 12 R of the bipedal walking humanoid robot 10 are given 6 degrees of freedom, respectively.
  • the desired motion can be given to the entire leg 12 L and 12 R, for example, so that the user can walk in a three-dimensional space arbitrarily. Is configured.
  • the above-mentioned arms 13 L and 13 R are the upper arms 25 L and 25 R, the lower arms 26 L and 261 and the hand 27! ⁇ , 27R, and consists of
  • the upper arm part 25 L, 25 R, the lower arm part 26 L, 26 R and the hand part 27 L, 27 R of the arm part 13 L, 13 R are the above-mentioned leg part 12 L, 12 R.
  • the head 14 is attached to the upper end of the upper part 11a of the body part 11, and is equipped with, for example, a camera for vision and a microphone for hearing. As shown in FIG. 2, the head sound 14 includes a joint 35 in the pitch direction of the neck and a joint 36 in the left-right direction. Each of the joints 35, 36 is composed of a joint driving motor.
  • the head 14 of the biped humanoid robot 10 is given two degrees of freedom, and these two joints 35, 36 are appropriately moved during the various movements by the driving mode.
  • the page section 14 can be moved in the left-right direction or the front-back direction.
  • the joints 35 in the pitch direction are arranged such that the rotation axis is shifted forward with respect to the joints 36 in the left-right direction, and the swing angle of the head 14 in the forward direction is set large. I have.
  • FIG. 3 shows an electrical configuration of the biped humanoid robot 10 shown in FIGS. 1 and 1.
  • a bipedal walking humanoid robot 10 includes a gait generator 37 that generates gait data in response to a requested motion, and driving means based on the gait data, that is, each joint described above. ⁇ ⁇ 1 d, lie, 18 L, 18 R to 33 L, 33 R, 35, 36, that is, an operation control device 40 that drives and controls the joint drive motor M.
  • the above gait generator 37 responds to a request operation input from the outside, and performs various joints 11 d, lie, 18 L, 18 necessary for operations such as walking of the bipedal walking robot 10.
  • the gait data including the target angular trajectory, target angular velocity, and target angular acceleration of the joint drive motors R to 33L, 33R, 35, and 36 are generated.
  • the operation control device 40 includes a main control unit 41 and a plurality of sub-control units 42.
  • the main control section 41 is provided on the body section 11, preferably the upper body 11a of the bipedal walking humanoid robot 10, and comprises an angle measurement unit 43 and a compensation section 44. .
  • the above angle measuring unit 43 is used for each joint lid, lie, 18 L, 18 R
  • a rotary encoder provided for the joint driving of 33 L, 33 R, 35, 36 controls the angle information and control mode of each joint driving module to the sub-control unit 42.
  • the angular position of each joint drive module is measured and output to the compensator 44.
  • the compensating unit 44 calculates a floor reaction force based on a detection output from a force sensor provided on the sole of the foot (not shown), and based on the floor reaction force and the angular position from the angle measurement unit 43.
  • the gait data from the gait generator 37 is corrected and output to the sub-controller 42 as a drive control signal.
  • the sub-control unit 42 includes various parts of the biped humanoid robot 10, for example, in the illustrated case, the chest 11 a, the waist 11 b, and the left and right thighs 15. 15 R, »l 6 L, 16 R, B ⁇ 25 L, 25 R, provided on the lower arm part 26 L, 26 R.
  • the sub-control unit 42 provided on the chest 11a includes joints 35, 36 of similar types, joints 1 1d, 1 1e of the waist, and joints 28 L, 28 of the shoulder. R, 29 L, 29 R, 30 L, 30 R, and joints 18 L, 18 R, 19 L, where the sub-control units 42 provided on both sides of the waist 11 b are hip joints , 19R, 20L, and 2OR, respectively.
  • a sub-control unit 42 provided on the thighs 15 L and 15 R has a knee joint 22 L and 22 R, and a sub-control unit provided on the lower leg 16 L and 16 R.
  • the control unit 42 has an ankle joint 23 L, 23 R, 24 L, 24 R, and the upper arm 25 L, 25 R has a sub-control unit 42 provided at the elbow joint 3. 2 L, 32 R are attached to the lower arm ⁇ 6 L, 26 R.
  • each sub-control unit 42 includes one processor unit 45 and at least one (two in the illustrated case) driver units 46.
  • the processor unit 45 generates a control signal for each joint driving motor from the drive control signal, which is the gait data corrected by the compensating unit 44 of the main control unit 41, and generates a driver unit.
  • the processor unit 45 can arbitrarily switch among four control modes, that is, a position control mode, a torque control mode, a brake mode, and a free mode, as a control method of the joint driving motor.
  • a position control mode the joint drive mode is controlled using P control, PD control, PID control, or the like so as to follow a given target angle.
  • Torque control mode Controls the joint drive motor to reach the given target current value.
  • brake mode a command is issued to the joint drive mode to maintain the current angular position.
  • the free mode enables the joint drive motor to rotate freely by an external force.
  • the processor unit 45 includes an input / output bus 45 a for communicating with the main control unit 41.
  • two I / O buses 45 a are provided, which are connected to the I / O bus 45 a of the processor section 45 of the main control section 41 or the other sub-control section 42. It has become.
  • each sub-control unit 42 is connected to the main control unit 41 or another sub-control unit 42 via the input / output bus 45a via a network, specifically, a LAN.
  • the communication protocol on the input bus 45a can be in any format. Further, communication via the input bus 45a is not limited to one-to-one, but one-to-many communication means can be used.
  • the processor section 45 is controlled by the control mode and the mode by the control signal input directly from the main control section 41 or via another sub-control section 42 via the input / output bus 45a. Set the target angle, target current value, following speed, etc. for one night. Further, the processor unit 45 is connected to the main control unit 41 via the input / output bus 45 a directly or via another sub-control unit 42, with the current control mode and the current target position. , Current motor angle, current current value, etc. are output.
  • the processor section 45 has a sensor input ⁇ 45.
  • Various sensors such as an inclinometer, a speedometer, an angular accelerometer, a pressure gauge, a potentiometer, an encoder, and the like are connected to the sensor input unit 45, and analog signals are transmitted from these sensors via the sensor input unit 45. Alternatively, a digital detection signal is input.
  • the processor section 45 outputs these detection signals to the main control section 41 via the input / output bus 45a.
  • the processor unit 45 receives, via the sensor input unit 45a, the angle information and the current value of the motor from the rotary encoder or the like provided in the joint driving motor M of the corresponding joint # 5, for example. The angle information and the current value are output from the input / output bus 45 a to the main control unit 41.
  • the driver section 46 is provided for each joint driving motor of the joint section in charge, and the corresponding motor section is controlled in accordance with a control signal from the processor section 45. A joint driving motor is driven.
  • the processor unit 45 is configured as a digital circuit, and the control signal output from the processor unit 45 is a digital signal. Then, the driver section 46 generates a motor drive signal as an analog signal by current-amplifying the control signal as a digital signal from the processor section 45. Therefore, the analog signal is limited only to the inside of the driver ⁇ P46 and is separated from the digital signal.
  • the biped humanoid robot 10 according to the embodiment of the present invention is configured as described above, and operates as follows.
  • the gait generator 37 generates the gait data based on the requested operation, and outputs the generated gait to the compensator 44 of the main controller 41 of the operation controller 40.
  • force sensors (not shown) provided on both feet 14L and 14R respectively detect the force and output the force to the compensator 44, and the angle measuring unit 43 is connected to each joint. The angular position of the joint drive motor M is measured and output to the compensator 44.
  • the compensating section 44 calculates the floor reaction force based on the detection output from the force sensor, and calculates the floor reaction force and the joint drive module M of each joint from the angle measurement unit 44.
  • the gait data is corrected based on the angular position and output to the sub control unit 42.
  • the processor unit 45 of the sub control unit 42 generates a control signal for each joint driving motor M based on the corrected gait data, and outputs the control signal to the driver unit 46.
  • the driver section 46 drives the joint driving mode M of each joint section based on the control signal. In this way, the biped humanoid robot 10 performs an operation such as walking in response to the requested operation.
  • the processor unit 45 operates as follows in the command processing shown in the flowchart of FIG. 5 and the mode driving processing shown in the flowchart of FIG.
  • the processor unit 45 receives a control signal as an external command from the main control unit 44 via the input / output bus 45a. Accordingly, in step A2, the processor unit 45 performs a command analysis on the control signal and determines which command it is. Then, in step A3, if the command is a command for reporting the internal state to the outside, the processor unit 45 obtains the data of the internal state specified by the command in step A4. hand, In step A5, the data is transferred to the main controller 44.
  • step A3 if this command is not a command to report the internal state to the outside, then in step A6, if this command is an external setting command, go to step A7. After setting the internal state specified by the command to the value specified by the command, the processor unit 45 notifies the motor drive processing of the setting update in step A8, and further, in step A9. The main control unit 4 4 is replied to the effect of the setting update.
  • step A6 if the command is not an external setting command, the processor # 45 determines that the command cannot be recognized by the processor unit 45 and proceeds to step A1. At 0, this is returned to the main control unit 41.
  • step B1 the processor unit 45 determines the current control mode. Then, when the current control mode is the position control mode, the processor unit 45 performs a known P control, PD control, or PID control in step B2 so as to follow the given target angle.
  • the control signal of the joint drive motor M is output to the driver unit 46 based on the angular position (measurement error) from the angle measurement unit 41 using the control unit.
  • a PWM signal is generated and output to the corresponding joint drive motor M in step B3 to drive the motor M. Then, in step B4, the processor unit 45 obtains the current angular position of the joint driving motor M from the angle measuring unit 41 and calculates the angular velocity of the motor. '
  • the processor unit 45 When the current control mode is the torque control mode, the processor unit 45 similarly performs a publicly-known P so as to follow the given target current value in step B5. Using control, PD control, PID control, etc., the control signal of the joint drive module M is output to the driver 46 based on the current value of the motor, and the driver 46 receives the control signal from this control signal. For example, a PWM signal is generated and output to the corresponding joint drive motor M in step B6 to drive the corresponding motor M. Then, the processor unit 45 obtains the current value of the joint driving motor M in step B7.
  • the processor unit 45 sets the brake mode in step B8, and sets the joint drive mode M to Then, a command is issued to maintain the current angular position. If the current control mode is the free mode, the processor unit 45 sets the free mode in step B9, and sends a signal to the driver unit 46 for the joint driving motor M. By shutting off, the joint driving motor M can be freely rotated by an external force.
  • a biped walking humanoid robot 10 performs an object gripping operation of the cup 51 on the desk 50 as a normal operation in the position control mode.
  • FIG. 7 (B) if a ball 52 placed on the desk 50 falls due to a sudden external event, the bipedal walking humanoid robot 10 will To cope with this, the mode is switched to the torque control mode, and the ball 52 that has quickly fallen can be gripped as shown in FIG. 7 (C). Thereafter, by returning to the normal position control mode, the biped humanoid robot 10 performs a normal operation.
  • each sub-control unit has a plurality of joint units.
  • the number of sub-control units is reduced as compared with the conventional art, and the cost of parts and assembly is reduced.
  • the wiring connecting the main control unit and the sub-control unit can be reduced, and smooth driving of the joint can be guaranteed.
  • the processor section 45 of the sub-control section 42 is separated from the analog signal to reduce the influence of noise and operate reliably. Will be.
  • the legs 12 L, 12 R have 6 degrees of freedom
  • the arms 13 L, 13 R have 5 degrees of freedom
  • the waist has 2 degrees of freedom
  • the neck has 2 degrees of freedom. It has a degree of freedom, but is not limited to this, and may have a smaller degree of freedom or a larger degree of freedom.
  • the main control unit of the motion control device performs various operations based on gait data corresponding to the required motion.
  • the drive means generates a drive control signal and outputs the signal to a sub-control unit associated with the corresponding drive means via the LAN, and the sub-control unit is controlled by the processor unit based on the drive control signal from the main control unit.
  • a control signal is calculated for each of the corresponding driving means and output to a driver unit corresponding to each driving means, and the driver unit drives the corresponding driving means based on a control signal from the processor unit.
  • each joint is operated to realize gait data by driving each driving means by the corresponding driver unit, and as a whole, a bipedal walking humanoid robot.
  • the bird performs the desired whole-body exercise.
  • each sub-control unit of the motion control device is provided for each of the plurality of joints, it is compared with the case where each conventional joint has one sub-joint.
  • the number of sub-control units is reduced. Therefore, the number of wirings between the main control unit and each sub-control unit is reduced, the wiring is simplified, and the driving of each indirect unit can be performed smoothly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

A two-legged walking type human-shaped robot, which enables smooth actions with wirings, simplified in an action controller. This robot comprises a barrel section (11), leg sections (12L, 12R) comprising knee sections (21L, 21R) and foot sections (17L, 17R), arm sections (13L, 13R) comprising elbow sections (31L, 31R) and hand sections (27L, 27R), and a head section (14) and has drive means for driving joint sections (11d, 11e; 18L, 18R-24L, 24R; 28L, 28R-33L, 33R; 35, 36), respectively, and action controllers (40) for controlling the respective drive means on the basis of gait data matching with a requested action. The action controller is constituted of a main control section (41) provided in the barrel section and subcontrol sections (42) dispersedly disposed adjacent to the respective drive means. Each subcontrol section (42) is LAN-connected to the main control section (41). Further, each control section includes a processor section (45) which operates a control signal for at least one corresponding drive means on the basis of a drive control signal from the main control section and a driver section (46) which drives a corresponding drive means on the basis of a control signal from the processor section.

Description

明 細 書 二脚歩行式人型ロボット 技術分野  Description Biped humanoid robot Technical field
本発明は、 二脚歩行式人型ロボット、 とくに、動作制御装置の配線を簡略化し て円滑な動作を可能にした二脚歩行式人型ロボットに関するものである。  The present invention relates to a biped walking humanoid robot, and more particularly to a biped walking humanoid robot capable of simplifying wiring of an operation control device and enabling smooth operation.
従来、 所謂二脚歩行式人型ロボットは、前もって設定された歩行パターン (以 下、 歩容という) データを生成して、 この歩容データに従って歩行制御を行なつ て、所定の歩行ゾ、。ターンで脚部を動作させることにより二脚歩行を実現するよう にしている。 その際、 歩行姿勢を安定させるために、 ロボッ卜の足裏における床 反力と重力との合成モ一メントがゼロとなる点 (以下、 Z M P ( Z e r o M o m e n t P o i n t ) という。 ) を目標値に収束させる、所謂 Z MP補償を行 なうことによって Z M P規範によりロボットの安定化を図るようにしている。 ところで、 二脚歩行式人型ロボットの関節部が多くなるにつれて、 このような 歩行制御を行なう動作制御装置は複数の I /0と高速な演算能力を備えることが 必要になってくる。 しかしながら、 このような機能を単一のデバイスで実現しよ うとすると、 システムが巨大化してしまい、 ロボットの構成を変更あるいは拡張 する際に柔軟性に欠けることになると共に、 各関節部の駆動手段への配線が煩雑 となり、 メンテナンスが容易ではなくなつてしまう。 2. Description of the Related Art Conventionally, a so-called bipedal walking humanoid robot generates a predetermined walking pattern (hereinafter referred to as a gait) data and performs walking control in accordance with the gait data to generate a predetermined walking zone. By moving the legs in turns, biped walking is realized. At that time, in order to stabilize the walking posture, the point at which the combined moment of the floor reaction force and gravity at the sole of the robot becomes zero (hereafter referred to as ZMP (Zero Moment Point)). The robot is stabilized according to the ZMP standard by performing so-called ZMP compensation that converges to the value. By the way, as the number of joints of a biped humanoid robot increases, it becomes necessary for an operation control device that performs such a walking control to have a plurality of I / Os and a high-speed computing capability. However, if such a function is to be realized with a single device, the system becomes huge, and the flexibility or the configuration of the robot is not changed or expanded. Wiring becomes complicated and maintenance is not easy.
このため、従来、胴体部に設けられた主制御部と各駆動手段に隣接して設けら れた複数の副制御部とから成る動作制御装置が使用されており、 各副制御部はそ れぞれ主制御部に対してスター型に接続されている。 ここで、 各副制御部は一軸 モータドライバ専用回路として構成されており、 それぞれ各関節部における駆動 手段毎に設けられている。  For this reason, conventionally, an operation control device including a main control unit provided on the body unit and a plurality of sub-control units provided adjacent to each driving unit has been used, and each sub-control unit is provided with its own. Each is connected to the main control unit in a star configuration. Here, each sub-control unit is configured as a single-axis motor driver dedicated circuit, and is provided for each driving means in each joint unit.
このような構成の動作制御装置によれば、 主制御部から駆動制御信号が各副制 御部に出力されることにより、 各副制御部がそれぞれ対応する駆動手段を駆動制 御することによって二脚歩行式人型ロボッ卜の各関節部が駆動され、 二脚歩行式 人型ロボットが歩行等の動作を行なうようになっている。 そして、演算処理を各 副制御部に分散させることによって、 高速な演算処理を可能にしている。 According to the operation control device having such a configuration, the drive control signal is output from the main control unit to each sub-control unit, so that each sub-control unit drives and controls the corresponding driving unit. The joints of the biped humanoid robot are driven by the control, and the biped humanoid robot performs a motion such as walking. By distributing the arithmetic processing to each sub-controller, high-speed arithmetic processing is enabled.
しかしながら、 このような動作制御装置を備えた二脚歩行式人型ロボットにお いては、 各関節部の駆動手段毎にそれぞれ一つの副制御部が必要となり、 副制御 部の必要数が多くなる。 このため、 スター型に接続されている副制御部と主制御 部との間の配線が冗長となってしまい、場合によっては関節部の円滑な駆動を妨 げてしまうことがあった。 発明の開示  However, in a bipedal walking humanoid robot equipped with such a motion control device, one sub-control unit is required for each drive unit of each joint, and the required number of sub-control units increases. . For this reason, the wiring between the main control unit and the sub control unit connected in a star configuration becomes redundant, and in some cases, smooth driving of the joint unit may be hindered. Disclosure of the invention
本発明は、 以上の点にかんがみて、 動作制御装置の配線を簡略化して円滑な動 作を可能にした二脚歩行式人型ロボットを提供することを目的としている。 上記目的は、本発明によれば、胴体部と、 胴体部の下部両側にて揺動可能な中 間に膝部, 下端に足部を備えた脚部と、 胴体部の上部両側にて揺動可能な中間に 肘部, 下端に手部を備えた腕部と、 胴体部の上端に取り付けられた頭部と、 を備 えており、 上記脚部の足部, 下腿部, 大腿部そして上記腕部の手部, 下腕部及び 上腕部の揺動可能な関節部をそれぞれ揺動させる複数個の駆動手段と、要求動作 に対応する歩容デ一タに基づいて各駆動手段をそれぞれ駆動制御する動作制御装 置とを有しており、上記動作制御装置が、胴体部に設けられた主制御部と各駆動 手段に隣接して分散配置された複数の副制御部とから構成されている二脚歩行式 人型ロボットであって、上記各副制御部が主制御部に対してそれぞれ L AN接続 されていると共に、各副制御部が、 主制御部からの駆動制御信号に基づいて少な くとも一つの対応する駆動手段のための制御信号を演算するプロセッサ部とプロ セッサ部からの制御信号に基づいて対応する駆動手段を駆動するドライバ部とを 含んでいることを特徴とする二脚歩行式人型ロボットにより、 達成される。 本発明による二脚歩行式人型ロボットは、 好ましくは、 上記ドライバ部が、 駆 動手段を駆動する制御モードとして、 位置制御モード, トルク制御モード, フリ —モード及びブレーキモ一ドを備えており、 上記主制御部が歩容デ一夕に基づい て制御モ一ド選択信号及び制御信号をドライバ部に出力する。 本発明による二脚歩行式人型ロボットは、 好ましくは、上記各副制御部が、対 応する駆動手段に対してそれぞれ一つのドライバ部を備えており、 また、 好まし くは、 上記各副制御部が主制御部に対してネットワーク接続されている。 また、 上記各副制御部のプロセッサ部は、 好ましくは、 対応する駆動手段から入力され る角度位置及び制御モードの現在値を主制御部に出力する。 また好ましくは、 各 副制御部のプロセッサ部は、入出力バスを介して主制御部または他の副制御部に 接続されている。 In view of the above, an object of the present invention is to provide a bipedal walking humanoid robot that simplifies wiring of an operation control device and enables smooth operation. According to the present invention, there are provided a body, a leg having a knee and a foot at a lower end, which can swing at both lower sides of the body, and a swing at both upper sides of the body. It has an arm with an elbow, a hand at the lower end, and a head attached to the upper end of the torso. A plurality of drive means for swinging the swingable joints of the hand, lower arm and upper arm of the arm, and each drive means based on gait data corresponding to the required action. Each of which has an operation control device for controlling the drive, wherein the operation control device comprises a main control unit provided on the body and a plurality of sub-control units distributed and arranged adjacent to each driving means. Is a two-legged walking humanoid robot in which each of the sub-control units is LAN-connected to the main control unit. In each case, each sub-control unit calculates a control signal for at least one corresponding drive unit based on a drive control signal from the main control unit, and responds based on control signals from the processor unit. And a driver unit for driving the driving means. In the biped walking humanoid robot according to the present invention, preferably, the driver unit includes a position control mode, a torque control mode, a free mode, and a brake mode as control modes for driving the driving means, The main control section outputs a control mode selection signal and a control signal to the driver section based on the gait data. In the bipedal walking humanoid robot according to the present invention, preferably, each of the sub-control units includes one driver unit for a corresponding driving unit. The control unit is network-connected to the main control unit. Preferably, the processor unit of each of the sub-control units outputs the angular position and the current value of the control mode input from the corresponding driving unit to the main control unit. Preferably, the processor unit of each sub-control unit is connected to the main control unit or another sub-control unit via an input / output bus.
本発明による二脚歩行式人型ロボットは、 好ましくは、前記主制御部が、 各関 節部の角度位置を検出する角度計測ュニッ卜と、 角度計測ュニットにより検出さ れた各角度位置と足裏で検出した床反力に基づいて歩容データを修正して、 副制 御部に出力する補償部と、 から構成されている。  In the bipedal walking humanoid robot according to the present invention, preferably, the main control unit detects an angle position of each joint, an angle measurement unit, and each angle position detected by the angle measurement unit. And a compensator that corrects the gait data based on the floor reaction force detected behind and outputs it to the sub-controller.
さらに好ましくは、前記各副制御部のプロセッサ部が、 デジタル回路として構 成されており、 ドライノ 部が、 プロセッサ部からのデジタル信号に基づいて、 ァ ナログ信号であるモ一夕駆動信号を生成する。  More preferably, the processor unit of each of the sub-control units is configured as a digital circuit, and the dryno unit generates a motor drive signal that is an analog signal based on a digital signal from the processor unit. .
上記構成によれば、 二脚歩行式人型ロボットが全身運動を行なう際、動作制御 装置の主制御部が、要求動作に対応する歩容デー夕に基づいて各駆動手段を駆動 する駆動制御信号を生成して、対応する駆動手段に関連付けられた畐リ制御部に L ANを介して出力する。 これにより、 副制御部は、 プロセッサ部によって主制御 部からの駆動制御信号に基づいて対応する各駆動手段毎に制御信号を演算して、 各駆動手段に対応するドライバ部に出力する。 そして、 ドライバ部がプロセッサ 部からの制御信号に基づいて対応する駆動手段を駆動する。  According to the above configuration, when the biped walking humanoid robot performs the whole-body motion, the main control unit of the motion control device drives the respective driving means based on the gait data corresponding to the requested motion. Is generated and output via the LAN to the parallel control unit associated with the corresponding driving means. Thus, the sub-controller calculates a control signal for each corresponding driving means by the processor based on the driving control signal from the main control unit, and outputs the control signal to the driver corresponding to each driving means. Then, the driver unit drives the corresponding driving unit based on the control signal from the processor unit.
このようにして、 各駆動手段が、 それぞれ対応するドライバ部により駆動され ることによつて各関節部が歩容デ一夕を実現するために動作し、全体として二脚 歩行式人型ロボッ卜が所望の全身運動を行なうことになる。 この場合、動作制御 装置の各副制御部がそれぞれ複数の関節部に対応して設けられていることから、 従来の各関節部に一つづつ副関節部が設けられている場合に比較して、 副制御部 の数が低減される。 従って、主制御部と各副制御部との間の配線も少なくなり、 配線が簡略化されることになると共に、各関節部の駆動が円滑に行なわれる。 上記ドライバ部が、 駆動手段を駆動する制御モードとして、位置制御モード, トルク制御モード, フリーモード及びブレーキモードを備えており、上記主制御 部が、歩容データに基づいて制御モード選択信号及び制御信号をドライバ部に出 力する場合には、 上記制御モ一ドを適宜に切り換えて駆動手段を駆動することに よって、 位置制御モード及ぴトルク制御モードにおいては、 この駆動手段により 駆動される関節部が駆動関節として作用し、 特に例えば通常動作時に突然の外部 事象が発生したときには、 それに対処するためにトルク制御モードにて一時的に トルクを増大させることにより急速に駆動されて、俊敏な動作を得ることができ る。 これに対して、 フリーモードにおいては、 当該関節部が受動関節として作用 して関節部が自由に動くことになり、 またブレーキモードにおいては、 当該関節 部が現在の角度位置を保持するように固定される。 In this way, each of the joints operates to realize the gait data by driving each of the driving means by the corresponding driver, and as a whole, a bipedal walking humanoid robot is provided. Perform the desired whole body exercise. In this case, since each sub-control unit of the motion control device is provided corresponding to each of the plurality of joints, compared to the conventional case where each joint is provided with one sub-joint. The number of sub-control units is reduced. Therefore, the number of wires between the main control unit and each of the sub-control units is reduced, so that the wires are simplified and the joints are smoothly driven. The driver unit includes a position control mode, A torque control mode, a free mode, and a brake mode are provided. When the main control unit outputs a control mode selection signal and a control signal to a driver unit based on gait data, the main control unit uses the control mode. By appropriately switching the driving means to drive the driving means, in the position control mode and the torque control mode, the joint driven by the driving means acts as a driving joint, and in particular, for example, a sudden external event during normal operation may occur. When it occurs, it is driven rapidly by temporarily increasing the torque in the torque control mode in order to cope with it, and agile operation can be obtained. On the other hand, in the free mode, the joint acts as a passive joint and the joint moves freely, and in the brake mode, the joint is fixed so as to maintain the current angular position. Is done.
このようにして、 同じ関節部が、 適宜に各制御モードにより駆動制御されるこ とによって通常の駆動または急激な駆動が行なわれ、 あるいは固定保持されたり 自由に動き得るようになり、例えば物体が飛来したときや落下物を捉える等の二 脚歩行式人型ロボットの多彩な動作が可能になる。 その際、 通常は、位置制御モ ―ドにより駆動手段がゆつくりと駆動されて消費電力が低減されると共に、機構 に加わる負荷が軽減され、 またトルク制御モードにより駆動手段が急激に駆動さ れて素早い動作が可能になる。  In this way, the same joint is appropriately driven and controlled in each control mode, so that normal driving or abrupt driving is performed, or the joint can be fixedly held or freely moved. Various actions of a biped humanoid robot, such as catching a flying object or falling objects, are possible. At that time, usually, the driving means is loosely driven by the position control mode to reduce the power consumption, the load applied to the mechanism is reduced, and the driving means is rapidly driven in the torque control mode. And quick operation becomes possible.
上記各副制御部が、 対応する駆動手段に対してそれぞれ一つのドライバ部を備 えている場合には、 一つの副制御部が複数のドライバ部を搭載することによって 複数の駆動手段を駆動することが可能となり、 従来の駆動手段毎に畐 ij制御部が設 けられる場合と比較して、 副制御部の数が少なくて済む。 従って、部品点数が削 減され、部品コスト及び組立コストが低減される。'  When each of the sub-control units has one driver unit for the corresponding driving unit, one sub-control unit drives a plurality of driving units by mounting a plurality of driver units. This makes it possible to reduce the number of sub-control units as compared with a case where a conventional ij control unit is provided for each driving unit. Therefore, the number of parts is reduced, and the cost of parts and the cost of assembly are reduced. '
上記各副制御部が、 主制御部に対してネットワーク接続されている場合には、 例えば/ ス型の接続により主制御部と各副制御部を連続的に接続することから、 主制御部と各副制御部とを接続するための配線が少なくて済み、 省配線化が実現 されると共に、 ス夕一型の接続により、従来の各駆動手段毎に副制御部が設けら れている場合と比較して副制御部が少なくて済むことから、 主制御部と各副制御 部とを接続するための配線が少なくて済み、 省配線化が実現される。  When each of the sub-control units is network-connected to the main control unit, the main control unit and each of the sub-control units are continuously connected by, for example, a connection of the main control unit. In the case where the number of wirings for connecting to each sub-control unit is small and wiring saving is realized, and the sub-control unit is provided for each conventional driving means by the connection type Since the number of sub-control units is smaller than that of, the number of wires for connecting the main control unit and each sub-control unit is reduced, and wiring is reduced.
上記各副制御部のプロセッサ部が、対応する駆動手段から入力される角度位置 及び制御モードの現在値を主制御部に出力する場合には、 主制御部は、各駆動手 段から副制御部のプロセッサ部を介して入力される当該駆動手段の角度位置及び 制御モードの現在値によって、 各関節部の角度及び制御モードを検出することが できる。 The processor unit of each of the sub-control units determines the angular position inputted from the corresponding driving unit When the current value of the control mode is output to the main control unit, the main control unit outputs the current angular position of the drive unit and the current control mode input from each drive unit via the processor unit of the sub control unit. The angle and control mode of each joint can be detected from the value.
上記主制御部が、 各関節部の角度位置を検出する角度計測ュニッ卜と、 角度計 測ュニットにより検出された各角度位置と足裏で検出した床反力に基づいて歩容 データを修正して副制御部に出力する補償部と、 から構成されている場合には、 主制御部は、 その補償部により、 足裏の床反力と各角度位置とに基づいて歩容デ ータを修正して副制御部に出力して、所謂 Z M P規範の歩行制御を行なうことが できる。  The main control unit corrects the gait data based on the angle measurement unit detecting the angular position of each joint, the angle position detected by the angle measurement unit and the floor reaction force detected at the sole. And a compensating unit that outputs the gait data to the sub-control unit, the main control unit uses the compensating unit to convert the gait data based on the floor reaction force of the sole and each angular position. The corrected and output to the sub-control unit enables so-called ZMP standard walking control.
上記各副制御部のプロセッサ部が、 入出力バスを介して主制御部または他の副 制御部に接続されている場合には、各副制御部が入出力バスを介して、 主制御部 または他の副制御部とネットワーク接続、具体的には L AN接続されることにな り、 相互に通信機能を利用して、 信号の入出力を行なうことができる。  When the processor unit of each sub-control unit is connected to the main control unit or another sub-control unit via the input / output bus, each sub-control unit is connected to the main control unit or The other sub-control units are connected to the network, specifically, to the LAN, and can use the mutual communication function to input and output signals.
上記各副制御部のプロセッサ部が、 デジタル回路として構成されており、 ドラ ィバ部が、 プロセッサ部からのデジタル信号に基づいて、 アナログ信号であるモ —夕駆動信号を生成する場合には、 アナログ信号がドライノ 部のみに限定される ことになり、 プロセッサ部をアナログ信号が通過することがなく、 プロセッサ部 内にはデジタル信号のみが流れることになる。 従って、 プロセッサ部をアナログ 信号が通過することによるノィズの発生や誤動作の発生が阻止される。 図面の簡単な説明  When the processor unit of each of the sub-control units is configured as a digital circuit, and the driver unit generates an analog drive signal, which is an analog signal, based on the digital signal from the processor unit, The analog signal is limited to only the dryno section, so that the analog signal does not pass through the processor section, and only the digital signal flows in the processor section. Therefore, generation of noise and malfunction due to the passage of the analog signal through the processor section is prevented. BRIEF DESCRIPTION OF THE FIGURES
本発明は、以下の詳細な説明及び本発明の幾つかの実施の形態を示す添付図面 に基づいて、 より良く理解されるものとなろう。 なお、 添付図面に示す実施の形 態は本発明を特定又は限定することを意図するものではなく、 単に本発明の説明 及び理解を容易とするためだけに記載されたものである。  The invention will be better understood on the basis of the following detailed description and the accompanying drawings, which show some embodiments of the invention. The embodiments shown in the accompanying drawings are not intended to specify or limit the present invention, but are described merely for facilitating the explanation and understanding of the present invention.
図中、  In the figure,
図 1は本発明による二脚歩行式人型ロボッ卜の一実施の形態の外観を示すもの で、 (A) は概略正面図、 (B ) は概略側面図である。 図 2は図 1の二脚歩行式人型ロボットの機械的構成を示す概略図である。 図 3は図 1の二脚歩行式人型ロボットの電気的構成を示すプロック図である。 図 4は図 1の二脚歩行式人型ロボットにおける副制御部の構成を示すプロック 図である。 FIG. 1 shows the appearance of a biped humanoid robot according to an embodiment of the present invention, in which (A) is a schematic front view and (B) is a schematic side view. FIG. 2 is a schematic diagram showing the mechanical configuration of the biped humanoid robot of FIG. FIG. 3 is a block diagram showing an electrical configuration of the biped walking humanoid robot of FIG. FIG. 4 is a block diagram showing a configuration of a sub-control unit in the biped walking humanoid robot of FIG.
図 5は図 1の二脚歩行式人型ロボットにおける動作制御装置の副制御部コマン ド処理を示すフローチャートである。  FIG. 5 is a flowchart showing the sub-controller command processing of the motion control device in the biped walking humanoid robot of FIG.
図 6は図 1の二脚歩行式人型ロボットにおける動作制御装置の副制御部のモー 夕駆動処理を示すフローチャートである。  FIG. 6 is a flowchart showing a motor drive process of the sub-control unit of the motion control device in the bipedal walking humanoid robot of FIG.
図 7は図 1の二脚歩行式人型ロボットによる落下物の把持動作を順次に示す概 略図である。 発明を実施するための最良の形態  FIG. 7 is a schematic diagram sequentially illustrating the gripping operation of a falling object by the biped walking humanoid robot of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面に示した実施形態に基づいてこの発明を詳細に説明する。  Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.
図 1乃至図 2は本発明による二脚歩行式人型ロボットの一実施形態の構成を示 している。 図 1において、 二脚歩行式人型ロボット 1 0は、 胴体部 1 1と、 胴体 部 1 1の下部両側に取り付けられた脚部 1 2 L, 1 2 Rと、 胴体部の上部両側に 取り付けられた腕部 1 3 L , 1 3 Rと、 胴体部の上端に取り付けられた頭部 1 4 とを含んでいる。  1 and 2 show the configuration of an embodiment of a bipedal walking humanoid robot according to the present invention. In FIG. 1, a bipedal walking humanoid robot 10 has a torso 11, legs 12 L, 12 R attached to both lower sides of the torso 11, and attached to both upper sides of the torso. Arm 13 L, 13 R provided and a head 14 attached to the upper end of the torso.
上記胴体部 1 1は上方の胸部 1 1 aと下方の腰部 1 l bとに分割されており、 胸部 1 1 aが、 前屈部 1 1 cにて腰部 1 1 bに対して前後方向に揺動可能に、 特 に前方に前屈可能に、 そして左右方向に旋回可能に支持されている。 さらに、上 記胴体部 1 1の胸部 1 1 aには、後述する歩行制御装置 5 0が内蔵されている。 なお、 上記前屈部 1 1 cは、前後揺動用の関節部 1 1 d及び左右旋回用の関節部 The torso 11 is divided into an upper chest 11a and a lower waist 1lb, and the chest 11a swings forward and backward with respect to the waist 11b at the forward bending portion 1c. It is supported so as to be movable, in particular to bend forward, and to be able to turn left and right. Further, a walking control device 50, which will be described later, is built in the chest 11a of the body 11 described above. The forward bending portion 11c is a joint 11d for swinging back and forth and a joint for turning left and right.
1 1 eを備えており、各関節部 1 1 d及び 1 1 eは、 それぞれ関節駆動用モータ11e, and each joint 11d and 11e are connected to a joint drive motor, respectively.
(図 2参照) により構成されている。 (See Figure 2).
上記脚部 1 2 L, 1 2 Rは、 それぞれ大腿部 1 5 L , 1 5 R , 下腿部 1 6 L , 1 6 R及び足部 1 7 L , 1 7 Rとから構成されている。 ここで、 上記脚部 1 2 L , 1 2 Rは、 図 2に示すように、 それぞれ六個の関節部、即ち上方から順に、 胴 体部 1 1の腰部 1 1 bに対する脚部回旋用の関節部 1 8 L , 1 8 R、 脚部の口一 ル方向 (x軸周り) の関節部 1 9 L, 1 9R、 脚部のピッチ方向 (y軸周り) の 関節部 20 L, 20 R、大腿部 1 5 L , 1 5 Rと下腿部 1 6 L, 1 6 Rの接続部 分である膝部 2 1 L, 2 1 Rのピッチ方向の関節部 2 2 L, 22 R、 足部 1 7 L , 1 7 Rに対する足首部のピッチ方向の関節部 23 L, 23 R、足首部のロール 方向の関節部 24L, 24 Rを備えている。 なお、各関節部 1 8 L, 1 8 R乃至 24L, 24Rは、 それぞれ関節屠区動用モ一夕により構成されている。 The legs 12 L, 12 R are composed of thighs 15 L, 15 R, lower legs 16 L, 16 R, and feet 17 L, 17 R, respectively. . Here, as shown in FIG. 2, the legs 12 L and 12 R are used to rotate the legs 11 to the waist 11 b of the body 11 in order from six joints, that is, from the top. Joints 18 L, 18 R, one leg 19L, 19R in the joint direction (around the x axis), 20L, 20R in the pitch direction of the leg (around the y axis), 15L, 15R, and the lower leg in the thigh Pitch direction of the ankle with respect to the joints 22 L, 22 R and the feet 17 L, 17 R in the pitch direction of the knee 21 L, 21 R, which is the connection part of 16 L, 16 R 23L and 23R of the ankle, and the joints 24L and 24R of the ankle in the roll direction. Each of the joints 18L, 18R to 24L, 24R is composed of a joint slaughter movement mode.
このようにして、 腰関節は上記関節部 1 1 d, 1 1 eから構成され、股関節は 上記関節咅 IH 8L, 1 8R, 1 9 L, 1 9 R, 20 L, 2 ORから構成され、 ま た足関節は関節部 2 3 L, 23 R, 24 L, 24 Rから構成されることになる。 これにより、 二脚歩行式人型ロボット 1 0の左右両側の脚部 1 2 L , 1 2 Rはそ れぞれ 6自由度を与えられることになり、各種動作中にこれらの 1 2個の関節部 をそれぞれ駆動モータにて適宜の角度に駆動制御することにより、 脚部 1 2 L, 1 2 R全体に所望の動作を与えて、 例えば任意に三次元空間を歩行することがで きるように構成されている。  In this way, the hip joint is composed of the above-mentioned joints 1 1d, 1 1e, and the hip joint is composed of the above-mentioned joints IH 8L, 18R, 19L, 19R, 20L, 2OR, The ankle joint consists of 23 L, 23 R, 24 L, and 24 R joints. As a result, the left and right legs 12 L and 12 R of the bipedal walking humanoid robot 10 are given 6 degrees of freedom, respectively. By controlling the drive of the joints to an appropriate angle using a drive motor, the desired motion can be given to the entire leg 12 L and 12 R, for example, so that the user can walk in a three-dimensional space arbitrarily. Is configured.
上記腕部 1 3 L, 1 3 Rは、 それぞれ上腕部 25 L, 25R, 下腕部 26 L, 261¾及ぴ手部27!^, 27Rと、 から構成されている。 ここで、 腕部 1 3 L, 1 3 Rの上腕部 2 5 L, 25R, 下腕部 26 L, 26 R及び手部 27 L, 27 R は、 上述した脚部 1 2 L, 1 2 Rと同様にして、 図 2に示すように、 それぞれ五 個の関節部、即ち上方から順に、 肩部にて、 胴体部 1 1に対する上腕部 25 L, The above-mentioned arms 13 L and 13 R are the upper arms 25 L and 25 R, the lower arms 26 L and 261 and the hand 27! ^, 27R, and consists of Here, the upper arm part 25 L, 25 R, the lower arm part 26 L, 26 R and the hand part 27 L, 27 R of the arm part 13 L, 13 R are the above-mentioned leg part 12 L, 12 R. As shown in FIG. 2, as shown in FIG. 2, each of the five joints, that is, the upper arm 25 L,
25 Rのピッチ方向の関節部 28 L, 28R、 ロール方向の関節部 29 L, 29 R、 そして左右方向の関節部 30 L, 3 OR.上腕部 25L, 2 5Rと下腕部 1 6 L, 26 Rの接続部分である肘部 3 1 L, 3 1 Rにてピッチ方向の関節部 32 L, 32 R、手首部にて下腕部 6 L, 26 Rに対する手部 7L, 27 Rのピ ツチ方向の関節部 3 3 L, 33 Rを備えている。 なお、各関節部 28L, 28R 乃至 33 L, 33 Rは、 それぞれ関節駆動用モータにより構成されている。 このようにして、 二脚歩行式人型ロボット 1 0の左右両側の腕部 1 3 L, 1 3 Rはそれぞれ 5自由度を与えられることにより、 各種動作中にこれらの 1 2個の 関節部をそれぞれ駆動モータにて適宜の角度に駆動制御することにより、 腕部 125 R pitch joints 28 L, 28 R, roll joints 29 L, 29 R, left and right joints 30 L, 3 OR. Upper arm 25 L, 25 R and lower arm 16 L, The elbows 31 L and 31 R, which are the connecting parts of the 26 R, joints 32 L and 32 R in the pitch direction at the elbows, and the hands 7 L and 27 R for the lower arms 6 L and 26 R at the wrist. It has the joints 33 L and 33 R in the direction of the pole. Each of the joints 28L, 28R to 33L, 33R is constituted by a joint driving motor. In this way, the left and right arms 13 L and 13 R of the bipedal walking humanoid robot 10 are given five degrees of freedom, so that these 12 joints can be used during various operations. Is controlled by a drive motor to an appropriate angle, so that the arm 1
3 L, 1 3 R全体に所望の動作を与えることができるように構成されている。 ここで、 上記肩部におけるピッチ方向の関節部 28 L, 28Rは、 ロール方向 の関節部 29 L, 2 9 R及び左右方向の関節部 30 L, 30 Rに対して回転軸が 前方にずれて配設されており、前方への腕部 1 3L, 1 3Rの振り角度が大きく 設定されている。 It is configured such that a desired operation can be given to the entire 3L, 13R. Here, the joints 28L and 28R in the pitch direction at the shoulders are shifted forward with respect to the joints 29L and 29R in the roll direction and the joints 30L and 30R in the left and right directions. The swing angle of the arms 13L and 13R forward is set large.
上記頭部 1 4は胴体部 1 1の上部 1 1 aの上端に取り付けられており、 例えば 視覚としてのカメラや聴覚としてのマイクが搭載されている。 ここで、上記頭音 1 4は、 図 2に示すように、首のピッチ方向の関節部 3 5及び左右方向の関節部 36を備えている。 なお、各関節部 3 5, 36はそれぞれ関節駆動用モータによ り構成されている。  The head 14 is attached to the upper end of the upper part 11a of the body part 11, and is equipped with, for example, a camera for vision and a microphone for hearing. As shown in FIG. 2, the head sound 14 includes a joint 35 in the pitch direction of the neck and a joint 36 in the left-right direction. Each of the joints 35, 36 is composed of a joint driving motor.
このようにして、 二脚歩行式人型ロボット 1 0の頭部 14は 2自由度を与えら れ、 各種動作中にこれらの 2個の関節部 3 5, 36をそれぞれ駆動モ一夕で適宜 の角度に駆動制御することにより、 §頁部 1 4を左右方向または前後方向に動かす ことができるように構成されている。 ここで、 上記ピッチ方向の関節部 3 5は、 左右方向の関節部 36に対して回転軸が前方にずれて配設されており、前方への 頭部 14の揺動角度が大きく設定されている。  In this way, the head 14 of the biped humanoid robot 10 is given two degrees of freedom, and these two joints 35, 36 are appropriately moved during the various movements by the driving mode. By controlling the drive to the angle described above, the page section 14 can be moved in the left-right direction or the front-back direction. Here, the joints 35 in the pitch direction are arranged such that the rotation axis is shifted forward with respect to the joints 36 in the left-right direction, and the swing angle of the head 14 in the forward direction is set large. I have.
図 3は図 1及び図 1に示した二脚歩行式人型ロボット 1 0の電気的構成を示し ている。 図 3において、 二脚歩行式人型ロボット 1 0は、要求動作に対応して歩 容データを生成する歩容生成部 37とこの歩容デ一夕に基づいて駆動手段、即ち 上述した各関節咅 ΙΠ 1 d, l i e, 1 8 L, 1 8R乃至 33 L, 33R, 35, 36、 即ち関節駆動用モー夕 Mを駆動制御する動作制御装置 40を備えている。 上記歩容生成部 37は、外部から入力される要求動作に対応して、 二脚歩行式 ロボット 1 0の歩行等の動作に必要な各関節部 1 1 d, l i e, 1 8 L, 1 8 R 乃至 3 3 L, 33R, 35, 36の関節駆動用モー夕の目標角度軌道, 目標角速 度, 目標角加速度を含む歩容デ一夕を生成するようになっている。  FIG. 3 shows an electrical configuration of the biped humanoid robot 10 shown in FIGS. 1 and 1. In FIG. 3, a bipedal walking humanoid robot 10 includes a gait generator 37 that generates gait data in response to a requested motion, and driving means based on the gait data, that is, each joint described above.動作 動作 1 d, lie, 18 L, 18 R to 33 L, 33 R, 35, 36, that is, an operation control device 40 that drives and controls the joint drive motor M. The above gait generator 37 responds to a request operation input from the outside, and performs various joints 11 d, lie, 18 L, 18 necessary for operations such as walking of the bipedal walking robot 10. The gait data including the target angular trajectory, target angular velocity, and target angular acceleration of the joint drive motors R to 33L, 33R, 35, and 36 are generated.
上記動作制御装置 40は、主制御部 4 1と複数個の副制御部 42とから構成さ れている。 上記主制御部 4 1は二脚歩行式人型ロボット 1 0の胴体部 1 1、 好ま しくは上体 1 1 aに設けられており、角度計測ュニット 43と補償部 44とから 構成されている。  The operation control device 40 includes a main control unit 41 and a plurality of sub-control units 42. The main control section 41 is provided on the body section 11, preferably the upper body 11a of the bipedal walking humanoid robot 10, and comprises an angle measurement unit 43 and a compensation section 44. .
上記角度計測ュニット 43は、 各関節部 l i d, l i e, 1 8 L, 1 8 R乃至 3 3 L, 3 3 R, 3 5, 3 6の関節駆動用乇一夕に備えられた例えばロータリエ ンコーダ等にて各関節駆動用モ一夕の角度情報及び制御モードが副制御部 4 2を 介して入力されて、 各関節駆動用モ一夕の角度位置を計測して補償部 44に出力 する。 The above angle measuring unit 43 is used for each joint lid, lie, 18 L, 18 R For example, a rotary encoder provided for the joint driving of 33 L, 33 R, 35, 36 controls the angle information and control mode of each joint driving module to the sub-control unit 42. The angular position of each joint drive module is measured and output to the compensator 44.
上記補償部 44は、 図示しない足裏に設けられた力センサからの検出出力に基 づいて床反力を演算して、 この床反力及び角度計測ュニット 4 3からの角度位置 に基づいて歩容生成部 3 7からの歩容デ一夕を修正し、 駆動制御信号として副制 御部 4 2に出力する。 上記副制御部 4 2は、 二脚歩行式人型ロボット 1 0の各部 、例えば図示の場合には、 胸部 1 1 a, 腰部 1 1 bの両側と、 それぞれ左右の大 腿部 1 5し, 1 5 R, » l 6 L, 1 6 R, B^2 5 L, 2 5 R, 下腕部 2 6 L, 2 6 Rに設けられている。 そして、 胸部 1 1 aに設けられた副制御部 4 2 が類部の関節部 3 5, 3 6, 腰部の関節部 1 1 d, 1 1 e及び肩部の関節部 2 8 L, 2 8 R, 2 9 L, 2 9 R, 30 L, 3 0 Rを、 腰部 1 1 bの両側に設けられ た副制御部 4 2が股関節である関節部 1 8 L, 1 8 R, 1 9 L, 1 9R, 2 0 L , 2 O Rを、 それぞれ担当するようになっている。 また、大腿部 1 5 L, 1 5 R に設けられた副制御部 4 2が膝部の関節部 2 2 L, 2 2 Rを、 下腿部 1 6 L, 1 6Rに設けられた副制御部 4 2が足首部の関節部 2 3 L, 2 3 R, 24 L, 24 Rを、 上腕部 2 5 L, 2 5 Rに設けられた副制御部 4 2が肘部の関節部 3 2 L, 32 Rを、 下腕咅 6 L, 26 Rに設けられた副制御部 4 2が手首部の関節部 3 The compensating unit 44 calculates a floor reaction force based on a detection output from a force sensor provided on the sole of the foot (not shown), and based on the floor reaction force and the angular position from the angle measurement unit 43. The gait data from the gait generator 37 is corrected and output to the sub-controller 42 as a drive control signal. The sub-control unit 42 includes various parts of the biped humanoid robot 10, for example, in the illustrated case, the chest 11 a, the waist 11 b, and the left and right thighs 15. 15 R, »l 6 L, 16 R, B ^ 25 L, 25 R, provided on the lower arm part 26 L, 26 R. The sub-control unit 42 provided on the chest 11a includes joints 35, 36 of similar types, joints 1 1d, 1 1e of the waist, and joints 28 L, 28 of the shoulder. R, 29 L, 29 R, 30 L, 30 R, and joints 18 L, 18 R, 19 L, where the sub-control units 42 provided on both sides of the waist 11 b are hip joints , 19R, 20L, and 2OR, respectively. In addition, a sub-control unit 42 provided on the thighs 15 L and 15 R has a knee joint 22 L and 22 R, and a sub-control unit provided on the lower leg 16 L and 16 R. The control unit 42 has an ankle joint 23 L, 23 R, 24 L, 24 R, and the upper arm 25 L, 25 R has a sub-control unit 42 provided at the elbow joint 3. 2 L, 32 R are attached to the lower arm 咅 6 L, 26 R.
3 L, 3 3 Rを、 それぞれ担当するようになっている。 3 L and 3 3 R, respectively.
各副制御部 4 2は、 図 4に示すように、 一つのプロセッサ部 4 5と少なくとも 一つ (図示の場合、 二つ) のドライバ部 4 6とから構成されている。  As shown in FIG. 4, each sub-control unit 42 includes one processor unit 45 and at least one (two in the illustrated case) driver units 46.
上記プロセッサ部 4 5は、 主制御部 4 1の補償部 44で修正された歩容データ である駆動制御信号から各関節駆動用モータの制御信号を生成して、 ドラィバ部 The processor unit 45 generates a control signal for each joint driving motor from the drive control signal, which is the gait data corrected by the compensating unit 44 of the main control unit 41, and generates a driver unit.
46に出力する。 その際、 プロセッサ部 4 5は、 関節駆動用モータの制御方法と して四つの制御モード、 即ち位置制御モード, トルク制御モード, ブレーキモ一 ド及びフリーモードを任意に切り換えることができる。 ここで、位置制御モード は、 与えられた目標角度に追従するように、 P制御, PD制御または P I D制御 等を利用して、 関節駆動用モー夕の制御を行なうものてある。 トルク制御モード は、 与えられた目標電流値に達するように、 関節駆動用モータの制御を行なうも のである。 また、 ブレーキモードは、現在の角度位置を保持するように関節駆動 用モー夕に対して指令を与えるものである。 さらに、 フリーモードは、 関節駆動 用モー夕が外部の力によって自由回転し得るようにするものである。 Output to 46. At that time, the processor unit 45 can arbitrarily switch among four control modes, that is, a position control mode, a torque control mode, a brake mode, and a free mode, as a control method of the joint driving motor. Here, in the position control mode, the joint drive mode is controlled using P control, PD control, PID control, or the like so as to follow a given target angle. Torque control mode Controls the joint drive motor to reach the given target current value. In the brake mode, a command is issued to the joint drive mode to maintain the current angular position. In addition, the free mode enables the joint drive motor to rotate freely by an external force.
また、 プロセッサ部 4 5は、主制御部 4 1と通信するための入出力バス 4 5 a を備えている。 この入出力バス 4 5 aは、 図示の場合、 二つ設けられており、 主 制御部 4 1または他の副制御部 4 2のプロセッサ部 4 5の入出力バス 4 5 aに接 続されるようになっている。 これにより各副制御部 4 2は、 主制御部 4 1または 他の副制御部 4 2と、 入出力バス 4 5 aを介してネットワーク接続、具体的には L AN接続されることになる。 なお、入力バス 4 5 aにおける通信プロトコルは 任意の形式が可能である。 さらに、 入力バス 4 5 aを介して通信は 1対 1に限定 されることなく、 1対多の通信手段を使用することも可能である。  Further, the processor unit 45 includes an input / output bus 45 a for communicating with the main control unit 41. In the case of the drawing, two I / O buses 45 a are provided, which are connected to the I / O bus 45 a of the processor section 45 of the main control section 41 or the other sub-control section 42. It has become. As a result, each sub-control unit 42 is connected to the main control unit 41 or another sub-control unit 42 via the input / output bus 45a via a network, specifically, a LAN. The communication protocol on the input bus 45a can be in any format. Further, communication via the input bus 45a is not limited to one-to-one, but one-to-many communication means can be used.
これにより、 プロセッサ部 4 5は、 入出力バス 4 5 aを介して、 主制御部 4 1 から直接にあるいは他の副制御部 4 2を介して入力される制御信号により制御モ —ド, モ一夕の目標角度, 目標電流値, 追従速度等を設定する。 また、 プロセッ サ部 4 5は、 入出力バス 4 5 aを介して、 直接にあるいは他の副制御部 4 2を介 して主制御部 4 1に対して現在の制御モード, 現在の目標位置, 現在のモータ角 度, 現在の電流値等を出力する。  As a result, the processor section 45 is controlled by the control mode and the mode by the control signal input directly from the main control section 41 or via another sub-control section 42 via the input / output bus 45a. Set the target angle, target current value, following speed, etc. for one night. Further, the processor unit 45 is connected to the main control unit 41 via the input / output bus 45 a directly or via another sub-control unit 42, with the current control mode and the current target position. , Current motor angle, current current value, etc. are output.
さらに、 プロセッサ部 4 5はセンサ入力咅 4 5を備えている。 このセンサ入力 部 4 5には、 各種センサ、例えば傾斜計, 速度計, 角加速度計, 圧力計, ポテン ショメ一夕, エンコーダ等が接続され、 これらのセンサからセンサ入力部 4 5を 介してアナログまたはデジタルの検出信号が入力される。 これにより、 プロセッ サ部 4 5は、 これらの検出信号を入出力バス 4 5 aを介して主制御部 4 1に出力 する。 例えば、 プロセッサ部 4 5は、 このセンサ入力部 4 5 aを介して、 対応す る関節 ¾5の関節駆動用モー夕 Mに備えられた、例えばロータリエンコーダ等から の角度情報とモー夕の電流値が入力され、 この角度情報及び電流値を入出力バス 4 5 aから主制御部 4 1に出力するようになっている。  Further, the processor section 45 has a sensor input 咅 45. Various sensors such as an inclinometer, a speedometer, an angular accelerometer, a pressure gauge, a potentiometer, an encoder, and the like are connected to the sensor input unit 45, and analog signals are transmitted from these sensors via the sensor input unit 45. Alternatively, a digital detection signal is input. As a result, the processor section 45 outputs these detection signals to the main control section 41 via the input / output bus 45a. For example, the processor unit 45 receives, via the sensor input unit 45a, the angle information and the current value of the motor from the rotary encoder or the like provided in the joint driving motor M of the corresponding joint # 5, for example. The angle information and the current value are output from the input / output bus 45 a to the main control unit 41.
上記ドライバ部 4 6は、 担当する関節部の各関節駆動用モータに対してそれぞ れーつづつ設けられており、 プロセッサ部 4 5からの制御信号に従って、 対応す る関節駆動用モータを駆動するようになっている。 The driver section 46 is provided for each joint driving motor of the joint section in charge, and the corresponding motor section is controlled in accordance with a control signal from the processor section 45. A joint driving motor is driven.
なお、 プロセッサ部 4 5はデジタル回路として構成されており、 プロセッサ部 4 5から出力される制御信号はデジタル信号である。 そして、 ドライバ部 4 6は 、 プロセッサ部 4 5からのデジタル信号としての制御信号を電流増幅することに より、 アナログ信号であるモータ駆動信号を生成する。 従って、 アナログ信号は ドライバ咅 P 4 6内のみに限定され、 デジタル信号から分離されることになる。 本発明実施形態による二脚歩行式人型ロボット 1 0は以上のように構成されて おり、以下のように動作する。  The processor unit 45 is configured as a digital circuit, and the control signal output from the processor unit 45 is a digital signal. Then, the driver section 46 generates a motor drive signal as an analog signal by current-amplifying the control signal as a digital signal from the processor section 45. Therefore, the analog signal is limited only to the inside of the driver 咅 P46 and is separated from the digital signal. The biped humanoid robot 10 according to the embodiment of the present invention is configured as described above, and operates as follows.
即ち、 歩容生成部 3 7が要求動作に基づいて歩容デ一夕を生成し、動作制御装 置 4 0の主制御部 4 1の補償部 4 4に出力する。 また、 双方の足部 1 4 L , 1 4 Rに備えられた力センサ (図示せず) がそれぞれ力を検出して補償部 4 4に出力 すると共に、 角度計測ュニット 4 3が各関節部の関節駆動用モータ Mの角度位置 を計測して補償部 4 4に出力する。  That is, the gait generator 37 generates the gait data based on the requested operation, and outputs the generated gait to the compensator 44 of the main controller 41 of the operation controller 40. In addition, force sensors (not shown) provided on both feet 14L and 14R respectively detect the force and output the force to the compensator 44, and the angle measuring unit 43 is connected to each joint. The angular position of the joint drive motor M is measured and output to the compensator 44.
これにより、補償部 4 4が、 力センサからの検出出力に基づいて床反力を演算 して、 この床反力及び角度計測ュニット 4 4からの各関節部の関節駆動用モ一夕 Mの角度位置に基づいて歩容データを修正し、 副制御部 4 2に出力する。 副制御 部 4 2のプロセッサ部 4 5は、 この修正した歩容データに基づいて各関節駆動用 モータ Mの制御信号を生成し、 ドライバ部 4 6に出力する。 そして、 ドライバ部 4 6が、 この制御信号に基づいて各関節部の関節駆動用モー夕 Mを駆動する。 こ のようにして、 二脚歩行式人型ロボット 1 0は、要求動作に対応して歩行等の動 作を行なうことになる。  As a result, the compensating section 44 calculates the floor reaction force based on the detection output from the force sensor, and calculates the floor reaction force and the joint drive module M of each joint from the angle measurement unit 44. The gait data is corrected based on the angular position and output to the sub control unit 42. The processor unit 45 of the sub control unit 42 generates a control signal for each joint driving motor M based on the corrected gait data, and outputs the control signal to the driver unit 46. Then, the driver section 46 drives the joint driving mode M of each joint section based on the control signal. In this way, the biped humanoid robot 10 performs an operation such as walking in response to the requested operation.
ここで、 上記プロセッサ部 4 5は、 図 5のフローチャートに示すコマンド処理 及び図 6のフローチヤ一トに示すモ一夕駆動処理にて、以下のように動作する。 先ず、 図 5に示すコマンド処理において、 ステップ A 1にてプロセッサ部 4 5は 入出力バス 4 5 aを介して主制御部 4 4から外部コマンドとして制御信号を受信 する。 これにより、 ステップ A 2にて、 プロセッサ部 4 5はこの制御信号をコマ ンド解析し、 どのコマンドであるかを判断する。 そして、 プロセッサ部 4 5は、 ステップ A 3にて、 このコマンドが内部状態を外部に報告するコマンドである場 合にはステップ A 4にて当該コマンドが指定する内部状態のデ一夕を取得して、 ステップ A 5にて主制御部 4 4に転送する。 上記ステップ A 3にて、 このコマン ドが内部状態を外部に報告するコマンドでない場合には、 さらにステップ A 6に て、 このコマンドが外部からの設定コマンドである場合には、 ステップ A 7にて 、 プロセッサ部 4 5は当該コマンドが指定する内部状態を当該コマンドが指定し た値に設定した後、 ステップ A 8にてモー夕駆動処理に設定更新の旨を通知し、 さらにステップ A 9にて設定更新の旨を主制御部 4 4に返答する。 なお、 上記ス テツプ A 6にて、 このコマンドが外部からの設定コマンドでない場合には、 プロ セッサ咅 4 5は、 このコマンドがプロセッサ部 4 5で認識できないものであると して、 ステップ A 1 0にてその旨を主制御部 4 1に返答する。 Here, the processor unit 45 operates as follows in the command processing shown in the flowchart of FIG. 5 and the mode driving processing shown in the flowchart of FIG. First, in the command processing shown in FIG. 5, in step A1, the processor unit 45 receives a control signal as an external command from the main control unit 44 via the input / output bus 45a. Accordingly, in step A2, the processor unit 45 performs a command analysis on the control signal and determines which command it is. Then, in step A3, if the command is a command for reporting the internal state to the outside, the processor unit 45 obtains the data of the internal state specified by the command in step A4. hand, In step A5, the data is transferred to the main controller 44. In step A3 above, if this command is not a command to report the internal state to the outside, then in step A6, if this command is an external setting command, go to step A7. After setting the internal state specified by the command to the value specified by the command, the processor unit 45 notifies the motor drive processing of the setting update in step A8, and further, in step A9. The main control unit 4 4 is replied to the effect of the setting update. In step A6, if the command is not an external setting command, the processor # 45 determines that the command cannot be recognized by the processor unit 45 and proceeds to step A1. At 0, this is returned to the main control unit 41.
次に、 図 6に示すモータ馬区動処理においては、 ステップ B 1にて、 プロセッサ 部 4 5は現在の制御モードを判断する。 そして、 現在の制御モードが位置制御モ ードである場合には、 プロセッサ部 4 5は、 ステップ B 2にて、 与えられた目標 角度に追従するように公知の P制御, P D制御または P I D制御等を利用して、 角度計測ュニット 4 1からの角度位置 (測定誤差) に基づいて関節駆動用モータ Mの制御信号をドライバ部 4 6に出力し、 ドライバ部 4 6は、 この制御信号から 例えば P WM信号を生成して、 ステップ B 3にて、対応する関節駆動用モー夕 M に出力して当該モータ Mを駆動する。 そして、 プロセッサ部 4 5は、 ステップ B 4にて、 当該関節駆動用モータ Mの現在の角度位置を角度計測ユニット 4 1から 取得してモータの角速度を計算する。 '  Next, in the motor horse running operation process shown in FIG. 6, in step B1, the processor unit 45 determines the current control mode. Then, when the current control mode is the position control mode, the processor unit 45 performs a known P control, PD control, or PID control in step B2 so as to follow the given target angle. The control signal of the joint drive motor M is output to the driver unit 46 based on the angular position (measurement error) from the angle measurement unit 41 using the control unit. A PWM signal is generated and output to the corresponding joint drive motor M in step B3 to drive the motor M. Then, in step B4, the processor unit 45 obtains the current angular position of the joint driving motor M from the angle measuring unit 41 and calculates the angular velocity of the motor. '
また、 現在の制御モ一ドがトルク制御モ一ドである場合には、 プロセッサ部 4 5は、 同様にして、 ステップ B 5にて、 与えられた目標電流値に追従するように 公知の P制御, P D制御または P I D制御等を利用して、 モータの現在の電流値 に基づいて関節駆動用モ一夕 Mの制御信号をドライバ部 4 6に出力し、 ドライバ 部 4 6はこの制御信号から例えば PWM信号を生成して、 ステップ B 6にて、対 応ずる関節駆動用モー夕 Mに出力して当該乇一夕 Mを駆動する。 そして、 プロセ ッサ部 4 5は、 ステップ B 7にて、 当該関節駆動用モータ Mの現在の電流値を取 得する。  When the current control mode is the torque control mode, the processor unit 45 similarly performs a publicly-known P so as to follow the given target current value in step B5. Using control, PD control, PID control, etc., the control signal of the joint drive module M is output to the driver 46 based on the current value of the motor, and the driver 46 receives the control signal from this control signal. For example, a PWM signal is generated and output to the corresponding joint drive motor M in step B6 to drive the corresponding motor M. Then, the processor unit 45 obtains the current value of the joint driving motor M in step B7.
さらに、 現在の制御モードがブレーキモードである場合には、 プロセッサ部 4 5は、 ステップ B 8にてブレーキモードの設定を行ない、 関節駆動用モー夕 Mに 対して現在の角度位置を保持するように指令を与える。 また、 現在の制御モード がフリ一モードである場合には、 プロセッサ部 4 5は、 ステップ B 9にてフリー モードの設定を行ない、 関節駆動用モータ Mのためのドライバ部 4 6への信号を 遮断して、 当該関節駆動用モータ Mが外部の力によって自由回転し得るようにす る。 Further, if the current control mode is the brake mode, the processor unit 45 sets the brake mode in step B8, and sets the joint drive mode M to Then, a command is issued to maintain the current angular position. If the current control mode is the free mode, the processor unit 45 sets the free mode in step B9, and sends a signal to the driver unit 46 for the joint driving motor M. By shutting off, the joint driving motor M can be freely rotated by an external force.
上述したコマンド処理及びモータ駆動処理は、電源投入直後だけではなく任意 の時間間隔で繰返し行なわれることにより、 そのときのロボットの状態に対応し て迅速に制御モードを切り換え、 関節駆動用モータ Mの駆動制御を行なうことに よって、 ロボットの多様な動作を行なわせることが可能になる。 例えば、 二脚歩 行式人型ロボット 1 0が、 図 7 (A) に示すように、 位置制御モードで、 通常の 動作として机 5 0上にてカップ 5 1の物体把持操作を行なっているときに、 図 7 ( B ) に示すように、突然の外部事象の発生により、 同様に机 5 0上に載置され たボール 5 2が落下した場合、 二脚歩行式人型ロボット 1 0はこれに対処するた めにトルク制御モードに切り換えて、 図 7 ( C ) に示すように素早く落下したボ —ル 5 2を把持することができる。 その後は通常の位置制御モードに戻すことに より、二脚歩行式人型ロボット 1 0は通常の動作を行なう。  The above-described command processing and motor drive processing are repeated not only immediately after power-on but also at arbitrary time intervals, so that the control mode is quickly switched according to the robot state at that time, and the joint drive motor M By performing drive control, it becomes possible to perform various operations of the robot. For example, as shown in FIG. 7 (A), a biped walking humanoid robot 10 performs an object gripping operation of the cup 51 on the desk 50 as a normal operation in the position control mode. Sometimes, as shown in FIG. 7 (B), if a ball 52 placed on the desk 50 falls due to a sudden external event, the bipedal walking humanoid robot 10 will To cope with this, the mode is switched to the torque control mode, and the ball 52 that has quickly fallen can be gripped as shown in FIG. 7 (C). Thereafter, by returning to the normal position control mode, the biped humanoid robot 10 performs a normal operation.
これにより、 通常は、位置制御モードにて、 比較的低い応答速度及びモー夕制 御のゲインによって省電力を図ると共に、 ロボット各部の機構に対する負荷を軽 減し、 必要な場合にはトルク制御モードに切り換えて、 一時的にトルク制御モー ドに切り換えて、応答速度やモータ制御のゲインを上げることによって素早い動 作を実現することができる。  As a result, in the position control mode, power is saved by the relatively low response speed and the gain of the motor control, and the load on the mechanism of each part of the robot is reduced, and the torque control mode is used when necessary. By switching to the torque control mode temporarily and increasing the response speed and the gain of the motor control, quick operation can be realized.
以上のように、本発明実施形態による二脚歩行式人型ロボット 1 0には、 動作 制御装置を構成する主制御部及び複数の副制御部のうち、 各副制御部がそれぞれ 複数の関節部の関節駆動用モー夕に対応して設けられている。 従って、 同じ個数 の関節部に関して、 従来と比較して副制御部が少なくて済み、 部品コスト及び組 立コストが低減されると共に、特に副制御部が主制御部に対してバス型に接続さ れる場合には、 主制御部と副制御部とを接続する配線の省配線化が可能になり、 関節部の円滑な駆動が保証される。 また、 副制御部 4 2のプロセッサ部 4 5は、 アナ口グ信号から分離されることにより、 ノィズの影響が低減され確実に動作す ることになる。 As described above, in the bipedal walking humanoid robot 10 according to the embodiment of the present invention, of the main control unit and the plurality of sub-control units that constitute the motion control device, each sub-control unit has a plurality of joint units. Are provided corresponding to the joint driving modes. Therefore, for the same number of joints, the number of sub-control units is reduced as compared with the conventional art, and the cost of parts and assembly is reduced. In this case, the wiring connecting the main control unit and the sub-control unit can be reduced, and smooth driving of the joint can be guaranteed. Further, the processor section 45 of the sub-control section 42 is separated from the analog signal to reduce the influence of noise and operate reliably. Will be.
上述した実施形態においては、脚部 1 2 L, 1 2 Rは 6自由度を、 そして腕部 1 3 L , 1 3 Rは 5自由度を、 腰部は 2自由度を、 そして頸部は 2自由度を有し ているが、 これに限らず、 より小さい自由度またはより大きい自由度を有してい てもよい。 産業上の利用可能性  In the embodiment described above, the legs 12 L, 12 R have 6 degrees of freedom, the arms 13 L, 13 R have 5 degrees of freedom, the waist has 2 degrees of freedom, and the neck has 2 degrees of freedom. It has a degree of freedom, but is not limited to this, and may have a smaller degree of freedom or a larger degree of freedom. Industrial applicability
以上述べたように、 本発明によれば、二脚歩行式人型ロボッ卜が全身運動を行 なう際、 動作制御装置の主制御部が、要求動作に対応する歩容データに基づいて 各駆動手段を駆動制御信号を生成して、対応する駆動手段に関連付けられた副制 御部に L ANを介して出力し、 副制御部は、 プロセッサ部により主制御部からの 駆動制御信号に基づレヽて対応する各駆動手段毎に制御信号を演算して、各駆動手 段に対応するドライバ部に出力し、 ドライバ部がプロセッサ部からの制御信号に 基づいて対応する駆動手段を駆動する。 このようにして、 各駆動手段が、 それぞ れ対応するドライバ部により駆動されることによつて各関節部が歩容データを実 現するために動作し、 全体として二脚歩行式人型ロボッ卜が所望の全身運動を行 なうことになる。 この場合、 動作制御装置の各副制御部が、 それぞれ複数の関節 部に対応して設けられていることから、従来の各関節部に一つづつ副関節部が設 けられている場合に比較して、 副制御部の数が低減される。 従って、主制御部と 各副制御部との間の配線も少なくなり、配線が簡略化されると共に、各間接部の 駆動が円滑に行われることができる。  As described above, according to the present invention, when the bipedal walking humanoid robot performs the whole-body motion, the main control unit of the motion control device performs various operations based on gait data corresponding to the required motion. The drive means generates a drive control signal and outputs the signal to a sub-control unit associated with the corresponding drive means via the LAN, and the sub-control unit is controlled by the processor unit based on the drive control signal from the main control unit. Then, a control signal is calculated for each of the corresponding driving means and output to a driver unit corresponding to each driving means, and the driver unit drives the corresponding driving means based on a control signal from the processor unit. In this way, each joint is operated to realize gait data by driving each driving means by the corresponding driver unit, and as a whole, a bipedal walking humanoid robot. The bird performs the desired whole-body exercise. In this case, since each sub-control unit of the motion control device is provided for each of the plurality of joints, it is compared with the case where each conventional joint has one sub-joint. Thus, the number of sub-control units is reduced. Therefore, the number of wirings between the main control unit and each sub-control unit is reduced, the wiring is simplified, and the driving of each indirect unit can be performed smoothly.

Claims

請 求 の 範 囲 The scope of the claims
1 . 胴体部と、 胴体部の下部両側にて揺動可能な中間に膝部, 下端に足部 を備えた脚部と、胴体部の上部両側にて揺動可能な中間に肘部, 下端に手部を備 えた腕部と、 胴体部の上端に取り付けられた頭部と、 を備えており、 1. A torso with a knee in the middle that can swing on both lower sides of the torso, and a leg with a foot at the lower end, and an elbow and a lower half in the middle that can swing on both upper sides of the torso And an arm with a hand, and a head attached to the upper end of the body.
上記脚部の足部, 下腿部, 大腿部そして上記腕部の手部, 下腕部及び上腕部の 揺動可能な関節部をそれぞれ揺動させる複数個の駆動手段と、 要求動作に対応す る歩容データに基づいて各駆動手段をそれぞれ駆動制御する動作制御装置と、 を 有しており、  A plurality of driving means for swinging the swingable joints of the feet, lower legs, thighs of the legs and the hands, lower arms and upper arms of the arms, respectively; An operation control device for controlling the driving of each of the driving means based on the corresponding gait data.
上記動作制御装置が、胴体部に設けられた主制御部と、各駆動手段に隣接して 分散配置された複数の副制御部と、 から構成されている二脚歩行式人型ロボット であって、  A bipedal walking humanoid robot, wherein the operation control device includes: a main control unit provided on a body unit; and a plurality of sub-control units distributed and arranged adjacent to each driving unit. ,
上記各副制御部が主制御部に対してそれぞれ L A N接続されていると共に、 各副制御部が、主制御部からの駆動制御信号に基づいて少なくとも一つの対応 する駆動手段のための制御信号を演算するプロセッサ部と、 プロセッサ部からの 制御信号に基づいて対応する駆動手段を駆動するドライバ部と、 を含んでいるこ とを特徴とする、二脚歩行式人型ロボット。  Each of the sub-control units is connected to the main control unit via a LAN, and each of the sub-control units transmits a control signal for at least one corresponding driving unit based on a drive control signal from the main control unit. A two-legged humanoid robot, comprising: a processor for performing calculations; and a driver for driving corresponding driving means based on a control signal from the processor.
2 . 前記ドライバ部が、 駆動手段を駆動する制御モードとして、位置制御 モード, トルク制御モ一ド, フリ一モード及びブレーキモードを備えており、 前記主制御部が、 歩容データに基づいて制御モード選択信号及び制御信号をド ライバ部に出力することを特徴とする、請求項 1に記載の二脚歩行式人型ロボッ 2. The driver unit has a position control mode, a torque control mode, a free mode, and a brake mode as control modes for driving the driving means, and the main control unit controls based on gait data. The biped walking humanoid robot according to claim 1, wherein the mode selection signal and the control signal are output to a driver unit.
3 . 前記各副制御部が、 対応する駆動手段に対してそれぞれ一つのドライ バ部を備えていることを特徴とする、請求項 1または 2に記載の二脚歩行式人型 ロボット。 3. The biped humanoid robot according to claim 1, wherein each of the sub-control units includes one driver unit for a corresponding driving unit.
4 . 前記各副制御部が、 主制御部に対してネットワーク接続されているこ とを特徴とする、請求項 1カヽら 3の何れかに記載の二脚歩行式人型ロボット。 4. Make sure that each sub-control unit is connected to the main control unit via a network. The biped humanoid robot according to any one of claims 1 to 3, characterized in that:
5 . 前記各副制御部のプロセッサ部が、 対応する駆動手段から入力される 角度位置及び制御モードの現在値を、主制御部に出力することを特徴とする、請 求項 1から 4の何れかに記載の二脚歩行式人型ロボット。 5. The processor according to any one of claims 1 to 4, wherein the processor unit of each of the sub-control units outputs to the main control unit the angular position and the current value of the control mode input from the corresponding driving unit. The biped walking humanoid robot described in Crab.
6 . 前記主制御部が、各関節部の角度位置を検出する角度計測ユニットと 、角度計測ユニットにより検出された各角度位置と足裏で検出した床反力に基づ いて歩容デ一夕を修正して副制御部に出力する補償部と、 から構成されているこ とを特徴とする、請求項 1から 5の何れかに記載の二脚歩行式人型ロボット。 6. The main control unit is configured to detect an angular position of each joint, and an gait based on each angular position detected by the angle measuring unit and a floor reaction force detected at the sole. The biped humanoid robot according to any one of claims 1 to 5, further comprising: a compensating unit that corrects and outputs the result to a sub-control unit.
7 . 前記各副制御部のプロセッサ部が、 入出力バスを介して主制御部また は他の副制御部に接続されていることを特徴とする、 請求項 1力、ら 6の何れかに 記載の二脚歩行式人型ロボット。 7. The processor according to claim 1, wherein the processor unit of each of the sub-control units is connected to a main control unit or another sub-control unit via an input / output bus. The biped walking humanoid robot of the description.
8 . 前記各副制御部のプロセッサ部が、 デジタル回路として構成されてお り、 8. The processor section of each sub-control section is configured as a digital circuit,
ドライバ部が、 プロセッサ部からのデジタル信号に基づいて、 アナログ信号で あるモータ駆動信号を生成することを特徴とする、 請求項 1から 7の何れかに記 載の二脚歩行式人型ロボット。  8. The biped walking humanoid robot according to claim 1, wherein the driver unit generates a motor drive signal that is an analog signal based on a digital signal from the processor unit.
PCT/JP2002/012055 2001-11-19 2002-11-19 Two-legged walking type human-shaped robot WO2003043788A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-353502 2001-11-19
JP2001353502A JP2003145456A (en) 2001-11-19 2001-11-19 Bipedal human-type robot

Publications (1)

Publication Number Publication Date
WO2003043788A1 true WO2003043788A1 (en) 2003-05-30

Family

ID=19165509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/012055 WO2003043788A1 (en) 2001-11-19 2002-11-19 Two-legged walking type human-shaped robot

Country Status (3)

Country Link
JP (1) JP2003145456A (en)
TW (1) TW583057B (en)
WO (1) WO2003043788A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9417944B2 (en) 2011-10-05 2016-08-16 Analog Devices, Inc. Two-wire communication system for high-speed data and power distribution
US9772665B2 (en) 2012-10-05 2017-09-26 Analog Devices, Inc. Power switching in a two-wire conductor system
US9946680B2 (en) 2012-10-05 2018-04-17 Analog Devices, Inc. Peripheral device diagnostics and control over a two-wire communication bus
CN112783043A (en) * 2020-12-30 2021-05-11 深圳市优必选科技股份有限公司 Humanoid robot control method and device, computer equipment and storage medium

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006198703A (en) * 2005-01-19 2006-08-03 Kawada Kogyo Kk Arm driving device of human type robot
KR20100001567A (en) * 2008-06-27 2010-01-06 삼성전자주식회사 Walking robot and method of controlling the same
CN102996617A (en) * 2011-09-08 2013-03-27 鸿富锦精密工业(深圳)有限公司 Spherical hinge mechanism, branched chain employing spherical hinge mechanism, and parallel robot thereof
CN105523100B (en) * 2016-01-21 2018-01-12 昆明理工大学 A kind of deformable bionical search and rescue robot
JP6564006B2 (en) * 2017-12-19 2019-08-21 本田技研工業株式会社 Communication system and robot having a plurality of ring networks

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05237775A (en) * 1992-02-26 1993-09-17 Honda Motor Co Ltd Robot with link mechanism
US5426586A (en) * 1992-02-26 1995-06-20 Honda Giken Kogyo Kabushiki Kaisha Robot drive joint control system
JPH08314524A (en) * 1995-05-22 1996-11-29 Ricoh Elemex Corp Control method for robot and robot system
JPH10277887A (en) * 1997-03-31 1998-10-20 Fanuc Ltd Motor controlling method applicable at failure in position sensor
JP2001138271A (en) * 1999-11-12 2001-05-22 Sony Corp Leg type mobile robot and at-overturn motion control method for robot
JP2001150370A (en) * 1999-11-24 2001-06-05 Sony Corp Leg-type moving robot and operation control method for the same
JP2001157973A (en) * 1999-09-20 2001-06-12 Sony Corp Walk control device, and walk control method for robot
JP2001277163A (en) * 2000-04-03 2001-10-09 Sony Corp Device and method for controlling robot
JP2002301674A (en) * 2001-04-03 2002-10-15 Sony Corp Leg type moving robot, its motion teaching method and storage medium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001246585A (en) * 2000-02-29 2001-09-11 Sony Corp Leg type mobile robot

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05237775A (en) * 1992-02-26 1993-09-17 Honda Motor Co Ltd Robot with link mechanism
US5426586A (en) * 1992-02-26 1995-06-20 Honda Giken Kogyo Kabushiki Kaisha Robot drive joint control system
JPH08314524A (en) * 1995-05-22 1996-11-29 Ricoh Elemex Corp Control method for robot and robot system
JPH10277887A (en) * 1997-03-31 1998-10-20 Fanuc Ltd Motor controlling method applicable at failure in position sensor
JP2001157973A (en) * 1999-09-20 2001-06-12 Sony Corp Walk control device, and walk control method for robot
JP2001138271A (en) * 1999-11-12 2001-05-22 Sony Corp Leg type mobile robot and at-overturn motion control method for robot
JP2001150370A (en) * 1999-11-24 2001-06-05 Sony Corp Leg-type moving robot and operation control method for the same
JP2001277163A (en) * 2000-04-03 2001-10-09 Sony Corp Device and method for controlling robot
JP2002301674A (en) * 2001-04-03 2002-10-15 Sony Corp Leg type moving robot, its motion teaching method and storage medium

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9417944B2 (en) 2011-10-05 2016-08-16 Analog Devices, Inc. Two-wire communication system for high-speed data and power distribution
US9875152B2 (en) 2011-10-05 2018-01-23 Analog Devices, Inc. Methods for discovery, configuration, and coordinating data communications between master and slave devices in a communication system
US9946679B2 (en) 2011-10-05 2018-04-17 Analog Devices, Inc. Distributed audio coordination over a two-wire communication bus
US10311010B2 (en) 2011-10-05 2019-06-04 Analog Devices, Inc. Two-wire communication systems and applications
US9772665B2 (en) 2012-10-05 2017-09-26 Analog Devices, Inc. Power switching in a two-wire conductor system
US9946680B2 (en) 2012-10-05 2018-04-17 Analog Devices, Inc. Peripheral device diagnostics and control over a two-wire communication bus
CN112783043A (en) * 2020-12-30 2021-05-11 深圳市优必选科技股份有限公司 Humanoid robot control method and device, computer equipment and storage medium
CN112783043B (en) * 2020-12-30 2022-04-15 深圳市优必选科技股份有限公司 Humanoid robot control method and device, computer equipment and storage medium

Also Published As

Publication number Publication date
JP2003145456A (en) 2003-05-20
TW200300383A (en) 2003-06-01
TW583057B (en) 2004-04-11

Similar Documents

Publication Publication Date Title
JP3435666B2 (en) robot
KR101687631B1 (en) Walking control apparatus of robot and method for controlling the same
JP3833567B2 (en) Mobile robot attitude control device
JP3731118B2 (en) Biped walking humanoid robot
JP5586163B2 (en) Robot and control method thereof
JP2001150374A (en) Failure diagnostic system for robot
WO2002040227A1 (en) Remote controller of biped robot
KR100501093B1 (en) Biped robot
JP2003211379A (en) Abnormality detector for mobile robot
JP2004141976A (en) Robot's joint structure
WO2003043788A1 (en) Two-legged walking type human-shaped robot
JP2003200366A (en) Robot
JP2004303842A (en) Stacked control substrate, electronic apparatus mounted therewith, and robot mounted therewith
JP2001239480A (en) Controller for mobile robot
JP3627057B2 (en) Biped humanoid robot
JP3569767B2 (en) Walking robot
JP4534230B2 (en) Robot with switch device
JP2003211380A (en) Abnormality detector for mobile robot
JP2004017178A (en) Man type robot of two-leg walking system and storage mechanism for fingertips
JP2003200377A (en) Robot and method for measuring distance by robot
JPH04122585A (en) Walk control device for leg type mobile robot
JP3760198B2 (en) Walking movement apparatus, walking control apparatus and walking control method therefor
JP2002301684A (en) Leg type mobile robot and information transmitting device for the same
JP3906391B2 (en) Robot and its switching device
JP2004188530A (en) Walking type movable apparatus, and device and method for controlling its movement

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WA Withdrawal of international application