WO2003041427A1 - 'shield': protecting high priority channel access attempts in overlapped wireless cells - Google Patents

'shield': protecting high priority channel access attempts in overlapped wireless cells Download PDF

Info

Publication number
WO2003041427A1
WO2003041427A1 PCT/US2002/034433 US0234433W WO03041427A1 WO 2003041427 A1 WO2003041427 A1 WO 2003041427A1 US 0234433 W US0234433 W US 0234433W WO 03041427 A1 WO03041427 A1 WO 03041427A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
contention
station
free period
access point
Prior art date
Application number
PCT/US2002/034433
Other languages
French (fr)
Inventor
Mathilde Benveniste
Original Assignee
At & T Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US33093001P priority Critical
Priority to US09/985,257 priority patent/US7095754B2/en
Priority to US60/330,930 priority
Priority to US09/985,257 priority
Priority to US60/331,030 priority
Priority to US33103001P priority
Priority to US33121101P priority
Priority to US60/331,211 priority
Priority to US34234301P priority
Priority to US60/342,343 priority
Priority to US10/187,132 priority patent/US7277413B2/en
Priority to US10/187,132 priority
Priority to US10/256,384 priority
Priority to US10/256,299 priority
Priority to US10/256,471 priority
Priority to US10/256,309 priority
Priority to US10/256,516 priority patent/US7180905B2/en
Priority to US10/256,309 priority patent/US7245605B2/en
Priority to US10/256,516 priority
Priority to US10/256,299 priority patent/US7248600B2/en
Priority to US10/256,471 priority patent/US7277415B2/en
Priority to US10/256,384 priority patent/US7280517B2/en
Priority to US10/256,305 priority
Priority to US10/256,305 priority patent/US7245604B2/en
Application filed by At & T Corp. filed Critical At & T Corp.
Publication of WO2003041427A1 publication Critical patent/WO2003041427A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • H04W74/0816Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA carrier sensing with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic regulation in packet switching networks
    • H04L47/10Flow control or congestion control
    • H04L47/14Flow control or congestion control in wireless networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic regulation in packet switching networks
    • H04L47/10Flow control or congestion control
    • H04L47/24Flow control or congestion control depending on the type of traffic, e.g. priority or quality of service [QoS]
    • H04L47/2416Real time traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Abstract

A method and system reduce interference between overlapping first (100) and second wireless LAN cells (150) contending for the same medium. Each cell includes a respective pluralily of member stations (104A, 104B, 106). An inter-cell contention-free period value is assigned to a first access point station (102) in the first cell (100), associated with an accessing order in the medium for member stations in the first and second cells. The access point (102) in the first cell (100) transmits an initial shield packet (118) to deter other stations from contending for the medium. The access point then transmits a beacon packet containing the inter-cell contention-free period value to member stations in the second cell. A second access point (152) in the second cell (150) can then delay transmissions by member stations in the second cell until after the inter-cell contention-free period expires. The beacon packet sent by the first access point station (102) also includes an intra-cell contention-free period value, which causes the member stations in the first cell (100) to delay accessing the medium until polled by the first access point (102).

Description

'SHIELD': PROTECTING HIGH PRIORITY CHANNEL ACCESS ATTEMPTS IN OVERLAPPED WIRELESS CELLS

By Mathilde Benveniste

This application claims the benefit of the following co- pending applications:

[1] U.S. Provisional Application Serial No. 60/330,930, filed

November 2, 2001, entitled "HCF ACCESS MECHANISM: OBSS

MITIGATION,"

[2] U.S. Provisional Application Serial No. 60/331,030, filed November 7, 2001 , entitled " 'NEIGHBORHOOD' CAPTURE IN

CSMA/CAWLANS,"

[3] U.S. Provisional Application Serial No. 60/331,211, filed

November 13, 2001, entitled " 'SHIELD': PROTECTING HIGH

PRIORITY CHANNEL ACCESS ATTEMPTS," [4] U.S. Provisional Application Serial No. 60/342,343, December

21, 2001, entitled "WIRELESS LANS AND 'NEIGHBORHOOD

CAPTURE'," and

[5] U.S. Non-Provisional Application Serial No. 10/256,299, filed

September 27, 2002, all of which are incorporated by reference. RELATED APPLICATIONS

This patent application is related to the copending regular

U.S. Patent Application Serial No. 09/985,257, filed November 2,

2001, by Mathilde Benveniste, entitled "TIERED CONTENTION

MULTIPLE ACCESS (TCMA): A METHOD FOR PRIORITY- BASED SHARED CHANNEL ACCESS," which is incorporated by reference.

This patent application is also related to the copending regular U.S. Patent Application Serial No. 10/187,132, filed lune 28, 2002, by Mathilde Benveniste, entitled "HYBRID COORDINATION FUNCTION (HCF) ACCESS THROUGH

TIERED CONTENTION AND OVERLAPPED WIRELESS CELL MITIGATION," which is incorporated by reference.

This patent application is also related to the copending regular U.S. Patent Application Serial No. 10/256,309, filed September 27, 2002, by Mathilde Benveniste, entitled

"PREEMPTIVE PACKET FOR MAINTAINING CONTIGUITY IN CYCLIC PRIORITIZED MULTIPLE ACCESS (CPMA) CONTENTION-FREE SESSIONS," which is incorporated by reference. This patent application is also related to the copending regular U.S. Patent Application Serial No. 10/256,384, filed September 27, 2002, by Mathilde Benveniste, entitled "WIRELESS LANS AND NEIGHBORHOOD CAPTURE," which is incorporated by reference. This patent application is also related to the copending regular U.S. Patent Application Serial No. 10/256,305, filed September 27, 2002, by Mathilde Benveniste, entitled "FIXED DETERMINISTIC POST-BACKOFF FOR CYCLIC PRIORITIZED MULTIPLE ACCESS (CPMA) CONTENTION- FREE SESSIONS," which is incorporated by reference.

This patent application is also related to the copending regular U.S. Patent Application Serial No. 10/256,516, filed September 27, 2002, by Mathilde Benveniste, entitled "ACCESS METHOD FOR PERIODIC CONTENTION-FREE SESSIONS," which is incorporated by reference. This patent application is also related to the copending regular U.S. Patent Application Serial No. 10/256,471, filed September 27, 2002, by Mathilde Benveniste, entitled "STAGGERED STARTUP FOR CYCLIC PRIORITIZED MULTIPLE ACCESS (CPMA) CONTENTION-FREE SESSIONS," which is incorporated by reference.

FIELD OF THE INVENTION

The invention disclosed broadly relates to telecommunications methods and more particularly relates to wireless cells that have overlapping stations contending for the same medium.

BACKGROUND OF THE INVENTION

Wireless Local Area Networks (WLANs) Wireless local area networks (WLANs) generally operate at peak speeds of between 10 to 100 Mbps and have a typical range of 100 meters. Single-cell wireless LANs are suitable for small single-floor offices or stores. A station in a wireless LAN can be a personal computer, a bar code scanner, or other mobile or stationary device that uses a wireless network interface card (NIC) to make the connection over the RF link to other stations in the network. The single-cell wireless LAN provides connectivity within radio range between wireless stations. An access point allows connections via the backbone network to wired network- based resources, such as servers. A single-cell wireless LAN can typically support up to 25 users and still keep network access delays at an acceptable level. Multiple-cell wireless LANs provide greater range than does a single cell through means of a set of access points and a wired network backbone to interconnect a plurality of single- cell LANs. Multiple-cell wireless LANs can cover larger, multiple- floor buildings. A mobile laptop computer or data collector with a wireless network interface card (NIC) can roam within the coverage area while maintaining a live connection to the backbone network.

Wireless LAN specifications and standards include the IEEE 802.11 Wireless LAN Standard and the HIPERLAN Type 1 and Type 2 Standards. The IEEE 802.11

Wireless LAN Standard is published in three parts as 3EEE 802.11- 1999, IEEE 802. lla-1999, and IEEE 802.1 lb-1999. which are available from the IEEE, Inc. web site http://grouper.ieee.org/groups/802/ll. An overview of the HIPERLAN Type 1 principles of operation is provided in the publication HIPERLAN Type 1 Standard. ETSI ETS 300 652, WA2 December 1997. An overview of the HIPERLAN Type 2 principles of operation is provided in the Broadband Radio Access Network's (BRAN) HIPERLAN Type 2: System Overview. ETSI TR 101 683 VI.1.1 (2000-02) and a more detailed specification of its network architecture is described in HIPERLAN Type 2. Data Link Control (DLC) Layer: Part 4. Extension for Home Environment, ETSI TS 101 761-4 Vl.2.1 (2000-12). A subset of wireless LANs is Wireless Personal Area Networks (PANs), of which the Bluetooth Standard is the best known. The Bluetooth Special Interest Group, Specification Of The Bluetooth System, Version 1.1, February 22, 2001, describes the principles of Bluetooth device operation and communication protocols.

The IEEE 802.11 Wireless LAN Standard defines at least two different physical (PHY) specifications and one common medium access control (MAC) specification. The IEEE 802.11(a) Standard is designed to operate in unlicensed portions of the radio spectrum, usually either in the 2.4 GHz Industrial, Scientific, and Medical (ISM) band or the 5 GHz Unlicensed- National Information Infrastructure (U-NH) band. It uses orthogonal frequency division multiplexing (OFDM) to deliver up to 54 Mbps data rates. The IEEE 802.11(b) Standard is designed for the 2.4 GHz ISM band and uses direct sequence spread spectrum (DSSS) to deliver up to 11 Mbps data rates. The IEEE 802.11 Wireless LAN Standard describes two major components, the mobile station and the fixed access point (AP). IEEE 802.11 networks can also have an independent configuration where the mobile stations communicate directly with one another, without support from a fixed access point.

A single-cell wireless LAN using the IEEE 802.11 Wireless LAN Standard is an Independent Basic Service Set (IBSS) network. An IBSS has an optional backbone network and consists of at least two wireless stations. A multiple-cell wireless LAN using the IEEE 802.11 Wireless LAN Standard is an Extended Service Set (ESS) network. An ESS satisfies the needs of large coverage networks of arbitrary size and complexity. Each wireless station and access point in an IEEE

802.11 wireless LAN implements the MAC layer service, which provides the capability for wireless stations to exchange MAC frames. The MAC frame transmits management, control, or data between wireless stations and access points. After a station forms the applicable MAC frame, the frame's bits are passed to the Physical Layer for transmission.

Before transmitting a frame, the MAC layer must first gain access to the network. Three interframe space (IFS) intervals defer an IEEE 802.11 station's access to the medium and provide various levels of priority. Each interval defines the duration between the end of the last symbol of the previous frame to the beginning of the first symbol of the next frame. The Short Interframe Space (SIFS) provides the highest priority level by allowing some frames to access the medium before others, such as an Acknowledgement (ACK) frame, a Clear-to-Send (CTS) frame, or a subsequent fragment burst of a previous data frame. These frames require expedited access to the network to minimize frame retransmissions.

The Priority Interframe Space (PIFS) is used for high priority access to the medium during the contention-free period. A point coordinator in the access point connected to the backbone network controls the priority-based Point Coordination Function (PCF) to dictate which stations in the cell can gain access to the medium. The point coordinator in the access point sends a contention-free poll frame to a station, granting the station permission to transmit a single frame to any destination. All other stations in the cell can only transmit during contention-free period if the point coordinator grants them access to the medium. The end of the contention-free period is signaled by the contention-free end frame sent by the point coordinator, which occurs when time expires or when the point coordinator has no further frames to transmit and no stations to poll. The Priority Interframe Space (PIFS) is also known as the PCF Interframe Space.

The distributed coordination function (DCF) Interframe Space (DIFS) is used for transmitting low priority data frames during the contention-based period. The DIFS spacing delays the transmission of lower priority frames to occur later than the priority-based transmission frames. An Extended Interframe Space (EIFS) goes beyond the time of a DIFS interval as a waiting period when a bad reception occurs. The EIFS interval provides enough time for the receiving station to send an acknowledgment (ACK) frame.

During the contention-based period, the distributed coordination function (DCF) uses the Carrier-Sense Multiple Access With Collision Avoidance (CSMA/CA) contention-based protocol, which is similar to IEEE 802.3 Ethernet. The CSMA/CA protocol minimizes the chance of collisions between stations sharing the medium by waiting a random backoff interval if the station's sensing mechanism indicates a busy medium. The period of time immediately following traffic on the medium is when the highest probability of collisions occurs, especially where there is high utilization. Once the medium is idle, CSMA CA protocol causes each station to delay its transmission by a random backoff time, thereby minimizing the chance it will collide with those from other stations.

The CSMA/CA protocol computes the random backoff time as the product of a constant, the slot time, times a pseudo-random number RN that has a range of values from zero to a collision window CW. The value of the collision window for the first try to access the network is CW1, which yields the first-try random backoff time. If the first try to access the network by a station fails, then the CSMA CA protocol computes a new CW by doubling the current value of CW as CW2 = CW1 times 2. The value of the collision window for the second try to access the network is CW2, which yields the second-try random backoff time. This process by the CSMA CA protocol of increasing the delay before transmission is called binary exponential backoff. The reason for increasing CW is to minimize collisions and maximize throughput for both low and high network utilization. Where there is a low network utilization, stations are not forced to wait very long before transmitting their frame. On the first or second attempt, a station will make a successful transmission. However, if the utilization of the network is high, the CSMA/CA protocol delays stations for longer periods to avoid the chance of multiple stations transmitting at the same time. If the second try to access the network fails, then the CSMA CA protocol computes a new CW by again doubling the current value of CW as CW3 = CW1 times 4. The value of the collision window for the third try to access the network is CW3, which yields the third-try random backoff time. The value of CW increases to relatively high values after successive retransmissions under high traffic loads. This provides greater transmission spacing between stations waiting to transmit.

Collision Avoidance Techniques

Four general collision avoidance approaches have emerged: [1] Carrier-Sense Multiple Access (CSMA) [see, F. Tobagi and L. Kleinrock, "Packet Switching in Radio Channels: Part I - Carrier Sense Multiple Access Models and their Throughput Delay Characteristics," IEEE Transactions on Communications, Vol. 23, No. 12, pp. 1400-1416, 1975], [2] Multiple Access Collision Avoidance (MACA) [see, P. Karn, "MACA - A New Channel Access Protocol for Wireless Ad-Hoc Networks," Proceedings of the ARRL/CRRL Amateur Radio Ninth Computer Networking Conference, pp. 134-140, 1990], [3] their combination CSMA CA, and [4] collision avoidance tree expansion.

CSMA allows access attempts after sensing the channel for activity. Still, simultaneous transmit attempts lead to collisions, thus rendering the protocol unstable at high traffic loads. The protocol also suffers from the hidden terminal problem. The latter problem was resolved by the Multiple Access Collision Avoidance (MACA) protocol, which involves a three-way handshake. [P. Karn, supra.] The origin node sends a request-to-send (RTS) notice of the impending transmission. A response is returned by the destination if the RTS notice is received successfully and the origin node proceeds with the transmission. This protocol also reduces the average delay as collisions are detected upon transmission of merely a short message, the RTS. With the length of the packet included in the RTS and echoed in the clear-to-send (CTS) messages, hidden terminals can avoid colliding with the transmitted message. However, this prevents the back-to- back re-transmission in case of unsuccessfully transmitted packets. A five-way handshake Multiple Access Collision Avoidance (MACA) protocol provides notification to competing sources of the successful termination of the transmission. [See, V. Bharghavan, A. Demers, S. Shenker, and L. Zhang, "MACAW: A media access protocol for wireless LANs," SIGCOMM '94. pp. 212-225, ACM, 1994.]

CSMA and MACA are combined in CSMA/CA, which is MACA with carrier-sensing, to give better performance at high loads. A four-way handshake is employed in the basic contention-based access protocol used in the Distributed Coordination Function (DCF) of the IEEE 802.11 Standard for Wireless LANs. [See, IEEE Standards Department, D3, "Wireless Medium Access Control and Physical Layer WG," IEEE Draft Standard P802.ll Wireless LAN, Ianuaryl996.] Collisions can be avoided by splitting the contending terminals before transmission is attempted, hi the pseudo-Bayesian control method, each terminal determines whether it has permission to transmit using a random number generator and a permission probability "p" that depends on the estimated backlog. [See, R.L. Rivest, "Network Control by Bayesian Broadcast," IEEE Trans. Inform. Theory, Vol. IT 25, pp. 505-515, September 1979] To resolve collisions, subsequent transmission attempts are typically staggered randomly in time using the following two approaches: binary tree and binary exponential backoff.

Upon collision, the binary tree method requires the contending nodes to self-partition into two groups with specified probabilities. This process is repeated with each new collision. The order in which contending nodes transmit is determined either by serial or parallel resolution of the tree. [See, J .L. Massey, "Collision-Resolution Algorithms and Random-Access Communications," in Multi-User Communication Systems, G. Longo (ed.), CISM Courses and Lectures No. 265, New York: Springer 1982, pp.73-137.]

. In the binary exponential backoff approach, a backoff counter tracks the number of pauses and hence the number of completed transmissions before a node with pending packets attempts to seize the channel. A contending node initializes its backoff counter by drawing a random value, given the backoff window size. Each time the channel is found idle, the backoff counter is decreased and transmission is attempted upon expiration of the backoff counter. The window size is doubled every time a collision occurs, and the backoff countdown starts again. [See, A. Tanenbaum, Computer Networks, 3rd ed., Upper Saddle River, NJ, Prentice Hall, 1996.] The Distributed Coordination Function (DCF) of the IEEE 802.11 Standard for Wireless LANs employs a variant of this contention resolution scheme, a truncated binary exponential backoff, starting at a specified window and allowing up to a maximum backoff range below which transmission is attempted. [IEEE Standards Department, D3, supra.] Different backoff counters may be maintained by a contending node for traffic to specific destinations. [Bharghavan, supra.]

In the IEEE 802.11 Standard, the channel is shared by a centralized access protocol, the Point Coordination Function (PCF), which provides contention-free transfer based on a polling scheme controlled by the access point (AP) of a basic service set (BSS). [IEEE Standards Department, D3, supra.] The centralized access protocol gains control of the channel and maintains control for the entire contention-free period by waiting a shorter time between transmissions than the stations using the Distributed Coordination Function (DCF) access procedure. Following the end of the contention-free period, the DCF access procedure begins, with each station contending for access using the CSMA/CA method. The 802.11 MAC Layer provides both contention and contention-free access to the shared wireless medium. The MAC Layer uses various MAC frame types to implement its functions of MAC management, control, and data transmission. Each station and access point on an 802.11 wireless LAN implements the MAC Layer service, which enables stations to exchange packets. The results of sensing the channel to determine whether the medium is busy or idle are sent to the MAC coordination function of the station. The MAC coordination also carries out a virtual carrier-sense protocol based on reservation information found in the Duration Field of all frames. This information announces to all other stations the sending station's impending use of the medium. The MAC coordination monitors the Duration Field in all MAC frames and places this information in the station's Network Allocation Vector (NAV) if the value is greater than the current NAV value. The NAV operates similarly to a timer, starting with a value equal to the Duration Field of the last frame transmission sensed on the medium and counting down to zero. After the NAV reaches zero, the station can transmit if its physical sensing of the channel indicates a clear channel.

At the beginning of a contention-free period, the access point senses the medium; and if it is idle, it sends a beacon packet to all stations. The beacon packet contains the length of the contention-free interval. The MAC coordination in each member station places the length of the contention-free interval in the station's Network Allocation Vector (NAV), which prevents the station from taking control of the medium until the end of the contention-free period. During the contention-free period, the access point can send a polling message to a member station, enabling it to send a data packet to any other station in the BSS wireless cell.

Quality Of Service (QoS)

Quality of service (QoS) is a measure of service quality provided to a customer. The primary measures of QoS are message loss, message delay, and network availability. Voice and video applications have the most rigorous delay and loss requirements. Interactive data applications such as Web browsing have less restrained delay and loss requirements, but they are sensitive to errors. Non-real-time applications such as file transfer, email, and data backup operate acceptably across a wide range of loss rates and delay. Some applications require a minimum amount of capacity to operate at all - for example, voice and video. Many network providers guarantee specific QoS and capacity levels through the use of Service-Level Agreements (SLAs). An SLA is a contract between an enterprise user and a network provider that specifies the capacity to be provided between points in the network that must be delivered with a specified QoS. If the network provider fails to meet the terms of the SLA, then the user may be entitled a refund. The SLA is typically offered by network providers for private line, frame relay, ATM, or Internet networks employed by enterprises.

The transmission of time-sensitive and data application traffic over a packet network imposes requirements on the delay or delay jitter, and the error rates realized; these parameters are referred to generically as the QoS (Quality of Service) parameters. Prioritized packet scheduling, preferential packet dropping, and bandwidth allocation are among the techniques available at the various nodes of the network, including access points, that enable packets from different applications to be treated differently, helping achieve the different quality of service objectives. Such techniques exist in centralized and distributed variations.

Management of contention for the shared transmission medium must reflect the goals sought for the performance of the overall system. For instance, one such goal would be the maximization of goodput (the amount of good data transmitted as a fraction of the channel capacity) for the entire system, or of the utilization efficiency of the RF spectrum; another is the minimization of the worst-case delay. As multiple types of traffic with different performance requirements are combined into packet streams that compete for the same transmission medium, a multi-objective optimization is required.

Ideally, one would want a multiple access protocol that is capable of effecting packet transmission scheduling as close to the optimal scheduling as possible, but with distributed control. Distributed control implies both some knowledge of the attributes of the competing packet sources and limited control mechanisms.

To apply any scheduling algorithm in random multiple access, a mechanism must exist that imposes an order in which packets will seize the medium. For distributed control, this ordering must be achieved independently, without any prompting or coordination from a control node. Only if there is a reasonable likelihood that packet transmissions will be ordered according to the scheduling algorithm can one expect that the algorithm's proclaimed objective will be attained.

The above-cited, copending patent application by Mathilde Benveniste, entitled "Tiered Contention Multiple Access (TCMA): A Method for Priority-Based Shared Channel Access," describes the Tiered Contention Multiple Access (TCMA) distributed medium access protocol that schedules transmission of different types of traffic based on their QoS service quality specifications. This protocol makes changes to the contention window following the transmission of a frame and therefore is also called Extended-DCF (E-DCF). During the contention window, the various stations on the network contend for access to the network. To avoid collisions, the MAC protocol requires that each station first wait for a randomly chosen time period, called an arbitration time. Since this period is chosen at random by each station, there is less likelihood of collisions between stations. TCMA uses the contention window to give higher priority to some stations than to others. Assigning a short contention window to those stations that should have higher priority ensures that, in most cases, the higher- priority stations will be able to transmit ahead of the lower-priority stations. TCMA schedules transmission of different types of traffic based on their QoS service quality specifications. A station cannot engage in backoff countdown until the completion of an idle period of length equal to its arbitration time. The above-cited, copending patent application by Mathilde Benveniste also applies TCMA to the use of the wireless access point as a traffic director. This application of the TCMA protocol is called the hybrid coordination function (HCF). In HCF, the access point uses a polling technique as the traffic control mechanism. The access point sends polling packets to a succession of stations on the network. The individual stations can reply to the poll with a packet that contains not only the response, but also any data that needs to be transmitted. Each station must wait to be polled. The access point establishes a polling priority based on the QoS priority of each station.

What is needed in the prior art is a way to reduce interference between overlapping first and second wireless LAN cells contending for the same medium.

SUMMARY OF THE INVENTION

In accordance with the invention, a method and system reduce interference between overlapping first and second wireless LAN cells contending for the same medium. Each cell includes a respective plurality of member stations. An inter-cell contention-free period value is assigned to a first access point station in the first cell, associated with an accessing order in the medium for member stations in the first and second cells. The access point in the first cell transmits an initial shield packet to deter other stations from contending for the medium. The access point then transn its a beacon packet containing the inter-cell contention- free period value to member stations in the second cell. A second access point in the second cell can then delay transmissions by member stations in the second cell until after the inter-cell contention-free period expires. The beacon packet sent by the first access point station also includes an intra-cell contention-free period value, which causes the member stations in the first cell to delay accessing the medium until polled by the first access point. After the expiration of the intra-cell contention-free period, member stations in the first cell may contend for the medium based on the quality of service (QoS) data they are to transmit, using the Tiered Contention Multiple Access (TCMA) protocol. In this manner, interference in a medium between overlapping wireless LAN cells is reduced.

DESCRIPTION OF THE FIGURES

Figures 1 through II show the interaction of two wireless LAN cells which have overlapping access points contending for the same medium, in accordance with the invention.

Figure 2A shows the IEEE 802.11 packet structure for a Shield packet, in accordance with the invention.

Figure 2B shows the IEEE 802.11 packet structure for a beacon packet, including the increment to the NAV period and the CFTR period.

Figure 3 illustrates a timing diagram for the transmission of the shield packet. Figure 4 shows a timing diagram of a sample contention-free session (CFS) structure, which includes the shield packet, the beacon packet, and the exchange of data packets during the contention-free period shown in Figures 1, 1A through lC.

DISCUSSION OF THE PREFERRED EMBODIMENT The invention disclosed broadly relates to telecommunications methods and more particularly relates to wireless cells that have overlapping stations contending for the same medium. An inter-cell contention-free period value is assigned to a first access point station in the first cell, associated with an accessing order in the medium for member stations in the first and second cells. The access point in the first cell transmits an initial shield packet to deter other stations from contending for the medium. The access point then transmits a beacon packet containing the inter-cell contention-free period value to member stations in the second cell. A second access point in the second cell can then delay transmissions by member stations in the second cell until after the inter-cell contention-free period expires. The beacon packet sent by the first access point station also includes an intra- cell contention-free period value, which causes the member stations in the first cell to delay accessing the medium until polled by the first access point. After the expiration of the intra-cell contention- free period, member stations in the first cell may contend for the medium based on the quality of service (QoS) data they are to transmit, using the Tiered Contention Multiple Access (TCMA) protocol.

Tiered Contention Multiple Access (TCMA) protocol is applied to wireless cells that have overlapping access points contending for the same medium. Quality of service (QoS) support is provided to overlapping access points to schedule transmission of different types of traffic based on the service quality specifications of the access points. A description of Tiered Contention Multiple Access (TCMA) protocol applied to overlapping wireless cells is provided in the following two copending U.S. Patent Applications, which are incorporated herein by reference: Serial No. 09/985,257, filed November 2, 2001, by Mathilde Benveniste, entitled "Tiered Contention Multiple Access (TCMA): A Method For Priority-Based Shared Channel Access," and Serial No. 10/187,132, filed June 28, 2002, by Mathilde

Benveniste, entitled "Hybrid Coordination Function (HCF) Access Through Tiered Contention And Overlapped Wireless Cell Mitigation,"

The method assigns a first scheduling tag to a first access point station in a first wireless LAN cell. The scheduling tag has a value that determines an accessing order for the cell in a transmission frame, with respect to the accessing order of other wireless cells. The scheduling tag value is deterministically set. The scheduling tag value can be permanently assigned to the access point by its manufacturer; it can be assigned by the network administrator at network startup; it can be assigned by a global processor that coordinates a plurality of wireless cells over a backbone network; it can be drawn from a pool of possible tag values during an initial handshake negotiation with other wireless stations; or it can be cyclically permuted in real-time, on a frame-by- frame basis, from a pool of possible values, coordinating that cyclic permutation with that of other access points in other wireless cells. An access point station 152 in wireless cell 150 connected to backbone network 160 in Figure 1 signals the beginning of an intra-cell contention-free period for member stations 154 A and 154B in its cell by transmitting a shield packet 118 during the period from TO to T 1. The shield packet 118 or 119 is a short packet, such as a Physical Layer Convergence Procedure (PLCP) header without the MAC data, as shown in Figure 2A. The shield packet 118 makes the wireless channel appear busy to any station receiving the shield packet. This includes not only the member stations 154A and 154B in cell 150, but also any stations in another overlapped cell, such as cell 100. Access point 102 and the stations 104 A, 104B, and 106 of the overlapped cell 100 also receive the shield packet 118. All such stations listen to the channel; and when they receive the shield packet 118, they defer transmitting on what they perceive to be a busy channel. The transmitting access point 152 is thus assured that no other station will begin contending for the medium while the access point 152 is sending a beacon packet in the next step, shown in Figure 1 A. A timing diagram for the transmission of the shield packet is shown in Figures 3 and 4. Figure 2A shows the IEEE 802.11 packet structure 360 for a shield packet 118. The shield packet structure 360 includes fields 361 to 367. Field 365 is the PLCP header and field 367 is the empty frame body. Figure 1 A shows the access point 152 of cell 150 transmitting the beacon packet 124 during the period from Tl to T2. The beacon packet 124, shown in Figure 2B, includes two contention-free period values. The first is the Network Allocation Vector (NAV) (or alternately its incremental value ΔNAV), which specifies a period value P3 for the intra-cell contention-free period for member stations in its own cell 150. Member stations within the cell 150 must wait for the period P3 before beginning the Tiered Contention Multiple Access (TCMA) procedure. The other contention-free period value included in the beacon packet 124 is the Inter-BSS Network Allocation Vector (IBNAV), which specifies the contention-free time response (CFTR) period P4. The contention-free time response (CFTR) period P4 gives notice to any other cell receiving the beacon packet, such as cell 100, that the first cell 150 has seized the medium for the period of time represented by the value P4. A timing diagram for the transmission of the beacon packet is shown in Figure 4.

The beacon packet 124 is received by the member stations 154 A (with a low QoS requirement 164 A) and 154B (with a high QoS requirement 164B) in the cell 150 during the period from Tl to T2. The member stations 154A and 154B store the value of ΔNAV = P3 and begin counting down that value during the contention free period of the cell 150. The duration of the intra-cell contention-free period ΔNAV = P3 is deterministically set. The member stations in the cell store the intra-cell contention-free period value P3 as the Network Allocation Vector (NAV). Each member station in the cell 150 decrements the value of the NAV in a manner similar to other backoff time values, during which it will delay accessing the medium. Figure 2B shows the IEEE 802.11 packet structure 260 for the beacon packet 124 or 120, including the increment to the NAV period and the CFTR period. The value P4 specifies the Inter-BSS Network Allocation Vector (IBNAV), i.e., the contention-free time response (CFTR) period that the second access point 102 must wait while the first cell 150 has seized the medium. The beacon packet structure 260 includes fields 261 to 267. Field 267 specifies the ΔNAV value of P3 and the CFTR value of P4. The method assigns to the first access point station a first inter-cell contention-free period value, which gives notice to any other cell receiving the beacon packet that the first cell has seized the medium for the period of time represented by the value. The inter-cell contention-free period value is deterministically set. If the cells 100 and 150 are mostly overlapped, as in region 170 shown in Figure 1 A, then transmissions from any one station in one cell 150 will be received by most or all stations in the overlapped cell 100. The beacon packet 124 transmitted by the access point 152 in cell 150 is received by all of the stations in cell 150 and all of the stations in cell 100, in Figure 1 A. Alternately, if only one or a small portion of stations are in the region of overlap 170, then a contention-free time response (CFTR) packet will be used to relay the information in the beacon packet to those stations remote from the transmitting station. The description of the CFTR packet and its operation is provided in the copending U.S. Patent Application Serial No. 10/187,132, filed June 28, 2002, by Mathilde Benveniste, entitled "Hybrid Coordination Function (HCF) Access Through Tiered Contention and Overlapped Wireless Cell Mitigation," incorporated herein by reference. For a partially overlapped region 170, any station receiving the beacon packet 124 immediately rebroadcasts a contention-free time response (CFTR) packet containing a copy of the first inter-cell contention-free period value P4. The value P4 specifies the Inter-BSS Network Allocation Vector (IBNAV), i.e., the contention-free time response (CFTR) period that the second access point 102 must wait while the first cell 150 has seized the medium. Ixi this manner, the notice is distributed to the second access point station 102 in the overlapping second cell 100.

Figure IB shows the point coordinator in access point 152 of cell 150 controlling the contention-free period within the cell 150 by using the polling packet "Dl" 128 during the period from T2 to T3. A timing diagram for the transmission of the polling packet is shown in Figure 4. In the mean time, the second access point 102 in the second cell 100 connected to backbone network 110 stores the first inter-cell contention-free period value P4 received in the CFTR packet 126, which it stores as the Inter- BSS Network Allocation Vector (IBNAV). The second access point 102 decrements the value of IBNAV in a manner similar to other backoff time values, during which it will delay accessing the medium. Figure 1C shows the wireless station 154 A in cell 150 responding to the polling packet 128 by returning a responsive data packet "Ul" 140. A timing diagram for the transmission of the responsive data packet "Ul" is shown in Figure 4. Subsequent, similar exchanges in cell 150 are shown in Figure 4, where access point 152 sends the polling packet "D2" and the polled station in cell 150 responds with data packet "U2". Access point 152 then sends the polling packet "D3", but there is no response from the polled tation in cell 150; so within a PIFS interval, access point 152 sends the polling packet "D4" and the polled station in cell 150 responds with data packet "U4". It is seen at this point in Figure ID and Figure 4 that the NAV value has been counted down to zero in the stations of cell 150, signifying the end of the contention-free session (CFS) for cell 150. Figure ID also shows that the IBNAV value in the access point 102 and the CFTR value in the other stations of the overlapped cell 100 have also been counted down to zero. The second access point 102 in the cell 100 takes this as its cue to transmit a shield packet 119 to begin a contention-free session (CFS) for cell 100.

The method similarly assigns to the second access point 102 station in the second wireless LAN cell 100 that overlaps the first sell 150 a second contention-free period value CFTR=P7 longer than the first contention-free period value CFTR=P4. Figure ID shows the second access point 102 in the cell 100 transmitting a shield packet 119 during the period from T4 to T5. The shield packet 119 is a short packet, such as a Physical Layer Convergence Procedure (PLCP) header without the MAC data, as shown in Figure 2 A. The shield packet 119 makes the wireless channel appear busy to any station receiving the shield packet. This includes not only the member stations 104A, 104B, and 106 in cell 100, but also any stations in another overlapped cell, such as cell 150. The access point 152 and stations 154A and 154B of the overlapped cell 150 also receive the shield packet 119. All such stations receiving the shield packet 119 delay transmitting on what they perceive to be a busy channel. The transmitting access point 102 is thus assured that no other station will begin contending for the medium while the access point 102 is sending a beacon packet in the next step, shown in Figure IE.

Access point 102 in cell 100 sends its beacon packet 120 in Figure IE, including its contention-free period values of NAV (P6) and IBNAV (P7), to the member stations 104A (with a low QoS requirement 114A), 104B (with a high QoS requirement 114B) and 106 in the cell 100 during the period from T5 to T6. The stations 152, 154A, and 154B of the overlapped cell 150 also receive the beacon packet 120. Figure IF shows the point coordinator in access point 102 of cell 100 controlling the contention-free period within cell 100 using the polling packet 132 during the period from T6 to T7. Figure IG shows the wireless station 104B in cell 100 responding to the polling packet 132 by returning a responsive data packet 142. It is seen at this point in Figure 1H that the NAV value has been counted down to zero in the stations of cell 100, signifying the end of the contention-free session (CFS) for cell 100. Figure 1H also shows that the IBNAV value in the access point 152 and the CFTR value in the other stations of the overlapped cell 150 have also been counted down to zero. All of the stations in both cells 100 and 150 have their NAV and CFTR/IBNAV values at zero, and they take this as their cue to begin the contention period. The method uses the Tiered Contention Multiple

Access (TCMA) protocol to assign to first member stations in the first cell 150 a first shorter backoff value for high quality of service (QoS) data and a first longer backoff value for lower QoS data. Figure 1H shows the station 154B in the cell 150, having a high QoS requirement 164B, decreasing its high QoS backoff period to zero and beginning TCMA contention. Station 154B transmits a request-to-send (RTS) packet 144 to station 154A during the period from T8 to T9. Station 154A responds by sending a clear-to-send (CTS) packet to station 154B. Then, station 154B transmits its high QoS data packet 130 during the period from T9 to T10 in Figure II. The backoff time is the interval that a member station waits after the expiration of the contention-free period P3 before the member station 154B contends for access to the medium. Since more than one member station in a cell may be competing for access, the actual backoff time for a particular station can be selected as one of several possible values. In one embodiment, the actual backoff time for each particular station is deterministically set, so as to reduce the length of idle periods. In another embodiment, the actual backoff time for each particular station is randomly drawn from a range of possible values between a minimum delay interval to a maximum delay interval. The range of possible backoff time values is a contention window. The backoff values assigned to a cell may be in the form of a specified contention window. High QoS data is typically isochronous data, such as streaming video or audio data, that must arrive at its destination at regular intervals. Low QoS data is typically file transfer data and email, which can be delayed in its delivery and yet still be acceptable. The Tiered Contention Multiple Access (TCMA) protocol coordinates the transmission of packets within a cell so as to give preference to high QoS data over low QoS data to insure that the required quality of service is maintained for each type of data.

The method uses the Tiered Contention Multiple Access (TCMA) protocol to assign to second member stations in the second cell 100 a second shorter backoff value for high QoS data and a second longer backoff value for lower QoS data.

The first and second cells are considered to be overlapped when one or more stations in the first cell can inadvertently receive packets from member stations or the access point of the other cell. The invention reduces the interference between the overlapped cells by coordinating the timing of their respective transmissions, while maintaining the TCMA protocol's preference for the transmission of high QoS data over low QoS data in each respective cell.

The following definitions are believed to be helpful to an understanding of the invention. Contention-free burst (CFB): A technique for reducing MAC layer wireless medium (WM) access overhead and susceptibility to collisions, in which a single station may transfer a plurality of MAC protocol data units (MPDUs) during a single transmission opportunity (TXOP), retaining control of the WM by using interframe spaces sufficiently short that the entire burst appears to be a single instance of WM activity to contending stations.

Contention-free session (CFS): Any frame exchange sequence that may occur without contention following a successful channel access attempt. A CFS may involve one or more stations. A CFS may be initiated by any station. A contention-free burst (CFB) and an RTS/CTS exchange are both examples of a CFS. A contention-free burst (CFB) is a special case of a contention-free session (CFS) that is started by a hybrid coordinator (HC).

Contention-free period (CFP): A time period during operation of a basic service set (BSS) when a point coordination function (PCF) or hybrid coordination function (HCF) is used, and transmission opportunities (TXOPs) are assigned to stations by a point coordinator (PC) or hybrid coordinator (HC), allowing frame exchanges to occur without inter-station contention for the wireless medium (WM) and at regular time intervals. Periodic contention-free period (PCFS): A contention-free session (CFS) that must occur at regular time intervals. A contention-free period (CFP) is an example of a PCFS.

The description of the invention can be simplified by considering that CFSs/PCFSs are initiated by access points (AP). However, CFSs/PCFSs can be initiated by any station, whether or not it is an AP.

A CFS may collide with (E)DCF transmissions if there are idle gaps longer than PIFS following a transmission. Such gaps can occur in Cyclic Prioritized Multiple Access (CPMA) if an AP retires or at the head of a sequence of contiguous CFSs. Gaps can also occur in all HCF access methods using random backoff.

The CFS structure protects a CFS in case of a collision with an (E)DCF transmission. The CFS is delayed for subsequent transmission, interference-free. Furthermore, the channel is reserved by causing a break in the current idle, if one exists.

Figure 3 shows a timing diagram for the transmission of the shield packet. A CFS is started with the shield packet, which is a short frame (e.g., Physical Layer Convergence Procedure (PLCP) header without MAC data). The AP will wait for an idle period of PIFS to transmit following the shield. If an (E)DCF transmission collides with the shield, the AP will hear the transmission and defer initiation of the CFS body. After completion of the (E)DCF transmission, the CFS will start, following a PIFS idle. Transmission of the shield before the CFS body is not always needed. For example, it is not needed if the AP knows that the idle gap between the CFS and the previous transmission is equal to PIFS - i.e., when the backoff delay is 1 during the last busy period. Figure 4 shows a timing diagram of a sample CFS structure. It includes the shield packet, the beacon packet, and the exchange of data packets during the contention-free period shown in Figures 1, 1 A through lC. All stations listen to the channel; and when they receive the shield packet, they defer transmitting on what they perceive to be a busy channel. The transmitting access point is thus assured that no other station will begin contending for the medium while the access point is sending a beacon packet. If another station and the access point have simultaneously begun transmission, then the benefit of the shield packet is that the other station's (E)DCF transmissions colliding with the shield packet will cause postponement of the start of the CFS body by the access point until the channel is clear. The CFS is thus assured of no (E)DCF conflict because of its shorter Arbitration Interframe Space (AIFS). While the other station's colliding (E)DCF transmission is unsuccessful, the CFS body will be transmitted later by the access point without conflict. Channel time is saved this way if CFSs are longer than DCF transmissions. This method can also be applied to PCFSs if there is no other mechanism to protect them from collisions with (E)DCF transmissions, as there is in the point coordination function (PCF). Still further, a special shield packet may also be used in Inter-BSS NAV protection.

Various illustrative examples of the invention have been described in detail. In addition, however, many modifications and changes can be made to these examples without departing from the nature and spirit of the invention.

Claims

CLAIMSWhat Is Claimed Is:
1. A method for reducing interference between overlapping first and second wireless LAN cells in a medium, each cell including a respective plurality of member stations, comprising: assigning an inter-cell contention-free period value to a first member station in the first cell, associated with an accessing order in the medium for member stations in the first and second cells during a transmission frame; transmitting by the first member station in the first cell, a shield packet to deter other stations from contending for the medium; transmitting by the first member station in the first cell, a beacon packet containing the inter-cell contention-free period value; receiving the beacon packet at member stations in the second cell; and delaying transmissions by member stations in the second cell until after said inter-cell contention-free period.
2. The method of claim 1, which further comprises: transmitting in the beacon packet to member stations in the first cell an intra-cell contention-free period value, during which they will delay accessing the medium.
3. The method of claim 2, which further comprises: transmitting by the first member station in the first cell during the intra-cell contention-free period a polling packet to a second member station in the first cell authorizing the second station to transmit data.
4. The method of claim 3, wherein member stations in said first cell must wait to be polled with a polling packet from said first station before transmitting data during said intra-cell contention-free period.
5. The method of claim 2, which further comprises: assigning to member stations in the first cell a first shorter backoff time value for high quality of service (QoS) data and a first longer backoff time value for lower QoS data, a backoff time being an interval that a member station in the first cell must wait after expiration of the intra-cell contention-free period before the member station may contend for access to the medium.
6. A wireless communications system having reduced interference between overlapping first and second wireless LAN cells in a medium, each cell including a respective plurality of member stations, comprising: a first access point station in the first cell having an inter-cell contention-free period value associated with an accessing order in the medium for member stations in the first and second cells during a transmission frame; said first access point station transmitting a shield packet to deter other stations from contending for the medium; said first access point station transmitting a beacon packet containing the inter-cell contention-free period value; and a second access point station in the second cell receiving the inter-cell contention-free period value and delaying transmissions by member stations in the second cell until after said inter-cell contention-free period.
7. The system of claim 6, which further comprises: said first access point station transmitting in the beacon packet to member stations in the first cell an intra-cell contention- free period value, during which they will delay accessing the medium.
8. The system of claim 7, which further comprises: said first access point station transmitting in the first cell during the intra-cell contention-free period a polling packet to a second member station in the first cell authorizing the second station to transmit data.
9. The system of claim 8, wherein member stations in said first cell must wait to be polled with a polling packet from said first access point station before transmitting data during said intra-cell contention-free period.
10. The system of claim 7, which further comprises: high quality of service (QoS) member stations in the first cell, having a first shorter backoff time value for high quality of service (QoS) data and a first longer backoff time value for lower QoS data, a backoff time being an interval that a member station in the first cell must wait after expiration of the intra-cell contention- free period before the member station may contend for access to the medium.
11. A method for reducing interference between overlapping wireless LAN cells, each cell including an access point station and a plurality of member stations, comprising: assigning to a first access point station in a first wireless LAN cell a first contention-free period value; assigning to first member stations in said first cell a first shorter backoff value for high QoS data and a first longer backoff value for lower QoS data; assigning to a second access point station in a second wireless LAN cell that overlaps said first cell a second contention- free period value longer than said first contention-free period value; assigning to second member stations in said second cell a second shorter backoff value for high QoS data and a second longer backoff value for lower QoS data; transmitting by the first access point station in the first cell a shield packet to deter other stations from contending for the medium; transmitting a first beacon packet, including said first contention-free period value, from said first access point to said first member stations in said first cell; transmitting a second beacon packet, including said second contention-free period value, from said second access point to said second member stations in said second cell; transmitting a first contention-free time response frame containing said first contention-free period value from said first member stations, thereby alerting said second access point and said second member stations in said second cell that the medium has been seized by said first access point; waiting for said first contention-free period at said first member stations to begin counting down said first shorter backoff for high QoS data and then transmitting first high QoS data; waiting for said second contention-free period at said second member stations to begin counting down said second shorter backoff for high QoS data and then transmitting second high QoS data; waiting for said first contention-free period at said first member stations to begin counting down said first longer backoff for low QoS data and then transmitting first low QoS data; and waiting for said second contention-free period at said second member stations to begin counting down said second longer backoff for lower QoS data and then transmitting second lower QoS data.
PCT/US2002/034433 2000-11-03 2002-10-29 'shield': protecting high priority channel access attempts in overlapped wireless cells WO2003041427A1 (en)

Priority Applications (24)

Application Number Priority Date Filing Date Title
US33093001P true 2001-11-02 2001-11-02
US09/985,257 US7095754B2 (en) 2000-11-03 2001-11-02 Tiered contention multiple access (TCMA): a method for priority-based shared channel access
US60/330,930 2001-11-02
US09/985,257 2001-11-02
US33103001P true 2001-11-07 2001-11-07
US60/331,030 2001-11-07
US33121101P true 2001-11-13 2001-11-13
US60/331,211 2001-11-13
US34234301P true 2001-12-21 2001-12-21
US60/342,343 2001-12-21
US10/187,132 2002-06-28
US10/187,132 US7277413B2 (en) 2001-07-05 2002-06-28 Hybrid coordination function (HCF) access through tiered contention and overlapped wireless cell mitigation
US10/256,299 2002-09-27
US10/256,471 2002-09-27
US10/256,309 2002-09-27
US10/256,516 US7180905B2 (en) 2001-11-02 2002-09-27 Access method for periodic contention-free sessions
US10/256,309 US7245605B2 (en) 2001-11-02 2002-09-27 Preemptive packet for maintaining contiguity in cyclic prioritized multiple access (CPMA) contention-free sessions
US10/256,516 2002-09-27
US10/256,299 US7248600B2 (en) 2001-11-02 2002-09-27 ‘Shield’: protecting high priority channel access attempts in overlapped wireless cells
US10/256,471 US7277415B2 (en) 2001-11-02 2002-09-27 Staggered startup for cyclic prioritized multiple access (CPMA) contention-free sessions
US10/256,384 US7280517B2 (en) 2001-11-02 2002-09-27 Wireless LANs and neighborhood capture
US10/256,305 2002-09-27
US10/256,305 US7245604B2 (en) 2001-11-02 2002-09-27 Fixed deterministic post-backoff for cyclic prioritized multiple access (CPMA) contention-free sessions
US10/256,384 2002-09-27

Publications (1)

Publication Number Publication Date
WO2003041427A1 true WO2003041427A1 (en) 2003-05-15

Family

ID=27583788

Family Applications (6)

Application Number Title Priority Date Filing Date
PCT/US2002/036425 WO2003039054A2 (en) 2000-11-03 2002-10-28 Wireless lans and neighborhood capture
PCT/US2002/034585 WO2003043357A1 (en) 2000-11-03 2002-10-29 Access method for periodic contention-free sessions
PCT/US2002/034433 WO2003041427A1 (en) 2000-11-03 2002-10-29 'shield': protecting high priority channel access attempts in overlapped wireless cells
PCT/US2002/034430 WO2003041428A1 (en) 2000-11-03 2002-10-29 Staggered startup for cyclic prioritized multiple acess (cpma) contention-free sessions
PCT/US2002/034434 WO2003041343A2 (en) 2000-11-03 2002-10-29 Fixed deterministic post-backoff for cyclic prioritized multiple access (cpma) contention-free sessions
PCT/US2002/034406 WO2003041346A1 (en) 2000-11-03 2002-10-29 Preemptive packet for maintaining contiguity in cyclic prioritized multiple access (cpma) contention-free sessions

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/US2002/036425 WO2003039054A2 (en) 2000-11-03 2002-10-28 Wireless lans and neighborhood capture
PCT/US2002/034585 WO2003043357A1 (en) 2000-11-03 2002-10-29 Access method for periodic contention-free sessions

Family Applications After (3)

Application Number Title Priority Date Filing Date
PCT/US2002/034430 WO2003041428A1 (en) 2000-11-03 2002-10-29 Staggered startup for cyclic prioritized multiple acess (cpma) contention-free sessions
PCT/US2002/034434 WO2003041343A2 (en) 2000-11-03 2002-10-29 Fixed deterministic post-backoff for cyclic prioritized multiple access (cpma) contention-free sessions
PCT/US2002/034406 WO2003041346A1 (en) 2000-11-03 2002-10-29 Preemptive packet for maintaining contiguity in cyclic prioritized multiple access (cpma) contention-free sessions

Country Status (2)

Country Link
AU (1) AU2002346389A1 (en)
WO (6) WO2003039054A2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7352772B2 (en) 2003-12-19 2008-04-01 Lenovo Singapore Pte. Ltd. Minimization of performance impact in overlying 802.11b and 802.11g networks
US7983231B2 (en) 2001-11-02 2011-07-19 At&T Intellectual Property Ii, L.P. Staggered startup for cyclic prioritized multiple access (CPMA) contention-free sessions
US7983232B2 (en) 2001-11-02 2011-07-19 At&T Intellectual Property Ii, L.P. Wireless LANs and neighborhood capture
US8064415B2 (en) 2001-11-02 2011-11-22 At&T Intellectual Property Ii, L.P. Fixed deterministic post-backoff for cyclic prioritized multiple access (CPMA) contention-free sessions
US8068449B2 (en) * 2001-07-05 2011-11-29 At&T Intellectual Property Ii, L.P. Hybrid coordination function (HCF) access through tiered contention and overlapped wireless cell mitigation
US8068470B2 (en) 2001-11-02 2011-11-29 At&T Intellectual Property Ii, L.P. Preemptive packet for maintaining contiguity in cyclic prioritized multiple access (CPMA) contention-free sessions
US8111682B2 (en) 2001-11-02 2012-02-07 At&T Intellectual Property Ii, L.P. “Shield”: protecting high priority channel access attempts in overlapped wireless cells
US8130770B2 (en) 2001-07-05 2012-03-06 At&T Intellectual Property Ii, L.P. Hybrid coordination function (HCF) access through tiered contention and overlapped wireless cell mitigation
US9270606B2 (en) 2000-11-03 2016-02-23 At&T Intellectual Property Ii, L.P. Tiered contention multiple access (TCMA): a method for priority-based shared channel access

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7027462B2 (en) 2001-01-02 2006-04-11 At&T Corp. Random medium access methods with backoff adaptation to traffic
US7180905B2 (en) 2001-11-02 2007-02-20 At & T Corp. Access method for periodic contention-free sessions
US20040053624A1 (en) * 2002-09-17 2004-03-18 Frank Ed H. Method and system for optimal load balancing in a hybrid wired/wireless network
US6980535B2 (en) 2003-08-28 2005-12-27 Motorola, Inc. Passive probing for handover in a local area network
US8483105B2 (en) 2003-10-15 2013-07-09 Qualcomm Incorporated High speed media access control
US8472473B2 (en) 2003-10-15 2013-06-25 Qualcomm Incorporated Wireless LAN protocol stack
US8233462B2 (en) 2003-10-15 2012-07-31 Qualcomm Incorporated High speed media access control and direct link protocol
US8462817B2 (en) 2003-10-15 2013-06-11 Qualcomm Incorporated Method, apparatus, and system for multiplexing protocol data units
US9226308B2 (en) 2003-10-15 2015-12-29 Qualcomm Incorporated Method, apparatus, and system for medium access control
WO2005062542A1 (en) * 2003-12-22 2005-07-07 Telefonaktiebolaget Lm Ericsson (Publ) A method in a communication system
US8903440B2 (en) 2004-01-29 2014-12-02 Qualcomm Incorporated Distributed hierarchical scheduling in an ad hoc network
US7564814B2 (en) 2004-05-07 2009-07-21 Qualcomm, Incorporated Transmission mode and rate selection for a wireless communication system
DE102004026495A1 (en) * 2004-05-27 2005-12-22 Ascom Systec Ag A method of operating a data connection
US8401018B2 (en) 2004-06-02 2013-03-19 Qualcomm Incorporated Method and apparatus for scheduling in a wireless network
MXPA06014557A (en) 2004-06-16 2007-06-14 Koninkl Philips Electronics Nv Distributed resource reservation in a wireless adhoc network.
US7961828B2 (en) 2004-10-06 2011-06-14 Motorola Mobility, Inc. Sync bursts frequency offset compensation
US8600336B2 (en) 2005-09-12 2013-12-03 Qualcomm Incorporated Scheduling with reverse direction grant in wireless communication systems
CN101371467B (en) 2006-01-11 2013-01-02 高通股份有限公司 Methods and apparatus relating to wireless terminal beacon signal generation, transmission, and/or use
US8811369B2 (en) 2006-01-11 2014-08-19 Qualcomm Incorporated Methods and apparatus for supporting multiple communications modes of operation
US8595501B2 (en) 2008-05-09 2013-11-26 Qualcomm Incorporated Network helper for authentication between a token and verifiers
CN102104884B (en) * 2009-12-22 2014-07-02 中兴通讯股份有限公司 Method and system for configuring idle interval by radio network controller (RNC)
US9173233B2 (en) * 2013-10-28 2015-10-27 Nokia Technologies Oy Communication efficiency
WO2015109571A1 (en) * 2014-01-26 2015-07-30 华为技术有限公司 Competition method, apparatus and system for channel of unlicensed frequency band

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5768267A (en) * 1995-10-18 1998-06-16 Telefonaktiebolaget Lm Ericsson Method for system registration and cell reselection
US6011784A (en) * 1996-12-18 2000-01-04 Motorola, Inc. Communication system and method using asynchronous and isochronous spectrum for voice and data
US6047175A (en) * 1996-06-28 2000-04-04 Aironet Wireless Communications, Inc. Wireless communication method and device with auxiliary receiver for selecting different channels
US6272117B1 (en) * 1998-02-20 2001-08-07 Gwcom, Inc. Digital sensing multi access protocol
US6434187B1 (en) * 1997-10-14 2002-08-13 Cypress Semiconductor Corp. Digital radiofrequency transceiver

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4682165A (en) * 1985-11-04 1987-07-21 Motorola, Inc. Apparatus for inhibiting repetitive message detections in a zone batched communication system
US5142533A (en) * 1991-03-28 1992-08-25 Motorola, Inc. Method for controlling the scheduling of multiple access to communication resources
US5315636A (en) * 1991-06-28 1994-05-24 Network Access Corporation Personal telecommunications system
JPH0677963A (en) * 1992-07-07 1994-03-18 Hitachi Ltd Communication system and terminal equipment
GB9304636D0 (en) * 1993-03-06 1993-04-21 Ncr Int Inc A method of accessing a communication system
US5355375A (en) * 1993-03-18 1994-10-11 Network Systems Corporation Hub controller for providing deterministic access to CSMA local area network
JPH08163130A (en) * 1994-12-02 1996-06-21 Nec Corp Access control system for radio lan
JP3349853B2 (en) * 1994-12-27 2002-11-25 富士通株式会社 Wireless lan system
US6343071B1 (en) * 1995-01-11 2002-01-29 Simtek Corporation Wireless desktop area network system
JP3349861B2 (en) * 1995-03-17 2002-11-25 富士通株式会社 Wireless lan system
CA2166343C (en) * 1995-12-29 1999-08-10 Lee F. Hartley Carrier sense collision avoidance with auto abort
FR2753863B1 (en) * 1996-09-20 1999-04-02 An emission of digital satellite information from several ground stations
US5987033A (en) * 1997-09-08 1999-11-16 Lucent Technologies, Inc. Wireless lan with enhanced capture provision
US6067291A (en) * 1997-09-23 2000-05-23 Lucent Technologies Inc. Wireless local area network with enhanced carrier sense provision
JP4015750B2 (en) * 1998-05-14 2007-11-28 株式会社東芝 Active array antenna system
AU1143602A (en) * 2000-10-06 2002-04-15 Aryya Communications Inc Systems and methods for interference mitigation among multiple wlan protocols
US7305004B2 (en) * 2001-01-16 2007-12-04 At&T Corp. Interference suppression methods for 802.11

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5768267A (en) * 1995-10-18 1998-06-16 Telefonaktiebolaget Lm Ericsson Method for system registration and cell reselection
US6047175A (en) * 1996-06-28 2000-04-04 Aironet Wireless Communications, Inc. Wireless communication method and device with auxiliary receiver for selecting different channels
US6011784A (en) * 1996-12-18 2000-01-04 Motorola, Inc. Communication system and method using asynchronous and isochronous spectrum for voice and data
US6434187B1 (en) * 1997-10-14 2002-08-13 Cypress Semiconductor Corp. Digital radiofrequency transceiver
US6272117B1 (en) * 1998-02-20 2001-08-07 Gwcom, Inc. Digital sensing multi access protocol

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9270606B2 (en) 2000-11-03 2016-02-23 At&T Intellectual Property Ii, L.P. Tiered contention multiple access (TCMA): a method for priority-based shared channel access
US8130770B2 (en) 2001-07-05 2012-03-06 At&T Intellectual Property Ii, L.P. Hybrid coordination function (HCF) access through tiered contention and overlapped wireless cell mitigation
US9420611B2 (en) 2001-07-05 2016-08-16 At&T Intellectual Property Ii, L.P. Hybrid coordination function (HCF) access through tired contention and overlapped wireless cell mitigation
US9398594B2 (en) 2001-07-05 2016-07-19 At&T Intellectual Property Ii, L.P. Hybrid coordination function (HCF) access through tiered contention and overlapped wireless cell mitigation
US9179477B2 (en) 2001-07-05 2015-11-03 At&T Intellectual Property Ii, L.P. Hybrid coordination function (HCF) access through tiered contention and overlapped wireless cell mitigation
US8068449B2 (en) * 2001-07-05 2011-11-29 At&T Intellectual Property Ii, L.P. Hybrid coordination function (HCF) access through tiered contention and overlapped wireless cell mitigation
US9699793B2 (en) 2001-07-05 2017-07-04 At&T Intellectual Property Ii, L.P. Hybrid coordination function (HCF) access through tiered contention and overlapped wireless cell mitigation
US8532079B2 (en) 2001-11-02 2013-09-10 At&T Intellectual Property Ii, L.P. Preemptive packet for maintaining contiguity in cyclic prioritized multiple access (CPMA) contention-free sessions
US8111682B2 (en) 2001-11-02 2012-02-07 At&T Intellectual Property Ii, L.P. “Shield”: protecting high priority channel access attempts in overlapped wireless cells
US8068470B2 (en) 2001-11-02 2011-11-29 At&T Intellectual Property Ii, L.P. Preemptive packet for maintaining contiguity in cyclic prioritized multiple access (CPMA) contention-free sessions
US8913597B2 (en) 2001-11-02 2014-12-16 AT&T Intellectual Property II, L.P. via a transfer from AT&T Corp. Fixed deterministic post-backoff for cyclic prioritized multiple access (CPMA) contention-free sessions
US8064415B2 (en) 2001-11-02 2011-11-22 At&T Intellectual Property Ii, L.P. Fixed deterministic post-backoff for cyclic prioritized multiple access (CPMA) contention-free sessions
US9191971B2 (en) 2001-11-02 2015-11-17 At&T Intellectual Property Ii, L.P. ‘Shield’: protecting high priority channel access attempts in overlapped wireless cells
US7995544B2 (en) 2001-11-02 2011-08-09 At&T Intellectual Property Ii, L.P. Wireless LANs and neighborhood capture
US9319906B2 (en) 2001-11-02 2016-04-19 At&T Intellectual Property Ii, L.P. Preemptive packet for maintaining contiguity in cyclic prioritized multiple access (CPMA) contention-free sessions
US7983232B2 (en) 2001-11-02 2011-07-19 At&T Intellectual Property Ii, L.P. Wireless LANs and neighborhood capture
US7983231B2 (en) 2001-11-02 2011-07-19 At&T Intellectual Property Ii, L.P. Staggered startup for cyclic prioritized multiple access (CPMA) contention-free sessions
US7352772B2 (en) 2003-12-19 2008-04-01 Lenovo Singapore Pte. Ltd. Minimization of performance impact in overlying 802.11b and 802.11g networks

Also Published As

Publication number Publication date
AU2002346389A1 (en) 2003-05-12
WO2003039054A3 (en) 2004-02-26
WO2003041343A3 (en) 2003-07-10
WO2003041346A1 (en) 2003-05-15
WO2003041428A1 (en) 2003-05-15
WO2003043357A1 (en) 2003-05-22
WO2003039054A2 (en) 2003-05-08
WO2003041343A2 (en) 2003-05-15

Similar Documents

Publication Publication Date Title
Tang et al. A protocol for topology-dependent transmission scheduling in wireless networks
Grilo et al. Performance evaluation of IEEE 802.11 e
Ni et al. A survey of QoS enhancements for IEEE 802.11 wireless LAN
US5329531A (en) Method of accessing a communication medium
US7616612B2 (en) Media access control apparatus and method for guaranteeing quality of service in wireless LAN
US8432888B2 (en) Wireless communication system, wireless communication device and wireless communication method, and computer program
EP1233574B1 (en) Unified Channel Access for Supporting Quality of Service (QoS) in a Local Area Network
EP1693992B1 (en) Methods and systems for providing priority access to 802.11 endpoints using DCF protocol
US8274961B2 (en) Apparatus and associated methodology of adjusting a RTS/CTS transmission protocol
CN100488150C (en) Data communication method using compensation digit control
US7289529B2 (en) Method and system for optimally serving stations on wireless LANs using a controlled contention/resource reservation protocol of the IEEE 802.11e standard
US9204464B2 (en) Control of quality of service in overlapping basic service sets in wireless local area networks
US7272119B2 (en) Methods and systems for quality of service in networks comprising wireless devices
US7539168B2 (en) Emergency call handling in contention-based wireless local-area networks
EP1430619B1 (en) A system and method employing algorithms and protocols for optimizing carrier sense multiple access (CSMA) protocols in wireless networks
KR100590896B1 (en) Medium Access Method for contention and contention-free
Lo et al. An efficient multipolling mechanism for IEEE 802.11 wireless LANs
US20050135409A1 (en) Polling in wireless networks
US7843819B1 (en) Protocol for wireless multi-channel access control
US7643509B2 (en) Hybrid implicit token carrier sensing multiple access/collision avoidance protocol
US7054329B2 (en) Collision avoidance in IEEE 802.11 contention free period (CFP) with overlapping basic service sets (BSSs)
US7356010B2 (en) Point coordinator control passing scheme using a scheduling information parameter set for an IEEE 802.11 wireless local area network
EP1627496B1 (en) Enhancing fairness and performance in a multihop ad hoc network
EP2421319B1 (en) Wireless LAN system and signal collision avoidance method for the same
EP1764961B1 (en) Medium access control method and apparatus in wireless distributed network

Legal Events

Date Code Title Description
AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
WWW Wipo information: withdrawn in national office

Country of ref document: JP

NENP Non-entry into the national phase in:

Ref country code: JP