WO2003040293A2 - Genes coding for stress resistance and tolerance proteins - Google Patents

Genes coding for stress resistance and tolerance proteins Download PDF

Info

Publication number
WO2003040293A2
WO2003040293A2 PCT/EP2002/012137 EP0212137W WO03040293A2 WO 2003040293 A2 WO2003040293 A2 WO 2003040293A2 EP 0212137 W EP0212137 W EP 0212137W WO 03040293 A2 WO03040293 A2 WO 03040293A2
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
srt
protein
cell
proteins
Prior art date
Application number
PCT/EP2002/012137
Other languages
German (de)
French (fr)
Other versions
WO2003040293A3 (en
Inventor
Oskar Zelder
Markus Pompejus
Hartwig Schröder
Burkhard Kröger
Corinna Klopprogge
Gregor Haberhauer
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to AU2002346804A priority Critical patent/AU2002346804A1/en
Priority to KR10-2004-7006800A priority patent/KR20040053279A/en
Priority to EP02783043A priority patent/EP1453964A2/en
Publication of WO2003040293A2 publication Critical patent/WO2003040293A2/en
Publication of WO2003040293A3 publication Critical patent/WO2003040293A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/34Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression

Definitions

  • Certain products and by-products of naturally occurring metabolic processes in cells are used in many industries, including the food, feed, cosmetic and pharmaceutical industries. These molecules, collectively referred to as “fine chemicals", include organic acids, both proteinogenic and non-proteinogenic amino acids, nucleotides and nucleosides, ipide and fatty acids, diols, carbohydrates, aromatic compounds, vitamins and cofactors, and enzymes. They are best produced using large-scale bacteria that have been developed to produce and secrete large quantities of the desired molecule.
  • a particularly suitable organism for this purpose is Corynebacterium glutamicum, a gram-positive, non-pathogenic bacterium. Through strain selection, a number of mutant strains have been developed that produce a range of desirable compounds. However, selecting strains that are improved in the production of a particular molecule is a time consuming and difficult process.
  • This invention provides novel nucleic acid molecules that can be used to identify or classify Corynebacterium glutamicum or related types of bacteria.
  • C. glutamicum is a gram-positive, aerobic bacterium that is commonly used in industry for the large-scale production of a number of fine chemicals, as well as for the degradation of hydrocarbons (e.g. when crude oil overflows) and for the oxidation of terpenoids.
  • the nucleic acid molecules can therefore be used to identify microorganisms that can be used for the production of fine chemicals, for example by fermentation processes.
  • SRT stress, resistance and tolerance
  • the nucleic acid molecules according to the invention can be used for the genetic manipulation of this organism in order to make it better and more efficient as a producer of one or more fine chemicals, by the ability of these proteins, the growth and reproduction of C. to enable glutamicum (and also the continuous production of one or more fine chemicals) under conditions which usually hinder the growth of the organism, for example those conditions which are used in fermentative cultivation in
  • Mna can improve the bacteria's ability to degrade misfolded proteins when the bacterium is exposed to high temperatures. If fewer misfolded (and possibly incorrectly regulated or non-functional) proteins interact with the normal reaction mechanisms in the cell, the ability of the cell to function normally in such a culture is increased, which in turn offers increased survivability. This overall increase in the number of cells with greater viability and activity in the culture should also increase in the yield, production, and / or efficiency of production of one or more desired fine chemicals due to the relatively larger number of cells that produce these chemicals in the culture cause.
  • This invention provides new SRT nucleic acid molecules that encode SRT proteins that, for example, can enable C. glutamicum to survive under conditions that are chemically or environmentally dangerous for this microorganism.
  • Nucleic acid molecules that encode an SRT protein are referred to here as SRT nucleic acid molecules.
  • the SRT protein participates in a metabolic pathway that enables C. glutamicum to survive under conditions that are either chemically or ecologically hazardous to this microorganism. are borrowed. Examples of these proteins are encoded by the genes listed in Table 1.
  • isolated nucleic acid molecules for example cDNAs
  • isolated nucleic acid molecules comprising a nucleotide sequence which encodes an SRT protein or biologically active sections thereof, and also nucleic acid fragments which act as primers or hybridization probes for detecting or amplifying SRT-coding nucleic acid (for example DNA or mRNA) are suitable.
  • the isolated nucleic acid molecule comprises one of the nucleotide sequences listed in Appendix A or the coding region or a complement thereof from one of these nucleotide sequences.
  • the isolated nucleic acid molecule encodes one of the amino acid sequences listed in Appendix B.
  • the preferred SRT proteins according to the invention also preferably have at least one of the SRT activities described here.
  • nucleic acid sequences of the sequence listing together with the sequence changes at the respective position described in Table 1 are defined as Appendix A.
  • the isolated nucleic acid molecule is at least 15 nucleotides long and hybridizes under stringent conditions to a nucleic acid molecule which comprises a nucleotide sequence from Appendix A.
  • the isolated nucleic acid molecule preferably corresponds to a naturally occurring nucleic acid molecule.
  • the isolated nucleic acid more preferably encodes a naturally occurring C. glutamicum SRT protein or a biologically active portion thereof.
  • vectors for example recombinant expression vectors which contain the nucleic acid molecules according to the invention, and host cells into which these vectors have been introduced.
  • a host cell that is grown in a suitable medium is used to produce an SRT protein.
  • the SRT protein can then be isolated from the medium or the host cell.
  • Another aspect of the invention relates to a genetically modified microorganism in which an SRT gene has been introduced or modified.
  • the genome of the microorganism can be obtained by introducing at least one ß nucleic acid molecule has been changed, which encodes the mutated SRT sequence as a transgene.
  • an endogenous SRT gene in the genome of the microorganism has been changed, for example functionally disrupted, by homologous recombination with an altered SRT gene.
  • the microorganism belongs to the genus Corynebacterium or Brevibacterium, Corynebacterium glutamicum being particularly preferred.
  • the microorganism is also used to produce a desired compound, such as an amino acid, particularly preferably lysine.
  • host cells that have more than one of the nucleic acid molecules described in Appendix A.
  • Such host cells can be produced in various ways known to those skilled in the art. For example, they can be transfected by vectors which carry several of the nucleic acid molecules according to the invention. However, it is also possible to introduce one nucleic acid molecule according to the invention into the host cell with one vector and therefore to use several vectors either simultaneously or in a staggered manner. Host cells can thus be constructed which carry numerous up to several hundred of the nucleic acid sequences according to the invention. Such an accumulation often leads to superadditive effects on the host cell with regard to fine chemical productivity.
  • Another aspect of the invention relates to an isolated SRT protein or a section, for example a biologically active section thereof.
  • the isolated SRT protein or its section has the ability to
  • the isolated SRT protein or a portion thereof is sufficiently homologous to an amino acid sequence of Appendix B that the protein or its portion still retains the ability to increase C. glutamicum survival under conditions appropriate for it Microorganisms are chemically or ecologically dangerous.
  • the invention also relates to an isolated SRT protein preparation.
  • the SRT protein comprises an amino acid sequence from Appendix B.
  • the invention relates to an isolated full-length protein which essentially forms a complete airtino acid sequence from Appendix B (which is encoded by an open reading frame in Appendix A) is homologous.
  • the SRT polypeptide or a biologically active portion thereof can be operably linked to a non-SRT polypeptide to form a fusion protein.
  • this fusion protein has a different activity than the SRT protein alone and, in other preferred embodiments, results in increased yields, increased production and / or efficiency in the production of a desired fine chemical from C. glutamicum.
  • the integration of this fusion protein into a host cell modulates the production of a desired compound from the cell in particularly preferred embodiments.
  • Another aspect of the invention relates to a method for producing a fine chemical.
  • the method provides for the cultivation of a cell which contains a vector which brings about the expression of an SRT nucleic acid molecule according to the invention, so that a fine chemical is produced.
  • this method also comprises the step of obtaining a cell which contains such a vector, the cell being transfected with a vector which brings about the expression of an SRT nucleic acid.
  • this method also comprises the step in which the fine chemical is obtained from the culture.
  • the cell belongs to the genus Corynebacterium or Brevibacterium.
  • Another aspect of the invention relates to methods for modulating the production of a molecule from a microorganism. These methods involve contacting the cell with a substance that modulates SRT protein activity or SRT nucleic acid expression so that a cell-associated activity is changed compared to the same activity in the absence of the substance.
  • the cell is modulated in terms of resistance to one or more chemicals or in terms of resistance to one or more ecological stress factors in such a way that the yields or the production rate of a desired fine chemical are improved by this microorganism.
  • the substance that modulates SRT protein activity stimulates SRT protein activity or SRT nucleic acid expression.
  • Another aspect of the invention relates to methods for modulating the yields of a desired compound from a cell, comprising introducing into a cell an SRT wild-type or mutant gene which either remains on a separate plasmid or is integrated into the genome of the host cell.
  • the integration into the genome can be random or by homologous recombination, so that the native gene is replaced by the integrated copy, which causes the production of the desired compound from the cell to be modulated.
  • these yields are increased.
  • the chemical is a fine chemical, which in an especially preferred embodiment is an amino acid. In a particularly preferred embodiment, this amino acid is L-lysine.
  • the present invention provides SRT nucleic acid and protein molecules which are involved in the survival of C. glutamicum when this microorganism is exposed to chemical or ecological pollutants.
  • the molecules according to the invention can be used in the modulation of the production of fine chemicals from microorganisms, since these SRT proteins are a measure for a continuous growth and multiplication of C. glutamicum in the presence of toxic chemicals or dangerous environmental conditions, such as, for example, during fermentative cultivation in Large scale occur.
  • toxic chemicals or dangerous environmental conditions such as, for example, during fermentative cultivation in Large scale occur.
  • fine chemical is known in the art and includes molecules that are produced by an organism and have applications in various industries, such as, but not limited to, the pharmaceutical, agricultural, and cosmetic industries. These compounds include organic acids, such as tartaric acid, itaconic acid and diamino-pimelic acid, both proteinogenic and non-proteinogenic amino acids, purine and pyrimidine bases, nucleosides and nucleotides (as described, for example, in Kuninaka, A. (1996) Nucleotides and related compounds, pp. 561-612, in Biotechnology Vol. 6, Rehm et al., Ed. VCH: Weinheim and the quotes contained therein, lipids, saturated and unsaturated fatty acids (e.g.
  • arachidonic acid diols (e.g. propanediol and butanediol), carbohydrates (e.g. hyaluronic acid and trehalose), aromatic compounds (e.g. aro Aatic amines, vanillin and indigo), vitamins and cofactors (as described in Ulimann's Encyclopedia of Industrial Chemistry, Vol. A27, "Vitamins", pp. 443-613 (1996) VCH: Weinheim and the quotes contained therein; and Ong, AS, Niki, E. and Packer, L. (1995) "Nutrition, Lipids, Health and Disease” Proceedings of the UNESCO / Confederation of Scientific and Technological Associations in Malaysia and the Society for Free Radical Research - Asia on Sept.
  • amino acids comprise the basic structural units of all proteins and are therefore essential for normal cell functions.
  • amino acid is known in the art.
  • the proteinogenic amino acids of which there are 20 types, serve as structural units for proteins in which they are linked to one another via peptide bonds, whereas the non-proteinogenic amino acids (of which hundreds are known) are usually not found in proteins (see Ullmann's Encyclopedia of Industrial Chemistry, Vol. A2, pp. 57-97 VCH: Weinheim (1985)).
  • the amino acids can be in the D or L configuration, although L-amino acids are usually the only type found in naturally occurring proteins.
  • Biosynthetic and degradation pathways of each of the 20 proteinogenic amino acids are well characterized in both prokaryotic and eukaryotic cells (see, for example, Stryer, L. Biochemistry, 3rd edition, pp. 578-590 (1988)).
  • essential amino acids histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan and valine
  • amino acids histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan and valine
  • amino acids are identified by simple biosynthetic pathways converted into the remaining 11 "non-essential” amino acids (alanine, arginine, asparagine, aspartate, cysteine, glutamate, glutamine, glycine, proline, serine and tyrosine).
  • Higher animals have the ability to synthesize some of these amino acids, but the essential amino acids must be ingested in order for normal protein synthesis to take place.
  • Lysine is not only an important amino acid for human nutrition, but also for monogastric animals such as poultry and pigs.
  • Glutamate is most commonly used as a flavor additive (monosodium glutamate, MSG) and widely used in the food industry, as well as aspartate, phenylalanine, glycine and cysteine.
  • Glycine, L-methionine and tryptophan are all used in the pharmaceutical industry.
  • Glutamine, valine, leucine, isoleucine, histidine, arginine, proline, serine and alanine are used in the pharmaceutical and cosmetic industries. Threonine, tryptophan and D- / L-methionine are widespread feed additives (Leuchtenberger, W. (1996) Amino acids - technical production and use, pp. 466-502 in Rehm et al., (Ed.) Biotechnology Vol 6, Chapter 14a, VCH: Weinheim).
  • amino acids are also used as precursors for the synthesis of synthetic amino acids and proteins such as N-acetylcysteine, S-carboxymethyl-L-cysteine, (S) -5-hydroxytryptophan and others, in Ulimann's Encyclopedia of Industrial Chemistry, Vol. A2, pp. 57-97, VCH, Weinheim, 1985 are suitable substances.
  • Cysteine and glycine are each produced from serine, the former by condensation of homocysteine with serine, and the latter by transferring the side chain ⁇ -carbon atom to tetrahydrofolate, in a reaction catalyzed by serine transhydroxyethylase.
  • Phenylalanine and tyrosine are synthesized from the precursors of the glycolysis and pentosephosphate pathway, erythrose-4-phosphate and phosphoenolpyruvate in a 9-step biosynthetic pathway that differs only in the last two steps after the synthesis of prephenate. Tryptophan is also produced from these two starting molecules, but its synthesis takes place in an 11-step process.
  • Tyrosine can be obtained by phenylalanine droxylase catalyzed reaction also from phenylalanine.
  • Alanine, valine and leucine are each biosynthetic products from pyruvate, the end product of glycolysis.
  • Aspartate is formed from oxa acetate, an intermediate of the citrate cycle.
  • Asparagine, methionine, threonine and lysine are each produced by converting aspartate.
  • Isoleucine is formed from threonine.
  • histidine is formed from 5-phosphoribosyl-1-pyrophosphate, an activated sugar.
  • Amino acids the amount of which exceeds the cell's protein biosynthesis requirement, cannot be stored and are instead broken down, so that intermediate products are provided for the main metabolic pathways of the cell (for an overview see Stryer, L., Biochemistry, 3rd ed. Chap. 21 "amino acid
  • Vitamins, cofactors and nutraceuticals comprise another group of molecules. Higher animals have lost the ability to synthesize them and must therefore absorb them, although they are easily synthesized by other organisms such as bacteria. These molecules are either biologically active molecules per se or precursors of biologically active substances that serve as electron carriers or intermediates in a number of metabolic pathways. In addition to their nutritional value, these compounds also have a significant industrial value as dyes, antioxidants and catalysts or other processing aids. (For an overview of the structure, activity and the industrial applications of these compounds, see, for example, Ulian's Encyclopedia of Industrial Chemistry, "Vitamins", Vol. A27, pp. 443-613, VCH: Weinheim, 1996).
  • vitamin is known in the art and includes nutrients derived from an organ must be required for normal function, but cannot be synthesized by this organism itself.
  • the group of vitamins can include cofactors and nutraceutical compounds.
  • cofactor encompasses non-proteinaceous compounds which are necessary for the occurrence of normal enzyme activity. These compounds can be organic or inorganic; the cofactor molecules according to the invention are preferably organic.
  • nutraceutical encompasses food additives which are harmful to plants and animals, in particular humans. Examples of such molecules are vitamins, antioxidants and also certain lipids (eg polyunsaturated fatty acids).
  • Thiamine is formed by chemical coupling of pyrimidine and thiazole units.
  • Riboflavin (vitamin B) is synthesized from guanosine 5 'triphosphate (GTP) and ribose 5' phosphate. Riboflavin in turn is used to synthesize flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD).
  • the family of compounds which are collectively referred to as "vitamin B6" (for example pyridoxine, pyridoxamine, pyridoxal 5 'phosphate and the commercially used pyridoxine hydrochloride) are all derivatives of the common structural unit 5-hydroxy-6-methylpyridine.
  • Panthothenate (pantothenic acid, R- (+) -N- (2,4-dihydroxy-3,3,3-dimethyl-1-oxobutyl) -ß-alanine) can be produced either by chemical synthesis or by fermentation.
  • the final steps in pantothenate biosynthesis consist of the ATP-driven condensation of ß-alanine and pantoic acid.
  • the enzymes responsible for the biosynthetic steps for the conversion into pantoic acid, into ⁇ -alanine and for the condensation into pantothenic acid are known.
  • the metabolically active form of pantothenate is coenzyme A, whose biosynthesis takes place over 5 enzymatic steps.
  • Pantothenate, pyridoxal-5 '-phospha, cysteine and ATP are the precursors of coenzyme A. These enzymes not only catalyze the formation of pantothenate, but also the production of (R) -pantoic acid, (R) -pantolactone, (R) -panthenol (provitamin B 5 ), pantethein (and its derivatives) and coenzyme A.
  • Lipoic acid is derived from octanoic acid and serves as a coenzyme in energy metabolism, where it becomes part of the pyruvate dehydrogenase complex and the ⁇ -ketoglutarate dehydrogenase complex.
  • the folates are a group of substances that are all derived from folic acid, which in turn is derived from L-glutanic acid, p-aminobenzoic acid and 6-methylptin.
  • Corrinoids such as the cobalamins and especially vitamin B ⁇
  • the porphyrins belong to a group of chemicals that are characterized by a tetrapyrrole ring system.
  • the biosynthesis of vitamin B ⁇ is sufficiently complex that it has not been fully characterized, but a large part of the enzymes and substrates involved is now known.
  • Nicotinic acid (nicotinate) and nicotinamide are pyridine derivatives, which are also called “niacin”.
  • Niacin is the precursor of the important coenzymes NAD (nicotinamide adenine dinucleotide) and NADP (nicotinamide adenine dinucleotide phosphate) and their reduced forms.
  • nucleic acid molecules which comprise a nitrogenous base, a pentose sugar (for RNA the sugar is ribose, for DNA the sugar is D-deoxyribose) and phosphoric acid.
  • nucleoside includes molecules that act as precursors by inhibiting the biosynthesis of these molecules or their mobilization to form nucleic acid molecules, it is possible to inhibit RNA and DNA synthesis if this activity is targeted at carcinogens
  • Inhibited cells inhibit the ability of tumor cells to divide and replicate, and there are nucleotides that do not form nucleic acid molecules, but that serve as energy sources (ie AMP) or as coenzymes (ie FAD and NAD).
  • the purine and pyridine bases, nucleosides and nucleotides also have other possible uses: as intermediates in the biosynthesis of various fine chemicals (e.g. thiamine, S-adenosyl methionine, folate or riboflavin), as energy sources for the cell (e.g. ATP or GTP) and for chemicals themselves, are commonly used as flavor enhancers (e.g. IMP or GMP) or for many medical applications (see e.g. Kuninaka, A., (1996) "Nucleotides and Related Compounds in Biotechnology Vol. 6, Rehm et al., VCH: Weinheim, pp. 561-612)
  • Enzymes that are involved in the purine, pyrimidine, nucleoside or nucleotide metabolism are also increasingly used as targets against the chemicals for crop protection, including fungicides, herbicides and insecticides are developed.
  • the purine nucleotides are synthesized from ribose 5-phosphate via a series of steps via the intermediate compound inosine 5 'phosphate (IMP), which leads to the production of guanosine 5'-monophosphate (GMP) or adenosine 5' -monophosphate (AMP), from which the triphosphate forms used as nucleotides can be easily produced.
  • IMP inosine 5 'phosphate
  • GMP guanosine 5'-monophosphate
  • AMP adenosine 5' -monophosphate
  • Pyrimidine biosynthesis takes place via the formation of uridine 5 'monophosphate (UMP) from ribose 5-phosphate. UMP in turn is converted into cytidine 5 'triphosphate (CTP).
  • the deoxy forms of all nucleotides are produced in a one-step reduction reaction from the diphosphate ribose form of the nucleotide to the diphosphate deoxyribose form of the nucleotide. After phosphorylation, these molecules can participate in DNA synthesis.
  • Trehalose consists of two glucose molecules which are linked to one another via an ⁇ , ot-1, 1 bond. It is commonly used in the food industry as a sweetener, as an additive for dried or frozen foods, and in beverages. However, it is also used in the pharmaceutical, cosmetics and biotechnology industries (see, e.g., Nishi oto et al., (1998) US Patent No. 5,759,610; Singer, MA and Lindquist, S. Trends Biotech 16 (1998) 460-467; Paiva, CLA and Panek, AD Biotech Ann. Rev. 2 (1996) 293-314; and Shiosaka, MJ Japan 172 (1997) 97-102). Trehalose is produced by enzymes from many microorganisms and is naturally released into the surrounding medium from which it can be obtained by methods known in the art.
  • Fine chemicals are usually produced by large-scale culture of bacteria that have been developed for the production and secretion of large quantities of these molecules.
  • this type of large-scale fermentation means that the microorganisms are subjected to various types of stress.
  • These stress factors include environmental and chemical stress. Examples of environmental stress commonly encountered in large fermentation cultures include mechanical stress, heat stress, stress due to lack of oxygen, stress due to oxygen radicals, pH stress and osmotic stress.
  • the stirring mechanism used to aerate the culture in most large fermenters generates heat, which increases the temperature of the culture. Temperature increases induce the well-described heat shock response, in which a set of proteins are expressed that are responsible for the survival of the bacterium in the face of high temperatures
  • glutamicum produces carbon dioxide as a waste product; the secretion of this molecule can acidify the culture medium due to the conversion of this molecule into carboxylic acid.
  • bacteria in culture are also often subject to an acidic pH stress. The opposite can also be true - if large amounts of basic waste materials are present in the culture medium, the bacteria in the culture can also be subjected to a basic pH stress.
  • the cells can also be subject to a number of chemical stress factors. These can fall into two categories. The first are natural waste products of metabolism and other processes that are secreted by the cell into the surrounding medium. The second are chemicals in the extracellular medium that do not come from the cell. When the cells secrete toxic waste products from the concentrated intracellular cytoplasm into the relatively much more dilute extracellular medium, these products spread so that the extracellular amounts of the potentially toxic compound are quite low. However, this cannot be the case with large-scale fermenter cultures of the bacterium: in a relatively small environment, so many bacteria grow with such a high metabolic rate that the waste products accumulate in the medium in almost toxic quantities. Examples of such waste products are carbon dioxide, metal ions and reactive oxygen species such as hydrogen peroxide.
  • each of these stress factors can influence the behavior of the microorganism during fermenter culture and can disrupt the production of the desired compound from these organisms.
  • osmotic stress from a microorganism can cause inappropriate or unsuitable rapid ingestion of one or more compounds, eventually leading to cellular damage or death from osmotic shock.
  • bacteria have elegant gene systems that are expressed under the influence of one or more stress factors, such as the heat shock system mentioned above.
  • Genes that are expressed in response to osmotic stress encode, for example, proteins that can transport or synthesize compatible solutes, so that the osmotic import or export of a specific molecule is reduced to manageable amounts.
  • genes for stress-induced bacterial proteins are those involved in trehalose biosynthesis, those encoding enzymes involved in the ppGpp mechanism, those involved in signal transduction, particularly those encoding two-component systems that are sensitive to osmotic pressure are sensitive, and those that code transcription factors that react to a variety of stress factors (for example, RssB analogs and / or sigma factors). Many other genes and their protein products are known.
  • the present invention is based, at least in part, on the discovery of new molecules, referred to herein as SRT nucleic acid and protein molecules, which enhance C. glutamicum's ability to survive in chemically or ecologically hazardous environments.
  • the SRT molecules confer C. glutamicum resistance to one or more ecological or chemical stress factors.
  • the activity of the SRT molecules according to the invention has an effect on the production of a desired fine chemical by this organism.
  • the SRT molecules according to the invention have a modulated activity such that the yield, production and / or efficiency of production of one or more fine chemicals from C. glutamicum is also modulated.
  • SRT protein or "SRT polypeptide” encompasses proteins that are involved in the resistance of C. glutamicum to one or more ecological or chemical stress factors. Examples of SRT proteins include those encoded by the SRT genes listed in Table 1 and Appendix A.
  • SRT gene or "SRT nucleic acid sequence” encompass nucleic acid sequences which encode an SRT protein which consists of a coding region and corresponding untranslated 5 'and 3' sequence regions. Examples of SRT genes are listed in Table 1.
  • production or “productivity” are known in the art and include the concentration of the fermentation product (for example the desired fine chemical which is formed within a defined period of time and a defined fermentation volume (for example kg product per hour per 1)
  • efficiency of production encompasses the time it takes to achieve a certain amount of production (e.g. how long it takes the cell to set up a certain throughput rate of a fine chemical).
  • yield or "product / carbon yield” is in the Known in the art and includes the efficiency of converting the carbon source to the product (ie, the fine chemical), for example, usually expressed as kg product per kg carbon source, increasing the yield or production of the compound will increase the amount of molecules or the appropriate ones recovered Molecules of this compound in a particular cul quantity increased over a specified period.
  • biosynthesis or “biosynthetic pathway” are known in the art and encompass the synthesis of a compound, preferably an organic compound, by a cell from intermediate compounds, for example in a multi-step or highly regulated process.
  • degradation or “degradation path” are known in the art and include the cleavage of a compound, preferably an organic compound, by a cell into degradation products (more generally, smaller or less complex molecules), e.g. in a multi-step or highly regulated Process.
  • degradation or “degradation path” are known in the art and include the degradation of a compound, preferably an organic compound, by a cell into degradation products (more generally, smaller or less complex molecules) in a multi-step or highly regulated process, for example.
  • metabolism is known in the art and encompasses all of the biochemical reactions that take place in an organism.
  • the metabolism of a certain compound encompasses all biosynthesis, modification and degradation pathways of this compound in the cell.
  • the terms “resistance” and “tolerance” are well known in the art and include the ability of a cell to withstand exposure to a chemical or environment that would otherwise be detrimental to the normal functioning of this organism.
  • the terms “stress” or “pollutant” include factors that are normal for the Function of cells such as C. glutamicum are harmful. Examples of stress factors include “chemical stress” in which the cell is exposed to one or more chemicals that are harmful to the cell, and “environmental stress” in which the cell is exposed to an environmental condition to which it is not adapted.
  • Chemical stressors can be either natural metabolic waste products, such as, but not limited to, reactive oxygen species or carbon dioxide, or chemicals that are otherwise present in the environment, including but not limited to heavy metal ions or bacteriocidal proteins such as antibiotics.
  • Environmental stress factors can be, but are not limited to, temperatures outside the normal range, suboptimal oxygen availability, osmotic pressures, or, for example, pH extremes.
  • the SRT molecules according to the invention can modulate the production of a desired molecule, such as a fine chemical, in a microorganism, such as C. glutamicum.
  • a desired molecule such as a fine chemical
  • a microorganism such as C. glutamicum.
  • one or more SRT proteins according to the invention can be manipulated in such a way that their function is modulated.
  • Changing the activity of stress response, resistance, or tolerance genes to increase the tolerance of the cell to one or more stress factors can improve the cell's ability to grow and multiply under the relatively stressful conditions of a large fermenter culture .
  • Overexpression or manipulation of a heat shock-induced chaperone molecule so that it obtains optimal activity can, for example, increase the ability of a bacterium to fold proteins correctly under non-optimal temperature conditions.
  • the genome of a Corynebacterium glutamicum strain which is available from the American Type Culture Collection under the name ATCC 13032, is suitable as a starting point for producing the nucleic acid sequences according to the invention.
  • the nucleic acid sequences according to the invention can be produced from these nucleic acid sequences by conventional methods using the changes described in Table 1.
  • the SRT protein according to the invention or a biologically active section or fragments thereof can confer resistance and / or tolerance to one or more chemical or ecological stress factors, or can have one or more of the activities listed in Table 1.
  • nucleic acid molecules which encode SRT polypeptides or biologically active sections thereof, and to nucleic acid fragments which are sufficient for use as hybridization probes or primers for identifying or amplifying SRT-encoding nucleic acids (for example SRT-DNA).
  • nucleic acid molecule is intended to encompass DNA molecules (eg cDNA or genomic DNA) and RNA molecules (eg RNA) as well as DNA or RNA analogs which are generated by means of nucleotide analogs.
  • This term also includes the untranslated sequence located at the 3 'and 5' ends of the coding region: at least about 100 nucleotides of the sequence upstream of the 5 'end of the coding region and at least about 20 nucleotides of the sequence downstream of the 3' end of the coding gene region.
  • the nucleic acid molecule can be single-stranded or double-stranded, but is preferably a double-stranded DNA.
  • An "isolated" nucleic acid molecule is separated from other nucleic acid molecules that are present in the natural source of the nucleic acid.
  • an "isolated" nucleic acid preferably has no sequences that naturally flank the nucleic acid in the geno i- see DNA of the organism from which the nucleic acid originates (for example, sequences that are located at the 5 'or 3' end of the nucleic acid are located) .
  • the isolated SRT nucleic acid molecule can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of the nucleotide sequences that naturally contain the nucleic acid molecule in the genomic Flank the DNA of the cell from which the nucleic acid originates (for example a C. glutamicum cell).
  • An "isolated" nucleic acid molecule such as a cDNA molecule, can moreover be essentially free of another cellular material or culture medium if it is produced by recombinant techniques, or be free of chemical precursors or other chemicals when chemically synthesized.
  • a nucleic acid molecule according to the invention for example a nucleic acid molecule with a nucleotide sequence from Appendix A or a section thereof, can be isolated using standard molecular biological techniques and the sequence information provided here.
  • a C. glutamicum SRT cDNA can be isolated from a C. glutamicum bank by using a complete sequence from Appendix A or a portion thereof as a hybridization probe and standard hybridization techniques (as described, for example, in Sambrook, J. , Fritsch, EF and Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).
  • a nucleic acid molecule comprising a complete sequence from Appendix A or a section thereof can be isolated by polymerase chain reaction, using the oligonucleotide primers which have been created on the basis of this sequence (for example a nucleic acid molecule can comprise a complete sequence) Appendix A, or a portion thereof, can be isolated by polymerase chain reaction using oligonucleotide primers made from this same sequence from Appendix A).
  • mRNA can be isolated from normal endothelial cells (for example by the guanidinium thiocyanate extraction method of Chirgwin et al.
  • cDNA can be obtained by means of reverse transcriptase (for example Moloney-MLV reverse transcriptase) Gibco / BRL, Bethesda, MD, or AMV reverse transcriptase, available from Seikagaku America, Inc., St. Louis, FL).
  • reverse transcriptase for example Moloney-MLV reverse transcriptase
  • Gibco / BRL Bethesda
  • MD or AMV reverse transcriptase
  • Synthetic oligonucleotide primers for amplification via polymerase chain reaction can be created on the basis of one of the nucleotide sequences shown in Appendix A.
  • a nucleic acid according to the invention can be amplified using cDNA or alternatively genomic DNA as a template and suitable oligonucleotide primers according to standard PCR amplification techniques.
  • the nucleic acid so modified can be cloned into a suitable vector and characterized by DNA sequence analysis.
  • Oligonucleotides which correspond to an SRT nucleotide sequence can be produced by standard synthesis methods, for example using an automatic DNA synthesizer.
  • an isolated nucleic acid molecule according to the invention comprises one of the nucleotide sequences listed in Appendix A.
  • an isolated nucleic acid molecule according to the invention comprises a nucleic acid molecule which is complementary to one of the nucleotide sequences shown in Appendix A or a section thereof, which is a nucleic acid molecule which is sufficiently complementary to one of the nucleotide sequences shown in Appendix A, that it can hybridize to one of the sequences given in Appendix A, creating a stable duplex.
  • an isolated nucleic acid molecule according to the invention comprises a nucleotide sequence which is at least about 50-60%, preferably at least about 60-70%, more preferably at least about 70-80%, 80-90% or 90-95% and even more preferably at least about 95%, 96%, 97%,
  • an isolated nucleic acid molecule according to the invention comprises a nucleotide sequence which, for example under stringent conditions, with one of the nucleic acids shown in Appendix A
  • the nucleic acid molecule according to the invention encodes a protein or a portion thereof which comprises an amino acid sequence which is sufficiently homologous to an amino acid sequence from Appendix B that the protein or a portion thereof maintains the ability to be resistant or tolerant to one or to impart several chemical or environmental stress factors to C. glutamicum.
  • the term "sufficiently homologous" refers to proteins or portions thereof whose amino acid sequences refer to a minimal number of identical or equivalent amino acid residues (e.g. an amino acid residue with a side chain similar to an amino acid residue in one of the sequences in Appendix B) have an amino acid sequence from Appendix B so that the protein or a portion thereof can participate in the resistance of C.
  • SRT protein refers to the overall resistance of C. glutamicum to components in its environment that interfere with its normal growth or function.
  • Table 1 shows examples of SRT protein activities. 5 Sections of proteins which are encoded by the SRT nucleic acid molecules according to the invention are preferably biologically active sections of one of the SRT proteins.
  • biologically active section of an SRT protein is intended to include a section, for example a domain or a motif, of an SRT protein which is used to confer resistance or tolerance to one or more environments - or chemical stress factors, or has an activity as shown in Table 1.
  • a test of the enzymatic activity can be carried out.
  • nucleotide sequence of Appendix A which leads to a change in the amino acid sequence of the encoded SRT protein without affecting the functionality of the SRT protein.
  • nucleotide substitutions which lead to amino acid substitutions at "non-essential" amino acid residues can be produced in a sequence from Appendix A.
  • a "non-essential" amino acid residue can be modified in a wild-type sequence from one of the SRT proteins (Appendix B) without changing the activity of the SRT protein, whereas an "essential" amino acid residue is required for the SRT protein activity.
  • other amino acid residues for example non-conserved or only semi-preserved amino acid residues in the domain with SRT activity
  • An isolated nucleic acid molecule encoding an SRT protein that is homologous to a protein sequence from Appendix B can be generated by incorporating one or more nucleotide substitutions, additions or deletions into a nucleotide sequence from Appendix A such that one or more amino acid substitutions , additions or deletions are introduced into the encoded protein.
  • the mutations can be introduced into one of the sequences from Appendix A by standard techniques such as site-directed mutagenesis and PCR-mediated mutagenesis.
  • Conservative amino acid substitutions are preferably introduced on one or more of the predicted non-essential amino acid residues. With a "conservative amino acid substitution" the amino acid residue is replaced by an amino acid residue with a similar side chain.
  • Families of amino acid residues with similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g. lysine, arginine, histidine), acidic side chains (e.g. aspartic acid, glutamic acid), uncharged polar side chains (e.g. glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), non- polar side chains (e.g. alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g.
  • amino acids with basic side chains e.g. lysine, arginine, histidine
  • acidic side chains e.g. aspartic acid, glutamic acid
  • uncharged polar side chains e.g. glycine, asparagine, glutamine, serine, threonine, ty
  • the mutations can alternatively be introduced randomly over all or part of the SRT coding sequence, for example by saturation mutagenesis, and the resulting mutants can be examined for the SRT activity described here in order to identify mutants. certify that maintain SRT activity. After mutagenesis of one of the sequences from Appendix A, the encoded protein can be expressed recombinantly, and the activity of the protein can be determined, for example, using the tests described here (see Example 8 of the example section).
  • vectors preferably expression vectors, containing a nucleic acid encoding an SRT protein (or a portion thereof).
  • vector refers to a nucleic acid molecule that can transport another nucleic acid to which it is attached.
  • plasmid which stands for a circular double-stranded DNA loop into which additional DNA segments can be ligated.
  • viral vector Another type of vector is a viral vector, whereby additional DNA segments can be ligated into the viral genome.
  • Certain vectors can replicate autonomously in a host cell into which they have been introduced (e.g. bacterial vectors with bacterial origin of replication and episomal mammalian vectors).
  • vectors eg non-episomal mammalian vectors
  • Other vectors are integrated into the genome of a host cell when it is introduced into the host cell and thereby replicated together with the host genome.
  • certain vectors can control the expression of genes to which they are operably linked. These vectors are called "expression vectors".
  • expression vectors usually the expression vectors used in recombinant DNA techniques take the form of pias- miden.
  • plasmid and vector can be used interchangeably because the plasmid is the most commonly used vector form.
  • the invention is intended to encompass these other expression vector forms, such as viral vectors (for example replication-deficient retroviruses, adenoviruses and adeno-related viruses), which perform similar functions.
  • the recombinant expression vector according to the invention comprises a nucleic acid according to the invention in a form which is suitable for the expression of the nucleic acid in a host cell, which means that the recombinant expression vectors one or more regulatory sequences, selected on the basis of the host cells to be used for expression, the is operably linked to the nucleic acid sequence to be expressed.
  • “operably linked” means that the nucleotide sequence of interest is bound to the regulatory sequence (s) in such a way that expression of the nucleotide sequence is possible (for example in an in vitro transcription / Translation system or in a host cell if the vector is introduced into the host cell).
  • regulatory sequence is intended to encompass promoters, enhancers and other expression control elements (for example polyadenylation signals). These regulatory sequences are described, for example, in Goeddel: Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Regulatory sequences include those that control the constitutive expression of a nucleotide sequence in many host cell types and those that control the direct expression of the nucleotide sequence only in certain host cells. The person skilled in the art is aware that the design of an expression vector can depend on factors such as the choice of the host cell to be transformed, the extent of expression of the desired protein, etc.
  • the expression vectors according to the invention can be introduced into the host cells, so that proteins are thereby or peptides, including fusion proteins or peptides, encoded by the nucleic acids as described herein (e.g., SRT proteins, mutated forms of SRT proteins, fusion proteins, etc.).
  • the recombinant expression vectors according to the invention can be designed for the expression of SRT proteins in prokaryotic or eukaryotic cells.
  • SRT genes can be found in bacterial cells such as C. glutamicum, insect cells (with Baculovirus expression vectors), yeast and other fungal cells (see Romanos, MA et al. (1992) "Foreign gene expression in yeast: a review", Yeast 8: 423-488; van den Hondel, CAMJJ et al. (1991) "Heterologous gene expression in filamentous fungi” in: More Gene Manipulations in Fungi, JW Bennet & LL Lasure, Ed., Pp.
  • Plant cells (see Schmidt, R. and Willmitzer, L. (1988) "High efficiency Agrobacterium tumefaciens-me ⁇ . ⁇ ate & transformation of Arabidopsis thaliana leaf and cotyledon explants" Plant Cell Rep .: 583-586) or mammalian cells. Suitable host cells are further discussed in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.
  • Proteins are usually expressed in prokaryotes using vectors which contain constitutive or inducible promoters which control the expression of fusion or non-fusion proteins.
  • Fusion vectors contribute a number of amino acids to a protein encoded therein, usually at the amino terminus of the recombinant protein. These fusion vectors usually have three functions: 1) to increase the expression of recombinant protein; 2) increasing the solubility of the recombinant protein; and 3) supporting the purification of the recombinant protein by acting as a ligand in affinity purification.
  • a proteolytic cleavage site is often introduced at the junction of the fusion unit and the recombinant protein, so that the recombinant protein can be separated from the fusion unit after the fusion protein has been purified.
  • These enzymes and their corresponding recognition sequences include factor Xa, thrombin and enterokinase.
  • Common fusion expression vectors include pGEX (Pharmacia Biotech Ine; Smith, DB and Johnson, KS (1988) Gene 67: 31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT 5 (Pharmacia, Piscataway, NJ), in which glutathione-S-transferase (GST), maltose E-binding protein or protein A is fused to the recombinant target protein.
  • GST glutathione-S-transferase
  • the coding sequence of the SRT protein is cloned into a pGEX expression vector so that a vector is generated which encodes a fusion protein, comprising from the N-terminus to the C-terminus, GST - thrombin cleavage site - X- Protein.
  • the fusion protein can be purified by affinity chromatography using glutathione-agarose resin.
  • the recombinant SRT protein that does not fuse with GST can be obtained by cleaving the fusion protein with thrombin.
  • Suitable inducible Nic t-fusion expression vectors from E. coli include pTrc (Amann et al., (1988) Gene 69: 301-315) and pET III (Studier et al. Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 60-89).
  • Target gene expression from the pTrc vector is based on transcription by host RNA polymerase from a hybrid trp-lac fusion promoter.
  • the target gene expression from the pETlld vector is based on the transcription from a T7-gnl0-lac fusion promoter, which is mediated by a coexpressed viral RNA polymerase (T7 gnl). This viral polymerase is supplied by the BL 21 (DE3) or HMS174 (DE3) host strains from a resident ⁇ prophage which harbors a T7 gnl gene under the transcriptional control of the lacUV 5 promoter.
  • One strategy to maximize the expression of the recombinant protein is to express the protein in a host bacterium whose ability to proteolytically cleave the recombinant protein is impaired (Gottesman, S. Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California ( 1990) 119-128).
  • Another strategy is to change the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those which are preferably used in a bacterium selected for expression, such as C. glutamicum (Wada et al. (1992 ) Nucleic Acids Res. 20: 2111-2118). This change in the nucleic acid sequences according to the invention is carried out by standard DNA synthesis techniques.
  • the SRT protein expression vector is a yeast expression vector.
  • yeast expression vectors for expression in the yeast S. cerevisiae include pYepSecl (Baldari et al., (1987) Embo J. 6: 229-234), pMFa (Kurjan and Herskowitz (1982) Cell 30: 933-943 ), pJRY88 (Schultz et al. (1987) Gene 54: 113-123) and pYES2 (Invitrogen Corporation, San Diego, CA).
  • Vectors and methods of constructing vectors suitable for use in other fungi such as filamentous fungi include those described in detail in: van den Hondel, CAMJJ & Punt, PJ (1991) "Gene transfer Systems and vector development for filamentous fungi, in: Applied Molecular Genetics of fungi, JF Peberdy et al., ed., pp. 1-28, Cambridge University Press: Cambridge.
  • the SRT proteins of the invention can be expressed in insect cells using baculovirus expression vectors.
  • Baculovirus vectors available for expression of proteins in cultured insect cells include the pAc series (Smith et al., (1983) Mol. Cell Biol .. 3: 2156-2165) and the pVL series (Lucklow and Summers (1989) Virology 170: 31-39).
  • the SRT proteins according to the invention can be expressed in single-cell plant cells (such as algae) or in plant cells of higher plants (for example spermatophytes such as crops).
  • plant expression vectors include those which are described in detail in: Bekker, D., Ke per, E., Schell, J. and Masterson, R. (1992) "New plant binary vectors with selectable markers located proximal to the left border ", Plant Mol. Biol. 20: 1195-1197; and Bevan, M.W. (1984) "Binary Agrobacterium vectors for plant transformation", Nucl. Acids Res. 12: 8711-8721.
  • a nucleic acid according to the invention is expressed in mammalian cells with a mammalian expression vector.
  • mammalian expression vectors include pCDM8 (Seed, B. (1987) Nature 329: 840) and pMT2PC (Kaufman et al. (1987) EMBO J 6: 187-195).
  • the control functions of the expression vector are often provided by viral regulatory elements. Commonly used promoters come, for example, from Polyoma, Adenovirus2, Cytomegalievirus and Simian Virus 40.
  • suitable expression systems for prokaryotic and eukaryotic cells see chapters 16 and 17 from Sambrook, J., Fritsch, E.F. and Maniatis, T., Molecular cloning: A Laboratory Manual, 2nd edition, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.
  • the recombinant mammalian expression vector can preferably bring about the expression of the nucleic acid in a specific cell type (for example, tissue-specific regulatory elements are used to express the nucleic acid).
  • tissue-specific regulatory elements are known in the art.
  • suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert et al. (1987) Genes Dev. 1: 268-277), lymphoid-specific promoters (Calame and Eaton (1988) Adv. Immunol. 43: 235-275), in particular promoters of T cell receptors (Winoto and Baltimore (1989) EMBO J.
  • mice hox promoters Kessel and Gruss (1990) Science 249: 374-379
  • ⁇ -fetoprotein promoter Campes and Tilghman (1989) Genes Dev. 3: 537-546.
  • the invention also provides a recombinant expression vector comprising a DNA molecule according to the invention which is cloned into the expression vector in the antisense direction.
  • the DNA molecule is operably linked to a regulatory sequence in such a way that expression (by transcription of the DNA molecule) of an RNA molecule which is antisense to the SRT mRNA is possible.
  • Regulatory sequences can be selected which are operably linked to a nucleic acid cloned in the antisense direction and which control the continuous expression of the antisense RNA molecule in a multiplicity of cell types, for example viral promoters and / or enhan - Cer or regulatory sequences are selected that control the constitutive, tissue-specific or cell type-specific expression of antisense RNA.
  • the antisense expression vector can be in the form of a recombinant plasmid, phagemid, or attenuated virus in which antisense nucleic acids are produced under the control of a highly effective regulatory region, the activity of which is determined by the cell type into which the vector is introduced.
  • a host cell can be a prokaryotic or eukaryotic cell.
  • an SRT protein can be expressed in bacterial cells such as C. glutamicum, insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells).
  • Other suitable host cells are known to the person skilled in the art.
  • Microorganisms which are related to Corynebacterium glutamicum and which can be suitably used as host cells for the nucleic acid and protein molecules according to the invention are listed in Table 3.
  • vector DNA can be introduced into prokaryotic or eukaryotic cells.
  • transformation and “transfection” as used here are intended to encompass a large number of methods known in the prior art for introducing foreign nucleic acid (for example DNA) into a host cell, including calcium phosphate or calcium chloride coprecipitation, DEAE-dextran-mediated transfection, lipofection or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook et al. (Molecular Cloning: A Laboratory Manual. 2nd Ed. Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) and other laboratory manuals.
  • a gene that encodes a selectable marker e.g. resistance to antibiotics
  • Preferred selectable markers include those that confer resistance to drugs such as G418, hygromycin and methotrexate.
  • a nucleic acid encoding a selectable marker can be introduced into a host cell on the same vector as that encoding an SRT protein, or can be introduced on a separate vector. Cells that have been stably transfected with the introduced nucleic acid can be identified by drug selection (e.g. cells that have integrated the selectable marker survive, whereas the other cells die).
  • a vector which contains at least a section of an SRT gene into which a deletion, addition or substitution has been introduced in order to change the SRT gene, for example to functionally disrupt it.
  • This SRT gene is preferably a co- ryneJbacterium glutamicum SRT gene, however, a homologue from a related bacterium or even from a source of mammals, yeasts or insects can be used.
  • the vector is designed such that the endogenous SRT gene is functionally disrupted when homologous recombination occurs (ie, no longer encodes a functional protein, also referred to as a "knockouf 'vector).
  • the vector may alternatively be designed such that the endogenous SRT gene is mutated or otherwise altered during homologous recombination, but still encodes the functional protein (for example, the upstream regulatory region can be altered in such a way that the expression of the endogenous SRT protein is altered thereby)
  • the SRT gene is flanked in the homologous recombination vector at its 5 'and 3' ends by additional nucleic acid of the SRT gene, which is a homologous recombination between the exogenous SRT gene carried by the vector and an endogenous SRT gene in a microorganism.
  • the additional flanking SRT nucleic acid is successful for a oak homologous recombination with the endogenous gene sufficiently long.
  • the vector usually contains several kilobase flanking DNA (both at the 5 'and 3' ends) (see, for example, Thomas, KR and Capecchi, MR (1987) Cell 51: 503 for a description of homologous recombination vectors).
  • the vector is introduced into a microorganism (e.g., by electroporation), and cells in which the introduced SRT gene is homologously recombined with the endogenous SRT gene are selected using methods known in the art.
  • recombinant microorganisms can be produced which contain selected systems which allow regulated expression of the introduced gene.
  • the inclusion of an SRT gene in a vector under the control of the Lac operon enables e.g. expression of the SRT gene only in the presence of IPTG.
  • a host cell according to the invention such as a prokaryotic or eukaryotic host cell in culture, can be used for the production (ie expression) of an SRT protein.
  • the invention also provides methods for producing SRT proteins using the host cells of the invention.
  • the method comprises culturing the host cell according to the invention (into which a recombinant expression vector which encodes an SRT protein has been introduced, or into whose genome a gene has been introduced which is a wild-type or modified SRT protein encoded) in a suitable medium until the SRT protein has been produced.
  • the process comprises in a further embodiment isolating the SRT proteins from the medium or the host cell.
  • the nucleic acid molecules, proteins, protein homologs, fusion proteins, primers, vectors and host cells described here can be used in one or more of the following methods: identification of C. glutamicum and related organisms, mapping of genomes of organisms that are related to C. glutamicum related, identification and localization of C. glutamicum sequences of interest, evolution studies, determination of SRT protein areas that are necessary for function, modulation of the activity of an SRT protein; Modulating the activity of an SRT path; and modulating the cellular production of a desired compound, such as a fine chemical.
  • the SRT nucleic acid molecules according to the invention have a multitude of uses. They can initially be used to identify an organism as Corynebacterium glutamicum or close relatives thereof.
  • the invention provides the nucleic acid sequences of a number of C. glutamicum genes.
  • a probe comprising a region of a C. glutamicum G & ns that is unique to this organism, one can determine whether this organism is present is.
  • Corynebacterium glutamicum itself is not pathogenic, but it is related to pathogenic species such as Corynebacterium diptheriae. The detection of such an organism is of significant clinical importance.
  • the nucleic acid and protein molecules according to the invention can serve as markers for specific regions of the genome. This is useful not only when mapping the genome, but also for functional studies of C. glutamicum proteins.
  • the C. glutamicum genome can be used to identify the genome region to which a specific C. glutamicum DNA-binding protein binds. e.g. cleaved, and the fragments are incubated with the DNA-binding protein.
  • Those that bind the protein can additionally be probed with the nucleic acid molecules according to the invention, preferably with easily detectable markings; the binding of such a nucleic acid molecule to the genome fragment enables the fragment to be located on the genomic map of C.
  • nucleic acid molecules according to the invention can moreover be sufficiently homologous to the sequences of related species so that these nucleic acid molecules can serve as markers for the construction of a genomic map in related bacteria, such as Brevibacterium lactofermentum.
  • the SRT nucleic acid molecules according to the invention are also suitable for evolution and protein structure studies.
  • the resistance processes in which the molecules of the invention are involved are exploited by a number of cells;
  • the degree of evolutionary kinship of the organisms can be determined. Accordingly, such a comparison enables the determination of which sequence regions are conserved and which are not, which can be helpful in determining those regions of the protein which are essential for the enzyme function. This type of determination is valuable for protein technology studies and can provide an indication of which protein can tolerate mutagenesis without losing function.
  • the manipulation of the SRT nucleic acid molecules according to the invention can bring about the production of SRT proteins with functional differences from the wild-type SRT proteins. These proteins may be improved in efficiency or activity, may be present in the cell in greater numbers than usual, or may be weakened in efficiency or activity.
  • the aim of these manipulations is to increase the viability and activity of the cell when it is exposed to environmental and / or chemical stress factors and pollutants, which are common in large-scale fermenter cultures.
  • Increasing the activity or copy number of a heat shock regulated protease can increase the cell's ability to • destroy misfolded proteins that would otherwise interfere with normal cell functions (e.g. further binding of substrates and cofactors, although the protein has activity) these molecules do not act appropriately).
  • the overexpression or increase in activity by mutagenesis of proteins involved in the development of cellular resistance to various stress factors should affect the organism's performance the environment containing the dangerous substance (e.g. a large-scale fermenter culture), and thus enable relatively more cells to survive in such a culture.
  • the net effect of all mutagenesis strategies is to increase the quantity of fine chemical producing compounds in the culture, which increases the yield, production and / or efficiency of the production of one or more desired fine chemicals from the culture.
  • the nucleic acid and protein molecules according to the invention can be used to generate C. glutamicum or related bacterial strains which express mutated SRT nucleic acid and protein molecules, so that the yield, production and / or efficiency of the production of a desired one Connection is improved.
  • the desired compound can be a natural product of C. glutamicum, which comprises the end products of the biosynthetic pathways and intermediates of naturally occurring metabolic routes, as well as molecules which do not occur naturally in the metabolism of C. glutamicum, but which are derived from a C. glutamicum according to the invention. Trunk are produced.
  • Example 1 Preparation of the entire genomic DNA from Corynebacterium glutamicum ATCC13032
  • a culture of Corynebacterium glutamicum was grown overnight at 30 ° C with vigorous shaking in BHI medium (Difco). The cells were harvested by centrifugation, the supernatant was discarded, and the cells were resuspended in 5 ml of buffer I (5% of the original volume of the culture - all stated volumes are calculated for 100 ml of culture volume).
  • buffer I 140.34 g / 1 sucrose, 2.46 g / 1 MgS0 4 • 7 H 2 0, 10 ml / 1 KH 2 P0 4 solution (100 g / l, adjusted to pH with KOH 6.7), 50 ml / 1 M12 concentrate (10 g / 1 (NH 4 ) 2 S0 4 , 1 g / 1 NaCl, 2 g / 1 MgS0 4 • 7 H 2 0, 0.2 g / 1 CaCl 2 , 0.5 g / 1 yeast extract
  • the cell wall was broken down and the protoplasts obtained were harvested by centrifugation and the pellet was washed once with 5 ml of buffer I and once with 5 ml of TE buffer (10 mM Tris-HCl, 1 M EDTA, pH 8) ml of TE buffer was resuspended, and 0.5 ml of SDS solution (10%) and 0.5 ml of NaCl solution (5 M) were added With a final concentration of 200 ⁇ g / ml, the suspension was incubated at 37 ° C. for about 18 hours.
  • the DNA was purified by extraction with phenol, phenol-chloroform-isoayl alcohol and chloroform-isoamyl alcohol using standard procedures. Then the DNA was precipitated by adding 1/50 volume of 3 M sodium acetate and 2 volumes of ethanol, followed by incubation for 30 min at -20 ° C and 30 min centrifugation at 12000 rpm in a high-speed centrifuge with an SS34 rotor (Sorvall) , The DNA was dissolved in 1 ml of TE buffer containing 20 ⁇ g / ml RNase A and dialyzed against 1000 ml of TE buffer at 4 ° C. for at least 3 hours. During this time the buffer was exchanged 3 times.
  • plasmids pBR322 Sudden & Cohen (1978) J. Bacteriol. 134: 1141-1156
  • Plasmids of the pBS series pBSSK +, pBSSK- and others; Stratagene, LaJolla, USA
  • Cos ide such as SuperCosl (Stratagene, LaJolla, USA) or Lorist6 (Gibson, TJ Rosenthal, A., and Waterson, RH (1987) Gene 53: 283-286.
  • Genomic banks as described in Example 2, were used for DNA sequencing according to standard methods, in particular the chain termination method with ABI377 sequencing machines (see, for example, Fleischman, RD et al. (1995) "Whole-geno e Random Sequencing and Asse bly of Haemophilus Influenzae Rd., Science 269; 496-512)
  • the sequencing primers with the following nucleotide sequences were used: 5 '-GGAAACAGTATGACCATG-3' or 5 '-GTAAAACGACGGCCAGT-3'.
  • In vivo mutagenesis of Corynebacterium glutamicum can be carried out by passing a plasmid (or other vector) DNA through E. coli or other microorganisms (eg Bacillus spp. Or yeasts such as Saccharomyces cerevisiae) which reduce the integrity of their cannot maintain genetic information.
  • E. coli or other microorganisms eg Bacillus spp. Or yeasts such as Saccharomyces cerevisiae
  • Usual mutator strains have mutations in the genes for the DNA repair system (e.g., utHLS, mutD, mutT, etc., for comparison see Rupp, WD (1996) DNA repair mechanisms in Escherichia coli and Salmonella, pp. 2277-2294, ASM : Washington). These strains are known to the person skilled in the art. The use of these strains is, for example, in Greener, A. and Callahan, M. (1994) Strategies 7; 32-34 illustrates.
  • Example 5 DNA transfer between Escherichia coli and Corynebacterium glutamicum
  • Corynebacterium and Brevibacierium species contain endogenous plasmids (such as pHM1519 or pBLl) that replicate autonomously (for an overview see, for example, Martin, J.F. et al. (1987) Biotechnology 5: 137-146).
  • Shuttle vectors for Escherichia coli and Corynebacterium glutamicum can easily be constructed using standard vectors for E. coli (Sambrook, J. et al., (1989), "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press or Ausubel , FM et al.
  • origins of replication are preferably taken from endogenous plasmids isolated from Corynebacterium and Brevibactertium species.
  • transformation markers for these species are genes for kanamycin resistance (such as those derived from the Tn5 or Tn-903 transposon) or for chloramphenicol (Winnacker, EL (1987) "From Genes to Clones - Introduction to Gene Technology, VCH, Weinheim)
  • kanamycin resistance such as those derived from the Tn5 or Tn-903 transposon
  • chloramphenicol Winnacker, EL (1987) "From Genes to Clones - Introduction to Gene Technology, VCH, Weinheim
  • glutamicum and which can be used for various purposes, including gene overexpression (see, e.g., Yoshihama, M. et al. (1985) J. Bacteriol. 162: 591-597, Martin, JF et al., (1987) Biotechnology, 5: 137-146 and Eikmanns, BJ et al. (1992) Gene 102: 93-98).
  • C. glutamicum can be carried out by protoplast transformation (Kastsumata, R. et al., (1984) J. Bacteriol. 159, 306-311), electroporation (Liebl, E. et al., (1989) FEMS Microbiol. Letters , 53: 399-303) and, in cases where special vectors are used, can also be achieved by conjugation (as described, for example, in Schaefer, A., et (1990) J. Bacteriol. 172: 1663-1666).
  • a suitable method for determining the amount of transcription of the mutated gene is to carry out a Northern blot (see, for example, Ausubel et al., (1988) Current Protocols in Molecular Biology, Wiley: New York), wherein a primer that is designed to bind to the gene of interest is provided with a detectable (usually radioactive or chemiluminescent) label so that - if the total RNA is one Culture of the organism extracted, separated on a gel, transferred to a stable matrix and incubated with this probe - the binding and the quantity of binding of the probe indicates the presence and also the amount of mRNA for this gene.
  • Total cell RNA can be isolated from Corynebacterium glutamicum by various methods known in the art, as described in Bormann, E.R. et al., (1992) Mol. Microbiol. 6: 317-326.
  • Standard techniques such as Western blot, can be used to determine the presence or the relative amount of protein that is translated from this mRNA (see, for example, Ausubel et al. (1988) "Current Protocols in Molecular Biology", Wiley, New York).
  • total cell proteins are extracted, separated by gel electrophoresis, transferred to a matrix, such as nitrocellulose, and incubated with a probe, such as an antibody, which specifically binds to the desired protein.
  • This probe is usually provided with a chemiluminescent or colorimetric label that is easy to detect. The presence and amount of label observed indicates the presence and amount of the mutant protein sought in the cell.
  • Example 7 Growth of genetically modified Corynebacterium glutamicum media and growing conditions
  • Corynebacteria are grown in synthetic or natural growth media.
  • a number of different growth media for Corynebacteri n are known and easy available (Lieb et al. (1989) Appl. Microbiol. Biotechnol. 32: 205-210; von der Osten et al. (1998) Biotechnology Letters 11: 11-16; Patent DE 4 120 867; Liebl (1992) "The Genus Corynebacterium ", in: The Procaryotes, Vol. II, Balows, A., et al., Ed. Springer-Verlag).
  • These media consist of one or more carbon sources, nitrogen sources, inorganic salts, vitamins and trace elements.
  • Preferred carbon sources are sugars, such as mono-, di- or polysaccharides.
  • Very good carbon sources are, for example, glucose, fructose, mannose, galactose, ribose, sorbose, ribulose, lactose, maltose, sucrose, raffinose, starch or cellulose.
  • Sugar can also be added to the media via complex compounds such as molasses or other by-products from sugar refining. It can also be advantageous to add mixtures of different carbon sources.
  • Other possible carbon sources are alcohols and organic acids such as methanol, ethanol, acetic acid or lactic acid.
  • Nitrogen sources are usually organic or inorganic nitrogen compounds or materials containing these compounds. Exemplary nitrogen sources include ammonia gas or ammonium salts, such as NH 4 CI or (NH 4 ) SO 4 , NH 4 OH, nitrates,
  • Urea amino acids or complex nitrogen sources such as corn steep liquor, soy flour, soy protein, yeast extracts, meat extracts and others.
  • Inorganic salt compounds that may be included in the media include the chloride, phosphorus, or sulfate salts of calcium, magnesium, sodium, cobalt, molybdenum, potassium, manganese, zinc, copper and iron.
  • Chelating agents can be added to the medium to keep the metal ions in solution.
  • Particularly suitable chelating agents include dihydroxyphenols such as catechol or protocatechuate or organic acids such as citric acid.
  • the media usually also contain other growth factors, such as vitamins or growth promoters, which include, for example, biotin, riboflavin, thiamine, folic acid, nicotinic acid, panthothenate and pyridoxine.
  • Growth factors and salts often come from complex media components such as yeast extract, molasses, corn steep liquor and the like. The exact composition of the media connections depends heavily on the respective experiment and is decided individually for each case. Information about media optimization is available from the textbook "Applied Microbiol. Physiology, A Practical Approach” (Ed. PM Rhodes, PF Stanbury, IRL Press (1997) pp. 53-73, ISBN 0 19 963577 3). Growth media can also be obtained from commercial suppliers, such as Standard 1 (Merck) or BHI (Brain heart infusion, DIFCO) and the like. All media components are sterilized, either by heat (20 min at 1.5 bar and 121 ° C) or by sterile filtration. The components can be sterilized either together or, if necessary, separately. All media components can be present at the beginning of the cultivation or can be added continuously or in batches.
  • the growing conditions are defined separately for each experiment.
  • the temperature should be between 15 ° C and 45 ° C and can be kept constant or changed during the experiment.
  • the pH of the medium should be in the range of 5 to 8.5, preferably around 7.0, and can be maintained by adding buffers to the media.
  • An exemplary buffer for this purpose is a potassium phosphate buffer.
  • Synthetic buffers such as MOPS, HEPES; ACES etc. can be used alternatively or simultaneously.
  • the cultivation pH can also be kept constant during the cultivation by adding NaOH or NH 4 OH. If complex media components, such as yeast extract, are used, the need for additional buffers is reduced, since many complex compounds have a high buffer capacity.
  • the pH value can also be regulated with gaseous ammonia.
  • the incubation period is usually in the range of several hours to several days. This time is selected so that the maximum amount of product accumulates in the broth.
  • the disclosed growth experiments can be carried out in a variety of containers, such as microtiter plates, glass tubes, glass flasks or glass or metal fermenters of different sizes.
  • the microorganisms should be grown in microtiter plates, glass tubes or shake flasks with or without baffles.
  • 100 ml shake flasks are used, which are filled with 10% (by volume) of the required growth medium.
  • the flasks should be shaken on a rotary shaker (amplitude 25 mm) at a speed in the range of 100-300 rpm. Evaporation losses can be reduced by maintaining a humid atmosphere; alternatively, a mathematical correction should be carried out for the evaporation losses.
  • the medium is inoculated to an ODeoo of 0.5-1.5 using cells grown on agar plates, such as CM plates (10 g / 1 glucose, 2.5 g / 1 NaCl, 2 g / 1 Urea, 10 g / 1 polypeptone, 5 g / 1 yeast extract, 5 g / 1 meat extract, 22 g / 1 agar pH 6.8 with 2 M NaOH), which have been incubated at 30 ° C.
  • the inoculation of the media is carried out either by introducing a saline solution of C. glutamicum cells from CM plates or by adding a liquid preculture of this bacterium.
  • DNA band shift assays also referred to as gel retardation assays
  • reporter gene assays as described in Kolmar, H. et al., (1995) EMBO J. 14: 3895-3904 and the references cited therein. Reporter gene test systems are well known and established for use in pro- and eukaryotic cells using enzymes such as beta-galactosidase, green fluorescent protein and several others.
  • membrane transport proteins The activity of membrane transport proteins can be determined according to the techniques as described in Gennis, RB (1989) "Pores, Channels and Transporters", in Biomembranes, Molecular Structure and Function, Springer: Heidelberg, pp. 85-137; 199-234; and 270-322.
  • Example 9 Analysis of the influence of mutated protein on the production of the desired product
  • the effect of the genetic modification in C. glutamicum on the production of a desired compound can be determined by growing the modified microorganisms under suitable conditions (such as those described above) and the medium and / or the cellular Components for the increased production of the desired product (ie an amino acid) is examined.
  • suitable conditions such as those described above
  • Such analysis techniques are well known to the person skilled in the art and include spectroscopy, thin-layer chromatography, staining methods of various types, enzymatic and microbiological methods and analytical chromatography, such as high-performance liquid chromatography (see, for example, Ullman, Encyclopedia of Industrial Chemistry, Vol. A2, p. 89) -90 and pp.
  • the analysis methods include measurements of the amount of nutrients in the medium (e.g. sugar, hydrocarbons, nitrogen sources, phosphate and other ions), measurements of the biomass composition and growth, analysis of the production of common metabolites from biosynthetic pathways and measurements of gases that are produced during fermentation , Standard methods for these measurements are in Applied Microbial Physiology; A Practical Approach, PM Rhodes and PF Stanbury, ed. IRL Press, pp. 103-129; 131-163 and 165-192 (ISBN: 0199635773) and the literature references specified therein.
  • Example 10 Purification of the desired product from a C. glutamicum culture
  • the desired product can be obtained from C. glutamicum cells or from the supernatant of the culture described above by various methods known in the art. If the desired product is not secreted by the cells, the cells can be harvested from the culture by slow centrifugation, the cells can be lysed by standard techniques such as mechanical force or ultrasound. The cell debris is removed by centrifugation and the supernatant fraction containing the soluble proteins is obtained for further purification of the desired compound. If the product is secreted by the C. glutamicum cells, the cells are removed from the culture by slow centrifugation and the supernatant fraction is kept for further purification.
  • the supernatant fraction from both purification procedures is subjected to chromatography with an appropriate resin, either with the desired molecule retained on the chromatography resin but not with many contaminants in the sample, or with the contaminants remaining on the resin but not the sample. If necessary, these chromatography steps can be repeated using the same or different chromatography resins.
  • the person skilled in the art is skilled in the selection of the suitable chromatography resins and the most effective application for a particular molecule to be purified.
  • the purified product can be concentrated by filtration or ultrafiltration and kept at a temperature at which the stability of the product is maximum.
  • the identity and purity of the isolated compounds can be determined by standard techniques in the art. These include high-performance liquid chromatography (HPLC), spectroscopic methods, staining methods, thin-layer chromatography, NIRS, enzyme tests or microbiological tests. These analysis methods are summarized in: Patek et al. (1994) Appl. Environ. Microbiol. 60: 133-140; Malakhova et al. (1996) Biotekhnologiya 11: 27-32; and Schmidt et al. (1998) Bioprocess Engineer. 19: 67-70. Ul ann's Encyclopedia of Industrial Chemistry (1996) Vol. A27, VCH: Weinheim, pp. 89-90, pp. 521-540, pp. 540-547, pp.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention relates to nucleic acid molecules, the use thereof in the construction of bio-engineered improved microorganisms and to methods for the production of fine chemicals, especially amino acids, with the aid of said bio-engineered improved microorganisms.

Description

Gene die für Stressresistenz- und Toleranz-Proteine codierenGenes that code for stress resistance and tolerance proteins
Hintergrund der ErfindungBackground of the Invention
Bestimmte Produkte und Nebenprodukte von natürlich-vorkommenden Stoffwechselprozessen in Zellen werden in vielen Industriezweigen verwendet, einschließlich der Nahrungsmittel-, Futtermittel-, Kosmetik- und pharmazeutischen Industrie. Diese Moleküle, die gemeinsam als "Feinchemikalien" bezeichnet werden, umfassen organische Säuren, sowohl proteinogene als auch nicht-proteinogene Aminosäuren, Nukleotide und Nukleoside, ipide und Fettsäuren, Diole, Kohlehydrate, aromatische Verbindungen, Vitamine und Cofaktoren sowie Enzyme. Ihre Produktion erfolgt am besten mit- tels Anzucht von Bakterien im Großmaßstab, die entwickelt wurden, um große Mengen des jeweils gewünschten Moleküls zu produzieren und sezernieren. Ein für diesen Zweck besonders geeigneter Organismus ist Corynebacterium glutamicum, ein gram-positives, nicht- pathogenes Bakterium. Über Stammselektion ist eine Reihe von Mutantenstämmen entwickelt worden, die ein Sortiment wünschenswerter Verbindungen produzieren. Die Auswahl von Stämmen, die hinsichtlich der Produktion eines bestimmten Moleküls verbessert sind, ist jedoch ein zeitaufwendiges und schwieriges Verfahren.Certain products and by-products of naturally occurring metabolic processes in cells are used in many industries, including the food, feed, cosmetic and pharmaceutical industries. These molecules, collectively referred to as "fine chemicals", include organic acids, both proteinogenic and non-proteinogenic amino acids, nucleotides and nucleosides, ipide and fatty acids, diols, carbohydrates, aromatic compounds, vitamins and cofactors, and enzymes. They are best produced using large-scale bacteria that have been developed to produce and secrete large quantities of the desired molecule. A particularly suitable organism for this purpose is Corynebacterium glutamicum, a gram-positive, non-pathogenic bacterium. Through strain selection, a number of mutant strains have been developed that produce a range of desirable compounds. However, selecting strains that are improved in the production of a particular molecule is a time consuming and difficult process.
Zusammenfassung der ErfindungSummary of the invention
Diese Erfindung stellt neuartige Nukleinsäuremoleküle bereit, die sich zur Identifizierung oder Klassifizierung von Corynebacterium glutamicum oder verwandten Bakterienarten verwenden lassen. C. glutamicum ist ein gram-positives, aerobes Bakterium, das in der Industrie für die Produktion im Großmaßstab einer Reihe von Feinchemikalien, und auch zum Abbau von Kohlenwasserstoffen (bspw. beim Überlaufen von Rohöl) und zur Oxidation von Terpenoiden gemeinhin verwendet wird. Die Nukleinsäuremoleküle können daher zum Identifizieren von Mikroorganismen eingesetzt werden, die sich zur Produktion von Feinchemikalien, bspw. durch Fermentationsverfahren, verwenden lassen. C. glutamicum selbst ist zwar nicht-pa- thogen, jedoch ist es mit anderen Corynebacterium-Arten, wie Corynebacterium diphtheriae (dem Erreger der Diphtherie) verwandt, die bedeutende Pathogene beim Menschen sind. Die Fähigkeit, das Vorhandensein vo Corynebacterium-Arten zu identifizieren, kann daher auch eine signifikante klinische Bedeutung haben, z.B. bei diagnostischen Anwendungen. Diese Nukleinsäuremoleküle können zudem als Bezugspunkte zur Kartierung des C. glutamicum-Geτioms oder von Genomen verwandter Organismen dienen. Diese neuen Nukleinsäuremoleküle codieren Proteine, die hier als Streß-, Resistenz- und Toleranz- (SRT) -Proteine bezeichnet werden. Diese SRT-Proteine können bspw. C. glutamicum ermöglichen, unter Bedingungen zu überleben, die für diesen Mikroorganismus chemisch oder umweltmäßig gefährlich sind. Aufgrund der Verfügbarkeit von Klonierungsvektoren zur Verwendung in Corynebacterium glutamicum, wie bspw. offenbart in Sinskey et al., US-Patent Nr. 4 649 119, und Techniken zur genetischen Manipulation von C. glutamicum und den verwandten BreviJbacterium-Arten (z.B. lactofermentum) Yoshi- hama et al., J. Bacteriol. 162 (1985) 591-597; Katsumata et al., J. Bacteriol. 159 (1984) 306-311; und Santamaria et al. J. Gen. Microbiol. 130 (1984) 2237-2246) , lassen sich die erfindungsgemäßen Nukleinsäuremoleküle zur genetischen Manipulation dieses Organismus verwenden, um es als Produzenten von einer oder mehreren Feinchemikalien besser und effizienter zu machen, durch die Fähigkeit dieser Proteine, das Wachstum und die Vermehrung von C. glutamicum (und auch die kontinuierliche Produktion von einer oder mehreren Feinchemikalien) unter Bedingungen zu ermöglichen, die gewöhnlich das Wachstum des Organismus behindern, bspw. sol- chen Bedingungen, denen man bei der fer entativen Anzucht imThis invention provides novel nucleic acid molecules that can be used to identify or classify Corynebacterium glutamicum or related types of bacteria. C. glutamicum is a gram-positive, aerobic bacterium that is commonly used in industry for the large-scale production of a number of fine chemicals, as well as for the degradation of hydrocarbons (e.g. when crude oil overflows) and for the oxidation of terpenoids. The nucleic acid molecules can therefore be used to identify microorganisms that can be used for the production of fine chemicals, for example by fermentation processes. C. glutamicum itself is not pathogenic, but it is related to other Corynebacterium species, such as Corynebacterium diphtheriae (the causative agent of diphtheria), which are important pathogens in humans. The ability to identify the presence of Corynebacterium species can therefore also be of significant clinical importance, for example in diagnostic applications. These nucleic acid molecules can also serve as reference points for mapping the C. glutamicum geome or genomes of related organisms. These new nucleic acid molecules encode proteins, which are referred to here as stress, resistance and tolerance (SRT) proteins. These SRT proteins can, for example, enable C. glutamicum to survive under conditions that are chemically or environmentally dangerous for this microorganism. Due to the availability of cloning vectors for use in Corynebacterium glutamicum, such as disclosed in Sinskey et al., U.S. Patent No. 4,649,119, and techniques for genetically manipulating C. glutamicum and the related BreviJbacterium species (e.g. lactofermentum) Yoshi - hama et al., J. Bacteriol. 162: 591-597 (1985); Katsumata et al., J. Bacteriol. 159: 306-311 (1984); and Santamaria et al. J. Gen. Microbiol. 130 (1984) 2237-2246), the nucleic acid molecules according to the invention can be used for the genetic manipulation of this organism in order to make it better and more efficient as a producer of one or more fine chemicals, by the ability of these proteins, the growth and reproduction of C. to enable glutamicum (and also the continuous production of one or more fine chemicals) under conditions which usually hinder the growth of the organism, for example those conditions which are used in fermentative cultivation in
Großmaßstab häufig begegnet. Mna kann bspw. durch Überexpression oder genetische Manipulation eines hitzschockinduzierten Protea- semoleküls, so daß es optimale Aktivität aufweist, die Fähigkeit des Bakteriums zum Abbau falsch gefalteter Proteine verbessern, wenn das Bakterium hohen Temperaturen ausgesetzt ist. Wenn weniger falsch gefaltete (und möglicherweise falsch regulierte oder nicht funktionelle) Proteine mit den normalen Reaktionsmechanismen in der Zelle wechselwirken, wird die Fähigkeit der Zelle vergrößert in einer solchen Kultur normal zu funtkionieren, was wie- derum eine erhöhte Überlebensfähigkeit bietet. Dieser Gesamtanstieg der Anzahl von Zellen mit größerer Lebensfähigkeit und Aktivität in der Kultur sollte aufgrund der relativ größeren Zahl von Zellen, die diese Chemikalien in der Kultur produzieren, auch einen Anstieg der Ausbeute, Produktion und/oder Effizienz der Produktion von einer oder mehreren gewünschten Feinchemikalien bewirken.Large-scale encountered frequently. For example, by overexpressing or genetically manipulating a heat shock-induced protease molecule so that it has optimal activity, Mna can improve the bacteria's ability to degrade misfolded proteins when the bacterium is exposed to high temperatures. If fewer misfolded (and possibly incorrectly regulated or non-functional) proteins interact with the normal reaction mechanisms in the cell, the ability of the cell to function normally in such a culture is increased, which in turn offers increased survivability. This overall increase in the number of cells with greater viability and activity in the culture should also increase in the yield, production, and / or efficiency of production of one or more desired fine chemicals due to the relatively larger number of cells that produce these chemicals in the culture cause.
Diese Erfindung stellt neue SRT-Nukleinsäuremoleküle bereit, die SRT-Proteine codieren, die bspw. C. glutamicum ermöglichen kön- nen, unter Bedingungen zu überleben, die chemisch oder umweltmäßig für diesen Mikroorganismus gefährlich sind. Nukleinsäuremoleküle, die ein SRT-Protein codieren, werden hier als SRT-Nukleinsäuremoleküle bezeichnet. Bei einer bevorzugten Ausführungsform nimmt das SRT-Protein an einem Stoffwechselweg teil, der es er- möglicht, daß C. glutamicum unter Bedingungen überlebt, die entweder chemisch oder ökologisch für diesen Mikroorganismus gefähr- lieh sind. Beispiele für diese Proteine werden von den in Tabelle 1 aufgeführten Genen codiert.This invention provides new SRT nucleic acid molecules that encode SRT proteins that, for example, can enable C. glutamicum to survive under conditions that are chemically or environmentally dangerous for this microorganism. Nucleic acid molecules that encode an SRT protein are referred to here as SRT nucleic acid molecules. In a preferred embodiment, the SRT protein participates in a metabolic pathway that enables C. glutamicum to survive under conditions that are either chemically or ecologically hazardous to this microorganism. are borrowed. Examples of these proteins are encoded by the genes listed in Table 1.
Ein Aspekt der Erfindung betrifft folglich isolierte Nukleinsäu- remoleküle (bspw. cDNAs) , umfassend eine Nukleotidsequenz, die ein SRT-Protein oder biologisch aktive Abschnitte davon codiert, sowie Nukleinsäurefrag ente, die sich als Primer oder Hybridisie- rungssonden zum Nachweisen oder zur Amplifikation von SRT-codie- render Nukleinsäure (bspw. DNA oder mRNA) eignen. Bei besonders bevorzugten Ausführungsformen umfaßt das isolierte Nukleinsäure- molekül eine der in Anhang A aufgeführten Nukleotidsequenzen oder den codierenden Bereich oder ein Komplement davon von einer dieser Nukleotidsequenzen. In anderen bevorzugten Ausführungsformen codiert das isolierte Nukleinsäuremolekül eine der in Anhang B aufgeführten Aminosäuresequenzen. Die bevorzugten erfindungsgemäßen SRT-Proteine besitzen ebenfalls vorzugsweise mindestens eine der hier beschriebenen SRT-Aktivitäten.One aspect of the invention consequently relates to isolated nucleic acid molecules (for example cDNAs) comprising a nucleotide sequence which encodes an SRT protein or biologically active sections thereof, and also nucleic acid fragments which act as primers or hybridization probes for detecting or amplifying SRT-coding nucleic acid (for example DNA or mRNA) are suitable. In particularly preferred embodiments, the isolated nucleic acid molecule comprises one of the nucleotide sequences listed in Appendix A or the coding region or a complement thereof from one of these nucleotide sequences. In other preferred embodiments, the isolated nucleic acid molecule encodes one of the amino acid sequences listed in Appendix B. The preferred SRT proteins according to the invention also preferably have at least one of the SRT activities described here.
Als Anhang A werden im folgenden die Nukleinsäuresequenzen des Sequenzprotokolls zusammen mit den in Tabelle 1 beschriebenen Sequenzveränderungen an der jeweiligen Position definiert.In the following, the nucleic acid sequences of the sequence listing together with the sequence changes at the respective position described in Table 1 are defined as Appendix A.
Als Anhang B werden im folgenden die Polypeptidsequenzen des Sequenzprotokolls zusammen mit den in Tabelle 1 beschriebenen Sequenzveränderungen an der jeweiligen Position definiert.In the following, the polypeptide sequences of the sequence listing together with the sequence changes at the respective position described in Table 1 are defined as Appendix B.
Bei einer weiteren Ausführungsform ist das isolierte Nukleinsäuremolekül mindestens 15 Nukleotide lang und hybridisiert unter stringenten Bedingungen an ein Nukleinsäuremolekül, das eine Nu- kleotidsequenz aus Anhang A umfaßt. Das isolierte Nukleinsäuremolekül entspricht vorzugsweise einem natürlich vorkommenden Nukleinsäuremolekül . Die isolierte Nukleinsäure codiert stärker bevorzugt ein natürlich vorkommendes C. glutamicum-SRT-Protein oder einen biologisch aktiven Abschnitt davon.In a further embodiment, the isolated nucleic acid molecule is at least 15 nucleotides long and hybridizes under stringent conditions to a nucleic acid molecule which comprises a nucleotide sequence from Appendix A. The isolated nucleic acid molecule preferably corresponds to a naturally occurring nucleic acid molecule. The isolated nucleic acid more preferably encodes a naturally occurring C. glutamicum SRT protein or a biologically active portion thereof.
Ein weiterer Aspekt der Erfindung betrifft Vektoren, bspw. rekom- binante Expressionsvektoren, die die erfindungsgemäßen Nukleinsäuremoleküle enthalten, und Wirtszellen, in die diese Vektoren eingebracht worden sind. Bei einer Ausführungsform wird zur Her- Stellung eines SRT-Proteins eine Wirtszelle verwendet, die in einem geeigneten Medium gezüchtet wird. Das SRT-Protein kann dann aus dem Medium oder der Wirtszelle isoliert werden.Another aspect of the invention relates to vectors, for example recombinant expression vectors which contain the nucleic acid molecules according to the invention, and host cells into which these vectors have been introduced. In one embodiment, a host cell that is grown in a suitable medium is used to produce an SRT protein. The SRT protein can then be isolated from the medium or the host cell.
Ein weiterer Aspekt der Erfindung betrifft einen genetisch verän- derten Mikroorganismus, bei dem ein SRT-Gen eingebracht oder verändert worden ist. Das Genom des Mikroorganismus ist bei einer Ausführungsform durch Einbringen mindestens eines erfindungsgemä- ßen Nukleinsäuremoleküls verändert worden, das die mutierte SRT- Sequenz als Transgen codiert. Bei einer anderen Ausführungsform ist ein endogenes SRT-Gen im Genom des Mikroorganismus durch homologe Rekombination mit einem veränderten SRT-Gen verändert, z.B. funktionell disruptiert, worden. Der Mikroorganismus gehört bei einer bevorzugten Ausführungsform zur Gattung Corynebacterium oder Brevibacterium, wobei Corynebacterium glutamicum besonders bevorzugt ist. Der Mikroorganismus wird in einer bevorzugten Ausführungsform auch zur Herstellung einer gewünschten Verbindung, wie einer Aminosäure, besonders bevorzugt Lysin, verwendet.Another aspect of the invention relates to a genetically modified microorganism in which an SRT gene has been introduced or modified. In one embodiment, the genome of the microorganism can be obtained by introducing at least one ß nucleic acid molecule has been changed, which encodes the mutated SRT sequence as a transgene. In another embodiment, an endogenous SRT gene in the genome of the microorganism has been changed, for example functionally disrupted, by homologous recombination with an altered SRT gene. In a preferred embodiment, the microorganism belongs to the genus Corynebacterium or Brevibacterium, Corynebacterium glutamicum being particularly preferred. In a preferred embodiment, the microorganism is also used to produce a desired compound, such as an amino acid, particularly preferably lysine.
Eine weitere bevorzugte Ausführungsform sind Wirtszellen, die mehr als eine der in Anhang A beschriebenen Nukleinsäuremoleküle besitzen. Solche Wirtszellen lassen sich auf verschiedene dem Fachmann bekannte Wege herstellen. Beispielsweise können sie durch Vektoren, die mehrere der erfindungsgemäßen Nukleinsäuremoleküle tragen, transfiziert werden. Es ist aber auch möglich mit einem Vektor jeweils ein erfindungsgemäßes Nukleinsäuremolekül in die Wirtszelle einzubringen und deshalb mehrere Vektoren entweder gleichzeitig oder zeitlich abgestuft einzusetzen. Es können somit Wirtszellen konstruiert werden, die zahlreiche, bis zu mehreren Hundert der erfindungsgemäßen Nukleinsäuresequenzen tragen. Durch eine solche Akkumulation lassen sich häufig überadditive Effekte auf die Wirtszelle hinsichtlich der Feinchemikalien-Pro- duktivität erzielen.Another preferred embodiment is host cells that have more than one of the nucleic acid molecules described in Appendix A. Such host cells can be produced in various ways known to those skilled in the art. For example, they can be transfected by vectors which carry several of the nucleic acid molecules according to the invention. However, it is also possible to introduce one nucleic acid molecule according to the invention into the host cell with one vector and therefore to use several vectors either simultaneously or in a staggered manner. Host cells can thus be constructed which carry numerous up to several hundred of the nucleic acid sequences according to the invention. Such an accumulation often leads to superadditive effects on the host cell with regard to fine chemical productivity.
Ein weiterer Aspekt der Erfindung betrifft ein isoliertes SRT- Protein oder einen Abschnitt, bspw. einen biologisch aktiven Abschnitt davon. Das isolierte SRT-Protein oder sein Abschnitt be- sitzt in einer bevorzugten Ausführungsform die Fähigkeit, dasAnother aspect of the invention relates to an isolated SRT protein or a section, for example a biologically active section thereof. In a preferred embodiment, the isolated SRT protein or its section has the ability to
Überleben von C. glutamicum unter Bedingungen zu erhöhen, die für diesen Mikroorganismen chemisch oder ökologisch gefährlich sind. Bei einer weiteren bevorzugten Ausführungsform ist das isolierte SRT-Protein oder ein Abschnitt davon hinreichend homolog zu einer Aminosäuresequenz von Anhang B, so daß das Protein oder sein Abschnitt weiterhin die Fähigkeit behält, das Überleben von C. glutamicum unter Bedingungen zu erhöhen, die für diesen Mikroorganismen chemisch oder ökologisch gefährlich sind.To increase survival of C. glutamicum under conditions that are chemically or ecologically dangerous for these microorganisms. In a further preferred embodiment, the isolated SRT protein or a portion thereof is sufficiently homologous to an amino acid sequence of Appendix B that the protein or its portion still retains the ability to increase C. glutamicum survival under conditions appropriate for it Microorganisms are chemically or ecologically dangerous.
Die Erfindung betrifft zudem ein isoliertes SRT-Proteinpräparat. Das SRT-Protein umfaßt bei bevorzugten Ausführungsformen eine Aminosäuresequenz aus Anhang B. Bei einer weiteren bevorzugten Ausführungsform betrifft die Erfindung ein isoliertes Vollängen- protein, das zu einer vollständigen Äirtinosäuresequenz aus Anhang B (welche von einem offenen Leseraster in Anhang A codiert wird) im wesentlichen homolog ist. Das SRT-Polypeptid oder ein biologisch aktiver Abschnitt davon kann mit einem Nicht-SRT-Polypeptid funktionsfähig verbunden werden, damit ein Fusionsprotein entsteht. Dieses Fusionsprotein hat bei bevorzugten Ausführungsformen eine andere Aktivität als das SRT-Protein allein und ergibt bei anderen bevorzugten Ausführungsformen erhöhte Ausbeuten, eine erhöhte Produktion und/oder Effizienz der Produktion einer gewünschten Feinchemikalie aus C. glutamicum. Die Integration dieses Fusionsproteins in eine Wirtszelle moduliert bei besonders bevorzugten Ausführungsformen die Produktion einer gewünschten Verbindung von der Zelle.The invention also relates to an isolated SRT protein preparation. In preferred embodiments, the SRT protein comprises an amino acid sequence from Appendix B. In a further preferred embodiment, the invention relates to an isolated full-length protein which essentially forms a complete airtino acid sequence from Appendix B (which is encoded by an open reading frame in Appendix A) is homologous. The SRT polypeptide or a biologically active portion thereof can be operably linked to a non-SRT polypeptide to form a fusion protein. In preferred embodiments, this fusion protein has a different activity than the SRT protein alone and, in other preferred embodiments, results in increased yields, increased production and / or efficiency in the production of a desired fine chemical from C. glutamicum. The integration of this fusion protein into a host cell modulates the production of a desired compound from the cell in particularly preferred embodiments.
Ein weiterer Aspekt der Erfindung betrifft ein Verfahren zur Herstellung einer Feinchemikalie. Das Verfahren sieht die Anzucht einer Zelle vor, die einen Vektor enthält, der die Expression ei- nes erfindungsgemäßen SRT-Nukleinsäuremoleküls bewirkt, so daß eine Feinchemikalie produziert wird. Dieses Verfahren umfaßt bei einer bevorzugten Ausführungsform zudem den Schritt der Gewinnung einer Zelle, die einen solchen Vektor enthält, wobei die Zelle mit einem Vektor transfiziert ist, der die Expression einer SRT- Nukleinsäure bewirkt. Dieses Verfahren umfaßt bei einer weiteren bevorzugten Ausführungsform zudem den Schritt, bei dem die Feinchemikalie aus der Kultur gewonnen wird. Die Zelle gehört bei einer bevorzugten Ausführungsform zur Gattung Corynebacterium oder Brevibacterium.Another aspect of the invention relates to a method for producing a fine chemical. The method provides for the cultivation of a cell which contains a vector which brings about the expression of an SRT nucleic acid molecule according to the invention, so that a fine chemical is produced. In a preferred embodiment, this method also comprises the step of obtaining a cell which contains such a vector, the cell being transfected with a vector which brings about the expression of an SRT nucleic acid. In a further preferred embodiment, this method also comprises the step in which the fine chemical is obtained from the culture. In a preferred embodiment, the cell belongs to the genus Corynebacterium or Brevibacterium.
Ein weiterer Aspekt der Erfindung betrifft Verfahren zur Modulation der Produktion eines Moleküls aus einem Mikroorganismus. Diese Verfahren umfassen das Zusammenbringen der Zelle mit einer Substanz, die die SRT-Proteinaktivität oder die SRT-Nukleinsäure- Expression moduliert, so daß eine zeilassoziierte Aktivität verglichen mit der gleichen Aktivität bei Fehlen der Substanz verändert wird. Die Zelle wird bei einer bevorzugten Ausführungsform bezüglich der Resistenz gegenüber einer oder mehrerer Chemikalien oder bezüglich der Resistenz gegenüber einem oder mehreren ökolo- gischen Streßfaktoren so moduliert, daß die Ausbeuten oder die Produktionsrate einer gewünschten Feinchemikalie durch diesen Mikroorganismus verbessert werden. Die Substanz, die die SRT-Proteinaktivität moduliert, stimuliert bspw. die SRT-Proteinaktivität oder die SRT-Nukleinsäure-Expression. Beispiele von Substan- zen, die die SRT-Proteinaktivität oder die SRT-Nukleinsäureex- pression stimulieren, umfassen kleine Moleküle, aktive SRT-Proteine und Nukleinsäuren, die SRT-Proteine codieren und in die Zelle eingebracht worden sind. Beispiele von Substanzen, die die SRT-Aktivität oder -Expression hemmen, umfassen kleine Moleküle und Antisense-SRT-Nukleinsäuremoleküle. Ein weiterer Aspekt der Erfindung betrifft Verfahren zur Modulation der Ausbeuten einer gewünschten Verbindung aus einer Zelle, umfassend das Einbringen eines SRT-Wildtyp- oder -Mutantengens in eine Zelle, das entweder auf einem gesonderten Plasmid bleibt oder in das Genom der Wirtszelle integriert wird. Die Integration in das Genom kann zufallsgemäß oder durch homologe Rekombination erfolgen, so daß das native Gen durch die integrierte Kopie ersetzt wird, was die Produktion der gewünschten Verbindung aus der zu modulierenden Zelle hervorruft. Diese Ausbeuten sind bei einer bevorzugten Ausführungsform erhöht. Bei einer weiteren bevorzugten Ausführungsform ist die Chemikalie eine Feinchemikalie, die in einer besonders bevorzugten Ausführungsform eine Aminosäure ist. Diese Aminosäure ist in einer besonders bevorzugten Ausführungsform L-Lysin.Another aspect of the invention relates to methods for modulating the production of a molecule from a microorganism. These methods involve contacting the cell with a substance that modulates SRT protein activity or SRT nucleic acid expression so that a cell-associated activity is changed compared to the same activity in the absence of the substance. In a preferred embodiment, the cell is modulated in terms of resistance to one or more chemicals or in terms of resistance to one or more ecological stress factors in such a way that the yields or the production rate of a desired fine chemical are improved by this microorganism. For example, the substance that modulates SRT protein activity stimulates SRT protein activity or SRT nucleic acid expression. Examples of substances that stimulate SRT protein activity or SRT nucleic acid expression include small molecules, active SRT proteins and nucleic acids that encode SRT proteins and have been introduced into the cell. Examples of substances that inhibit SRT activity or expression include small molecules and antisense SRT nucleic acid molecules. Another aspect of the invention relates to methods for modulating the yields of a desired compound from a cell, comprising introducing into a cell an SRT wild-type or mutant gene which either remains on a separate plasmid or is integrated into the genome of the host cell. The integration into the genome can be random or by homologous recombination, so that the native gene is replaced by the integrated copy, which causes the production of the desired compound from the cell to be modulated. In a preferred embodiment, these yields are increased. In a further preferred embodiment, the chemical is a fine chemical, which in an especially preferred embodiment is an amino acid. In a particularly preferred embodiment, this amino acid is L-lysine.
Eingehende Beschreibung der ErfindungDetailed description of the invention
Die vorliegende Erfindung stellt SRT-Nukleinsäure- und -Proteinmoleküle bereit, die am Überleben von C. glutamicum beim Ausset- zen dieses Mikroorganismus gegenüber chemischen oder ökologischen Schadstoffen beteiligt sind. Die erfindungsgemäßen Moleküle lassen sich bei der Modulation der Produktion von Feinchemikalien von Mikroorganismen verwenden, da diese SRT-Proteine eine Maßnahme für ein kontinuierliches Wachstum und Vermehrung von C. glutamicum in Gegenwart toxischer Chemikalien oder gefährlichen Umweltbedingungen, wie sie bspw. während des fermentativen Anzucht im Großmaßstab vorkommen. Durch Erhöhung der Wachstumsgeschwindigkeit oder zumindest durch Beibehalten des normalen Wachstums unter schlechten, wenn nicht toxischen Bedingungen, kann man die Ausbeute, Produktion und/oder Effizienz der Produktion von einer oder mehreren Feinchemikalien aus dieser Kultur, zumindest aufgrund der relativ großen Anzahl an Zellen, die die Feinchemikalie in Kultur produzieren, steigern. Die erfindungsgemäßen Aspekte werden nachstehend weiter erläutert.The present invention provides SRT nucleic acid and protein molecules which are involved in the survival of C. glutamicum when this microorganism is exposed to chemical or ecological pollutants. The molecules according to the invention can be used in the modulation of the production of fine chemicals from microorganisms, since these SRT proteins are a measure for a continuous growth and multiplication of C. glutamicum in the presence of toxic chemicals or dangerous environmental conditions, such as, for example, during fermentative cultivation in Large scale occur. By increasing the rate of growth or at least by maintaining normal growth under poor if not toxic conditions, one can increase the yield, production and / or efficiency of production of one or more fine chemicals from this culture, at least due to the relatively large number of cells that produce the fine chemical in culture, increase. The aspects of the invention are further explained below.
I . FeinchemikalienI. fine chemicals
Der Begriff "Feinchemikalie" ist im Fachgebiet bekannt und beinhaltet Moleküle, die von einem Organismus produziert werden und in verschiedenen Industriezweigen Anwendungen finden, wie bspw. , jedoch nicht beschränkt auf die pharmazeutische Industrie, die LandwirtSchafts-, und Kosmetik-Industrie. Diese Verbindungen umfassen organische Säuren, wie Weinsäure, Itaconsäure und Diamino- pimelinsäure, sowohl proteinogene als auch nicht-proteinogene Aminosäuren, Purin- und Pyrimidinbasen, Nukleoside und Nukleotide (wie bspw. beschrieben in Kuninaka, A. (1996) Nucleotides and re- lated compounds, S. 561-612, in Biotechnology Bd. 6, Rehm et al . , Hrsg. VCH: Weinheim und den darin enthaltenen Zitaten) , Lipide, gesättigte und ungesättigte Fettsäuren (bspw. Arachidonsäure) , Diole (bspw. Propandiol und Butandiol) , Kohlenhydrate (bspw. Hya- luronsäure und Trehalose) , aromatische Verbindungen (bspw. aro a- tische Amine, Vanillin und Indigo) , Vitamine und Cofaktoren (wie beschrieben in Ulimann' s Encyclopedia of Industrial Chemistry, Bd. A27, "Vitamins", S. 443-613 (1996) VCH: Weinheim und den darin enthaltenen Zitaten; und Ong, A.S., Niki, E. und Packer, L. (1995) "Nutrition, Lipids, Health and Disease" Proceedings of the UNESCO/Confederation of Scientific and Technological Associations in Malaysia and the Society for Free Radical Research - Asien, abgehalten am 1.-3. Sept. 1994 in Penang, Malysia, AOCS Press (1995)), Enzyme und sämtliche anderen von Gutcho (1983) in Chemicals by Fermentation, Noyes Data Corporation, ISBN: 0818805086 und den darin angegebenen Literaturstellen, beschriebenen Chemikalien. Der Metabolismus und die Verwendungen bestimmter Feinchemikalien sind nachstehend weiter erläutert.The term "fine chemical" is known in the art and includes molecules that are produced by an organism and have applications in various industries, such as, but not limited to, the pharmaceutical, agricultural, and cosmetic industries. These compounds include organic acids, such as tartaric acid, itaconic acid and diamino-pimelic acid, both proteinogenic and non-proteinogenic amino acids, purine and pyrimidine bases, nucleosides and nucleotides (as described, for example, in Kuninaka, A. (1996) Nucleotides and related compounds, pp. 561-612, in Biotechnology Vol. 6, Rehm et al., Ed. VCH: Weinheim and the quotes contained therein, lipids, saturated and unsaturated fatty acids (e.g. arachidonic acid), diols (e.g. propanediol and butanediol), carbohydrates (e.g. hyaluronic acid and trehalose), aromatic compounds (e.g. aro Aatic amines, vanillin and indigo), vitamins and cofactors (as described in Ulimann's Encyclopedia of Industrial Chemistry, Vol. A27, "Vitamins", pp. 443-613 (1996) VCH: Weinheim and the quotes contained therein; and Ong, AS, Niki, E. and Packer, L. (1995) "Nutrition, Lipids, Health and Disease" Proceedings of the UNESCO / Confederation of Scientific and Technological Associations in Malaysia and the Society for Free Radical Research - Asia on Sept. 1-3, 1994 in Penang, Malysia, AOCS Press (1995)), Enzyme and all other chemicals described by Gutcho (1983) in Chemicals by Fermentation, Noyes Data Corporation, ISBN: 0818805086 and the references therein , The metabolism and uses of certain fine chemicals are further discussed below.
Aminosäure-Metabolismus und VerwendungenAmino acid metabolism and uses
Die Aminosäuren umfassen die grundlegenden Struktureinheiten sämtlicher Proteine und sind somit für die normalen Zellfunktionen essentiell. Der Begriff "Aminosäure" ist im Fachgebiet bekannt. Die proteinogenen Aminosäuren, von denen es 20 Arten gibt, dienen als Struktureinheiten für Proteine, in denen sie über Pep- tidbindungen miteinander verknüpft sind, wohingegen die nicht- proteinogenen Aminosäuren (von denen Hunderte bekannt sind) gewöhnlich nicht in Proteinen vorkommen (siehe Ullmann's Encyclopedia of Industrial Chemistry, Bd. A2, S. 57-97 VCH: Weinheim (1985)) . Die Aminosäuren können in der D- oder L-Konfiguration vorliegen, obwohl L-Aminosäuren gewöhnlich der einzige Typ sind, den man in natürlich vorkommenden Proteinen vorfindet. Biosynthese- und Abbauwege von jeder der 20 proteinogenen Aminosäuren sind sowohl bei prokaryotischen als auch eukaryotischen Zellen gut charakterisiert (siehe bspw. Stryer, L. Biochemistry, 3. Auflage, S. 578-590 (1988)). Die "essentiellen" Aminosäuren (Hist- idin, Isoleucin, Leucin, Lysin, Methionin, Phenylalanin, Threo- nin, Tryptophan und Valin) , so bezeichnet, da sie aufgrund der Komplexität ihrer Biosynthese mit der Ernährung aufgenommen wer- den müssen, werden durch einfache Biosyntheseswege in die übrigen 11 "nichtessentiellen" Aminosäuren (Alanin, Arginin, Asparagin, Aspartat, Cystein, Glutamat, Glutamin, Glycin, Prolin, Serin und Tyrosin) umgewandelt. Höhere Tiere besitzen die Fähigkeit, einige dieser Aminosäuren zu synthetisieren, jedoch müssen die essen- tiellen Aminosäuren mit der Nahrung aufgenommen werden, damit eine normale Proteinsynthese stattfindet. Abgesehen von ihrer Funktion bei der Proteinbiosynthese sind diese Aminosäuren interessante Chemikalien an sich, und man hat entdeckt, daß viele bei verschiedenen Anwendungen in der Nahrungsmittel-, Futter-, Chemie-, Kosmetik-, Landwirtschafts- und pharmazeutischen Industrie zum Einsatz kommen. Lysin ist nicht nur für die Ernährung des Menschen eine wichtige Aminosäure, sondern auch für monogastrische Tiere, wie Geflügel und Schweine. Glutamat wird am häufigsten als Geschmacksadditiv (Mononatrium- glutamat, MSG) sowie weithin in der Nahrungsmittelindustrie ver- wendet, wie auch Aspartat, Phenylalanin, Glycin und Cystein. Gly- cin, L-Methionin und Tryptophan werden sämtlich in der pharmazeutischen Industrie verwendet. Glutamin, Valin, Leucin, Isoleucin, Histidin, Arginin, Prolin, Serin und Alanin werden in der pharmazeutischen Industrie und der Kosmetikindustrie verwendet. Threo- nin, Tryptophan und D-/L-Methionin sind weitverbreitete Futtermittelzusätze (Leuchtenberger, W. (1996) Amino acids - technical production and use, S. 466-502 in Rehm et al., (Hrsg.) Biotechno- logy Bd. 6, Kapitel 14a, VCH: Weinheim) . Man hat entdeckt, daß sich diese Aminosäuren außerdem als Vorstufen für die Synthese von synthetischen Aminosäuren und Proteinen, wie N-Acetylcystein, S-Carboxymethyl-L-cystein, (S)-5-Hydroxytryptophan und anderen, in Ulimann' s Encyclopedia of Industrial Chemistry, Bd. A2, S. 57-97, VCH, Weinheim, 1985 beschriebenen Substanzen eignen.The amino acids comprise the basic structural units of all proteins and are therefore essential for normal cell functions. The term "amino acid" is known in the art. The proteinogenic amino acids, of which there are 20 types, serve as structural units for proteins in which they are linked to one another via peptide bonds, whereas the non-proteinogenic amino acids (of which hundreds are known) are usually not found in proteins (see Ullmann's Encyclopedia of Industrial Chemistry, Vol. A2, pp. 57-97 VCH: Weinheim (1985)). The amino acids can be in the D or L configuration, although L-amino acids are usually the only type found in naturally occurring proteins. Biosynthetic and degradation pathways of each of the 20 proteinogenic amino acids are well characterized in both prokaryotic and eukaryotic cells (see, for example, Stryer, L. Biochemistry, 3rd edition, pp. 578-590 (1988)). The "essential" amino acids (histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan and valine), so named, because they have to be taken up in the diet due to the complexity of their biosynthesis, are identified by simple biosynthetic pathways converted into the remaining 11 "non-essential" amino acids (alanine, arginine, asparagine, aspartate, cysteine, glutamate, glutamine, glycine, proline, serine and tyrosine). Higher animals have the ability to synthesize some of these amino acids, but the essential amino acids must be ingested in order for normal protein synthesis to take place. Aside from their function in protein biosynthesis, these amino acids are interesting chemicals per se and it has been discovered that many are used in various applications in the food, feed, chemical, cosmetic, agricultural and pharmaceutical industries. Lysine is not only an important amino acid for human nutrition, but also for monogastric animals such as poultry and pigs. Glutamate is most commonly used as a flavor additive (monosodium glutamate, MSG) and widely used in the food industry, as well as aspartate, phenylalanine, glycine and cysteine. Glycine, L-methionine and tryptophan are all used in the pharmaceutical industry. Glutamine, valine, leucine, isoleucine, histidine, arginine, proline, serine and alanine are used in the pharmaceutical and cosmetic industries. Threonine, tryptophan and D- / L-methionine are widespread feed additives (Leuchtenberger, W. (1996) Amino acids - technical production and use, pp. 466-502 in Rehm et al., (Ed.) Biotechnology Vol 6, Chapter 14a, VCH: Weinheim). It has been discovered that these amino acids are also used as precursors for the synthesis of synthetic amino acids and proteins such as N-acetylcysteine, S-carboxymethyl-L-cysteine, (S) -5-hydroxytryptophan and others, in Ulimann's Encyclopedia of Industrial Chemistry, Vol. A2, pp. 57-97, VCH, Weinheim, 1985 are suitable substances.
Die Biosynthese dieser natürlichen Aminosäuren in Organismen, die sie produzieren können, bspw. Bakterien, ist gut charakterisiert worden (für einen Überblick der bakteriellen Aminosäure-Biosynthese und ihrer Regulation, s. Umbarger, H.E. (1978) Ann. Rev. Biochem. 47: 533 - 606). Glutamat wird durch reduktive Aminierung von α-Ketoglutarat, einem Zwischenprodukt im Citronensäure-Zy- klus, synthetisiert. Glutamin, Prolin und Arginin werden jeweils nacheinander aus Glutamat erzeugt. Die Biosynthese von Serin erfolgt in einem Dreisehritt-Verfahren und beginnt mit 3-Phosphog- lycerat (einem Zwischenprodukt bei der Glykolyse) , und ergibt nach Oxidations-, Transaminierungs- und Hydrolyseschritten diese Aminosäure. Cystein und Glycin werden jeweils aus Serin produziert, und zwar die erstere durch Kondensation von Homocystein mit Serin, und die letztere durch Übertragung des Seitenket- ten-ß-Kohlenstoffatoms auf Tetrahydrofolat, in einer durch Serin- transhydroxy ethylase katalysierten Reaktion. Phenylalanin und Tyrosin werden aus den Vorstufen des Glycolyse- und Pentosephosp- hatweges, Erythrose-4-phosphat und Phosphoenolpyruvat in einem 9-Schritt-Biosyntheseweg synthetisiert, der sich nur in den letzten beiden Schritten nach der Synthese von Prephenat unterschei- det. Tryptophan wird ebenfalls aus diesen beiden Ausgangsmolekülen produziert, jedoch erfolgt dessen Synthese in einem 11-Schritt-Weg. Tyrosin läßt sich in einer durch Phenylalaninhy- droxylase katalysierten Reaktion auch aus Phenylalanin herstellen. Alanin, Valin und Leucin sind jeweils Biosyntheseprodukte aus Pyruvat, dem Endprodukt der Glykolyse. Aspartat wird aus Oxa- lacetat, einem Zwischenprodukt des Citratzyklus , gebildet. Aspa- ragin, Methionin, Threonin und Lysin werden jeweils durch Umwandlung von Aspartat produziert. Isoleucin .wird aus Threonin gebildet. In einem komplexen 9-Schritt-Weg erfolgt die Bildung von Histidin aus 5-Phosphoribosyl-l-pyrophosphat, einem aktivierten Zucker.The biosynthesis of these natural amino acids in organisms that can produce them, e.g. bacteria, has been well characterized (for an overview of bacterial amino acid biosynthesis and its regulation, see Umbarger, HE (1978) Ann. Rev. Biochem. 47: 533-606). Glutamate is synthesized by reductive amination of α-ketoglutarate, an intermediate in the citric acid cycle. Glutamine, proline and arginine are each made up of glutamate one after the other. The biosynthesis of serine takes place in a three-step process and begins with 3-phosphoglycerate (an intermediate in glycolysis), and gives this amino acid after oxidation, transamination and hydrolysis steps. Cysteine and glycine are each produced from serine, the former by condensation of homocysteine with serine, and the latter by transferring the side chain β-carbon atom to tetrahydrofolate, in a reaction catalyzed by serine transhydroxyethylase. Phenylalanine and tyrosine are synthesized from the precursors of the glycolysis and pentosephosphate pathway, erythrose-4-phosphate and phosphoenolpyruvate in a 9-step biosynthetic pathway that differs only in the last two steps after the synthesis of prephenate. Tryptophan is also produced from these two starting molecules, but its synthesis takes place in an 11-step process. Tyrosine can be obtained by phenylalanine droxylase catalyzed reaction also from phenylalanine. Alanine, valine and leucine are each biosynthetic products from pyruvate, the end product of glycolysis. Aspartate is formed from oxa acetate, an intermediate of the citrate cycle. Asparagine, methionine, threonine and lysine are each produced by converting aspartate. Isoleucine is formed from threonine. In a complex 9-step process, histidine is formed from 5-phosphoribosyl-1-pyrophosphate, an activated sugar.
Aminosäuren, deren Menge den Proteinbiosynthesebedarf der Zelle übersteigt, können nicht gespeichert werden, und werden stattdessen abgebaut, so daß Zwischenprodukte für die Haupt-Stoffwechselwege der Zelle bereitgestellt werden (für einen Überblick siehe Stryer, L., Biochemistry, 3. Aufl. Kap. 21 "Amino AcidAmino acids, the amount of which exceeds the cell's protein biosynthesis requirement, cannot be stored and are instead broken down, so that intermediate products are provided for the main metabolic pathways of the cell (for an overview see Stryer, L., Biochemistry, 3rd ed. Chap. 21 "amino acid
Degradation and the Urea Cycle"; S 495-516 (1988)). Die Zelle ist zwar in der Lage, ungewünschte Aminosäuren in nützliche Stoffwechsel-Zwischenprodukte umzuwandeln, jedoch ist die Aminosäureproduktion hinsichtlich der Energie, der Vorstufenmoleküle und der für ihre Synthese nötigen Enzyme aufwendig. Es überrascht daher nicht, daß die Aminosäure-Biosynthese durch Feedback-Hemmung reguliert wird, wobei das Vorliegen einer bestimmten Aminosäure ihre eigene Produktion verlangsamt oder ganz beendet (für einen Überblick über den Rückkopplungs-Mechanismus bei Aminosäure-Bio- synthesewegen, siehe Stryer, L., Biochemistry, 3. Aufl., Kap. 24, "Biosynthesis of Amino Acids and Heme", S. 575-600 (1988)). Der Ausstoß einer bestimmten Aminosäure wird daher durch die Menge dieser Aminosäure in der Zelle eingeschränkt.Degradation and the Urea Cycle "; S 495-516 (1988)). Although the cell is able to convert undesired amino acids into useful metabolic intermediates, the amino acid production is in terms of energy, precursor molecules and the enzymes necessary for their synthesis It is therefore not surprising that amino acid biosynthesis is regulated by feedback inhibition, the presence of a particular amino acid slowing down or completely stopping its own production (for an overview of the feedback mechanism in amino acid biosynthesis pathways, see Stryer , L., Biochemistry, 3rd ed., Chapter 24, "Biosynthesis of Amino Acids and Heme", pp. 575-600 (1988). The output of a certain amino acid is therefore restricted by the amount of this amino acid in the cell ,
B. Vitamine, Cofaktoren und Nutrazeutika-Metabolismus sowie VerwendungenB. vitamins, cofactors and nutraceutical metabolism and uses
Vitamine, Cofaktoren und Nutrazeutika umfassen eine weitere Gruppe von Molekülen. Höhere Tiere haben die Fähigkeit verloren, diese zu synthetisieren und müssen sie somit aufnehmen, obwohl sie leicht durch andere Organismen, wie Bakterien, synthetisiert werden. Diese Moleküle sind entweder biologisch aktive Moleküle an sich oder Vorstufen von biologisch aktiven Substanzen, die als Elektronenträger oder Zwischenprodukte bei einer Reihe von Stoff- wechselwegen dienen. Diese Verbindungen haben neben ihrem Nährwert auch einen signifikanten industriellen Wert als Farbstoffe, Antioxidantien und Katalysatoren oder andere Verarbeitungs-Hilfs- stoffe. (Für einen Überblick über die Struktur, Aktivität und die industriellen Anwendungen dieser Verbindungen siehe bspw. Uli- ann's Encyclopedia of Industrial Chemistry, "Vitamins", Bd. A27, S. 443-613, VCH: Weinheim, 1996). Der Begriff "Vitamin" ist im Fachgebiet bekannt und umfaßt Nährstoffe, die von einem Organis- mus für eine normale Funktion benötigt werden, jedoch nicht von diesem Organismus selbst synthetisiert werden können. Die Gruppe der Vitamine kann Cofaktoren und nutrazeutische Verbindungen umfassen. Der Begriff "Cofaktor" umfaßt nicht-proteinartige Verbin- düngen, die für das Auftreten einer normalen Enzymaktivität nötig sind. Diese Verbindungen können organisch oder anorganisch sein; die erfindungsgemäßen Cofaktor-Moleküle sind vorzugsweise organisch. Der Begriff "Nutrazeutikum" umfaßt Nahrungsmittelzusätze, die bei Pflanzen und Tieren, insbesondere dem Menschen, gesund- heitsfordernd sind. Beispiele solcher Moleküle sind Vitamine, An- tioxidantien und ebenfalls bestimmte Lipide (z.B. mehrfach ungesättigte Fettsäuren) .Vitamins, cofactors and nutraceuticals comprise another group of molecules. Higher animals have lost the ability to synthesize them and must therefore absorb them, although they are easily synthesized by other organisms such as bacteria. These molecules are either biologically active molecules per se or precursors of biologically active substances that serve as electron carriers or intermediates in a number of metabolic pathways. In addition to their nutritional value, these compounds also have a significant industrial value as dyes, antioxidants and catalysts or other processing aids. (For an overview of the structure, activity and the industrial applications of these compounds, see, for example, Ulian's Encyclopedia of Industrial Chemistry, "Vitamins", Vol. A27, pp. 443-613, VCH: Weinheim, 1996). The term "vitamin" is known in the art and includes nutrients derived from an organ must be required for normal function, but cannot be synthesized by this organism itself. The group of vitamins can include cofactors and nutraceutical compounds. The term "cofactor" encompasses non-proteinaceous compounds which are necessary for the occurrence of normal enzyme activity. These compounds can be organic or inorganic; the cofactor molecules according to the invention are preferably organic. The term “nutraceutical” encompasses food additives which are harmful to plants and animals, in particular humans. Examples of such molecules are vitamins, antioxidants and also certain lipids (eg polyunsaturated fatty acids).
Die Biosynthese dieser Moleküle in Organismen, die zu ihrer Pro- duktion befähigt sind, wie Bakterien, ist umfassend charakterisiert worden (Ullmann's Encyclopedia of Industrial Chemistry, "Vitamins", Bd. A27, S. 443-613, VCH: Weinheim, 1996, Michal, G. (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley & Sons; Ong, A.S., Niki, E. und Packer, L. (1995) "Nutrition, Lipids, Health and Disease" Proceedings of the UNESCO/Confederation of Scientific and Technological Associations in Malaysia and the Society for free Radical Research - Asien, abgehalten am 1.-3. Sept. 1994 in Penang, Malaysia, AOCS Press, Champaign, IL X, 374 S) .The biosynthesis of these molecules in organisms capable of producing them, such as bacteria, has been extensively characterized (Ullmann's Encyclopedia of Industrial Chemistry, "Vitamins", Vol. A27, pp. 443-613, VCH: Weinheim, 1996, Michal, G. (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley &Sons; Ong, AS, Niki, E. and Packer, L. (1995) "Nutrition, Lipids, Health and Disease" Proceedings of the UNESCO / Confederation of Scientific and Technological Associations in Malaysia and the Society for free Radical Research - Asia, held on September 1-3, 1994 in Penang, Malaysia, AOCS Press, Champaign, IL X, 374 S).
Thiamin (Vitamin Bi) wird durch chemisches Kuppeln von Pyrimidin und Thiazol-Einheiten gebildet. Riboflavin (Vitamin B ) wird aus Guanosin-5 ' -triphosphat (GTP) und Ribose-5 ' -phosphat synthetisiert. Riboflavin wiederum wird zur Synthese von Flavinmononu- kleotid (FMN) und Flavinadenindinukleotid (FAD) eingesetzt. Die Familie von Verbindungen, die gemeinsam als "Vitamin B6" bezeichnet werden (bspw. Pyridoxin, Pyridoxamin, Pyridoxal-5 '-phosphat und das kommerziell verwendete Pyridoxinhydrochlorid) , sind alle Derivate der gemeinsamen Struktureinheit 5-Hydroxy-6-methylpyri- din. Panthothenat (Pantothensäure, R- (+) -N- (2 , 4-Dihydroxy-3 , 3-di- methyl-1-oxobutyl) -ß-alanin) kann entweder durch chemische Synthese oder durch Fermentation hergestellt werden. Die letzten Schritte bei der Pantothenat-Biosynthese bestehen aus der ATP-ge- triebenen Kondensation von ß-Alanin und Pantoinsäure. Die für die Biosyntheseschritte für die Umwandlung in Pantoinsäure, in ß-Ala- nin und zur Kondensation in Pantothensäure verantwortlichen Enzyme sind bekannt. Die metabolisch aktive Form von Pantothenat ist Coenzym A, dessen Biosynthese über 5 enzymatische Schritte verläuft. Pantothenat, Pyridoxal-5 ' -phospha , Cystein und ATP sind die Vorstufen von Coenzym A. Diese Enzyme katalysieren nicht nur die Bildung von Pantothenat, sondern auch die Produktion von (R) -Pantoinsäure, (R)-Pantolacton, (R) -Panthenol (Provitamin B5) , Pantethein (und seinen Derivaten) und Coenzym A.Thiamine (vitamin Bi) is formed by chemical coupling of pyrimidine and thiazole units. Riboflavin (vitamin B) is synthesized from guanosine 5 'triphosphate (GTP) and ribose 5' phosphate. Riboflavin in turn is used to synthesize flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). The family of compounds which are collectively referred to as "vitamin B6" (for example pyridoxine, pyridoxamine, pyridoxal 5 'phosphate and the commercially used pyridoxine hydrochloride) are all derivatives of the common structural unit 5-hydroxy-6-methylpyridine. Panthothenate (pantothenic acid, R- (+) -N- (2,4-dihydroxy-3,3,3-dimethyl-1-oxobutyl) -ß-alanine) can be produced either by chemical synthesis or by fermentation. The final steps in pantothenate biosynthesis consist of the ATP-driven condensation of ß-alanine and pantoic acid. The enzymes responsible for the biosynthetic steps for the conversion into pantoic acid, into β-alanine and for the condensation into pantothenic acid are known. The metabolically active form of pantothenate is coenzyme A, whose biosynthesis takes place over 5 enzymatic steps. Pantothenate, pyridoxal-5 '-phospha, cysteine and ATP are the precursors of coenzyme A. These enzymes not only catalyze the formation of pantothenate, but also the production of (R) -pantoic acid, (R) -pantolactone, (R) -panthenol (provitamin B 5 ), pantethein (and its derivatives) and coenzyme A.
Die Biosynthese von Biotin aus dem Vorstufenmolekül Pimeloyl-CoA in Mikroorganismen ist ausführlich untersucht worden, und man hat mehrere der beteiligten Gene identifiziert. Es hat sich herausgestellt, daß viele der entsprechenden Proteine an der Fe-Cluster- Synthese beteiligt sind und zu der Klasse der nifS-Proteine gehören. Die Liponsäure wird von der Octanonsäure abgeleitet und dient als Coenzym beim Energie-Metabolismus, wo sie Bestandteil des Pyruvatdehydrogenasekomplexes und des α-Ketoglutaratdehydro- genasekomplexes wird. Die Folate sind eine Gruppe von Substanzen, die alle von der Folsäure abgeleitet werden, die wiederum von L- Gluta insäure, p-Aminobenzoesäure und 6-Methylpte in hergeleitet ist. Die Biosynthese der Folsäure und ihrer Derivate, ausgehend von den etabolischen Stoffwechselzwischenprodukten Guano- sin-5 ' -triphosphat (GTP) , L-Glutaminsäure und p-Aminobenzoesäure ist in bestimmten Mikroorganismen eingehend untersucht worden.The biosynthesis of biotin from the precursor molecule pimeloyl-CoA in microorganisms has been extensively investigated and several of the genes involved have been identified. It has been found that many of the corresponding proteins are involved in the Fe cluster synthesis and belong to the class of the nifS proteins. Lipoic acid is derived from octanoic acid and serves as a coenzyme in energy metabolism, where it becomes part of the pyruvate dehydrogenase complex and the α-ketoglutarate dehydrogenase complex. The folates are a group of substances that are all derived from folic acid, which in turn is derived from L-glutanic acid, p-aminobenzoic acid and 6-methylptin. The biosynthesis of folic acid and its derivatives, based on the metabolic intermediates guanosine 5 'triphosphate (GTP), L-glutamic acid and p-aminobenzoic acid, has been extensively investigated in certain microorganisms.
Corrinoide (wie die Cobalamine und insbesondere Vitamin Bχ ) und die Porphyrine gehören zu einer Gruppe von Chemikalien, die sich durch ein Tetrapyrrol-Ringsystem auszeichnen. Die Biosynthese von Vitamin Bχ ist hinreichend komplex, daß sie noch nicht vollständig charakterisiert worden ist, jedoch ist inzwischen ein Groß- teil der beteiligten Enzyme und Substrate bekannt. Nikotinsäure (Nikotinat) und Nikotinamid sind Pyridin-Derivate, die auch als "Niacin" bezeichnet werden. Niacin ist die Vorstufe der wichtigen Coenzyme NAD (Nikotinamidadenindinukleotid) und NADP (Nikotinami- dadenindinukleotidphosphat) und ihrer reduzierten Formen.Corrinoids (such as the cobalamins and especially vitamin Bχ) and the porphyrins belong to a group of chemicals that are characterized by a tetrapyrrole ring system. The biosynthesis of vitamin Bχ is sufficiently complex that it has not been fully characterized, but a large part of the enzymes and substrates involved is now known. Nicotinic acid (nicotinate) and nicotinamide are pyridine derivatives, which are also called "niacin". Niacin is the precursor of the important coenzymes NAD (nicotinamide adenine dinucleotide) and NADP (nicotinamide adenine dinucleotide phosphate) and their reduced forms.
Die Produktion dieser Verbindungen im Großmaßstab beruht größtenteils auf zellfreien chemischen Synthesen, obwohl einige dieser Chemikalien ebenfalls durch großangelegte Anzucht von Mikroorganismen produziert worden sind, wie Riboflavin, Vitamin Bg, Panto- thenat und Biotin. Nur Vitamin Bχ wird aufgrund der Komplexität seiner Synthese lediglich durch Fermentation produziert. In-vi- tro-Verfahren erfordern einen erheblichen Aufwand an Materialien und Zeit und häufig an hohen Kosten.The production of these compounds on a large scale is largely based on cell-free chemical syntheses, although some of these chemicals have also been produced by large-scale cultivation of microorganisms, such as riboflavin, vitamin Bg, pantothenate and biotin. Only vitamin Bχ is only produced by fermentation due to the complexity of its synthesis. In-vitro processes require a considerable amount of materials and time and often high costs.
C. Purin-, Pyrimidin-, Nukleosid- und Nukleotid-Metabolismus und VerwendungenC. Purine, Pyrimidine, Nucleoside and Nucleotide Metabolism and Uses
Gene für den Purin- und Pyrimidin-StoffWechsel und ihre entsprechenden Proteine sind wichtige Ziele für die Therapie von Tumo- rerkrankungen und Virusinfektionen. Der Begriff "Purin" oder "Pyrimidin" umfaßt stickstoffhaltige Basen, die Bestandteil der Nukleinsäuren, Coenzyme und Nukleotide sind. Der Begriff "Nukleo- tid" beinhaltet die grundlegenden Struktureinheiten der Nukleinsäuremoleküle, die eine stickstoffhaltige Base, einen Pentose- Zucker (bei RNA ist der Zucker Ribose, bei DNA ist der Zucker D- Desoxyribose) und Phosphorsäure umfassen. Der Begriff "Nukleosid" umfaßt Moleküle, die als Vorstufen von Nukleotiden dienen, die aber im Gegensatz zu den Nukleotiden keine Phosphorsäureeinheit aufweisen. Durch Hemmen der Biosynthese dieser Moleküle oder ihrer Mobilisation zur Bildung von Nukleinsäuremolekülen ist es möglich, die RNA- und DNA-Synthese zu hemmen; wird diese Aktivi- tat zielgerichtet bei kanzerogenen Zellen gehemmt, läßt sich die Teilungs- und Replikations-Fähigkeit von Tumorzellen hemmen. Es gibt zudem Nukleotide, die keine Nukleinsäuremoleküle bilden, jedoch als Energiespeieher (d.h. AMP) oder als Coenzyme (d.h. FAD und NAD) dienen.Genes for the purine and pyrimidine metabolism and their corresponding proteins are important targets for the therapy of tumor diseases and viral infections. The term "purine" or "pyrimidine" encompasses nitrogen-containing bases which are part of the nucleic acids, coenzymes and nucleotides. The term "nucleo- tid "contains the basic structural units of the nucleic acid molecules, which comprise a nitrogenous base, a pentose sugar (for RNA the sugar is ribose, for DNA the sugar is D-deoxyribose) and phosphoric acid. The term" nucleoside "includes molecules that act as precursors by inhibiting the biosynthesis of these molecules or their mobilization to form nucleic acid molecules, it is possible to inhibit RNA and DNA synthesis if this activity is targeted at carcinogens Inhibited cells inhibit the ability of tumor cells to divide and replicate, and there are nucleotides that do not form nucleic acid molecules, but that serve as energy sources (ie AMP) or as coenzymes (ie FAD and NAD).
Mehrere Veröffentlichungen haben die Verwendung dieser Chemikalien für diese medizinischen Indikationen beschrieben, wobei der Purin- und/oder Pyrimidin-Metabolis us beeinflußt wird (bspw. Christopherson, R.I. und Lyons, S.D. (1990) "Potent inhibitors of de novo pyrimidine and purine biosynthesis as chemotherapeutic agents", Med. Res. Reviews 10: 505-548). Untersuchungen an Enzymen, die am Purin- und Pyrimidin-Metabolismus beteiligt sind, haben sich auf die Entwicklung neuer Medikamente konzentriert, die bspw. als Immunsuppressionsmittel oder Antiproliferantien verwen- det werden können (Smith, J.L. "Enzymes in Nucleotide Synthesis" Curr. Opin. Struct. Biol. 5 (1995) 752-757; Biochem. Soc . Trans- act. 23 (1995) 877-902). Die Purin- und Pyri idinbasen, Nukleoside und Nukleotide haben jedoch auch andere Einsatzmöglichkeiten: als Zwischenprodukte bei der Biosysnthese verschiedener Feinchemikalien (z.B. Thiamin, S-Adenosyl-methionin, Folate oder Riboflavin) , als Energieträger für die Zelle (bspw. ATP oder GTP) und für Chemikalien selbst, werden gewöhnlich als Geschmacksverstärker verwendet (bspw. IMP oder GMP) oder für viele medizinische Anwendungen (siehe bspw. Kuninaka, A. , (1996) "Nucleotides and Related Compounds in Biotechnology Bd. 6, Rehm et al., Hrsg. VCH: Weinheim, S. 561-612) . Enzyme, die am Purin-, Pyrimidin-, Nukleosid- oder Nukleotid-Metabolismus beteiligt sind, dienen auch immer stärker als Ziele, gegen die Chemikalien für den Pflanzenschutz, einschließlich Fungiziden, Herbiziden und Insek- tiziden entwickelt werden.Several publications have described the use of these chemicals for these medical indications, the purine and / or pyrimidine metabolism being influenced (e.g. Christopherson, RI and Lyons, SD (1990) "Potent inhibitors of de novo pyrimidine and purine biosynthesis as chemotherapeutic agents ", Med. Res. Reviews 10: 505-548). Studies on enzymes that are involved in the purine and pyrimidine metabolism have focused on the development of new drugs that can be used, for example, as immunosuppressants or antiproliferants (Smith, JL "Enzymes in Nucleotide Synthesis" Curr. Opin. Struct. Biol. 5 (1995) 752-757; Biochem. Soc. Transact. 23 (1995) 877-902). However, the purine and pyridine bases, nucleosides and nucleotides also have other possible uses: as intermediates in the biosynthesis of various fine chemicals (e.g. thiamine, S-adenosyl methionine, folate or riboflavin), as energy sources for the cell (e.g. ATP or GTP) and for chemicals themselves, are commonly used as flavor enhancers (e.g. IMP or GMP) or for many medical applications (see e.g. Kuninaka, A., (1996) "Nucleotides and Related Compounds in Biotechnology Vol. 6, Rehm et al., VCH: Weinheim, pp. 561-612) Enzymes that are involved in the purine, pyrimidine, nucleoside or nucleotide metabolism are also increasingly used as targets against the chemicals for crop protection, including fungicides, herbicides and insecticides are developed.
Der Metabolismus dieser Verbindungen in Bakterien ist charakterisiert worden (für Übersichten siehe bspw. Zalkin, H. und Dixon, J.E. (1992) "De novo purin nucleotide biosynthesis" in Progress in Nucleic Acids Research and Molecular biology, Bd. 42, Academic Press, S. 259-287; und Michal, G. (1999) "Nucleotides and Nucleo- sides"; Kap. 8 in : Biochemical Pathways : An Atlas of Bioche is- try and Molecular Biology, Wiley, New York) . Der Purin-Metabolis- us, das Objekt intesiver Forschung, ist für das normale Funktionieren der Zelle essentiell. Ein gestörter Purin-Metabolismus in höheren Tieren kann schwere Erkrankungen verursachen, bspw. Gicht. Die Purinnukleotide werden über eine Reihe von Schritten über die Zwischenverbindung Inosin-5 ' -phosphat (IMP) aus Ri- bose-5-phosphat synthetisiert, was zur Produktion von Guano- sin-5'-monophosphat (GMP) oder Adenosin-5 ' -monophosphat (AMP) führt, aus denen sich die als Nukleotide verwendeten Triphosphat- formen leicht herstellen lassen. Diese Verbindungen werden auch als Energiespeicher verwendet, so daß ihr Abbau Energie für viele verschiedene biochemische Prozesse in der Zelle liefert. Die Py- rimidinbiosynthese erfolgt über die Bildung von Uridin-5 ' -monophosphat (UMP) aus Ribose-5-phosphat . UMP wiederum wird in Cyti- din-5 ' -triphosphat (CTP) umgewandelt. Die Desoxyformen sämtlicher Nukleotide werden in einer Einschritt-Reduktionsreaktion aus der Diphosphat-Ribosefor des Nukleotides zur Diphosphat-Desoxyribo- seform des Nukleotides hergestellt. Nach der Phosphorylierung können diese Moleküle an der DNA-Synthese teilnehmen.The metabolism of these compounds in bacteria has been characterized (for overviews see, for example, Zalkin, H. and Dixon, JE (1992) "De novo purin nucleotide biosynthesis" in Progress in Nucleic Acids Research and Molecular biology, Vol. 42, Academic Press, Pp. 259-287; and Michal, G. (1999) "Nucleotides and Nucleosides"; Chap. 8 in: Biochemical Pathways: An Atlas of Bioche is- try and Molecular Biology, Wiley, New York). The purine metabolism, the object of intensive research, is essential for the normal functioning of the cell. A disturbed purine metabolism in higher animals can cause serious illnesses, e.g. gout. The purine nucleotides are synthesized from ribose 5-phosphate via a series of steps via the intermediate compound inosine 5 'phosphate (IMP), which leads to the production of guanosine 5'-monophosphate (GMP) or adenosine 5' -monophosphate (AMP), from which the triphosphate forms used as nucleotides can be easily produced. These compounds are also used as energy stores so that their degradation provides energy for many different biochemical processes in the cell. Pyrimidine biosynthesis takes place via the formation of uridine 5 'monophosphate (UMP) from ribose 5-phosphate. UMP in turn is converted into cytidine 5 'triphosphate (CTP). The deoxy forms of all nucleotides are produced in a one-step reduction reaction from the diphosphate ribose form of the nucleotide to the diphosphate deoxyribose form of the nucleotide. After phosphorylation, these molecules can participate in DNA synthesis.
D. Trehalose-Metabolismus und VerwendungenD. Trehalose metabolism and uses
Trehalose besteht aus zwei Glucose olekülen, die über α, ot-1, 1-Bindung miteinander verknüpft sind. Sie wird gewöhnlich in der Nahrungsmittelindustrie als Süßstoff, als Additiv für getrocknete oder gefrorene Nahrungsmittel sowie in Getränken verwendet. Sie wird jedoch auch in der pharmazeutischen Industrie, der Kosmetik- und Biotechnologie-Industrie angewendet (s. bspw. Nishi oto et al., (1998) US-Patent Nr. 5 759 610; Singer, M.A. und Lindquist, S. Trends Biotech. 16 (1998) 460-467; Paiva, C.L.A. und Panek, A.D. Biotech Ann. Rev. 2 (1996) 293-314; und Shiosaka, M. J. Japan 172 (1997) 97-102). Trehalose wird durch Enzyme von vielen Mikroorganismen produziert und auf natürliche Weise in das umgebende Medium abgegeben, aus dem sie durch im Fachgebiet bekannte Verfahren gewonnen werden kann.Trehalose consists of two glucose molecules which are linked to one another via an α, ot-1, 1 bond. It is commonly used in the food industry as a sweetener, as an additive for dried or frozen foods, and in beverages. However, it is also used in the pharmaceutical, cosmetics and biotechnology industries (see, e.g., Nishi oto et al., (1998) US Patent No. 5,759,610; Singer, MA and Lindquist, S. Trends Biotech 16 (1998) 460-467; Paiva, CLA and Panek, AD Biotech Ann. Rev. 2 (1996) 293-314; and Shiosaka, MJ Japan 172 (1997) 97-102). Trehalose is produced by enzymes from many microorganisms and is naturally released into the surrounding medium from which it can be obtained by methods known in the art.
II . Beständigkeit gegenüber Beschädigung durch Chemikalien und UmweltstreßII. Resistance to chemical damage and environmental stress
Die Produktion von Feinchemikalien erfolgt üblicherweise durch großangelegte Kultur von Bakterien , die zur Produktion und Sekretion großer Mengen dieser Moleküle entwickelt worden sind. Dieser Typ der Großfermentation hat jedoch zur Folge, daß die Mikroorganismen verschiedenen Arten von Streß unterworfen sind. Diese Streßfaktoren umfassen Umwelt- und chemischen Streß. Beispiele für gewöhnlich bei großangelegten Fermentationskulturen vorkommenden Umweltstreß, sind u.a. mechanischer Streß, Hitzestreß, Streß aufgrund von Sauerstoffmangel, Stress aufgrund von Sauerstoffradikalen, pH-Wert-Streß und osmotischer Streß. Der zur 5 Belüftung der Kultur in den meisten Groß-Fermentern verwendete Rührmechanismus erzeugt Wärme, wodurch die Temperatur der Kultur steigt. Temperaturanstiege induzieren die gut beschriebene Hitzschockantwort, bei der ein Satz an Proteinen exprimiert wird, die das Überleben des Bakteriums angesichts der hohen TemperaturenFine chemicals are usually produced by large-scale culture of bacteria that have been developed for the production and secretion of large quantities of these molecules. However, this type of large-scale fermentation means that the microorganisms are subjected to various types of stress. These stress factors include environmental and chemical stress. Examples of environmental stress commonly encountered in large fermentation cultures include mechanical stress, heat stress, stress due to lack of oxygen, stress due to oxygen radicals, pH stress and osmotic stress. The stirring mechanism used to aerate the culture in most large fermenters generates heat, which increases the temperature of the culture. Temperature increases induce the well-described heat shock response, in which a set of proteins are expressed that are responsible for the survival of the bacterium in the face of high temperatures
10 unterstützt, aber auch das Überleben in Reaktion auf eine Reihe anderer Umweltstreßfaktoren steigern (s. Neidhardt, F.C. et al., Hrsg. (1996) E. coli and Salmonella. ASM Press: Washington D.C:, S. 1382-1399; Wosten, M.M (1998) FEMS Microbiology Reviews 22(3): 127-50; Bahl, H. et al. (1995) FEMS Microbiology Reviews 17(3):10 supports, but also increases survival in response to a number of other environmental stress factors (see Neidhardt, FC et al., Ed. (1996) E. coli and Salmonella. ASM Press: Washington DC: pp. 1382-1399; Wosten , MM (1998) FEMS Microbiology Reviews 22 (3): 127-50; Bahl, H. et al. (1995) FEMS Microbiology Reviews 17 (3):
15 341-348; Zimmerman, J.L., Cohill, P.R. (1991) New Biologist 3(7): 641-650; Samali, A. und Orrenius, S. (1998) Cell . Stress Chapero- nes 3(4): 228-236, und die in jedem der Zitate aufgeführten Literaturstellen) . Die Regulation der Hitzeschock-Antwort in Bakterien wird durch spezifische Sigmafaktoren und andere zelluläre15 341-348; Zimmerman, J.L., Cohill, P.R. (1991) New Biologist 3 (7): 641-650; Samali, A. and Orrenius, S. (1998) Cell. Stress Chaperones 3 (4): 228-236, and the references cited in each of the citations). The regulation of the heat shock response in bacteria is determined by specific sigma factors and other cellular ones
20 Regulatoren der Genexpression erleichtert (Hecker, M. , Volker, U. (1998). Molecular Microbiology 29(5): 1129-1136). Eines der größten Probleme, welches die Zelle beim Aussetzen gegenüber hohen Temperaturen erfährt, ist eine verschlechterte Proteinfaltung; naszierende Proteine haben unter Hochtemperaturbedingungen eine20 regulators of gene expression are facilitated (Hecker, M., Volker, U. (1998). Molecular Microbiology 29 (5): 1129-1136). One of the biggest problems the cell experiences when exposed to high temperatures is deteriorated protein folding; nascent proteins have one under high temperature conditions
25 hinreichende kinetische Energie, daß die wachsende Polypeptid- kette nicht lang genug in einer stabilen Konformation verweilt, um sich korrekt zu falten. Zwei der Schlüsselproteintypen, die bei der Hitzeschockreaktion exprimiert werden, bestehen folglich aus Chaperonen (Proteinen, die das Falten oder Entfalten andererSufficient kinetic energy that the growing polypeptide chain does not remain in a stable conformation long enough to fold correctly. Two of the key protein types that are expressed in the heat shock reaction are therefore made up of chaperones (proteins that cause the folding or unfolding of others
30 Proteine unterstützen - s. bspw. Fink, A.L. (1999) Physiol. Rev. 79(2): 425-449) und Proteasen, die sämtliche falsch gefalteten Proteine zerstören. Beispiele für Chaperone, die bei der Hitzeschockreaktion exprimiert werden, sind GroEL und DNAK; Proteasen, die bekanntlich während der Reaktion auf Hitzeschock exprimiert30 proteins support - s. e.g. Fink, A.L. (1999) Physiol. Rev. 79 (2): 425-449) and proteases that destroy all misfolded proteins. Examples of chaperones that are expressed in the heat shock reaction are GroEL and DNAK; Proteases, which are known to express during the response to heat shock
35 werden sind u.a. Lon, FtsH und ClpB.35 will include Lon, FtsH and ClpB.
Neben Hitze können andere Umweltstreßfaktoren ebenfalls eine Streßreaktion provozieren. Das Fermenterrührverfahren soll zwar Sauerstoff in die Kultur einbringen, jedoch kann das Sauerstof- 0 fangebot begrenzt sein, insbesondere, wenn die Kultur ein fortgeschrittenes Wachstumsstadium erreicht hat und ihr Sauerstoffbedarf somit erhöht ist; ein unzureichendes Sauerstoffangebot ist für den Mikroorganismus ein weiterer Streß. Die Zellen in Fermen- terkulturen werden ebenfalls einer Reihe von osmotischen Streß- 5 faktoren unterworfen, insbesondere, wenn die Nährstoffe zur Kultur gegeben werden, was eine hohe extrazelluläre und eine niedrige intrazelluläre Konzentration dieser Moleküle ■ hervorruft . Die großen Mengen der gewünschten Moleküle, die durch diese Organismen in Kultur produziert werden, können zum osmotischen Streß von Bakterien beitragen. Schließlich produziert ein aerober Metabolismus, wie derjenige, der bei C. glutamicum verwendet wird, Kohlendioxid als Abfallprodukt; die Sekretion dieses Moleküls kann das Kulturmedium aufgrund der Umwandlung dieses Moleküls in Carbonsäure ansäuern. Somit unterliegen Bakterien in Kultur ebenfalls häufig einem sauren pH-Wert-Streß. Das Gegenteil kann auch zutreffen - wenn große Mengen basischer Abfallmaterialien im Kul- turmedium zugegen sind, können die Bakterien in der Kultur auch einem basischen pH-Wert-Streß unterliegen.In addition to heat, other environmental stress factors can also provoke a stress reaction. Although the fermenter stirring process is said to introduce oxygen into the culture, the oxygen supply can be limited, especially if the culture has reached an advanced stage of growth and its oxygen requirement is thus increased; an insufficient supply of oxygen is another stress for the microorganism. The cells in fermenter cultures are also subjected to a number of osmotic stress factors, especially when the nutrients are added to the culture, causing a high extracellular and a low intracellular concentration of these molecules. The large amounts of the desired molecules that are produced in culture by these organisms can contribute to the osmotic stress of bacteria. Finally, aerobic metabolism, such as that used in C. glutamicum, produces carbon dioxide as a waste product; the secretion of this molecule can acidify the culture medium due to the conversion of this molecule into carboxylic acid. Thus, bacteria in culture are also often subject to an acidic pH stress. The opposite can also be true - if large amounts of basic waste materials are present in the culture medium, the bacteria in the culture can also be subjected to a basic pH stress.
Neben den UmweltStreßfaktoren können die Zellen auch einer Reihe von chemischen Streßfaktoren unterliegen. Diese können in zwei Kategorien fallen. Die erste sind natürliche Abfallprodukte des Metabolismus und anderer Prozesse, die von der Zelle in das umgebende Medium sezerniert werden. Die zweite sind Chemikalien im extrazellulären Medium, die nicht aus der Zelle stammen. Wenn die Zellen toxische Abfallprodukte aus dem konzentrierten intrazellu- lären Cytoplasma in das relativ viel verdünntere extrazelluläre Medium ausscheiden, verteilen sich diese Produkte, so daß die extrazellulären Mengen der möglicherweise toxischen Verbindung recht niedrig sind. Bei großangelegten Fermenterkulturen des Bak- teriums kann das jedoch nicht der Fall sein: in einer relativ kleinen Umgebung wachsen so viele Bakterien mit einer solch hohen Stoffwechselrate, daß sich die Abfallprodukte im Medium in fast toxischen Mengen anreichern. Beispiele für solche Abfallprodukte sind Kohlendioxid, Metallionen und reaktive Sauerstoffspezies, wie Wasserstoffperoxid. Diese Verbindungen können die Aktivität oder Struktur der Zeiloberflächenmoleküle stören, oder können wieder in die Zelle eintreten, wo sie Proteine und auch Nukleinsäuren schwer beschädigen können. Bestimmte andere Chemikalien, die für das normale Funktionieren der Zellen gefährlich sind, können im extrazellulären Medium natürlich gefunden werden. Bspw. werden Metallionen, wie Quecksilber, Cadmium, Nickel oder Kupfer häufig in Wasserquellen gefunden, die feste Komplexe mit zellulären Enzymen bilden, die das normale Funktionieren dieser Proteine verhindern. Bakteriozide Proteine können auch im extrazellulären Milieu zugegen sein, und zwar entweder durch den Eingriff des Forschers oder als natürliches Produkt aus anderen Organismen, die verwendet werden, um einen Konkurrenzvorteil zu erzielen. Die letzteren bakterioziden Verbindungen sind wahrscheinlich kein Streß, der bei fermentativem Wachstum vorkommt (sofern der Forscher während des Wachstums keinen selektiven Druck auf die Kul- tur ausübt) , wohingegen Metallionen häufig vorkommen, was von der Reinheit des Wasser und anderer Verbindungen abhängt, die in das Fermentersystem gegeben werden.In addition to the environmental stress factors, the cells can also be subject to a number of chemical stress factors. These can fall into two categories. The first are natural waste products of metabolism and other processes that are secreted by the cell into the surrounding medium. The second are chemicals in the extracellular medium that do not come from the cell. When the cells secrete toxic waste products from the concentrated intracellular cytoplasm into the relatively much more dilute extracellular medium, these products spread so that the extracellular amounts of the potentially toxic compound are quite low. However, this cannot be the case with large-scale fermenter cultures of the bacterium: in a relatively small environment, so many bacteria grow with such a high metabolic rate that the waste products accumulate in the medium in almost toxic quantities. Examples of such waste products are carbon dioxide, metal ions and reactive oxygen species such as hydrogen peroxide. These compounds can disrupt the activity or structure of the cell surface molecules, or can re-enter the cell, where they can severely damage proteins and also nucleic acids. Certain other chemicals that are dangerous to the normal functioning of the cells can of course be found in the extracellular medium. For example. Metal ions such as mercury, cadmium, nickel or copper are often found in water sources that form solid complexes with cellular enzymes that prevent the normal functioning of these proteins. Bacteriocidal proteins can also be present in the extracellular milieu, either through the intervention of the researcher or as a natural product from other organisms that are used to gain a competitive advantage. The latter bacteriocidal compounds are probably not a stress that occurs in fermentative growth (unless the researcher applies selective pressure to the culture during growth), whereas metal ions are common, which is caused by the Purity of water and other compounds that are added to the fermenter system depends.
Somit kann jeder dieser Streßfaktoren das Verhalten des Mikroor- ganismus während der Fermenterkultur beeinflussen, und kann die Produktion der gewünschten Verbindung aus diesen Organismen stören. Bspw. kann osmotischer Streß eines Mikroorganismus eine ungeeignete oder ungeeignet rasche Aufnahme von einer oder mehreren Verbindungen verursachen, die schließlich zur zellulären Beschä- digung oder zum Tod aufgrund von osmotischem Schock führt. Zur Bekämpfung dieser Umweltstreßfaktoren besitzen Bakterien elegante Gensysteme, die unter Einfluß von einem oder mehreren Streßfaktoren exprimiert werden, wie das vorstehend genannte Hitzeschocksystem. Gene, die in Reaktion auf osmotischen Streß exprimiert wer- den, codieren bspw. Proteine, die kompatible gelöste Stoffe transportieren oder synthetisieren können, so daß der osmotische Import oder Export eines bestimmten Moleküls auf handhabbare Mengen gesenkt wird. Andere Beispiele für Gene für streßinduzierte Bakterienproteine sind solche, die an der Trehalose-Biosynthese beteiligt sind, solche, die am ppGpp-Mechanismus beteiligte Enzyme codieren, solche, die an der Signaltransduktion beteiligt sind, insbesondere solche, die Zweikomponentensysteme codieren, die gegenüber osmotischem Druck sensitiv sind, und solche, die Transkriptionsfaktoren codieren, die auf eine Vielzahl von Streß- faktoren reagieren (bspw. RssB-Analoga und/oder Sigma-Faktoren) . Es sind viele andere Gene und ihre Proteinprodukte bekannt.Thus, each of these stress factors can influence the behavior of the microorganism during fermenter culture and can disrupt the production of the desired compound from these organisms. For example. For example, osmotic stress from a microorganism can cause inappropriate or unsuitable rapid ingestion of one or more compounds, eventually leading to cellular damage or death from osmotic shock. To combat these environmental stress factors, bacteria have elegant gene systems that are expressed under the influence of one or more stress factors, such as the heat shock system mentioned above. Genes that are expressed in response to osmotic stress encode, for example, proteins that can transport or synthesize compatible solutes, so that the osmotic import or export of a specific molecule is reduced to manageable amounts. Other examples of genes for stress-induced bacterial proteins are those involved in trehalose biosynthesis, those encoding enzymes involved in the ppGpp mechanism, those involved in signal transduction, particularly those encoding two-component systems that are sensitive to osmotic pressure are sensitive, and those that code transcription factors that react to a variety of stress factors (for example, RssB analogs and / or sigma factors). Many other genes and their protein products are known.
III. Erfindungsgemäße Elemente und VerfahrenIII. Elements and methods according to the invention
Die vorliegende Erfindung beruht zumindest teilweise auf der Entdeckung von neuen Molekülen, die hier als SRT-Nukleinsäure- und -Protein-Moleküle bezeichnet werden und die Fähigkeit von C. glutamicum verstärken, in chemisch oder ökologisch gefährlichenen Umgebungen zu überleben. Bei einer Ausführungsform verleihen die SRT-Moleküle C. glutamicum gegenüber einem oder mehreren ökologischen oder chemischen Streßfaktoren Resistenz . Bei einer bevorzugten Ausführungsform hat die Aktivität der erfindungsgemäßen SRT-Moleküle eine Auswirkung auf die Produktion einer gewünschten Feinchemikalie durch diesen Organismus . Bei einer besonders be- vorzugten Ausführungsform weisen die erfindungsgemäßen SRT-Moleküle eine derart modulierte Aktivität auf, daß die Ausbeute, Produktion und/oder Effizienz der Produktion von einer oder mehreren Feinchemikalien aus C. glutamicum ebenfalls moduliert ist.The present invention is based, at least in part, on the discovery of new molecules, referred to herein as SRT nucleic acid and protein molecules, which enhance C. glutamicum's ability to survive in chemically or ecologically hazardous environments. In one embodiment, the SRT molecules confer C. glutamicum resistance to one or more ecological or chemical stress factors. In a preferred embodiment, the activity of the SRT molecules according to the invention has an effect on the production of a desired fine chemical by this organism. In a particularly preferred embodiment, the SRT molecules according to the invention have a modulated activity such that the yield, production and / or efficiency of production of one or more fine chemicals from C. glutamicum is also modulated.
Der Begriff "SRT-Protein" oder "SRT-Polypeptid" umfaßt Proteine, die an der Resistenz von C. glutamicum gegenüber einem oder mehreren ökologischen oder chemischen Streßfaktoren beteiligt sind. Beispiele für SRT-Proteine umfassen solche, die von den in Tabelle 1 und Anhang A aufgeführten SRT-Genen codiert werden. Die Ausdrücke "SRT-Gen" oder "SRT-Nukleinsäuresequenz" umfassen Nu- kleinsäuresequenzen, die ein SRT-Protein codieren, das aus einem codierenden Bereich und entsprechenden untranslatierten 5 ' - und 3 ' -Sequenzbereichen besteht. Beispiele für SRT-Gene sind in Tabelle 1 aufgelistet. Die Begriffe "Produktion" oder "Produktivität" sind im Fachgebiet bekannt und beinhalten die Konzentration des Fermentationsproduktes (bspw. der gewünschten Feinchemikalie, die innerhalb einer festgelegten Zeitspanne und eines festgelegten Fermentationsvolumens gebildet werden (bspw. kg Produkt pro Std. pro 1) . Der Begriff "Effizienz der Produktion" umfaßt die Zeit, die zur Erzielung einer bestimmten Produktionsmenge nötig ist (bspw. wie lange die Zelle zur Aufrichtung einer bestimmten Durchsatzrate einer Feinchemikalie benötigt) . Der Begriff "Ausbeute" oder "Produkt/Kohlenstoff-Ausbeute" ist im Fachgebiet bekannt und umfaßt die Effizienz der Umwandlung der Kohlenstoffquelle in das Produkt (d.h. die Feinchemikalie) . Dies wird bspw. gewöhnlich ausgedrückt als kg Produkt pro kg Kohlenstoffquelle. Durch Vergrößern der Ausbeute oder Produktion der Verbindung wird die Menge der gewonnenen Moleküle oder der geeigneten gewonnenen Moleküle dieser Verbindung in einer bestimmten Kulturmenge über einen festgelegten Zeitraum erhöht. Die Begriffe "Biosynthese" oder "Biosyntheseweg" sind im Fachgebiet bekannt und umfassen die Synthese einer Verbindung, vorzugsweise einer organischen Verbindung, durch eine Zelle aus Zwischenverbindungen, bspw. in einem Mehrschritt- oder stark regulierten Prozeß. Die Begriffe "Abbau" oder "Abbauweg" sind im Fachgebiet bekannt und umfassen die Spaltung einer Verbindung, vorzugsweise einer organischen Verbindung, durch eine Zelle in Abbauprodukte (allgemeiner gesagt, kleinere oder weniger komplexe Moleküle) , bspw. in einem Mehrschritt- oder stark regulierten Prozeß. Die Begriffe "Abbau" oder "Abbauweg" sind im Fachgebiet bekannt und umfassen den Abbau einer Verbindung, vorzugsweise einer organischen Verbindung, durch eine Zelle in Abbauprodukte (allgemeiner gesagt kleinere oder weniger komplexe Moleküle) in einem bspw. Mehrschritt- oder stark regulierten Verfahren. Der Begriff "Metabolismus" ist im Fachgebiet bekannt und umfaßt die Gesamtheit der biochemischen Reaktionen, die in einem Organismus stattfinden. Der Metabolismus einer bestimm- ten Verbindung (z.B. der Metabolismus einer Aminosäure, wie Glycin) umfaßt dann sämtliche Biosynthese-, Modifikations- und Abbauwege dieser Verbindung in der Zelle. Die Begriffe "Resistenz" und "Toleranz" sind im Fachgebiet wohlbekannt und umfassen die Fähigkeit einer Zelle, einem Aussetzen gegenüber einer Chemikalie oder einer Umgebung zu widerstehen, die für das normale Funktionieren dieses Organismus ansonsten schädlich wäre. Die Begriffe "Streß" oder "Schadstoff" umfassen Faktoren, die für die normale Funktion von Zellen, wie C. glutamicum, schädlich sind. Beispiele für Streßfaktoren umfassen "chemischen Streß", bei dem die Zelle einer oder mehreren Chemikalien ausgesetzt ist, die für die Zelle schädlich sind, und "Umweltstreß", bei dem die Zelle einer Um- weltbedingung ausgesetzt ist, an die sie nicht angepaßt ist. Chemische Streßfaktoren können entweder natürliche metabolische Abfallprodukte sein, wie bspw., jedoch nicht beschränkt auf reaktive Sauerstoffspezies oder Kohlendioxid, oder Chemikalien, die ansonsten in der Umgebung zugegen sind, einschließlich, jedoch nicht beschränkt auf Schwermetallionen oder bakteriozide Proteine, wie Antibiotika. Umweltstreßfaktoren können, Temperaturen außerhalb des normalen Bereichs, suboptimale Sauerstoffverfügbarkeit, osmotische Drücke, oder bspw. pH-Wert-Extrema sein, sind aber nicht beschränkt darauf.The term "SRT protein" or "SRT polypeptide" encompasses proteins that are involved in the resistance of C. glutamicum to one or more ecological or chemical stress factors. Examples of SRT proteins include those encoded by the SRT genes listed in Table 1 and Appendix A. The terms "SRT gene" or "SRT nucleic acid sequence" encompass nucleic acid sequences which encode an SRT protein which consists of a coding region and corresponding untranslated 5 'and 3' sequence regions. Examples of SRT genes are listed in Table 1. The terms "production" or "productivity" are known in the art and include the concentration of the fermentation product (for example the desired fine chemical which is formed within a defined period of time and a defined fermentation volume (for example kg product per hour per 1) The term "efficiency of production" encompasses the time it takes to achieve a certain amount of production (e.g. how long it takes the cell to set up a certain throughput rate of a fine chemical). The term "yield" or "product / carbon yield" is in the Known in the art and includes the efficiency of converting the carbon source to the product (ie, the fine chemical), for example, usually expressed as kg product per kg carbon source, increasing the yield or production of the compound will increase the amount of molecules or the appropriate ones recovered Molecules of this compound in a particular cul quantity increased over a specified period. The terms "biosynthesis" or "biosynthetic pathway" are known in the art and encompass the synthesis of a compound, preferably an organic compound, by a cell from intermediate compounds, for example in a multi-step or highly regulated process. The terms "degradation" or "degradation path" are known in the art and include the cleavage of a compound, preferably an organic compound, by a cell into degradation products (more generally, smaller or less complex molecules), e.g. in a multi-step or highly regulated Process. The terms "degradation" or "degradation path" are known in the art and include the degradation of a compound, preferably an organic compound, by a cell into degradation products (more generally, smaller or less complex molecules) in a multi-step or highly regulated process, for example. The term "metabolism" is known in the art and encompasses all of the biochemical reactions that take place in an organism. The metabolism of a certain compound (eg the metabolism of an amino acid, such as glycine) then encompasses all biosynthesis, modification and degradation pathways of this compound in the cell. The terms "resistance" and "tolerance" are well known in the art and include the ability of a cell to withstand exposure to a chemical or environment that would otherwise be detrimental to the normal functioning of this organism. The terms "stress" or "pollutant" include factors that are normal for the Function of cells such as C. glutamicum are harmful. Examples of stress factors include "chemical stress" in which the cell is exposed to one or more chemicals that are harmful to the cell, and "environmental stress" in which the cell is exposed to an environmental condition to which it is not adapted. Chemical stressors can be either natural metabolic waste products, such as, but not limited to, reactive oxygen species or carbon dioxide, or chemicals that are otherwise present in the environment, including but not limited to heavy metal ions or bacteriocidal proteins such as antibiotics. Environmental stress factors can be, but are not limited to, temperatures outside the normal range, suboptimal oxygen availability, osmotic pressures, or, for example, pH extremes.
Die erfindungsgemäßen SRT-Moleküle können in einer anderen Ausführungsform die Produktion eines gewünschten Moleküls, wie einer Feinchemikalie, in einem Mikroorganismus, wie C. glutamicum modulieren. Mittels rekombinanter Gentechniken, können ein oder meh- rerere erfindungsgemäße SRT-Proteine derart manipuliert werden werden, daß ihre Funktion moduliert wird. Die Veränderung der Aktivität von Streßantwort-, Resistenz- oder Toleranzgenen, so daß die Toleranz der Zelle gegenüber einem oder mehreren Streßfaktoren vergrößert wird, kann die Fähigkeit der Zelle, unter den re- lativ streßreichen Bedingungen einer Großfermenterkultur zu wachsen und sich zu vermehren, verbessern. Durch Überexpression oder Manipulation eines hitzeschockinduzierten Chaperone-Moleküls, so daß es optimale Aktivität erhält, kann man bspw. die Fähigkeit eines Bakteriums, Proteine unter nicht optimalen Te peraturbedin- gungen korrekt zu falten, vergrößern. Durch weniger falsch gefaltete (und möglicherweise falsch regulierter oder nicht funktio- neller) Proteine, wird die Fähigkeit der Zelle in einer solchen Kultur normal zu funktionieren, vergrößert, was wiederum eine vergrößerte Lebensfähigkeit bereitstellt. Dieser Gesamtanstieg der Anzahl an Zellen mit größerer Lebensfähigkeit und Aktivität in Kultur sollte zudem einen Anstieg in der Ausbeute, Produktion und/oder Effizienz der Produktion von einer oder mehreren gewünschten Feinchemikalien, zumindest aufgrund der relativ größeren Anzahl von Zellen, die diese Chemikalien in Kultur produzie- ren, bewirken.In another embodiment, the SRT molecules according to the invention can modulate the production of a desired molecule, such as a fine chemical, in a microorganism, such as C. glutamicum. By means of recombinant genetic engineering, one or more SRT proteins according to the invention can be manipulated in such a way that their function is modulated. Changing the activity of stress response, resistance, or tolerance genes to increase the tolerance of the cell to one or more stress factors can improve the cell's ability to grow and multiply under the relatively stressful conditions of a large fermenter culture , Overexpression or manipulation of a heat shock-induced chaperone molecule so that it obtains optimal activity can, for example, increase the ability of a bacterium to fold proteins correctly under non-optimal temperature conditions. With fewer misfolded (and possibly improperly regulated or non-functional) proteins, the ability of the cell to function normally in such a culture is increased, which in turn provides increased viability. This overall increase in the number of cells with greater viability and activity in culture should also increase in the yield, production, and / or efficiency of production of one or more desired fine chemicals, at least due to the relatively larger number of cells that these chemicals produce in culture - Ren, effect.
Als Ausgangspunkt zur Herstellung der erfindungsgemäßen NukleinsäureSequenzen eignet sich das Genom eines Corynebacterium gluta- micum-Staiαmes, der von der American Type Culture Collection unter der Bezeichnung ATCC 13032 erhältlich ist. Von diesen Nukleinsäuresequenzen lassen sich durch die in Tabelle 1 bezeichneten Veränderungen die erfindungsgemäßen Nukleinsäuresequenzen mit üblichen Verfahren herstellen.The genome of a Corynebacterium glutamicum strain, which is available from the American Type Culture Collection under the name ATCC 13032, is suitable as a starting point for producing the nucleic acid sequences according to the invention. The nucleic acid sequences according to the invention can be produced from these nucleic acid sequences by conventional methods using the changes described in Table 1.
Das erfindungsgemäße SRT-Protein oder ein biologisch aktiver Abschnitt oder Fragmente davon können Resistenz und/oder Toleranz gegenüber einem oder mehreren chemischen oder ökologischen Streßfaktoren verleihen, oder können eine oder mehrere der in Tabelle 1 aufgeführten Aktivitäten aufweisen.The SRT protein according to the invention or a biologically active section or fragments thereof can confer resistance and / or tolerance to one or more chemical or ecological stress factors, or can have one or more of the activities listed in Table 1.
In den nachstehenden Unterabschnitten sind verschiedene Aspekte der Erfindung ausführlicher beschrieben:Various aspects of the invention are described in more detail in the subsections below:
A. Isolierte NukleinsäuremoleküleA. Isolated nucleic acid molecules
Ein Aspekt der Erfindung betrifft isolierte Nukleinsäuremoleküle, die SRT-Polypeptide oder biologisch aktive Abschnitte davon codieren, sowie Nukleinsäurefragmente, die zur Verwendung als Hy- bridisierungssonden oder Primer zur Identifizierung oder Amplifi- zierung von SRT-codierenden Nukleinsäuren (z.B. SRT-DNA) hinreichen. Der Begriff "Nukleinsäuremolekül" soll DNA-Moleküle (z.B. cDNA oder genomische DNA) und RNA-Moleküle (z.B. RNA) sowie DNA- oder RNA-Analoga, die mittels Nukleotidanaloga erzeugt werden, umfassen. Dieser Begriff umfaßt zudem die am 3'- und am 5 '-Ende des codierenden Genbereichs gelegene untranslatierte Sequenz : mindestens etwa 100 Nukleotide der Sequenz stromaufwärts des 5 '-Endes des codierenden Bereichs und mindestens etwa 20 Nukleotide der Sequenz stromabwärts des 3 ' -Endes des codierenden Genbereichs. Das Nukleinsäuremolekül kann einzelsträngig oder doppel- strängig sein, ist aber vorzugsweise eine doppelsträngige DNA. Ein "isoliertes" Nukleinsäuremolekül wird aus anderen Nukleinsäuremolekülen abgetrennt, die in der natürlichen Quelle der Nukleinsäure zugegen sind. Eine "isolierte" Nukleinsäure hat vorzugsweise keine Sequenzen, die die Nukleinsäure in der geno i- sehen DNA des Organismus, aus dem die Nukleinsäure stammt, natürlicherweise flankieren (bspw. Sequenzen, die sich am 5'- bzw. 3 '-Ende der Nukleinsäure befinden) . In verschiedenen Ausführungsformen kann bspw. das isolierte SRT-Nukleinsäuremolekül weniger als etwa 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0,5 kb oder 0,1 kb der Nu- kleotidsequenzen, die natürlicherweise das Nukleinsäuremolekül in der genomischen DNA der Zelle, aus der die Nukleinsäure stammt (bspw. eine C. glutamicum-Zelle) flankieren. Ein "isoliertes" Nukleinsäuremolekül, wie ein cDNA-Molekül kann überdies im wesentlichen frei von einem anderen zellulären Material oder Kulturme- dium sein, wenn es durch rekombinante Techniken hergestellt wird, oder frei von chemischen Vorstufen oder anderen Chemikalien sein, wenn es chemisch synthetisiert wird.One aspect of the invention relates to isolated nucleic acid molecules which encode SRT polypeptides or biologically active sections thereof, and to nucleic acid fragments which are sufficient for use as hybridization probes or primers for identifying or amplifying SRT-encoding nucleic acids (for example SRT-DNA). The term “nucleic acid molecule” is intended to encompass DNA molecules (eg cDNA or genomic DNA) and RNA molecules (eg RNA) as well as DNA or RNA analogs which are generated by means of nucleotide analogs. This term also includes the untranslated sequence located at the 3 'and 5' ends of the coding region: at least about 100 nucleotides of the sequence upstream of the 5 'end of the coding region and at least about 20 nucleotides of the sequence downstream of the 3' end of the coding gene region. The nucleic acid molecule can be single-stranded or double-stranded, but is preferably a double-stranded DNA. An "isolated" nucleic acid molecule is separated from other nucleic acid molecules that are present in the natural source of the nucleic acid. An "isolated" nucleic acid preferably has no sequences that naturally flank the nucleic acid in the geno i- see DNA of the organism from which the nucleic acid originates (for example, sequences that are located at the 5 'or 3' end of the nucleic acid are located) . In various embodiments, for example, the isolated SRT nucleic acid molecule can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of the nucleotide sequences that naturally contain the nucleic acid molecule in the genomic Flank the DNA of the cell from which the nucleic acid originates (for example a C. glutamicum cell). An "isolated" nucleic acid molecule, such as a cDNA molecule, can moreover be essentially free of another cellular material or culture medium if it is produced by recombinant techniques, or be free of chemical precursors or other chemicals when chemically synthesized.
Ein erfindungsgemäßes Nukleinsäuremolekül, bspw. eine Nukleinsäu- remolekül mit einer Nukleotidsequenz aus Anhang A oder ein Abschnitt davon, kann mittels molekularbiologischer Standard-Techniken und der hier bereitgestellten Sequenzinformation isoliert werden. Bspw. kann eine C. glutamicum-SRT-cDNA aus einer C. glu- tamicum-Bank isoliert werden, indem eine vollständige Sequenz aus Anhang A oder ein Abschnitt davon als Hybridisierungssonde und Standard-Hybridisierungstechniken (wie bspw. beschrieben in Sam- brook, J. , Fritsch, E.F. und Maniatis, T. Molecular Cloning: A Laboratory Manual. 2. Aufl. Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) verwendet werden. Überdies läßt sich ein Nukleinsäuremolekül, umfassend eine vollständige Sequenz aus Anhang A oder ein Abschnitt davon, durch Polymerasekettenreaktion isolieren, wobei die Oligonukleotidprimer, die auf der Basis dieser Sequenz erstellt wurden, verwendet werden (z.B. kann ein Nukleinsäuremolekül, umfas- send eine vollständige Sequenz aus Anhang A oder einen Abschnitt davon, durch Polymerasekettenreaktion isoliert werden, indem Oligonukleotidprimer verwendet werden, die auf der Basis dieser gleichen Sequenz aus Anhang A erstellt worden sind) . Bspw. läßt sich mRNA aus normalen Endothelzellen isolieren (bspw. durch das Guanidiniumthiocyanat-Extraktionsverfahren von Chirgwin et al. (1979) Biochemistry 18: 5294-5299) und die cDNA kann mittels reverser Transkriptase (bspw. Moloney-MLV-Reverse-Transkriptase, erhältlich bei Gibco/BRL, Bethesda, MD, oder AMV-Reverse-Trans- kriptase, erhältlich von Seikagaku America, Inc., St. Petersburg, FL) hergestellt werden. Synthetische Oligonukleotidprimer für die Amplifizierung via Polymerasekettereaktion lassen sich auf der Basis einer der in Anhang A gezeigten Nukleotidsequenzen erstellen. Eine erfindungsgemäße Nukleinsäure kann mittels cDNA oder alternativ genomischer DNA als Matrize und geeigneten Oligonu- kleotidprimern gemäß PCR-Standard-Amplifikationstechniken ampli- fiziert werden. Die so aplifizierte Nukleinsäure kann in einen geeigneten Vektor kloniert werden und durch DNA-Sequenzanalyse charakterisiert werden. Oligonukleotide, die einer SRT-Nukleotid- sequenz entsprechen, können durch Standard-Syntheseverfahren, bspw. mit einem automatischen DNA-Synthesegerät, hergestellt werden.A nucleic acid molecule according to the invention, for example a nucleic acid molecule with a nucleotide sequence from Appendix A or a section thereof, can be isolated using standard molecular biological techniques and the sequence information provided here. For example. a C. glutamicum SRT cDNA can be isolated from a C. glutamicum bank by using a complete sequence from Appendix A or a portion thereof as a hybridization probe and standard hybridization techniques (as described, for example, in Sambrook, J. , Fritsch, EF and Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989). Furthermore, a nucleic acid molecule comprising a complete sequence from Appendix A or a section thereof can be isolated by polymerase chain reaction, using the oligonucleotide primers which have been created on the basis of this sequence (for example a nucleic acid molecule can comprise a complete sequence) Appendix A, or a portion thereof, can be isolated by polymerase chain reaction using oligonucleotide primers made from this same sequence from Appendix A). For example. mRNA can be isolated from normal endothelial cells (for example by the guanidinium thiocyanate extraction method of Chirgwin et al. (1979) Biochemistry 18: 5294-5299) and the cDNA can be obtained by means of reverse transcriptase (for example Moloney-MLV reverse transcriptase) Gibco / BRL, Bethesda, MD, or AMV reverse transcriptase, available from Seikagaku America, Inc., St. Petersburg, FL). Synthetic oligonucleotide primers for amplification via polymerase chain reaction can be created on the basis of one of the nucleotide sequences shown in Appendix A. A nucleic acid according to the invention can be amplified using cDNA or alternatively genomic DNA as a template and suitable oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so modified can be cloned into a suitable vector and characterized by DNA sequence analysis. Oligonucleotides which correspond to an SRT nucleotide sequence can be produced by standard synthesis methods, for example using an automatic DNA synthesizer.
Bei einer bevorzugten Ausführungsform umfaßt ein erfindungsgemäßes isoliertes Nukleinsäuremolekül eine der in Anhang A aufge- führten Nukleotidsequenzen. Bei einer weiteren bevorzugten Ausführungsform umfaßt ein erfindungsgemäßes isoliertes Nukleinsäuremolekül ein zu einer der in Anhang A gezeigten Nukleotidsequenzen komplementäres Nukleinsäuremolekül oder einen Abschnitt davon, wobei es sich um ein Nu- 5 kleinsäuremolekül handelt, das zu einer der in Anhang A gezeigten Nukleotidsequenzen hinreichend komplementär ist, daß es mit einer der in Anhang A angegebenen Sequenzen hybridisieren kann, wodurch ein stabiler Duplex entsteht .In a preferred embodiment, an isolated nucleic acid molecule according to the invention comprises one of the nucleotide sequences listed in Appendix A. In a further preferred embodiment, an isolated nucleic acid molecule according to the invention comprises a nucleic acid molecule which is complementary to one of the nucleotide sequences shown in Appendix A or a section thereof, which is a nucleic acid molecule which is sufficiently complementary to one of the nucleotide sequences shown in Appendix A, that it can hybridize to one of the sequences given in Appendix A, creating a stable duplex.
10 Bei einer weiteren bevorzugten Ausführungsform umfaßt ein erfindungsgemäßes isoliertes Nukleinsäuremolekül eine Nukleotidse- quenz, die mindestens etwa 50-60%, vorzugsweise mindestens etwa 60-70%, stärker bevorzugt mindestens etwa 70-80%, 80-90% oder 90-95% und noch stärker bevorzugt mindestens etwa 95%, 96%, 97%,In a further preferred embodiment, an isolated nucleic acid molecule according to the invention comprises a nucleotide sequence which is at least about 50-60%, preferably at least about 60-70%, more preferably at least about 70-80%, 80-90% or 90-95% and even more preferably at least about 95%, 96%, 97%,
15 98%, 99% oder noch homologer zu einer in Anhang A angegebenen Nu- kleotidsequenz oder einem Abschnitt davon ist. Bei einer weiteren bevorzugten Ausführungsform umfaßt ein erfindungsgemäßes isoliertes Nukleinsäuremolekül eine Nukleotidsequenz , die, bspw. unter stringenten Bedingungen, mit einer der in Anhang A gezeigten Nu-15 is 98%, 99% or even more homologous to a nucleotide sequence specified in Appendix A or a section thereof. In a further preferred embodiment, an isolated nucleic acid molecule according to the invention comprises a nucleotide sequence which, for example under stringent conditions, with one of the nucleic acids shown in Appendix A
20 kleotidsequenzen oder einem Abschnitt davon hybridisiert.20 kleotide sequences or a portion thereof hybridized.
Bei einer Ausführungsform codiert das erfindungsgemäße Nukleinsäuremolekül ein Protein oder einen Abschnitt davon, der eine Aminosäuresequenz umfaßt, die hinreichend homolog zu einer Amino- 5 säuresequenz von Anhang B ist, daß das Protein oder ein Abschnitt davon die Fähigkeit beibehält, Resistenz oder Toleranz gegenüber einem oder mehreren chemischen oder Umwelt-Streßfaktoren an C. glutamicum zu verleihen. Wie hier verwendet, betrifft der Begriff "hinreichend homolog" Proteine oder Abschnitte davon, deren A i- 0 nosäuresequenzen eine minimale Anzahl identischer oder äquivalenter Aminosäurereste (bspw. ein Aminosäurerest mit einer ähnlichen Seitenkette wie ein Aminosäurerest in einer der Sequenzen von Anhang B) zu einer Aminosäuresequenz aus Anhang B aufweisen, so daß das Protein oder ein Abschnitt davon an der Resistenz von C. glu- 5 tamicum gegenüber einer oder mehreren chemischen oder Umweltstreßfaktoren teilnehmen kann. Proteinbestandteile dieser Stoff- wechselwege erhöhen die Resistenz oder Toleranz von C. glutamicum gegenüber einem oder mehreren Umwelt- oder Chemie-Schadstoffen oder -Streßfaktoren. Beispiele dieser Aktivitäten sind ebenfalls 0 hier beschrieben. Somit betrifft die "Funktion eines SRT-Proteins" die Gesamt-Resistenz von C. glutamicum gegenüber Bestandteilen aus seiner Umgebung, die sein normales Wachstum oder seine normale Funktion beeinträchtigen. In Tabelle 1 sind Beispiele der SRT-Proteinaktivitäten angegeben. 5 Abschnitte von Proteinen, die von den erfindungsgemäßen SRT-Nu- kleinsäuremolekülen codiert werden, sind vorzugsweise biologisch aktive Abschnitte von einem der SRT-Proteine. Der Begriff "biologisch aktiver Abschnitt eines SRT-Proteins", wie er hier verwen- det wird, soll einen Abschnitt, bspw. eine Domäne oder ein Motiv, eines SRT-Proteins umfassen, der zur Verleihung von Resistenz oder Toleranz gegenüber einem oder mehreren Umwelt- oder chemischen Streßfaktoren befähigt ist, oder eine in Tabelle 1 offenbarte Aktivität hat. Zur Bestimmung, ob ein SRT-Protein oder ein biologisch aktiver Abschnitt davon die Resistenz oder Toleranz von C. glutamicum gegenüber einem oder mehreren Chemie- oder UmweltStreßfaktoren oder Schadstoffen erhöhen kann, kann ein Test der enzymatischen Aktivität durchgeführt werden. Diese Testverfahren, wie eingehend beschrieben in Beispiel 8 des Beispiel- teils, sind dem Fachmann geläufig.In one embodiment, the nucleic acid molecule according to the invention encodes a protein or a portion thereof which comprises an amino acid sequence which is sufficiently homologous to an amino acid sequence from Appendix B that the protein or a portion thereof maintains the ability to be resistant or tolerant to one or to impart several chemical or environmental stress factors to C. glutamicum. As used herein, the term "sufficiently homologous" refers to proteins or portions thereof whose amino acid sequences refer to a minimal number of identical or equivalent amino acid residues (e.g. an amino acid residue with a side chain similar to an amino acid residue in one of the sequences in Appendix B) have an amino acid sequence from Appendix B so that the protein or a portion thereof can participate in the resistance of C. glutamicum to one or more chemical or environmental stress factors. Protein components of these metabolic pathways increase the resistance or tolerance of C. glutamicum to one or more environmental or chemical pollutants or stress factors. Examples of these activities are also described here. Thus, the "function of an SRT protein" refers to the overall resistance of C. glutamicum to components in its environment that interfere with its normal growth or function. Table 1 shows examples of SRT protein activities. 5 Sections of proteins which are encoded by the SRT nucleic acid molecules according to the invention are preferably biologically active sections of one of the SRT proteins. The term “biologically active section of an SRT protein”, as used here, is intended to include a section, for example a domain or a motif, of an SRT protein which is used to confer resistance or tolerance to one or more environments - or chemical stress factors, or has an activity as shown in Table 1. To determine whether an SRT protein or a biologically active portion thereof can increase the resistance or tolerance of C. glutamicum to one or more chemical or environmental stressors or pollutants, a test of the enzymatic activity can be carried out. These test methods, as described in detail in Example 8 of the example part, are familiar to the person skilled in the art.
Zusätzlich zu natürlich vorkommenden Varianten der SRT-Sequenz, die in der Population existieren können, ist der Fachmann sich ebenfalls dessen bewußt, daß Änderungen durch Mutation in eine Nukleotidsequenz von Anhang A eingebracht werden können, was zur Änderung der Aminosäuresequenz des codierten SRT-Proteins führt, ohne daß die Funktionsfähigkeit des SRT-Proteins beeinträchtigt wird. Bspw. lassen sich Nukleotidsusbtitutionen, die an "nichtessentiellen" Aminosäureresten zu Aminosäuresubstitutionen füh- ren, in einer Sequenz von Anhang A herstellen. Ein "nicht-essentieller" Aminosäurerest läßt sich in einer Wildtypsequenz von einem der SRT-Proteine (Anhang B) verändern, ohne daß die Aktivität des SRT-Proteins verändert wird, wohingegen ein "essentieller" Aminosäurerest für die SRT-Proteinaktivität erforderlich ist. An- dere Aminosäurereste jedoch (bspw. nicht-konservierte oder lediglich semikonservierte Aminosäurereste in der Domäne mit SRT-Akti- vität) können für die Aktivität nicht essentiell sein und lassen sich somit wahrscheinlich verändern, ohne daß die SRT-Aktivität verändert wird.In addition to naturally occurring variants of the SRT sequence that may exist in the population, those skilled in the art are also aware that mutation changes can be introduced into a nucleotide sequence of Appendix A, which leads to a change in the amino acid sequence of the encoded SRT protein without affecting the functionality of the SRT protein. For example. nucleotide substitutions which lead to amino acid substitutions at "non-essential" amino acid residues can be produced in a sequence from Appendix A. A "non-essential" amino acid residue can be modified in a wild-type sequence from one of the SRT proteins (Appendix B) without changing the activity of the SRT protein, whereas an "essential" amino acid residue is required for the SRT protein activity. However, other amino acid residues (for example non-conserved or only semi-preserved amino acid residues in the domain with SRT activity) cannot be essential for the activity and can therefore probably be changed without the SRT activity being changed.
Ein isoliertes Nukleinsäuremolekül, das ein SRT-Protein codiert, das zu einer Proteinsequenz aus Anhang B homolog ist, kann durch Einbringen von einer oder mehreren Nukleotidsubstitutionen, -additionen oder -deletionen in eine Nukleotidsequenz aus Anhang A erzeugt werden, so daß eine oder mehrere Aminosäuresubstitutionen, -additionen oder -deletionen in das codierte Protein eingebracht werden. Die Mutationen können in eine der Sequenzen aus Anhang A durch Standard-Techniken eingebracht werden, wie stellengerichtete Mutagenese und PCR-vermittelte Mutagenese. Vor- zugsweise werden konservative Aminosäuresubstitutionen an einer oder mehreren der vorhergesagten nicht-essentiellen Aminosäureresten eingeführt. Bei einer "konservativen Aminosäuresubstitution" wird der Aminosäurerest durch einen Aminosäurerest mit einer ähnlichen Seitenkette ausgetauscht. Im Fachgebiet sind Familien von Aminosäureresten mit ähnlichen Seitenketten definiert worden. Diese Familien umfassen Aminosäuren mit basischen Seitenketten (z.B. Lysin, Arginin, Histidin) , sauren Seitenketten (z.B. Aspa- raginsäure, Glutaminsäure), ungeladenen- polaren Seitenketten (z.B. Glycin, Asparagin, Glutamin, Serin, Threonin, Tyrosin, Cystein) , nicht-polaren Seitenketten, (bspw. Alanin, Valin, Leucin, Isoleucin, Prolin, Phenylalanin, Methionin, Tryptophan) , beta- verzweigten Seitenketten (z.B. Threonin, Valin, Isoleucin) und aromatischen Seitenketten (z.B. Tyrosin, Phenylalanin, Tryptophan, Histidin) . Ein vorhergesagter nicht-essentieller Aminosäurerest in einem SRT-Protein wird somit vorzugsweise durch einen anderen Aminosäurerest der gleichen Seitenkettenfamilie ausge- tauscht. In einer weiteren Ausführungsform können die Mutationen alternativ zufallsgemäß über die gesamte oder einen Teil der SRT- codierenden Sequenz eingebracht werden, bspw. durch Sättigungsmu- tagenese, und die resultierenden Mutanten können auf die hier beschriebene SRT-Aktivität untersucht werden, um Mutanten zu iden- tifizieren, die eine SRT-Aktivität beibehalten. Nach der Mutagenese von einer der Sequenzen aus Anhang A kann das codierte Protein rekombinant exprimiert werden, und die Aktivität des Proteins kann bspw. mit den hier beschriebenen Tests (siehe Beispiel 8 des Beispielteils) bestimmt werden.An isolated nucleic acid molecule encoding an SRT protein that is homologous to a protein sequence from Appendix B can be generated by incorporating one or more nucleotide substitutions, additions or deletions into a nucleotide sequence from Appendix A such that one or more amino acid substitutions , additions or deletions are introduced into the encoded protein. The mutations can be introduced into one of the sequences from Appendix A by standard techniques such as site-directed mutagenesis and PCR-mediated mutagenesis. Conservative amino acid substitutions are preferably introduced on one or more of the predicted non-essential amino acid residues. With a "conservative amino acid substitution" the amino acid residue is replaced by an amino acid residue with a similar side chain. Families of amino acid residues with similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g. lysine, arginine, histidine), acidic side chains (e.g. aspartic acid, glutamic acid), uncharged polar side chains (e.g. glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), non- polar side chains (e.g. alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g. threonine, valine, isoleucine) and aromatic side chains (e.g. tyrosine, phenylalanine, tryptophan, histidine). A predicted non-essential amino acid residue in an SRT protein is thus preferably replaced by another amino acid residue of the same side chain family. In a further embodiment, the mutations can alternatively be introduced randomly over all or part of the SRT coding sequence, for example by saturation mutagenesis, and the resulting mutants can be examined for the SRT activity described here in order to identify mutants. certify that maintain SRT activity. After mutagenesis of one of the sequences from Appendix A, the encoded protein can be expressed recombinantly, and the activity of the protein can be determined, for example, using the tests described here (see Example 8 of the example section).
B. Eekom inante Expressionsvektoren und WirtszellenB. Eekom inante expression vectors and host cells
Ein weiterer Aspekt der Erfindung betrifft Vektoren, vorzugsweise Expressionsvektoren, die eine Nukleinsäure enthalten, die ein SRT-Protein (oder einen Abschnitt davon) codieren. Wie hier verwendet betrifft der Begriff "Vektor" ein Nukleinsäuremolekül, das eine andere Nukleinsäure transportieren kann, an welche es gebunden ist. Ein Vektortyp ist ein "Plasmid", was für eine zirkuläre doppelsträngige DNA-Schleife steht, in die zusätzlichen DNA-Seg- mente ligiert werden können. Ein weiterer Vektortyp ist ein vira- ler Vektor, wobei zusätzliche DNA-Segmente in das virale Genom ligiert werden können. Bestimmte Vektoren können in einer Wirtszelle, in die sie eingebracht worden sind, autonom replizieren (bspw. Bakterienvektoren, mit bakteriellem Replikationsursprung und episomale Säugetiervektoren). Andere Vektoren (z.B. nicht- episomale Säugetiervektoren) werden in das Genom einer Wirtszelle beim Einbringen in die Wirtszelle integriert und dadurch zusammen mit dem Wirtsgenom repliziert. Zudem können bestimmte Vektoren die Expression von Genen, mit denen sie funktionsfähig verbunden sind, steuern. Diese Vektoren werden als "Expressionsvektoren" bezeichnet. Gewöhnlich haben die Expressionsvektoren, die bei DNA-Rekombinationstechniken verwendet werden, die Form von Pias- miden. In der vorliegenden Beschreibung können "Plasmid" und "Vektor" austauschbar verwendet werden, da das Plasmid die am häufigsten verwendete Vektorform ist. Die Erfindung soll diese anderen Expressionsvektorformen, wie virale Vektoren (bspw. re- plikationsdefiziente Retroviren, Adenoviren und adenoverwandte Viren) , die ähnliche Funktionen ausüben, umfassen.Another aspect of the invention relates to vectors, preferably expression vectors, containing a nucleic acid encoding an SRT protein (or a portion thereof). As used herein, the term "vector" refers to a nucleic acid molecule that can transport another nucleic acid to which it is attached. One type of vector is a "plasmid", which stands for a circular double-stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, whereby additional DNA segments can be ligated into the viral genome. Certain vectors can replicate autonomously in a host cell into which they have been introduced (e.g. bacterial vectors with bacterial origin of replication and episomal mammalian vectors). Other vectors (eg non-episomal mammalian vectors) are integrated into the genome of a host cell when it is introduced into the host cell and thereby replicated together with the host genome. In addition, certain vectors can control the expression of genes to which they are operably linked. These vectors are called "expression vectors". Usually the expression vectors used in recombinant DNA techniques take the form of pias- miden. In the present description, "plasmid" and "vector" can be used interchangeably because the plasmid is the most commonly used vector form. The invention is intended to encompass these other expression vector forms, such as viral vectors (for example replication-deficient retroviruses, adenoviruses and adeno-related viruses), which perform similar functions.
Der erfindungsgemäße rekombinante Expressionsvektor umfaßt eine erfindungsgemäße Nukleinsäure in einer Form, die sich zur Expres- sion der Nukleinsäure in einer Wirtszelle eignet, was bedeutet, daß die rekombinanten Expressionsvektoren eine oder mehrere regulatorische Sequenzen, ausgewählt auf der Basis der zur Expression zu verwendenden Wirtszellen, die mit der zu expri ieren- den Nukleinsäuresequenz funktionsfähig verbunden ist, umfaßt. In einem rekombinanten Exprtessionsvektor bedeutet "funktionsfähig verbunden" , daß die Nukleotidsequenz von Interesse derart an die regulatorische (n) Sequenz (en) gebunden ist, daß die Expression der Nukleotidsequenz möglich ist (bspw. in einem In-vitro-Tran- skriptions-/Translationssystem oder in einer Wirtszelle, wenn der Vektor in die Wirtszelle eingebracht ist) . Der Begriff "regulatorische Sequenz" soll Promotoren, Enhancer und andere Expressionskontrollelemente (bspw. Polyadenylierungssignale) umfassen. Diese regulatorischen Sequenzen sind bspw beschrieben in Goeddel : Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990) . Regulatorische Sequenzen umfassen solche, die die konstitutive Expression einer Nukleotidsequenz in vielen Wirtszelltypen steuern, und solche, die die direkte Expression der Nukleotidsequenz nur in bestimmten Wirtszellen steuern. Der Fachmann ist sich dessen bewußt, daß die Gestaltung eines Expres- sionsvektors von Faktoren abhängen kann, wie der Wahl der zu transformierenden Wirtszelle, dem Ausmaß der Expression des gewünschten Proteins usw. Die erfindungsgemäßen Expressionsvektoren können in die Wirtszellen eingebracht werden, so daß dadurch Proteine oder Peptide, einschließlich Fusionsproteinen oder -pepti- den, die von den Nukleinsäuren, wie hier beschrieben, codiert werden, hergestellt werden (bspw. SRT-Proteine, mutierte Formen von SRT-Proteinen, Fusionsproteine, usw.).The recombinant expression vector according to the invention comprises a nucleic acid according to the invention in a form which is suitable for the expression of the nucleic acid in a host cell, which means that the recombinant expression vectors one or more regulatory sequences, selected on the basis of the host cells to be used for expression, the is operably linked to the nucleic acid sequence to be expressed. In a recombinant expression vector, “operably linked” means that the nucleotide sequence of interest is bound to the regulatory sequence (s) in such a way that expression of the nucleotide sequence is possible (for example in an in vitro transcription / Translation system or in a host cell if the vector is introduced into the host cell). The term "regulatory sequence" is intended to encompass promoters, enhancers and other expression control elements (for example polyadenylation signals). These regulatory sequences are described, for example, in Goeddel: Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Regulatory sequences include those that control the constitutive expression of a nucleotide sequence in many host cell types and those that control the direct expression of the nucleotide sequence only in certain host cells. The person skilled in the art is aware that the design of an expression vector can depend on factors such as the choice of the host cell to be transformed, the extent of expression of the desired protein, etc. The expression vectors according to the invention can be introduced into the host cells, so that proteins are thereby or peptides, including fusion proteins or peptides, encoded by the nucleic acids as described herein (e.g., SRT proteins, mutated forms of SRT proteins, fusion proteins, etc.).
Die erfindungsgemäßen rekombinanten ExpressionsVektoren können zur Expression von SRT-Proteinen in prokaryotischen oder eukaryo- tischen Zellen ausgestaltet sein. Bspw. können SRT-Gene in bakteriellen Zellen, wie C. glutamicum, Insektenzellen (mit Baculovi- rus-Expressionsvektoren) , Hefe- und anderen Pilzzellen (siehe Romanos, M.A. et al. (1992) "Foreign gene expression in yeast: a review", Yeast 8: 423-488; van den Hondel, C.A.M.J.J. et al. (1991) "Heterologous gene expression in filamentous fungi" in: More Gene Manipulations in Fungi, J.W. Bennet & L.L. Lasure, Hrsg., S. 396-428: Academic Press: San Diego; und van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer Systems and vector development for filamentous fungi. in: Applied Molecular Genetics of Fungi, Peberdy, J.F. et al., Hrsg, S. 1-28, Cambridge University Press: Cambridge), Algen- und vielzelligenThe recombinant expression vectors according to the invention can be designed for the expression of SRT proteins in prokaryotic or eukaryotic cells. For example. SRT genes can be found in bacterial cells such as C. glutamicum, insect cells (with Baculovirus expression vectors), yeast and other fungal cells (see Romanos, MA et al. (1992) "Foreign gene expression in yeast: a review", Yeast 8: 423-488; van den Hondel, CAMJJ et al. (1991) "Heterologous gene expression in filamentous fungi" in: More Gene Manipulations in Fungi, JW Bennet & LL Lasure, Ed., Pp. 396-428: Academic Press: San Diego; and van den Hondel, CAMJJ & Punt, PJ (1991) "Gene transfer Systems and vector development for filamentous fungi. in: Applied Molecular Genetics of Fungi, Peberdy, JF et al., eds., pp. 1-28, Cambridge University Press : Cambridge), algae and multicellular
Pflanzenzellen (siehe Schmidt, R. und Willmitzer, L. (1988) "High efficiency Agrobacterium tumefaciens-meδ.±ate& transformation of Arabidopsis thaliana leaf and cotyledon explants" Plant Cell Rep.: 583-586) oder Säugetierzellen exprimiert werden. Geeignete Wirtszellen werden weiter erörtert in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990) . Der rekombinante Expressionsvektor kann alternativ, bspw. mit T7-Promotorregulatorischen Sequenzen und T7-Polymerase, in vitro transkribiert und translatiert werden.Plant cells (see Schmidt, R. and Willmitzer, L. (1988) "High efficiency Agrobacterium tumefaciens-meδ. ± ate & transformation of Arabidopsis thaliana leaf and cotyledon explants" Plant Cell Rep .: 583-586) or mammalian cells. Suitable host cells are further discussed in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.
Die Expression von Proteinen in Prokaryonten erfolgt meist mit Vektoren, die konstitutive oder induzierbare Promotoren enthalten, die die Expression von Fusions- oder Nicht-Fusionsproteinen steuern. Fusionsvektoren steuern eine Reihe von Aminosäuren zu einem darin codierten Protein, gewöhnlich am Aminoterminus des rekombinanten Proteins , bei . Diese Fusionsvektoren haben gewöhnlich drei Aufgaben: 1) die Verstärkung der Expression von rekom- binantem Protein; 2) die Erhöhung der Löslichkeit des rekombinanten Proteins; und 3) die Unterstützung der Reinigung des rekombi- nanten Proteins durch Wirkung als Ligand bei der Affinitätsreinigung. Bei Fusions-Expressionsvektoren wird oft eine proteolyti- sche Spaltstelle an der Verbindungsstelle der Fusionseinheit und des rekombinanten Proteins eingebracht, so daß die Trennung des rekombinanten Proteins von der Fusionseinheit nach der Reinigung des Fusionsproteins möglich ist. Diese Enzyme und ihre entsprechenden ErkennungsSequenzen umfassen Faktor Xa, Thrombin und Enterokinase.Proteins are usually expressed in prokaryotes using vectors which contain constitutive or inducible promoters which control the expression of fusion or non-fusion proteins. Fusion vectors contribute a number of amino acids to a protein encoded therein, usually at the amino terminus of the recombinant protein. These fusion vectors usually have three functions: 1) to increase the expression of recombinant protein; 2) increasing the solubility of the recombinant protein; and 3) supporting the purification of the recombinant protein by acting as a ligand in affinity purification. In the case of fusion expression vectors, a proteolytic cleavage site is often introduced at the junction of the fusion unit and the recombinant protein, so that the recombinant protein can be separated from the fusion unit after the fusion protein has been purified. These enzymes and their corresponding recognition sequences include factor Xa, thrombin and enterokinase.
Übliche Fusionsexpressionsvektoren umfassen pGEX (Pharmacia Bio- tech Ine; Smith, D.B. und Johnson, K.S. (1988) Gene 67: 31-40), pMAL (New England Biolabs, Beverly, MA) und pRIT 5 (Pharmacia, Piscataway, NJ) , bei denen Glutathion-S-Transferase (GST) , Maltose E-bindendes Protein bzw. Protein A an das rekombinante Zielprotein fusioniert wird. Bei einer Ausführungsform ist die codie- rende Sequenz des SRT-Proteins in einen pGEX-Expressionsvektor kloniert, so daß ein Vektor erzeugt wird, der ein Fusionsprotein codiert, umfassend vom N-Terminus zum C-Terminus, GST - Thrombin- Spaltstelle - X-Protein. Das Fusionsprotein kann durch Affinitätschromatographie mittels Glutathion-Agarose-Harz gereinigt wer- den. Das rekombinante SRT-Protein, das nicht mit GST fusioniert ist, kann durch Spaltung des Fusionsproteins mit Thrombin gewonnen werden.Common fusion expression vectors include pGEX (Pharmacia Biotech Ine; Smith, DB and Johnson, KS (1988) Gene 67: 31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT 5 (Pharmacia, Piscataway, NJ), in which glutathione-S-transferase (GST), maltose E-binding protein or protein A is fused to the recombinant target protein. In one embodiment, the coding sequence of the SRT protein is cloned into a pGEX expression vector so that a vector is generated which encodes a fusion protein, comprising from the N-terminus to the C-terminus, GST - thrombin cleavage site - X- Protein. The fusion protein can be purified by affinity chromatography using glutathione-agarose resin. The recombinant SRT protein that does not fuse with GST can be obtained by cleaving the fusion protein with thrombin.
Beispiele geeigneter induzierbarer Nic t-Fusions-Expressionsvek- toren aus E. coli umfassen pTrc (Amann et al., (1988) Gene 69: 301 - 315) und pET lld (Studier et al. Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Kalifornien (1990) 60-89) . Die Zielgenexpression aus dem pTrc- Vektor beruht auf der Transkription durch Wirts-RNA-Polymerase von einem Hybrid-trp-lac-Fusionspromotor. Die Zielgenexpression aus dem pETlld-Vektor beruht auf der Transkription von einem T7-gnl0-lac-Fusions-Promotor, die von einer coexprimierten vira- len RNA-Polymerase (T7 gnl) vermittelt wird. Diese virale Polymerase wird von den Wirtsstämmen BL 21 (DE3) oder HMS174 (DE3) von einem residenten λ-Prophagen geliefert, der ein T7 gnl-Gen unter der Transkriptionskontrolle des lacUV 5-Promotors birgt .Examples of suitable inducible Nic t-fusion expression vectors from E. coli include pTrc (Amann et al., (1988) Gene 69: 301-315) and pET III (Studier et al. Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 60-89). Target gene expression from the pTrc vector is based on transcription by host RNA polymerase from a hybrid trp-lac fusion promoter. The target gene expression from the pETlld vector is based on the transcription from a T7-gnl0-lac fusion promoter, which is mediated by a coexpressed viral RNA polymerase (T7 gnl). This viral polymerase is supplied by the BL 21 (DE3) or HMS174 (DE3) host strains from a resident λ prophage which harbors a T7 gnl gene under the transcriptional control of the lacUV 5 promoter.
Eine Strategie zur Maximierung der Expression des rekombinanten Proteins ist die Expression des Proteins in einem Wirtsbakterium, dessen Fähigkeit zur proteolytischen Spaltung des rekombinanten Proteins gestört ist (Gottesman, S. Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Kalifornien (1990) 119-128) . Eine weitere Strategie ist die Veränderung der Nukleinsäuresequenz der in einen Expressionsvektor zu inserierenden Nukleinsäure, so daß die einzelnen Codons für jede Aminosäure diejenigen sind, die vorzugsweise in einem zur Expression ausgewählten Bakterium, wie C. glutamicum, verwendet werden (Wada et al. (1992) Nucleic Acids Res. 20: 2111 - 2118). Diese Veränderung der erfindungsgemäßen Nukleinsäuresequenzen erfolgt durch Standard-DNA-Synthesetechniken.One strategy to maximize the expression of the recombinant protein is to express the protein in a host bacterium whose ability to proteolytically cleave the recombinant protein is impaired (Gottesman, S. Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California ( 1990) 119-128). Another strategy is to change the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those which are preferably used in a bacterium selected for expression, such as C. glutamicum (Wada et al. (1992 ) Nucleic Acids Res. 20: 2111-2118). This change in the nucleic acid sequences according to the invention is carried out by standard DNA synthesis techniques.
Bei einer weiteren Ausführungsform ist der SRT-Proteinexpres- sionsvektor ein Hefe-Expressionsvektor. Beispiele für Vektoren zur Expression in der Hefe S. cerevisiae umfassen pYepSecl (Bal- dari et al., (1987) Embo J. 6: 229-234), pMFa (Kurjan und Hersko- witz (1982) Cell 30: 933-943), pJRY88 (Schultz et al . (1987) Gene 54: 113 - 123) sowie pYES2 (Invitrogen Corporation, San Diego, CA) . Vektoren und Verfahren zur Konstruktion von Vektoren, die sich zur Verwendung in anderen Pilzen, wie filamentösen Pilzen, eignen, umfassen diejenigen, die eingehend beschrieben sind in: van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer Systems and vector development for filamentous fungi, in: Applied Molecular Genetics of fungi, J.F. Peberdy et al., Hrsg., S. 1-28, Cambridge University Press: Cambridge. Alternativ können die erfindungsgemäßen SRT-Proteine in Insektenzellen unter Verwendung von Baculovirus-Expressionsvektoren exprimiert werden. Baculovirus-Vektoren, die zur Expression von Proteinen in gezüchteten Insektenzellen (bspw. Sf9-Zellen) ver- fügbar sind, umfassen die pAc-Reihe (Smith et al., (1983) Mol. Cell Biol.. 3: 2156-2165) und die pVL-Reihe (Lucklow und Summers (1989) Virology 170: 31-39).In a further embodiment, the SRT protein expression vector is a yeast expression vector. Examples of vectors for expression in the yeast S. cerevisiae include pYepSecl (Baldari et al., (1987) Embo J. 6: 229-234), pMFa (Kurjan and Herskowitz (1982) Cell 30: 933-943 ), pJRY88 (Schultz et al. (1987) Gene 54: 113-123) and pYES2 (Invitrogen Corporation, San Diego, CA). Vectors and methods of constructing vectors suitable for use in other fungi such as filamentous fungi include those described in detail in: van den Hondel, CAMJJ & Punt, PJ (1991) "Gene transfer Systems and vector development for filamentous fungi, in: Applied Molecular Genetics of fungi, JF Peberdy et al., ed., pp. 1-28, Cambridge University Press: Cambridge. Alternatively, the SRT proteins of the invention can be expressed in insect cells using baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g. Sf9 cells) include the pAc series (Smith et al., (1983) Mol. Cell Biol .. 3: 2156-2165) and the pVL series (Lucklow and Summers (1989) Virology 170: 31-39).
In einer weiteren Ausführungsform können die erfindungsgemäßen SRT-Proteine in einzelligen Pflanzenzellen (wie Algen) oder in Pflanzenzellen höherer Pflanzen (bspw. Spermatophyten, wie Feldfrüchte) exprimiert werden. Beispiele für Pflanzen-Expressionsvektoren umfassen solche, die eingehend beschrieben sind in: Bek- ker, D., Ke per, E., Schell, J. und Masterson, R. (1992) "New plant binary vectors with seleetable markers located proximal to the left border", Plant Mol. Biol. 20: 1195-1197; und Bevan, M.W. (1984) "Binary Agrobacterium vectors for plant transformation", Nucl. Acids Res . 12: 8711-8721.In a further embodiment, the SRT proteins according to the invention can be expressed in single-cell plant cells (such as algae) or in plant cells of higher plants (for example spermatophytes such as crops). Examples of plant expression vectors include those which are described in detail in: Bekker, D., Ke per, E., Schell, J. and Masterson, R. (1992) "New plant binary vectors with selectable markers located proximal to the left border ", Plant Mol. Biol. 20: 1195-1197; and Bevan, M.W. (1984) "Binary Agrobacterium vectors for plant transformation", Nucl. Acids Res. 12: 8711-8721.
In einer weiteren Ausführungsform wird eine erfindungsgemäße Nukleinsäure in Säugetierzellen mit einem Säugetier-Expressionsvektor exprimiert.. Beispiele für Säugetier-Expressionsvektoren umfassen pCDM8 (Seed, B. (1987) Nature 329:840) und pMT2PC (Kaufman et al. (1987) EMBO J. 6: 187-195). Bei der Verwendung in Säuge- tierzellen werden die Kontrollfunktionen des Expressionsvektors oft von viralen regulatorischen Elementen bereitgestellt . Gemeinhin verwendete Promotoren stammen bspw. aus Polyoma, Adenovirus2, Cytomegalievirus und Simian Virus 40. Für weitere geeignete ExpressionsSysteme für prokaryotische und eukaryotische Zellen siehe die Kapitel 16 und 17 aus Sambrook, J., Fritsch, E.F. und Maniatis, T., Molecular cloning: A Laboratory Manual, 2. Auflage, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.In a further embodiment, a nucleic acid according to the invention is expressed in mammalian cells with a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed, B. (1987) Nature 329: 840) and pMT2PC (Kaufman et al. (1987) EMBO J 6: 187-195). When used in mammalian cells, the control functions of the expression vector are often provided by viral regulatory elements. Commonly used promoters come, for example, from Polyoma, Adenovirus2, Cytomegalievirus and Simian Virus 40. For further suitable expression systems for prokaryotic and eukaryotic cells, see chapters 16 and 17 from Sambrook, J., Fritsch, E.F. and Maniatis, T., Molecular cloning: A Laboratory Manual, 2nd edition, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.
Bei einer weiteren Ausführungsform kann der rekombinante Säugetier-Expressionsvektor die Expression der Nukleinsäure vorzugsweise in einem bestimmten Zelltyp bewirken (bspw. werden gewebespezifische regulatorische Elemente zur Expression der Nukleinsäure verwendet) . Gewebespezifische regulatorische Elemente sind im Fachgebiet bekannt. Nicht-einschränkende Beispiele für geeignete gewebespezifische Promotoren umfassen den Albuminpromotor (leberspezifisch; Pinkert et al . (1987) Genes Dev. 1: 268-277), lymphoid-spezifische Promotoren (Calame und Eaton (1988) Adv. Im- munol. 43: 235-275), insbesondere Promotoren von T-Zellrezeptoren (Winoto und Baltimore (1989) EMBO J. 8: 729-733) und Immunglobu- linen (Banerji et al. (1983) Cell 33: 729-740; Queen und Baltimore (1983) Cell 33: 741-748), neuronspezifische Promotoren (bspw. Neurofilament-Promotor; Byrne und Ruddle (1989) PNAS 86: 5473-5477), pankreasspezifische Promotoren (Edlund et al., (1985) Science 230: 912-916) und milchdrüsenspezifische Promotoren (bspw. Milchserum-Promotor; US-Patent Nr. 4 873 316 und europäische Patentanmeldungsveröffentlichung Nr. 264 166) . Entwicklungs- regulierte Promoren sind ebenfalls umfaßt, bspw. die Maus-hox- Pro otoren (Kessel und Gruss (1990) Science 249: 374-379) und der α-Fetoprotein-Promotor (Campes und Tilghman (1989) Genes Dev. 3: 537-546) .In a further embodiment, the recombinant mammalian expression vector can preferably bring about the expression of the nucleic acid in a specific cell type (for example, tissue-specific regulatory elements are used to express the nucleic acid). Tissue-specific regulatory elements are known in the art. Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert et al. (1987) Genes Dev. 1: 268-277), lymphoid-specific promoters (Calame and Eaton (1988) Adv. Immunol. 43: 235-275), in particular promoters of T cell receptors (Winoto and Baltimore (1989) EMBO J. 8: 729-733) and immunoglobulins (Banerji et al. (1983) Cell 33: 729-740; Queen and Baltimore ( 1983) Cell 33: 741-748), neuron-specific promoters (e.g. neurofilament promoter; Byrne and Ruddle (1989) PNAS 86: 5473-5477), pancreatic-specific promoters (Edlund et al., (1985) Science 230: 912-916) and mammary-specific promoters (e.g. milk serum promoter; US -Patent No. 4,873,316 and European Patent Application Publication No. 264,166). Development-regulated promoters are also included, for example the mouse hox promoters (Kessel and Gruss (1990) Science 249: 374-379) and the α-fetoprotein promoter (Campes and Tilghman (1989) Genes Dev. 3: 537-546).
Die Erfindung stellt zudem einen rekombinanten Expressionsvektor bereit, umfassend ein erfindungsgemäßes DNA Molekül, das in Anti- sense-Richtung in den Expressionsvektor kloniert ist. Dies bedeutet, daß das DNA-Molekül derart mit einer regulatorischen Sequenz funktionsfähig verbunden ist, daß die Expression (durch Transkription des DNA-.Moleküls) eines RNA-Moleküls, das zur SRT-mRNA antisense ist, möglich ist. Es können regulatorische Sequenzen ausgewählt werden, die funktionsfähig an eine in Antisense-Rich- tung klonierte Nukleinsäure gebunden sind und die die kontinuier- liehe Expression des Antisense-RNA-Moleküls in einer Vielzahl von Zeiltypen steuern, bspw. können virale Promotoren und/oder Enhan- cer oder regulatorische Sequenzen ausgewählt werden, die die kon- stitutive, gewebespezifische oder zelltypspezifische Expression von Antisense-RNA steuern. Der Antisense-Expressionsvektor kann in Form eines rekombinanten Plasmids, Phagemids oder attenuierten Virus vorliegen, in dem Antisense-Nukleinsäuren unter der Kontrolle eines hochwirksamen regulatorischen Bereichs produziert werden, dessen Aktivität durch den Zelltyp bestimmt wird, in den der Vektor eingebracht wird. Für eine Diskussion der Regulation der Genexpression mittels Antisense-Genen, siehe Weintraub, H. et al . , Antisense-RNA as a molecular tool for genetic analysis , Reviews - Trends in Genetics, Bd. 1(1) 1986.The invention also provides a recombinant expression vector comprising a DNA molecule according to the invention which is cloned into the expression vector in the antisense direction. This means that the DNA molecule is operably linked to a regulatory sequence in such a way that expression (by transcription of the DNA molecule) of an RNA molecule which is antisense to the SRT mRNA is possible. Regulatory sequences can be selected which are operably linked to a nucleic acid cloned in the antisense direction and which control the continuous expression of the antisense RNA molecule in a multiplicity of cell types, for example viral promoters and / or enhan - Cer or regulatory sequences are selected that control the constitutive, tissue-specific or cell type-specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid, or attenuated virus in which antisense nucleic acids are produced under the control of a highly effective regulatory region, the activity of which is determined by the cell type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes, see Weintraub, H. et al. , Antisense-RNA as a molecular tool for genetic analysis, Reviews - Trends in Genetics, Vol. 1 (1) 1986.
Ein weiterer Aspekt der Erfindung betrifft die Wirtszellen, in die ein erfindungsgemäßer reko binanter Expressionsvektor eingebracht worden ist. Die Begriffe "Wirtszelle" und "rekombinante Wirtszelle" werden hier untereinander austauschbar verwendet. Es ist selbstverständlich, daß diese Begriffe nicht nur eine bestimmte Zielzelle, sondern auch die Nachkommen oder potentiellen Nachkommen dieser Zelle betreffen. Da in aufeinanderfolgenden Generationen aufgrund von Mutation oder Umwelteinflüssen bestimmte Modifikationen auftreten können, sind diese Nachkommen nicht unbedingt mit der Parentalzelle identisch, sind jedoch im Umfang des Begriffs, wie er hier verwendet wird, noch umfaßt. Eine Wirtszelle kann eine prokaryotische oder eukaryotische Zelle sein. Bspw. kann ein SRT-Protein in Bakterienzellen, wie C. glutamicum, Insektenzellen, Hefe- oder Säugetierzellen (wie Ovarzel- len des chinesischen Hamsters (CHO) oder COS-Zellen) exprimiert werden. Andere geeignete Wirtszellen sind dem Fachmann geläufig. Mikroorganismen, die mit Corynebacterium glutamicum verwandt sind und sich geeignet als Wirtszellen für die erfindungsgemäßen Nukleinsäure- und Proteinmoleküle verwenden lassen, sind in Tabelle 3 aufgeführt .Another aspect of the invention relates to the host cells into which a recombinant expression vector according to the invention has been introduced. The terms "host cell" and "recombinant host cell" are used interchangeably here. It goes without saying that these terms refer not only to a specific target cell, but also to the descendants or potential descendants of this cell. Since certain modifications may occur in successive generations due to mutation or environmental influences, these offspring are not necessarily identical to the parental cell, but are still included in the scope of the term as used here. A host cell can be a prokaryotic or eukaryotic cell. For example. an SRT protein can be expressed in bacterial cells such as C. glutamicum, insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to the person skilled in the art. Microorganisms which are related to Corynebacterium glutamicum and which can be suitably used as host cells for the nucleic acid and protein molecules according to the invention are listed in Table 3.
Durch herkömmliche Transformations- oder Transfektionsverfahren läßt sich Vektor-DNA in prokaryotische oder eukaryotische Zellen einbringen. Die Begriffe "Transformation" und "Transfektion", wie sie hier verwendet werden, sollen eine Vielzahl von im Stand der Technik bekannten Verfahren zum Einbringen fremder Nukleinsäure (bspw. DNA) in eine Wirtszelle umfassen, einschließlich Calcium- phosphat- oder Calciumchlorid-Copräzipitation, DEAE-Dextran-ver- mittelte Transfektion, Lipofektion oder Elektroporation. Geeignete Verfahren zur Transformation oder Transfektion von Wirts- zellen lassen sich nachlesen in Sambrook et al. (Molecular Cloning: A Laboratory Manual. 2. Aufl. Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) und anderen Labor-Handbüchern.Using conventional transformation or transfection methods, vector DNA can be introduced into prokaryotic or eukaryotic cells. The terms "transformation" and "transfection" as used here are intended to encompass a large number of methods known in the prior art for introducing foreign nucleic acid (for example DNA) into a host cell, including calcium phosphate or calcium chloride coprecipitation, DEAE-dextran-mediated transfection, lipofection or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook et al. (Molecular Cloning: A Laboratory Manual. 2nd Ed. Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) and other laboratory manuals.
Für die stabile Transfektion von Säugetierzellen ist bekannt, daß je nach verwendetem Expressionsvektor und verwendeter Transfekti- onstechnik nur ein kleiner Teil der Zellen die fremde DNA in ihr Genom integriert. Zur Identifizierung und Selektion dieser Inte- granten wird gewöhnlich ein Gen, das einen selektierbaren Marker (z.B. Resistenz gegen Antibiotika) codiert, zusammen mit dem Gen von Interesse in die Wirtszellen eingebracht. Bevorzugte selektierbare Marker umfassen solche, die die Resistenz gegen Medikamente, wie G418, Hygromycin und Methotrexat, verleihen. Eine Nukleinsäure, die einen selektierbaren Marker codiert, kann in eine Wirtszelle auf dem gleichen Vektor eingebracht werden, wie derjenige, der ein SRT-Protein codiert, oder kann auf einem gesonderten Vektor eingebracht werden. Zellen, die mit der eingebrachten Nukleinsäure stabil transfiziert worden sind, können durch Medikamentenselektion identifiziert werden (z.B. Zellen, die den se- lektierbaren Marker integriert haben, überleben, wohingegen die anderen Zellen sterben) .For the stable transfection of mammalian cells it is known that, depending on the expression vector and transfection technique used, only a small part of the cells integrate the foreign DNA into their genome. To identify and select these integrants, a gene that encodes a selectable marker (e.g. resistance to antibiotics) is usually introduced into the host cells together with the gene of interest. Preferred selectable markers include those that confer resistance to drugs such as G418, hygromycin and methotrexate. A nucleic acid encoding a selectable marker can be introduced into a host cell on the same vector as that encoding an SRT protein, or can be introduced on a separate vector. Cells that have been stably transfected with the introduced nucleic acid can be identified by drug selection (e.g. cells that have integrated the selectable marker survive, whereas the other cells die).
Zur Erzeugung eines homolog rekombinierten Mikroorganismus wird ein Vektor hergestellt, der zumindest einen Abschnitt eines SRT- Gens enthält, in den eine Deletion, Addition oder Substitution eingebracht worden ist, um das SRT-Gen zu verändern, bspw. funktioneil zu disrumpieren. Dieses SRT-Gen ist vorzugsweise ein Co- ryneJbacterium glutamicum-SRT-Gen, jedoch kann ein Homologon von einem verwandten Bakterium oder sogar von einer Säugetier-, Hefeoder Insektenquelle verwendet werden. Bei einer bevorzugten Ausführungsform ist der Vektor derart ausgestaltet, daß das endogene SRT-Gen bei homologer Rekombination funktionell disrumpiert ist (d.h. nicht länger ein funktionelles Protein codiert, ebenfalls bezeichnet als "Knockouf'-Vektor) . Der Vektor kann alternativ derart ausgestaltet sein, daß das endogene SRT-Gen bei homologer Rekombination mutiert oder anderweitig verändert ist, jedoch noch das funktioneile Protein codiert (z.B. kann der stromaufwärts gelegene regulatorische Bereich derart verändert sein, daß dadurch die Expression des endogenen SRT-Proteins verändert wird.). Der veränderte Abschnitt des SRT-Gens ist im homologen Rekombinationsvektor an seinem 5'- und 3 '-Ende von zusätzlicher Nukleinsäure des SRT-Gens flankiert, die eine homologe Rekombination zwischen dem exogenen SRT-Gen, das von dem Vektor getragen wird, und einem endogenen SRT-Gen in einem Mikroorganismus, ermöglicht. Die zusätzliche flankierende SRT-Nukleinsäure ist für eine erfolgreiche homologe Rekombination mit dem endogenen Gen hinreichend lang. Gewöhnlich enthält der Vektor mehrere Kilobasen flankierende DNA (sowohl am 5'- als auch am 3 '-Ende) (siehe z.B. Thomas, K.R. und Capecchi, M.R. (1987) Cell 51: 503 für eine Beschreibung von homologen Rekombinationsvektoren) . Der Vektor wird in einen Mikroorganismus (z.B. durch Elektroporation) eingebracht, und Zellen, in denen das eingebrachte SRT-Gen mit dem endogenen SRT-Gen homolog rekombiniert ist, werden unter Verwendung im Fachgebiet bekannter Verfahren selektiert .To generate a homologously recombined microorganism, a vector is produced which contains at least a section of an SRT gene into which a deletion, addition or substitution has been introduced in order to change the SRT gene, for example to functionally disrupt it. This SRT gene is preferably a co- ryneJbacterium glutamicum SRT gene, however, a homologue from a related bacterium or even from a source of mammals, yeasts or insects can be used. In a preferred embodiment, the vector is designed such that the endogenous SRT gene is functionally disrupted when homologous recombination occurs (ie, no longer encodes a functional protein, also referred to as a "knockouf 'vector). The vector may alternatively be designed such that the endogenous SRT gene is mutated or otherwise altered during homologous recombination, but still encodes the functional protein (for example, the upstream regulatory region can be altered in such a way that the expression of the endogenous SRT protein is altered thereby) The SRT gene is flanked in the homologous recombination vector at its 5 'and 3' ends by additional nucleic acid of the SRT gene, which is a homologous recombination between the exogenous SRT gene carried by the vector and an endogenous SRT gene in a microorganism. The additional flanking SRT nucleic acid is successful for a oak homologous recombination with the endogenous gene sufficiently long. The vector usually contains several kilobase flanking DNA (both at the 5 'and 3' ends) (see, for example, Thomas, KR and Capecchi, MR (1987) Cell 51: 503 for a description of homologous recombination vectors). The vector is introduced into a microorganism (e.g., by electroporation), and cells in which the introduced SRT gene is homologously recombined with the endogenous SRT gene are selected using methods known in the art.
Bei einer anderen Ausführungsform können rekombinante Mikroorga- nismen produziert werden, die ausgewählte Systeme enthalten, die eine regulierte Expression des eingebrachten Gens ermöglichen. Der Einschluß eines SRT-Gens in einem Vektor unter der Kontrolle des Lac-Operons ermöglicht z.B. die Expression des SRT-Gens nur in Gegenwart von IPTG. Diese regulatorischen Systeme sind im Fachgebiet bekannt.In another embodiment, recombinant microorganisms can be produced which contain selected systems which allow regulated expression of the introduced gene. The inclusion of an SRT gene in a vector under the control of the Lac operon enables e.g. expression of the SRT gene only in the presence of IPTG. These regulatory systems are known in the art.
Eine erfindungsgemäße Wirtszelle, wie eine prokaryotische oder eukaryotische Wirtszelle in Kultur, kann zur Produktion (d.h. Expression) eines SRT-Proteins verwendet werden. Die Erfindung stellt zudem Verfahren zur Produktion von SRT-Proteinen unter Verwendung der erfindungsgemäßen Wirtszellen bereit. Bei einer Ausführungsform umfaßt das Verfahren die Anzucht der erfindungsgemäßen Wirtszelle (in die ein rekombinanter Expressionsvektor, der ein SRT-Protein codiert, eingebracht worden ist, oder in de- ren Genom ein Gen eingebracht worden ist, das ein Wildtyp- oder verändertes SRT-Protein codiert) in einem geeigneten Medium, bis das SRT-Protein produziert worden ist. Das Verfahren umfaßt in einer weiteren Ausführungsform das Isolieren der SRT-Proteine aus dem Medium oder der Wirtszelle.A host cell according to the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used for the production (ie expression) of an SRT protein. The invention also provides methods for producing SRT proteins using the host cells of the invention. In one embodiment, the method comprises culturing the host cell according to the invention (into which a recombinant expression vector which encodes an SRT protein has been introduced, or into whose genome a gene has been introduced which is a wild-type or modified SRT protein encoded) in a suitable medium until the SRT protein has been produced. The process comprises in a further embodiment isolating the SRT proteins from the medium or the host cell.
C . Erfindungsgemäße Verwendungen und VerfahrenC. Uses and methods according to the invention
Die hier beschriebenen Nukleinsäuremoleküle, Proteine, Proteinho- mologa, Fusionsproteine, Primer, Vektoren und Wirtszellen können in einem oder mehreren nachstehenden Verfahren verwendet werden: Identifikation von C. glutamicum und verwandten Organismen, Kar- tierung von Genomen von Organismen, die mit C. glutamicum verwandt sind, Identifikation und Lokalisation von C. glutamicum-Se- quenzen von Interesse, EvolutionsStudien, Bestimmung von SRT-Pro- teinbereichen, die für die Funktion notwendig sind, Modulation der Aktivität eines SRT-Proteins; Modulation der Aktivität eines SRT-Wegs; und Modulation der zellulären Produktion einer gewünschten Verbindung, wie einer Feinchemikalie. Die erfindungsgemäßen SRT-Nukleinsäure oleküle haben eine Vielzahl von Verwendungen. Sie können zunächst zur Identifikation eines Organismus als Corynebacterium glutamicum oder naher Verwandten davon verwendet werden. Sie können zudem zur Identifikation von C. glutamicum oder eines Verwandten davon in einer Mischpopulation von Mikroorganismen verwendet werden. Die Erfindung stellt die Nukleinsäure- sequenzen einer Reihe von C. glutamicum-Genen bereit. Durch Sondieren der extrahierten genomischen DNA einer Kultur einer ein- heitlichen oder gemischten Population von Mikroorganismen unter stringenten Bedingungen mit einer Sonde, die einen Bereich eines C. glutamicum-G&ns umfaßt, das für diesen Organismus einzigartig ist, kann man bestimmen, ob dieser Organismus zugegen ist. Corynebacterium glutamicum selbst ist zwar nicht pathogen, jedoch ist es mit pathogenen Arten, wie Corynebacterium diptheriae, verwandt. Der Nachweis eines solchen Organismus ist von signifikanter klinischer Bedeutung.The nucleic acid molecules, proteins, protein homologs, fusion proteins, primers, vectors and host cells described here can be used in one or more of the following methods: identification of C. glutamicum and related organisms, mapping of genomes of organisms that are related to C. glutamicum related, identification and localization of C. glutamicum sequences of interest, evolution studies, determination of SRT protein areas that are necessary for function, modulation of the activity of an SRT protein; Modulating the activity of an SRT path; and modulating the cellular production of a desired compound, such as a fine chemical. The SRT nucleic acid molecules according to the invention have a multitude of uses. They can initially be used to identify an organism as Corynebacterium glutamicum or close relatives thereof. They can also be used to identify C. glutamicum or a relative thereof in a mixed population of microorganisms. The invention provides the nucleic acid sequences of a number of C. glutamicum genes. By probing the extracted genomic DNA of a culture of a uniform or mixed population of microorganisms under stringent conditions with a probe comprising a region of a C. glutamicum G & ns that is unique to this organism, one can determine whether this organism is present is. Corynebacterium glutamicum itself is not pathogenic, but it is related to pathogenic species such as Corynebacterium diptheriae. The detection of such an organism is of significant clinical importance.
Die erfindungsgemäßen Nukleinsäure- und Proteinmoleküle können als Marker für spezifische Bereiche des Genoms dienen. Dies ist nicht nur beim Kartieren des Genoms, sondern auch für funktioneile Studien von C. glutamicum-Proteinen nützlich. Zur Identifikation des Genombereichs, an den ein bestimmtes C. glutamicum- DNA-bindendes Protein bindet, kann das C. glutamicum-Genom. bspw.gespalten werden, und die Fragmente mit dem DNA-bindenden Protein inkubiert werden. Diejenigen, die das Protein binden, können zusätzlich mit den erfindungsgemäßen Nukleinsäuremolekü- len, vorzugsweise mit leicht nachweisbaren Markierungen, sondiert werden; die Bindung eines solchen Nukleinsäure oleküls an das Ge- nomfragment ermöglicht die Lokalisation des Fragmentes auf der genomischen Karte von C. glutamicum, und wenn dies mehrmals mit unterschiedlichen Enzymen durchgeführt wird, erleichtert es eine rasche Bestimmung der Nukleinsäuresequenz, an die das Protein bindet. Die erfindungsgemäßen Nukleinsäuremoleküle können zudem hinreichend homolog zu den Sequenzen verwandter Arten sein, so daß diese Nukleinsäuremoleküle als Marker für die Konstruktion einer genomischen Karte in verwandten Bakterien, wie Brevibacte- rium lactofermentum, dienen können.The nucleic acid and protein molecules according to the invention can serve as markers for specific regions of the genome. This is useful not only when mapping the genome, but also for functional studies of C. glutamicum proteins. The C. glutamicum genome can be used to identify the genome region to which a specific C. glutamicum DNA-binding protein binds. e.g. cleaved, and the fragments are incubated with the DNA-binding protein. Those that bind the protein can additionally be probed with the nucleic acid molecules according to the invention, preferably with easily detectable markings; the binding of such a nucleic acid molecule to the genome fragment enables the fragment to be located on the genomic map of C. glutamicum, and if this is carried out several times with different enzymes, it facilitates one rapid determination of the nucleic acid sequence to which the protein binds. The nucleic acid molecules according to the invention can moreover be sufficiently homologous to the sequences of related species so that these nucleic acid molecules can serve as markers for the construction of a genomic map in related bacteria, such as Brevibacterium lactofermentum.
Die erfindungsgemäßen SRT-Nukleinsäuremoleküle eignen sich ebenfalls für Evolutions- und Proteinstrukturuntersuchungen. Die Re- sistenzprozesse, an denen die erfindungsgemäßen Moleküle beteiligt sind, werden von einer Reihe von Zellen, ausgenutzt; durch Vergleich der Sequenzen der erfindungsgemäßen Nukleinsäuremoleküle mit solchen, die ähnliche Enzyme aus anderen Organismen codieren, kann der Evolutions-Verwandschaftsgrad der Organismen be- stimmt werden. Entsprechend ermöglicht ein solcher Vergleich die Bestimmung, welche Sequenzbereiche konserviert sind und welche nicht, was bei der Bestimmung solcher Bereiche des Proteins hilfreich sein kann, die für die Enzymfunktion essentiell sind. Dieser Typ der Bestimmung ist für Proteintechnologie-Untersuchungen wertvoll und kann einen Hinweis darauf geben, welches Protein Mutagenese tolerieren kann, ohne die Funktion zu verlieren.The SRT nucleic acid molecules according to the invention are also suitable for evolution and protein structure studies. The resistance processes in which the molecules of the invention are involved are exploited by a number of cells; By comparing the sequences of the nucleic acid molecules according to the invention with those which code similar enzymes from other organisms, the degree of evolutionary kinship of the organisms can be determined. Accordingly, such a comparison enables the determination of which sequence regions are conserved and which are not, which can be helpful in determining those regions of the protein which are essential for the enzyme function. This type of determination is valuable for protein technology studies and can provide an indication of which protein can tolerate mutagenesis without losing function.
Die Manipulation der erfindungsgemäßen SRT-Nukleinsäuremoleküle kann die Produktion von SRT-Proteinen mit funktioneilen Unter- schieden zu den Wildtyp-SRT-Proteinen bewirken. Diese Proteine können hinsichtlich ihrer Effizienz oder Aktivität verbessert werden, können in größerer Anzahl als gewöhnlich in der Zelle zugegen sein, oder können hinsichtlich ihrer Effizienz oder Aktivität geschwächt sein. Das Ziel dieser Manipulationen ist die Stei- gerung der Lebensfähigkeit und der Aktivität der Zelle, wenn sie Umwelt- und/oder chemischen Streßfaktoren und Schadstoffen ausgesetzt ist, die bei großangelegten Fermenterkulturen häufig vorkommen. Durch Erhöhen der Aktivität oder der Kopienzahl einer hitzeschockregulierten Protease kann man die Fähigkeit der Zelle, falsch gefaltete Proteine zu zerstören, vergrößern, die ansonsten die normalen Zeilfunktionen stören würden (bspw. weiteres Binden von Substraten und Cofaktoren, obwohl dem Protein die Aktivität, auf diese Moleküle geeignet einzuwirken, fehlt) . Das Gleiche gilt für die Überexpression oder Optimierung der Aktivität von einem oder mehreren, durch Hitze- oder Kälteschock induzierten Chape- rone-Molekülen. Diese Proteine dienen der korrekten Faltung nas- zierender Polypeptidketten, und somit erhöht ihre gesteigerte Aktivität oder ihr verstärktes Vorhandensein den Prozentsatz an richtig gefalteten Proteinen in der Zelle, was wiederum die Ge- samt-Stoffwechseleffizienz und Lebensfähigkeit der Zellen in Kultur ehöht. Die Überexpression oder Optimierung der durch os oti- schen Schock aktivierten Transportermoleküle sollte die Fähigkeit des Teils der Zelle, die intrazelluläre Homöostase beizubehalten, steigern, wodurch die Lebensfähigkeit dieser Zellen in Kultur erhöht wird. Die Überexpression oder der Anstieg der Aktivität durch Mutagenese von Proteinen, die an der Entwicklung zellulärer Resistenz gegenüber verschiedenen Streßfaktoren beteiligt sind (entweder durch Transport der angreifenden Chemikalie aus der Zelle oder durch Modifikation der Chemikalie in eine weniger gefährliche Substanz) sollte die Leistungsfähigkeit des Organismus in der Umgebung, die die gefährliche Substanz enthält (z.B. eine großangelegte Fermenterkultur) , steigern und somit ermöglichen, daß relativ mehr Zellen in einer solchen Kultur überleben. Der Nettoeffekt sämtlicher Mutagenesestrategien ist die Steigerung der Quantität feinchemikalienerzeugender Verbindungen in der Kultur, wodurch die Ausbeute, Produktion und/oder Effizienz der Pro- duktion von einer oder mehreren gewünschten Feinchemikalien aus der Kultur erhöht wird.The manipulation of the SRT nucleic acid molecules according to the invention can bring about the production of SRT proteins with functional differences from the wild-type SRT proteins. These proteins may be improved in efficiency or activity, may be present in the cell in greater numbers than usual, or may be weakened in efficiency or activity. The aim of these manipulations is to increase the viability and activity of the cell when it is exposed to environmental and / or chemical stress factors and pollutants, which are common in large-scale fermenter cultures. Increasing the activity or copy number of a heat shock regulated protease can increase the cell's ability to destroy misfolded proteins that would otherwise interfere with normal cell functions (e.g. further binding of substrates and cofactors, although the protein has activity) these molecules do not act appropriately). The same applies to the overexpression or optimization of the activity of one or more chaperone molecules induced by heat or cold shock. These proteins serve to correctly fold nasal polypeptide chains, and thus their increased activity or presence increases the percentage of properly folded proteins in the cell, which in turn increases the overall metabolic efficiency and viability of the cells in culture. Overexpression or optimization of the transporter molecules activated by otic shock should be the ability of the part of the cell that maintain intracellular homeostasis, thereby increasing the viability of these cells in culture. The overexpression or increase in activity by mutagenesis of proteins involved in the development of cellular resistance to various stress factors (either by transporting the attacking chemical out of the cell or by modifying the chemical into a less dangerous substance) should affect the organism's performance the environment containing the dangerous substance (e.g. a large-scale fermenter culture), and thus enable relatively more cells to survive in such a culture. The net effect of all mutagenesis strategies is to increase the quantity of fine chemical producing compounds in the culture, which increases the yield, production and / or efficiency of the production of one or more desired fine chemicals from the culture.
Diese vorstehend genannte Liste von Mutagenesestrategien für SRT- Proteine, die erhöhte Ausbeuten einer gewünschten Verbindung be- wirken sollen, soll nicht einschränkend sein; Variationen dieser Mutagenesestrategien sind dem Fachmann leicht ersichtlich. Durch diese Mechanismen können die erfindungsgemäßen Nukleinsäure- und Proteinmoleküle verwendet werden, um C. glutamicum oder verwandte Bakterienstämme, die mutierte SRT-Nukleinsäure- und Proteinmole- küle exprimieren, zu erzeugen, so daß die Ausbeute, Produktion und/oder Effizienz der Produktion einer gewünschten Verbindung verbessert wird. Die gewünschte Verbindung kann ein natürliches Produkt von C. glutamicum sein, welches die Endprodukte der Biosynthesewege und Zwischenprodukte natürlich vorkommender metabo- lischer Wege sowie Moleküle umfaßt, die im Metabolismus von C. glutamicum nicht natürlich vorkommen, die jedoch von einem erfindungsgemäßen C. glutamicum-Stamm produziert werden.This above list of mutagenesis strategies for SRT proteins, which are said to bring about increased yields of a desired compound, is not intended to be limiting; Variations on these mutagenesis strategies are readily apparent to those skilled in the art. By means of these mechanisms, the nucleic acid and protein molecules according to the invention can be used to generate C. glutamicum or related bacterial strains which express mutated SRT nucleic acid and protein molecules, so that the yield, production and / or efficiency of the production of a desired one Connection is improved. The desired compound can be a natural product of C. glutamicum, which comprises the end products of the biosynthetic pathways and intermediates of naturally occurring metabolic routes, as well as molecules which do not occur naturally in the metabolism of C. glutamicum, but which are derived from a C. glutamicum according to the invention. Trunk are produced.
Diese Erfindung wird durch die nachstehenden Beispiele weiter veranschaulicht, die nicht als einschränkend aufgefaßt werden sollen. Die Inhalte sämtlicher, in dieser Patentanmeldung zitierter Literaturstellen, Patentanmeldungen, Patente und veröffentlichter Patentanmeldungen sind hiermit durch Bezugnahme aufgenommen. BeispieleThis invention is further illustrated by the following examples, which are not to be construed as limiting. The contents of all references, patent applications, patents and published patent applications cited in this patent application are hereby incorporated by reference. Examples
Beispiel 1: Präparation der gesamten genomischen DNA aus Corynebacterium glutamicum ATCC13032Example 1: Preparation of the entire genomic DNA from Corynebacterium glutamicum ATCC13032
Eine Kultur von Corynebacterium glutamicum (ATCC 13032) wurde über Nacht bei 30°C unter starkem Schütteln in BHI-Medium (Difco) gezüchtet. Die Zellen wurden durch Zentrifugation geerntet, der Überstand wurde verworfen, und die Zellen wurden in 5ml Puffer I (5% des Ursprungsvolumens der Kultur - sämtliche angegebenen Volumina sind für 100 ml Kulturvolumen berechnet) resuspendiert. Die Zusammensetzung von Puffer I: 140,34 g/1 Saccharose, 2,46 g/1 MgS04 • 7 H20, 10 ml/1 KH2P04-Lösung (100g/l, mit KOH eingestellt auf pH-Wert 6,7), 50 ml/1 M12-Konzentrat (10 g/1 (NH4)2S04, 1 g/1 NaCl, 2 g/1 MgS04 • 7 H20, 0,2 g/1 CaCl2, 0,5 g/1 Hefe-ExtraktA culture of Corynebacterium glutamicum (ATCC 13032) was grown overnight at 30 ° C with vigorous shaking in BHI medium (Difco). The cells were harvested by centrifugation, the supernatant was discarded, and the cells were resuspended in 5 ml of buffer I (5% of the original volume of the culture - all stated volumes are calculated for 100 ml of culture volume). The composition of buffer I: 140.34 g / 1 sucrose, 2.46 g / 1 MgS0 4 • 7 H 2 0, 10 ml / 1 KH 2 P0 4 solution (100 g / l, adjusted to pH with KOH 6.7), 50 ml / 1 M12 concentrate (10 g / 1 (NH 4 ) 2 S0 4 , 1 g / 1 NaCl, 2 g / 1 MgS0 4 • 7 H 2 0, 0.2 g / 1 CaCl 2 , 0.5 g / 1 yeast extract
(Difco) , 10 ml/1 Spurenelemente-Mischung (200 mg/1 FeS04 • H0, 10 mg/1 ZnS04 • 7 H20, 3 mg/1 MnCl2 • 4 H20, 30 mg/1 H3B03 , 20 mg/1 CoCl2 • 6 H20, 1 mg/1 NiCl2 • 6 H20, 3 mg/1 Na2Mo04 • 2 H20, 500 mg/1 Komplexbildner (EDTA oder Citronensäure) , 100 ml/1 Vitamingemisch (0,2 ml/1 Biotin, 0,2 mg/1 Folsäure, 20 mg/1 p-Aminobenzoesäure, 20 mg/1 Riboflavin, 40 mg/1 Ca-Panthothenat, 140 mg/1 Nikotinsäure, 40 mg/1 Pyridoxolhydrochlorid, 200 mg/1 Myoinositol) . Ly- sozym wurde in einer Endkonzentration von 2 , 5 mg/ml zur Suspension gegeben. Nach etwa 4 Std. Inkubation bei 37°C wurde die Zell- wand abgebaut, und die erhaltenen Protoplasten wurden durch Zentrifugation geerntet. Das Pellet wurde einmal mit 5 ml Puffer I und einmal mit 5 ml TE-Puffer (10 mM Tris-HCl, 1 M EDTA, pH-Wert 8) gewaschen. Das Pellet wurde in 4 ml TE-Puffer resuspendiert, und 0,5 ml SDS-Lösung (10%) und 0,5 ml NaCl-Lösung (5 M) wurden zugegeben. Nach Zugabe von Proteinase K in einer Endkonzentration von 200 μg/ml wurde die Suspension etwa 18 Std. bei 37°C inkubiert. Die DNA wurde durch Extraktion mit Phenol, Pheno1-Chloro- form-Isoa ylalkohol und Chloroform-Isoamylalkohol mittels Standard-Verfahren gereinigt. Dann wurde die DNA durch Zugabe von 1/50 Volumen 3 M Natriumacetat und 2 Volumina Ethanol, anschließender Inkubation für 30 min bei -20°C und 30 min Zentrifugation bei 12000 U/min in einer Hochgeschwindigkeitszentrifuge mit einem SS34-Rotor (Sorvall) gefällt. Die DNA wurde in 1 ml TE-Puffer gelöst, der 20 μg/ml RNase A enthielt, und für mindestens 3 Std. bei 4°C gegen 1000 ml TE-Puffer dialysiert. Während dieser Zeit wurde der Puffer 3mal ausgetauscht. Zu Aliquots von 0,4 ml der dialysierten DNA-Lösung wurden 0,4 ml 2 M LiCl und 0,8 ml Ethanol zugegeben. Nach 30 min Inkubation bei -20°C wurde die DNA durch Zentrifugation gesammelt (13000 U/min, Biofuge Fresco, Heraeus, Hanau, Deutschland). Das DNA-Pellet wurde in TE-Puffer gelöst. Durch dieses Verfahren hergestellte DNA konnte für alle Zwecke verwendet werden, einschließlich Southern-Blotting oder zur Konstruktion genomischer Banken.(Difco), 10 ml / 1 trace element mixture (200 mg / 1 FeS0 4 • H0, 10 mg / 1 ZnS0 4 • 7 H 2 0, 3 mg / 1 MnCl 2 • 4 H 2 0, 30 mg / 1 H 3 B0 3 , 20 mg / 1 CoCl 2 • 6 H 2 0, 1 mg / 1 NiCl 2 • 6 H 2 0, 3 mg / 1 Na 2 Mo0 4 • 2 H 2 0, 500 mg / 1 complexing agent (EDTA or Citric acid), 100 ml / 1 vitamin mixture (0.2 ml / 1 biotin, 0.2 mg / 1 folic acid, 20 mg / 1 p-aminobenzoic acid, 20 mg / 1 riboflavin, 40 mg / 1 Ca-panthothenate, 140 mg / 1 nicotinic acid, 40 mg / 1 pyridoxol hydrochloride, 200 mg / 1 myoinositol) Lysozyme was added to the suspension in a final concentration of 2.5 mg / ml. After about 4 hours of incubation at 37 ° C., the cell wall was broken down and the protoplasts obtained were harvested by centrifugation and the pellet was washed once with 5 ml of buffer I and once with 5 ml of TE buffer (10 mM Tris-HCl, 1 M EDTA, pH 8) ml of TE buffer was resuspended, and 0.5 ml of SDS solution (10%) and 0.5 ml of NaCl solution (5 M) were added With a final concentration of 200 μg / ml, the suspension was incubated at 37 ° C. for about 18 hours. The DNA was purified by extraction with phenol, phenol-chloroform-isoayl alcohol and chloroform-isoamyl alcohol using standard procedures. Then the DNA was precipitated by adding 1/50 volume of 3 M sodium acetate and 2 volumes of ethanol, followed by incubation for 30 min at -20 ° C and 30 min centrifugation at 12000 rpm in a high-speed centrifuge with an SS34 rotor (Sorvall) , The DNA was dissolved in 1 ml of TE buffer containing 20 μg / ml RNase A and dialyzed against 1000 ml of TE buffer at 4 ° C. for at least 3 hours. During this time the buffer was exchanged 3 times. 0.4 ml of 2 M LiCl and 0.8 ml of ethanol were added to 0.4 ml aliquots of the dialyzed DNA solution. After 30 min incubation at -20 ° C, the DNA was collected by centrifugation (13000 rpm, Biofuge Fresco, Heraeus, Hanau, Germany). The DNA pellet was dissolved in TE buffer. DNA produced by this method could be used for all purposes used, including Southern blotting or to construct genomic libraries.
Beispiel 2 : Konstruktion genomischer Corynebacterium glutamicum (ATCC13032) -Banken in Escherichia coliExample 2: Construction of genomic Corynebacterium glutamicum (ATCC13032) banks in Escherichia coli
Ausgehend von DNA, hergestellt wie in Beispiel 1 beschrieben, wurden gemäß bekannter und gut eingeführter Verfahren (siehe bspw. Sambrook, J. et al. (1989) "Molecular Cloning: A Laboratory Manual". Cold Spring Harbor Laboratory Press oder Ausubel, F.M. et al. (1994) "Current Protocols in Molecular Biology", John Wi- ley & Sons) Cosmid- und Plas id-Banken hergestellt.Starting from DNA, prepared as described in Example 1, "Molecular Cloning: A Laboratory Manual" was used according to known and well-established methods (see, for example, Sambrook, J. et al. (1989). Cold Spring Harbor Laboratory Press or Ausubel, FM et al. (1994) "Current Protocols in Molecular Biology", John Willey & Sons) Cosmid and Plas id banks.
Es ließ sich jedes Plasmid oder Cosmid einsetzen. Besondere Ver- wendung fanden die Plasmide pBR322 (Sutcliffe, J.G. (1979) Proc. Natl Acad. Sei. USA, 75: 3737-3741); pACYCl77 (Change & Cohen (1978) J. Bacteriol. 134: 1141-1156); Plasmide der pBS-Reihe (pBSSK+, pBSSK- und andere; Stratagene, LaJolla, USA) oder Cos ide, wie SuperCosl (Stratagene, LaJolla, USA) oder Lorist6 (Gibson, T.J. Rosenthal, A. , und Waterson, R.H. (1987) Gene 53: 283-286.Any plasmid or cosmid could be used. The plasmids pBR322 (Sutcliffe, J.G. (1979) Proc. Natl Acad. Sci. USA, 75: 3737-3741) were used in particular; pACYCl77 (Change & Cohen (1978) J. Bacteriol. 134: 1141-1156); Plasmids of the pBS series (pBSSK +, pBSSK- and others; Stratagene, LaJolla, USA) or Cos ide, such as SuperCosl (Stratagene, LaJolla, USA) or Lorist6 (Gibson, TJ Rosenthal, A., and Waterson, RH (1987) Gene 53: 283-286.
Beispiel 3 : DNA-Sequenzierung und Computer-FunktionsanalyseExample 3: DNA sequencing and computer function analysis
Genomische Banken, wie in Beispiel 2 beschrieben, wurden zur DNA- Sequenzierung gemäß Standard-Verfahren, insbesondere dem Kette- nabbruchverfahren mit ABI377-Sequenziermaschinen (s. z.B. Flei- schman, R.D. et al . (1995) "Whole-geno e Random Sequencing and Asse bly of Haemophilus Influenzae Rd. , Science 269; 496-512) verwendet. Die Sequenzierprimer mit den folgenden Nukleotidsequenzen wurden verwendet: 5 ' -GGAAACAGTATGACCATG-3 ' oder 5 ' -GTAAAACGACGGCCAGT-3 ' .Genomic banks, as described in Example 2, were used for DNA sequencing according to standard methods, in particular the chain termination method with ABI377 sequencing machines (see, for example, Fleischman, RD et al. (1995) "Whole-geno e Random Sequencing and Asse bly of Haemophilus Influenzae Rd., Science 269; 496-512) The sequencing primers with the following nucleotide sequences were used: 5 '-GGAAACAGTATGACCATG-3' or 5 '-GTAAAACGACGGCCAGT-3'.
Beispiel 4: In-vivo-MutageneseExample 4: In Vivo Mutagenesis
In vivo-Mutagenese von Corynebacterium glutamicum kann durchgeführt werden, indem eine Plasmid- (oder andere Vektor-) DNA durch E. coli oder andere Mikroorganismen (z.B. Bacillus spp. oder Hefen, wie Saccharomyces cerevisiae) geleitet wird, die die nte- grität ihrer genetischen Information nicht aufrechterhalten können. Übliche Mutatorstämme weisen Mutationen in den Genen für das DNA-ReparaturSystem auf (z.B., utHLS, mutD, mutT, usw., zum Vergleich siehe Rupp, W.D. (1996) DNA repair mechanisms in Escherichia coli and Salmonella, S. 2277-2294, ASM: Washington) . Diese Stämme sind dem Fachmann bekannt. Die Verwendung dieser Stämme ist bspw. in Greener, A. und Callahan, M. (1994) Strategies 7; 32-34 veranschaulicht.In vivo mutagenesis of Corynebacterium glutamicum can be carried out by passing a plasmid (or other vector) DNA through E. coli or other microorganisms (eg Bacillus spp. Or yeasts such as Saccharomyces cerevisiae) which reduce the integrity of their cannot maintain genetic information. Usual mutator strains have mutations in the genes for the DNA repair system (e.g., utHLS, mutD, mutT, etc., for comparison see Rupp, WD (1996) DNA repair mechanisms in Escherichia coli and Salmonella, pp. 2277-2294, ASM : Washington). These strains are known to the person skilled in the art. The use of these strains is, for example, in Greener, A. and Callahan, M. (1994) Strategies 7; 32-34 illustrates.
Beispiel 5: DNA-Transfer zwischen Escherichia coli und Corynebac- terium glutamicumExample 5: DNA transfer between Escherichia coli and Corynebacterium glutamicum
Mehrere Corynebacterium- und Brevibacierium-Arten enthalten endogene Plasmide (wie bspw. pHM1519 oder pBLl) die autonom replizieren (für einen Überblick siehe bspw. Martin, J.F. et al. (1987) Biotechnology 5: 137-146). Shuttle-Vektoren für Escherichia coli und Corynebacterium glutamicum lassen sich leicht mittels Standard-Vektoren für E. coli konstruieren (Sambrook, J. et al., (1989), "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press oder Ausubel, F.M. et al. (1994) "Current Protocols in Molecular Biology", John Wiley & Sons), denen ein Replikationsursprung für und ein geeigneter Marker aus Corynebacterium glutamicum beigegeben wird. Solche Replikationsursprünge werden vorzugsweise von endogenen Plasmiden entnommen, die aus Corynebacterium- und Brevibactertium-Arten isoliert worden sind. Besondere Verwendung als Transformationsmarker für diese Arten sind Gene für Kanamycin-Resistenz (wie solche, die vom Tn5- oder Tn-903-Transposon stammen) oder für Chloramphenicol (Winnacker, E.L. (1987) "From Genes to Clones - Introduction to Gene Technology, VCH, Weinheim) . Es gibt zahlreiche Beispiele in der Litera- tur zur Herstellung einer großen Vielzahl von Shuttle-Vektoren, die in E. coli und C. glutamicum repliziert werden, und die für verschiedene Zwecke verwendet werden können, einschließlich Gen- Überexpression (siehe bspw. Yoshihama, M. et al. (1985) J. Bacteriol. 162: 591-597, Martin, J.F. et al . , (1987) Biotechnology, 5: 137-146 und Eikmanns, B.J. et al. (1992) Gene 102: 93-98) .Several Corynebacterium and Brevibacierium species contain endogenous plasmids (such as pHM1519 or pBLl) that replicate autonomously (for an overview see, for example, Martin, J.F. et al. (1987) Biotechnology 5: 137-146). Shuttle vectors for Escherichia coli and Corynebacterium glutamicum can easily be constructed using standard vectors for E. coli (Sambrook, J. et al., (1989), "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press or Ausubel , FM et al. (1994) "Current Protocols in Molecular Biology", John Wiley & Sons), to which an origin of replication for and a suitable marker from Corynebacterium glutamicum is added. Such origins of replication are preferably taken from endogenous plasmids isolated from Corynebacterium and Brevibactertium species. Particular uses as transformation markers for these species are genes for kanamycin resistance (such as those derived from the Tn5 or Tn-903 transposon) or for chloramphenicol (Winnacker, EL (1987) "From Genes to Clones - Introduction to Gene Technology, VCH, Weinheim) There are numerous examples in the literature for the production of a wide variety of shuttle vectors which are replicated in E. coli and C. glutamicum and which can be used for various purposes, including gene overexpression ( see, e.g., Yoshihama, M. et al. (1985) J. Bacteriol. 162: 591-597, Martin, JF et al., (1987) Biotechnology, 5: 137-146 and Eikmanns, BJ et al. (1992) Gene 102: 93-98).
Mittels Standard-Verfahren ist es möglich, ein Gen von Interesse in einen der vorstehend beschriebenen Shuttle-Vektoren zu klonie- ren und solche Hybrid-Vektoren in Corynebacterium glutamicum- Stämme einzubringen. Die Transformation von C. glutamicum läßt sich durch Protoplastentransformation (Kastsumata, R. et al., (1984) J. Bacteriol. 159, 306-311), Elektroporation (Liebl, E. et al., (1989) FEMS Microbiol . Letters, 53: 399-303) und in Fällen, bei denen spezielle Vektoren verwendet werden, auch durch Konjugation erzielen (wie z.B. beschrieben in Schäfer, A. , et (1990) J. Bacteriol. 172: 1663-1666). Es ist ebenfalls möglich, die Shuttle-Vektoren für C. glutamicum auf E. coli zu übertragen, indem Plasmid-DNA aus C. glutamicum (mittels im Fachgebiet bekann- ter Standard-Verfahren) präpariert wird und in E. coli transformiert wird. Dieser Transformationsschritt kann mit Standard-Verfahren erfolgen, jedoch wird vorteilhafterweise ein Mcr-defizien- ter E. coli-Stamm verwendet, wie NM522 (Gough & Murray (1983) J. Mol. Biol. 166: 1-19).Using standard methods, it is possible to clone a gene of interest into one of the shuttle vectors described above and to introduce such hybrid vectors into Corynebacterium glutamicum strains. The transformation of C. glutamicum can be carried out by protoplast transformation (Kastsumata, R. et al., (1984) J. Bacteriol. 159, 306-311), electroporation (Liebl, E. et al., (1989) FEMS Microbiol. Letters , 53: 399-303) and, in cases where special vectors are used, can also be achieved by conjugation (as described, for example, in Schaefer, A., et (1990) J. Bacteriol. 172: 1663-1666). It is also possible to transfer the shuttle vectors for C. glutamicum to E. coli by preparing plasmid DNA from C. glutamicum (using standard methods known in the art) and transforming it into E. coli. This transformation step can be carried out using standard methods, but an Mcr deficit is advantageously the E. coli strain was used, such as NM522 (Gough & Murray (1983) J. Mol. Biol. 166: 1-19).
Beispiel 6 : Bestimmung der Expression des mutierten ProteinsExample 6: Determination of expression of the mutant protein
Die Beobachtungen der Aktivität eines mutierten Proteins in einer transformierten Wirtszelle beruhen auf der Tatsache, daß das mutierte Protein auf ähnliche Weise und in ähnlicher Menge exprimiert wird wie das Wildtyp-Protein. Ein geeignetes Verfahren zur Bestimmung der Transkriptionsmenge des mutierten Gens (ein Anzeichen für die mRNA-Menge, die für die Translation des Genprodukts verfügbar ist) ist die Durchführung eines Northern-Blots (s. bspw. Ausubel et al., (1988) Current Protocols in Molecular Biology, Wiley: New York) , wobei ein Primer, der so ausgestaltet ist, daß er an das Gen von Interesse bindet, mit einer nachweisbaren (gewöhnlich radioaktiven oder chemilumineszierenden) Markierung versehen wird, so daß - wenn die Gesamt-RNA einer Kultur des Organismus extrahiert, auf einem Gel aufgetrennt, auf eine stabile Matrix übertragen und mit dieser Sonde inkubiert wird - die Bindung und die Quantität der Bindung der Sonde das Vorliegen und auch die Menge von mRNA für dieses Gen anzeigt. Diese Information ist ein Nachweis für das Ausmaß der Transkription des mutierten Gens . Gesamt-Zell-RNA läßt sich durch verschiedene Verfahren aus Corynebacterium glutamicum isolieren, die im Fachge- biet bekannt sind, wie beschrieben in Bormann, E.R. et al., (1992) Mol. Microbiol. 6: 317-326.The observations of the activity of a mutant protein in a transformed host cell are based on the fact that the mutant protein is expressed in a similar manner and in a similar amount as the wild-type protein. A suitable method for determining the amount of transcription of the mutated gene (an indication of the amount of mRNA available for the translation of the gene product) is to carry out a Northern blot (see, for example, Ausubel et al., (1988) Current Protocols in Molecular Biology, Wiley: New York), wherein a primer that is designed to bind to the gene of interest is provided with a detectable (usually radioactive or chemiluminescent) label so that - if the total RNA is one Culture of the organism extracted, separated on a gel, transferred to a stable matrix and incubated with this probe - the binding and the quantity of binding of the probe indicates the presence and also the amount of mRNA for this gene. This information is evidence of the extent of transcription of the mutant gene. Total cell RNA can be isolated from Corynebacterium glutamicum by various methods known in the art, as described in Bormann, E.R. et al., (1992) Mol. Microbiol. 6: 317-326.
Zur Bestimmung des Vorliegens oder der relativen Menge von Protein, das aus dieser mRNA translatiert wird, können Standard- Techniken, wie Western-Blot, eingesetzt werden (s. bspw. Ausubel et al. (1988) "Current Protocols in Molecular Biology", Wiley, New York) . Bei diesem Verfahren werden Gesamt-Zellproteine extrahiert, durch Gelelektrophorese getrennt, auf eine Matrix, wie Ni- trocellulose, übertragen und mit einer Sonde, wie einem Antikör- per, inkubiert, die an das gewünschte Protein spezifisch bindet. Diese Sonde ist gewöhnlich mit einer chemilumineszierenden oder kolorimetrischen Markierung versehen, die sich leicht nachweisen läßt . Das Vorliegen und die beobachtete Menge an Markierung zeigt das Vorliegen und die Menge des gesuchten Mutantenproteins in der Zelle an.Standard techniques, such as Western blot, can be used to determine the presence or the relative amount of protein that is translated from this mRNA (see, for example, Ausubel et al. (1988) "Current Protocols in Molecular Biology", Wiley, New York). In this method, total cell proteins are extracted, separated by gel electrophoresis, transferred to a matrix, such as nitrocellulose, and incubated with a probe, such as an antibody, which specifically binds to the desired protein. This probe is usually provided with a chemiluminescent or colorimetric label that is easy to detect. The presence and amount of label observed indicates the presence and amount of the mutant protein sought in the cell.
Beispiel 7 : Wachstum von genetisch verändertem Corynebacterium glutamicum - Medien und AnzuchtbedingungenExample 7: Growth of genetically modified Corynebacterium glutamicum media and growing conditions
Genetisch veränderte Corynebakterien werden in synthetischen oder natürlichen Wachstumsmedien gezüchtet. Eine Anzahl unterschiedlicher Wachstumsmedien für Corynebakteri n sind bekannt und leicht erhältlich (Lieb et al. (1989) Appl. Microbiol. Biotechnol. 32: 205-210; von der Osten et al. (1998) Biotechnology Letters 11: 11-16; Patent DE 4 120 867; Liebl (1992) "The Genus Corynebacterium", in: The Procaryotes, Bd. II, Balows, A., et al . , Hrsg. Springer-Verlag). Diese Medien bestehen aus einer oder mehreren Kohlenstoffquellen, Stickstoffquellen, anorganischen Salzen, Vitaminen und Spurenelementen. Bevorzugte Kohlenstoffquellen sind Zucker, wie Mono-, Di- oder Polysaccharide . Sehr gute Kohlenstoffquellen sind bspw. Glucose, Fructose, Mannose, Galactose, Ribose, Sorbose, Ribulose, Lactose, Maltose, Saccharose, Raffinose, Stärke oder Cellulose. Man kann Zucker auch über komplexe Verbindungen, wie Melassen, oder andere Nebenprodukte aus der Zucker-Raffinierung zu den Medien geben. Es kann auch vorteilhaft sein, Gemische verschiedener Kohlenstoffquellen zuzu- geben. Andere mögliche Kohlenstoffquellen sind Alkohole und organische Säuren, wie Methanol, Ethanol, Essigsäure oder Milchsäure. Stickstoffquellen sind gewöhnlich organische oder anorganische Stickstoffverbindungen oder Materialien, die diese Verbindungen enthalten. Beispielhafte Stickstoffquellen umfassen Ammoniak-Gas oder Ammoniumsalze, wie NH4CI oder (NH4) Sθ4, NH4OH, Nitrate,Genetically modified Corynebacteria are grown in synthetic or natural growth media. A number of different growth media for Corynebacteri n are known and easy available (Lieb et al. (1989) Appl. Microbiol. Biotechnol. 32: 205-210; von der Osten et al. (1998) Biotechnology Letters 11: 11-16; Patent DE 4 120 867; Liebl (1992) "The Genus Corynebacterium ", in: The Procaryotes, Vol. II, Balows, A., et al., Ed. Springer-Verlag). These media consist of one or more carbon sources, nitrogen sources, inorganic salts, vitamins and trace elements. Preferred carbon sources are sugars, such as mono-, di- or polysaccharides. Very good carbon sources are, for example, glucose, fructose, mannose, galactose, ribose, sorbose, ribulose, lactose, maltose, sucrose, raffinose, starch or cellulose. Sugar can also be added to the media via complex compounds such as molasses or other by-products from sugar refining. It can also be advantageous to add mixtures of different carbon sources. Other possible carbon sources are alcohols and organic acids such as methanol, ethanol, acetic acid or lactic acid. Nitrogen sources are usually organic or inorganic nitrogen compounds or materials containing these compounds. Exemplary nitrogen sources include ammonia gas or ammonium salts, such as NH 4 CI or (NH 4 ) SO 4 , NH 4 OH, nitrates,
Harnstoff, Aminosäuren oder komplexe Stickstoffquellen, wie Maisquellwasser, Sojamehl, Sojaprotein, Hefeextrakte, Fleischextrakte und andere.Urea, amino acids or complex nitrogen sources such as corn steep liquor, soy flour, soy protein, yeast extracts, meat extracts and others.
Anorganische SalzVerbindungen, die in den Medien enthalten sein können, umfassen die Chlorid-, Phosphor-, oder Sulfatsalze von Calcium, Magnesium, Natrium, Kobalt, Molybdän, Kalium, Mangan, Zink, Kupfer und Eisen. Chelatbildner können zum Medium gegeben werden, um die Metallionen in Lösung zu halten. Besonders geei- gnete Chelatbildner umfassen Dihydroxyphenole, wie Catechol oder Protocatechuat oder organische Säuren, wie Citronensäure. Die Medien enthalten üblicherweise auch andere Wachstumsfaktoren, wie Vitamine oder Wachstumsförderer, zu denen bspw. Biotin, Ribofla- vin, Thiamin, Folsäure, Nikotinsäure, Panthothenat und Pyridoxin gehören. Wachstumsfaktoren und Salze stammen häufig von komplexen Medienkomponenten, wie Hefeextrakt, Melassen, Maisquellwasser und dergleichen. Die genaue Zusammensetzung der Medienverbindungen hängt stark vom jeweiligen Experiment ab und wird für jeden Fall individuell entschieden. Information über die Medienoptimierung ist erhältlich aus dem Lehrbuch "Applied Microbiol. Physiology, A Practical Approach" (Hrsg. P.M. Rhodes, P.F. Stanbury, IRL Press (1997) S. 53-73, ISBN 0 19 963577 3). Wachstumsmedien lassen sich auch von kommerziellen Anbietern beziehen, wie Standard 1 (Merck) oder BHI (Brain heart infusion, DIFCO) und dergleichen. Sämtliche Medienkomponenten sind sterilisiert, entweder durch Hitze (20 min bei 1,5 bar und 121°C) oder durch Sterilfiltration. Die Komponenten können entweder zusammen oder nötigenfalls getrennt sterilisiert werden. Sämtliche Medienkomponenten können zu Beginn der Anzucht zugegen sein oder wahlfrei kontinuierlich oder chargenweise hinzugegeben werden.Inorganic salt compounds that may be included in the media include the chloride, phosphorus, or sulfate salts of calcium, magnesium, sodium, cobalt, molybdenum, potassium, manganese, zinc, copper and iron. Chelating agents can be added to the medium to keep the metal ions in solution. Particularly suitable chelating agents include dihydroxyphenols such as catechol or protocatechuate or organic acids such as citric acid. The media usually also contain other growth factors, such as vitamins or growth promoters, which include, for example, biotin, riboflavin, thiamine, folic acid, nicotinic acid, panthothenate and pyridoxine. Growth factors and salts often come from complex media components such as yeast extract, molasses, corn steep liquor and the like. The exact composition of the media connections depends heavily on the respective experiment and is decided individually for each case. Information about media optimization is available from the textbook "Applied Microbiol. Physiology, A Practical Approach" (Ed. PM Rhodes, PF Stanbury, IRL Press (1997) pp. 53-73, ISBN 0 19 963577 3). Growth media can also be obtained from commercial suppliers, such as Standard 1 (Merck) or BHI (Brain heart infusion, DIFCO) and the like. All media components are sterilized, either by heat (20 min at 1.5 bar and 121 ° C) or by sterile filtration. The components can be sterilized either together or, if necessary, separately. All media components can be present at the beginning of the cultivation or can be added continuously or in batches.
Die Anzuchtbedingungen werden für jedes Experiment gesondert definiert. Die Temperatur sollte zwischen 15°C und 45°C liegen und kann während des Experimentes konstant gehalten oder verändert werden. Der pH-Wert des Mediums sollte im Bereich von 5 bis 8,5, vorzugsweise um 7,0 liegen, und kann durch Zugabe von Puffern zu den Medien aufrechterhalten werden. Ein beispielhafter Puffer für diesen Zweck ist ein Kaliumphosphatpuffer. Synthetische Puffer, wie MOPS, HEPES; ACES usw., können alternativ oder gleichzeitig verwendet werden. Der Anzucht-pH-Wert läßt sich während der Anzucht auch durch Zugabe von NaOH oder NH4OH konstant halten. Werden komplexe Medienkomponenten, wie Hefe-Extrakt verwendet, sinkt der Bedarf an zusätzlichen Puffern, da viele komplexe Verbindun- gen eine hohe Pufferkapazität aufweisen. Beim Einsatz eines Fermenters für die Anzucht von Mikroorganismen kann der pH-Wert auch mit gasförmigem Ammoniak reguliert werden.The growing conditions are defined separately for each experiment. The temperature should be between 15 ° C and 45 ° C and can be kept constant or changed during the experiment. The pH of the medium should be in the range of 5 to 8.5, preferably around 7.0, and can be maintained by adding buffers to the media. An exemplary buffer for this purpose is a potassium phosphate buffer. Synthetic buffers such as MOPS, HEPES; ACES etc. can be used alternatively or simultaneously. The cultivation pH can also be kept constant during the cultivation by adding NaOH or NH 4 OH. If complex media components, such as yeast extract, are used, the need for additional buffers is reduced, since many complex compounds have a high buffer capacity. When using a fermenter for the cultivation of microorganisms, the pH value can also be regulated with gaseous ammonia.
Die Inkubationsdauer liegt gewöhnlich in einem Bereich von mehre- ren Stunden bis zu mehreren Tagen. Diese Zeit wird so ausgewählt, daß sich die maximale Menge Produkt in der Brühe ansammelt. Die offenbarten Wachstumsexperimente können in einer Vielzahl von Behältern, wie Mikrotiterplatten, Glasröhrchen, Glaskolben oder Glas- oder Metallfermentern unterschiedlicher Größen durchgeführt werden. Zum Screening einer großen Anzahl von Klonen sollten die Mikroorganismen in Mikrotiterplatten, Glasröhrchen oder Schüttelkolben entweder mit oder ohne Schikanen gezüchtet werden. Vorzugsweise werden 100-ml-Schüttelkolben verwendet, die mit 10% (bezogen auf das Volumen) des erforderlichen Wachstumsmediums ge- füllt sind. Die Kolben sollten auf einem Kreiselschüttler (Amplitude 25 mm) mit einer Geschwindigkeit im Bereich von 100-300 U/ min geschüttelt werden. Verdampfungsverluste können durch Aufrechterhalten einer feuchten Atmosphäre verringert werden; alternativ sollte für die Verdampfungsverluste eine mathematische Kor- rektur durchgeführt werden.The incubation period is usually in the range of several hours to several days. This time is selected so that the maximum amount of product accumulates in the broth. The disclosed growth experiments can be carried out in a variety of containers, such as microtiter plates, glass tubes, glass flasks or glass or metal fermenters of different sizes. To screen a large number of clones, the microorganisms should be grown in microtiter plates, glass tubes or shake flasks with or without baffles. Preferably 100 ml shake flasks are used, which are filled with 10% (by volume) of the required growth medium. The flasks should be shaken on a rotary shaker (amplitude 25 mm) at a speed in the range of 100-300 rpm. Evaporation losses can be reduced by maintaining a humid atmosphere; alternatively, a mathematical correction should be carried out for the evaporation losses.
Werden genetisch modifizierte Klone untersucht, sollten auch ein unmodifizierter Kontrollklon oder ein Kontrollklon getestet werden, der das Basisplasmid ohne Insertion enthält. Das Medium wird auf eine ODeoo von 0,5 - 1,5 angeimpft, wobei Zellen verwendet werden, die auf Agarplatten gezüchtet wurden, wie CM-Platten (10 g/1 Glucose, 2,5 g/1 NaCl, 2 g/1 Harnstoff, 10 g/1 Polypepton, 5 g/1 Hefeextrakt, 5 g/1 Fleischextrakt, 22 g/1 Agar pH-Wert 6,8 mit 2 M NaOH) , die bei 30°C inkubiert worden sind. Das Animpfen der Medien erfolgt entweder durch Einbringen einer Kochsalzlösung von C. glutamicum-Zellen von CM-Platten oder durch Zugabe einer flüssigen Vorkultur dieses Bakteriums.If genetically modified clones are examined, an unmodified control clone or a control clone which contains the base plasmid without insertion should also be tested. The medium is inoculated to an ODeoo of 0.5-1.5 using cells grown on agar plates, such as CM plates (10 g / 1 glucose, 2.5 g / 1 NaCl, 2 g / 1 Urea, 10 g / 1 polypeptone, 5 g / 1 yeast extract, 5 g / 1 meat extract, 22 g / 1 agar pH 6.8 with 2 M NaOH), which have been incubated at 30 ° C. The inoculation of the media is carried out either by introducing a saline solution of C. glutamicum cells from CM plates or by adding a liquid preculture of this bacterium.
Beispiel 8 : In-vitro-Analyse der Funktion imitierter ProteineExample 8: In vitro analysis of the function of imitated proteins
Die Bestimmung der Aktivitäten und kinetischen Parameter von En- zymen ist im Fachgebiet gut bekannt. Experimente zur Bestimmung der Aktivität eines bestimmten veränderten Enzyms müssen an die spezifische Aktivität des Wildtypenzyms angepaßt werden, was innerhalb der Fähigkeiten des Fachmann liegt. Überblicke über Enzyme im Allgemeinen sowie spezifische Einzelheiten, die die Struktur, Kinetiken, Prinzipien, Verfahren, Anwendungen und Beispiele zur Bestimmung vieler Enzymaktivitäten betreffen, können bspw. in den nachstehenden Literaturstellen gefunden werden: Di- xon, M. , und Webb, E.C: (1979) Enzymes, Longmans, London; Fersht (1985) Enzyme Structure and Mechanism, Freeman, New York; Walsh (1979) Enzymatic Reaction Mechanisms. Freeman, San Francisco; Price, N.C., Stevens, L. (1982) Fundamentals of Enzymology. Oxford Univ. Press: Oxford; Boyer, P.D: Hrsg. (1983) The Enzymes, 3. Aufl. Academic Press, New York; Bisswanger, H. (1994) Enzymkinetik, 2. Aufl. VCH, Weinheim (ISBN 3527300325); Berg- meyer, H.U., Bergmeyer, J., Graßl, M. Hrsg. (1983-1986) Methods of Enzymatic Analysis, 3. Aufl. Bd. I-XII, Verlag Chemie: Weinheim; und Ullmann's Encyclopedia of Industrial Chemistry (1987) Bd. A9, "Enzymes", VCH, Weinheim, S. 352-363.Determining the activities and kinetic parameters of enzymes is well known in the art. Experiments to determine the activity of a particular altered enzyme must be adapted to the specific activity of the wild-type enzyme, which is within the ability of the person skilled in the art. Overviews of enzymes in general as well as specific details relating to the structure, kinetics, principles, processes, applications and examples for determining many enzyme activities can be found, for example, in the following literature references: Dixon, M., and Webb, EC: (1979) Enzymes, Longmans, London; Fersht (1985) Enzyme Structure and Mechanism, Freeman, New York; Walsh (1979) Enzymatic Reaction Mechanisms. Freeman, San Francisco; Price, N.C., Stevens, L. (1982) Fundamentals of Enzymology. Oxford Univ. Press: Oxford; Boyer, P.D: Ed. (1983) The Enzymes, 3rd Edition Academic Press, New York; Bisswanger, H. (1994) Enzyme Kinetics, 2nd Edition VCH, Weinheim (ISBN 3527300325); Bergmeyer, H.U., Bergmeyer, J., Graßl, M. Ed. (1983-1986) Methods of Enzymatic Analysis, 3rd edition Vol. I-XII, Verlag Chemie: Weinheim; and Ullmann's Encyclopedia of Industrial Chemistry (1987) Vol. A9, "Enzymes", VCH, Weinheim, pp. 352-363.
Die Aktivität von Proteinen, die an DNA binden, kann durch viele gut eingeführte Verfahren gemessen werden, wie DNA-Banden-Shift- Assays (die auch als Gelretardations-Assays bezeichnet werden) . Die Wirkung dieser Proteine auf die Expression anderer Moleküle kann mit Reportergenassays (wie beschrieben in Kolmar, H. et al., (1995) EMBO J. 14: 3895-3904 und den darin zitierten Literaturstellen) gemessen werden. Reportergen-Testsysteme sind wohlbekannt und für Anwendungen in pro- und eukaryotischen Zellen etabliert, wobei Enzyme, wie beta-Galactosidase, Grün-Fluoreszenz- Protein und mehrere andere verwendet werden.The activity of proteins that bind to DNA can be measured by many well-established methods, such as DNA band shift assays (also referred to as gel retardation assays). The effect of these proteins on the expression of other molecules can be measured using reporter gene assays (as described in Kolmar, H. et al., (1995) EMBO J. 14: 3895-3904 and the references cited therein). Reporter gene test systems are well known and established for use in pro- and eukaryotic cells using enzymes such as beta-galactosidase, green fluorescent protein and several others.
Die Bestimmung der Aktivität von Membran-Transportproteinen kann gemäß den Techniken, wie beschrieben in Gennis, R.B. (1989) "Po- res, Channels and Transporters", in Biomembranes, Molecular Structure and Function, Springer: Heidelberg, S. 85-137; 199-234; und 270-322, erfolgen. Beispiel 9 : Analyse des Einflusses von mutiertem Protein auf die Produktion des gewünschten ProduktesThe activity of membrane transport proteins can be determined according to the techniques as described in Gennis, RB (1989) "Pores, Channels and Transporters", in Biomembranes, Molecular Structure and Function, Springer: Heidelberg, pp. 85-137; 199-234; and 270-322. Example 9: Analysis of the influence of mutated protein on the production of the desired product
Die Wirkung der genetischen Modifikation in C. glutamicum auf die Produktion einer gewünschten Verbindung (wie einer Aminosäure) kann bestimmt werden, indem die modifizierten Mikroorganismen unter geeigneten Bedingungen (wie solchen, die vorstehend beschrieben sind) gezüchtet werden und das Medium und/oder die zellulären Komponenten auf die erhöhte Produktion des gewünschten Produktes (d.h. einer Aminosäure) untersucht wird. Solche Analysetechniken sind dem Fachmann wohlbekannt und umfassen Spektroskopie, Dünnschichtchromatographie, Färbeverfahren verschiedener Art, enzy a- tische und mikrobiologische Verfahren sowie analytische Chromatographie, wie Hochleistungs-Flüssigkeitschromatographie (s. bspw. Ullman, Encyclopedia of Industrial Chemistry, Bd. A2, S. 89-90 und S. 443-613, VCH: Weinheim (1985); Fallon, A. , et al., (1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemistry and Molecular Biology, Bd. 17; Reh et al. (1993) Biotechnology, Bd. 3, Kapitel III: "Product recovery and purification" , S. 469-714, VCH: Weinheim; Belter, P.A. et al. (1988) Bioseparations: downstream processing for Biotechnology, John Wiley and Sons; Kennedy, J.F. und Cabral, J.M.S. (1992) Recovery processes for biological Materials, John Wiley and Sons; Shaeiwitz, J.A. und Henry, J.D. (1988) Biochemical Separations, in Ulimann's Encyclopedia of Industrial Chemistry, Bd. B3; Kapitel 11, S. 1-27, VCH: Weinheim; und Dechow, F.J. (1989) Separation and purification techniques in biotechnology, Noyes Publica- tions) .The effect of the genetic modification in C. glutamicum on the production of a desired compound (such as an amino acid) can be determined by growing the modified microorganisms under suitable conditions (such as those described above) and the medium and / or the cellular Components for the increased production of the desired product (ie an amino acid) is examined. Such analysis techniques are well known to the person skilled in the art and include spectroscopy, thin-layer chromatography, staining methods of various types, enzymatic and microbiological methods and analytical chromatography, such as high-performance liquid chromatography (see, for example, Ullman, Encyclopedia of Industrial Chemistry, Vol. A2, p. 89) -90 and pp. 443-613, VCH: Weinheim (1985); Fallon, A., et al., (1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 17; Reh et al. (1993) Biotechnology, Vol. 3, Chapter III: "Product recovery and purification", pp. 469-714, VCH: Weinheim; Belter, PA et al. (1988) Bioseparations: downstream processing for Biotechnology, John Wiley and Sons; Kennedy, JF and Cabral, JMS (1992) Recovery processes for biological Materials, John Wiley and Sons; Shaeiwitz, JA and Henry, JD (1988) Biochemical Separations, in Ulimann's Encyclopedia of Industrial Chemistry, Vol. B3; Chapter 11 , Pp. 1-27, VC H: Weinheim; and Dechow, F.J. (1989) Separation and purification techniques in biotechnology, Noyes Publications).
Zusätzlich zur Messung des Fermentationsendproduktes ist es ebenfalls möglich, andere Komponenten der Stoffwechselwege zu analysieren, die zur Produktion der gewünschten Verbindung verwendet werden, wie Zwischen- und Nebenprodukte, um die Gesamt-Produkti- vität des Organismus, die Ausbeute und/oder die Effizienz der Produktion der Verbindung zu bestimmen. Die Analyseverfahren umfassen Messungen der Nährstoffmengen im Medium (bspw. Zucker, Kohlenwasserstoffe, Stickstoffquellen, Phosphat und andere Ionen) , Messungen der Biomassezusammensetzung und des Wachstums, Analyse der Produktion gewöhnlicher Metabolite aus Biosynthesewe- gen und Messungen von Gasen, die während der Fermentation erzeugt werden. Standardverfahren für diese Messungen sind in Applied Mi- crobial Physiology; A Practical Approach, P.M. Rhodes und P.F. Stanbury, Hrsg. IRL Press, S. 103-129; 131-163 und 165-192 (ISBN: 0199635773) und den darin angegebenen Literaturstellen beschrie- ben. Beispiel 10: Reinigung des gewünschten Produktes aus einer C. glu- tamicum-KulturIn addition to measuring the final fermentation product, it is also possible to analyze other components of the metabolic pathways that are used to produce the desired compound, such as intermediates and by-products, to determine the overall productivity of the organism, the yield and / or the efficiency of the To determine production of the connection. The analysis methods include measurements of the amount of nutrients in the medium (e.g. sugar, hydrocarbons, nitrogen sources, phosphate and other ions), measurements of the biomass composition and growth, analysis of the production of common metabolites from biosynthetic pathways and measurements of gases that are produced during fermentation , Standard methods for these measurements are in Applied Microbial Physiology; A Practical Approach, PM Rhodes and PF Stanbury, ed. IRL Press, pp. 103-129; 131-163 and 165-192 (ISBN: 0199635773) and the literature references specified therein. Example 10: Purification of the desired product from a C. glutamicum culture
Die Gewinnung des gewünschten Produktes aus C. glutamicum-Zellen oder aus dem Überstand der vorstehend beschriebenen Kultur kann durch verschiedene, im Fachgebiet bekannte Verfahren erfolgen. Wird das gewünschte Produkt von den Zellen nicht sezerniert, können die Zellen aus der Kultur durch langsame Zentrifugation geerntet werden, die Zellen können durch Standard-Techniken, wie mechanische Kraft oder Ultrabeschallung, lysiert werden. Die Zelltrümmer werden durch Zentrifugation entfernt, und die Überstandsfraktion, die die löslichen Proteine enthält, wird zur weiteren Reinigung der gewünschten Verbindung erhalten. Wird das Produkt von den C. glutamicum-Zellen sezerniert, werden die Zel- len durch langsame Zentrifugation aus der Kultur entfernt, und die Überstandsfraktion wird zur weiteren Reinigung behalten.The desired product can be obtained from C. glutamicum cells or from the supernatant of the culture described above by various methods known in the art. If the desired product is not secreted by the cells, the cells can be harvested from the culture by slow centrifugation, the cells can be lysed by standard techniques such as mechanical force or ultrasound. The cell debris is removed by centrifugation and the supernatant fraction containing the soluble proteins is obtained for further purification of the desired compound. If the product is secreted by the C. glutamicum cells, the cells are removed from the culture by slow centrifugation and the supernatant fraction is kept for further purification.
Die Überstandsfraktion aus beiden Reinigungsverfahren wird einer Chromatographie mit einem geeigneten Harz unterworfen, wobei das gewünschte Molekül entweder auf dem Chromatographieharz zurückgehalten wird, viele Verunreinigungen in der Probe jedoch nicht, oder wobei die Verunreinigungen auf dem Harz zurückbleiben, die Probe hingegen nicht. Diese Chromatographieschritte können nötigenfalls wiederholt werden, wobei die gleichen oder andere Chro- matographieharze verwendet werden. Der Fachmann ist in der Auswahl der geeigneten Chromatographieharze und der wirksamsten Anwendung für ein bestimmtes, zu reinigendes Molekül bewandert. Das gereinigte Produkt kann durch Filtration oder Ultrafiltration konzentriert und bei einer Temperatur aufbewahrt werden, bei der die Stabilität des Produktes maximal ist.The supernatant fraction from both purification procedures is subjected to chromatography with an appropriate resin, either with the desired molecule retained on the chromatography resin but not with many contaminants in the sample, or with the contaminants remaining on the resin but not the sample. If necessary, these chromatography steps can be repeated using the same or different chromatography resins. The person skilled in the art is skilled in the selection of the suitable chromatography resins and the most effective application for a particular molecule to be purified. The purified product can be concentrated by filtration or ultrafiltration and kept at a temperature at which the stability of the product is maximum.
Im Fachgebiet sind viele Reinigungsverfahren bekannt, die nicht auf das vorhergehende Reinigungsverfahren eingeschränkt sind. Diese sind bspw. beschrieben in Bailey, J.E. & Ollis, D.F. Biochemical Engineering Fundamentals, McGraw-Hill: New York (1986) .Many cleaning methods are known in the art that are not limited to the previous cleaning method. These are described, for example, in Bailey, J.E. & Ollis, D.F. Biochemical Engineering Fundamentals, McGraw-Hill: New York (1986).
Die Identität und Reinheit der isolierten Verbindungen kann durch Standard-Techniken des Fachgebiets bestimmt werden. Diese umfas- sen Hochleistungs-Flüssigkeitschromatographie (HPLC) , spektroskopische Verfahren, Färbeverfahren, Dünnschichtchromatographie, NIRS, Enzymtest oder mikrobiologische Tests. Diese Analyseverfahren sind zusammengefaßt in: Patek et al. (1994) Appl. Environ. Microbiol. 60: 133-140; Malakhova et al . (1996) Biotekhnologiya 11: 27-32; und Schmidt et al. (1998) Bioprocess Engineer. 19: 67-70. Ul ann's Encyclopedia of Industrial Chemistry (1996) Bd. A27, VCH: Weinheim, S. 89-90, S. 521-540, S. 540-547, S. 559-566, 575-581 und S. 581-587; Michal, G (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley and Sons; Fallon, A. et al. (1987) Applications of HPLC in Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, Bd. 17.The identity and purity of the isolated compounds can be determined by standard techniques in the art. These include high-performance liquid chromatography (HPLC), spectroscopic methods, staining methods, thin-layer chromatography, NIRS, enzyme tests or microbiological tests. These analysis methods are summarized in: Patek et al. (1994) Appl. Environ. Microbiol. 60: 133-140; Malakhova et al. (1996) Biotekhnologiya 11: 27-32; and Schmidt et al. (1998) Bioprocess Engineer. 19: 67-70. Ul ann's Encyclopedia of Industrial Chemistry (1996) Vol. A27, VCH: Weinheim, pp. 89-90, pp. 521-540, pp. 540-547, pp. 559-566, 575-581 and pp. 581-587; Michal, G (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley and Sons; Fallon, A. et al. (1987) Applications of HPLC in Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 17.
Äquivalenteequivalent
Der Fachmann erkennt oder kann - indem er lediglich Routinever- fahren verwendet - viele Äquivalente der erfindungsgemäßen spezifischen Ausführungsformen feststellen. Diese Äquivalente sollen von den nachstehenden Patentansprüchen umfaßt sein.Those skilled in the art will recognize or can - by using only routine methods - determine many equivalents of the specific embodiments of the invention. These equivalents are intended to be encompassed by the claims below.
Die Angaben in Tabelle 1 sind folgendermassen zu verstehen:The information in Table 1 is to be understood as follows:
In Spalte 1"DNA-ID" bezieht sich die jeweilige Zahl auf die SEQ ID NO des anhängenden Sequenzprotokolls. Eine "5" in der Spalte "DNA-ID" bedeutet demzufolge ein Verweis auf SEQ ID NO:5.In column 1 "DNA-ID" the respective number refers to the SEQ ID NO of the attached sequence listing. A "5" in the "DNA-ID" column therefore means a reference to SEQ ID NO: 5.
In Spalte 2"AS-ID" bezieht sich die jeweilige Zahl auf die SEQ ID NO des anhängenden Sequenzprotokolls. Eine "6" in der Spalte "AS-ID" bedeutet demzufolge ein Verweis auf SEQ ID NO: 6.In column 2 "AS-ID", the respective number refers to the SEQ ID NO of the attached sequence listing. A "6" in the "AS-ID" column therefore means a reference to SEQ ID NO: 6.
In Spalte 3"Identifikation" wird eine eindeutige interne Bezeich- nung für jede Sequenz aufgeführt.Column 3 "Identification" contains a unique internal name for each sequence.
In Spalte 4 "AS-POS" bezieht sich die jeweilige Zahl auf die Aminosäureposition der Polypeptidsequenz "AS-ID" in der gleichen Zeile. Eine "26" in der Spalte "AS-POS" bedeutet demzufolge die Aminosäureposition 26 der entsprechend angegebenen Polypeptidsequenz. Die Zählung der Position beginnt N-Terminal bei +1.In column 4 "AS-POS" the respective number refers to the amino acid position of the polypeptide sequence "AS-ID" in the same line. A “26” in the “AS-POS” column consequently means the amino acid position 26 of the correspondingly indicated polypeptide sequence. The position of the N-Terminal starts at +1.
In Spalte 5 "AS-Wildtyp" bezeichnet der jeweilige Buchstabe die Aminosäure - dargestellt im Ein-Buchstaben-Code- an der in Spalte 4 angegebenen Position beim entsprechenden Wildtyp-Stamm.In column 5 "AS wild type", the respective letter denotes the amino acid - represented in the one-letter code - at the position indicated in column 4 in the corresponding wild type strain.
In Spalte 6 "AS-Mutante" bezeichnet der jeweilige Buchstabe die Aminosäure - dargestellt im Ein-Buchstaben-Code- an der in Spalte 4 angegebenen Position beim entsprechenden Mutanten-Stamm.In column 6 "AS mutant" the respective letter denotes the amino acid - shown in the one-letter code - at the position indicated in column 4 in the corresponding mutant strain.
In Spalte 7 "Funktion" wird die physiologische Funktion der entsprechenden Polypeptidsequenz aufgeführt . Ein-Buchstaben-Code der proteinogenen Aminosäuren:Column 7 "Function" lists the physiological function of the corresponding polypeptide sequence. One letter code of proteinogenic amino acids:
A AlaninA alanine
C CysteinC cysteine
D AspartatD aspartate
E GlutamatE glutamate
F PhenylalaninF phenylalanine
G GlycinG glycine
H HisH His
I IsoleucinI isoleucine
K LysinK lysine
L LeucinL leucine
M MethioninM methionine
N AsparaginN asparagine
P ProlinP proline
Q GlutaminQ glutamine
R ArgininR arginine
S SerinS serine
T ThreoninT threonine
V ValinV valine
W TryptophanW tryptophan
Y Tyrosin Y tyrosine
Tabelle 1Table 1
Gene die für Stressresistenz- und Toleranz-Proteine codierenGenes that code for stress resistance and tolerance proteins
DNA AS Identifikation: AS AS AS Funktion:DNA AS identification: AS AS AS function:
ID: ID: Pos: Wildtyp MutaiID: ID: Pos: Wild-type Mutai
1 2 RXA00165 130 V I MULTIDRUG RESISTANCE- IKE ATP-BINDING PROTEIN MDL1 2 RXA00165 130 V I MULTIDRUG RESISTANCE- IKE ATP-BINDING PROTEIN MDL
410 G E MULTIDRUG RESISTANCE-LIKE ATP-BINDING PROTEIN MDL410 G E MULTIDRUG RESISTANCE-LIKE ATP-BINDING PROTEIN MDL
3 4 RXA00404 188 R H CARBON STARVATION PROTEIN A3 4 RXA00404 188 R H CARBON STARVATION PROTEIN A
5 6 RXA00453 243 A T TRANSPORTER5 6 RXA00453 243 A T TRANSPORTER
246 Θ D TRANSPORTER246 Θ D TRANSPORTER
7 8 RXA00493 363 A T 60 KD CHAPERONIN GROEL7 8 RXA00493 363 A T 60 KD CHAPERONIN GROEL
9 10 RXA00803 264 P s METHYLENOMYCIN A RESISTANCE PROTEIN9 10 RXA00803 264 P s METHYLENOMYCIN A RESISTANCE PROTEIN
11 12 RXA00829 408 L F DAUNORUBICIN RESISTANCE DNA-BINDING PROTEIN DRRC11 12 RXA00829 408 L F DAUNORUBICIN RESISTANCE DNA-BINDING PROTEIN DRRC
13 14 RXA00886 75 G D CHAPERONE PROTEIN DNAJ13 14 RXA00886 75 G D CHAPERONE PROTEIN DNAJ
242 G D CHAPERONE PROTEIN DNAJ242 G D CHAPERONE PROTEIN DNAJ
15 16 RXA01054 402 T I MERCURIC REDUCTASE (EC 1.16.1.1)15 16 RXA01054 402 T I MERCURIC REDUCTASE (EC 1.16.1.1)
17 18 RXA01345 308 A V DNAK PROTEIN17 18 RXA01345 308 A V DNAK PROTEIN
19 20 RXA01559 400 T A PROTEIN TRANSLOCASE SUBUNIT SECD19 20 RXA01559 400 T A PROTEIN TRANSLOCASE SUBUNIT SECD
21 22 RXA01578 130 R C MULTIDRUG RESISTANCE PROTEIN B21 22 RXA01578 130 R C MULTIDRUG RESISTANCE PROTEIN B
23 24 RXA01936 276 L F MACROLIDE-EFFLUX PROTEIN 23 24 RXA01936 276 LF MACROLIDE-EFFLUX PROTEIN
26 RXA02119 209 G E TRANSPORTER26 RXA02119 209 G E TRANSPORTER
241 G D TRANSPORTER241 G D TRANSPORTER
28 RXA02202 72 V I ARSENATE REDUCTASE28 RXA02202 72 V I ARSENATE REDUCTASE
30 RXA02280 502 A V HEAT SHOCK PROTEIN HTPG30 RXA02280 502 A V HEAT SHOCK PROTEIN HTPG
32 RXA02431 73 A V DNA POLYMERASE IV32 RXA02431 73 A V DNA POLYMERASE IV
34 RXA02541 114 G E CHAPERONE PROTEIN DNAJ34 RXA02541 114 G E CHAPERONE PROTEIN DNAJ
308 A V CHAPERONE PROTEIN DNAJ308 A V CHAPERONE PROTEIN DNAJ
36 RXA02736 312 S F PUTATIVE OXPPCYCLE PROTEIN OPCA36 RXA02736 312 S F PUTATIVE OXPPCYCLE PROTEIN OPCA
38 RXA02964 306 V I QUINOLONE RESISTANCE NORA PROTEIN38 RXA02964 306 V I QUINOLONE RESISTANCE NORA PROTEIN
40 RXA03359 107 V I Universal stress protein family40 RXA03359 107 V I Universal stress protein family
42 RXA03824 34 G D MULTIDRUG RESISTANCE PROTEIN B42 RXA03824 34 G D MULTIDRUG RESISTANCE PROTEIN B
44 RXA06014 24 A T Rhodanese-related sulfurtransferases44 RXA06014 24 AT Rhodanese-related sulfur transferases
36 E K Rhodanese-related sulfurtraπsferases36 E K Rhodanese-related sulfurtraπsferases
46 RXA07004 150 G D MULTIDRUG RESISTANCE PROTEIN B 46 RXA07004 150 G D MULTIDRUG RESISTANCE PROTEIN B

Claims

Patentansprüche claims
1. Isoliertes Nukleinsäuremolekül codierend für ein Polypeptid mit der jeweils in Tabellel/Spalte2 in Bezug genommenen Aminosäuresequenz wobei das Nukleinsäuremolekül in der in Tabelle 1/Spalte 4 angegebenenen Aminosäureposition eine andere proteinogene Aminosäure codiert als die jeweilige in Tabelle 1/Spalte 5 in der gleichen Zeile angegebene Aminosäure.1. Isolated nucleic acid molecule coding for a polypeptide with the amino acid sequence referred in each case in table / column 2, the nucleic acid molecule in the amino acid position indicated in table 1 / column 4 coding for a different proteinogenic amino acid than the respective one in table 1 / column 5 in the same line given amino acid.
2. Isoliertes Nukleinsäuremolekül nach Anspruch 1, wobei das Nukleinsäuremolekül in der in Tabelle 1/Spalte 4 angegebenenen Aminosäureposition die in Tabelle 1/Spalte 6 in der gleichen Zeile angegebene Aminosäure codiert.2. The isolated nucleic acid molecule according to claim 1, wherein the nucleic acid molecule in the amino acid position given in Table 1 / column 4 encodes the amino acid given in Table 1 / column 6 in the same row.
3. Ein Vektor, der wenigstens eine Nukleinsäuresequenz nach Anspruch 1 enthält.3. A vector containing at least one nucleic acid sequence according to claim 1.
4. Eine Wirtszelle, die mit wenigstens einem Vektor nach An- spruch 3 transfiziert ist.4. A host cell that is transfected with at least one vector according to claim 3.
5. Eine Wirtszelle nach Anspruch 4, wobei die Expression des besagten Nukleinsäuremoleküls zur Modulation der Produktion einer Feinchemikalie aus besagter Zelle führt.5. A host cell according to claim 4, wherein the expression of said nucleic acid molecule leads to modulation of the production of a fine chemical from said cell.
6. Verfahren zur Herstellung einer Feinchemikalie welches die Kultivierung einer Zelle beinhaltet, die mit wenigstens einen Vektor nach Anspruch3 transfiziert worden ist, so dass die Feinchemikalie produziert wird.6. A method for producing a fine chemical which comprises culturing a cell which has been transfected with at least one vector according to claim 3, so that the fine chemical is produced.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die Feinchemikalie eine Aminosäure ist .7. The method according to claim 6, characterized in that the fine chemical is an amino acid.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Aminosäure Lysin ist. 8. The method according to claim 7, characterized in that the amino acid is lysine.
PCT/EP2002/012137 2001-11-05 2002-10-31 Genes coding for stress resistance and tolerance proteins WO2003040293A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2002346804A AU2002346804A1 (en) 2001-11-05 2002-10-31 Genes coding for stress resistance and tolerance proteins
KR10-2004-7006800A KR20040053279A (en) 2001-11-05 2002-10-31 Genes Coding For Stress Resistance and Tolerance Proteins
EP02783043A EP1453964A2 (en) 2001-11-05 2002-10-31 Genes coding for stress resistance and tolerance proteins

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10154181.3 2001-11-05
DE10154181A DE10154181A1 (en) 2001-11-05 2001-11-05 Genes that code for stress resistance and tolerance proteins

Publications (2)

Publication Number Publication Date
WO2003040293A2 true WO2003040293A2 (en) 2003-05-15
WO2003040293A3 WO2003040293A3 (en) 2004-05-13

Family

ID=7704615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/012137 WO2003040293A2 (en) 2001-11-05 2002-10-31 Genes coding for stress resistance and tolerance proteins

Country Status (5)

Country Link
EP (1) EP1453964A2 (en)
KR (1) KR20040053279A (en)
AU (1) AU2002346804A1 (en)
DE (1) DE10154181A1 (en)
WO (1) WO2003040293A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005014828A2 (en) * 2003-08-01 2005-02-17 Basf Plant Science Gmbh Process for the production of fine chemicals in plants
US7566557B2 (en) 2003-12-18 2009-07-28 Paik Kwang Industrial Co., Ltd. Gene variants coding for proteins from the metabolic pathway of fine chemicals
US8008545B2 (en) 2003-04-15 2011-08-30 Basf Plant Science Gmbh Process for the production of fine chemicals
EP2665826B1 (en) 2011-01-20 2017-11-01 Evonik Degussa GmbH Process for the fermentative production of sulphur-containing amino acids

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003525593A (en) * 1999-06-25 2003-09-02 ビーエーエスエフ アクチェンゲゼルシャフト Stress, tolerance and tolerability proteins encoding Corynebacterium glutamicum gene
JP4623825B2 (en) * 1999-12-16 2011-02-02 協和発酵バイオ株式会社 Novel polynucleotide

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHAN M-S ET AL: "Cloning of m-fluorophenylalanine-resistant gene and mutational analysis of feedback-resistant prephenate dehydratase from Corynebacterium glutamicum" BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, ACADEMIC PRESS INC. ORLANDO, FL, US, Bd. 219, Nr. 2, 1996, Seiten 537-542, XP002248114 ISSN: 0006-291X *
DATABASE GENESEQ [Online] 26. September 2001 (2001-09-26), NAKAGAWA S., ET AL.,: "C glutamicum coding sequence fragment SEQ ID NO: 1581." XP002253645 Database accession no. AAH66546 -& EP 1 108 790 A (KYOWA HAKKO KOGYO KK) 20. Juni 2001 (2001-06-20) *
DATABASE GENESEQ [Online] 30. April 2001 (2001-04-30), POMPEJUS M., ET AL.,: "C. glutamicum SRT protein nucleotide sequence SEQ ID NO:281." XP002253644 Database accession no. AAF71124 -& WO 01/000804 A (BASF AG) 4. Januar 2001 (2001-01-04) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8008545B2 (en) 2003-04-15 2011-08-30 Basf Plant Science Gmbh Process for the production of fine chemicals
WO2005014828A2 (en) * 2003-08-01 2005-02-17 Basf Plant Science Gmbh Process for the production of fine chemicals in plants
WO2005014828A3 (en) * 2003-08-01 2005-07-14 Basf Plant Science Gmbh Process for the production of fine chemicals in plants
EP2434019A1 (en) * 2003-08-01 2012-03-28 BASF Plant Science GmbH Process for the production of fine chemicals
US7566557B2 (en) 2003-12-18 2009-07-28 Paik Kwang Industrial Co., Ltd. Gene variants coding for proteins from the metabolic pathway of fine chemicals
EP2665826B1 (en) 2011-01-20 2017-11-01 Evonik Degussa GmbH Process for the fermentative production of sulphur-containing amino acids

Also Published As

Publication number Publication date
AU2002346804A1 (en) 2003-05-19
DE10154181A1 (en) 2003-05-15
EP1453964A2 (en) 2004-09-08
WO2003040293A3 (en) 2004-05-13
KR20040053279A (en) 2004-06-23

Similar Documents

Publication Publication Date Title
EP1697402A2 (en) Gene variants coding for proteins from the metabolic pathway of fine chemicals
DE10154292A1 (en) Genes that code for metabolic pathway proteins
DE10154177A1 (en) New nucleic acid encoding variant forms of marker and fine chemical-production proteins, useful for production of fine chemicals, specifically lysine, in microorganisms
DE10154245A1 (en) Genes that code for regulatory proteins
EP1693380B1 (en) Nucleic acid sequence encoding the OPCA gene
EP1911846B1 (en) Genes which encode proteins for glucose-6-phosphate-dehydrogenase
EP1444332A2 (en) Genes from corynebacterium glutamicum that code for homeostasis proteins and for adaptation proteins
EP1444351B1 (en) Genes encoding for carbon metabolism and energy-producing proteins
WO2003040293A2 (en) Genes coding for stress resistance and tolerance proteins
KR100868694B1 (en) Genes coding for dna replication proteins and for proteins related to pathogenesis
EP1456232A2 (en) Genes encoding for membrane synthesis and membrane transport proteins
EP1444334A2 (en) Genes coding for phosphoenolpyruvate-sugar-phosphotransferase proteins

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002783043

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020047006800

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2002783043

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP