WO2003038909A1 - Method for fabricating photoelectric conversion element and photoelectric conversion element - Google Patents

Method for fabricating photoelectric conversion element and photoelectric conversion element Download PDF

Info

Publication number
WO2003038909A1
WO2003038909A1 PCT/JP2001/009538 JP0109538W WO03038909A1 WO 2003038909 A1 WO2003038909 A1 WO 2003038909A1 JP 0109538 W JP0109538 W JP 0109538W WO 03038909 A1 WO03038909 A1 WO 03038909A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
photoelectric conversion
conversion element
blocking
blocking film
Prior art date
Application number
PCT/JP2001/009538
Other languages
French (fr)
Japanese (ja)
Inventor
Kietsu Iwabuchi
Hirofumi Kondo
Akio Yasuda
Gabriele Nelles
Original Assignee
Sony Corporation
Sony International (Europe) G.M.B.H.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation, Sony International (Europe) G.M.B.H. filed Critical Sony Corporation
Priority to DE10197130.3T priority Critical patent/DE10197130B4/en
Priority to PCT/JP2001/009538 priority patent/WO2003038909A1/en
Priority to JP2003541065A priority patent/JPWO2003038909A1/en
Publication of WO2003038909A1 publication Critical patent/WO2003038909A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2009Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a method for manufacturing a photoelectric conversion element and a photoelectric conversion element, and more particularly to a method for manufacturing a photoelectric conversion element and a photoelectric conversion element that can be suitably used as a solid-state solar cell.
  • Photovoltaic conversion elements used as solar cells are: 1) low cost, 2) can be supplied on a global scale, and 3) can be obtained by a production method that is adaptable to the global environment and has resource constraints. It is required to meet the requirements of,, etc.
  • the solar cell 101 shown in this figure has a transparent electrode film 105 formed on the surface of a substrate 103 having optical transparency, and the transparent electrode film 105 and a power generation layer film 1 described below.
  • a blocking film 107 for preventing a short circuit with the hole transport material 109 c of No. 09 is formed.
  • the blocking film 107 is made of, for example, titanium oxide, and is formed by a spray pyrolysis method or the like. This method is a method of spraying an alcoholic solution of an organic complex salt of titanium (T i) on a substrate 103 heated to about 600 ° C.!
  • a power generation layer film 109 composed of electron transporting fine particles 109a having a sensitizing dye 109b adsorbed thereon and a hole transport material 109c is provided.
  • anatase type titanium oxide is used as the electron transporting fine particles 109 a constituting the power generation layer film 109.
  • the counter electrode film 1 is formed on the power generation layer film 109. 10 is provided.
  • the operation mechanism of the solar cell having such a configuration will be described using the energy diagram of FIG. 2 together with FIG. That is, when light (sunlight) H enters from the substrate 103 side, the light H excites the sensitizing dye 109 b in the power generation layer film 109, causing electrons e and holes h to form. Occurs. Then, the electron e is injected into the electron-transporting fine particles 109 a from the excitation level, moves inside the electron e, passes through the blocking film 107, is supplied to the transparent electrode film 105, and flows as a current. Taken out. On the other hand, the holes h move from the base level through the hole transport material 109 c by hobbing conduction.
  • the blocking film 107 is required to make physical contact between the hole transport material 109 c constituting the power generation layer film 109 and the transparent electrode film 105. It has the function of preventing For this reason, the blocking film 107 is required to have a dense film quality and a certain thickness. That is, when the hole transport layer 109 c and the transparent electrode film 105 come into contact with each other, holes h (indicated by a chain line in the figure) move from this contact portion to the transparent conductive film 105. Since the holes h combine with the electrons e in the transparent conductive film 105 and disappear, the battery performance deteriorates.
  • the blocking film 107 becomes a part of a conductive path for electrons e generated in the power generation layer film 109, when the film thickness is larger than necessary, the internal resistance of the battery is reduced. High, which causes deterioration of battery performance. Further, since the blocking film 107 also becomes a part of the optical path for the incident light H, the photoelectric conversion efficiency is deteriorated when the optical absorption is large.
  • the blocking film 107 has a dense film quality and can prevent a short circuit with the power generation layer film 109, but does not hinder the transport of the electron e and has an optical property. It is desired that the film is thinned so that the absorption is suppressed as small as possible.
  • a film forming method such as the spray decomposition method described above has an advantage that a relatively transparent film can be obtained, the controllability of the film thickness is poor, and the thickness of the blocking film is reduced. Is difficult. Further, since the substrate 103 needs to be heated to a high temperature, the process load increases. Further, there is a problem that a foreign substance force is easily mixed into the film, and a blocking film having stable film quality cannot be obtained. Disclosure of the invention
  • the present invention for solving such a problem is to form a blocking film for preventing short circuit on a transparent electrode film, and to provide a sensitizing dye-adsorbed electron transporting fine particle and a hole transport material on the blocking film.
  • the formation of the blocking film is performed by vacuum film formation.
  • the present invention is also a photoelectric conversion element obtained by such a method.
  • FIG. 1 is a cross-sectional view for explaining the configuration of a conventional photoelectric conversion element and its problems.
  • FIG. 2 is a diagram for explaining the operation of the photoelectric conversion element.
  • FIG. 3 is a configuration diagram of the photoelectric conversion element of the present invention.
  • FIG. 4 is an enlarged sectional view of a main part of the photoelectric conversion element of the present invention.
  • FIG. 5 is a cross-sectional view illustrating an example of an end configuration of the photoelectric conversion element. '
  • FIG. 6 is a cross-sectional view for explaining another example of the end configuration of the photoelectric conversion element.
  • FIG. 7 is a cross-sectional view for explaining still another example of the end configuration of the photoelectric conversion element.
  • FIG. 3 is a configuration diagram of the photoelectric conversion element of the present invention
  • FIG. 4 is a cross-sectional view of a main part of the photoelectric conversion element.
  • the photoelectric conversion element 1 shown in these figures is suitably used as a solid-state solar cell.
  • a substrate 3, a transparent electrode film 5, a blocking film 7, a power generation layer film 9, and a counter electrode film 11 are laminated in this order from the bottom of the drawing.
  • the power generation layer film 9 is formed by filling the hole transporting material 9 c between the electron transporting fine particles 9 a to which the sensitizing dye 9 b is adsorbed, thereby forming the dye-sensitized photoelectric conversion element 1. Have been. In the following, details of each of these It will be described in order.
  • a substrate 3 made of a material capable of transmitting light (sunlight) H is prepared.
  • a substrate 3 is made of, for example, plastics such as glass, PET (polyethylene terephthalate), PEN, polyimide, polyamide, and polyproponate.
  • the substrate 3 does not need to be able to transmit the light H, and may be made of ceramic such as zirconia, or a metal such as steel or copper.
  • an insulating process such as covering the surface of the substrate 3 with a silicon oxide film is performed.
  • a transparent electrode film 5 serving as a negative electrode of the solar cell is formed on such a substrate 3.
  • the transparent electrode film 5 must have low resistance in order to form a series resistance in the battery, and must have a small optical absorption because it serves as an optical path of light H. Furthermore, the transparent electrode film 5 has poor weather resistance and chemical resistance. It is desirable to be excellent.
  • Examples of such a transparent electrode film 5, ZnO, Sn0 2, I n 2 ⁇ 3, I TO (S n de one flop ln 2 0: i), I FO (F -doped I n 2 0 3), ATO ( 313 de one flop 311_Rei 2), FT_ ⁇ (F-doped Sn_ ⁇ 2), CTO (Cd de one flop Sn0 2) use a layer consisting of such a single layer or a composite layer.
  • Sn0 2 ZI TO can be exemplified by ZnO / I TO like.
  • IT ⁇ , FTO, S ⁇ IT ⁇ , and Zn nIT ⁇ can be preferably used.
  • a sputtering method As a method for forming the transparent conductive film 5, a sputtering method, a vacuum evaporation method, a CVD (chemical vapor deposition) method, an IP (Ion Plating) method, a spray film forming method, a dip film forming method, or the like is applied. Can be.
  • a blocking film 7 for preventing short-circuit between the transparent electrode film 5 and the hole transport material 9c of the power generation layer film 9 is formed on the transparent electrode film 5.
  • the electron transporting fine particles 9a made of titanium oxide in the power generation layer film 9 described below are deposited on the blocking film ⁇ , the electron transporting fine particles 9a It is preferable that the blocking film 7 is made of titanium oxide in consideration of securing the bonding with the insulating film 7.
  • the blocking film 7 is for preventing a short circuit (contact) between the transparent electrode film 5 and the hole transport material 9c, and therefore needs to have a dense film quality. For this reason, when using titanium oxide as the blocking film 7, it is preferable to form the film as titanium oxide having an amorphous (amorphous) or fine crystal structure. When the crystal grain size of titanium oxide is large, a large grain boundary is formed in the blocking film 7, so that the hole transport material 9c, which is a low-viscosity amorphous organic substance having a three-dimensional size of about 1 nm, is used. Then, it passes through the grain boundary and comes into contact with the transparent electrode film 5.
  • the blocking film 7 grows because the blocking film 7 crystal grows. It is preferable to form the film as an amorphous or fine crystal structure at the time of film formation. In the case of a fine crystal structure, for example, it is an anatase crystal.
  • the blocking film 7 since the blocking film 7 has a high resistance in its function, if the film thickness is large, the internal resistance of the battery increases, which causes deterioration of the battery performance. For this reason, the blocking film 7 is preferably a thin film.
  • the thickness when the blocking film 7 is made of titanium oxide, the thickness is preferably 100 nm or less.
  • the thickness in order to reliably obtain the effect of preventing the blocking electrode 7 from physically contacting the transparent electrode film 5 and the hole transport material 9c, when the layer is made of titanium oxide, the thickness is 15 nm or more, preferably 20 nm. The film thickness is set to the above value.
  • the blocking film 7 when the blocking film 7 is in the optical path of the light (sunlight) H irradiated from the substrate 3 side, the blocking film 7 has a film quality that minimizes optical absorption and is thinned. Is desired. For this reason, when the blocking film 7 is made of titanium oxide, it is preferable to form titanium oxide having a composition ratio of oxygen to titanium (OZTi composition ratio) of at least 0.8.
  • the blocking film 7 reliably separates the transparent electrode film 5 and the hole transport material 9c. It is preferable that the transparent electrode film 5 is formed in such a shape as to securely cover the surface of the transparent electrode film 5 to the edge portion. For this reason, as shown in FIG. 5, it is preferable to provide the blocking (3) in a state of covering not only the surface of the transparent electrode film 5 but also the entire exposed surface including the portion exposed at the end. .
  • the blocking film 7 having such a configuration is formed by a vacuum film forming method such as a sputtering method, a vacuum evaporation method, an IP method, and a CVD method.
  • a vacuum film forming method such as a sputtering method, a vacuum evaporation method, an IP method, and a CVD method.
  • a sputtering method because the quality of the formed film is easily controlled.
  • an RF sputtering method targeting titanium oxide or a sputtering method in an oxygen atmosphere targeting titanium is applied.
  • the film forming conditions for obtaining an amorphous or dense film of titanium oxide having a fine crystal structure include input power. 0-01 to 0.1 OW / mm 2 , film formation temperature (substrate temperature) 350 or less, oxygen partial pressure in film formation atmosphere 5.3 X 10 • 3 Pa or more.
  • the film formation temperature is set to 200 ° C. to 35 O a C.
  • the film formation rate becomes higher as the oxygen partial pressure in the film formation atmosphere increases, it is preferable to set the upper limit of the oxygen partial pressure in the film formation atmosphere to 8.0 ⁇ 10 3 ⁇ a. Therefore, the oxygen partial pressure in the film formation atmosphere, 5. 3X 10- 3 P a ⁇ 8. 0 XI 0- 3 P is preferably set to a.
  • the power generation layer film 9 is formed on the blocking film 7.
  • the electron transporting fine particles 9a are attached to the blocking film 7.
  • the electron transporting fine particles 9a may be fine particles of an anatase-type titanium oxide doped with a different element or subjected to a surface treatment.
  • the particle diameter of the electron transporting fine particles 9a is set to 5 to 50 nm, and preferably set to 10 to 30 nm in consideration of photoelectric conversion efficiency.
  • the sensitizing dye 9b is adsorbed on the surface of the electron transporting fine particles 9a, so that there are many gaps between the electron transporting fine particles 9a, that is, the porosity.
  • the electron transporting fine particles 9 a are adhered onto the blocking film 7 while keeping the value large. Further, the thickness of the electron transporting fine particle 9a layer on the blocking film 7 is preferably about 0.1 to 40 m.
  • the electron transporting fine particles 9a can be attached to the blocking film 7 by, for example, any one of the following methods (1) to (4).
  • the electron transporting fine particles 9a are dispersed in a binder or a thickener and sprayed or applied onto the blocking film 7, dried, and then fired at 150 to 60 (TC temperature).
  • Titanium oxide particles obtained by hydrolyzing a titanium compound in the presence of nuclear seeds are sprayed or applied onto the blocking film 7 and then dried, and then dried as needed. Bake at a temperature of 0.
  • the sensitizing dye 9b is adsorbed on the electron transporting fine particles 9a attached on the blocking film 7.
  • the sensitizing dye 9b is a dye having an absorption in the visible light region, and a metal complex or an organic dye can be used.
  • Metal complexes include metal phthalocyanines such as copper phthalocyanine and titanyl phthalocyanine. Examples include metal complexes such as russian cyanine, chlorophyll or derivatives thereof, hemin, and ruthenium, osmium, iron, and zinc described in JP-A-1-220380 and JP-A-5-504023.
  • organic dye metal-free phthalocyanine, merocyanine dye, xanthene dye, and triphenylmethane dye can be used as the cyanine dye.
  • the sensitizing dye 9b it is preferable to use a metal complex as the sensitizing dye 9b from the viewpoint of sensitizing performance.
  • the adsorption of the sensitizing dye 9b to the electron transporting fine particles 9a adhered on the blocking film 7 is performed by removing the layer of the electron transporting fine particles 9a that have been well dried in the solution of the sensitizing dye 9b.
  • a method of immersing or applying a solution of the sensitizing dye 9b on the layer of the electron transporting fine particles 9a can be used.
  • the hole transporting material 9c is filled in the layer of the electron transporting fine particles 9a having the sensitizing dye 9b adsorbed thereon.
  • the hole transport material 9 c is, for example, an arylamine-based positive charge transport material such as N, N′-diphenyl 1 -N, N, — di-(3 -methy 1 heny 1 ) -4, 4'-bi pheny lamine (TPD) or amorphous 2, 2 ', 7 with a higher dislocation point (Tg) for longer and stable positive charge transport function , 7 '— tetr ak is [ ⁇ , ⁇ ' — di (4 -me th oxypheny l) ami ne ”— 9, 9 — spir ob ifluor en e: OMe TAD.
  • tri (bromo ⁇ ) is used as a dopant to improve the efficiency of electron injection from the sensitizing dye 9b into the electron transporting fine particles 9a and to compensate for the space charge effect.
  • heny 1) am ine and salts of S b C 1 6, L i [(CF 3 S0 2) 2 N] and, L i C 10 4, C aC 1_Rei 4 may be added.
  • the hole transporting material 9c is filled between the electron transporting fine particles 9a having the sensitizing dye 9b adsorbed thereon, for example, by spin coating.
  • a power generation layer film 9 composed of the electron transporting fine particles 9a having the sensitizing dye 9b adsorbed thereon and the hole transporting material 9c is formed.
  • the edge of the power generation layer film 9 is blocked by a blocking film so that the power generation layer film 9 and the transparent electrode film 5 are surely separated by the blocking film 7. 7 may be set inside the edge.
  • the above-described series of the power generation layer film 9 is formed while the periphery of the blocking film 7 is masked.
  • a counter electrode film 11 serving as a positive electrode of the solar cell when the photoelectric conversion element 1 is a solar cell is formed on the power generation layer film 9.
  • the counter electrode film 11 is preferably formed using Au, Pt ;, Pd, or the like, which have a work function of about 5. O eV and a high catalytic activity. Since the counter electrode film 11 forms an internal resistance in a solar cell using the photoelectric conversion element 1, it is preferable that the counter electrode film 11 be thicker for the purpose of reducing the resistance. In the case of a photoelectric conversion element in which light is incident from the counter electrode film 11 side, light absorption is suppressed by reducing the thickness of the counter electrode film 11 so that battery performance can be obtained. become. For this reason, for example, when the counter electrode 11 is made of Au, Pt, Pd, or the like, it is preferable that the thickness of the counter electrode film 11 be 30 Onm or less, and that the thickness be 200 nm or less.
  • This counter electrode film 11 is preferably formed by a vacuum film forming method such as a sputtering method, a vacuum evaporation method, an IP method, and a CVD method. Further, the substrate temperature at the time of film formation is set to be equal to or lower than the decomposition temperature of the hole transport material 9 c constituting the power generation layer film 9.
  • This photoelectric conversion element 1 Is used as a solar cell in a state where the transparent electrode film 5 and the counter electrode film 11 are connected to an external circuit 20.
  • the blocking film 7 is formed by vacuum film formation, the controllability of the film thickness and the film quality is good, and the blocking film 7 free of foreign matter or the like can be obtained. For this reason, it is possible to form the blocking film 7 which is dense and thin. That is, since the dense blocking film 7 can be made thinner, light absorption in the blocking film 7 is suppressed, and the power generation layer film 9 and the transparent electrode film 5 are reliably separated by the bracket blocking film. 1 is obtained. As a result, a photoelectric conversion element 1 having high conversion efficiency can be obtained, and a solid-state solar cell having good battery performance can be realized using the photoelectric conversion element 1.
  • the configuration of the dye-sensitized photoelectric conversion element in which the sensitizing dye 9b is adsorbed on the electron transporting fine particles 9a in the power generation layer film 9 has been described.
  • the power generation layer film 9 is composed of the electron transporting fine particles 9a and the hole transport material 9c.
  • the present invention can be widely applied to solid-state photoelectric conversion elements provided with a blocking film 7 between them.
  • a photoelectric conversion element there is an element using titanium oxide having a long-wavelength absorption-excitation type oxygen defect as the electron transporting fine particles 9a.
  • This photoelectric conversion element can be configured without adsorbing the sensitizing dye on the electron transporting fine particles 9a. Even in this case, the properties required for the blocking film are the same as those having the sensitizing dye. Therefore, a similar effect can be obtained by applying the present invention.
  • specific Examples 1 to 4 and Comparative Examples of the present invention, and the evaluation results thereof will be described.
  • the photoelectric conversion element was manufactured by changing the forming conditions of the blocking film 7) and changing the film thickness of the blocking film 7 under each forming condition. Then, the photoelectric conversion efficiency, the composition of the blocking film 7, and the crystal structure of the manufactured photoelectric conversion element were measured. ⁇ Preparation procedure>
  • the photoelectric conversion elements in Examples 1 to 4 and Comparative Example were manufactured in the following procedure. First, a transparent electrode film 5 made of ITO was formed on the entire surface of a substrate 3 made of 25 mm ⁇ 25 mm glass by sputtering.
  • a blocking film 7 made of titanium oxide was formed in a region of 2 mm ⁇ 25 mm on the transparent electrode film 5.
  • each embodiment 5 and 5 evaluation samples were prepared for each of the comparative examples, and in each evaluation sample, a 10 nm,
  • Blocking films were formed at five different thicknesses: 20 nm, 60 nm, 100 nm, and 150 nm.
  • Deposition of these flops locking film 7 is carried out by RF sputtering evening method to set the oxygen (0 2) partial pressure and the substrate temperature during the deposition as shown below display 1. Also this film, using a T i 0 2 (99. 99% ) to the target, as a common film formation conditions, the input power 0. 44WZmm 2, the partial pressure of A r used as sputtering evening gas 13.
  • the electron transporting fine particles 9a were printed and applied on the blocking film 7 by screen printing.
  • Ana-ose type titania sol particle size: 13 nm, specific surface area: 12 OmV g
  • So1a1-oni X was used.
  • 30 By baking at 0 ° C., a layer of electron transporting fine particles 9a made of anatase type crystal titanium oxide having a thickness of about 5 m was obtained.
  • the sample having the electron-transporting fine particles 9a attached thereto is immersed in a sensitizing dye solution (the above-mentioned Ruthenium 53-bis TBA solution), and the sensitizing dye 9b is added to the electron-transporting fine particles 9a. Adsorbed. Thereafter, a hole transport material solution (the above-mentioned ⁇ Me TAD solution) was applied by a spin coating method, and the gap between the electron transporting fine particles 9a was filled with the hole transport material 9c. Then, the hole transporting material 9 c attached to the transparent electrode film 5 was sufficiently wiped off with a cotton swab, and the solvent in the hole transporting material 9 c was evaporated to obtain a power generation layer film 9.
  • a sensitizing dye solution the above-mentioned Ruthenium 53-bis TBA solution
  • a hole transport material solution the above-mentioned ⁇ Me TAD solution
  • the conversion element 1 was produced as a solar cell.
  • the photoelectric conversion efficiency was measured as a battery characteristic.
  • the composition ratio of titanium oxide was measured using an X-ray microanalyzer (XMA), and the crystal structure was analyzed using an X-ray diffractometer (MRD).
  • XMA X-ray microanalyzer
  • MRD X-ray diffractometer
  • the light absorptivity for nm light was measured.
  • the measurement of the light absorptance was performed on a blocking film having a thickness of 100 nm.
  • Table 2 shows the evaluation results of the comparative examples.
  • the light absorption of the blocking film (100 nm thick) of the comparative example was 11%. ' Table 2
  • Example 3 shows the evaluation results of Example 1 above. Further, the light absorption of the blocking film (film thickness l O Onm) of Example 1 was 1%.
  • Example 2 shows the results of the above evaluations for Example 2.
  • the light absorption of the blocking film (film thickness 100 nm) of Example 2 was 1%.
  • Example 3 150 nm 0.187 1.8 Amorphous Table 5 below shows the results of the above evaluations for Example 3. The light absorption of the blocking film (thickness: 100 nm) of Example 3 was 1%.
  • Example 6 shows the results of the evaluation of Example 4 above.
  • the light absorption of the blocking film (film thickness of 10 O nm) of Example 4 was 1%.
  • the crystalline form of the blocking film 7 is in the range of 2 O nm to 10 O nm if it is amorphous or anatase crystal. In the above, it was confirmed that the above-described conversion efficiency and light absorption were obtained.
  • the blocking film between the power generation layer film and the transparent electrode film is formed by vacuum film formation, so that the dense film quality of the blocking film can be reduced. Therefore, a photoelectric conversion element with high conversion efficiency can be obtained, and a solid-state solar cell having good battery performance can be realized using the photoelectric conversion element.

Abstract

A photoelectric conversion element in which high conversion efficiency is attained by enhancing the controllability of the quality and thickness of a blocking film formed between a power generation layer film and a transparent electrode film. The photoelectric conversion element (1) comprises the power generation layer film (9) containing electron transporting microparticles (9a) and a hole transporting material (9c) sandwiched between the transparent electrode film (5) and a counter electrode film (11), and the blocking film (7) for preventing short circuit, interposed between the transparent electrode film (5) and the power generation layer film (9) characterized in that the blocking film (7) is formed by vacuum film formation.

Description

明 細 書 光電変換素子の製造方法および光電変換素子 技術分野  Description Method for manufacturing photoelectric conversion element and photoelectric conversion element
本発明は、 光電変換素子の製造方法および光電変換素子に関し、 特には固体太 陽電池として好適に用いることができる光電変換素子の製造方法および光電変換 素子に関する。 背景技術  The present invention relates to a method for manufacturing a photoelectric conversion element and a photoelectric conversion element, and more particularly to a method for manufacturing a photoelectric conversion element and a photoelectric conversion element that can be suitably used as a solid-state solar cell. Background art
地球規模でのエネルギー需要ギヤップを補完する手段として、 本格的な太陽電池 の出現が待たれている。 太陽電池として用いられる光電変換素子には、 ①低コス トであり、 ②地球規模での供給が可能であり、 ③地球環境に適応し且つ資源制約 フリ一的な製法によって得ることが可能である、 等の要件を満たすことが要求さ れている。 The emergence of full-scale solar cells is expected as a means to complement the energy demand gap on a global scale. Photovoltaic conversion elements used as solar cells are: 1) low cost, 2) can be supplied on a global scale, and 3) can be obtained by a production method that is adaptable to the global environment and has resource constraints. It is required to meet the requirements of,, etc.
昨今、 シリコン太陽電池 (単結晶、 多結晶) が普及しつつあり、 またァモルフ ァスシリコン太陽電池を用いる可能性も取り上げられている。 しかし、 これらの 太陽電池ほ、 必ずしも上記要件①〜③を満たすものではなかった。 上記要件①〜 ③を具備する太陽電池としては、 色素増感型の太陽電池があるが、 その代表的な 一例としてグレッツエルセルが挙げられる。 しかし、 この太陽電池には電解液が 用いられているため、 液漏れ、 溶媒の蒸発等が発生し、 太陽電池の信頼性、 長期' 安定化に問題がある。 このため、 色素増感型の太陽電池を固体化するための検討 が進められている。  In recent years, silicon solar cells (monocrystalline and polycrystalline) have become widespread, and the possibility of using amorphous silicon solar cells has been highlighted. However, these solar cells did not always meet the above requirements (1) to (3). Dye-sensitized solar cells are examples of solar cells that satisfy the above requirements (1) to (3). A typical example is a Gretz-L cell. However, since an electrolytic solution is used in this solar cell, liquid leakage, evaporation of the solvent, and the like occur, and there are problems in the reliability and long-term stability of the solar cell. For this reason, studies are underway to solidify dye-sensitized solar cells.
そのような中で、 電解液の代替えとして、 非晶質の正孔輸送材料を用いて正電 荷輸送部を構成することで色素増感型の太陽電池の固体化を図る技術が提案され ている。 このような色素増感型の固体太陽電池の構成例を図 1に基づいて製造ェ 程順に説明する。 Under such circumstances, as a substitute for the electrolyte solution, a technology has been proposed for solidifying a dye-sensitized solar cell by forming a positive charge transport section using an amorphous hole transport material. I have. A configuration example of such a dye-sensitized solid-state solar cell is shown in FIG. It will be described in order.
この図に示す太陽電池 1 0 1は、 光透過性を有する基板 1 0 3表面に形成され た透明電極膜 1 0 5上に、 この透明電極膜 1 0 5と次に説明する発電層膜 1 0 9 の正孔輸送材料 1 0 9 cとの短絡を防止するためのブロッキング膜 1 0 7が形成 されている。 ブロッキング膜 1 0 7は、 例えば酸化チタンからなり、 スプレー熱 分解法などによって形成される。 この方法は、 約 6 0 0 °Cに加熱されている基板 1 0 3上に、チタン(T i )の有機錯塩のアルコール溶! (友を噴霧する方法である。 このようにして形成されたこのブロッキング膜 1 0 7上には、 増感色素 1 0 9 b を吸着させた電子輸送性微粒子 1 0 9 aと正孔輸送材料 1 0 9 cとからなる発電 層膜 1 0 9が設けられている。 この発電層膜 1 0 9を構成する電子輸送性微粒子 1 0 9 aとしては、 例えばアナターゼ型酸化チタンが用いられる。 そして、 この 発電層膜 1 0 9上には、 対向電極膜 1 1 0が設けられている。  The solar cell 101 shown in this figure has a transparent electrode film 105 formed on the surface of a substrate 103 having optical transparency, and the transparent electrode film 105 and a power generation layer film 1 described below. A blocking film 107 for preventing a short circuit with the hole transport material 109 c of No. 09 is formed. The blocking film 107 is made of, for example, titanium oxide, and is formed by a spray pyrolysis method or the like. This method is a method of spraying an alcoholic solution of an organic complex salt of titanium (T i) on a substrate 103 heated to about 600 ° C.! On this blocking film 107, a power generation layer film 109 composed of electron transporting fine particles 109a having a sensitizing dye 109b adsorbed thereon and a hole transport material 109c is provided. For example, anatase type titanium oxide is used as the electron transporting fine particles 109 a constituting the power generation layer film 109. The counter electrode film 1 is formed on the power generation layer film 109. 10 is provided.
このような構成の太陽電池の動作機構を、 図 1と共に図 2のエネルギーダイァ グラムを用いて説明する。 すなわち、 基板 1 0 3側から光 (太陽光) Hが入射す ると、 この光 Hによって発電層膜 1 0 9中の増感色素 1 0 9 bが励起されて電子 eと正孔 hとが発生する。 そして、 電子 eは、 励起レベルから電子輸送性微粒子 1 0 9 a中に注入され、 その内部を移動しブロッキング膜 1 0 7中を通過して透 明電極膜 1 0 5に供給され、 電流として取り出される。 一方、 正孔 hは、 基底レ ベルから正孔輸送材料 1 0 9 c中をホッビング伝導により移動する。  The operation mechanism of the solar cell having such a configuration will be described using the energy diagram of FIG. 2 together with FIG. That is, when light (sunlight) H enters from the substrate 103 side, the light H excites the sensitizing dye 109 b in the power generation layer film 109, causing electrons e and holes h to form. Occurs. Then, the electron e is injected into the electron-transporting fine particles 109 a from the excitation level, moves inside the electron e, passes through the blocking film 107, is supplied to the transparent electrode film 105, and flows as a current. Taken out. On the other hand, the holes h move from the base level through the hole transport material 109 c by hobbing conduction.
ところで、 上記構成の太陽電池において、 ブロッキング膜 1 0 7は、 発電層膜 1 0 9を構成する正孔輸送材料 1 0 9 cと透明電極膜 1 0 5とが物理的に接触す' ることを防止する機能を担っている。 このため、 ブロッキング膜 1 0 7には、 緻 密な膜質とある程度の膜厚が要求される。 つまり、 正孔輸送層 1 0 9 cと透明電 極膜 1 0 5とが接触した場合、 この接触部分から透明導電膜 1 0 5に正孔 h (図 中鎖線で示す) が移動し、 この正孔 hが透明導電膜 1 0 5内において電子 eと結 合して消滅してしまうため、 電池性能が劣化するのである。 また、 このブロッキング膜 1 0 7は、 発電層膜 1 0 9中で生じた電子 eに対し ては導電路の一部となるため、 必要以上に膜厚が大きい場合には電池の内部抵抗 が高くなり、電池性能の劣化要因となる。さらに、このブロッキング膜 1 0 7は、 入射される光 Hに対しては光路の一部ともなるため、光学的吸収が大きい場合は、 光電変換効率が劣化する。 By the way, in the solar cell having the above configuration, the blocking film 107 is required to make physical contact between the hole transport material 109 c constituting the power generation layer film 109 and the transparent electrode film 105. It has the function of preventing For this reason, the blocking film 107 is required to have a dense film quality and a certain thickness. That is, when the hole transport layer 109 c and the transparent electrode film 105 come into contact with each other, holes h (indicated by a chain line in the figure) move from this contact portion to the transparent conductive film 105. Since the holes h combine with the electrons e in the transparent conductive film 105 and disappear, the battery performance deteriorates. In addition, since the blocking film 107 becomes a part of a conductive path for electrons e generated in the power generation layer film 109, when the film thickness is larger than necessary, the internal resistance of the battery is reduced. High, which causes deterioration of battery performance. Further, since the blocking film 107 also becomes a part of the optical path for the incident light H, the photoelectric conversion efficiency is deteriorated when the optical absorption is large.
以上のことから、 ブロッキング膜 1 0 7には、 緻密な膜質を有して発電層膜 1 0 9との短絡が防止可能でありながらも、 電子 eの輸送が妨げられることなく、 且つ光学的吸収が出来る限り小さく抑えられるように薄膜ィ匕されていることが望 まれる。  From the above, the blocking film 107 has a dense film quality and can prevent a short circuit with the power generation layer film 109, but does not hinder the transport of the electron e and has an optical property. It is desired that the film is thinned so that the absorption is suppressed as small as possible.
ところが、 上述したようなスプレー分解法のような成膜方法では、 比較的透明 な膜を得ることができると言つた利点があるものの、 膜厚の制御性が惡く、 プロ ッキング膜の薄膜化が困難である。 また、 基板 1 0 3を高温加熱する必要がある ため、 工程負荷が大きくなる。 さらには膜中に異物力混入し易く、 安定した膜質 のブロッキング膜を得ることができないといった問題もある。 発明の開示  However, although a film forming method such as the spray decomposition method described above has an advantage that a relatively transparent film can be obtained, the controllability of the film thickness is poor, and the thickness of the blocking film is reduced. Is difficult. Further, since the substrate 103 needs to be heated to a high temperature, the process load increases. Further, there is a problem that a foreign substance force is easily mixed into the film, and a blocking film having stable film quality cannot be obtained. Disclosure of the invention
このような課題を解決するための本発明は、 透明電極膜上に短絡防止用のプロ ッキング膜を形成し、 当該プロッキング膜上に増感色素吸着済み電子輸送性微粒 子と正孔輸送材料とからなる発電層膜を形成した後、 当該発電層膜上に対向電極 膜を形成する光電変換素子の製造方法において、 前記プロッキング膜の形成は、 真空成膜によって行われることを特徴としている。 また本発明は、 このような方' 法によって得られた光電変換素子でもある。  The present invention for solving such a problem is to form a blocking film for preventing short circuit on a transparent electrode film, and to provide a sensitizing dye-adsorbed electron transporting fine particle and a hole transport material on the blocking film. In the method for manufacturing a photoelectric conversion element in which a counter electrode film is formed on the power generation layer film after forming the power generation layer film, the formation of the blocking film is performed by vacuum film formation. . The present invention is also a photoelectric conversion element obtained by such a method.
このような光電変換素子の製造方法および光電変換素子では、 プロッキング膜 を真空成膜によって成膜する構成としたことで、 膜厚および膜質の制御性良好な ブロッキング膜が得られる。 したがって、 緻密な膜質でかつ薄膜ィヒされたブロッ キング膜を形成することができ、 ブロッキング膜における光吸収が抑えられ、 つこのブロッキング膜によって発電層膜を構成する正孔輸送材と透明電極膜とが 確実に分離された光電変換素子が得られる。 図面の簡単な説明 In such a method for manufacturing a photoelectric conversion element and the photoelectric conversion element, since the blocking film is formed by vacuum film formation, a blocking film with good controllability in film thickness and film quality can be obtained. Therefore, it is possible to form a blocking film having a dense film quality and a thin film, which suppresses light absorption in the blocking film, The photoelectric conversion element in which the hole transport material and the transparent electrode film constituting the power generation layer film are reliably separated by the blocking film is obtained. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 従来の光電変換素子の構成およびその課題を説明するための断面図で ある。  FIG. 1 is a cross-sectional view for explaining the configuration of a conventional photoelectric conversion element and its problems.
図 2は、 光電変換素子の動作を説明するための図である。  FIG. 2 is a diagram for explaining the operation of the photoelectric conversion element.
図 3は、 本発明の光電変換素子の構成図である。  FIG. 3 is a configuration diagram of the photoelectric conversion element of the present invention.
図 4は、 本発明の光電変換素子の要部を拡大した断面図である。  FIG. 4 is an enlarged sectional view of a main part of the photoelectric conversion element of the present invention.
図 5は、 光電変換素子の端部構成についての一例を説明するための断面図であ る。 '  FIG. 5 is a cross-sectional view illustrating an example of an end configuration of the photoelectric conversion element. '
図 6は、 光電変換素子の端部構成についての他の例を説明するための断面図で ある。  FIG. 6 is a cross-sectional view for explaining another example of the end configuration of the photoelectric conversion element.
図 7は、 光電変換素子の端部構成についてのさらに他の例を説明するための断 面図である。 発明を実施するための最良の形態  FIG. 7 is a cross-sectional view for explaining still another example of the end configuration of the photoelectric conversion element. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の光電変換素子の製造方法および光電変化素子の実施の形態を、 図面に基づいて詳細に説明する。  Hereinafter, embodiments of a method for manufacturing a photoelectric conversion element and a photoelectric conversion element according to the present invention will be described in detail with reference to the drawings.
図 3は、 本発明の光電変換素子の構成図であり、 図 4はこの光電変換素子の要 部断面図である。 これらの図に示す光電変換素子 1は、 固体太陽電池として好適' に用いられるものである。 この光電変換素子 1は、 図面下方から順に、 基板 3、 透明電極膜 5、 ブロッキング膜 7、 発電層膜 9および対向電極膜 1 1が積層され ている。 特に、 発電層膜 9は、 増感色素 9 bを吸着させた電子輸送性微粒子 9 a 間に正孔輸送材料 9 cを充填させてなり、 これにより色素増感型の光電変換素子 1が構成されている。 以下においては、 これらの各部材の詳細を、 その製造工程 順に説明する。 FIG. 3 is a configuration diagram of the photoelectric conversion element of the present invention, and FIG. 4 is a cross-sectional view of a main part of the photoelectric conversion element. The photoelectric conversion element 1 shown in these figures is suitably used as a solid-state solar cell. In this photoelectric conversion element 1, a substrate 3, a transparent electrode film 5, a blocking film 7, a power generation layer film 9, and a counter electrode film 11 are laminated in this order from the bottom of the drawing. In particular, the power generation layer film 9 is formed by filling the hole transporting material 9 c between the electron transporting fine particles 9 a to which the sensitizing dye 9 b is adsorbed, thereby forming the dye-sensitized photoelectric conversion element 1. Have been. In the following, details of each of these It will be described in order.
先ず、 光 (太陽光) H 透過可能な材料からなる基板 3を用意する。 このよう な基板 3は、 例えば、 ガラス、 PET (ポリエチレンテレフ夕レート)、 PEN, ポリイミド、 ポリアミド、 ポリ力一ポネート等のプラスチック類からなることと する。 ただし、 光 Hが対向基板 11側から入射する場合には、 基板 3は光 Hを透 過可能である必要はなく、 ジルコニァのようなセラミックス、 スチールや銅等の 金属で構成されていても良い。 尚、 金属材料からなる基板 3を用いる場合には、 基板 3表面を酸化シリコン膜で覆う等の絶縁処理を施すこととする。  First, a substrate 3 made of a material capable of transmitting light (sunlight) H is prepared. Such a substrate 3 is made of, for example, plastics such as glass, PET (polyethylene terephthalate), PEN, polyimide, polyamide, and polyproponate. However, when the light H is incident from the counter substrate 11 side, the substrate 3 does not need to be able to transmit the light H, and may be made of ceramic such as zirconia, or a metal such as steel or copper. . When the substrate 3 made of a metal material is used, an insulating process such as covering the surface of the substrate 3 with a silicon oxide film is performed.
このような基板 3上に、 光電変換素子 1を太陽電池とした場合に、 太陽電池の 負極となる透明電極膜 5を形成する。 この透明電極膜 5は、 電池内で直列抵抗を 形成するため低抵抗であること、 さらに光 Hの光路となるため光学吸収が小さレ ことが必須であり、さらには耐候性および耐薬品性に優れていることが望まれる。 このような透明電極膜 5としては、 ZnO、 Sn02、 I n23、 I TO (S n ド一プ l n20:i)、 I FO (Fドープ I n203)、 ATO (313ド一プ311〇2)、 FT〇 (Fドープ Sn〇2)、 CTO (Cdド一プ Sn02) 等からなる層を単層 でまたは複合層として用いる。 複合層としては、 Sn02ZI TO、 ZnO/I TO等を例示できる。 このなかでも、 I T〇、 FTO、 S ηθノ I T〇、 Z n 〇ノ I T〇を好適に用いることができる。 このような透明導電膜 5の成膜法は、 スパッ夕法、 真空蒸着法、 CVD(chemical vapor deposition) 法、 I P (Ion Plating) 法、 スプレー成膜法、 ディップ成膜法などを適用することができる。 次に、 透明電極膜 5上に、 透明電極膜 5と発電層膜 9の正孔輸送材 9 cとの短' 絡を防止するためのブロッキング膜 7を形成する。 このブロッキング膜 7は、 光 透過性を有する絶縁材料や、 酸化チタン、 Nb 205、 W〇3等の光透過性を有し かつ大きなエネルギーギヤップを有する半導体材料で構成されることとする。 な かでも、 次に説明する発電層膜 9中の酸化チタンからなる電子輸送性微粒子 9 a をプロッキング膜 Ί上に付着させる場合、 この電子輸送性微粒子 9 a ング膜 7との接合を確保することを考慮し、 ブロッキング膜 7を酸ィ匕チタンで構 成することが好ましい。 On such a substrate 3, when the photoelectric conversion element 1 is a solar cell, a transparent electrode film 5 serving as a negative electrode of the solar cell is formed. The transparent electrode film 5 must have low resistance in order to form a series resistance in the battery, and must have a small optical absorption because it serves as an optical path of light H. Furthermore, the transparent electrode film 5 has poor weather resistance and chemical resistance. It is desirable to be excellent. Examples of such a transparent electrode film 5, ZnO, Sn0 2, I n 2 〇 3, I TO (S n de one flop ln 2 0: i), I FO (F -doped I n 2 0 3), ATO ( 313 de one flop 311_Rei 2), FT_〇 (F-doped Sn_〇 2), CTO (Cd de one flop Sn0 2) use a layer consisting of such a single layer or a composite layer. As the composite layer, Sn0 2 ZI TO, can be exemplified by ZnO / I TO like. Among them, IT〇, FTO, S ηθIT〇, and Zn nIT〇 can be preferably used. As a method for forming the transparent conductive film 5, a sputtering method, a vacuum evaporation method, a CVD (chemical vapor deposition) method, an IP (Ion Plating) method, a spray film forming method, a dip film forming method, or the like is applied. Can be. Next, on the transparent electrode film 5, a blocking film 7 for preventing short-circuit between the transparent electrode film 5 and the hole transport material 9c of the power generation layer film 9 is formed. The blocking layer 7, and an insulating material having a light transmitting property, titanium oxide, Nb 2 0 5, and be comprised of a semiconductor material having and large energy formic Yap transparent to light, such as W_〇 3. In particular, when the electron transporting fine particles 9a made of titanium oxide in the power generation layer film 9 described below are deposited on the blocking film 、, the electron transporting fine particles 9a It is preferable that the blocking film 7 is made of titanium oxide in consideration of securing the bonding with the insulating film 7.
このブロッキング膜 7は、 透明電極膜 5と正孔輸送材料 9 cとの短絡 (接触) を防止するためのものであるため、 緻密な膜質を有している必要が有る。 このた め、 ブロッキング膜 7として酸化チタンを用いる場合、 無定形 (非晶質) または 微細結晶構造を有する酸ィヒチタンとして成膜することが望ましい。 酸化チタンの 結晶粒径が大きい場合には、大きな粒界部がブロッキング膜 7に形成されるため、 立体サイズが〜 1 nm程度の低粘度の非晶質有機物である正孔輸送材料 9 cが、 この粒界部を通過して透明電極膜 5と接触する。 また、 次に電子輸送性微粒子 9 a間の結合化を図るために行う熱処理工程 (約 5 0 0 °C) において、 ブロッキン グ膜 7の結晶が成長することからも、 このプロッキング膜 7は、 成膜時において 無定形または微細結晶構造として成膜することが好ましい。 微細結晶構造である 場合には、 例えばアナターゼ結晶であることとする。  The blocking film 7 is for preventing a short circuit (contact) between the transparent electrode film 5 and the hole transport material 9c, and therefore needs to have a dense film quality. For this reason, when using titanium oxide as the blocking film 7, it is preferable to form the film as titanium oxide having an amorphous (amorphous) or fine crystal structure. When the crystal grain size of titanium oxide is large, a large grain boundary is formed in the blocking film 7, so that the hole transport material 9c, which is a low-viscosity amorphous organic substance having a three-dimensional size of about 1 nm, is used. Then, it passes through the grain boundary and comes into contact with the transparent electrode film 5. In addition, in the heat treatment step (approximately 500 ° C.) performed to achieve the bonding between the electron transporting fine particles 9 a, the blocking film 7 grows because the blocking film 7 crystal grows. It is preferable to form the film as an amorphous or fine crystal structure at the time of film formation. In the case of a fine crystal structure, for example, it is an anatase crystal.
また、 ブロッキング膜 7は、 その機能上、 抵抗が高いため、 膜厚が厚いと電池 の内部抵抗が高くなり電池性能の劣化要因となる。 このため、 ブロッキング膜 7 は、 薄膜であることが好ましく、 例えば酸化チタンからなる場合には 1 0 0 n m 以下の膜厚とすることが望ましい。 ただし、 ブロッキング膜 7による透明電極膜 5と正孔輸送材料 9 cとの物理的な接触を防止する効果を確実に得るため、 酸化 チタンからなる場合には 1 5 nm以上、 好ましくは 2 0 n m以上の膜厚に設定さ れることとする。  In addition, since the blocking film 7 has a high resistance in its function, if the film thickness is large, the internal resistance of the battery increases, which causes deterioration of the battery performance. For this reason, the blocking film 7 is preferably a thin film. For example, when the blocking film 7 is made of titanium oxide, the thickness is preferably 100 nm or less. However, in order to reliably obtain the effect of preventing the blocking electrode 7 from physically contacting the transparent electrode film 5 and the hole transport material 9c, when the layer is made of titanium oxide, the thickness is 15 nm or more, preferably 20 nm. The film thickness is set to the above value.
さらに、 ブロッキング膜 7は、 基板 3側から照射される光 (太陽光) Hの光路' となる場合には、 光学的吸収が出来る限り小さく抑えられるような膜質を有して かつ薄膜化されていることが望まれる。 このため、 ブロッキング膜 7が酸化チタ ンからなる場合には、 チタンに対する酸素の組成比 (OZT i組成比) 力 . 8 以上の酸化チタンを形成することが好ましい。  Further, when the blocking film 7 is in the optical path of the light (sunlight) H irradiated from the substrate 3 side, the blocking film 7 has a film quality that minimizes optical absorption and is thinned. Is desired. For this reason, when the blocking film 7 is made of titanium oxide, it is preferable to form titanium oxide having a composition ratio of oxygen to titanium (OZTi composition ratio) of at least 0.8.
ここで、 ブロッキング膜 7は、 透明電極膜 5と正孔輸送材料 9 cとを確実に分 離できるように; 透明電極膜 5の表面を端縁部分まで確実に覆うような形状で形 成されることが好ましい。 このため、 図 5に示すように、 透明電極膜 5の表面だ けではなく端部に露出している部分を含む露出面の全面を覆う状態で、 プロツキ ング )3莫7を設けることが好ましい。 Here, the blocking film 7 reliably separates the transparent electrode film 5 and the hole transport material 9c. It is preferable that the transparent electrode film 5 is formed in such a shape as to securely cover the surface of the transparent electrode film 5 to the edge portion. For this reason, as shown in FIG. 5, it is preferable to provide the blocking (3) in a state of covering not only the surface of the transparent electrode film 5 but also the entire exposed surface including the portion exposed at the end. .
このような構成のブロッキング膜 7の形成は、 スパッ夕法、 真空蒸着法、 I P 法、 CVDなどの真空成膜法によって行うこととする。 真空成膜法であれば特に 限定されることはないが、 形成される膜質の制御が容易であることから、 スパッ 夕法を適用することが好ましい。 特に酸化チタンからなるブロッキング膜 7を形 成する場合には、 酸化チタンをターゲットにした RFスパッ夕法か、 またはチタ ンをターゲッ卜にした酸素雰囲気中でのスパッ夕法が適用される。またこの場合、 チタン膜を真空成膜後、 このチタン膜を大気中または酸素雰囲気中で熱処理する ことで酸化チタンとする方法の適用も可能である。  The blocking film 7 having such a configuration is formed by a vacuum film forming method such as a sputtering method, a vacuum evaporation method, an IP method, and a CVD method. Although there is no particular limitation as long as it is a vacuum film formation method, it is preferable to apply a sputtering method because the quality of the formed film is easily controlled. In particular, when the blocking film 7 made of titanium oxide is formed, an RF sputtering method targeting titanium oxide or a sputtering method in an oxygen atmosphere targeting titanium is applied. In this case, it is also possible to apply a method of forming a titanium oxide by subjecting the titanium film to a heat treatment in the air or an oxygen atmosphere after forming the titanium film in a vacuum.
酸化チタンをターゲットにした R Fスパッ夕法によってブロッキング膜 7を形 成する場合、 無定型であるかまたは微細結晶構造を有する緻密な膜質の酸化チタ ンを得るための成膜条件としては、 投入電力 0 - 01〜0. 1 OW/mm2、 成 膜温度 (基板温度) 350 以下、 成膜雰囲気中における酸素分圧 5. 3X 10 •3P a以上とすることが望ましい。 特に、 成膜温度が低すぎる場合には、 ブロッ キング膜 7の付着強度及び膜質強度が弱くなり、 緻密性を維持することができな くなる。このため、成膜温度は 200°C〜35 OaCに設定されることが好ましい。 さらに、 成膜雰囲気中における酸素分圧が高くなると成膜速度が くなるため、 成膜雰囲気中における酸素分圧の上限を 8. 0 X 10·3Ρ aとすることが好まし' い。 このため、 成膜雰囲気中における酸素分圧は、 5. 3X 10-3P a〜8. 0 X I 0-3P aに設定されることが好ましい。 When the blocking film 7 is formed by the RF sputtering method targeting titanium oxide, the film forming conditions for obtaining an amorphous or dense film of titanium oxide having a fine crystal structure include input power. 0-01 to 0.1 OW / mm 2 , film formation temperature (substrate temperature) 350 or less, oxygen partial pressure in film formation atmosphere 5.3 X 10 • 3 Pa or more. In particular, when the film forming temperature is too low, the adhesion strength and film quality strength of the blocking film 7 become weak, and it becomes impossible to maintain the denseness. For this reason, it is preferable that the film formation temperature is set to 200 ° C. to 35 O a C. Further, since the film formation rate becomes higher as the oxygen partial pressure in the film formation atmosphere increases, it is preferable to set the upper limit of the oxygen partial pressure in the film formation atmosphere to 8.0 × 10 3 Ρa. Therefore, the oxygen partial pressure in the film formation atmosphere, 5. 3X 10- 3 P a~8. 0 XI 0- 3 P is preferably set to a.
以上のようにしてプロッキング膜 7を形成した後、 このプロッキング膜 7上に 発電層膜 9を形成する。  After forming the blocking film 7 as described above, the power generation layer film 9 is formed on the blocking film 7.
この際先ず、 電子輸送性微粒子 9 aをブロッキング膜 7上に付着させる。 電子 輸送性微粒子 9 aとしては、 アナ夕ーゼ型酸化チタンの微粒子を用いることとす る。 この電子輸送性微粒子 9 aは、 アナ夕ーゼ型酸化チタンの微粒子中に異種元 素をドープしたり、 表面処理が施されたものであっても良い。 また、 電子輸送性 微粒子 9 aの粒子径は、 5〜 5 0 n mであることとし、 望ましくは光電変換効率 を考慮して 1 0〜3 0 nmに設定されることとする。 At this time, first, the electron transporting fine particles 9a are attached to the blocking film 7. Electronic As the transportable fine particles 9a, fine particles of an anatase type titanium oxide are used. The electron transporting fine particles 9a may be fine particles of an anatase-type titanium oxide doped with a different element or subjected to a surface treatment. In addition, the particle diameter of the electron transporting fine particles 9a is set to 5 to 50 nm, and preferably set to 10 to 30 nm in consideration of photoelectric conversion efficiency.
また、 以降の工程において、 電子輸送性微粒子 9 aの表面に増感色素 9 bを吸 着させるため、 電子輸送性微粒子 9 a間に多くの隙間が多く存在するように、 す なわち多孔度を大きく保つた状態で、 電子輸送性微粒子 9 aをプロッキング膜 7 上に付着させる。 さらに、 ブロッキング膜 7上における電子輸送性微粒子 9 a層 の膜厚は、 0 . 1〜4 0 m程度であることが好ましい。  In the subsequent steps, the sensitizing dye 9b is adsorbed on the surface of the electron transporting fine particles 9a, so that there are many gaps between the electron transporting fine particles 9a, that is, the porosity. The electron transporting fine particles 9 a are adhered onto the blocking film 7 while keeping the value large. Further, the thickness of the electron transporting fine particle 9a layer on the blocking film 7 is preferably about 0.1 to 40 m.
このように、 電子輸送性微粒子 9 aをブロッキング膜 7上に付着させる場合に は、 例えば次の①〜④いずれか 1つの方法によって行うことができる。  As described above, the electron transporting fine particles 9a can be attached to the blocking film 7 by, for example, any one of the following methods (1) to (4).
①電子輸送性微粒子 9 aをバインダーや増粘剤に分散させてブロッキング膜 7 上に吹き付けるかまたは塗布した後、 乾燥させ、 次いで 1 5 0〜6 0 (TCの 温度で焼成させる。  (1) The electron transporting fine particles 9a are dispersed in a binder or a thickener and sprayed or applied onto the blocking film 7, dried, and then fired at 150 to 60 (TC temperature).
② ブロッキング膜 7上にチタンアルコキシドゃチタンァセトナー卜の溶液を塗 布した後、 乾燥させ、 さらに必要に応じて 1 5 0 ~ 6 0 の温度で焼成す る。  (2) Apply a titanium alkoxide / titanium acetate solution on the blocking film 7, dry it, and fire it at a temperature of 150 to 60 if necessary.
③ ブロッキング膜 7上において酸化チタンゾルをゲルィヒさせる。  (3) The titanium oxide sol is gelled on the blocking film 7.
④チタン化合物を核種子の存在下において加水分解して得られる酸化チタン粒 子を、 ブロッキング膜 7上に吹き付け、 または塗布し、次いで乾燥させた後、 ' 必要に応じて 1 5 0〜6 0 0での温度で焼成する。 チ タ ン Titanium oxide particles obtained by hydrolyzing a titanium compound in the presence of nuclear seeds are sprayed or applied onto the blocking film 7 and then dried, and then dried as needed. Bake at a temperature of 0.
次に、 ブロッキング膜 7上に付着させた電子輸送性微粒子 9 aに、 増感色素 9 bを吸着させる。 ここで増感色素 9 bとは、 可視光領域に吸収を持つ色素で、 金 属錯体や有機色素を用いることができる。  Next, the sensitizing dye 9b is adsorbed on the electron transporting fine particles 9a attached on the blocking film 7. Here, the sensitizing dye 9b is a dye having an absorption in the visible light region, and a metal complex or an organic dye can be used.
金属錯体としては、 銅フタロシアニン、 チタニルフタロシアニンなどの金属フ 夕ロシアニン、 クロロフィルまたはその誘導体、 へミン、 特開平 1— 22038 0号ゃ特開平 5— 504023号に記載のルテニウム、 ォスニゥム、 鉄、 亜鉛な どの金属錯体が挙げられる。 この中で、 ルテニウム錯体としては、 Ru (Π) (ビ ピリジン—ジカルボン酸) 2 (イソチォシアン酸) 2で表されるルテニウム錯体、 具体的にはスイス S o 1 a r on i X社製 Ru t h e n i um505、 Ru t h en i um535、 Ru t hen i um535— b i sTBA、 Ru t hen i urn 620が挙げられる。 Metal complexes include metal phthalocyanines such as copper phthalocyanine and titanyl phthalocyanine. Examples include metal complexes such as russian cyanine, chlorophyll or derivatives thereof, hemin, and ruthenium, osmium, iron, and zinc described in JP-A-1-220380 and JP-A-5-504023. Among these, as the ruthenium complex, a ruthenium complex represented by Ru (Π) (bipyridine-dicarboxylic acid) 2 (isothiocyanic acid) 2, specifically, Ru theni um505 manufactured by Swiss S o 1 ar on i X Ruthenium um535, Ruthenium um535—bisTBA, and Ruthenium urn 620.
また、有機色素としては、シァニン系色素としてメタルフリーフタロシアニン、 メロシアニン系色素、 キサンテン系色素、 トリフエニルメタン系色素を用いるこ とができる。  Further, as the organic dye, metal-free phthalocyanine, merocyanine dye, xanthene dye, and triphenylmethane dye can be used as the cyanine dye.
尚、 本発明においては、 増感性能の点から増感色素 9 bとして金属錯体を用い ることカ 子ましい。  In the present invention, it is preferable to use a metal complex as the sensitizing dye 9b from the viewpoint of sensitizing performance.
ここで、 ブロッキング膜 7上に付着させた電子輸送性微粒子 9 aへの増感色素 9 bの吸着は、 増感色素 9 bの溶液中に良く乾燥させた電子輸送性微粒子 9 aの 層を浸漬させるか、 増感色素 9 bの溶液を電子輸送性微粒子 9 aの層上に塗布す る方法を用いることができる。  Here, the adsorption of the sensitizing dye 9b to the electron transporting fine particles 9a adhered on the blocking film 7 is performed by removing the layer of the electron transporting fine particles 9a that have been well dried in the solution of the sensitizing dye 9b. A method of immersing or applying a solution of the sensitizing dye 9b on the layer of the electron transporting fine particles 9a can be used.
次いで、 増感色素 9 bを吸着させた電子輸送性微粒子 9 aの層に、 正孔輸送材 料 9 cを充填する。 正孔輸送材料 9 cとしては、 例えばァリ—ルァミン系の正電 荷輸送材料であり、 N, N' -d i ph e ny 1 -N, N, — d i - (3 -me thy 1 heny 1) -4, 4' - b i pheny l ami ne (TPD)や、 正電荷輸送機能の長寿命化および安定化のためにより転位点 (Tg) を高くした' 非晶質な 2, 2 ', 7, 7' — t e t r ak i s [Ν, Ν' — d i (4 -me t h oxypheny l) ami ne」 — 9, 9 — s p i r ob i f l u o r en e : OMe TADである。  Next, the hole transporting material 9c is filled in the layer of the electron transporting fine particles 9a having the sensitizing dye 9b adsorbed thereon. The hole transport material 9 c is, for example, an arylamine-based positive charge transport material such as N, N′-diphenyl 1 -N, N, — di-(3 -methy 1 heny 1 ) -4, 4'-bi pheny lamine (TPD) or amorphous 2, 2 ', 7 with a higher dislocation point (Tg) for longer and stable positive charge transport function , 7 '— tetr ak is [Ν, Ν' — di (4 -me th oxypheny l) ami ne ”— 9, 9 — spir ob ifluor en e: OMe TAD.
さらに、 増感色素 9 bから電子輸送性微粒子 9 aへの電子注入効率を向上させ たり、 空間電荷効果を補償するためのドーパントとして、 t r i (b r omo ρ h e n y 1 ) am i n eと S b C 16との塩、 L i [(CF3S02) 2N] や、 L i C 104、 C aC 1〇4を添加しても良い。材料性状としては、極めて低粘度で、 T g点が高く非晶質であることが'望ましい。 Furthermore, tri (bromoρ) is used as a dopant to improve the efficiency of electron injection from the sensitizing dye 9b into the electron transporting fine particles 9a and to compensate for the space charge effect. heny 1) am ine and salts of S b C 1 6, L i [(CF 3 S0 2) 2 N] and, L i C 10 4, C aC 1_Rei 4 may be added. As material properties, it is desirable that the material be extremely low in viscosity, high in Tg point and amorphous.
ここで、 増感色素 9 bを吸着させた電子輸送性微粒子 9 a間への正孔輸送材料 9 cの充填は、 例えばスピンコート法による塗布成膜によって行われる。 これに よって、 増感色素 9 bを吸着させた電子輸送性微粒子 9 aと正孔輸送材料 9 cと からなる発電層膜 9を形成する。  Here, the hole transporting material 9c is filled between the electron transporting fine particles 9a having the sensitizing dye 9b adsorbed thereon, for example, by spin coating. Thus, a power generation layer film 9 composed of the electron transporting fine particles 9a having the sensitizing dye 9b adsorbed thereon and the hole transporting material 9c is formed.
またここで、 ブロッキング膜 7によって、 発電層膜 9と透明電極膜 5とが確実 に分離されるように、 例えば図 6及び図 7に示すように、 発電層膜 9の端縁をブ ロッキング膜 7の端縁よりも内側に設定しても良い。 このような形状の発電層膜 9を形成する場合には、 ブロッキング膜 7を形成した後、 ブロッキング膜 7の周 縁にマスキングを施した状態で上述した一連の発電層膜 9の形成を行う様にする。 以上の後、 この発電層膜 9上に、 光電変換素子 1を太陽電池としたときに、 太 陽電池の正極となる対向電極膜 11を形成する。 この対向電極膜 11は、 仕事関 数が 5. O eV程度で、 触媒活性が高い傾向の A u、 P t;、 Pd等を用いて構成 することが好ましい。 この対向電極膜 11は、 この光電変換素子 1を用いた太陽 電池において内部抵抗を形成するため、抵抗をより少なくすることを目的として、 膜厚は厚い方が良い。 し力 ^し、 対向電極膜 11側から光が入射するような光電変 換素子の場合には、 対向電極膜 11の膜厚を抑えることで光吸収が抑えられ、 電 池性能が得られる様になる。 このため、 例えば、 対向電極莫 11を Au、 P t、 Pd等によって構成する場合、 対向電極膜 11の膜厚を 30 Onm以下、 さらに' は 200 nm以下とすることが好ましい。  Also, here, for example, as shown in FIGS. 6 and 7, the edge of the power generation layer film 9 is blocked by a blocking film so that the power generation layer film 9 and the transparent electrode film 5 are surely separated by the blocking film 7. 7 may be set inside the edge. In the case of forming the power generation layer film 9 having such a shape, after forming the blocking film 7, the above-described series of the power generation layer film 9 is formed while the periphery of the blocking film 7 is masked. To After the above, a counter electrode film 11 serving as a positive electrode of the solar cell when the photoelectric conversion element 1 is a solar cell is formed on the power generation layer film 9. The counter electrode film 11 is preferably formed using Au, Pt ;, Pd, or the like, which have a work function of about 5. O eV and a high catalytic activity. Since the counter electrode film 11 forms an internal resistance in a solar cell using the photoelectric conversion element 1, it is preferable that the counter electrode film 11 be thicker for the purpose of reducing the resistance. In the case of a photoelectric conversion element in which light is incident from the counter electrode film 11 side, light absorption is suppressed by reducing the thickness of the counter electrode film 11 so that battery performance can be obtained. become. For this reason, for example, when the counter electrode 11 is made of Au, Pt, Pd, or the like, it is preferable that the thickness of the counter electrode film 11 be 30 Onm or less, and that the thickness be 200 nm or less.
この対向電極膜 11の形成は、 スパッ夕法、 真空蒸着法、 I P法、 CVDなど の真空成膜法によって行うことが望ましい。 また、 成膜時の基板温度は、 発電層 膜 9を構成する正孔輸送材料 9 cの分解温度以下に設定されることとする。  This counter electrode film 11 is preferably formed by a vacuum film forming method such as a sputtering method, a vacuum evaporation method, an IP method, and a CVD method. Further, the substrate temperature at the time of film formation is set to be equal to or lower than the decomposition temperature of the hole transport material 9 c constituting the power generation layer film 9.
以上のようにして、 固体型の光電変換素子 1が得られる。 この光電変換素子 1 を太陽電池として用いる場合、 透明電極膜 5および対向電極膜 1 1を外部回路 2 0に接続した状態で用いられる。 As described above, the solid-state photoelectric conversion element 1 is obtained. This photoelectric conversion element 1 Is used as a solar cell in a state where the transparent electrode film 5 and the counter electrode film 11 are connected to an external circuit 20.
以上説明した製造方法では、 ブロッキング膜 7を真空成膜によって成膜する構 成としたことで、 膜厚および膜質の制御性が良好で、 かつ異物などの混入の無い ブロッキング膜 7が得られる。 このため、 緻密な膜質でかつ薄膜化されたブロッ キング膜 7を形成することが可能になる。 つまり、 緻密な膜質のブロッキング膜 7を薄膜化できるため、 ブロッキング膜 7における光吸収が抑えられ、 かっこの ブロッキング膜によって発電層膜 9と透明電極膜 5とが確実に分離された光電変 換素子 1が得られる。 この結果、 変換効率の高い光電変換素子 1を得ることがで き、 この光電変換素子 1を用いて電池性能の良好な固体型の太陽電池を実現する ことが可能になる。  In the above-described manufacturing method, since the blocking film 7 is formed by vacuum film formation, the controllability of the film thickness and the film quality is good, and the blocking film 7 free of foreign matter or the like can be obtained. For this reason, it is possible to form the blocking film 7 which is dense and thin. That is, since the dense blocking film 7 can be made thinner, light absorption in the blocking film 7 is suppressed, and the power generation layer film 9 and the transparent electrode film 5 are reliably separated by the bracket blocking film. 1 is obtained. As a result, a photoelectric conversion element 1 having high conversion efficiency can be obtained, and a solid-state solar cell having good battery performance can be realized using the photoelectric conversion element 1.
尚、 以上の実施形態においては、 発電層膜 9中の電子輸送性微粒子 9 aに増感 色素 9 bを吸着させてなる色素増感型の光電変換素子の構成を説明した。し力、し、 本発明の光電変換素子は、 電子輸送性微粒子 9 aと正孔輸送材料 9 cとで発電層 膜 9が構成されており、 この発電層膜 9と透明電極膜 5との間にブロッキング膜 7が設けられた固体型の光電変換素子に広く適用可能である。  In the above embodiment, the configuration of the dye-sensitized photoelectric conversion element in which the sensitizing dye 9b is adsorbed on the electron transporting fine particles 9a in the power generation layer film 9 has been described. In the photoelectric conversion element of the present invention, the power generation layer film 9 is composed of the electron transporting fine particles 9a and the hole transport material 9c. The present invention can be widely applied to solid-state photoelectric conversion elements provided with a blocking film 7 between them.
このような光電変換素子として、 電子輸送性微粒子 9 aに、 長波長吸収励起型 の酸素欠陥を有する酸化チタンを用いたものがある。 この光電変換素子は、 電子 輸送性微粒子 9 aに増感色素を吸着させることなく構成可能であり、 この場合で あってもブロッキング膜に要求される性質は、 増感色素を備えたものと同様であ るため、 本発明の適用により、 同様の効果を得ることができる。 ' 次に、 本発明の具体的な実施例 1〜 4および比較例、 さらにはこれらの評価結 果を説明する。 各実施例 1〜 4および比較例は、 それぞれプロッキング)]奠 7の形 成条件を変化させ、 それぞれの形成条件においてプロッキング膜 7の膜厚を変化 させて光電変換素子を作製した。 そして、 作製された光電変換素子における光電 変換効率、 ブロッキング膜 7の組成、 および結晶構造を測定した。 <作製手順 > As such a photoelectric conversion element, there is an element using titanium oxide having a long-wavelength absorption-excitation type oxygen defect as the electron transporting fine particles 9a. This photoelectric conversion element can be configured without adsorbing the sensitizing dye on the electron transporting fine particles 9a. Even in this case, the properties required for the blocking film are the same as those having the sensitizing dye. Therefore, a similar effect can be obtained by applying the present invention. Next, specific Examples 1 to 4 and Comparative Examples of the present invention, and the evaluation results thereof will be described. In each of Examples 1 to 4 and Comparative Example, the photoelectric conversion element was manufactured by changing the forming conditions of the blocking film 7) and changing the film thickness of the blocking film 7 under each forming condition. Then, the photoelectric conversion efficiency, the composition of the blocking film 7, and the crystal structure of the manufactured photoelectric conversion element were measured. <Preparation procedure>
各実施例 1〜4および比較例における光電変換素子を次の手順で作製した。 先ず、 25mmX 25mmのガラスからなる基板 3上の全面に、 スパッタ法に よって I TOからなる透明電極膜 5を形成した。  The photoelectric conversion elements in Examples 1 to 4 and Comparative Example were manufactured in the following procedure. First, a transparent electrode film 5 made of ITO was formed on the entire surface of a substrate 3 made of 25 mm × 25 mm glass by sputtering.
次いで、 透明電極膜 5上にマスキングを施し、 透明電極膜 5上の 2 OmmX 2 5 mmの領域に、 酸化チタンからなるブロッキング膜 7を形成した。  Next, masking was performed on the transparent electrode film 5, and a blocking film 7 made of titanium oxide was formed in a region of 2 mm × 25 mm on the transparent electrode film 5.
ここでは、 各実施例;!〜 4および比較例毎に 5つの評価サンプルを用意し、 各 評価サンプルにおける透明電極膜 5上の 2 OmmX 25 mmの領域に、 10 nm, Here, each embodiment; 5 and 5 evaluation samples were prepared for each of the comparative examples, and in each evaluation sample, a 10 nm,
20 nm, 60 nm, 100 nm, 150 nmの 5種類の膜厚でそれぞれブロッ キング膜を形成した。 Blocking films were formed at five different thicknesses: 20 nm, 60 nm, 100 nm, and 150 nm.
これらのプロッキング膜 7の成膜は R Fスパッ夕法により行い、 成膜の際の酸 素 (02) 分圧および基板温度を下記表示 1に示すように設定した。 またこの成 膜には、 ターゲットに T i 02 (99. 99%) を用い、 共通する成膜条件とし て、投入電力を 0. 44WZmm2、スパッ夕ガスとして用いる A rの分圧 13.Deposition of these flops locking film 7 is carried out by RF sputtering evening method to set the oxygen (0 2) partial pressure and the substrate temperature during the deposition as shown below display 1. Also this film, using a T i 0 2 (99. 99% ) to the target, as a common film formation conditions, the input power 0. 44WZmm 2, the partial pressure of A r used as sputtering evening gas 13.
3 P aに設定した。 ブロッキング膜の形成条件 It was set to 3 Pa. Blocking film formation conditions
Figure imgf000014_0001
次に、 ブロッキング膜 7上に、 電子輸送性微粒子 9 aをスクリーン印刷にて印 刷塗布し、 付着させた。 電子輸送性微粒子 9 aとしては、 S o 1 a 1- o n i X社 製アナ夕ーゼ型酸化チタニアゾル (粒子サイズ 13 nm、 比表面積 12 OmV g)商品名 T i -Nanoox i de Tを用いた。その後、大気中において 30 0°Cの焼成を行い、 膜厚約 5 mのアナターゼ型結晶の酸化チタンからなる電子 輸送性微粒子 9 aの層を得た。
Figure imgf000014_0001
Next, the electron transporting fine particles 9a were printed and applied on the blocking film 7 by screen printing. As the electron-transporting fine particles 9a, Ana-ose type titania sol (particle size: 13 nm, specific surface area: 12 OmV g) manufactured by So1a1-oni X was used. . After that, 30 By baking at 0 ° C., a layer of electron transporting fine particles 9a made of anatase type crystal titanium oxide having a thickness of about 5 m was obtained.
次いで、 電子輸送性微粒子 9 aを付着させたサンプルを、 増感色素溶液 (上述 した Ru t h e n i um5 3 5— b i s TBA溶液) に浸漬し、 電子輸送性微粒 子 9 aに増感色素 9 bを吸着させた。 その後、 正孔輸送材料溶液 (上述した〇M e TAD溶液) をスピンコート法によって塗布し、 電子輸送性微粒子 9 aの隙間 に正孔輸送材料 9 cを充填させた。 そして、 透明電極膜 5部分に付着している正 孔輸送材料 9 cを綿棒で十分に拭き取り、 さらに正孔輸送材料 9 c中の溶媒を蒸 発させて発電層膜 9を得た。  Next, the sample having the electron-transporting fine particles 9a attached thereto is immersed in a sensitizing dye solution (the above-mentioned Ruthenium 53-bis TBA solution), and the sensitizing dye 9b is added to the electron-transporting fine particles 9a. Adsorbed. Thereafter, a hole transport material solution (the above-mentioned ΔMe TAD solution) was applied by a spin coating method, and the gap between the electron transporting fine particles 9a was filled with the hole transport material 9c. Then, the hole transporting material 9 c attached to the transparent electrode film 5 was sufficiently wiped off with a cotton swab, and the solvent in the hole transporting material 9 c was evaporated to obtain a power generation layer film 9.
次に、 スパッタ法によつて、 発電層膜 9上に A uを 1 5 011 mの膜厚で Jt積さ せて対向電極膜 1 1を形成し、 以上によって光有効面積 5 cm2の光電変換素子 1を太陽電池として作製した。 Next, by sputtering, Au is deposited on the power generation layer film 9 with a thickness of 15011 m by Jt to form the counter electrode film 11, and a photoelectric effective area of 5 cm 2 is thereby formed. The conversion element 1 was produced as a solar cell.
く評価結果〉 Evaluation result>
各実施例 1〜 4および比較例で作製した各光電変換素子に関し、 電池特性とし て光電変換効率を測定した。 また、 各光電変換素子のブロッキング膜に関して、 X線マイクロアナライザー (XMA) を用いて酸化チタンの組成比を測定し、 X 線回折装置 (MRD) を用いて結晶構造を解析し、 さらに波長 5 50 nmの光に 対する光吸収率を測定した。 ただし光吸収率の測定は、 膜厚 1 00 nmのブロッ キング膜について測定した。  For each of the photoelectric conversion elements manufactured in Examples 1 to 4 and Comparative Example, the photoelectric conversion efficiency was measured as a battery characteristic. For the blocking film of each photoelectric conversion element, the composition ratio of titanium oxide was measured using an X-ray microanalyzer (XMA), and the crystal structure was analyzed using an X-ray diffractometer (MRD). The light absorptivity for nm light was measured. However, the measurement of the light absorptance was performed on a blocking film having a thickness of 100 nm.
下記表 2に、 比較例に関する上記評価結果を示す。 また、 比較例のブロッキン グ膜 (膜厚 1 0 0 nm) の光吸収率は 1 1 %であった。 ' 表 2 Table 2 below shows the evaluation results of the comparative examples. The light absorption of the blocking film (100 nm thick) of the comparative example was 11%. ' Table 2
比較例  Comparative example
Figure imgf000016_0001
下記表 3に、 実施例 1に関する上記評価結果を示す。 また、 実施例 1のブロッ キング膜 (膜厚 l O Onm) の光吸収率は 1%であった。
Figure imgf000016_0001
Table 3 below shows the evaluation results of Example 1 above. Further, the light absorption of the blocking film (film thickness l O Onm) of Example 1 was 1%.
表 3  Table 3
実施例 1  Example 1
Figure imgf000016_0002
下記表 4に、 実施例 2に関する上記評価結果を示す。 また、 実施例 2のブロッ キング膜 (膜厚 100 nm) の光吸収率は 1 %であった。
Figure imgf000016_0002
Table 4 below shows the results of the above evaluations for Example 2. The light absorption of the blocking film (film thickness 100 nm) of Example 2 was 1%.
表 4  Table 4
実施例 2  Example 2
変換効率 O/T i組成比 結晶構造 Conversion efficiency O / Ti composition ratio Crystal structure
10 nm 0. 119 1. 8 無定形10 nm 0.119 1.8 amorphous
20 nm 0. 209 1. 8 無定形20 nm 0.209 1.8 Amorphous
60 nm 0. 217 1. 8 無定形60 nm 0.217 1.8 amorphous
100 nm 0. 215 1. 8 無定形 100 nm 0.215 1.8 amorphous
150 nm 0. 187 1. 8 無定形 下記表 5.に、 実施例 3に関する上記評価結果を示す。 また、 実施例 3のブロッ キング膜 (膜厚 1 0 0 n m) の光吸収率は 1 %であった。 150 nm 0.187 1.8 Amorphous Table 5 below shows the results of the above evaluations for Example 3. The light absorption of the blocking film (thickness: 100 nm) of Example 3 was 1%.
表 5  Table 5
実施例 3  Example 3
Figure imgf000017_0001
下記表 6に、 実施例 4に関する上記評価結果を示す。 また、 実施例 4のブロッ キング膜 (膜厚 1 0 O n m) の光吸収率は 1 %であった。
Figure imgf000017_0001
Table 6 below shows the results of the evaluation of Example 4 above. The light absorption of the blocking film (film thickness of 10 O nm) of Example 4 was 1%.
- 表 6  -Table 6
実施例 4  Example 4
Figure imgf000017_0002
以上の結果、 ブロッキング膜 7として酸化チタンを用いた場合、 チタンに対す る酸素の組成比が 1 · 8以上である実施例 1〜 4においては、 プロッキング膜 7 における光吸収率が低く抑えられていることが分かった。 また、 この場合、 プロ ッキング膜 7の膜厚が 2 0 n m〜 1 0 0 n mの範囲において、 変換効率が 0 - 1
Figure imgf000017_0002
As a result, when titanium oxide was used as the blocking film 7, in Examples 1 to 4 in which the composition ratio of oxygen to titanium was 1.8 or more, the light absorption of the blocking film 7 was suppressed to a low level. I knew it was. In this case, when the thickness of the blocking film 7 is in the range of 20 nm to 100 nm, the conversion efficiency is 0 to 1
9 5以上^:高い値を示すことが確認された。 さらに、 ブロッキング膜 7の結晶形 態は、 無定型またはアナタ一ゼ結晶であれば、 膜厚 2 O nm〜 l 0 O n mの範囲 において、上述したような変換効率および光吸収率が得られることが確認された。 産業上の利用可能性 9 5 or more ^: High values were confirmed. Further, the crystalline form of the blocking film 7 is in the range of 2 O nm to 10 O nm if it is amorphous or anatase crystal. In the above, it was confirmed that the above-described conversion efficiency and light absorption were obtained. Industrial applicability
以上説明したように本発明によれば、 発電層膜と透明電極膜との間のブロッキ ング膜を真空成膜によって成膜する構成としたことで、 緻密な膜質のブロッキン グ膜を薄膜ィ匕できるため、 変換効率の高い光電変換素子を得ることができ、 この 光電変換素子を用いて電池性能の良好な固体型の太陽電池を実現することが可能 になる。  As described above, according to the present invention, the blocking film between the power generation layer film and the transparent electrode film is formed by vacuum film formation, so that the dense film quality of the blocking film can be reduced. Therefore, a photoelectric conversion element with high conversion efficiency can be obtained, and a solid-state solar cell having good battery performance can be realized using the photoelectric conversion element.

Claims

請 求 の 範 囲 The scope of the claims
1 . 透明電極膜上に短絡防止用のブロッキング膜を形成し、 当該ブロッキング 膜上に電子輸送性微粒子と正孔輸送材料とからなる発電層膜を形成した後、 当該 発電層膜上に対向電極膜を形成する光電変換素子の製造方法において、 1. A blocking film for preventing short circuit is formed on the transparent electrode film, a power generation layer film composed of electron transporting fine particles and a hole transport material is formed on the blocking film, and a counter electrode is formed on the power generation layer film. In a method for manufacturing a photoelectric conversion element for forming a film,
前記ブロッキング膜の形成は、 真空成膜によって行われる  The formation of the blocking film is performed by vacuum film formation.
ことを特徴とする光電変換素子の製造方法。  A method for manufacturing a photoelectric conversion element, comprising:
2 . 透明電極膜と対向電極膜との間に、 電子輸送性微粒子と正孔輸送材料とか らなる発電層膜力 S挟持されると共に、 前記透明電極膜と前記発電層膜との間に短 絡防止用のブロッキング膜を設けてなる光電変換素子において、  2. Between the transparent electrode film and the counter electrode film, a power generation layer film force S composed of electron transporting fine particles and a hole transport material is sandwiched, and a short-circuit is formed between the transparent electrode film and the power generation layer film. In a photoelectric conversion element provided with a blocking film for preventing entanglement,
前記プロッキング膜は、 真空成膜によって形成された膜である  The blocking film is a film formed by vacuum film formation.
ことを特徴とする光電変換素子。  A photoelectric conversion element characterized by the above-mentioned.
PCT/JP2001/009538 2001-10-31 2001-10-31 Method for fabricating photoelectric conversion element and photoelectric conversion element WO2003038909A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE10197130.3T DE10197130B4 (en) 2001-10-31 2001-10-31 Method for producing a photoelectric converter and photoelectric converter
PCT/JP2001/009538 WO2003038909A1 (en) 2001-10-31 2001-10-31 Method for fabricating photoelectric conversion element and photoelectric conversion element
JP2003541065A JPWO2003038909A1 (en) 2001-10-31 2001-10-31 Method for manufacturing photoelectric conversion element and photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/009538 WO2003038909A1 (en) 2001-10-31 2001-10-31 Method for fabricating photoelectric conversion element and photoelectric conversion element

Publications (1)

Publication Number Publication Date
WO2003038909A1 true WO2003038909A1 (en) 2003-05-08

Family

ID=11737886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009538 WO2003038909A1 (en) 2001-10-31 2001-10-31 Method for fabricating photoelectric conversion element and photoelectric conversion element

Country Status (3)

Country Link
JP (1) JPWO2003038909A1 (en)
DE (1) DE10197130B4 (en)
WO (1) WO2003038909A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
JP2011119696A (en) * 2009-10-30 2011-06-16 Sumitomo Chemical Co Ltd Organic thin-film solar cell and method for manufacturing same
JP2012509579A (en) * 2008-11-18 2012-04-19 コナルカ テクノロジーズ インコーポレイテッド Dye-sensitized photovoltaic cell
CN102522438A (en) * 2011-12-15 2012-06-27 东南大学 Near infrared photoelectric detector with enhancement based on utilization of indium tin oxide nanoparticles
JP2016082003A (en) * 2014-10-14 2016-05-16 積水化学工業株式会社 Method for manufacturing thin-film solar battery
JP2018170382A (en) * 2017-03-29 2018-11-01 積水化学工業株式会社 Solar cell
JP2020145226A (en) * 2019-03-04 2020-09-10 シャープ株式会社 Hybrid particle, photoelectric conversion element, photoreceptor and image formation apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090990A (en) * 1998-09-16 2000-03-31 Toshiba Corp Photochemical cell and its manufacture
JP2000231943A (en) * 1998-12-08 2000-08-22 Toyota Central Res & Dev Lab Inc Semiconductor electrode and its manufacture
US6130378A (en) * 1998-04-30 2000-10-10 Minolta Co., Ltd. Solar battery
JP2000285974A (en) * 1999-03-30 2000-10-13 Toshiba Corp Photosensitized photovolatic power generation element
JP2001156314A (en) * 1999-11-26 2001-06-08 Fuji Photo Film Co Ltd Photoelectric conversion element and solar battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6130378A (en) * 1998-04-30 2000-10-10 Minolta Co., Ltd. Solar battery
JP2000090990A (en) * 1998-09-16 2000-03-31 Toshiba Corp Photochemical cell and its manufacture
JP2000231943A (en) * 1998-12-08 2000-08-22 Toyota Central Res & Dev Lab Inc Semiconductor electrode and its manufacture
JP2000285974A (en) * 1999-03-30 2000-10-13 Toshiba Corp Photosensitized photovolatic power generation element
JP2001156314A (en) * 1999-11-26 2001-06-08 Fuji Photo Film Co Ltd Photoelectric conversion element and solar battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2845882A2 (en) 2008-10-29 2015-03-11 Fujifilm Corporation Dye, Photoelectric Conversion Element and Photoelectrochemical Cell
JP2012509579A (en) * 2008-11-18 2012-04-19 コナルカ テクノロジーズ インコーポレイテッド Dye-sensitized photovoltaic cell
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
JP2011119696A (en) * 2009-10-30 2011-06-16 Sumitomo Chemical Co Ltd Organic thin-film solar cell and method for manufacturing same
CN102522438A (en) * 2011-12-15 2012-06-27 东南大学 Near infrared photoelectric detector with enhancement based on utilization of indium tin oxide nanoparticles
JP2016082003A (en) * 2014-10-14 2016-05-16 積水化学工業株式会社 Method for manufacturing thin-film solar battery
JP2018170382A (en) * 2017-03-29 2018-11-01 積水化学工業株式会社 Solar cell
JP2020145226A (en) * 2019-03-04 2020-09-10 シャープ株式会社 Hybrid particle, photoelectric conversion element, photoreceptor and image formation apparatus
CN111653674A (en) * 2019-03-04 2020-09-11 夏普株式会社 Hybrid particle, photoelectric conversion element, photoreceptor, and image forming apparatus
JP7198688B2 (en) 2019-03-04 2023-01-11 シャープ株式会社 hybrid particles, photoelectric conversion element, photoreceptor and image forming apparatus

Also Published As

Publication number Publication date
JPWO2003038909A1 (en) 2005-02-24
DE10197130B4 (en) 2014-08-28
DE10197130T5 (en) 2004-10-14

Similar Documents

Publication Publication Date Title
US20200303129A1 (en) Producing method of mesoporous thin film solar cell based on perovskite
Guchhait et al. Over 20% efficient CIGS–perovskite tandem solar cells
EP2296216B1 (en) Dye-sensitized solar cell, method for manufacturing dye-sensitized solar cell, and dye-sensitized solar cell module
US10332689B2 (en) Solar cell and process for producing the same
EP2432069B1 (en) Porous electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
US20090133741A1 (en) Photoelectric Conversion Device and Method of Manufacturing the Same, and Photoelectric Power Generation Device
US20060016473A1 (en) Dye-sensitized solar cell employing photoelectric transformation electrode and a method of manufacturing thereof
WO2008004553A1 (en) Dye-sensitized solar cell module and method for fabricating same
JP4097786B2 (en) Solar cell
EP2525437B1 (en) Wet-type solar battery and wet-type solar battery module
JP2002508573A (en) Method for producing dye-containing photovoltaic cell
WO2007100095A1 (en) Method for producing photoelectrode for dye-sensitized solar cell, photoelectrode for dye-sensitized solar cell, and dye-sensitized solar cell
EP2073226A2 (en) Dye-sensitized solar cell and method of manufacturing the same
JP5493369B2 (en) Composition for forming underlayer, method for producing underlayer, method for producing photoelectrode, and method for producing solar cell
CN110350092A (en) A kind of perovskite solar cell and preparation method thereof with bielectron transport layer and double hole transmission layers
JP6094839B2 (en) Dye-sensitized solar cell and method for producing the same
US9090048B2 (en) Counter electrode having carbon material layer for dye-sensitized photovoltaic cell and method of preparing the same
WO2003038909A1 (en) Method for fabricating photoelectric conversion element and photoelectric conversion element
EP1107332A2 (en) Photoelectric conversion device
JP2001156314A (en) Photoelectric conversion element and solar battery
EP2846396A1 (en) Photoelectric conversion element and photoelectric conversion module
CN112002813A (en) Preparation method of perovskite solar cell
JP2008277422A (en) Laminated photoelectric converter
EP3376514A1 (en) Photoelectric conversion element
CN113363394A (en) Perovskite battery preparation method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE JP

WWE Wipo information: entry into national phase

Ref document number: 2003541065

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607