WO2003038251A1 - Method, computer program and control and/or regulation device, for operating an internal combustion engine, as well as an internal combustion engine - Google Patents

Method, computer program and control and/or regulation device, for operating an internal combustion engine, as well as an internal combustion engine Download PDF

Info

Publication number
WO2003038251A1
WO2003038251A1 PCT/DE2002/003517 DE0203517W WO03038251A1 WO 2003038251 A1 WO2003038251 A1 WO 2003038251A1 DE 0203517 W DE0203517 W DE 0203517W WO 03038251 A1 WO03038251 A1 WO 03038251A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
temperature
cylinder head
cooling device
Prior art date
Application number
PCT/DE2002/003517
Other languages
German (de)
French (fr)
Inventor
Manfred Schmitt
Oliver Gerundt
Herbert Windisch
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP2003540498A priority Critical patent/JP4351054B2/en
Priority to EP02779109A priority patent/EP1440228B1/en
Priority to DE50210521T priority patent/DE50210521D1/en
Publication of WO2003038251A1 publication Critical patent/WO2003038251A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P11/16Indicating devices; Other safety devices concerning coolant temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/08Safety, indicating, or supervising devices
    • F02B77/089Safety, indicating, or supervising devices relating to engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2023/00Signal processing; Details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2023/00Signal processing; Details thereof
    • F01P2023/08Microprocessor; Microcomputer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/31Cylinder temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/33Cylinder head temperature

Definitions

  • the invention initially relates to a method for operating an internal combustion engine, in which thermal energy is removed from a region of the internal combustion engine by a cooling device by means of a cooling fluid, in which the temperature is recorded at least at one location of the internal combustion engine, and in which the cooling device is operated from depends on the recorded temperature.
  • a control unit receives signals from temperature sensors which detect temperatures of the engine block, the cylinder head and the cooling water.
  • An electrically driven cooling water pump and valves in the cooling circuit are controlled by a control unit in such a way that none of the temperatures detected by the sensors exceed a predetermined maximum.
  • the operation of the Cooling device depends on the operating state or the temperature of areas of the internal combustion engine.
  • the temperatures are recorded at those points of the internal combustion engine which react only relatively slowly to changes in the thermal operating state of the internal combustion engine. The reason for this is that the places that are actually highly thermally stressed are not accessible.
  • the known cooling circuit and the corresponding method must be cooled more than this per se would be required. This in turn reduces the efficiency of the internal combustion engine.
  • the fuel consumption of the internal combustion engine is also increased indirectly, since the cooling water pump is operated with a greater output than is necessary.
  • the present invention therefore has the task of developing a method of the type mentioned at the outset in such a way that the efficiency of the internal combustion engine is better and less fuel is consumed in the operation of the internal combustion engine.
  • a temperature is used to influence the cooling device, which reproduces the thermal state of the highly stressed areas inside the internal combustion engine very well and spontaneously.
  • the corresponding sensor signal thus responds directly to changes in the operating state of the internal combustion engine. A "lagging behind" of the recorded temperature in relation to the component temperature at the actually relevant point is therefore not available, or at least not to a relevant extent, in the method according to the invention.
  • Cylinder head gasket can be integrated.
  • the cooling device can react spontaneously to the different operating states of the internal combustion engine.
  • the otherwise required safety margins, with which it has previously been intended to prevent the thermally highly stressed components inside the internal combustion engine from being overloaded, can therefore be lower in the method according to the invention or can be eliminated entirely.
  • the internal combustion engine therefore works with a higher degree of efficiency in many operating states.
  • the fuel consumption of the internal combustion engine is reduced because the cooling device, and here in particular one Coolant pump, can work in many operating states of the internal combustion engine with a lower output.
  • the temperature on a sealing surface of a cylinder head facing the cylinder head gasket be recorded at a point which, in terms of temperature, correlates with the temperature at a thermally highly stressed location of a cylinder head, which is located on the combustion chamber side of the cylinder head next to the Exhaust valve is.
  • the area in the cylinder head near the exhaust valve is relatively difficult to access for the cooling fluid. For this reason, this area is subject to the greatest thermal stress in many types of internal combustion engines.
  • the temperature of the cooling fluid be detected and the operation of the cooling device also depends on the detected temperature of the cooling fluid.
  • a state of the coolant that is particularly relevant for the operation of the internal combustion engine is present when boiling bubbles occur in the coolant.
  • Such bubble boiling in turn depends to a considerable extent on the temperature of the cooling fluid.
  • the cooling device can therefore be influenced with even greater precision.
  • the occurrence of bubble boiling is also influenced by the temperature of the wetted surface. Knowing their temperature is therefore also helpful in predicting the occurrence of bubble boiling.
  • a component temperature is measured on a sealing surface of a cylinder facing the cylinder head gasket at a location that is closest to an adjacent cylinder, and that the temperature of the cooling fluid in a flow space between the two adjacent cylinders is recorded.
  • the flow volume of the cooling fluid between two adjacent cylinder liners is relatively low and at the same time the component temperature on the cylinder is comparatively high. Bubble boiling of the cooling fluid will therefore most likely occur first at this point.
  • the thermally critical areas can differ from internal combustion engine to internal combustion engine. They are preferably determined in advance by tests for each type of internal combustion engine.
  • the operation of the cooling device is influenced in such a way that the desired temperature is kept approximately constant at the location of the component which is located within the internal combustion engine and is difficult or impossible to access. As a result, the thermal Alternating load on the component is minimized and the service life of the component is further extended.
  • a possible operating strategy also consists in influencing the operation of the cooling device in such a way that bubble boiling does not occur anywhere in the coolant during operation of the internal combustion engine. This is a comparatively safe operating strategy, since in the case of strong bubble boiling, the heat transfer from the components of the internal combustion engine to the cooling fluid drops significantly, which leads to a reduced cooling capacity of the cooling device. As a result, there is a risk of the internal combustion engine overheating, with corresponding adverse effects on the service life of the internal combustion engine.
  • the operation of the cooling device is influenced in such a way that, during operation of the internal combustion engine, slight bubble boiling occurs in the coolant, at least in some areas, such that
  • Heat transfer coefficient or the heat flow density in the corresponding area is approximately maximum. This development takes advantage of the physical effect that the heat transfer coefficient is greater in the case of slight bubble boiling than in an operating state in which no bubble boiling occurs. In the case of slight bubble boiling, the heat is best dissipated from the corresponding component into the cooling fluid. However, care must be taken to ensure that the bubble boiling does not become too strong and the heat transfer from the component into the cooling fluid breaks down as a result.
  • the volume flow and the temperature of the cooling fluid are influenced such that the desired component temperature is achieved with the lowest possible delivery rate of the cooling device.
  • Such a control principle is easy to implement and leads due to the lowest possible delivery rate of the cooling device for a significant fuel saving.
  • a further embodiment of the method according to the invention provides that the operation of the cooling device is influenced in such a way that a lubricant with which moving parts and / or bearings of the internal combustion engine are lubricated has approximately a desired temperature during operation of the internal combustion engine.
  • the lubricant preferably has optimum lubrication properties at the desired temperature, which leads to favorable wear behavior, longer service life of the moving parts and the bearings and lower fuel consumption.
  • the invention also relates to a computer program which is suitable for carrying out the above method when it is executed on a computer. It is particularly preferred if the computer program is stored on a memory, in particular on a flash memory.
  • control and / or regulating device for operating an internal combustion engine. It is particularly preferred if the control and / or regulating device comprises a memory on which a computer program of the above type is stored.
  • the invention also relates to an internal combustion engine, with a combustion chamber, with a cooling device which removes thermal energy from an area of the internal combustion engine by means of a cooling fluid, with at least one temperature sensor which detects the temperature at a location of the internal combustion engine, and with a device, which influences the operation of the cooling device depending on the signal from the temperature sensor.
  • the temperature sensor is arranged at a location of a cylinder head gasket of the internal combustion engine, which is selected so that its temperature at least substantially correlates with the temperature at a location of a component of the internal combustion engine, which is thermally highly stressed, located within the internal combustion engine and only is difficult or not accessible at all.
  • the temperature sensor be integrated in a cylinder head gasket of the internal combustion engine.
  • the advantages according to the invention can thus also be achieved in an internal combustion engine, the actual components of which remain unchanged, but which is equipped with a corresponding cylinder head gasket.
  • the corresponding internal combustion engine is therefore inexpensive to manufacture and retrofitting is also possible.
  • the internal combustion engine comprises a control and / or regulating device of the above type.
  • FIG. 1 shows a schematic diagram of an internal combustion engine with an engine block, a cylinder head and a cooling device
  • FIG. 2 shows a perspective top view of a region of the cylinder head of the internal combustion engine from FIG. 1; Fig. 3; a top perspective view of a portion of the engine block of the internal combustion engine of FIG. 1;
  • Fig. 4 a detail of the representation of Fig. 3;
  • FIG. 5 a diagram in which the near one
  • Fig. 6 three diagrams in which the load of the
  • Internal combustion engine the speed of a vehicle in which the internal combustion engine is installed and the temperature occurring over time when using a first control strategy of the cooling device in the vicinity of the exhaust valve of the cylinder head of the cylinder head;
  • Fig. 7 four diagrams in which the load of the
  • FIG. 8 four diagrams similar to FIG. 7 for a third control strategy of the cooling device
  • Figure 10 four diagrams showing the load of the
  • An internal combustion engine bears the overall reference number 10 in FIG. 1. It comprises an engine block 12 to which a cylinder head 14 is connected. A cylinder head gasket 16 is arranged between the engine block and the cylinder head 14. The internal combustion engine 10 is installed in a motor vehicle, not shown in the drawing, and is used to drive it.
  • the engine block 12 is cooled by a cooling device 18.
  • This comprises an electrically driven cooling water pump 20 which is connected on the outlet side to the engine block 12 and indirectly to the cylinder head 14 (indirectly insofar as the cooling water flows from the engine block 12 into the cylinder head 14 through corresponding channels (not shown) and openings in the cylinder head gasket 16 ).
  • a cooling water line 22 leads from the cylinder head 14 to a valve 24, by means of which the cooling water flow flows into a line 26, which leads via a heat exchanger 28 to the electrical cooling water pump 20. and can be branched into a bypass line 30, which leads directly to the electric cooling water pump 20 bypassing the heat exchanger 28.
  • Combustion air is supplied to the cylinder head 14 via an intake pipe 32 in which an electrically adjustable throttle valve 34 is arranged.
  • the hot combustion exhaust gases are discharged via an exhaust pipe 36.
  • the operating state of the internal combustion engine 10 is detected by a plurality of sensors: three temperature sensors 38, 40 and 42 are integrated in the cylinder head gasket 16. This can be done, for example, by printing PTC resistors onto the cylinder head gasket 16 using the screen printing method.
  • the location of the temperature sensor 38 can be seen from FIG. 2: This shows the area of a cylinder 44 in the cylinder head 14. 2 can be seen in FIG. a valve plate 46 of an exhaust valve and valve plates 48a and 48b of corresponding intake valves. Also shown is a sealing surface 50 on the cylinder head 14 which surrounds the cylinder 44 and is machined flat. A location 51 at which the temperature sensor 38 is arranged in the installed position lies in the region of the sealing surface 50 in the vicinity of the valve plate 46 of the exhaust valve.
  • the temperature sensor 38 is arranged on the cylinder head gasket 16 facing the cylinder head 14.
  • FIG. 3 shows the cylinder 44 and adjacent cylinders 43 and 45 in the engine block 12.
  • the pistons (without reference numerals) can be seen inside the cylinders 43, 44 and 45 and a flow chamber 52 surrounding the individual cylinders 43, 44 and 45, through which cooling water flows when the internal combustion engine 10 is operating.
  • the one temperature sensor 40 is arranged in the region of a flat machined sealing surface 54 of a cylinder liner (without reference number) of the cylinder 43, specifically at that point which is directly adjacent to the cylinder 44 lying next to it, and it is arranged on the cylinder head gasket 16 facing the engine block 14.
  • the temperature sensor 42 is arranged on the flow space 52 between the two cylinders 43 and 44 directly next to the temperature sensor 40. Since the temperature of the cooling water is to be measured with the temperature sensor 42, there is no cover layer on the cylinder head gasket 16 pointing to the engine block 12 at the location of the temperature sensor 42.
  • a temperature sensor 56 eats the temperature of the lubricating oil present in an oil sump 58 (see FIG. 1).
  • a speed sensor 60 detects the speed of a ' crankshaft 62 of the internal combustion engine 10.
  • a hot film air mass meter (hereinafter abbreviated to "HFM sensor”) bears the reference number 64, is arranged upstream of the throttle valve 34 in the intake pipe 32 and detects the air mass, which gets into the combustion chambers of the internal combustion engine 10. This in turn is representative of the load of the internal combustion engine 10.
  • All sensors 38, 40, 42, 56, 60 and 64 deliver corresponding signals to a control and regulating device 66.
  • This in turn controls the throttle valve 34 in the intake pipe 32 and the electric cooling water pump 20.
  • the valve 24 is also controlled by the control and regulating device 66.
  • the position of the temperature sensor 38 is selected such that the temperature tml measured by the temperature sensor 38 during operation of the internal combustion engine 10 correlates with the temperature tk, which is in the Operation occurs at a location immediately adjacent to the valve plate 46 of the exhaust valve in the wall of the cylinder head 14 on the combustion chamber side. This location is identified in FIG. 2 by a cross with the reference number 68.
  • the highest temperatures occur at the point in the cylinder head 14 of the internal combustion engine 10 shown here during the operation of the internal combustion engine 10. This point is therefore subject to particularly high thermal loads.
  • the correlation of the measured values tml with the temperature tk was also determined for the internal combustion engine in preliminary tests.
  • FIG. 6 A first, comparatively simple control strategy of the cooling device 18 can be seen from FIG. 6:
  • the air filling rl detected by the HFM sensor 64 is typical for a period extending over a period t. Operating cycle of the internal combustion engine 10 shown.
  • the air charge rl corresponds to the current engine load in the internal combustion engine shown here.
  • the amount of fuel injected can also be used as a criterion for the current engine load in certain operating states.
  • a second diagram in FIG. 6 shows the speed V of the motor vehicle in which the internal combustion engine 10 is installed. Since the heat exchanger 28 in the cooling device 18 is acted upon to a substantial extent by the wind of the motor vehicle, the speed V of the motor vehicle has a direct influence on the action of the heat exchanger 28 and thus on the operation of the cooling device 18.
  • the cooling device 18 is controlled on the basis of the measured values tml supplied by the temperature sensor 38, on the one hand the electric cooling water pump 20 and on the other hand the valve 24 in such a way that the temperature tk at the thermally most stressed point 68 in the cylinder head 14 of the internal combustion engine 10 is essentially constant and in corresponds approximately to the temperature tkmax which is permissible in continuous operation for the material from which the cylinder head 14 is made.
  • the signal from the temperature sensor 38 is fed to the control and regulating device 66, which controls the valve 24 in such a way that a desired temperature of the coolant is reached and which controls the electric cooling water pump 20 so that a desired cooling water volume flow is present.
  • the temperature of the cooling water can be monitored via the signal from the temperature sensor 42.
  • FIG. 7 A second possible control strategy of the cooling device 18 will now be explained with reference to FIG. 7: First, the same operating cycle as in FIG. 6 is plotted, i.e. the same course of the air filling rl and the vehicle speed V. However, the cooling device 18 is no longer regulated with regard to the maximum permissible component temperature, but with a view to reliably avoiding the state of "bubble boiling" in the cooling water of the cooling device 18.
  • Such bubble boiling i.e. the formation of vapor bubbles within the cooling water, can occur in those areas of the flow space 52 in which, for example, when the cooling water pump 20 is switched off while the internal combustion engine 10 is warming up, but also during normal operation of the internal combustion engine 10, the highest cooling water temperatures occur.
  • An important influencing factor for the possibility of the occurrence of bubble boiling is also that Temperature tw of a wall, which limits the area in which the high cooling water temperatures occur.
  • the corresponding locations within an internal combustion engine can be detected by, for example, "preliminary tests. They are different from one engine type to another.
  • tw and tf arranged the two temperature sensors 40 and 42 at the corresponding locations.
  • the temperature tm2 detected by the sensor 40 is very slightly above the actual wall temperature tw during normal operation of the internal combustion engine 10, the temperature detected by the sensor 42 essentially corresponds to the actual cooling water temperature tf.
  • the control of the cooling device 18, i.e. ultimately the electric cooling water pump 20 and the valve 24, is carried out by the control and regulating device 66 such that the load on the internal combustion engine (air filling R1) and the Vehicle speed V on the one hand the wall temperature tw and the cooling water temperature tf are always below the corresponding limits gtw or gtf, at which with the The presence of bubble boilers is to be expected.
  • the limit temperatures gtw and gtf are not constant. Instead, they are continuously determined as a function of various influencing variables that change during operation of the internal combustion engine 10.
  • An influencing variable is, for example, the system pressure in the cooling device 18, the rotational speed of the crankshaft 62, which is detected by the rotational speed sensor 60, the current load rl, etc.
  • the corresponding wall temperature tw and the corresponding temperature tf of the cooling water are controlled by the electrical cooling water pump 20 or the valve 24 set.
  • Another influencing variable for the maximum permissible cooling water temperature is the current volume flow of the cooling water within the cooling device 18. This volume flow can therefore also be used to determine the limit temperature gtf.
  • FIG. 8 shows yet another, third operating strategy for the operation of the cooling device 18.
  • the time profile of the engine load rl and the vehicle speed V is identical to the operating strategies shown in FIGS. 6 and 7.
  • bubble boiling is expressly permitted in the one shown in Fig. 8.
  • This operating strategy is based on the idea that the heat transfer coefficient from the walls of the cylinders 43, 44 and 45 to the cooling water in the flow space 52 is at a maximum if steam bubbles are formed to a small extent on the said walls. This condition is also known as "light bubble boiling".
  • the wall temperature tw of the cylinders 43, 44 and 45 rises above that temperature at which the bubbles boil slightly occurs, the steam bubbles become larger and the heat transfer coefficient drops sharply due to the unstable film formation.
  • the cooling water temperature tf is detected very close to the wall of the cylinder 43 with the aid of the temperature sensor 42 and can be compared with the temperature tw on the outside of the wall of the cylinder 43, which corresponds very well to the temperature tm2 detected by the temperature sensor 40.
  • a control strategy can be implemented which amounts to an optimization of the heat transfer coefficient between the wall of the cylinder 43 and the cooling water. As can be seen from FIG. 8, with such a control strategy the corresponding temperatures tw and tf are therefore constantly just above the limit temperatures gtw and gtf.
  • a good conclusion about the temperatures at the points affected by the lubricating oil, such as between the cylinders 43, 44 and 45 and the pistons (without reference numerals), can be obtained by a combination of the temperature tm2 at the cylinder head 14 detected by the sensor 38 and that from the temperature sensor 42 detected temperature tf of the cooling water can be drawn with the thermal power output by the internal combustion engine 10.
  • This thermal output can be characterized, for example, by the engine speed (speed sensor 60), the engine load (HFM sensor 64) and the oil temperature to (oil temperature sensor 56).
  • the corresponding signals are also fed to the control and regulating device 66, which always keeps the oil temperature at the critical lubrication points in an optimal temperature range by influencing the cooling water temperature, the cooling water volume flow and possibly the thermal power loss emitted by the internal combustion engine 10.
  • FIG. 10 shows a method which is used to avoid exceeding a maximum permissible component temperature tkmax:
  • a maximum permissible component temperature tkmax Such a condition is to be feared, for example, when a high engine load rl is required at low vehicle speed V.
  • the inadequate cooling caused by the wind of the motor vehicle is attempted to be compensated for by a corresponding increase in the cooling water flow dm / dt.
  • the cooling water flow dm / dt is increased by increasing the speed of the electrical cooling water pump 20.
  • the component temperature would, without countermeasures Rise tk to a value above tkmax and possibly damage the cylinder head 14.
  • the thermal energy introduced by the internal combustion engine 10 into the cooling device 18 is reduced or limited by a compulsory reduction in the engine load rl, that is to say by a limitation of the power of the internal combustion engine 10.
  • a locking off of the internal combustion engine 10 takes place in FIG. 10 at the time t1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

Thermal energy is dissipated from an area (14) of an internal combustion engine by a cooling device by means of a cooling fluid. A temperature is thus recorded at least at a location of said internal combustion engine, the operation of said cooling device depending on the recorded temperature. The aim of said invention is to increase the efficiency of said internal combustion engine. Said aim is achieved, whereby a temperature is recorded at a location (51) of a cylinder head gasket of the internal combustion engine. Said temperature is at least substantially correlated with a temperature recorded at a location (68) of a component (14) of said internal combustion engine, the location of said component being thermally high-loaded, situated within the internal combustion engine and only difficult to get to or not accessible at all.

Description

Verfahren, Computerproqramrn und Steuer- und/oder Reqelqerät zum Betreiben einer Brennkraftmaschine, sowie BrennkraftmaschineMethod, computer program and control and / or reqel device for operating an internal combustion engine, and internal combustion engine
Stand der TechnikState of the art
Die Erfindung betrifft zunächst ein Verfahren zum Betreiben einer Brennkraftmaschine, bei dem aus einem Bereich der Brennkrafcmaschine von einer Kühleinrichtung mittels eines Kühlfluids thermische Energie abgeführt wird, bei dem die Temperatur mindestens an einem Ort der Brennkraftmaschine erfasst wird, und bei dem der Betrieb der Kühleinrichtung von der erfassten Temperatur abhängt .The invention initially relates to a method for operating an internal combustion engine, in which thermal energy is removed from a region of the internal combustion engine by a cooling device by means of a cooling fluid, in which the temperature is recorded at least at one location of the internal combustion engine, and in which the cooling device is operated from depends on the recorded temperature.
Ein solches Verfahren ist aus der DE 199 38 614 AI bekannt. In dieser wird ein Kühlkreislauf für einenSuch a method is known from DE 199 38 614 AI. In this is a cooling circuit for one
Verbrennungsmotor beschrieben, bei dem der Motorblock und der Zylinderkopf der Brennkraftmaschine von Kühlwasser durchströmt werden, welches von einem Kühler gekühlt wird. Eine Steuereinheit erhält Signale von Temperatursensoren, welche Temperaturen des Motorblocks, des Zylinderkopfes und des Kühlwassers erfassen. Eine elektrisch angetriebene Kühlwasserpumpe sowie im Kühlkreislauf vorhandene Ventile werden von einer Steuereinheit so angesteuert, dass keine der von den Sensoren erfassten Temperaturen ein vorgegebenes Maximum überschreitet .Internal combustion engine described, in which the engine block and the cylinder head of the internal combustion engine are flowed through by cooling water, which is cooled by a radiator. A control unit receives signals from temperature sensors which detect temperatures of the engine block, the cylinder head and the cooling water. An electrically driven cooling water pump and valves in the cooling circuit are controlled by a control unit in such a way that none of the temperatures detected by the sensors exceed a predetermined maximum.
Bei dem bekannten Kühlkreislauf hängt der Betrieb der Kühleinrichtung zwar vom Betriebszustand bzw. der Temperatur von Bereichen der Brennkraftmaschine ab. Die Temperaturen werden jedoch an solchen Stellen der Brennkraftmaschine erfasst, welche nur relativ träge auf Änderungen des thermischen Betriebszustandes der Brennkraftmaschine reagieren. Der Grund hierfür ist der der, dass die eigentlich thermisch hoch belasteten Stellen nicht zugänglich sind. Um dennoch sicherstellen zu können, dass die thermisch am höchsten belasteten Bauteile im Inneren der Brennkraf maschine, insbesondere im Brennraum der Brennkraftmaschine , eine bestimmte maximal zulässige Temperatur nicht überschreiten, muss bei dem bekannten Kühlkreislauf und dem entsprechenden Verfahren stärker gekühlt werden, als dies an sich erforderlich wäre. Dies reduziert wiederum den Wirkungsgrad der Brennkraftmaschine. Auch wird indirekt der Kraftstoffverbrauch der Brennkraftmaschine erhöht, da die Kühlwasserpumpe mit einer größeren Leistung als an sich notwendig betrieben werden uss .In the known cooling circuit, the operation of the Cooling device depends on the operating state or the temperature of areas of the internal combustion engine. However, the temperatures are recorded at those points of the internal combustion engine which react only relatively slowly to changes in the thermal operating state of the internal combustion engine. The reason for this is that the places that are actually highly thermally stressed are not accessible. In order to be able to ensure that the thermally most highly stressed components inside the internal combustion engine, in particular in the combustion chamber of the internal combustion engine, do not exceed a certain maximum permissible temperature, the known cooling circuit and the corresponding method must be cooled more than this per se would be required. This in turn reduces the efficiency of the internal combustion engine. The fuel consumption of the internal combustion engine is also increased indirectly, since the cooling water pump is operated with a greater output than is necessary.
Die vorliegende Erfindung hat daher die Aufgabe, ein Verfahren der eingangs genannten Art so weiterzubilden, dass der Wirkungsgrad der Brennkraftmaschine besser ist und weniger Kraftstoff im Betrieb der Brennkraftmaschine verbraucht wird.The present invention therefore has the task of developing a method of the type mentioned at the outset in such a way that the efficiency of the internal combustion engine is better and less fuel is consumed in the operation of the internal combustion engine.
Diese Aufgabe wird bei einem Verfahren der eingangs genannten Art dadurch gelöst, dass die Temperatur an einem Ort einer Zylinderkopfdichtung der Brennkraftmaschine erfasst wird, dessen Temperatur mit der Temperatur an einem solchen Ort eines Bauteils der Brennkraftmaschine wenigstens im Wesentlichen korreliert, welcher thermisch hochbelastet, innerhalb der Brennkraftmaschine gelegen und nur schwer oder überhaupt nicht zugänglich ist. Vorteile der ErfindungThis object is achieved in a method of the type mentioned at the outset in that the temperature is recorded at a location of a cylinder head gasket of the internal combustion engine, the temperature of which at least substantially correlates with the temperature at such a location of a component of the internal combustion engine, which is subject to high thermal loads, within the Internal combustion engine located and is difficult or not accessible at all. Advantages of the invention
Bei dem erfindungsgemäßen Verfahren wird eine Temperatur zur Beeinflussung der Kühleinrichtung verwendet, welche den thermischen Zustand der hochbelasteten Bereiche im Inneren der Brennkraftmaschine sehr gut und spontan wiedergib . Das entsprechende Sensorsignal spricht also direkt auf Änderungen des Betriebszustands der Brennkraftmaschine an. Ein "Hinterherhinken" der erfassten Temperatur gegenüber der Bauteiltemperatur an der eigentlich relevanten Stelle ist bei dem erfindungsgemäßen Verfahren somit nicht oder wenigstens nicht in relevantem Umfang vorhanden.In the method according to the invention, a temperature is used to influence the cooling device, which reproduces the thermal state of the highly stressed areas inside the internal combustion engine very well and spontaneously. The corresponding sensor signal thus responds directly to changes in the operating state of the internal combustion engine. A "lagging behind" of the recorded temperature in relation to the component temperature at the actually relevant point is therefore not available, or at least not to a relevant extent, in the method according to the invention.
Dabei wurde erfindungsgemäß festgestellt, dass derartige, für die Beeinflussung der Kühleinrichtung aussagekräf igeIt was found according to the invention that such, meaningful for influencing the cooling device
Temperaturen insbesondere im Bereich derTemperatures especially in the range of
Zylinderkopfdichtung auftreten. Deren Messung ist technisch realisierbar, da die hierzu notwendigen Temperatursensoren beispielsweise im Siebdruckverfahren in dieCylinder head gasket occur. Their measurement is technically feasible, since the temperature sensors required for this are integrated into the screen printing process, for example
Zylinderkopfdichtung integriert werden können.Cylinder head gasket can be integrated.
Da bei dem erfindungsgemäßen Verfahren die relevanten, sich aus dem aktuellen Betriebszustand spontan einstellenden Temperaturen an den thermisch hochbelasteten Stellen bekannt sind, kann die Kühleinrichtung spontan auf die unterschiedlichen Betriebszustände der Brennkraftmaschine reagieren. Die sonst erforderlichen Sicherheitsmargen, mit denen bisher verhindert werden soll, dass die thermisch hochbelasteten Bauteile im Inneren der Brennkraftmaschine überlastet werden, können daher bei dem erfindungsgemäßen Verfahren geringer ausfallen oder komplett entfallen.Since, in the method according to the invention, the relevant temperatures which arise spontaneously from the current operating state at the thermally highly stressed points are known, the cooling device can react spontaneously to the different operating states of the internal combustion engine. The otherwise required safety margins, with which it has previously been intended to prevent the thermally highly stressed components inside the internal combustion engine from being overloaded, can therefore be lower in the method according to the invention or can be eliminated entirely.
In vielen Betriebszuständen arbeitet die Brennkraftmaschine daher mit einem höheren Wirkungsgrad. Darüber hinaus wird der Kraftstoffverbrauch der Brennkraftmaschine gesenkt, da die Kühleinrichtung, und hier insbesondere eine Kühlmittelpumpe, in vielen Betriebszuständen der Brennkraftmaschine mit einer geringeren Leistung arbeiten kann.The internal combustion engine therefore works with a higher degree of efficiency in many operating states. In addition, the fuel consumption of the internal combustion engine is reduced because the cooling device, and here in particular one Coolant pump, can work in many operating states of the internal combustion engine with a lower output.
Vorteilhafte Weiterbildungen der Erfindung sind in Unteransprüchen angegeben.Advantageous developments of the invention are specified in the subclaims.
In einer ersten Weiterbildung wird vorgeschlagen, dass die Temperatur auf einer der Zylinderkopfdichtung zugewandten Dichtfläche eines Zylinderkopfs an einer Stelle erfasst wird, welche im Hinblick auf die Temperatur mit der Temperatur an einem thermisch hochbelasteten Ort eines Zylinderkopfs korreliert, welcher auf der Brennraumseite des Zylinderkopfs neben dem Auslassventil liegt. Der Bereich im Zylinderkopf in der Nähe des Auslassventils ist für das Kühlfluid relativ schlecht zugänglich. Daher ist dieser Bereich bei vielen Typen von Brennkraf maschinen thermisch mit am höchsten belastet.In a first development, it is proposed that the temperature on a sealing surface of a cylinder head facing the cylinder head gasket be recorded at a point which, in terms of temperature, correlates with the temperature at a thermally highly stressed location of a cylinder head, which is located on the combustion chamber side of the cylinder head next to the Exhaust valve is. The area in the cylinder head near the exhaust valve is relatively difficult to access for the cooling fluid. For this reason, this area is subject to the greatest thermal stress in many types of internal combustion engines.
Es wurde nun festgestellt, dass die Temperatur an einer Stelle, welche auf der der Zylinderkopfdichtung zugewanden Dichtflächefläche des Zylinderkopfes und im Allgemeinen in der Nähe des Auslassventils der Brennkraftmaschine liegt, bei vielen Brennkraftmaschinen gut mit der Temperatur dieses thermisch hoch belasteten Bereiches korreliert. Bei diesem erfindungsgemäßen Verfahren wird also eine für die Beeinflussung der Kühleinrichtung in vielen Fällen besonders relevante Temperatur mit hoher Präzision erfasst.It has now been found that the temperature at a point on the sealing surface of the cylinder head facing the cylinder head gasket and generally in the vicinity of the exhaust valve of the internal combustion engine correlates well with the temperature of this thermally highly stressed region in many internal combustion engines. In this method according to the invention, a temperature which is particularly relevant in many cases for influencing the cooling device is detected with high precision.
Ferner wird vorgeschlagen, dass die Temperatur des Kühlfluids erfasst wird und der Betrieb der Kühleinrichtung auch von der erfassten Temperatur des Kühlfluids abhängt. Ein für den Betrieb der Brennkraftmaschine besonders relevanter Zustand des Kühlmittels liegt dann vor, wenn im Kühlmittel Siedeblasen auftreten. Ein solches Blasensieden hängt wiederum in erheblichem Umfange von der Temperatur des Kühlfluids ab. Bei dieser Weiterbildung kann die Beeinflussung der Kühleinrichtung daher mit noch größerer Präzision erfolgen. Das Auftreten von Blasensieden wird aber auch von der Temperatur der benetzten Oberfläche beeinflusst. Die Kenntnis von deren Temperatur ist daher für die Vorhersage des Auftretens von Blasensieden ebenfalls hilfreich.It is also proposed that the temperature of the cooling fluid be detected and the operation of the cooling device also depends on the detected temperature of the cooling fluid. A state of the coolant that is particularly relevant for the operation of the internal combustion engine is present when boiling bubbles occur in the coolant. Such bubble boiling in turn depends to a considerable extent on the temperature of the cooling fluid. In this development, the cooling device can therefore be influenced with even greater precision. The occurrence of bubble boiling is also influenced by the temperature of the wetted surface. Knowing their temperature is therefore also helpful in predicting the occurrence of bubble boiling.
Dabei wird besonders bevorzugt, wenn eine Bauteiltemperatur auf einer der Zylinderkopfdichtung zugewandten Dichtfläche eines Zylinders an einem Ort gemessen wird, welcher einem benachbarten Zylinder am nächsten ist, und dass die Temperatur des Kühlfluids in einem Strömungsraum zwischen den beiden benachbarten Zylindern erfasst wird. Zwischen zwei benachbarten Zylinderbuchsen ist das Strömungsvolumen des Kühlfluids relativ gering und gleichzeitig die Bauteiltemperatur am Zylinder vergleichsweise hoch. Blasensieden des Kühlfluids wird daher an dieser Stelle mit großer Wahrscheinlichkeit zuerst auftreten.It is particularly preferred if a component temperature is measured on a sealing surface of a cylinder facing the cylinder head gasket at a location that is closest to an adjacent cylinder, and that the temperature of the cooling fluid in a flow space between the two adjacent cylinders is recorded. The flow volume of the cooling fluid between two adjacent cylinder liners is relatively low and at the same time the component temperature on the cylinder is comparatively high. Bubble boiling of the cooling fluid will therefore most likely occur first at this point.
Dadurch, dass bei dem erfindungsgemäßen Verfahren die Temperaturen an dieser kritischen Stelle bekannt sind, kann das Auftreten von Blasensieden an dieser Stelle mit hoher Präzision vorhergesagt werden. Hierdurch wird die Sicherheit beim Betrieb der Brennkraftmaschine erhöht . Es sei an dieser Stelle darauf hingewiesen, dass die thermisch kritischen Bereiche von Brennkraftmaschine zu Brennkraftmaschine unterschiedlich sein können. Sie werden vorzugsweise für jeden Typ einer Brennkraftmaschine vorab durch Versuche ermittelt .Because the temperatures at this critical point are known in the method according to the invention, the occurrence of bubble boiling at this point can be predicted with high precision. This increases the safety when operating the internal combustion engine. At this point, it should be pointed out that the thermally critical areas can differ from internal combustion engine to internal combustion engine. They are preferably determined in advance by tests for each type of internal combustion engine.
Möglich ist auch, dass der Betrieb der Kühleinrichtung so beeinflusst wird, dass die gewünschte Temperatur an dem innerhalb der Brennkraftmaschine gelegenen und nur schwer oder überhaupt nicht zugänglichen Ort des Bauteils in etwa konstant gehalten wird. Hierdurch wird die thermische Wechselbelastung des Bauteils minimiert und die Lebensdauer des Bauteils nochmals verlängert .It is also possible that the operation of the cooling device is influenced in such a way that the desired temperature is kept approximately constant at the location of the component which is located within the internal combustion engine and is difficult or impossible to access. As a result, the thermal Alternating load on the component is minimized and the service life of the component is further extended.
Eine mögliche Betriebsstrategie besteht auch darin, dass der Betrieb der Kühleinrichtung so beeinflusst wird, dass im Betrieb der Brennkraftmaschine im Kühlmittel an keiner Stelle Blasensieden auftritt. Dies ist eine vergleichsweise sichere Betriebsstrategie, da bei starkem Blasensieden der Wärmeübergang von den Bauteilen der Brennkraftmaschine zum Kühlfluid deutlich abfällt, was zu einer verminderten Kühlleistung der Kühleinrichtung führt. Hierdurch besteht die Gefahr einer Überhitzung der Brennkraftmaschine mit entsprechenden nachteiligen Auswirkungen auf die Lebensdauer der Brennkraftmaschine .A possible operating strategy also consists in influencing the operation of the cooling device in such a way that bubble boiling does not occur anywhere in the coolant during operation of the internal combustion engine. This is a comparatively safe operating strategy, since in the case of strong bubble boiling, the heat transfer from the components of the internal combustion engine to the cooling fluid drops significantly, which leads to a reduced cooling capacity of the cooling device. As a result, there is a risk of the internal combustion engine overheating, with corresponding adverse effects on the service life of the internal combustion engine.
Möglich ist aber auch, dass der Betrieb der Kühleinrichtung so beeinflusst wird, dass im Betrieb der Brennkraftmaschine im Kühlmittel wenigstens bereichsweise leichtes Blasensieden auftritt, derart, dass derIt is also possible, however, for the operation of the cooling device to be influenced in such a way that, during operation of the internal combustion engine, slight bubble boiling occurs in the coolant, at least in some areas, such that
Wärmeübergangskoeffizient oder die Wärmestromdichte in dem entsprechenden Bereich in etwa maximal ist . Bei dieser Weiterbildung wird der physikalische Effekt ausgenutzt , dass bei leichte Blasensieden der Wärmeübergangskoeffizient größer ist als in einem Betriebszustand, in dem kein Blasensieden auftritt. Bei leichtem Blasensieden wird die Wärme also am besten vom entsprechenden Bauteil in das Kühlfluid abgeleitet . Allerdings muss darauf geachtet werden, dass ausgeschlossen ist, dass das Blasensieden zu stark wird und hierdurch der Wärmeübergang vom Bauteil in das Kühlfluid zusammenbricht.Heat transfer coefficient or the heat flow density in the corresponding area is approximately maximum. This development takes advantage of the physical effect that the heat transfer coefficient is greater in the case of slight bubble boiling than in an operating state in which no bubble boiling occurs. In the case of slight bubble boiling, the heat is best dissipated from the corresponding component into the cooling fluid. However, care must be taken to ensure that the bubble boiling does not become too strong and the heat transfer from the component into the cooling fluid breaks down as a result.
Dabei wird besonders bevorzugt, wenn der Volumenstrom und die Temperatur des Kühlfluids so beeinflusst werden, dass die gewünschte Bauteiltemperatur mit der geringstmöglichen Förderleistung der Kühleinrichtung erzielt wird. Ein solches Regelprinzip ist einfach zu realisieren und führt aufgrund der geringstmöglichen Förderleistung der Kühleinrichtung zu einer signifikanten Kraftstoffeinsparung.It is particularly preferred if the volume flow and the temperature of the cooling fluid are influenced such that the desired component temperature is achieved with the lowest possible delivery rate of the cooling device. Such a control principle is easy to implement and leads due to the lowest possible delivery rate of the cooling device for a significant fuel saving.
Vorgeschlagen wird auch, dass aus der ermittelten Bauteiltemperatur und der erfassten Temperatur des Kühlfluids und/oder aus einer Strömungsgeschwindigkeit des Kühlfluids und/oder aus einem Druck des Kühlfluids und/oder aus einer Last der Brennkraftmaschine jene Temperatur des Kühlfluids ermittelt wird, bei der leichtes Blasensieden im Kühlfluid auf ritt. Hierdurch kann die Temperaturgrenze, welche, je nach Betriebsstrategie, unter keinen Umständen erreicht werden darf oder welche gerade erreicht werden soll, an die sich dynamisch verändernden Betriebszustände der Brennkraftmaschine angepasst werden. Dies ermöglicht es, in unterschiedlichen Betriebzuständen der Brennkraftmaschine die Leistungsmöglichkeiten der Kühleinrichtung optimal auszunutzen.It is also proposed that from the determined component temperature and the detected temperature of the cooling fluid and / or from a flow velocity of the cooling fluid and / or from a pressure of the cooling fluid and / or from a load of the internal combustion engine, that temperature of the cooling fluid is determined at which the gas bubbles easily in the cooling fluid on rode. As a result, the temperature limit, which, depending on the operating strategy, may not be reached under any circumstances or which is to be reached, can be adapted to the dynamically changing operating states of the internal combustion engine. This makes it possible to optimally utilize the performance possibilities of the cooling device in different operating states of the internal combustion engine.
Eine weitere Ausgestaltung des erfindungsgemäßen Verfahrens sieht vor, dass der Betrieb der Kühleinrichtung so beeinflusst wird, dass ein Schmiermittel, mit dem bewegliche Teile und/oder Lager der Brennkraftmaschine geschmiert werden, im Betrieb der Brennkraftmaschine in etwa eine gewünschte Temperatur aufweist. Das Schmiermittel hat bei der gewünschten Temperatur vorzugsweise optimale Schmierungseigenschaften, was zu einem günstigen Verschleißverhalten, längerer Lebensdauer der beweglichen Teile und der Lager und zu einem geringeren Kraftstoffverbrauch führt.A further embodiment of the method according to the invention provides that the operation of the cooling device is influenced in such a way that a lubricant with which moving parts and / or bearings of the internal combustion engine are lubricated has approximately a desired temperature during operation of the internal combustion engine. The lubricant preferably has optimum lubrication properties at the desired temperature, which leads to favorable wear behavior, longer service life of the moving parts and the bearings and lower fuel consumption.
Besonders vorteilhaft ist auch jene Weiterbildung des erfindungsgemäßen Verfahrens, bei welcher dann, wenn die maximale Leistung der Kühleinrichtung erreicht und eine bestimmte Temperatur im Kühlmittel und/oder an einem Bauteil und/oder in dem Schmiermittel erreicht oder überschritten wird, die Leistung der Brennkraftmaschine derart begrenzt wird, dass das Kühlmittel und/oder das Bauteil und/oder das Schmiermittel die bestimmte Temperatur nicht überschreitet oder mindestens auf die bestimmte Temperatur abkühlt . Eine solche situationsabhängige Begrenzung der Leistung der Brennkraftmaschine erhöht die Betriebssicherheit und verlängert die Lebensdauer der Brennkraftmaschine, da verhindert wird, dass es in extremen Betriebssituationen und/oder bei einem Defekt in der Kühleinrichtung in der Brennkraftmaschine zu örtlichen und schädlichen Überhitzungen kommt.Also particularly advantageous is that development of the method according to the invention in which when the maximum output of the cooling device reaches and a certain temperature in the coolant and / or on a component and / or in the lubricant reaches or is exceeded, the power of the internal combustion engine is limited such that the coolant and / or the component and / or the lubricant does not exceed the specific temperature or at least cools down to the specific temperature. Such a situation-dependent limitation of the performance of the internal combustion engine increases operational reliability and extends the service life of the internal combustion engine, since it prevents local and harmful overheating from occurring in extreme operating situations and / or in the event of a defect in the cooling device in the internal combustion engine.
Die Erfindung betrifft auch ein Computerprogramm, welches zur Durchführung des obigen Verfahrens geeignet ist, wenn es auf einem Computer ausgeführt wird. Dabei wird besonders bevorzugt, wenn das Computerprogramm auf einem Speicher, insbesondere auf einem Flash-Memory, abgespeichert ist .The invention also relates to a computer program which is suitable for carrying out the above method when it is executed on a computer. It is particularly preferred if the computer program is stored on a memory, in particular on a flash memory.
Ferner betrifft die Erfindung ein Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine. Dabei wird besonders bevorzugt, wenn das Steuer- und/oder Regelgerät einen Speicher umfasst, auf dem ein Computerprogramm der obigen Art abgespeichert ist .Furthermore, the invention relates to a control and / or regulating device for operating an internal combustion engine. It is particularly preferred if the control and / or regulating device comprises a memory on which a computer program of the above type is stored.
Schließlich betrifft die Erfindung noch eine Brennkra tmaschine, mit einem Brennraum, mit einer Kühleinrichtung, welche aus einem Bereich der Brennkraftmaschine mittels eines Kühlfluids thermische Energie abführt, mit mindestens einem Temperatursensor , welcher die Temperatur an einem Ort dwer Brennkraftmaschine erfasst, und mit einer Einrichtung, welche den Betrieb der Kühleinrichtung abhängig vom Signal des Temperatursensors beeinflusst .Finally, the invention also relates to an internal combustion engine, with a combustion chamber, with a cooling device which removes thermal energy from an area of the internal combustion engine by means of a cooling fluid, with at least one temperature sensor which detects the temperature at a location of the internal combustion engine, and with a device, which influences the operation of the cooling device depending on the signal from the temperature sensor.
Um den Wirkungsgrad der Brennkraftmaschine zu erhöhen und Kraftstoff im Betrieb der Brennkraftmaschine zu sparen, wird vorgeschlagen, dass der Temperatursensor an einem Ort einer Zylinderkopfdichtung der Brennkraf maschine angeordnet ist, welcher so gewählt ist, dass seine Temperatur mit der Temperatur an einem Ort eines Bauteils der Brennkraftmaschine wenigstens im Wesentlichen korreliert, welcher thermisch hochbelastet, innerhalb der Brennkraftmaschine gelegen und nur schwer oder überhaupt nicht zugänglich ist.In order to increase the efficiency of the internal combustion engine and to save fuel in the operation of the internal combustion engine, It is proposed that the temperature sensor is arranged at a location of a cylinder head gasket of the internal combustion engine, which is selected so that its temperature at least substantially correlates with the temperature at a location of a component of the internal combustion engine, which is thermally highly stressed, located within the internal combustion engine and only is difficult or not accessible at all.
In Weiterbildung hierzu wird vorgeschlagen, dass der Temperatursensor in eine Zylinderkopfdichtung der Brennkraftmaschine integriert ist . Die erfindungsgemäßen Vorteile können somit auch bei einer Brennkraftmaschine erzielt werden, deren eigentliche Bauteile unverändert bleiben, welche jedoch mit einer entsprechenden Zylinderkopfdichtung ausgestattet ist. Die entsprechende Brennkraftmaschine ist also preisgünstig herstellbar und auch Nachrüstungen sind möglich.In a further development, it is proposed that the temperature sensor be integrated in a cylinder head gasket of the internal combustion engine. The advantages according to the invention can thus also be achieved in an internal combustion engine, the actual components of which remain unchanged, but which is equipped with a corresponding cylinder head gasket. The corresponding internal combustion engine is therefore inexpensive to manufacture and retrofitting is also possible.
Bevorzugt wird auch, wenn die Brennkraf maschine ein Steuer- und/oder Regelgerät der obigen Art umfasst.It is also preferred if the internal combustion engine comprises a control and / or regulating device of the above type.
Zeichnungdrawing
Nachfolgend werden besonders bevorzugteThe following are particularly preferred
Ausführungsbeispiele der Erfindung unter Bezugnahme auf die beiliegende Zeichnung im Detail erläutert. In der Zeichnung zeigen:Embodiments of the invention explained in detail with reference to the accompanying drawings. The drawing shows:
Fig. 1: eine Prinzipdarstellung einer Brennkraftmaschine mit einem Motorblock, einem Zylinderkopf und einer Kühleinrichtung;1 shows a schematic diagram of an internal combustion engine with an engine block, a cylinder head and a cooling device;
Fig. 2: eine perspektivische Draufsicht auf einen Bereich des Zylinderkopfs der Brennkraftmaschine von Fig. 1; Fig. 3; eine perspektivische Draufsicht auf einen Bereich des Motorblocks der Brennkraftmaschine von Fig. 1;FIG. 2 shows a perspective top view of a region of the cylinder head of the internal combustion engine from FIG. 1; Fig. 3; a top perspective view of a portion of the engine block of the internal combustion engine of FIG. 1;
Fig. 4: ein Detail der Darstellung von Fig. 3;Fig. 4: a detail of the representation of Fig. 3;
Fig. 5; ein Diagramm, in dem die in der Nähe einesFig. 5; a diagram in which the near one
Auslassventils des Zylinderkopfes auftretende Temperatur und eine hierzu korrelierende Temperatur an einer Zylinderkopfdichtung über der Zeit aufgetragen sind;Exhaust valve of the cylinder head temperature and a temperature correlating thereto are plotted on a cylinder head gasket over time;
Fig. 6: drei Diagramme, in denen die Last derFig. 6: three diagrams in which the load of the
Brennkraftmaschine, die Geschwindigkeit eines Fahrzeugs, in welches die Brennkraftmaschine eingebaut ist, und die bei Anwendung einer ersten Regelstrategie der Kühleinrichtung in der Nähe des Auslassventils des Zylinderkopfes des Zylinderkopfes auftretende Temperatur über der Zeit dargestellt sind;Internal combustion engine, the speed of a vehicle in which the internal combustion engine is installed and the temperature occurring over time when using a first control strategy of the cooling device in the vicinity of the exhaust valve of the cylinder head of the cylinder head;
Fig. 7: vier Diagramme, in denen die Last derFig. 7: four diagrams in which the load of the
Brennkraftmaschine, die Geschwindigkeit des Kraftfahrzeugs, in welches die Brennkraftmaschine eingebaut ist, die Temperatur an einem Ort des Zylinderblocks und die Temperatur des Kühlfluids bei einer zweiten Regelstrategie der Kühleinrichtung über der Zeit aufgetragen sind;Internal combustion engine, the speed of the motor vehicle in which the internal combustion engine is installed, the temperature at a location of the cylinder block and the temperature of the cooling fluid are plotted over time in a second control strategy of the cooling device;
Fig. 8; vier Diagramme ähnlich zu Fig. 7 bei einer dritten Regelstrategie der Kühleinrichtung;Fig. 8; four diagrams similar to FIG. 7 for a third control strategy of the cooling device;
Fig. 9; drei Diagramme, in denen die Last derFig. 9; three diagrams showing the load of the
Brennkraftmaschine , die Geschwindigkeit des Kraftfahrzeugs, in welches die Brennkraftmaschine eingebaut ist, und die Temperatur eines Schmiermittels, welche bei einer vierten Regelstrategie der Kühleinrichtung auftritt, jeweils über der Zeit aufgetragen sind; undInternal combustion engine, the speed of the motor vehicle in which the internal combustion engine is installed and the temperature of one Lubricant, which occurs in a fourth control strategy of the cooling device, is in each case applied over time; and
Figur 10: vier Diagramme, in denen die Last derFigure 10: four diagrams showing the load of the
Brennkraftmaschine, die Geschwindigkeit des Kraftfahrzeugs, in welches die Brennkraftmaschine eingebaut ist, die Temperatur in der Nähe eines Auslassventils des Zylinderkopfs, und der Volumenstrom des Kühlwassers über der Zeit aufgetragen sind, welche bei einer eines Schmiermittels, welche in einer bestimmten Betriebssituation der Brennkraftmaschine auftreten.Internal combustion engine, the speed of the motor vehicle in which the internal combustion engine is installed, the temperature in the vicinity of an exhaust valve of the cylinder head, and the volume flow of the cooling water are plotted over time, which occur with a lubricant, which occur in a specific operating situation of the internal combustion engine.
Beschreibung der AusführungsbeispieleDescription of the embodiments
Eine Brennkraftmaschine trägt in Fig. 1 insgesamt das Bezugszeichen 10. Sie umfasst einen Motorblock 12, mit dem ein Zylinderkopf 14 verbunden ist. Zwischen Motorblock und Zylinderkopf 14 ist eine Zylinderkopfdichtung 16 angeordnet . Die Brennkraftmaschine 10 ist in ein in der Zeichnung nicht dargestelltes Kraftfahrzeug eingebaut und dient zu dessen Antrieb.An internal combustion engine bears the overall reference number 10 in FIG. 1. It comprises an engine block 12 to which a cylinder head 14 is connected. A cylinder head gasket 16 is arranged between the engine block and the cylinder head 14. The internal combustion engine 10 is installed in a motor vehicle, not shown in the drawing, and is used to drive it.
Der Motorblock 12 wird ebenso wie der Zylinderkopf 14 von einer Kühleinrichtung 18 gekühlt. Diese umfasst eine elektrisch angetriebene Kühlwasserpumpe 20, welche auslassseitig mit dem Motorblock 12 und indirekt mit dem Zylinderkopf 14 verbunden ist (indirekt insoweit, als das Kühlwasser durch entsprechende Kanäle (nicht dargestellt) und Öffnungen in der Zylinderkopfdichtung 16 vom Motorblock 12 in den Zylinderkopf 14 strömt) . Vom Zylinderkopf 14 führt eine Kühlwasserleitung 22 zu einem Ventil 24, mit dem der Kühlwasserstrom in eine Leitung 26, die über einen Wärmetauscher 28 zur elektrischen Kühlwasserpumpe 20 führt, und in eine Bypassleitung 30, welche unter Umgehung des Wärmetauschers 28 direkt zur elektrischen Kühlwasserpumpe 20 führt, verzweigt werden kann.Like the cylinder head 14, the engine block 12 is cooled by a cooling device 18. This comprises an electrically driven cooling water pump 20 which is connected on the outlet side to the engine block 12 and indirectly to the cylinder head 14 (indirectly insofar as the cooling water flows from the engine block 12 into the cylinder head 14 through corresponding channels (not shown) and openings in the cylinder head gasket 16 ). A cooling water line 22 leads from the cylinder head 14 to a valve 24, by means of which the cooling water flow flows into a line 26, which leads via a heat exchanger 28 to the electrical cooling water pump 20. and can be branched into a bypass line 30, which leads directly to the electric cooling water pump 20 bypassing the heat exchanger 28.
Verbrennungsluft wird dem Zylinderkopf 14 über ein Ansaugrohr 32 zugeführt, in dem eine elektrisch verstellbare Drosselklappe 34 angeordnet ist. Die heißen Verbrennungsabgase werden über ein Abgasrohr 36 abgeleitet.Combustion air is supplied to the cylinder head 14 via an intake pipe 32 in which an electrically adjustable throttle valve 34 is arranged. The hot combustion exhaust gases are discharged via an exhaust pipe 36.
Der Betriebszustand der Brennkraftmaschine 10 wird über mehrere Sensoren erfasst: Drei Temperatursensoren 38, 40 und 42 sind in die Zylinderkopfdichtung 16 integriert. Dies kann beispielsweise dadurch geschehen, dass PTC-Widerstände im Siebdruckverfahren auf die Zylinderkopfdichtung 16 aufgedruckt werden. Der Anbringungsort des Temperatursensors 38 ist dabei aus Fig. 2 ersichtlich: In dieser ist der Bereich eines Zylinders 44 im Zylinderkopf 14 dargestellt. Sichtbar sind in Fig. 2 u.a. ein Ventilteller 46 eines Auslassventils und Ventilteller 48a und 48b entsprechender Einlassventile . Dargestellt ist auch eine den Zylinder 44 kreisringförmig umgebende und plan bearbeitete Dichtfläche 50 am Zylinderkopf 14. Ein Ort 51, an dem in Einbaulage der Temperatursensor 38 angeordnet ist, liegt im Bereich der Dichtfläche 50 in der Nähe des Ventiltellers 46 des Auslassventils. Der Temperatursensor 38 ist auf der Zylindεrkopfdichtung 16 dem Zylinderkopf 14 zugewandt angeordnet .The operating state of the internal combustion engine 10 is detected by a plurality of sensors: three temperature sensors 38, 40 and 42 are integrated in the cylinder head gasket 16. This can be done, for example, by printing PTC resistors onto the cylinder head gasket 16 using the screen printing method. The location of the temperature sensor 38 can be seen from FIG. 2: This shows the area of a cylinder 44 in the cylinder head 14. 2 can be seen in FIG. a valve plate 46 of an exhaust valve and valve plates 48a and 48b of corresponding intake valves. Also shown is a sealing surface 50 on the cylinder head 14 which surrounds the cylinder 44 and is machined flat. A location 51 at which the temperature sensor 38 is arranged in the installed position lies in the region of the sealing surface 50 in the vicinity of the valve plate 46 of the exhaust valve. The temperature sensor 38 is arranged on the cylinder head gasket 16 facing the cylinder head 14.
Die Position der Temperatursensoren 40 und 42 geht aus den Fig. 3 und 4 hervor: Fig. 3 zeigt den Zylinder 44 und benachbarte Zylinder 43 und 45 im Motorblock 12. Erkennbar sind die Kolben (ohne Bezugszeichen) im Inneren der Zylinder 43, 44 und 45 sowie ein die einzelnen Zylinder 43, 44 und 45 umgebender Strömungsraum 52, welcher im Betrieb der Brennkraftmaschine 10 vom Kühlwasseer durchströmt wird. Wie insbesondere aus Fig. 4 ersichtlich ist, ist der eine Temperatursensor 40 im Bereich einer plan bearbeiteten Dichtfläche 54 einer Laufbuchse (ohne Bezugszeichen) des Zylinders 43 angeordnet, und zwar an jener Stelle, welche zu dem daneben liegenden Zylinder 44 unmittelbar benachbart ist, und er ist auf der Zylinderkopfdichtung 16 dem Motorblock 14 zugewandt angeordnet. Der Temperatursensor 42 ist am Strömungsraum 52 zwischen den beiden Zylindern 43 und 44 unmittelbar neben dem Temperatursensor 40 angeordnet. Da mit dem Temperatursensor 42 die Temperatur des Kühlwassers gemessen werden soll, ist an der Stelle des Temperatursensors 42 eine zum Motorblock 12 hinweisende Deckschicht an der Zylinderkopfdichtung 16 nicht vorhanden.The position of the temperature sensors 40 and 42 can be seen from FIGS. 3 and 4: FIG. 3 shows the cylinder 44 and adjacent cylinders 43 and 45 in the engine block 12. The pistons (without reference numerals) can be seen inside the cylinders 43, 44 and 45 and a flow chamber 52 surrounding the individual cylinders 43, 44 and 45, through which cooling water flows when the internal combustion engine 10 is operating. As can be seen in particular from FIG. 4, the one temperature sensor 40 is arranged in the region of a flat machined sealing surface 54 of a cylinder liner (without reference number) of the cylinder 43, specifically at that point which is directly adjacent to the cylinder 44 lying next to it, and it is arranged on the cylinder head gasket 16 facing the engine block 14. The temperature sensor 42 is arranged on the flow space 52 between the two cylinders 43 and 44 directly next to the temperature sensor 40. Since the temperature of the cooling water is to be measured with the temperature sensor 42, there is no cover layer on the cylinder head gasket 16 pointing to the engine block 12 at the location of the temperature sensor 42.
Ein weiterer Temperatursensor 56 isst die Temperatur des in einem Ölsumpf 58 vorhandenen Schmieröls (vgl. Figur 1) . Ein Drehzahlsensor 60 erfasst die Drehzahl einer' Kurbelwelle 62 der Brennkraftmaschine 10. Ein Heißfilm- Luftmassenmesser (nachfolgend abgekürzt "HFM-Sensor" genannt) trägt das Bezugszeichen 64, ist stromauf ärts von der Drosselklappe 34 im Ansaugrohr 32 angeordnet und erfasst die Luftmasse, welche in die Brennräume der Brennkraftmaschine 10. gelangt. Diese ist wiederum repräsentativ für die Last der Brennkraftmaschine 10.Another temperature sensor 56 eats the temperature of the lubricating oil present in an oil sump 58 (see FIG. 1). A speed sensor 60 detects the speed of a ' crankshaft 62 of the internal combustion engine 10. A hot film air mass meter (hereinafter abbreviated to "HFM sensor") bears the reference number 64, is arranged upstream of the throttle valve 34 in the intake pipe 32 and detects the air mass, which gets into the combustion chambers of the internal combustion engine 10. This in turn is representative of the load of the internal combustion engine 10.
Alle Sensoren 38, 40, 42, 56, 60 und 64 liefern entsprechende Signale an ein Steuer- und Regelgerät 66 . Dieses steuert wiederum u.a. die Drosselklappe 34 im Ansaugrohr 32 und die elektrische Kühlwasserpumpe 20 an. Auch das Ventil 24 wird vom Steuer- und Regelgerät 66 angesteuert .All sensors 38, 40, 42, 56, 60 and 64 deliver corresponding signals to a control and regulating device 66. This in turn controls the throttle valve 34 in the intake pipe 32 and the electric cooling water pump 20. The valve 24 is also controlled by the control and regulating device 66.
Wie aus Fig. 5 ersichtlich ist, ist die Position des Te peratursensors 38 so gewählt, dass die im Betrieb der Brennkraftmaschine 10 vom Temperatursensor 38 gemessene Temperatur tml mit der Temperatur tk korreliert, welche im Betrieb an einer unmittelbar neben dem Ventilteller 46 des Auslassventils gelegenen Stelle in der brennraumseitigen Wand des Zylinderkopfes 14 auftritt. Diese Stelle ist in Fig. 2 durch ein Kreuz mit dem Bezugszeichen 68 gekennzeichnet. Bei Vorversuchen wurde festgestellt, dass an der mit dem Kreuz 68 bezeichneten Stelle im Zylinderkopf 14 der hier dargestellten Brennkraftmaschine 10 im Betrieb der Brennkraftmaschine 10 die höchsten Temperaturen auftreten. Diese Stelle wird somit thermisch besonders stark belastet. Die Korrelation der Messwerte tml mit der Temperatur tk wurde für die vorliegende Brennkraftmaschine ebenfalls in Vorversuchen ermittelt.As can be seen from FIG. 5, the position of the temperature sensor 38 is selected such that the temperature tml measured by the temperature sensor 38 during operation of the internal combustion engine 10 correlates with the temperature tk, which is in the Operation occurs at a location immediately adjacent to the valve plate 46 of the exhaust valve in the wall of the cylinder head 14 on the combustion chamber side. This location is identified in FIG. 2 by a cross with the reference number 68. In preliminary tests, it was found that the highest temperatures occur at the point in the cylinder head 14 of the internal combustion engine 10 shown here during the operation of the internal combustion engine 10. This point is therefore subject to particularly high thermal loads. The correlation of the measured values tml with the temperature tk was also determined for the internal combustion engine in preliminary tests.
Eine erste, vergleichsweise einfache Regelstrategie der Kühleinrichtung 18 ist aus Fig. 6 ersichtlich: In deren oberstem Diagramm ist die vom HFM-Sensor 64 erfasste Luftfüllung rl bei einem typischen sich über einen Zeitraum t erstreckenden. Betriebszyklus der Brennkraftmaschine 10 dargestellt . Die Luftfüllung rl entspricht bei der hier dargestellten Brennkraftmaschine der aktuellen Motorlast. Bei anderen Brennkraftmaschinen (beispielsweise mit Kraftstoff -Direkteinspritzung) kann in bestimmten Betriebszuständen beispielsweise auch die eingespritzte Kraftstoffmenge als Kriterium für die aktuelle Motorlast verwendet werden .A first, comparatively simple control strategy of the cooling device 18 can be seen from FIG. 6: In its uppermost diagram, the air filling rl detected by the HFM sensor 64 is typical for a period extending over a period t. Operating cycle of the internal combustion engine 10 shown. The air charge rl corresponds to the current engine load in the internal combustion engine shown here. In other internal combustion engines (for example with direct fuel injection), the amount of fuel injected can also be used as a criterion for the current engine load in certain operating states.
Ein zweites Diagramm in Fig. 6 zeigt die Geschwindigkeit V des Kraf fahrzeugs, in welches die Brennkraftmaschine 10 eingebaut ist. Da der Wärmetauscher 28 in der Kühleinrichtung 18 in wesentlichem Umfang vom Fahrtwind des Kraftf hrzeugs beaufschlagt wird, hat die Geschwindigkeit V des Kraftfahrzeugs einen direkten Einfluss auf die Wirkung des Wärmetauschers 28 und somit auf den Betrieb der Kühleinrichtung 18.A second diagram in FIG. 6 shows the speed V of the motor vehicle in which the internal combustion engine 10 is installed. Since the heat exchanger 28 in the cooling device 18 is acted upon to a substantial extent by the wind of the motor vehicle, the speed V of the motor vehicle has a direct influence on the action of the heat exchanger 28 and thus on the operation of the cooling device 18.
Bei der in Fig. 6 dargestellten Regelstrategie der Kühleinrichtung 18 werden auf der Basis der vom Temperatursensor 38 gelieferten Messwerte tml einerseits die elektrische Kühlwasserpumpe 20 und andererseits das Ventil 24 so angesteuert, dass die Temperatur tk an der thermisch am höchsten belasteten Stelle 68 im Zylinderkopf 14 der Brennkraftmaschine 10 im Wesentlichen konstant ist und in etwa jener Temperatur tkmax entspricht, welche im Dauerbetrieb für das Material zulässig ist, aus welchem der Zylinderkopf 14 hergestellt ist. Hierzu wird das Signal des Temperatursensors 38 dem Steuer- und Regelgerät 66 zugeführt, welches das Ventil 24 so ansteuert, dass eine gewünschte Temperatur des Kühlmittels erreicht wird, und welches die elektrische Kühlwasserpumpe 20 so ansteuert, dass ein gewünschter Kühlwasser-Volumenstrom vorliegt . Die Temperatur des Kühlwassers kann dabei über das Signal des Temperatursensors 42 überwacht werden.In the control strategy shown in FIG On the one hand, the cooling device 18 is controlled on the basis of the measured values tml supplied by the temperature sensor 38, on the one hand the electric cooling water pump 20 and on the other hand the valve 24 in such a way that the temperature tk at the thermally most stressed point 68 in the cylinder head 14 of the internal combustion engine 10 is essentially constant and in corresponds approximately to the temperature tkmax which is permissible in continuous operation for the material from which the cylinder head 14 is made. For this purpose, the signal from the temperature sensor 38 is fed to the control and regulating device 66, which controls the valve 24 in such a way that a desired temperature of the coolant is reached and which controls the electric cooling water pump 20 so that a desired cooling water volume flow is present. The temperature of the cooling water can be monitored via the signal from the temperature sensor 42.
Eine zweite mögliche Regelstrategie der Kühleinrichtung 18 wird nun unter Bezugnahme auf Fig. 7 erläutert: In dieser ist zunächst der gleiche Betriebszyklus wie in Fig. 6 aufgetragen, d.h. der gleiche Verlauf der Luftfüllung rl und der Fahrzeuggeschwindigkeit V. Die Regelung der Kühleinrichtung 18 erfolgt jedoch nicht mehr im Hinblick auf die maximal zulässige Bauteilte peratur, sondern im Hinblick darauf, mit Sicherheit den Zustand des "Blasensiedens" im Kühlwasser der Kühleinrichtung 18 zu vermeiden .A second possible control strategy of the cooling device 18 will now be explained with reference to FIG. 7: First, the same operating cycle as in FIG. 6 is plotted, i.e. the same course of the air filling rl and the vehicle speed V. However, the cooling device 18 is no longer regulated with regard to the maximum permissible component temperature, but with a view to reliably avoiding the state of "bubble boiling" in the cooling water of the cooling device 18.
Ein derartiges Blasensieden, also die Bildung von Dampfblasen innerhalb des Kühlwassers, kann in jenen Bereichen des Strömungsraumes 52 auftreten, in denen z.B. bei im Warmlauf der Brennkraftmaschine 10 abgeschalteter Kühlwasserpumpe 20, aber auch im normalen Betrieb der Brennkraftmaschine 10 die höchsten Kühlwassertemperaturen auftreten. Ein wichtiger Einflussfaktor für die Möglichkeit des Auftretens von Blasensieden ist aber auch die Temperatur tw einer Wand, welche jenen Bereich begrenzt, in dem die hohen Kühlwassertemperaturen auftreten. Die entsprechenden Stellen innerhalb einer Brennkraftmaschine können beispielsweise durch" Vorversuche erfasst werden. Sie sind von einem Brennkraftmaschinentyp zum anderen unterschiedlich .Such bubble boiling, i.e. the formation of vapor bubbles within the cooling water, can occur in those areas of the flow space 52 in which, for example, when the cooling water pump 20 is switched off while the internal combustion engine 10 is warming up, but also during normal operation of the internal combustion engine 10, the highest cooling water temperatures occur. An important influencing factor for the possibility of the occurrence of bubble boiling is also that Temperature tw of a wall, which limits the area in which the high cooling water temperatures occur. The corresponding locations within an internal combustion engine can be detected by, for example, "preliminary tests. They are different from one engine type to another.
Bei der vorliegenden Brennkraftmaschine 10 ist ein für die Bildung von Dampfblasen kritischer Bereich im Strömungsraum 52 zwischen zwei Zylindern 43 und 44 bzw. 44 und 45 vorhanden. Dort erfolgt durch die relativ große äußere Umfangsflache der Zylinder 43, 44 bzw. 44, 45 ein starker Wärmeeintrag in das Kühlwasser, bei gleichzeitig relativ geringer Strömungsgeschwindigkeit im Spalt zwischen zwei Zylindern 43, 44 bzw. 44, 45. Im Hinblick auf die Bildung von Dampfblasen in diesem Bereich wesentliche Betriebsparameter sind einerseits die Temperatur tf des Kühlwassers im Spalt zwischen den beiden Zylindern 43 und 44 und die Wandtemperatur tw beispielsweise des Zylinders 43. Wie bereits im Zusammenhang mit Fig. 4 erläutert wurde, sind zur Erfassung dieser beiden Temperaturen tw und tf die beiden Temperatursensoren 40 und 42 an den entsprechenden Stellen angeordnet. Die vom Sensor 40 erfasste Temperatur tm2 liegt im Normalbetrieb der Brennkraftmaschine 10 ganz leicht oberhalb der tatsächlichen Wandtemperatur tw, die vom Sensor 42 erfasste Temperatur entspricht im wesentlichen der tatsächlichen Kühlwassertemperatur tf .In the present internal combustion engine 10, an area critical for the formation of steam bubbles is present in the flow space 52 between two cylinders 43 and 44 or 44 and 45. There, due to the relatively large outer circumferential surface of the cylinders 43, 44 and 44, 45, there is a strong heat input into the cooling water, with at the same time a relatively low flow velocity in the gap between two cylinders 43, 44 and 44, 45. With regard to the formation of Vapor bubbles in this area are essential operating parameters, on the one hand, the temperature tf of the cooling water in the gap between the two cylinders 43 and 44 and the wall temperature tw, for example, of the cylinder 43. As already explained in connection with FIG. 4, tw and tf arranged the two temperature sensors 40 and 42 at the corresponding locations. The temperature tm2 detected by the sensor 40 is very slightly above the actual wall temperature tw during normal operation of the internal combustion engine 10, the temperature detected by the sensor 42 essentially corresponds to the actual cooling water temperature tf.
Wie aus Fig. 7 ersichtlich ist, erfolgt die Regelung der Kühleinrichtung 18, also letztlich der elektrischen Kühlwasserpumpe 20 und des Ventils 24, durch das Steuer- und Regelgerät 66 so, dass unabhängig von der an der Brennkraftmaschine anstehenden Last (Luftfüllung rl) und der Fahrzeuggeschwindigkeit V einerseits die Wandtemperatur tw und die Kühlwassertemperatur tf immer unterhalb entsprechender Grenzen gtw bzw. gtf sind, bei denen mit dem Vorliegen von Blasensieden zu rechnen ist .As can be seen from Fig. 7, the control of the cooling device 18, i.e. ultimately the electric cooling water pump 20 and the valve 24, is carried out by the control and regulating device 66 such that the load on the internal combustion engine (air filling R1) and the Vehicle speed V on the one hand the wall temperature tw and the cooling water temperature tf are always below the corresponding limits gtw or gtf, at which with the The presence of bubble boilers is to be expected.
Wie aus Fig. 7 ebenfalls hervorgeht, sind die Grenztemperaturen gtw und gtf dabei nicht konstant. Sie werden stattdessen kontinuierlich abhängig von verschiedenen und sich im Betrieb der Brennkraftmaschine 10 ändernden Einflussgrößen aktuell ermittelt. Eine Einflussgröße ist beispielsweise der Systemdruck in der Kühleinrichtung 18, die Drehzahl der Kurbelwelle 62, welche vom Drehzahlsensor 60 erfasst wird, die aktuelle Last rl usw.. Die entsprechende Wandtemperatur tw und die entsprechende Temperatur tf des Kühlwassers wird durch eine entsprechende Ansteuerung der elektrischen Kühlwasserpumpe 20 bzw. des Ventils 24 eingestellt. Eine weitere Einflussgröße für die maximal zulässige Kühlwassertemperatur ist der aktuelle Volumenstrom des Kühlwassers innerhalb der Kühleinrichtung 18. Auch dieser Volumenstrom kann daher zur Bestimmung der Grenztemperatur gtf herangezogen werden.7 also shows that the limit temperatures gtw and gtf are not constant. Instead, they are continuously determined as a function of various influencing variables that change during operation of the internal combustion engine 10. An influencing variable is, for example, the system pressure in the cooling device 18, the rotational speed of the crankshaft 62, which is detected by the rotational speed sensor 60, the current load rl, etc. The corresponding wall temperature tw and the corresponding temperature tf of the cooling water are controlled by the electrical cooling water pump 20 or the valve 24 set. Another influencing variable for the maximum permissible cooling water temperature is the current volume flow of the cooling water within the cooling device 18. This volume flow can therefore also be used to determine the limit temperature gtf.
In Fig. 8 ist eine nochmals andere, dritte Betriebsstrategie für den Betrieb der Kühleinrichtung 18 dargestellt. Auch hier ist der zeitliche Verlauf der Motorlast rl und der Fahrzeuggeschwindigkeit V identisch zu den in den Fig. 6 und 7 dargestellten Betriebsstrategien. Im Gegensatz zu der in Fig. 7 dargestellten Betriebsstrategie wird bei jener, welche in Fig. 8 dargestellt ist, Blasensieden jedoch ausdrücklich zugelassen. Dieser Betriebsstrategie liegt der Gedanke zugrunde, dass der Wärmeübergangskoeffizient von den Wänden der Zylinder 43, 44 und 45 zum Kühlwasser im Strömungsraum 52 dann maximal ist, wenn an den besagten Wänden in geringem Umfange Dampfblasen gebildet werden. Dieser Zustand wird auch als "leichtes Blasensieden" bezeichnet. Steigt die Wandtemperatur tw der Zylinder 43, 44 und 45 jedoch über jene Temperatur, bei der leichtes Blasensieden auftritt, an, werden die Dampfblasen größer und der Wärmeübergangskoeffizient fällt wegen der instabilen Filmbildung wieder stark ab.8 shows yet another, third operating strategy for the operation of the cooling device 18. Here, too, the time profile of the engine load rl and the vehicle speed V is identical to the operating strategies shown in FIGS. 6 and 7. In contrast to the operating strategy shown in Fig. 7, however, bubble boiling is expressly permitted in the one shown in Fig. 8. This operating strategy is based on the idea that the heat transfer coefficient from the walls of the cylinders 43, 44 and 45 to the cooling water in the flow space 52 is at a maximum if steam bubbles are formed to a small extent on the said walls. This condition is also known as "light bubble boiling". However, if the wall temperature tw of the cylinders 43, 44 and 45 rises above that temperature at which the bubbles boil slightly occurs, the steam bubbles become larger and the heat transfer coefficient drops sharply due to the unstable film formation.
Dadurch, dass die Kühlwassertemperatur tf mit Hilfe des Temperatursensors 42 sehr nahe an der Wand des Zylinders 43 erfasst wird und mit der Temperatur tw an der Außenseite der Wand des Zylinders 43 verglichen werden kann, welche sehr gut der vom Temperatursensor 40 erfassten Temperatur tm2 entspricht, kann eine Regelstrategie realisiert werden, welche auf eine Optimierung des Wärmeübergangskoeffizienten zwischen der Wand des Zylinders 43 und dem Kühlwasser hinausläuft. Wie aus Fig. 8 ersichtlich ist, liegen bei einer solchen Regelstrategie die entsprechenden Temperaturen tw und tf somit ständig knapp oberhalb der Grenztemperaturen gtw und gtf. Eine deratige Regelung der Kühleinrichtung 18, welche zu einem maximalen Wärmeübergangskoeffizienten führt, ermöglicht es, die Kühlwassertemperatur tf und den Volumenstrom des Kühlwassers im Motorblock 12 bzw. im Zylinderkopf 14 so einzustellen, dass eine gewünschte Temperatur im Zylinderkopf 14 mit der kleinstmöglichen Leistung der Kühlwasserpumpe 20 erreicht wird.Characterized in that the cooling water temperature tf is detected very close to the wall of the cylinder 43 with the aid of the temperature sensor 42 and can be compared with the temperature tw on the outside of the wall of the cylinder 43, which corresponds very well to the temperature tm2 detected by the temperature sensor 40, For example, a control strategy can be implemented which amounts to an optimization of the heat transfer coefficient between the wall of the cylinder 43 and the cooling water. As can be seen from FIG. 8, with such a control strategy the corresponding temperatures tw and tf are therefore constantly just above the limit temperatures gtw and gtf. Such regulation of the cooling device 18, which leads to a maximum heat transfer coefficient, makes it possible to set the cooling water temperature tf and the volume flow of the cooling water in the engine block 12 or in the cylinder head 14 in such a way that a desired temperature in the cylinder head 14 with the lowest possible output of the cooling water pump 20 is achieved.
Aus den Diagrammen der Fig. 9 ist eine nochmals andere Betriebsstrategie für die Kühleinrichtung 18 ersichtlich. Auch hier entsprechen wieder die Verläufe der Motorlast rl und der Fahrzeuggeschwindigkeit V über der Zeit den in den vorhergehenden Fig. 6 bis 8 dargestellten Verläufen. Bei der in Fig. 9 dargestellten Regelstrategie wird jedoch die Temperatur des Öls, welche vom Temperatursensor 56 erfasst wird, in einem optimalen Bereich gehalten. Dies geschieht durch eine entsprechende Einstellung der Temperatur des Zylinderkopfs 14 bzw. der Teile im Motorblock 12. Dadurch, dass das Öl immer die richtige Temperatur hat, können Reibungsverluste und der Verschleiß der beweglichen Teile der Brennkraftmaschine 10 minimiert werden. Auch die Alterung des Schmieröls kann verringert werden.Yet another operating strategy for the cooling device 18 can be seen from the diagrams in FIG. 9. Again, the curves of the engine load rl and the vehicle speed V over time correspond to the curves shown in the previous FIGS. 6 to 8. In the control strategy shown in FIG. 9, however, the temperature of the oil, which is detected by the temperature sensor 56, is kept in an optimal range. This is done by setting the temperature of the cylinder head 14 or the parts in the engine block 12 accordingly. Because the oil is always at the correct temperature, there can be friction losses and wear on the moving parts of the internal combustion engine 10 can be minimized. The aging of the lubricating oil can also be reduced.
Ein guter Rückschluss auf die Temperaturen an den vom Schmieröl beaufschlagten Stellen, wie beispielsweise zwischen den Zylindern 43, 44 und 45 und den Kolben (ohne Bezugszeichen) , kann durch eine Kombination aus der vom Sensor 38 erfassten Temperatur tm2 am Zylinderkopf 14 und der vom Temperatursensor 42 erfassten Temperatur tf des Kühlwassers mit der gerade von der Brennkraftmaschine 10 abgegebenen thermischen Leistung gezogen werden. Diese thermische Leistung kann beispielsweise durch die Motordrehzahl (Drehzahlsensor 60) , die Motorlast (HFM- Sensor 64) und die Ölte peratur to (Ölte peratursensor 56) charakterisiert werden. Die entsprechenden Signale werden ebenfalls dem Steuer- und Regelgerät 66 zugeführt, welches durch die Beeinflussung der Kühl assertemperatur, des Kühlwasser-Volumenstroms und eventuell der von der Brennkraftmaschine 10 emittierten thermischen Verlustleistung die Öltemperatur an den kritischen Schmierstellen stets in einem optimalen Temperaturbereich hält.A good conclusion about the temperatures at the points affected by the lubricating oil, such as between the cylinders 43, 44 and 45 and the pistons (without reference numerals), can be obtained by a combination of the temperature tm2 at the cylinder head 14 detected by the sensor 38 and that from the temperature sensor 42 detected temperature tf of the cooling water can be drawn with the thermal power output by the internal combustion engine 10. This thermal output can be characterized, for example, by the engine speed (speed sensor 60), the engine load (HFM sensor 64) and the oil temperature to (oil temperature sensor 56). The corresponding signals are also fed to the control and regulating device 66, which always keeps the oil temperature at the critical lubrication points in an optimal temperature range by influencing the cooling water temperature, the cooling water volume flow and possibly the thermal power loss emitted by the internal combustion engine 10.
Aus Fig. 10 ist ein Verfahren ersichtlich, welches angewendet wird, um ein Überschreiten einer maximal zulässigen Bauteiltemperatur tkmax zu vermeiden: Ein solcher Zustand ist beispielsweise dann zu befürchten, wenn bei geringer Fahrzeuggeschwindigkeit V eine hohe Motorlast rl gefordert wird. Die mangelhafte Kühlung durch den Fahrtwind des Kraftfahrzeugs wird durch eine entprechende Erhöhung des Kühlwasserstroms dm/dt zu kompensieren versucht. Eine Erhöhung des Kühlwasserstroms dm/dt erfolgt durch eine Erhöhung der Drehzahl der elektrischen Kühlwasserpumpε 20. Ist jedoch deren maximale Drehzahl erreicht bzw. der maximal mögliche Kühlwasserstrom dmmax/dt erreicht, würde, ohne Gegenmaßnahmen, die Bauteiltemperatur tk auf einen Wert oberhalb tkmax ansteigen und gegebenenfalls zu einer Beschädigung des Zylinderkopfs 14 führen. Um dem zu begegnen, wird die von der Brennkraf maschine 10 in die Kühleinrichtung 18 eingebrachte thermische Energie durch eine zwangsweise Reduzierung der Motorlast rl , also durch eine Begrenzung der Leistung der Brennkraftmaschine 10, reduziert bzw. begrenzt. Ein derartiges Abriegeln der Brennkraftmaschine 10 erfolgt in Fig. 10 zum Zeitpunkt tl. 10 shows a method which is used to avoid exceeding a maximum permissible component temperature tkmax: Such a condition is to be feared, for example, when a high engine load rl is required at low vehicle speed V. The inadequate cooling caused by the wind of the motor vehicle is attempted to be compensated for by a corresponding increase in the cooling water flow dm / dt. The cooling water flow dm / dt is increased by increasing the speed of the electrical cooling water pump 20. However, if its maximum speed has been reached or the maximum possible cooling water flow dmmax / dt has been reached, the component temperature would, without countermeasures Rise tk to a value above tkmax and possibly damage the cylinder head 14. To counter this, the thermal energy introduced by the internal combustion engine 10 into the cooling device 18 is reduced or limited by a compulsory reduction in the engine load rl, that is to say by a limitation of the power of the internal combustion engine 10. Such a locking off of the internal combustion engine 10 takes place in FIG. 10 at the time t1.

Claims

Ansprüche Expectations
1. Verfahren zum Betreiben einer Brennkraftmaschine (10), bei dem aus einem Bereich (12, 14) der Brennkraftmaschine1. Method for operating an internal combustion engine (10), in which an area (12, 14) of the internal combustion engine
(10) von einer Kühleinrichtung (18) mittels eines Kühlfluids thermische Energie abgeführt wird, bei dem die Temperatur mindestens an einem Ort der Brennkraftmaschine(10) thermal energy is removed from a cooling device (18) by means of a cooling fluid, in which the temperature is at least at one location of the internal combustion engine
(10) erfasst wird, und bei dem der Betrieb der Kühleinrichtung (18) von der erfassten Temperatur abhängt, dadurch gekennzeichnet, dass die Temperatur an einem Ort einer Zylinderkopfdichtung (16) der Brennkraftmaschine (10) erfasst wird, dessen Temperatur (tml; tm2) mit der Temperatur (tk; tw) ) an einem solchen Ort (68) eines Bauteils (14) der Brennkraftmaschine (10) wenigstens im Wesentlichen korreliert, welcher thermisch hochbelastet, innerhalb der Brennkraftmaschine (10) gelegen und nur schwer oder überhaupt nicht zugänglich ist.(10) is recorded, and in which the operation of the cooling device (18) depends on the recorded temperature, characterized in that the temperature is recorded at a location of a cylinder head gasket (16) of the internal combustion engine (10), the temperature (tml; tm2 ) at least essentially correlates with the temperature (tk; tw)) at such a location (68) of a component (14) of the internal combustion engine (10) which is subject to high thermal loads, is located within the internal combustion engine (10) and is difficult or impossible to access is.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Temperatur auf einer der Zylinderkopfdichtung (16) zugewandten Dichtfläche (50) eines Zylinderkopfs (14) an einer Stelle (51) erfasst wird, welche im Hinblick auf die Temperatur mit der Temperatur an einem thermisch hochbelasteten Ort (68) eines Zylinderkopfs (14) korreliert, welcher auf der Brennraumseite des Zylinderkopfs (14) neben dem Auslassventil (46) liegt.2. The method according to claim 1, characterized in that the temperature on one of the cylinder head gasket (16) facing sealing surface (50) of a cylinder head (14) is detected at a point (51) which with respect to the temperature at a temperature correlated thermally highly stressed location (68) of a cylinder head (14), which lies on the combustion chamber side of the cylinder head (14) next to the exhaust valve (46).
3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Temperatur (tf) des Kühlfluids erfasst wird und der Betrieb der Kühleinrichtung (18) auch von der erfassten Temperatur (tf) des Kühlfluids abhängt .3. The method according to any one of the preceding claims, characterized in that the temperature (tf) of the Cooling fluid is detected and the operation of the cooling device (18) also depends on the detected temperature (tf) of the cooling fluid.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass eine Bauteiltemperatur (tm2) auf einer der Zylinderkopfdichtung (16) zugewandten Dichtfläche (54) eines Zylinders (43) an einem Ort erfasst wird, welcher einem benachbarten Zylinder (44) am nächsten ist, und dass die Temperatur (tf) des Kühlfluids in einem Strömungsraum4. The method according to claim 3, characterized in that a component temperature (tm2) on a sealing surface (54) facing the cylinder head gasket (16) of a cylinder (43) is detected at a location which is closest to an adjacent cylinder (44), and that the temperature (tf) of the cooling fluid in a flow space
(52) zwischen den beiden benachbarten Zylindern (43, 44) erfasst wird.(52) between the two adjacent cylinders (43, 44) is detected.
5. Verfahren nach einem der vorhergehenden Ansprüche , dadurch gekennzeichnet, dass der Betrieb der Kühleinrichtung (18) so beeinflusst wird, dass die gewünschte Temperatur (tk) an dem innerhalb der Brennkraftmaschine (10) gelegenen und nur schwer oder überhaupt nicht zugänglichen Ort (68) des Bauteils (14) in etwa konstant gehalten wird.5. The method according to any one of the preceding claims, characterized in that the operation of the cooling device (18) is influenced such that the desired temperature (tk) at the location (68) located within the internal combustion engine (10) and which is difficult or impossible to access ) of the component (14) is kept approximately constant.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Betrieb der Kühleinrichtung (18) so beeinflusst wird, dass im Normalbetrieb der Brennkraftmaschine (10) im Kühlmittel an keiner Stelle Blasensieden auftritt.6. The method according to any one of the preceding claims, characterized in that the operation of the cooling device (18) is influenced so that bubble boiling does not occur at any point in the coolant during normal operation of the internal combustion engine.
7. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Betrieb der Kühleinrichtung (18) so beeinflusst wird, dass im Normalbetrieb der Brennkraftmaschine (10) im Kühlmittel wenigstens bereichsweise leichtes Blasensieden auftritt, derart, dass der Wärmeübergangskoeffizient oder die Wärmestromdichte in den entsprechenden Bereichen in etwa maximal ist .7. The method according to any one of claims 1 to 5, characterized in that the operation of the cooling device (18) is influenced so that during normal operation of the internal combustion engine (10) in the coolant at least in regions, slight bubble boiling occurs, such that the heat transfer coefficient or the heat flow density is approximately maximum in the corresponding areas.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass der Volumenstrom (dm/dt) und die Temperatur (tf) des Kühlfluids so beeinflusst werden, dass die gewünschte Bauteiltemperatur (tk) mit der geringstmöglichen Förderleistung der Kühleinrichtung (18) erzielt wird.8. The method according to claim 7, characterized in that that the volume flow (dm / dt) and the temperature (tf) of the cooling fluid are influenced in such a way that the desired component temperature (tk) is achieved with the lowest possible delivery rate of the cooling device (18).
9. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass aus der ermittelten Bauteiltemperatur (tk) und der erfassten Temperatur (tf) des Kühlfluids und/oder aus einer Strömungsgeschwindigkeit (dm/dt) des Kühlfluids und/oder aus einem Druck des Kühlfluids und/oder aus einer Last (rl) der Brennkraftmaschine (10) jene Temperatur (gtf) des Kühlfluids ermittelt wird, bei der leichtes Blasensieden im Kühlfluid auftritt.9. The method according to any one of claims 6 to 8, characterized in that from the determined component temperature (tk) and the detected temperature (tf) of the cooling fluid and / or from a flow rate (dm / dt) of the cooling fluid and / or from a pressure of the cooling fluid and / or from a load (rl) of the internal combustion engine (10) that temperature (gtf) of the cooling fluid is determined at which there is a slight bubble boiling in the cooling fluid.
10. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Betrieb der Kühleinrichtung (18) so beeinflusst wird, dass ein Schmiermittel, mit dem bewegliche Teile und/oder Lager der Brennkraftmaschine (10) geschmiert werden, im Normalbetrieb der Brennkraftmaschine10. The method according to any one of claims 1 to 6, characterized in that the operation of the cooling device (18) is influenced so that a lubricant with which moving parts and / or bearings of the internal combustion engine (10) are lubricated in normal operation of the internal combustion engine
(10) in etwa eine gewünschte Temperatur (to) aufweist.(10) has approximately a desired temperature (to).
11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass dann, wenn die maximale Leistung (dmmax/dt) der Kühleinrichtung (18) erreicht und eine bestimmte Temperatur im Kühlmittel und/oder eine bestimmte Temperatur (tkmax) an einem Bauteil (14) und/oder in dem Schmiermittel erreicht oder überschritten wird, die Leistung (rl) der Brennkraf maschine derart (10) begrenzt wird, dass das Kühlmittel und/oder das Bauteil (14) und/oder das Schmiermittel die bestimmte Temperatur (tkmax) nicht überschreitet oder mindestens auf die bestimmte Temperatur abkühlt.11. The method according to any one of the preceding claims, characterized in that when the maximum power (dmmax / dt) of the cooling device (18) is reached and a certain temperature in the coolant and / or a certain temperature (tkmax) on a component (14 ) and / or in the lubricant is reached or exceeded, the power (rl) of the internal combustion engine is limited (10) in such a way that the coolant and / or the component (14) and / or the lubricant does not reach the specific temperature (tkmax) exceeds or at least cools down to the certain temperature.
12. Computerprogramm, dadurch gekennzeichnet, dass es zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprüche geeignet ist, wenn es auf einem Computer ausgeführt wird.12. Computer program, characterized in that it is suitable for carrying out the method according to one of the preceding claims if it is on a computer is performed.
13. Computerprogramm nach Anspruch 12, dadurch gekennzeichnet, dass es auf einem Speicher, insbesondere auf einem Flash-Memory, abgespeichert ist.13. Computer program according to claim 12, characterized in that it is stored on a memory, in particular on a flash memory.
14. Steuer- und/oder Regelgerät (66) zum Betreiben einer Brennkraftmaschine, dadurch gekennzeichnet, dass es einen Speicher umfasst, auf dem ein Computerprogramm nach einem der Ansprüche 12 oder 13 abgespeichert ist.14. Control and / or regulating device (66) for operating an internal combustion engine, characterized in that it comprises a memory on which a computer program according to one of claims 12 or 13 is stored.
15. Brennkraftmaschine (10), mit einer Kühleinrichtung (18), welche aus einem Bereich (12, 14) der15. Internal combustion engine (10), with a cooling device (18), which from an area (12, 14)
Brennkraftmaschine (10) mittels eines Kühlfluids thermische Energie abführt, mit mindestens einem Temperatursensor (38; 40; 42, 56), welcher die Temperatur (tml; tm2 ; tf; to) an einem Ort der Brennkraf maschine (10) erfasst, und mit einer Einrichtung (66), welche den Betrieb der Kühleinrichtung (18) abhängig vom Signal des Temperatursensors (38,; 40; 42; 56) beeinflusst, dadurch gekennzeichnet, dass der Temperatursensor (38, 40) an einem Ort einer Zylinderkopfdichtung (16) der BrennkraftmaschineInternal combustion engine (10) dissipates thermal energy by means of a cooling fluid, with at least one temperature sensor (38; 40; 42, 56), which detects the temperature (tml; tm2; tf; to) at one location of the internal combustion engine (10), and with a device (66) which influences the operation of the cooling device (18) as a function of the signal from the temperature sensor (38 ,; 40; 42; 56), characterized in that the temperature sensor (38, 40) is located at one location of a cylinder head gasket (16) the internal combustion engine
(10) angeordnet ist, welcher so gewählt ist, dass seine Temperatur (tml; tm2) mit der Temperatur (tk; tw) an einem Ort (68) eines Bauteils (14; 43) der Brennkraftmaschine(10) is arranged, which is selected so that its temperature (tml; tm2) with the temperature (tk; tw) at a location (68) of a component (14; 43) of the internal combustion engine
(10) wenigstens im Wesentlichen korreliert, welcher thermisch hochbelastet, innerhalb der Brennkraftmaschine(10) correlates at least substantially, which is highly thermally stressed, within the internal combustion engine
(10) gelegen und nur schwer oder überhaupt nicht zugänglich ist.(10) located and is difficult or not accessible at all.
16. Brennkraftmaschine (10) nach Anspruch 15, dadurch gekennzeichnet, dass der Temperatursensor (38; 40) in eine Zylinderkopfdichtung (16) der Brennkraftmaschine (10) integriert ist.16. Internal combustion engine (10) according to claim 15, characterized in that the temperature sensor (38; 40) is integrated in a cylinder head gasket (16) of the internal combustion engine (10).
17. Brennkraftmaschine (10) nach einem der Ansprüche 15 oder 16, dadurch gekennzeichnet, dass sie ein Steuer- und/oder Regelgerät (66) nach Anspruch 15 umfasst. 17. Internal combustion engine (10) according to one of claims 15 or 16, characterized in that it comprises a control and / or regulating device (66) according to claim 15.
PCT/DE2002/003517 2001-10-22 2002-09-19 Method, computer program and control and/or regulation device, for operating an internal combustion engine, as well as an internal combustion engine WO2003038251A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003540498A JP4351054B2 (en) 2001-10-22 2002-09-19 INTERNAL COMBUSTION ENGINE OPERATION METHOD, COMPUTER PROGRAM, OPERATION / CONTROL DEVICE, AND INTERNAL COMBUSTION ENGINE
EP02779109A EP1440228B1 (en) 2001-10-22 2002-09-19 Method, computer program and control and/or regulation device, for operating an internal combustion engine, as well as an internal combustion engine
DE50210521T DE50210521D1 (en) 2001-10-22 2002-09-19 METHOD, COMPUTER PROGRAM AND CONTROL AND / OR CONTROL DEVICE FOR OPERATING AN INTERNAL COMBUSTION ENGINE, AND INTERNAL COMBUSTION ENGINE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10153486.8 2001-10-22
DE2001153486 DE10153486A1 (en) 2001-10-22 2001-10-22 Method, computer program and control and / or regulating device for operating an internal combustion engine, and internal combustion engine

Publications (1)

Publication Number Publication Date
WO2003038251A1 true WO2003038251A1 (en) 2003-05-08

Family

ID=7704184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/003517 WO2003038251A1 (en) 2001-10-22 2002-09-19 Method, computer program and control and/or regulation device, for operating an internal combustion engine, as well as an internal combustion engine

Country Status (4)

Country Link
EP (1) EP1440228B1 (en)
JP (1) JP4351054B2 (en)
DE (2) DE10153486A1 (en)
WO (1) WO2003038251A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2177733A1 (en) * 2008-10-16 2010-04-21 Perkins Engines Company Limited Controlled nucleate boiling sensor
US8489949B2 (en) 2003-08-05 2013-07-16 Qualcomm Incorporated Combining grant, acknowledgement, and rate control commands
FR3004757A1 (en) * 2013-04-19 2014-10-24 Renault Sa "ENGINE COMPRISING A CYLINDER HEAD WITH TEMPERATURE SENSOR"
US9115635B2 (en) 2013-03-22 2015-08-25 Ford Global Technologies, Llc Inferred engine local temperature estimator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4748078B2 (en) * 2007-02-16 2011-08-17 株式会社豊田中央研究所 Internal combustion engine
FR2954405B1 (en) * 2009-12-22 2012-01-13 Renault Sa COOLING DEVICE FOR MOTOR VEHICLE
EP2682582B1 (en) 2011-03-03 2016-12-21 Toyota Jidosha Kabushiki Kaisha Warmup acceleration device for internal combustion engine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4768484A (en) * 1987-07-13 1988-09-06 General Motors Corporation Actively pressurized engine cooling system
DE4207403A1 (en) * 1992-03-09 1993-09-30 Goetze Ag Cylinder head seal for internal combustion engine - contains sealing support as temp. sensitive element between combustion chamber openings
US5380014A (en) * 1990-05-11 1995-01-10 Elring Dichtungswerke Gmbh Cylinder head gasket
EP0816663A1 (en) * 1996-06-12 1998-01-07 MAGNETI MARELLI S.p.A. Internal combustion engine
US5724924A (en) * 1995-03-08 1998-03-10 Volkswagen Ag Method for controlling a cooling circuit for an internal-combustion engine using a coolant temperature difference value
EP1072766A1 (en) * 1999-07-30 2001-01-31 Valeo Thermique Moteur Cooling controlling device of an internal combustion engine of a motor vehicle
DE19938614A1 (en) 1999-08-14 2001-02-22 Bosch Gmbh Robert Cooling circuit for an internal combustion engine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58124017A (en) * 1982-01-19 1983-07-23 Nippon Denso Co Ltd Cooling system controller of engine
DE4014502C2 (en) * 1990-05-07 1998-09-03 Bayerische Motoren Werke Ag Method of installing a sensor in a compression molded seal
DE4033261C2 (en) * 1990-10-19 1995-06-08 Freudenberg Carl Fa Temperature controlled cooling circuit of an internal combustion engine
DE4109498B4 (en) * 1991-03-22 2006-09-14 Robert Bosch Gmbh Device and method for controlling the temperature of an internal combustion engine
DE4113294C1 (en) * 1991-04-24 1992-06-17 Fa. Carl Freudenberg, 6940 Weinheim, De
DE4431043C2 (en) * 1994-09-01 2000-08-03 Johann Himmelsbach Process for cooling drive machines with liquid coolant
IT1293667B1 (en) * 1997-08-01 1999-03-08 Fiat Ricerche COOLING SYSTEM FOR A MOTOR VEHICLE ENGINE.
DE19835581A1 (en) * 1998-08-06 2000-02-17 Daimler Chrysler Ag Internal combustion engine with a crankcase fitted with a temperature detector for regulating the volume flow of a cooling agent according to temperature has cylinders cooled by this cooling agent.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4768484A (en) * 1987-07-13 1988-09-06 General Motors Corporation Actively pressurized engine cooling system
US5380014A (en) * 1990-05-11 1995-01-10 Elring Dichtungswerke Gmbh Cylinder head gasket
DE4207403A1 (en) * 1992-03-09 1993-09-30 Goetze Ag Cylinder head seal for internal combustion engine - contains sealing support as temp. sensitive element between combustion chamber openings
US5724924A (en) * 1995-03-08 1998-03-10 Volkswagen Ag Method for controlling a cooling circuit for an internal-combustion engine using a coolant temperature difference value
EP0816663A1 (en) * 1996-06-12 1998-01-07 MAGNETI MARELLI S.p.A. Internal combustion engine
EP1072766A1 (en) * 1999-07-30 2001-01-31 Valeo Thermique Moteur Cooling controlling device of an internal combustion engine of a motor vehicle
DE19938614A1 (en) 1999-08-14 2001-02-22 Bosch Gmbh Robert Cooling circuit for an internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8489949B2 (en) 2003-08-05 2013-07-16 Qualcomm Incorporated Combining grant, acknowledgement, and rate control commands
EP2177733A1 (en) * 2008-10-16 2010-04-21 Perkins Engines Company Limited Controlled nucleate boiling sensor
US9115635B2 (en) 2013-03-22 2015-08-25 Ford Global Technologies, Llc Inferred engine local temperature estimator
FR3004757A1 (en) * 2013-04-19 2014-10-24 Renault Sa "ENGINE COMPRISING A CYLINDER HEAD WITH TEMPERATURE SENSOR"

Also Published As

Publication number Publication date
JP2005507047A (en) 2005-03-10
JP4351054B2 (en) 2009-10-28
DE10153486A1 (en) 2003-05-08
EP1440228B1 (en) 2007-07-18
EP1440228A1 (en) 2004-07-28
DE50210521D1 (en) 2007-08-30

Similar Documents

Publication Publication Date Title
EP2751397B1 (en) Method and device for detecting leaks in a vehicle lubrication system
DE102012200003B4 (en) Liquid-cooled internal combustion engine and method for operating such an internal combustion engine
EP0993546B1 (en) Method for regulating heat in an internal combustion engine
DE102012210320B3 (en) Liquid-cooled combustion engine for vehicle, has steering valve arranged in connecting line between pump and vent tank and providing enlarged passage area as result of reduced pressure refrigerant in work position
DE10134678A1 (en) Arrangement for cooling and heating motor vehicle, has at least one bypass line with bypass valve associated with and arranged in parallel with at least one auxiliary radiator segment
DE102013214838A1 (en) Internal combustion engine with liquid-cooled cylinder head and liquid-cooled cylinder block and method for operating such an internal combustion engine
DE10155339A1 (en) Method for operating an internal combustion engine and motor vehicle
WO2010003754A1 (en) Method and device for the diagnosis of a coolant pump for an internal combustion engine
DE102012200746A1 (en) Internal combustion engine having a pump arranged in the coolant circuit and method for operating such an internal combustion engine
DE3139621A1 (en) TEMPERATURE CONTROL DEVICE FOR AN INTERNAL COMBUSTION ENGINE
WO2010106179A1 (en) Method and apparatus for oiling rotating or oscillating components
DE102012201541B4 (en) Method for influencing the heat balance of an internal combustion engine and internal combustion engine for carrying out such a method
DE10196991T5 (en) Method for controlling a speed-controlled fan
DE112017003025T5 (en) Cooling device for an internal combustion engine of a vehicle and its control method
DE10234608A1 (en) Method for operating a cooling and heating circuit of a motor vehicle
DE102005052632A1 (en) Device for heating of power machine has hot oil reservoir, electrically driven oil pump, oil filter, control valve and if necessary oil status sensors, which form component for extension on or for installation in power machine
DE102018207011B3 (en) Hybrid drive comprising an internal combustion engine and a further torque source for driving a motor vehicle
DE102008042660A1 (en) Fluid-cooled internal combustion engine for motor vehicle, has three-two-way valve separating bypass line from discharge line in switching condition and connecting oil cooler with supply line upstream to pump via discharge line
DE10144275A1 (en) Engine temperature regulation involves determining at least one engine component temperature from a coolant temperature and a volumetric flow of the coolant through the engine
EP1440228B1 (en) Method, computer program and control and/or regulation device, for operating an internal combustion engine, as well as an internal combustion engine
DE102010017790A1 (en) Method for limiting and decreasing thermal load of liquid-cooled internal-combustion engine, involves determining temperature of cooling agent
DE102004061426A1 (en) System and method for controlling the temperature of an engine oil of an internal combustion engine of a motor vehicle
DE102013016961A1 (en) Method for operating through-flow of cooling liquid coolant chamber of internal combustion engine involves stopping feeding of cooling liquid to coolant chamber after start of engine to satisfy certain conditions
WO2019091949A1 (en) Drive device having a coolant circuit for a motor vehicle
DE102012220495A1 (en) Method for improving the warm-up of an engine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002779109

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003540498

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2002779109

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002779109

Country of ref document: EP