WO2003038074A1 - Method of inducing differentiation of mesoblast stem cells or es cells into nerve system cells - Google Patents

Method of inducing differentiation of mesoblast stem cells or es cells into nerve system cells Download PDF

Info

Publication number
WO2003038074A1
WO2003038074A1 PCT/JP2001/009510 JP0109510W WO03038074A1 WO 2003038074 A1 WO2003038074 A1 WO 2003038074A1 JP 0109510 W JP0109510 W JP 0109510W WO 03038074 A1 WO03038074 A1 WO 03038074A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
stem cells
cell
nervous system
neural
Prior art date
Application number
PCT/JP2001/009510
Other languages
French (fr)
Japanese (ja)
Inventor
Osamu Honmou
Original Assignee
Renomedix Institute Inc.
Teikoku Hormone Mfg.Co.,Ltd.
Mitsui Sumitomo Insurance Care Network Company, Limited
Hitachi,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renomedix Institute Inc., Teikoku Hormone Mfg.Co.,Ltd., Mitsui Sumitomo Insurance Care Network Company, Limited, Hitachi,Ltd. filed Critical Renomedix Institute Inc.
Priority to PCT/JP2001/009510 priority Critical patent/WO2003038074A1/en
Priority to PCT/JP2002/003344 priority patent/WO2003038090A1/en
Priority to PCT/JP2002/011294 priority patent/WO2003038075A1/en
Priority to CNA028265998A priority patent/CN1610738A/en
Priority to EP02775435A priority patent/EP1452586B1/en
Priority to JP2003540340A priority patent/JP4118236B2/en
Priority to US10/493,964 priority patent/US20040259254A1/en
Priority to KR1020047006637A priority patent/KR101022349B1/en
Priority to CA2465653A priority patent/CA2465653C/en
Publication of WO2003038074A1 publication Critical patent/WO2003038074A1/en
Priority to JP2007319328A priority patent/JP2008119003A/en
Priority to US12/437,639 priority patent/US20090280564A1/en
Priority to JP2009278621A priority patent/JP2010051326A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/44Thiols, e.g. mercaptoethanol
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/11Epidermal growth factor [EGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • C12N2506/1346Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from mesenchymal stem cells
    • C12N2506/1353Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from mesenchymal stem cells from bone marrow mesenchymal stem cells (BM-MSC)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • C12N2510/04Immortalised cells

Definitions

  • the present invention relates to a method for inducing differentiation from mesoderm stem cells or ES cells into neural cells, and use thereof.
  • Oligodendrocyte (Archer, DR. Et al., Exp Neurol, 1994, 125, 268-77., Blakemore, WF. And Crang, AJ., Dev Neurosci, 1988, 10, , G ⁇ el, M. et al., Ann New York Acad Sci, 1987, 495, 71-85.), Or Schwann cells (Blak emore, WF., Nature, 1977, 266, 68—9. , Blakemore, WF. And Crang, AJ., Dev Neurosci, 1988, 10, 1-11, Honmou, 0. et al., J Neurosc i, 1996, 16, 3199-208.
  • Neural progenitor cells or stem cells obtained from the brain are capable of self-renewal, It is known to differentiate into neurons and glial cells of various cell lineages (Gage, FH. Et al., Proc Natl Acad Sci USA, 1995, 92, 11879-83., Lois, C. and Alvarez- Buyl la, A., Proc Natl Acad Sci USA, 1993, 90, 2074-7., Morshead, CM. Et al., Neuron, 1994, 13, 1071—82., Re ynolds, BA. And Weiss, S , Science, 1992, 255, 1707- 10.).
  • neuronal progenitor cells obtained from the brain were expanded into single cells, and cell lines were cloned in vitro.
  • self-renewal ability ie, proliferative ability
  • multipotency ie, neuron (astrolog tes), oligodendrocytes (oligodendrocytes; oli differentiation into godendr ocy tes
  • the present inventor has a technique for collecting a mononuclear cell fraction from bone marrow cells, umbilical cord blood cells, or fetal liver cells, which is easier than a technique for collecting neural stem cells to obtain donor cells.
  • the present inventor has found that the mononuclear cell fraction prepared from bone marrow cells has the ability to differentiate into neural cells. Further, the present inventor further provides a cell fraction containing mesoderm stem cells isolated from the mononuclear cell fraction, a cell fraction containing stromal cells, and a cell fraction containing AC 133-positive cells. Has been found to have the ability to differentiate into neural cells. Disclosure of the invention
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a method for inducing differentiation from mesoderm stem cells or ES cells to nervous system cells, a nervous system cell obtained by the method, and the nervous system. It is an object of the present invention to provide a composition for treating a nervous system disease including cells, and a method for treating a nervous system disease using the composition.
  • the inventor newly found that mesodermal stem cells or ES cells contained in a mononuclear cell fraction isolated from bone marrow fluid or umbilical cord blood induce differentiation into neural cells in vitro.
  • mesoderm stem cells or ES cells prepared from a mononuclear cell fraction isolated from bone marrow fluid or umbilical cord blood were added to culture medium 1 (DMEM (Dulbecco's modi fied essential medium) 50%, F -12 50%, FSC 1%, bFGF (Basib fibrobl as t growth f ac tor) 10 ng / ml continuously added caro, EGF (Epidermal growth fact or) 10 ng / ml added daily), or culture solution 2 (NPBM (Neural Progenito r Basal Medium), 2% Neural survival factors (Clonetics)> 0.2% EGF (human Epidermal growth f ac tor) 0.2% Gentami cine-ampho ter ici nB, 0.2% FGF (human fibroblast growth factor), added daily to bFGF 10 ng / ml, in daily addition) the EGF 10 ng / ml, in a state in which floating, 5% C0
  • mesoderm stem cells or ES cells contained in the mononuclear cell fraction isolated from bone marrow fluid or umbilical cord blood are cultured in culture solution 1 (DMEM 50%, F-12 50%, FSC 1%) or culture solution 2 (NPBM (Neural progenitor cell basal medium: Clon etics), 2% Neural survival factors (Clonetics), 0.2% hEGF (human Epidermal growth factor), 0.2% Gentamicine-amphotericinB, 0.2% FGF (human fibroblast growth factor)), and found that mesoderm stem cells or ES cells induce differentiation into neurons or Darya cells It was.
  • culture solution 1 DMEM 50%, F-12 50%, FSC 16%
  • NPBM Neuronuclear cell basal medium: Clon etics
  • hEGF human Epidermal growth factor
  • Gentamicine-amphotericinB 0.2% FGF (human fibroblast growth factor)
  • the nerve regeneration ability of the nervous system cells obtained by the above differentiation induction method was examined in a cerebral infarction model, a dementia model, a spinal cord injury model, and a demyelination model. It turns out that it has the same reproducibility.
  • the present invention is more general, and is considered to be applicable to nerve transplantation / regenerative therapy for wide-area cranial nerve injury. That is, it can be applied to autotransplantation therapy for ischemic cranial nerve injury, traumatic cranial nerve injury, cranial nerve degenerative disease, and metabolic neurological disease of the central nervous system and peripheral nervous system.
  • the differentiation induction method provides a clue to unravel the mechanism of differentiation from mesoderm stem cells or ES cells into nervous system cells. If genes that regulate such differentiation are identified and analyzed, mesoderm stem cells and ES cells can be efficiently and sufficiently transformed into neural cells using these genes. Therefore, it is highly expected that “gene therapy” to promote regeneration of nerve tissue will be possible.
  • the present invention relates to a method for inducing differentiation from mesoderm stem cells or ES cells to neural cells, a nervous system cell obtained by the method, a composition for treating a nervous system disease comprising the neural cell, the composition To treat neurological diseases More specifically about the law,
  • [1] Mesodermal stem cells or ES cells contained in the mononuclear cell fraction isolated from bone marrow fluid or umbilical cord blood collected from vertebrate animals, in a basic culture medium at 33 to 38 ° C. A method of inducing into nervous system cells by culturing with
  • the fraction of mononuclear cells is bone marrow fluid or umbilical cord blood collected from vertebrate animals, and is subjected to density gradient centrifugation in solution for fc at a speed sufficient for the specific gravity at 2000 rpm. After centrifugation, the specific gravity is 1.07
  • the method according to [1] which is a cell fraction that can be prepared by collecting a cell fraction in the range of g / ml to 1. Ig / ml,
  • [4] The method according to any one of [1] to [3], wherein the neural cell is selected from the group consisting of a neural stem cell, a neural progenitor cell, a neural cell, and a glial cell.
  • composition for treating a nervous system disease comprising the cell according to [6],
  • Nervous system diseases include central and peripheral demyelinating diseases, central and peripheral degenerative diseases, stroke, brain tumors, higher dysfunction, mental illness, cancer, traumatic nervous system diseases, and The composition according to [7], which is selected from the group consisting of spinal cord infarction,
  • a method for treating a nervous system disease comprising transplanting the cell according to [6] or the composition according to [7] to a recipient,
  • Nervous system diseases are central and peripheral demyelinating diseases
  • the treatment according to [9] which is selected from the group consisting of peripheral degenerative diseases, stroke, brain tumor, higher dysfunction, mental illness, epilepsy, traumatic nervous system disease, and spinal cord infarction Method,
  • mesoderm stem cells or ES cells contained in a mononuclear cell fraction isolated from bone marrow fluid or umbilical cord blood collected from a vertebrate animal are used in a basic culture solution at 33 ° (: to 38 °).
  • a method for inducing to nervous system cells by culturing under the condition of ° C.
  • the vertebrate is preferably a mammal (eg, mouse, rat, rabbit, buyu, inu, monkey, human, etc.), but is not particularly limited.
  • a mammal eg, mouse, rat, rabbit, buyu, inu, monkey, human, etc.
  • the bone marrow fluid used in the present invention can be collected, for example, by anesthetizing vertebrates (including humans) (local or general anesthesia), inserting a needle into the bone, and sucking with a syringe.
  • the bone include, but are not limited to, the femur, sternum, and iliac bone forming the pelvis.
  • it is an established technique to puncture the umbilical cord directly at birth and suck it with a syringe to collect and store the umbilical cord blood.
  • the mononuclear cell fraction is obtained by subjecting bone marrow fluid or umbilical cord blood collected from a vertebrate to density gradient centrifugation in a solution for a time sufficient for separation according to the specific gravity at 2000 rpm, and after centrifugation, the specific gravity is 1 It can be prepared by collecting cell fractions in the range of 07g / ml to 1.lg / ml.
  • a sufficient time for separation according to specific gravity means a time sufficient for a cell to occupy a position according to its specific gravity in a solution for density gradient centrifugation. Usually, it is about 10 to 30 minutes.
  • the specific gravity of the recovered cell fraction is preferably in the range of 1.07 g / m 1 to 1.08 g / ml (eg, 1.077 g / ml). Density gradient centrifugation As a solution for this, Ficol solution or Percol solution can be used, but is not limited thereto.
  • bone marrow fluid (5-10 zl) collected from a vertebrate is first mixed with a solution (2 ml of 1L-15, 3 ml of Ficol), and centrifuged (2000 rpm for 15 minutes). Extract the nuclear cell fraction (approx. Lml). This mononuclear cell fraction is mixed with a culture solution (2 ml of NPBM) for cell washing and centrifuged again (2000 rpm for 15 minutes). Next, after removing the supernatant, the precipitated cells are collected.
  • the mononuclear cell fraction in the present invention can be used for the preparation of the following mesodermal stem cells even in the state of a culture solution.
  • the mononuclear cell fraction is, for example, culture medium 1 (DMEM (Dulbecco's Modified Eagles Medium-Low Glucose), 103 ⁇ 4 FBS (fetal bovine serum), 1% ant i -biot c-ant imycot ic solution), Medium 2 (MSCBM (Mesenchymal Stem Cel 1 Basal Medium)), 10% MCGS (Mesenchymal Cel 1 Growth Suppl ement), 4 mM L-Glutamine, 1% Penici 11 in-Streptomycin 37) in culture medium 3 (DMEM (sigma), 10% FBS (gibco), 1% Penici 11 in-St reptomycin, 2 mM L-Glutamine (gibco)). It can be prepared by culturing under the conditions of C, 53 ⁇ 4 C0 2 in air.
  • DMEM Dulbecco's Modified Eagles Medium-Low Glucose
  • FBS fetal bovine serum
  • MCGS Me
  • mesoderm stem cells are prepared from the above mononuclear cell fraction (including the state of the culture solution).
  • Mesodermal stem cells refer to cells that constitute a tissue that is developmentally classified as mesoderm, including blood cells.
  • Mesodermal stem cells are cells that have the ability to copy (divide and proliferate) cells that have the same ability as themselves and to differentiate into all the cells that make up the mesoderm tissue. Point to.
  • Mesodermal stem cells have, for example, the characteristics of SH2 (+), SH3 (+), SH4 (+), CD29 (+), CD44 (+), CD14 (-), CD34 (-), CD45 (-) Although it is a cell, it is not particularly limited to these markers.
  • Mesodermal stem cells are, for example, bone marrow fluid or umbilical cord blood collected from vertebrates Centrifugation at 900 g for a time sufficient for separation according to the specific gravity, followed by density gradient centrifugation in the solution, and after centrifugation, the fraction of cells with a specific gravity in the specific gravity range of 1.07 g / ml to 1. lg / ml It is also possible to prepare by recovering.
  • a sufficient time for separation according to specific gravity means a time sufficient for a cell to occupy a position according to its specific gravity in a solution for density gradient centrifugation, usually 10 to 30 About a minute.
  • the specific gravity of the cells to be collected may vary depending on the type of animal from which the cells are derived (eg, human, rat, mouse, etc.).
  • Ficol solution or Percol solution can be used, but is not limited thereto.
  • bone marrow fluid 25 ml or umbilical cord blood collected from a vertebrate is mixed with the same amount of PBS solution, centrifuged (900 g for 10 minutes), and the precipitated cells are mixed with PBS and collected.
  • the cell density is about 4X10 7 cells / ml) to remove blood components.
  • mix 5 ml with Percol solution 1.073 g / ml
  • centrifuge 900 g for 30 minutes
  • the extracted mononuclear cell fraction is mixed with, for example, culture solution 1 (D MEM, 103 ⁇ 4 FBS, anti-biotic-antimycotic solution), culture solution 2 or culture solution 3, and centrifuged ( For 15 minutes at 2000 rpm). Then, the supernatant was removed after centrifugation, the precipitated cells were collected and cultured (37 ° C, 5% CO 2 in air) 0
  • mesoderm stem cells are, for example, from the above mononuclear cell fraction, the above SH 2 (1), SH3 (+), SH4 (+), CD29 (+), CD44 (+), CDH (-) , CD34 ( ⁇ ), CD45 ( ⁇ ) and other cells having cell surface markers can be obtained by selecting using an antibody.
  • the selection method is not particularly limited, and examples thereof include a method using magnet beads or a method using a normal cell sorter (FACS or the like).
  • the method for preparing ES cells in the present invention is well known to those skilled in the art. It can be prepared by the method (Doetschman TC, et al. J Embryol Exp Morphol, 1985, 87, 27-45, Williams RL et al., Nature, 1988, 336, 684-687).
  • the ES cells prepared in this way can be induced to differentiate into neural cells under the conditions described in the examples.
  • the mesoderm stem cell or the ES cell is cultured in a basic culture solution under the conditions of 33 to 38 ⁇ .
  • the basic culture medium in the present invention is not particularly limited as long as it is a normal culture medium used for cell culture, but preferably DMEM (Dulbecco's modi fied essential medi ⁇ ) or NPBM (Neural progenitor cell). basal m edium: CI one tics).
  • the other components of the basic culture solution are not particularly limited, but preferred embodiments include F-12, FSC, Neural survival factors (Clonetics) and the like contained in the culture solution described in Example 2. It is The concentration in these culture media is not particularly limited, but preferably F-12 is 50% and FSC is 1%. Also, C0 2 concentration in the culture solution is good Mashiku is 5%, is not particularly limited.
  • bFGF Basib fibroblast growth factor
  • EGF Extramal growth factor
  • bFGF Basib fibroblast growth factor
  • EGF Extramal growth factor
  • concentration of bFGF or EGF include lng / ml to 100 ng / ml, and preferably 10 ng / ml.
  • timing of addition or the method of addition There are no particular restrictions on the timing of addition or the method of addition, but a method of adding the mesodermal stem cells or the ES cells every day while culturing the mesoderm stem cells or the ES cells in the basic culture solution is preferable.
  • the culture temperature condition in the present invention is 33 ° C to 38 ° C, preferably 37 ° C.
  • the cells may be in a floating state (Neuroscope state) or attached to the culture vessel.
  • Examples of the culture container include a non-coating dish (non-coating dish) and the like.
  • the mesodermal stem cell or the ES cell to the nervous system cell is added. It is possible to promote the induction of In the present invention, such a method for promoting induction into neural cells is also provided.
  • the ischemic brain extract in the present invention can be prepared, for example, by centrifuging a crushed liquid of ischemic brain of a vertebrate. Specifically, the whole brain is removed from an animal model of whole cerebral ischemia (rat, etc.), and the prepared small section is added to NPBM (culture solution for neural stem cells) and mechanically pulverized with a homogenizer. Subsequently, the ischemic brain extract can be prepared by centrifuging at 800 rpm for 5 minutes, collecting the supernatant, and removing cellular components with a membrane filter, but is not limited to this method.
  • the whole cerebral ischemia model animal can be prepared by anesthetizing an animal with Nembutal and then perfusing with physiological saline. The ischemic brain extract thus obtained is added to the basic culture solution containing the basic culture solution and other components. There is no particular limitation on the addition time.
  • the mesoderm stem cells or the ES cells are cultured under the above conditions to induce to the nervous system cells.
  • the nervous system cells include neural stem cells, neural progenitor cells, neural cells, glial cells, and the like.
  • the present invention provides a cell obtained by the above method.
  • the cell is a neuronal cell, and examples thereof include, but are not limited to, neural stem cells, neural progenitor cells, neural cells, and dahlia cells.
  • the present invention also provides a composition for treating a nervous system disease comprising cells obtained by the above method.
  • the cells of the present invention can be used for transplantation as they are, but in order to improve the therapeutic efficiency by transplantation, it is also possible to transplant them as a composition to which various drugs have been added or genes have been introduced.
  • composition of the present invention for example, (1) the addition of a substance that improves the proliferation rate of the cell of the present invention or promotes further differentiation into a nervous system cell, or the introduction of a gene having such an effect (2) Addition of a substance that improves the survival rate of the cells of the present invention in damaged nerve tissue, or introduction of a gene having such an effect (3) Blocks adverse effects of the cells of the present invention from damaged nerve tissue Addition of substances or introduction of genes with such effects, 4 Addition of substances that extend the life of donor cells, or introduction of genes with such effects, 5 Introduction of substances that regulate the cell cycle Addition or introduction of genes with such effects, 6 Addition of substances aiming to suppress immune reactions, or introduction of genes with such effects, 7Energy -Addition of a substance that activates metabolism, or introduction of a gene having such an effect, 8 Introduction of a substance that improves the migration ability of a donor cell in the host tissue, or introduction of a gene having such an effect, 9 Examples include, but are not limited to, introducing a substance that improves
  • Nervous system diseases can be used for the treatment of nervous system diseases by being transplanted into a recipient.
  • Nervous system diseases to be treated For example, central and peripheral demyelinating diseases, central and peripheral degenerative diseases, stroke (including cerebral infarction, cerebral hemorrhage, subarachnoid hemorrhage), brain tumors, higher dysfunction including dementia, mental Diseases, epilepsy, traumatic neurological diseases (including head trauma, brain contusion, spinal cord injury), and spinal cord infarction, but are not limited to these.
  • cells obtained by separation from recipient-derived bone marrow fluid or umbilical cord blood can be transplanted as donor cells (autologous transplantation therapy). This is preferable because there is little risk of rejection due to transplantation and there is no difficulty in using an immunosuppressant in combination. If autotransplantation therapy is difficult, cells from other people or other animals can be used. The cells may be stored frozen.
  • cells transplanted to a patient are stored in a syringe in a state where the cells to be transplanted are suspended using artificial cerebrospinal fluid or physiological saline, and the damaged nerve tissue is exposed by surgery.
  • This can be done by direct injection with a needle.
  • the cells of the present invention have high migration ability, they can move in nervous system tissues. Therefore, it may be transplanted near the damaged site.
  • An effect can also be expected by injection into cerebrospinal fluid.
  • cells can be injected with a normal lumbar puncture, there is no need for the patient's surgery, and only local anesthesia is required, which is preferable in that the patient can be treated in a hospital room.
  • it can be expected to be injected into arteries and veins. Therefore, transplantation can be performed in the manner of normal blood transfusion, which is preferable in that transplantation operation in a ward is possible.
  • the cells of the present invention may be used as a gene carrier because of their high migration ability.
  • it is expected to be used as a vector therapy vector for various neurological diseases such as brain tumors.
  • Figure 1 is a photograph showing cultured mesoderm stem cells. It expresses SH3, a marker for mesodermal cells (A), but is negative for nestin, a marker for neural stem cells (B). After differentiation induction under culture conditions, morphologically changed to neural stem cell-like, and the marker of mesoderm cells, SH3, became negative (C) and the neural stem cell marker nestin was positive (D).
  • the scale bar indicates ⁇ ⁇ for A and B, and 200 ⁇ m for C and D.
  • Figure 2 shows that when mesoderm stem cells are induced to differentiate into neural stem cells under culture conditions, and subsequently induced to differentiate, neurons (A, D), astrocytes (B, E), oligodendrocytes (C, F)
  • Photograph showing differentiation into D is a photograph immunostained with NSE (neuron-specific enolase), E 3 ⁇ 4 GFAP (glial fibrillary a cidic protein), and F is GalC (gal actocerebros ide).
  • the scale bar indicates 25 mm.
  • Figure 3 is a photograph showing that the transplanted cells repaired the cerebral infarction.
  • Donor cells that have been induced to differentiate mesoderm stem cells into neural stem cells under culture conditions are genetically marked with the LacZ gene (expresses E. coli galactose seed) and reacts when treated with the substrate X-gal blue Color. Therefore, it is possible to track donor cells in the host brain tissue.
  • Rat brain infarction model (middle cerebral artery temporary occlusion model, basal ganglia, temporal lobe, hippocampus etc. fall into cerebral infarction) transplanted with donor cells marked with LacZ gene, resulting in cerebral infarction
  • the tissue was repaired by engraftment in the basal ganglia, temporal lobe, hippocampus, etc.
  • Figure 4 is a photograph showing that the transplanted cells repaired the spinal cord injury site.
  • the donor cell is not only the damaged site, but also the brain (A), myelin ( B) also migrated to the lumbar spine (C) Repair was done.
  • D, E, and F are photographs of A, B, and C observed at high magnification. The scale bars in A, B, C, D, E and F are 200 m for A, B and C, and 10 xm for D, E and F.
  • Figure 5 is a photograph showing that the transplanted cells repaired the spinal cord demyelination site.
  • A is a photograph showing remyelination after transplantation of neural stem cells derived from adult mesoderm stem cells to a mature rat spinal cord demyelination region.
  • B is a photograph of remyelinated axons observed at high magnification. The scale parameters for A, B, C, D, E and F are 250 m for A, B and C, and 10 m for D, E and F.
  • Fig. 6 is a photograph of a nestin-positive neurosphere, which is a neural stem cell derived from ES cells. BEST MODE FOR CARRYING OUT THE INVENTION
  • the mononuclear cell fraction was added to culture medium 1 (DMEM (Dulbecco's Modified Eagles Medium-Low Glucose) 103 ⁇ 4 FBS (fetal bovine serum), 13 ⁇ 4 anti-biotic-antimycotic solution), culture medium 2, among the liquid 3, and cultured in a 37 ° C, 5% C0 2 conditions, to prepare a culture solution of the mononuclear cell fraction.
  • DMEM Dulbecco's Modified Eagles Medium-Low Glucose
  • FBS fetal bovine serum
  • 13 ⁇ 4 anti-biotic-antimycotic solution fetal bovine serum
  • SH2 (+), SH3 (+), SH4 (+), CD29 (+), CD44 Cells having characteristics such as (+), CD14 (-), CD34 (-), CD45 (-) were extracted using antibodies.
  • a sorting method a method using a magnetic bead or a method using a normal cellosphere (such as FACS) was used.
  • DMEM Dulbecco's modified essential medium
  • F-12 50% FSC 13 ⁇ 4, Basib fibroblast growth factor (bFG F) 10 ng / ml daily, Epidermal Growth factor (EGF) 10 ng / ml added daily
  • culture 2 NPBM (Neural progenitor cell basal medium: Clonetics), 2% Neural survival factors (Clonetics), 0.2% hE GF (human Epidermal growth factor ), 0.2% Gentamicine-amphotericin B, 0.2% hFGF (human fibroblast growth factor) Basib fibroblast growth factor (bFGF) 10 ng / ml, and epidermal growth factor (EGF) 10 ng / ml added daily)
  • DMEM Disulbecco's modified essential medium
  • F-12 50% F-12 50%
  • FSC 13 ⁇ 4 Basib fibroblast growth factor
  • bFG F Basib fibroblast growth factor
  • EGF Epidermal Growth factor
  • NPBM Neuroderma
  • the culture medium of cultured mesoderm stem cells is used as a new culture medium (DMEM (Dulbecco's modified essential medium) 50%, F-12 50%, FSC ⁇ %) or Change to nutrient solution 2 (NPBM (Neural progenitor cell basal medium: Clonetics), 2% Neural survival factors (Clonetics), 0.2% hEGF (human Epidermal growth factor), 0.2% Gentamicine-amphoter icinB, 0.2% hFGF)
  • DMEM Denbecco's modified essential medium
  • NPBM Neurogenitor cell basal medium: Clonetics
  • Neural survival factors Clonetics
  • 0.2% hEGF human Epidermal growth factor
  • 0.2% Gentamicine-amphoter icinB 0.2% hFGF
  • Fig. 1 Induced differentiation from mesoderm stem cells to neural cells, the cultured cells also changed morphologically. Specifically, cells that were single cells formed a neurosphere (Fig. 1). It was also confirmed that neural cells (NSE positive) and glial cells (GFAP positive) differentiated from these neural stem cells (Fig. 2).
  • mesoderm stem cells differentiate into neural stem cells at a high rate. According to this method, it was found that cultured mesoderm stem cells could be induced to neural stem cells at a high rate in just a few days.
  • the rat is deeply anesthetized with Nembutal, then the front chest is opened through the anterior abdominal wall to expose the heart and ascending aorta. An incision is made in the apex and a tube is inserted from the left ventricle into the ascending artery. Next, make an incision in the right atrial appendage, Saline was perfused for 3 minutes to perform full systemic blood removal. After perfusion, it was left as it was for 4 to 5 hours to obtain a whole brain ischemia model. Next, the cerebrum and midbrain were removed from the whole cerebral ischemia model rat and cut into small pieces of about 1 to 2 mm with a pointed knife.
  • the prepared small section was added to NP ⁇ and mechanically pulverized with a homogenizer to prepare a turbid solution.
  • the turbid solution was transferred to a centrifuge tube, centrifuged at 800 rpm for 5 minutes, and the supernatant was collected. Cell components were removed with a 0.22 ⁇ m membrane filter to obtain an ischemic brain extract.
  • NPMM ischemic brain extract medium that had been warmed at 37, and cultured in suspension in 100 ° non-coating dish (IWAKI) at 37 ° C and 5% C02. , BFGF 10 ng / ml and EGF 10 ng / ml were added every day.
  • the supernatant and detached cells were collected in a centrifuge tube with a Pasteur pipette, pipetted several times, and then centrifuged at 1000 rpm for 5 minutes. The supernatant was discarded and NPMM was added to resuspend. Plated on 50% NPMM, 50% ischemic brain extract medium which had been warmed to 37 ° C, 37 ° C, 5 C0 under 2 conditions, and cultured in suspension 100 mm non-coating di sh ( IWAKI). bFGF 10 ng / ml and EGF 10 ng / ml were added every day. Industrial applicability
  • the present invention greatly contributes to the treatment of cerebral infarction, dementia, spinal cord injury, demyelinating disease and the like.
  • the present invention is more general and can be applied to nerve transplantation / regenerative therapy for cranial nerve injury in a wide area.
  • it can be applied to autotransplantation therapy for ischemic cranial nerve injury, traumatic cranial nerve injury, cranial nerve degenerative disease, and metabolic neurological disease of the central and peripheral nervous systems.
  • the differentiation inducing method of the present invention provides a clue to unravel the mechanism of differentiation from mesoderm stem cells or ES cells into neural cells. If genes that regulate such differentiation are identified and analyzed, mesoderm stem cells can be efficiently and sufficiently transformed into neural cells using these genes. . Therefore, “gene therapy” to promote regeneration of nerve tissue It is highly expected that it will be possible.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Neurology (AREA)
  • Genetics & Genomics (AREA)
  • Neurosurgery (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Psychiatry (AREA)
  • Pain & Pain Management (AREA)
  • Hospice & Palliative Care (AREA)
  • Rheumatology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

It is found out that when mesoblast stem cells or ES cells prepared from a mononuclear fraction separated from bone marrow fluid or cord blood are cultured in a fundamental liquid culture medium, the differentiation of these mesoblast stem cells or ES cells into nerve system cells or glial cells is induced. It is further found out that the induction of the differentiation of mesoblast stem cells or ES cells into nerve system cells is promoted by adding an ischemic brain extract to the above-described fundamental liquid culture medium. It is clarified that the nerve system cells obtained by the above method are capable of regenerating nerve in a cerebral infarction model, a dementia model, a spinal injury model and a demyelination model.

Description

明細書 中胚葉幹細胞または ES細胞から神経系細胞への分化誘導方法 技術分野  Description Method for inducing differentiation from mesoderm stem cells or ES cells to nervous system cells
本発明は、中胚葉幹細胞または ES細胞から神経系細胞への分化誘導方 法、 およびその利用に関する。 背景技術  The present invention relates to a method for inducing differentiation from mesoderm stem cells or ES cells into neural cells, and use thereof. Background art
稀突起膠細胞 (オリゴデンドログリア: oligodendrocyte) (Archer, DR. et al. , Exp Neurol, 1994, 125, 268-77. , Blakemore, WF. and C rang, AJ. , Dev Neurosci, 1988, 10, ト ll.、G卿 el, M. et al. , Ann New York Acad Sci, 1987, 495, 71-85. ) 、 またはシュワン細胞 (Blak emore, WF. , Nature, 1977, 266, 68—9·、 Blakemore, WF. and Crang, AJ. , Dev Neurosci, 1988, 10, 1- 11.、 Honmou, 0. et al . , J Neurosc i, 1996, 16, 3199-208.) もしくはオルファク トリ一エンシーティング 細胞 (olfactory ensheat ing cells) (Franklin, RJ. et al. , Gl ia, 1996, 17, 217-24. , Imaizumi, T. et al. , J Neurosci, 1998, 18 (16), 6176-6185. , Kato, T. et al. , Glia, 2000, 30, 209-218.) 等の髄鞘 形成細胞を移植すると、 動物モデルにおいて再有髄化が誘発され、 電気 生理学機能を回復させることができる (Utzschneider, DA. et al. , Pr oc Natl Acad Sci USA, 1994, 91, 53—7.、 Honmou, 0. et al. , J Neur osci, 1996, 16, 3199-208. ) 。 このような細胞を患者もしくは他人から 調製して、 細胞治療法に用いることも不可能ではないが、 組織材料を脳 または神経から採取しなければならないため問題が多い。  Oligodendrocyte (Archer, DR. Et al., Exp Neurol, 1994, 125, 268-77., Blakemore, WF. And Crang, AJ., Dev Neurosci, 1988, 10, , G 、 el, M. et al., Ann New York Acad Sci, 1987, 495, 71-85.), Or Schwann cells (Blak emore, WF., Nature, 1977, 266, 68—9. , Blakemore, WF. And Crang, AJ., Dev Neurosci, 1988, 10, 1-11, Honmou, 0. et al., J Neurosc i, 1996, 16, 3199-208. Olfactory ensheating cells (Franklin, RJ. Et al., Glia, 1996, 17, 217-24., Imaizumi, T. et al., J Neurosci, 1998, 18 (16), 6176-6185. , Kato, T. et al., Glia, 2000, 30, 209-218.) Transplanted myelinating cells can induce remyelination and restore electrophysiological function in animal models (Utzschneider, DA. Et al., Proc Natl Acad Sci USA, 1994, 91, 53-7., Honmou, 0. et al., J Neur osci, 1996, 16, 3199-208.). It is not impossible to prepare such cells from patients or others and use them in cell therapy, but there are many problems because tissue material must be collected from the brain or nerves.
脳から得られる神経前駆細胞または幹細胞には、自己複製能力があり、 さまざまな細胞系譜の神経細胞や膠細胞に分化することが知られている (Gage, FH. et al. , Proc Natl Acad Sci USA, 1995, 92, 11879-83. , Lois, C. and Alvarez-Buyl la, A. , Proc Natl Acad Sci USA, 1993, 9 0, 2074-7. , Morshead, CM. et al. , Neuron, 1994, 13, 1071—82.、 Re ynolds, BA. and Weiss, S. , Science, 1992, 255, 1707- 10. ) 。胎児組 織から採取したヒト神経幹細胞を新生仔マウスの脳に移植すると、 神経 細胞と星状細胞に分化したり (Chalmers- Redman, RM. et al. , Neurosc i, 1997, 76, 1121-8. > Moyer, MP. et al. , Transplant Proc, 1997, 29, 2040-1·、 Svendsen, CN. et al. , Exp Neurol, 1997, 148, 135-4 6. ) 、 また再有髄化させることもできる (Flax, JD. et al. , Nat Biot echnol, 1998, 16, 1033- 9. ) 。 脱髄化した齧歯類の脊髄に成人脳由来の 神経前駆細胞を移植すると、 再有髄化が行なわれて、 インパルスの伝導 を回復したことが報告されている (Akiyama, Y. et al. , Exp Neurol, 2001. ) 。 Neural progenitor cells or stem cells obtained from the brain are capable of self-renewal, It is known to differentiate into neurons and glial cells of various cell lineages (Gage, FH. Et al., Proc Natl Acad Sci USA, 1995, 92, 11879-83., Lois, C. and Alvarez- Buyl la, A., Proc Natl Acad Sci USA, 1993, 90, 2074-7., Morshead, CM. Et al., Neuron, 1994, 13, 1071—82., Re ynolds, BA. And Weiss, S , Science, 1992, 255, 1707- 10.). When human neural stem cells collected from fetal tissues are transplanted into the brains of newborn mice, they differentiate into neurons and astrocytes (Chalmers- Redman, RM. Et al., Neurosc i, 1997, 76, 1121-8 > Moyer, MP. Et al., Transplant Proc, 1997, 29, 2040-1, Svendsen, CN. Et al., Exp Neurol, 1997, 148, 135-4 6.), and remyelinated (Flax, JD. Et al., Nat Biot echnol, 1998, 16, 1033- 9.). Transplantation of adult brain-derived neural progenitor cells into a demyelinated rodent spinal cord has been reported to remyelinate and restore impulse conduction (Akiyama, Y. et al. , Exp Neurol, 2001.).
これらの研究は、 上記細胞が、 神経系疾患の修復術に利用できるかも しれないことを示唆しているため、 大きな関心を引いている。 (Akiyam a, Y. et aに Exp Neurol, 2001.、 Chalmers-Redman, RM. et aに Ne urosci, 1997, 76, 1121-8. , Moyer, MP. et al. , Transplant Proc, 1 997, 29, 2040—1·、 Svendsen, CN. et al. , Exp Neurol, 1997, 148, 1 35 - 46·、 Yandava, BD. et al. , Proc Natl Acad Sci USA, 1999, 96, 7 029-34.) 。  These studies are of great interest as they suggest that the cells may be used in the repair of nervous system diseases. (Akiyam a, Y. et a to Exp Neurol, 2001., Chalmers-Redman, RM. Et a to Neurosci, 1997, 76, 1121-8., Moyer, MP. Et al., Transplant Proc, 1 997, 29, 2040—1, Svendsen, CN. Et al., Exp Neurol, 1997, 148, 1 35-46, Yandava, BD. Et al., Proc Natl Acad Sci USA, 1999, 96, 7 029-34 .)
すでに本発明者は、 ヒト成人由来の神経細胞を、 脳より抽出 '培養し、 セルライン化し、 その機能を検討し、 当該神経細胞には、 自己複製機能 と多分化機能が存在することを見出した。 すなわち、 脳より得た神経細 胞の前駆細胞 (progenitor cell) を単一細胞展開(s ingle cell expans ion)し、セルライン化したものを in vitroの系でクローン分析を行った ところ、 自己複製能(すなわち、 増殖能)と、 多分化能 [すなわち、 ニュー ロン(neur on)、 膠星状細胞(ァストログリア; as t r ocy t e s)、 稀突起膠細胞 (オリゴデンドログリァ; o l i godendr ocy t e s)への分化]が認められたこと から、 この細胞には神経幹細胞の性質があることが確認された。 Already, the present inventor has extracted human adult-derived neurons from the brain, cultured them, made cell lines, examined their functions, and found that these neurons have a self-replicating function and a multi-differentiation function. It was. In other words, neuronal progenitor cells obtained from the brain were expanded into single cells, and cell lines were cloned in vitro. However, self-renewal ability (ie, proliferative ability) and multipotency [ie, neuron (astrolog tes), oligodendrocytes (oligodendrocytes; oli differentiation into godendr ocy tes) was confirmed, confirming that this cell has the properties of neural stem cells.
実際に、 この細胞をラッ ト虚血モデル、 外傷モデルを用いて移植実験 を行ったところ、 極めて良好な生着率、 遊走、 分化を示した。 また、 当 該細胞を脊髄脱髄モデルラッ トへ移植したところ、 機能的な髄鞘が形成 されることが分かった。 すなわち、 脊髄脱髄モデルラッ トにおいて、 脱 髄された神経軸索が再有髄化され、 神経機能が回復するものであり、 当 該細胞の移植治療法の効果を、 組織学的、 電気生理学的、 行動科学的に ifc 5忍した。  Actually, when transplantation experiments were performed on these cells using a rat ischemia model and a trauma model, they showed very good engraftment, migration, and differentiation. In addition, when the cells were transplanted into a spinal cord demyelination model rat, it was found that a functional myelin sheath was formed. That is, in the spinal cord demyelination model rat, the demyelinated nerve axon is remyelinated and the nerve function is restored, and the effect of the transplantation treatment method of the cell is histologically and electrophysiologically Ifc 5 shinobied in behavioral science.
上記の事実から判断すれば、 自己の大脳より少量の神経組織を採取し て、 神経幹細胞を抽出 ·培養し、 得られた神経幹細胞を、 自己の脊髄の 損傷部位に移植することは、 自家移植療法として、 極めて応用性の高い 治療法となるものと考えられる。  Judging from the above facts, collecting a small amount of nerve tissue from the own cerebrum, extracting and culturing neural stem cells, and transplanting the obtained neural stem cells to the damaged site of the own spinal cord As a therapy, it is considered to be a highly applicable therapy.
しかしながら、 大脳より神経幹細胞を含んだ組織を採取することは、 採取にあたって神経脱落症状が発生しないとはいえ、 容易なことではな い。 したがって、 より安全で、 かつ簡便な自家移植療法を確立すること は、 今日の複雑な各種疾患に対する治療法の確立という点から、 極めて 重要なことであった。 これに対し、 本発明者は、 ドナー細胞の獲得のた めに、 神経幹細胞の採取技術より容易である、 骨髄細胞、 臍帯血細胞、 または胎児肝細胞より単核細胞分画等を採取する技術を開発した (特願 However, it is not easy to collect tissue containing neural stem cells from the cerebrum, although neurological deficits do not occur during collection. Therefore, establishing safer and simpler autotransplantation therapy was extremely important in terms of establishing treatments for today's complex diseases. In contrast, the present inventor has a technique for collecting a mononuclear cell fraction from bone marrow cells, umbilical cord blood cells, or fetal liver cells, which is easier than a technique for collecting neural stem cells to obtain donor cells. Developed (patent application
2001 -1 60579) 。 すなわち、 本発明者は、 骨髄細胞より調製した単核細胞 分画が神経系細胞への分化能を有するものであることを見出した。 さら に、 本発明者は、 該単核細胞分画から分離した中胚葉幹細胞を含む細胞 分画、 間質細胞を含む細胞分画、 および AC 1 33陽性細胞を含む細胞分画 が神経系細胞への分化能を有することを見出した。 発明の開示 2001 -1 60579). That is, the present inventor has found that the mononuclear cell fraction prepared from bone marrow cells has the ability to differentiate into neural cells. Further, the present inventor further provides a cell fraction containing mesoderm stem cells isolated from the mononuclear cell fraction, a cell fraction containing stromal cells, and a cell fraction containing AC 133-positive cells. Has been found to have the ability to differentiate into neural cells. Disclosure of the invention
本発明は、このような状況に鑑みてなされたものであり、その目的は、 中胚葉幹細胞または ES細胞から神経系細胞への分化誘導方法、該方法に より得られる神経系細胞、 該神経系細胞を含む神経系疾患の治療ための 組成物、 および該組成物を用いた神経系疾患の治療方法を提供すること にある。  The present invention has been made in view of such a situation, and an object of the present invention is to provide a method for inducing differentiation from mesoderm stem cells or ES cells to nervous system cells, a nervous system cell obtained by the method, and the nervous system. It is an object of the present invention to provide a composition for treating a nervous system disease including cells, and a method for treating a nervous system disease using the composition.
本発明者は、 骨髄液または臍帯血から分離される単核細胞分画に含ま れる中胚葉幹細胞、 または ES細胞が、 in vitroにおいて、 神経系細胞 への分化誘導することを新たに見出した。  The inventor newly found that mesodermal stem cells or ES cells contained in a mononuclear cell fraction isolated from bone marrow fluid or umbilical cord blood induce differentiation into neural cells in vitro.
具体的には、 骨髄液または臍帯血から分離される単核細胞分画から調 製した中胚葉幹細胞または ES細胞を、 培養液 1 (DMEM(Dulbecco' s modi f ied essential medium) 50%、 F-12 50%、 FSC 1%、 bFGF (Basib f ibrobl as t growth f ac tor) 10 ng/ml を連曰添カロ、 EGF (Epidermal growth fact or) 10 ng/ml を連日添加) 、 または培養液 2 (NPBM (Neural Progenito r Basal Medium) 、 2% Neural survival factors (Clonet ics) > 0.2% EGF (human Epidermal growth f ac tor) 0.2% Gentami c ine-ampho ter i c i nB 、 0.2% FGF (human fibroblast growth factor), bFGF 10 ng/ml を 連日添加、 EGF 10 ng/ml を連日添加)において、浮遊したままの状態で、 5%C02、 37°Cで培養すると、 該中胚葉幹細胞または該 ES細胞が神経幹細 胞へ分化誘導することを見出した。 Specifically, mesoderm stem cells or ES cells prepared from a mononuclear cell fraction isolated from bone marrow fluid or umbilical cord blood were added to culture medium 1 (DMEM (Dulbecco's modi fied essential medium) 50%, F -12 50%, FSC 1%, bFGF (Basib fibrobl as t growth f ac tor) 10 ng / ml continuously added caro, EGF (Epidermal growth fact or) 10 ng / ml added daily), or culture solution 2 (NPBM (Neural Progenito r Basal Medium), 2% Neural survival factors (Clonetics)> 0.2% EGF (human Epidermal growth f ac tor) 0.2% Gentami cine-ampho ter ici nB, 0.2% FGF (human fibroblast growth factor), added daily to bFGF 10 ng / ml, in daily addition) the EGF 10 ng / ml, in a state in which floating, 5% C0 2, 37 ° and cultured in C, and mesodermal stem cells or the ES cells Was found to induce differentiation into neural stem cells.
また、 骨髄液または臍帯血から分離される単核細胞分画に含まれる中 胚葉幹細胞、 または ES細胞を、 培養液 1 (DMEM 50%、 F-12 50%, FSC 1%) 若しくは培養液 2 (NPBM (Neural progenitor cell basal medium: Clon etics) 、 2% Neural survival factors (Clonet ics)、 0.2% hEGF (human Epidermal growth factor) , 0.2% Gentamicine-amphoter icinB 、 0.2% FGF (human fibroblast growth factor))において培養することにより、 該中胚葉幹細胞または該 ES細胞が神経細胞またはダリァ細胞へ分化誘 導することを見出した。 In addition, mesoderm stem cells or ES cells contained in the mononuclear cell fraction isolated from bone marrow fluid or umbilical cord blood are cultured in culture solution 1 (DMEM 50%, F-12 50%, FSC 1%) or culture solution 2 (NPBM (Neural progenitor cell basal medium: Clon etics), 2% Neural survival factors (Clonetics), 0.2% hEGF (human Epidermal growth factor), 0.2% Gentamicine-amphotericinB, 0.2% FGF (human fibroblast growth factor)), and found that mesoderm stem cells or ES cells induce differentiation into neurons or Darya cells It was.
さらに、 上記の培養液に虚血脳抽出液を添加することにより、 中胚葉 幹細胞または ES細胞から神経系細胞への分化誘導が促進されることを 見出した。  Furthermore, it was found that the induction of differentiation from mesoderm stem cells or ES cells to neural cells was promoted by adding an ischemic brain extract to the culture medium.
また、 上記分化誘導方法によって得られた神経系細胞の神経再生能力 に関しては、 脳梗塞モデル、 痴呆モデル、 脊髄損傷モデル、 脱髄モデル において検討を行った結果、 脳から抽出 ·培養した神経幹細胞と同じ程 度の再生能力があることが判明した。  In addition, the nerve regeneration ability of the nervous system cells obtained by the above differentiation induction method was examined in a cerebral infarction model, a dementia model, a spinal cord injury model, and a demyelination model. It turns out that it has the same reproducibility.
以上の結果から、 脳梗塞、 痴呆、 脊髄損傷、 脱髄疾患等の治療に、 上 記分化誘導方法によって得られる神経系細胞を使用することが可能とな つた。 また、 本発明はより一般的で、 広領域の脳神経損傷に対する神経 移植 ·再生療法への応用も可能であると考えられる。 すなわち、 中枢神 経系および末梢神経系の虚血性脳神経損傷、 外傷性脳神経損傷、 脳神経 変性疾患、 代謝性神経疾患への自家移植療法に応用可能である。  From the above results, it has become possible to use neural cells obtained by the above differentiation induction method for the treatment of cerebral infarction, dementia, spinal cord injury, demyelinating disease and the like. In addition, the present invention is more general, and is considered to be applicable to nerve transplantation / regenerative therapy for wide-area cranial nerve injury. That is, it can be applied to autotransplantation therapy for ischemic cranial nerve injury, traumatic cranial nerve injury, cranial nerve degenerative disease, and metabolic neurological disease of the central nervous system and peripheral nervous system.
さらに、 上記分化誘導方法は、 中胚葉幹細胞や ES細胞から神経系細胞 への分化の機序を解く糸口を提供している。 このような分化を規定する 遺伝子が同定 ·解析されれば、 それら遺伝子を利用して中胚葉幹細胞や ES細胞を効率良く、 また十分量、 神経系細胞へ形質転換させることが可 能となる。 従って、 神経組織の再生を促すための 「遺伝子治療」 が可能 となるものと大いに期待される。  Furthermore, the differentiation induction method provides a clue to unravel the mechanism of differentiation from mesoderm stem cells or ES cells into nervous system cells. If genes that regulate such differentiation are identified and analyzed, mesoderm stem cells and ES cells can be efficiently and sufficiently transformed into neural cells using these genes. Therefore, it is highly expected that “gene therapy” to promote regeneration of nerve tissue will be possible.
すなわち、 本発明は、 中胚葉幹細胞または ES細胞から神経系細胞への 分化誘導方法、 該方法により得られる神経系細胞、 該神経系細胞を含む 神経系疾患の治療ための組成物、 該組成物を用いた神経系疾患の治療方 法に関し、 より具体的には、 That is, the present invention relates to a method for inducing differentiation from mesoderm stem cells or ES cells to neural cells, a nervous system cell obtained by the method, a composition for treating a nervous system disease comprising the neural cell, the composition To treat neurological diseases More specifically about the law,
〔 1 ) 脊髄動物から採取した骨髄液または臍帯血から分離される単核 細胞分画に含まれる中胚葉幹細胞、 または ES細胞を、基礎的培養液にお いて、 33で〜 38°Cの条件で培養することにより、 神経系細胞へ誘導する 方法、  [1] Mesodermal stem cells or ES cells contained in the mononuclear cell fraction isolated from bone marrow fluid or umbilical cord blood collected from vertebrate animals, in a basic culture medium at 33 to 38 ° C. A method of inducing into nervous system cells by culturing with
〔 2〕 単核細胞分画が、脊髄動物から採取した骨髄液または臍帯血を、 2000回転で比重に応じた分離に十分な時間、 溶液中 fcて密度勾配遠心を 行い、 遠心後、 比重 1.07g/mlから 1. Ig/ml の範囲に含まれる細胞分画を 回収することにより調製することができる細胞分画である、 〔 1〕 に記 載の方法、  [2] The fraction of mononuclear cells is bone marrow fluid or umbilical cord blood collected from vertebrate animals, and is subjected to density gradient centrifugation in solution for fc at a speed sufficient for the specific gravity at 2000 rpm. After centrifugation, the specific gravity is 1.07 The method according to [1], which is a cell fraction that can be prepared by collecting a cell fraction in the range of g / ml to 1. Ig / ml,
〔3〕 中胚葉幹細胞が SH2(+), SH3(+), SH4(+),CD29(+), CD44(+) , C D (- ), CD34(- ), CD45(- )の特徵を有する細胞である 〔 1〕 または 〔 2〕 に記載の方法、  [3] Mesodermal stem cells have the characteristics of SH2 (+), SH3 (+), SH4 (+), CD29 (+), CD44 (+), CD (-), CD34 (-), CD45 (-) The method according to [1] or [2], which is a cell,
〔4〕 神経系細胞が神経幹細胞、 神経前駆細胞、 神経細胞、 およびグ リア細胞からなる群より選択される、 〔 1〕 〜 〔 3〕 に記載の方法、 [4] The method according to any one of [1] to [3], wherein the neural cell is selected from the group consisting of a neural stem cell, a neural progenitor cell, a neural cell, and a glial cell.
〔 5〕 基礎的培養液に bFGF、 EGF、 または虚血脳抽出液を加えること を特徴とする、 〔 1〕 〜 〔4〕 のいずれかに記載の方法、 [5] The method according to any one of [1] to [4], wherein bFGF, EGF, or ischemic brain extract is added to the basic culture solution.
〔6〕 〔 1〕 〜 〔 5〕 のいずれかに記載の方法によって得られる細胞、 [6] A cell obtained by the method according to any one of [1] to [5],
〔 7〕 〔 6〕 に記載の細胞を含む、 神経系疾患の治療ための組成物、[7] A composition for treating a nervous system disease, comprising the cell according to [6],
〔 8〕 神経系疾患が、 中枢性および末梢性の脱髄疾患、 中枢性および 末梢性の変性疾患、 脳卒中、 脳腫瘍、 高次機能障害、 精神疾患、 てんか ん、 外傷性の神経系疾患、 および脊髄梗塞からなる群より選択されるも のである、 〔 7〕 に記載の組成物、 [8] Nervous system diseases include central and peripheral demyelinating diseases, central and peripheral degenerative diseases, stroke, brain tumors, higher dysfunction, mental illness, cancer, traumatic nervous system diseases, and The composition according to [7], which is selected from the group consisting of spinal cord infarction,
〔9〕 〔 6〕 に記載の細胞、 または 〔 7〕 に記載の組成物をレシピエ ントに移植することを特徴とする、 神経系疾患の治療方法、  [9] A method for treating a nervous system disease, comprising transplanting the cell according to [6] or the composition according to [7] to a recipient,
〔 1 0〕 神経系疾患が、 中枢性および末梢性の脱髄疾患、 中枢性およ び末梢性の変性疾患、 脳卒中、 脳腫瘍、 高次機能障害、 精神疾患、 てん かん、 外傷性の神経系疾患、 および脊髄梗塞からなる群より選択される ものである、 〔9〕 に記載の治療方法、 [1 0] Nervous system diseases are central and peripheral demyelinating diseases, The treatment according to [9], which is selected from the group consisting of peripheral degenerative diseases, stroke, brain tumor, higher dysfunction, mental illness, epilepsy, traumatic nervous system disease, and spinal cord infarction Method,
〔 1 1〕 移植する細胞がレシピエントに由来している、 〔9〕 または 〔 1 0〕 に記載の治療方法、 を提供するものである。  [1 1] The therapeutic method according to [9] or [10], wherein the cells to be transplanted are derived from a recipient.
本発明においては、 まず、 脊髄動物から採取した骨髄液または臍帯血 から分離される単核細胞分画に含まれる中胚葉幹細胞、または ES細胞を, 基礎的培養液において、 33° (:〜 38°Cの条件で培養することにより、 神経 系細胞へ誘導する方法を提供する。  In the present invention, first, mesoderm stem cells or ES cells contained in a mononuclear cell fraction isolated from bone marrow fluid or umbilical cord blood collected from a vertebrate animal are used in a basic culture solution at 33 ° (: to 38 °). Provided is a method for inducing to nervous system cells by culturing under the condition of ° C.
本発明において、 脊髄動物としては、 好ましくは哺乳動物 (例えば、 マウス、 ラッ ト、 うさぎ、 ブ夕、 ィヌ、 サル、 ヒトなど) を指すが、 特 に制限されない。  In the present invention, the vertebrate is preferably a mammal (eg, mouse, rat, rabbit, buyu, inu, monkey, human, etc.), but is not particularly limited.
本発明において使用される骨髄液は、 例えば、 脊髄動物 (ヒトを含む) を麻酔し (局所または全身麻酔) 、 骨に針を刺し、 シリンジで吸引する ことにより採取することができる。該骨としては、例えば大腿骨、胸骨、 骨盤を形成している腸骨等が挙げられるが、 これらに限定されない。 ま た、 出生時に臍帯に直接針を刺し、 注射器で吸引して、 臍帯血を採取保 存しておくことは確立された技術となっている。  The bone marrow fluid used in the present invention can be collected, for example, by anesthetizing vertebrates (including humans) (local or general anesthesia), inserting a needle into the bone, and sucking with a syringe. Examples of the bone include, but are not limited to, the femur, sternum, and iliac bone forming the pelvis. In addition, it is an established technique to puncture the umbilical cord directly at birth and suck it with a syringe to collect and store the umbilical cord blood.
本発明における単核細胞分画は、 脊髄動物から採取した骨髄液または 臍帯血を、 2000回転で比重に応じた分離に十分な時間、 溶液中にて密度 勾配遠心を行い、 遠心後、 比重 1 . 07g/m lから 1 . l g/m l の範囲に含まれる 細胞分画を回収することにより調製することができる。 ここで 「比重に 応じた分離に十分な時間」 とは、 密度勾配遠心のための溶液内で、 細胞 がその比重に応じた位置を占めるのに十分な時間を意味する。 通常、 1 0 〜30分間程度である。 回収する細胞分画の比重は、 好ましくは 1 . 07g/m 1から 1 . 08g/mlの範囲 (例えば、 1 . 077g/m l ) である。 密度勾配遠心の ための溶液としては、 Ficol液や Percol液を用いることができるがこれ らに制限されない。 In the present invention, the mononuclear cell fraction is obtained by subjecting bone marrow fluid or umbilical cord blood collected from a vertebrate to density gradient centrifugation in a solution for a time sufficient for separation according to the specific gravity at 2000 rpm, and after centrifugation, the specific gravity is 1 It can be prepared by collecting cell fractions in the range of 07g / ml to 1.lg / ml. Here, “a sufficient time for separation according to specific gravity” means a time sufficient for a cell to occupy a position according to its specific gravity in a solution for density gradient centrifugation. Usually, it is about 10 to 30 minutes. The specific gravity of the recovered cell fraction is preferably in the range of 1.07 g / m 1 to 1.08 g / ml (eg, 1.077 g / ml). Density gradient centrifugation As a solution for this, Ficol solution or Percol solution can be used, but is not limited thereto.
具体例を示せば、 まず、 脊椎動物より採取した骨髄液 (5-10 z l) を溶 液 (1L- 15を 2ml、 Ficol を 3ml) に混合し、 遠心 (2000回転で 15分間) し、 単核細胞分画 (約 lml) を抽出する。 この単核細胞分画を細胞の洗 诤のために培養溶液 (NPBM 2ml) に混合して、 再度、 遠心 ( 2000回転で 15分間)する。次いで、上澄みを除去した後、沈降した細胞を回収する。 本発明における単核細胞分画は、 培養液の状態としても、 下記の中胚 葉幹細胞の調製に使用できる。 単核細胞分画を含む培養液としては、 単 核細胞分画を、 例えば、 培養液 1 (DMEM (Dulbecco' s Modified Eagles Medium-Low Glucose) , 10¾ FBS (fetal bovine serum) , 1% ant i-biot i c-ant imycot ic solution) 、 培養液 2 (MSCBM (Mesenchymal Stem Cel 1 Basal Medium) 、 10% MCGS (Mesenchymal Cel 1 Growth Suppl ement) 、 4 mM L-Glutamine, 1 % Penici 11 in - Streptomycin) または 培養液 3 (DMEM ( sigma) 、 10% FBS (gibco) 、 1 % Penici 11 in-St reptomycin, 2mM L-Glutamine (gibco) ) 中で、 37。C、 5¾ C02 in air の条件で培養することで調製できる。 For example, bone marrow fluid (5-10 zl) collected from a vertebrate is first mixed with a solution (2 ml of 1L-15, 3 ml of Ficol), and centrifuged (2000 rpm for 15 minutes). Extract the nuclear cell fraction (approx. Lml). This mononuclear cell fraction is mixed with a culture solution (2 ml of NPBM) for cell washing and centrifuged again (2000 rpm for 15 minutes). Next, after removing the supernatant, the precipitated cells are collected. The mononuclear cell fraction in the present invention can be used for the preparation of the following mesodermal stem cells even in the state of a culture solution. As the culture medium containing the mononuclear cell fraction, the mononuclear cell fraction is, for example, culture medium 1 (DMEM (Dulbecco's Modified Eagles Medium-Low Glucose), 10¾ FBS (fetal bovine serum), 1% ant i -biot c-ant imycot ic solution), Medium 2 (MSCBM (Mesenchymal Stem Cel 1 Basal Medium)), 10% MCGS (Mesenchymal Cel 1 Growth Suppl ement), 4 mM L-Glutamine, 1% Penici 11 in-Streptomycin 37) in culture medium 3 (DMEM (sigma), 10% FBS (gibco), 1% Penici 11 in-St reptomycin, 2 mM L-Glutamine (gibco)). It can be prepared by culturing under the conditions of C, 5¾ C0 2 in air.
本発明においては、 上記単核細胞分画 (培養液の状態も含む) から中 胚葉幹細胞を調製する。 「中胚葉幹細胞」 とは、 発生学的に中胚葉と分 類される組織を構成している細胞を指し、 血液細胞も含まれる。 また、 中胚葉幹細胞とは、 自己と同じ能力を持った細胞をコピー (分裂、 増殖) することができ、 中胚葉の組織を構成している全ての細胞へ分化し得る 能力を持った細胞を指す。 中胚葉幹細胞は、 例えば、 SH2(+), SH3(+), SH4(+), CD29(+), CD44(+), CD14(-), CD34(-), CD45 (- )の特徴を有する 細胞であるが、 これらマーカーに特に制限されない。  In the present invention, mesoderm stem cells are prepared from the above mononuclear cell fraction (including the state of the culture solution). “Mesodermal stem cells” refer to cells that constitute a tissue that is developmentally classified as mesoderm, including blood cells. Mesodermal stem cells are cells that have the ability to copy (divide and proliferate) cells that have the same ability as themselves and to differentiate into all the cells that make up the mesoderm tissue. Point to. Mesodermal stem cells have, for example, the characteristics of SH2 (+), SH3 (+), SH4 (+), CD29 (+), CD44 (+), CD14 (-), CD34 (-), CD45 (-) Although it is a cell, it is not particularly limited to these markers.
中胚葉幹細胞は、 例えば、 脊椎動物から採取した骨髄液または臍帯血 を、 900gで比重に応じた分離に十分な時間、 溶液中にて密度勾配遠心を 行い、 遠心後、 比重 1.07g/mlから 1. lg/ml の範囲に含まれる一定の比重 の細胞分画を回収することにより調製することも可能である。ここで「比 重に応じた分離に十分な時間」 とは、 密度勾配遠心のための溶液内で、 細胞がその比重に応じた位置を占めるのに十分な時間を意味し、 通常 10 〜30分間程度である。 回収する細胞の比重は、 細胞の由来する動物の種 類 (例えば、 ヒト、 ラッ ト、 マウス等) により変動しうる。 密度勾配遠 心のための溶液としては、 Ficol液や Per col液を用いることができるが これらに制限されない。 Mesodermal stem cells are, for example, bone marrow fluid or umbilical cord blood collected from vertebrates Centrifugation at 900 g for a time sufficient for separation according to the specific gravity, followed by density gradient centrifugation in the solution, and after centrifugation, the fraction of cells with a specific gravity in the specific gravity range of 1.07 g / ml to 1. lg / ml It is also possible to prepare by recovering. Here, “a sufficient time for separation according to specific gravity” means a time sufficient for a cell to occupy a position according to its specific gravity in a solution for density gradient centrifugation, usually 10 to 30 About a minute. The specific gravity of the cells to be collected may vary depending on the type of animal from which the cells are derived (eg, human, rat, mouse, etc.). As a solution for density gradient centrifugation, Ficol solution or Percol solution can be used, but is not limited thereto.
具体例を示せば、 まず、 脊椎動物から採取した骨髄液 (25ml) または 臍帯血を同量の PBS溶液に混合し、 遠心 (900gで 10分間) し、 沈降細 胞を PBSに混合して回収 (細胞密度は 4X107細胞/ ml程度) することに より、 血液成分を除去する。 その後、 そのうち 5ml を Percol液 (1.073 g/ml) と混合し、 遠心 ( 900gで 30分間) し、 単核細胞分画を抽出する。 細胞の洗浄のために、 抽出した単核細胞分画を、 例えば、 培養溶液 1 (D MEM, 10¾ FBS, anti-biotic-antimycotic solution) 、 培養液 2また は培養液 3に混合し、 遠心 (2000回転で 15分間) する。 次いで、 遠心 後の上澄みを除去し、 沈降した細胞を回収し、 培養する (37°C、 5% CO 2 in air) 0 Specifically, first, bone marrow fluid (25 ml) or umbilical cord blood collected from a vertebrate is mixed with the same amount of PBS solution, centrifuged (900 g for 10 minutes), and the precipitated cells are mixed with PBS and collected. (The cell density is about 4X10 7 cells / ml) to remove blood components. After that, mix 5 ml with Percol solution (1.073 g / ml), and centrifuge (900 g for 30 minutes) to extract the mononuclear cell fraction. For cell washing, the extracted mononuclear cell fraction is mixed with, for example, culture solution 1 (D MEM, 10¾ FBS, anti-biotic-antimycotic solution), culture solution 2 or culture solution 3, and centrifuged ( For 15 minutes at 2000 rpm). Then, the supernatant was removed after centrifugation, the precipitated cells were collected and cultured (37 ° C, 5% CO 2 in air) 0
また、 中胚葉幹細胞は、 例えば、 上記単核細胞分画の中から、 上記 SH 2(1), SH3(+), SH4(+), CD29(+), CD44(+), CDH(-), CD34(-), CD45 (-)等の細胞表面マ一カーを有する細胞を、抗体を使用して選択すること により取得することができる。 選択方法としては、 特に制限はなく、 マ グネッ トビーズを使用する方法、 または、 通常のセルソ一ター (FACS等) を使用する方法等が例示できる。  In addition, mesoderm stem cells are, for example, from the above mononuclear cell fraction, the above SH 2 (1), SH3 (+), SH4 (+), CD29 (+), CD44 (+), CDH (-) , CD34 (−), CD45 (−) and other cells having cell surface markers can be obtained by selecting using an antibody. The selection method is not particularly limited, and examples thereof include a method using magnet beads or a method using a normal cell sorter (FACS or the like).
また、 本発明における ES細胞の調製方法としては、 当業者らに周知の 方法 (Doetschman TC, et al. J Embryol Exp Morphol, 1985, 87, 27- 45, Williams RL et al. , Nature, 1988, 336, 684-687) によって調製 可能である。 本発明においては、このようにして調製された ES細胞を、 実施例に記載の条件等において、 神経系細胞へ分化誘導させることが可 能である。 The method for preparing ES cells in the present invention is well known to those skilled in the art. It can be prepared by the method (Doetschman TC, et al. J Embryol Exp Morphol, 1985, 87, 27-45, Williams RL et al., Nature, 1988, 336, 684-687). In the present invention, the ES cells prepared in this way can be induced to differentiate into neural cells under the conditions described in the examples.
本発明においては、 上記中胚葉幹細胞または上記 ES細胞を、 基礎的培 養液において、 33 〜 38^ の条件で培養する。  In the present invention, the mesoderm stem cell or the ES cell is cultured in a basic culture solution under the conditions of 33 to 38 ^.
本発明における基礎的培養液としては、 細胞培養に使用される通常の 培養液であれば特に制限はないが、 好ましくは、 DMEM(Dulbecco' s modi f ied essential medi籠)または NPBM (Neural progenitor cell basal m edium: CI one tics)である。上記基礎的培養液のその他の成分としては、 特に制限はないが、 好ましい態様としては、 実施例 2に記載の培養液に 含まれる F - 12、 FSC、 Neural survival factors (Clonet ics)等が挙げら れる。 これらの培養液中の濃度としては、 特に制限はないが、 好ましく は、 F- 12は 50%、 FSCは 1%である。 また、 培養液における C02濃度は好 ましくは 5%であるが、 特に制限されない。 The basic culture medium in the present invention is not particularly limited as long as it is a normal culture medium used for cell culture, but preferably DMEM (Dulbecco's modi fied essential medi 籠) or NPBM (Neural progenitor cell). basal m edium: CI one tics). The other components of the basic culture solution are not particularly limited, but preferred embodiments include F-12, FSC, Neural survival factors (Clonetics) and the like contained in the culture solution described in Example 2. It is The concentration in these culture media is not particularly limited, but preferably F-12 is 50% and FSC is 1%. Also, C0 2 concentration in the culture solution is good Mashiku is 5%, is not particularly limited.
また、 本発明の好ましい態様としては、 上記中胚葉幹細胞または上記 ES細胞についての基礎的培養液に、 bFGF (Basib fibroblast growth fa ctor) または EGF (Epidermal growth factor) を添加する。 この場合、 これらは単独で添加しても、 両方添加してもよい。 上記 bFGFまたは EGF の濃度としては、 lng/ml〜100ng/mlが挙げられが、 好ましくは、 10ng/m 1である。 添加時期や添加方法としては、 特に制限はないが、 好ましく は、上記中胚葉幹細胞または上記 ES細胞を該基礎的培養液で培養しなが ら、 連日添加する方法が挙げられる。 また、 中胚葉幹細胞を神経幹細胞 へ分化誘導を行う際には、上記基礎的培養液に bFGFおよび EFGを添加す ることが好ましい。 また、本発明における培養の温度条件としては、 33°C〜 38°Cであるが、 好ましくは、 37°Cである。 In a preferred embodiment of the present invention, bFGF (Basib fibroblast growth factor) or EGF (Epidermal growth factor) is added to the basic culture solution for the mesoderm stem cells or the ES cells. In this case, these may be added alone or both may be added. Examples of the concentration of bFGF or EGF include lng / ml to 100 ng / ml, and preferably 10 ng / ml. There are no particular restrictions on the timing of addition or the method of addition, but a method of adding the mesodermal stem cells or the ES cells every day while culturing the mesoderm stem cells or the ES cells in the basic culture solution is preferable. In addition, when mesoderm stem cells are induced to differentiate into neural stem cells, it is preferable to add bFGF and EFG to the basic culture solution. The culture temperature condition in the present invention is 33 ° C to 38 ° C, preferably 37 ° C.
その他の培養条件には、 特に制限はない。 細胞は、 浮遊した状態 (Ne u r osph er e状態)であっても、培養容器に付着した状態であってもよい。 該培養容器としては、 例えば、 ノンコーティングディッシュ(non-c oa t i ng d i sh)等が挙げられる。  Other culture conditions are not particularly limited. The cells may be in a floating state (Neuroscope state) or attached to the culture vessel. Examples of the culture container include a non-coating dish (non-coating dish) and the like.
本発明においては、 上記基礎的培養液およびその他の成分を含む該基 礎的培養液に、 虚血脳抽出液を加えることで、 上記中胚葉幹細胞、 また は上記 ES細胞から上記神経系細胞への誘導を促進することが可能であ る。 本発明においては、 このような神経系細胞への誘導促進方法もまた 提供する。  In the present invention, by adding an ischemic brain extract to the basic culture solution containing the basic culture solution and other components, the mesodermal stem cell or the ES cell to the nervous system cell is added. It is possible to promote the induction of In the present invention, such a method for promoting induction into neural cells is also provided.
本発明における虚血脳抽出液としては、 例えば、 脊髄動物の虚血脳の 粉砕液を遠心分離することで調製することが可能である。 具体的には、 全脳虚血モデル動物 (ラット等) より全脳を摘出し、 作製した小切片を NPBM (神経幹細胞用培養液) に加え、 ホモジェナイザーにて機械的に粉 砕する。 次いで、 800 rpmで 5分間遠心し、 上澄みを集め、 メンブレンフ ィルターにて細胞成分を除去することで虚血脳抽出液を調製することが できるが、 この方法に限定されない。 該全脳虚血モデル動物としては、 動物をネンブタールで麻酔後、 生理食塩水にて灌流することで作製する ことが可能である。 このようにして得られた虚血脳抽出液を、 上記基礎 的培養液およびその他の成分を含む該基礎的培養液に添加する。 添加時 期としては、 特に制限はない。  The ischemic brain extract in the present invention can be prepared, for example, by centrifuging a crushed liquid of ischemic brain of a vertebrate. Specifically, the whole brain is removed from an animal model of whole cerebral ischemia (rat, etc.), and the prepared small section is added to NPBM (culture solution for neural stem cells) and mechanically pulverized with a homogenizer. Subsequently, the ischemic brain extract can be prepared by centrifuging at 800 rpm for 5 minutes, collecting the supernatant, and removing cellular components with a membrane filter, but is not limited to this method. The whole cerebral ischemia model animal can be prepared by anesthetizing an animal with Nembutal and then perfusing with physiological saline. The ischemic brain extract thus obtained is added to the basic culture solution containing the basic culture solution and other components. There is no particular limitation on the addition time.
本発明においては、 上記の条件により、 上記中胚葉幹細胞または上記 ES細胞を培養することで、 神経系細胞へ誘導する。 該神経系細胞として は、 具体的には、 神経幹細胞、 神経前駆細胞、 神経細胞、 またはグリア 細胞等を例示することができる。 本発明は、 上記方法によって得られる細胞を提供する。 該細胞とは神 経系細胞であり、 例えば、 神経幹細胞、 神経前駆細胞、 神経細胞、 また はダリァ細胞等が挙げられるが、 これらに制限されない。 In the present invention, the mesoderm stem cells or the ES cells are cultured under the above conditions to induce to the nervous system cells. Specific examples of the nervous system cells include neural stem cells, neural progenitor cells, neural cells, glial cells, and the like. The present invention provides a cell obtained by the above method. The cell is a neuronal cell, and examples thereof include, but are not limited to, neural stem cells, neural progenitor cells, neural cells, and dahlia cells.
本発明は、 また、 上記方法によって得られる細胞を含む神経系疾患の 治療ための組成物を提供する。 本発明の細胞はそのまま移植に用いるこ とも可能であるが、 移植による治療効率を向上させるために、 種々の薬 剤を添加した、 あるいは遺伝子導入した組成物として、 移植することも 考えられる。  The present invention also provides a composition for treating a nervous system disease comprising cells obtained by the above method. The cells of the present invention can be used for transplantation as they are, but in order to improve the therapeutic efficiency by transplantation, it is also possible to transplant them as a composition to which various drugs have been added or genes have been introduced.
本発明の組成物の調製においては、 例えば、 ①本発明の細胞の増殖率 を向上させる、 または神経系細胞へのさらなる分化を促進する物質の添 カロ、 あるいはこのような効果を有する遺伝子の導入、 ②本発明の細胞の 損傷神経組織内での生存率を向上させる物質の添加、 あるいはこのよう な効果を有する遺伝子の導入、 ③本発明の細胞が、 損傷神経組織から受 ける悪影響を阻止する物質の添加、 あるいはこのような効果を有する遺 伝子の導入、 ④ドナ一細胞の寿命を延長させる物質の添加、 あるいはこ のような効果を有する遺伝子の導入、⑤細胞周期を調節する物質の添加、 あるいはこのような効果を有する遺伝子の導入、 ⑥免疫反応の抑制を目 的とした物質の添加、 あるいはこのような効果を有する遺伝子の導入、 ⑦エネルギー代謝を活発にする物質の添加、 あるいはこのような効果を 有する遺伝子の導入、 ⑧ドナー細胞のホスト組織内での遊走能を向上さ せる物質、 あるいはこのような効果を有する遺伝子の導入、 ⑨血流を向 上させる物質、 あるいはこのような効果を有する遺伝子の導入 (血管新 生誘導も含む) 、 を行うことが挙げられる、 これらに制限されるもので はない。  In the preparation of the composition of the present invention, for example, (1) the addition of a substance that improves the proliferation rate of the cell of the present invention or promotes further differentiation into a nervous system cell, or the introduction of a gene having such an effect (2) Addition of a substance that improves the survival rate of the cells of the present invention in damaged nerve tissue, or introduction of a gene having such an effect (3) Blocks adverse effects of the cells of the present invention from damaged nerve tissue Addition of substances or introduction of genes with such effects, ④ Addition of substances that extend the life of donor cells, or introduction of genes with such effects, ⑤ Introduction of substances that regulate the cell cycle Addition or introduction of genes with such effects, ⑥ Addition of substances aiming to suppress immune reactions, or introduction of genes with such effects, ⑦Energy -Addition of a substance that activates metabolism, or introduction of a gene having such an effect, ⑧ Introduction of a substance that improves the migration ability of a donor cell in the host tissue, or introduction of a gene having such an effect, ⑨ Examples include, but are not limited to, introducing a substance that improves blood flow, or introducing a gene having such an effect (including induction of angiogenesis).
本発明の細胞および組成物は、 レシピエントに移植することで、 神経 系疾患の治療に用いることができる。 治療の対象となる神経系疾患とし ては、 例えば、 中枢性および末梢性の脱髄疾患、 中枢性および末梢性の 変性疾患、 脳卒中 (脳梗塞、 脳出血、 クモ膜下出血を含む) 、 脳腫瘍、 痴呆を含む高次機能障害、精神疾患、 てんかん、 外傷性の神経系疾患(頭 部外傷、 脳挫傷、 脊髄損傷を含む) 、 並びに脊髄梗塞が挙げられるが、 これらに制限されない。 The cells and compositions of the present invention can be used for the treatment of nervous system diseases by being transplanted into a recipient. Nervous system diseases to be treated For example, central and peripheral demyelinating diseases, central and peripheral degenerative diseases, stroke (including cerebral infarction, cerebral hemorrhage, subarachnoid hemorrhage), brain tumors, higher dysfunction including dementia, mental Diseases, epilepsy, traumatic neurological diseases (including head trauma, brain contusion, spinal cord injury), and spinal cord infarction, but are not limited to these.
本発明によれば、 レシピエント由来の骨髄液または臍帯血から分離し て得た細胞をドナー細胞として移植することができる(自家移植療法)。 このことは、 移植による拒絶反応の危険性も少なく、 免疫抑制剤を併用 しなければならない困難性がない点で好ましい。 自家移植療法が困難な 場合には、他人または他の動物由来の細胞を利用することも可能である。 細胞は冷凍保存したものであってもよい。  According to the present invention, cells obtained by separation from recipient-derived bone marrow fluid or umbilical cord blood can be transplanted as donor cells (autologous transplantation therapy). This is preferable because there is little risk of rejection due to transplantation and there is no difficulty in using an immunosuppressant in combination. If autotransplantation therapy is difficult, cells from other people or other animals can be used. The cells may be stored frozen.
患者への細胞の移植は、 例えば、 移植する細胞を、 人工脳脊髄液や生 理食塩水などを用いて浮遊させた状態で注射器に溜め、 手術により損傷 した神経組織を露出し、 この損傷部位に注射針で直接注入することによ り行うことができる。 本発明の細胞は、 遊走能が高いため、 神経系組織 内を移動することができる。従って、損傷部位の近傍へ移植してもよい。 また、 脳脊髄液中への注入でも効果が期待できる。 この場合、 通常の腰 椎突刺で細胞を注入することができるため、 患者の手術の必要はなく、 局所麻酔のみで済むため、 病室で患者を処置できる点で好適である。 さ らに、 動脈内や静脈内への注入でも効果が期待できる。 従って、 通常の 輸血の要領での移植が可能となり、 病棟での移植操作が可能である点で 好適である。  For example, cells transplanted to a patient are stored in a syringe in a state where the cells to be transplanted are suspended using artificial cerebrospinal fluid or physiological saline, and the damaged nerve tissue is exposed by surgery. This can be done by direct injection with a needle. Since the cells of the present invention have high migration ability, they can move in nervous system tissues. Therefore, it may be transplanted near the damaged site. An effect can also be expected by injection into cerebrospinal fluid. In this case, since cells can be injected with a normal lumbar puncture, there is no need for the patient's surgery, and only local anesthesia is required, which is preferable in that the patient can be treated in a hospital room. In addition, it can be expected to be injected into arteries and veins. Therefore, transplantation can be performed in the manner of normal blood transfusion, which is preferable in that transplantation operation in a ward is possible.
また、 本発明の細胞は、 その遊走能の高さから、 遺伝子の運び屋 (ベ クタ一) として利用することも考えられる。 例えば、 脳腫瘍などの各種 神経疾患に対する遺伝子治療用べクタ一としての利用が期待される。 図面の簡単な説明 In addition, the cells of the present invention may be used as a gene carrier because of their high migration ability. For example, it is expected to be used as a vector therapy vector for various neurological diseases such as brain tumors. Brief Description of Drawings
図 1は、 培養中胚葉幹細胞を示す写真である。 中胚葉系細胞のマーカ 一である SH3を発現してはいるが (A) 、 神経幹細胞のマーカ一である nestinは陰性である (B) 。 培養条件下での分化誘導後、 形態学的にも 神経幹細胞様に変化し、 また、 中胚葉系細胞のマーカ一である SH3が陰 性化し(C) 、神経幹細胞のマーカーである nestinは陽性となる (D)。 スケールバーは、 A, Bでは Ιθ ΐηを示し、 C, Dでは 200 ^mを示す。 図 2は、 中胚葉幹細胞を培養条件下で神経幹細胞へ分化誘導し、 さら に続けて分化誘導すると、神経細胞(A, D)、ァストロサイ ト(B, E)、 オリゴデンドロサイ ト (C, F) へと分化することを示す写真である。 Dは NSE (neuron-speci f ic enolase) 、 E ¾ GFAP (glial fibrillary a cidic protein) , Fは GalC (gal ac tocerebros ide)で免疫染色した写真で ある。 スケールバーは 25 ΙΠを示す。  Figure 1 is a photograph showing cultured mesoderm stem cells. It expresses SH3, a marker for mesodermal cells (A), but is negative for nestin, a marker for neural stem cells (B). After differentiation induction under culture conditions, morphologically changed to neural stem cell-like, and the marker of mesoderm cells, SH3, became negative (C) and the neural stem cell marker nestin was positive (D). The scale bar indicates Ιθ ΐη for A and B, and 200 ^ m for C and D. Figure 2 shows that when mesoderm stem cells are induced to differentiate into neural stem cells under culture conditions, and subsequently induced to differentiate, neurons (A, D), astrocytes (B, E), oligodendrocytes (C, F) Photograph showing differentiation into D is a photograph immunostained with NSE (neuron-specific enolase), E ¾ GFAP (glial fibrillary a cidic protein), and F is GalC (gal actocerebros ide). The scale bar indicates 25 mm.
図 3は、 移植細胞が脳梗塞巣を修復したことを示す写真である。 中胚 葉幹細胞を培養条件下で神経幹細胞へ分化誘導したドナー細胞は LacZ 遺伝子 (大腸菌 ガラク 卜しデースを発現する) で遺伝的にマークして あり、 基質の X- galで処理すると反応し青色を発色する。 したがって、 ドナー細胞をホスト脳組織内で追跡することが可能である。 ラッ ト脳梗 塞モデル (中大脳動脈一時閉塞モデルで、 大脳基底核、 側頭葉、 海馬等 が脳梗塞に陥る)に LacZ遺伝子でマークしたドナー細胞を移植した結果, 脳梗塞に陥った大脳基底核、 側頭葉、 海馬等に生着し、 組織修復を行つ た。  Figure 3 is a photograph showing that the transplanted cells repaired the cerebral infarction. Donor cells that have been induced to differentiate mesoderm stem cells into neural stem cells under culture conditions are genetically marked with the LacZ gene (expresses E. coli galactose seed) and reacts when treated with the substrate X-gal blue Color. Therefore, it is possible to track donor cells in the host brain tissue. Rat brain infarction model (middle cerebral artery temporary occlusion model, basal ganglia, temporal lobe, hippocampus etc. fall into cerebral infarction) transplanted with donor cells marked with LacZ gene, resulting in cerebral infarction The tissue was repaired by engraftment in the basal ganglia, temporal lobe, hippocampus, etc.
図 4は、 移植細胞が脊髄損傷部位を修復したことを示す写真である。 ラッ ト脊髄損傷モデル(第一胸髄レベルで横断したモデル) に LacZ遺伝 子でマークしたドナ一細胞を移植した結果、 ドナー細胞は損傷を受けた 部位ばかりか、 脳 (A) 、 類髄 (B) 、 腰髄 (C) のへも遊走し、 組織 修復を行った。 D, E, Fは A, B, Cを高倍率で観察した写真である。 A, B , C, D, E, Fにおけるスケールバーは、 A, B , Cでは 200 mを示し、 D, E , Fでは 10 xmを示す。 Figure 4 is a photograph showing that the transplanted cells repaired the spinal cord injury site. As a result of transplanting donor cells marked with the LacZ gene into a rat spinal cord injury model (a model traversed at the level of the first thoracic spinal cord), the donor cell is not only the damaged site, but also the brain (A), myelin ( B) also migrated to the lumbar spine (C) Repair was done. D, E, and F are photographs of A, B, and C observed at high magnification. The scale bars in A, B, C, D, E and F are 200 m for A, B and C, and 10 xm for D, E and F.
図 5は、 移植細胞が脊髄脱髄部位を修復したことを示す写真である。 Aは、 成人中胚葉幹細胞由来より誘導した神経幹細胞を成熟ラッ ト脊髄 脱髄領域へ移植後、 再有髄化を示す写真である。 Bは再有髄化軸索を高 倍率で観察した写真である。 A, B, C, D, E , Fにおけるスケール パ一は、 A, B, Cでは 250 mを示し、 D, E , Fでは 10 mを示す。 図 6は、 E S細胞から誘導した神経幹細胞で、 nestin陽性のニューロ スフィァ(neurosphere)の写真である。 発明を実施するための最良の形態  Figure 5 is a photograph showing that the transplanted cells repaired the spinal cord demyelination site. A is a photograph showing remyelination after transplantation of neural stem cells derived from adult mesoderm stem cells to a mature rat spinal cord demyelination region. B is a photograph of remyelinated axons observed at high magnification. The scale parameters for A, B, C, D, E and F are 250 m for A, B and C, and 10 m for D, E and F. Fig. 6 is a photograph of a nestin-positive neurosphere, which is a neural stem cell derived from ES cells. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を実施例により、 さらに具体的に説明するが本発明はこ れら実施例に制限されるものではない。  EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
[実施例 1] 単核細胞分画および中胚葉幹細胞の調製  [Example 1] Mononuclear cell fraction and mesoderm stem cell preparation
( 1 ) 単核細胞分画および該単核細胞分画の培養液  (1) Mononuclear cell fraction and culture solution of the mononuclear cell fraction
マウス (およびヒト) から採取した細胞サンプルを、 Ficoll 3ml を含 有する L- 15培地(2ml)中に希釈して、遠心分離(2, OOOrpnu 15分間)した。 単核球画分から細胞を集め、 2ml の無血清培地(前駆神経細胞維持培地(N eural Progenitor cell Maintenance Medium) :腦 M)中に懸獨し、 さら に遠心分離(2,000rpm、 15分間)して、 上澄みを除去し、 沈降した細胞を 回収した。 この細胞を再び NP匪に懸濁し、 単核細胞分画を調製した。  Cell samples collected from mice (and humans) were diluted in L-15 medium (2 ml) containing 3 ml of Ficoll and centrifuged (2, OOOrpnu for 15 minutes). Cells are collected from the mononuclear cell fraction, suspended in 2 ml of serum-free medium (Neural Progenitor cell Maintenance Medium: 腦 M), and then centrifuged (2,000 rpm, 15 minutes). The supernatant was removed and the sedimented cells were recovered. The cells were suspended again in NP 匪 to prepare a mononuclear cell fraction.
また、 単核細胞分画を、 培養液 1 (DMEM (Dulbecco' s Modified Eagl es Medium-Low Glucose) 10¾ FBS (fetal bovine serum) , 1¾ ant i-bio tic-antimycotic solution) 、 培養液 2、 培養液 3中で、 37°C、 5% C02 の条件で培養し、 該単核細胞分画の培養液を調製した。 ( 2 ) 中胚葉幹細胞 In addition, the mononuclear cell fraction was added to culture medium 1 (DMEM (Dulbecco's Modified Eagles Medium-Low Glucose) 10¾ FBS (fetal bovine serum), 1¾ anti-biotic-antimycotic solution), culture medium 2, among the liquid 3, and cultured in a 37 ° C, 5% C0 2 conditions, to prepare a culture solution of the mononuclear cell fraction. (2) Mesodermal stem cells
上記 ( 1 ) に記載の方法で調製した単核細胞分画、 または該単核細胞 分画の培養液から、 SH2(+), SH3(+), SH4(+), CD29(+), CD44(+), CD14 (-), CD34(-), CD45(-)等の特徴を有する細胞を、抗体を使用して抽出し た。 選別方法は、 マグネットビーズを使用する方法、 または、 通常のセ ルソ一夕一 (FACS等) を使用する方法を用いた。  From the mononuclear cell fraction prepared by the method described in (1) above or the culture solution of the mononuclear cell fraction, SH2 (+), SH3 (+), SH4 (+), CD29 (+), CD44 Cells having characteristics such as (+), CD14 (-), CD34 (-), CD45 (-) were extracted using antibodies. As a sorting method, a method using a magnetic bead or a method using a normal cellosphere (such as FACS) was used.
[実施例 2] 中胚葉幹細胞から神経系細胞への分化誘導 [Example 2] Differentiation induction from mesoderm stem cells to nervous system cells
( 1 ) 中胚葉幹細胞から神経幹細胞への誘導  (1) Induction from mesoderm stem cells to neural stem cells
まず、 洗浄を行い、 次いで、 培養溶液から細胞を、 酵素処理 (試薬 (0. 05% trypsin, 0.02¾ EDTA)'、 室温、 5分間) によってはがし、 等量の培 養液を加え、 数回ピペッティングし、 単一細胞までバラバラにした。 次 いで、 600回転で 5分間遠心した。 沈殿した細胞をピペッ トで吸い上げ た。 次レ で、 新しレ 培養液 1 (DMEM(Dulbecco' s modified essential me dium) 50%、 F-12 50%、 FSC 1¾, Basib fibroblast growth factor (bFG F) 10 ng/ml を連日添加、 Epidermal growth factor (EGF) 10 ng/ml を 連日添加) または培養液 2 (NPBM (Neural progenitor cell basal medi um: Clonet ics) 、 2% Neural survival factors (Clonet ics) , 0.2% hE GF (human Epidermal growth factor), 0.2% Gentamicine - amphotericin B 、 0.2% hFGF (human fibroblast growth factor) Basib fibroblast growth factor (bFGF) 10 ng/ml を連曰添カ卩、 Epidermal growth factor (EGF) 10 ng/ml を連日添加) 、 培養容器 (on- treated polystyrene di sh) において、 浮遊したままの状態で、 5%C02、 37でで培養を継続した。First, wash, then peel the cells from the culture solution by enzyme treatment (reagent (0.05% trypsin, 0.02¾ EDTA) ', room temperature, 5 minutes), add an equal volume of culture solution, and several times Pipette to break up to a single cell. Next, it was centrifuged at 600 rpm for 5 minutes. The precipitated cells were sucked up with a pipette. Next, add fresh medium 1 (DMEM (Dulbecco's modified essential medium) 50%, F-12 50%, FSC 1¾, Basib fibroblast growth factor (bFG F) 10 ng / ml daily, Epidermal Growth factor (EGF) 10 ng / ml added daily) or culture 2 (NPBM (Neural progenitor cell basal medium: Clonetics), 2% Neural survival factors (Clonetics), 0.2% hE GF (human Epidermal growth factor ), 0.2% Gentamicine-amphotericin B, 0.2% hFGF (human fibroblast growth factor) Basib fibroblast growth factor (bFGF) 10 ng / ml, and epidermal growth factor (EGF) 10 ng / ml added daily) In the culture vessel (on-treated polystyrene dish), the culture was continued at 5% CO 2 and 37 in a floating state.
( 2 ) 中胚葉幹細胞から神経細胞やダリァ細胞への誘導 (2) Induction from mesoderm stem cells to neurons and dahlia cells
培養している中胚葉幹細胞の培養液を、 新しい培養液 (DMEM(Dulbecc o' s modified essential medium) 50%、 F-12 50%、 FSC \%) 若しくは培 養液 2 (NPBM (Neural progenitor cell basal medium: Clonet ics) 、 2% Neural survival factors (Clonet ics) , 0.2% hEGF (human Epidermal growth factor) , 0.2% Gentamicine-amphoter icinB, 0.2% hFGF) に変え て、約 4週間程度培養する方法によって、中胚葉幹細胞から直接的に(神 経幹細胞への転換をせずに) 神経細胞やダリァ細胞へ分化誘導させるこ とにも成功した。 The culture medium of cultured mesoderm stem cells is used as a new culture medium (DMEM (Dulbecco's modified essential medium) 50%, F-12 50%, FSC \%) or Change to nutrient solution 2 (NPBM (Neural progenitor cell basal medium: Clonetics), 2% Neural survival factors (Clonetics), 0.2% hEGF (human Epidermal growth factor), 0.2% Gentamicine-amphoter icinB, 0.2% hFGF) By culturing for about 4 weeks, we also succeeded in inducing differentiation from mesoderm stem cells directly into neural cells and Darya cells (without conversion to neural stem cells).
上記 ( 1 ) および ( 2) の方法による中胚葉幹細胞から神経系細胞へ の分化誘導の確認は、 中胚葉系細胞のマ一力一である SH2や SH3が消え (神経幹細胞のマーカ一である nestinはもともと陰性) 、 その代わり、 神経幹細胞のマーカーである nestinが陽性となることで行った(図 1 )。  Confirmation of differentiation induction from mesoderm stem cells to nervous system cells by the methods (1) and (2) above shows that SH2 and SH3, which are the best of mesodermal cells, disappear (marker of neural stem cells) Instead, nestin was negative), but instead, the neural stem cell marker nestin was positive (Figure 1).
中胚葉幹細胞から神経系細胞への分化誘導により、 培養細胞は形態的 にも変化した。 具体的には、 単一細胞だった細胞がニューロスフィァ(n eurosphere)を形成した (図 1 ) 。 また、 この神経幹細胞から、 神経細胞 (NSE陽性) ゃグリア細胞 (GFAP陽性) が分化してくることも確認した (図 2 ) 。  Induced differentiation from mesoderm stem cells to neural cells, the cultured cells also changed morphologically. Specifically, cells that were single cells formed a neurosphere (Fig. 1). It was also confirmed that neural cells (NSE positive) and glial cells (GFAP positive) differentiated from these neural stem cells (Fig. 2).
[実施例 3] 虚血脳抽出液を用いた、中胚葉幹細胞から神経系細胞へ の分化誘導の促進 [Example 3] Promotion of differentiation induction from mesoderm stem cells to nervous system cells using ischemic brain extract
脳に虚血ストレスを負荷し、 虚血脳の抽出液を、 培養中胚葉幹細胞へ 添加することで、 中胚葉幹細胞が神経幹細胞へ高率で分化することを見 出した。 この方法によると、 培養中胚葉幹細胞が神経幹細胞へ、 わずか 数日間で高率に誘導できることが分かった。  By applying ischemic stress to the brain and adding the ischemic brain extract to the cultured mesoderm stem cells, we found that mesoderm stem cells differentiate into neural stem cells at a high rate. According to this method, it was found that cultured mesoderm stem cells could be induced to neural stem cells at a high rate in just a few days.
( 1 ) 虚血脳抽出液の作製  (1) Preparation of ischemic brain extract
まず、ラッ トをネンブタールで深麻酔後、前腹壁から前胸部を切開し、 心臓および上行大動脈を露出する。 心尖部を切開し左心室から上行大動 脈にチューブを挿入する。 次に右心耳に切開を入れ、 チューブより生理 食塩水を 3分間灌流させ、 十分な全身の脱血を行った。 灌流後、 4〜5時 間そのまま放置し、 全脳虚血モデルとした。 次いで、 上記の全脳虚血モ デルラッ トより大脳、 中脳を摘出し、 尖刀にて 1〜2 mm程度の小切片に した。作製した小切片を NP匪に加え、 ホモジェナイザ一にて機械的に粉 砕し、 混濁液を作製した。 次いで、 混濁液を遠心管に移し、 800 rpm、 5 分間遠心分離を行い、 上澄みを集めた。 0.22^mのメンブレンフィルタ 一にて細胞成分を除去し、 虚血脳抽出液とした。 First, the rat is deeply anesthetized with Nembutal, then the front chest is opened through the anterior abdominal wall to expose the heart and ascending aorta. An incision is made in the apex and a tube is inserted from the left ventricle into the ascending artery. Next, make an incision in the right atrial appendage, Saline was perfused for 3 minutes to perform full systemic blood removal. After perfusion, it was left as it was for 4 to 5 hours to obtain a whole brain ischemia model. Next, the cerebrum and midbrain were removed from the whole cerebral ischemia model rat and cut into small pieces of about 1 to 2 mm with a pointed knife. The prepared small section was added to NP 匪 and mechanically pulverized with a homogenizer to prepare a turbid solution. Next, the turbid solution was transferred to a centrifuge tube, centrifuged at 800 rpm for 5 minutes, and the supernatant was collected. Cell components were removed with a 0.22 ^ m membrane filter to obtain an ischemic brain extract.
( 2 ) 培養中胚葉幹細胞 (MSC) の神経幹細胞への分化誘導  (2) Induction of differentiation of cultured mesodermal stem cells (MSC) into neural stem cells
MSC細胞を 100 mm non-coat ing dish (IWAKI) 、 conditioning mediu m (3種類:別記) 、 37°C 5%C02の条件にて培養を継続した。 90% conflu entで、 パスツールピペッ トで培養液を吸い取り、 Dulbecco' s PBSで 3 回リンスした。 0.05% Trypsin, 0.02% EDTA in PBSを 2ml加え、 細胞 がはがれるまで 37°Cで 2〜5分間インキュベートした。 conditioning me diumを 2ml加え、 Tryps inの反応をとめた。 上清および剥がれた細胞を パスツールピペッ トにて、 遠心管に集め、 数回ピぺティングした後、 10 00 rpm 5分間で遠心分離を行った。上清を捨て、 NPMMを加え再懸濁した。 37でに温めておいた 50%NP匪、 50%虚血脳抽出液培地にまき、 37°C、 5% C02の条件下、 100匪 non-coating di sh (IWAKI)で浮遊培養した。, bFGF 1 0 ng/mlおよび EGF 10 ng/ml を連日添加した。 The MSC cells 100 mm non-coat ing dish ( IWAKI), conditioning mediu m (3 types: otherwise), incubation was continued at 37 ° C 5% C0 2 conditions. At 90% confluent, the medium was aspirated with a Pasteur pipette and rinsed 3 times with Dulbecco's PBS. 2 ml of 0.05% Trypsin, 0.02% EDTA in PBS was added and incubated at 37 ° C for 2-5 minutes until the cells detached. 2ml of conditioning medium was added to stop Tryps in reaction. The supernatant and detached cells were collected in a centrifuge tube with a Pasteur pipette, pipetted several times, and then centrifuged at 100 rpm for 5 minutes. The supernatant was discarded and NPMM was added to resuspend. The cells were seeded in 50% NP 匪 and 50% ischemic brain extract medium that had been warmed at 37, and cultured in suspension in 100 ° non-coating dish (IWAKI) at 37 ° C and 5% C02. , BFGF 10 ng / ml and EGF 10 ng / ml were added every day.
[実施例 4] 神経再生能の評価 [Example 4] Evaluation of nerve regeneration ability
上記分化誘導方法によつて得られた神経系細胞の神経再生能力に関し ては、 脳梗塞モデル (図 3 ) 、 痴呆モデル (図 3 ) 、 脊髄損傷モデル (図 4) 、 脱髄モデル (図 5 ) での検討の結果、 脳から抽出 ,培養した神経 幹細胞と同じ程度の再生能力があることが判明した。 [実施例 5] ES細胞から神経系細胞への分化誘導 Regarding the nerve regeneration ability of neural cells obtained by the above differentiation induction method, cerebral infarction model (Fig. 3), dementia model (Fig. 3), spinal cord injury model (Fig. 4), demyelination model (Fig. 5) As a result of the study in (1), it was found that the cells had the same regenerative ability as neural stem cells extracted and cultured from the brain. [Example 5] Differentiation induction from ES cells to neural cells
マウス ES細胞を 100 mm gelatin-coating dish (IWAKI) , condi tionin g medium 20ml (DMEM、 10%FCS、 100 ^ M 2-メルカプトエタノール、 100 0 UNITs/ml ESGRO(CHEMICON)) 、 37°C 5%C02の条件にて培養を継続した。 90¾ confluentで、 パスツールピペットで培養液を吸い取り、 PBSで 3 回リンスした。 0.25% Trypsin, 0.03% EDTA in PBSを 2ml加え、 細胞 がはがれるまで 37°Cで 2〜5分間ィンキュベ一トした。 FCSを 400 1カロ え、 Trypsinの反応をとめた。 上清および剥がれた細胞をパスツールピ ペットにて、 遠心管に集め、 数回ピぺティングした後、 1000 rpm 5分間 で遠心分離を行った。 上清を捨て、 NPMMを加え再懸濁した。 37°Cに温め ておいた 50%NPMM、 50%虚血脳抽出液培地にまき、 37°C、 5 C02の条件 下、 100 mm non-coating di sh (IWAKI)で浮遊培養した。 bFGF 10 ng/ml および EGF 10 ng/ml を連日添加した。 産業上の利用の可能性 Mouse ES cells in 100 mm gelatin-coating dish (IWAKI), conditioning medium 20 ml (DMEM, 10% FCS, 100 ^ M 2-mercaptoethanol, 1000 UNITs / ml ESGRO (CHEMICON)), 37 ° C 5% and the culture was continued at C0 2 of the conditions. At 90¾ confluent, blot the culture with a Pasteur pipette and rinse three times with PBS. 2 ml of 0.25% Trypsin, 0.03% EDTA in PBS was added and incubated at 37 ° C for 2-5 minutes until the cells detached. The FCS was 400 1 calories and the Trypsin reaction was stopped. The supernatant and detached cells were collected in a centrifuge tube with a Pasteur pipette, pipetted several times, and then centrifuged at 1000 rpm for 5 minutes. The supernatant was discarded and NPMM was added to resuspend. Plated on 50% NPMM, 50% ischemic brain extract medium which had been warmed to 37 ° C, 37 ° C, 5 C0 under 2 conditions, and cultured in suspension 100 mm non-coating di sh ( IWAKI). bFGF 10 ng / ml and EGF 10 ng / ml were added every day. Industrial applicability
本発明は、 脳梗塞、 痴呆、 脊髄損傷、 脱髄疾患等の治療に大きく貢献 するものである。 また、 本発明はより一般的で、 広領域の脳神経損傷に 対する神経移植 ·再生療法への応用も可能であると考えられる。 すなわ ち、 中枢神経系および末梢神経系の虚血性脳神経損傷、 外傷性脳神経損 傷、 脳神経変性疾患、 代謝性神経疾患への自家移植療法に応用可能であ る。  The present invention greatly contributes to the treatment of cerebral infarction, dementia, spinal cord injury, demyelinating disease and the like. In addition, the present invention is more general and can be applied to nerve transplantation / regenerative therapy for cranial nerve injury in a wide area. In other words, it can be applied to autotransplantation therapy for ischemic cranial nerve injury, traumatic cranial nerve injury, cranial nerve degenerative disease, and metabolic neurological disease of the central and peripheral nervous systems.
さらに、 本発明の分化誘導方法は、 中胚葉幹細胞や ES細胞から神経系 細胞への分化の機序を解く糸口を提供している。 このような分化を規定 する遺伝子が同定 ·解析されれば、 それら遺伝子を利用して中胚葉幹細 胞ゃ ES細胞を効率良く、 また十分量、 神経系細胞へ形質転換させること が可能となる。 従って、 神経組織の再生を促すための 「遺伝子治療」 が 可能となるものと大いに期待される。 Furthermore, the differentiation inducing method of the present invention provides a clue to unravel the mechanism of differentiation from mesoderm stem cells or ES cells into neural cells. If genes that regulate such differentiation are identified and analyzed, mesoderm stem cells can be efficiently and sufficiently transformed into neural cells using these genes. . Therefore, “gene therapy” to promote regeneration of nerve tissue It is highly expected that it will be possible.

Claims

請求の範囲 The scope of the claims
1. 脊髄動物から採取した骨髄液または臍帯血から分離される単核細 胞分画に含まれる中胚葉幹細胞、 または ES細胞を、 基礎的培養液におい て、 33°C〜38°Cの条件で培養することにより、 神経系細胞へ誘導する方 法。 1. Mesodermal stem cells or ES cells contained in a mononuclear cell fraction isolated from bone marrow fluid or umbilical cord blood collected from a vertebrate animal in a basic culture medium at a temperature of 33 ° C to 38 ° C Induction to nervous system cells by culturing in
2. 単核細胞分画が、 脊髄動物から採取した骨髄液または臍帯血を、 2 000回転で比重に応じた分離に十分な時間、 溶液中にて密度勾配遠心を 行い、 遠心後、 比重 1.07g/nilから 1. lg/mlの範囲に含まれる細胞分画を 回収することにより調製することができる細胞分画である、 請求項 1に 記載の方法。  2. Mononuclear cell fraction is obtained by subjecting bone marrow fluid or umbilical cord blood collected from vertebrates to density gradient centrifugation in the solution for 2 000 rotations and sufficient time for separation according to the specific gravity. The method according to claim 1, which is a cell fraction that can be prepared by collecting a cell fraction contained in the range of g / nil to 1.lg / ml.
3. 中胚葉幹細胞が SH2(+), SH3(+), SH4(+), CD29(+), CD44 (+) , CD1 4(-), CD34(-), CD45(-)の特徴を有する細胞である請求項 1または 2に 記載の方法。  3. Mesodermal stem cells have the characteristics of SH2 (+), SH3 (+), SH4 (+), CD29 (+), CD44 (+), CD1 4 (-), CD34 (-), CD45 (-) The method according to claim 1 or 2, which is a cell.
4. 神経系細胞が神経幹細胞、 神経前駆細胞、 神経細胞、 およびダリ ァ細胞からなる群より選択される、 請求項 1〜 3に記載の方法。  4. The method according to claims 1 to 3, wherein the neural cells are selected from the group consisting of neural stem cells, neural progenitor cells, neural cells, and Daria cells.
5. 基礎的培養液に bFGF、 EGF、 または虚血脳抽出液を加えることを 特徴とする、 請求項 1〜 4のいずれかに記載の方法。  5. The method according to claim 1, wherein bFGF, EGF or ischemic brain extract is added to the basic culture solution.
6. 請求項 1〜 5のいずれかに記載の方法によって得られる細胞。 6. A cell obtained by the method according to any one of claims 1 to 5.
7. 請求項 6に記載の細胞を含む、 神経系疾患の治療ための組成物。7. A composition for treating a nervous system disease comprising the cell according to claim 6.
8. 神経系疾患が、 中枢性および末梢性の脱髄疾患、 中枢性および末 梢性の変性疾患、 脳卒中、 脳腫瘍、 高次機能障害、 精神疾患、 てんかん、 外傷性の神経系疾患、 および脊髄梗塞からなる群より選択されるもので ある、 請求項 7に記載の組成物。 8. Nervous system diseases include central and peripheral demyelinating diseases, central and terminal degenerative diseases, stroke, brain tumors, higher dysfunction, mental illness, epilepsy, traumatic nervous system diseases, and spinal cord The composition according to claim 7, wherein the composition is selected from the group consisting of infarctions.
9. 請求項 6に記載の細胞、 または請求項 7に記載の組成物をレシピ ェントに移植することを特徴とする、 神経系疾患の治療方法。 9. A method for treating a nervous system disease, comprising transplanting the cell according to claim 6 or the composition according to claim 7 into a recipient.
1 0. 神経系疾患が、 中枢性および末梢性の脱髄疾患、 中枢性および 末梢性の変性疾患、 脳卒中、 脳腫瘍、 高次機能障害、 精神疾患、 てんか ん、 外傷性の神経系疾患、 および脊髄梗塞からなる群より選択されるも のである、 請求項 9に記載の治療方法。 1 0. Nervous system diseases include central and peripheral demyelinating diseases, central and peripheral degenerative diseases, strokes, brain tumors, higher dysfunction, mental illness, cancer, traumatic nervous system diseases, and 10. The treatment method according to claim 9, which is selected from the group consisting of spinal cord infarction.
1 1. 移植する細胞がレシピエントに由来している、 請求項 9または 1 0に記載の治療方法。  1 1. The treatment method according to claim 9 or 10, wherein the cells to be transplanted are derived from a recipient.
PCT/JP2001/009510 2001-10-30 2001-10-30 Method of inducing differentiation of mesoblast stem cells or es cells into nerve system cells WO2003038074A1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
PCT/JP2001/009510 WO2003038074A1 (en) 2001-10-30 2001-10-30 Method of inducing differentiation of mesoblast stem cells or es cells into nerve system cells
PCT/JP2002/003344 WO2003038090A1 (en) 2001-10-30 2002-04-03 Method of inducing diffrentiation of immortalized mesodermal stem cells into nervous system cells
JP2003540340A JP4118236B2 (en) 2001-10-30 2002-10-30 Method for inducing differentiation from mesoderm stem cells or ES cells, or immortalized mesoderm stem cells to neural cells
CNA028265998A CN1610738A (en) 2001-10-30 2002-10-30 Method of inducing differentiation of mesodermal stem cells,ES cells or immortalized cells into nervous system cells
EP02775435A EP1452586B1 (en) 2001-10-30 2002-10-30 Method of inducing differentiation of mesodermal stem cells into nervous system cells
PCT/JP2002/011294 WO2003038075A1 (en) 2001-10-30 2002-10-30 Method of inducing differentiation of mesodermal stem cells, es cells or immortalized cells into nervous system cells
US10/493,964 US20040259254A1 (en) 2001-10-30 2002-10-30 Method for inducing differentiation mesodermal stem cells, es cells or immortalized cells into nervous system cells
KR1020047006637A KR101022349B1 (en) 2001-10-30 2002-10-30 Method of inducing differentiation of mesodermal stem cells, ES cells or immortalized cells into nervous system cells
CA2465653A CA2465653C (en) 2001-10-30 2002-10-30 Method for inducing differentiation of mesodermal stem cells, es cells, or immortalized mesodermal stem cells into neural cells
JP2007319328A JP2008119003A (en) 2001-10-30 2007-12-11 Method for inducing differentiation from mesodermal stem cell, embryonic stem cell or immortalized mesodermal stem cell to nervous system cell
US12/437,639 US20090280564A1 (en) 2001-10-30 2009-05-08 Method for inducing differentiation of mesodermal stem cells, es cells, or immortalized mesodermal stem cells into neural cells
JP2009278621A JP2010051326A (en) 2001-10-30 2009-12-08 Method of inducing differentiation of mesodermal stem cell into nervous system cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/009510 WO2003038074A1 (en) 2001-10-30 2001-10-30 Method of inducing differentiation of mesoblast stem cells or es cells into nerve system cells

Publications (1)

Publication Number Publication Date
WO2003038074A1 true WO2003038074A1 (en) 2003-05-08

Family

ID=11737884

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2001/009510 WO2003038074A1 (en) 2001-10-30 2001-10-30 Method of inducing differentiation of mesoblast stem cells or es cells into nerve system cells
PCT/JP2002/003344 WO2003038090A1 (en) 2001-10-30 2002-04-03 Method of inducing diffrentiation of immortalized mesodermal stem cells into nervous system cells

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/003344 WO2003038090A1 (en) 2001-10-30 2002-04-03 Method of inducing diffrentiation of immortalized mesodermal stem cells into nervous system cells

Country Status (4)

Country Link
JP (1) JP4118236B2 (en)
KR (1) KR101022349B1 (en)
CN (1) CN1610738A (en)
WO (2) WO2003038074A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7098027B2 (en) 2000-06-26 2006-08-29 Renomedix Institute, Inc. Method for remyelinating a demyelinized lesion due to injury in the brain or spinal cord
US10071144B2 (en) 2013-02-06 2018-09-11 Nc Medical Research Inc. Cell therapy for the treatment of neurodegeneration

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101294146B (en) * 2007-04-28 2011-05-18 中国科学院上海生命科学研究院 System for inducing nerve stem cell differentiation and inducing method thereof
US10072247B2 (en) 2012-10-05 2018-09-11 Samsung Life Public Welfare Foundation Composition comprising ischemic serum for promoting activation of stem cell and method for promoting activation of stem cell
CN112746057A (en) * 2020-12-25 2021-05-04 中国人民解放军海军军医大学 Culture system, method and application for inducing human pluripotent stem cells into neuromesodermal progenitor cells in vitro and maintaining self-renewal

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1254952A4 (en) * 1999-12-28 2004-09-22 Kyowa Hakko Kogyo Kk Cells capable of differentiating into heart muscle cells

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BRUESTLE O. ET AL.: "Embryonic stem cell-derived glial precursors: a source of myelinating transplants", SCIENCE, vol. 285, 1999, pages 754 - 756, XP002907880 *
PITTENGER M.F. ET AL.: "Multilineage potential of adult human mesenchymal stem cells", SCIENCE, vol. 284, 1999, pages 143 - 147, XP000867221 *
SASAKI M. ET AL.: "Transplantation of an acutely isolated bone marrow fraction repairs demyelinated adult rat spinal cord axons", GLIA, vol. 35, no. 1, 2001, pages 26 - 34, XP002945994 *
TREMAIN N. ET AL.: "MicroSAGE analysis of 2,353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages", STEM CELLS, vol. 19, 2001, pages 408 - 418, XP002907879 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7098027B2 (en) 2000-06-26 2006-08-29 Renomedix Institute, Inc. Method for remyelinating a demyelinized lesion due to injury in the brain or spinal cord
US9115344B2 (en) 2000-06-26 2015-08-25 Nc Medical Research Inc. Mesenchymal stem cell and a method of use thereof
US10640749B2 (en) 2000-06-26 2020-05-05 Nc Medical Research Inc. Mesenchymal stem cell and the method of use thereof
US10071144B2 (en) 2013-02-06 2018-09-11 Nc Medical Research Inc. Cell therapy for the treatment of neurodegeneration
US10149894B2 (en) 2013-02-06 2018-12-11 Nc Medical Research Inc. Cell therapy for the treatment of neurodegeneration
US10874723B2 (en) 2013-02-06 2020-12-29 Nc Medical Research Inc. Cell therapy for the treatment of neurodegeneration

Also Published As

Publication number Publication date
JP4118236B2 (en) 2008-07-16
JPWO2003038075A1 (en) 2005-02-24
CN1610738A (en) 2005-04-27
WO2003038090A1 (en) 2003-05-08
KR101022349B1 (en) 2011-03-22
KR20040062610A (en) 2004-07-07

Similar Documents

Publication Publication Date Title
JP4782237B2 (en) Drugs for neurodegenerative diseases
CA2315538C (en) Neural precursor cells, method for the production and use thereof in neural defect therapy
EP1452586B1 (en) Method of inducing differentiation of mesodermal stem cells into nervous system cells
US20080124701A1 (en) Growth of neural precursor cells using umbilical cord blood serum and a process for the preparation for therapeutic purposes
US20070025973A1 (en) Reprogramming of adult or neonic stem cells and methods of use
WO2010069204A1 (en) Pluripotent stem cells, method for preparation thereof and uses thereof
EP1414947A2 (en) Multipotent stem cells from peripheral tissues and uses thereof
KR20130119683A (en) Culture medium for stem cells and method for culturing stem cells using the same
Chen et al. Neural progenitor cells derived from the adult rat subventricular zone: characterization and transplantation
WO2003038074A1 (en) Method of inducing differentiation of mesoblast stem cells or es cells into nerve system cells
JP2010051326A (en) Method of inducing differentiation of mesodermal stem cell into nervous system cell
WO2002014479A2 (en) Isolated mammalian neural stem cells, methods of making such cells, and methods of using such cells
EP1650295B1 (en) Process for producing tissue cell from pluripotent stem cell derived from iris pigment epithelial cell of animal and tissue cell obtained by the process
JP2008119003A (en) Method for inducing differentiation from mesodermal stem cell, embryonic stem cell or immortalized mesodermal stem cell to nervous system cell
강훈철 Behavioral improvement after transplantation of neural precursors derived from embryonic stem cells into globally ischemic brain of adolescent rats

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP