WO2003034484A2 - A method for forming a layered semiconductor structure and corresponding structure - Google Patents
A method for forming a layered semiconductor structure and corresponding structure Download PDFInfo
- Publication number
- WO2003034484A2 WO2003034484A2 PCT/EP2002/011423 EP0211423W WO03034484A2 WO 2003034484 A2 WO2003034484 A2 WO 2003034484A2 EP 0211423 W EP0211423 W EP 0211423W WO 03034484 A2 WO03034484 A2 WO 03034484A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- buried
- substrate
- semiconductor technology
- damage
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 60
- 239000004065 semiconductor Substances 0.000 title claims abstract description 46
- 239000000758 substrate Substances 0.000 claims abstract description 68
- 239000000463 material Substances 0.000 claims abstract description 34
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 58
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 57
- 238000005516 engineering process Methods 0.000 claims description 42
- 238000002513 implantation Methods 0.000 claims description 25
- 238000005530 etching Methods 0.000 claims description 21
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 17
- 229910052710 silicon Inorganic materials 0.000 claims description 14
- 239000010703 silicon Substances 0.000 claims description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- 238000009826 distribution Methods 0.000 claims description 8
- 238000005468 ion implantation Methods 0.000 claims description 8
- 238000000137 annealing Methods 0.000 claims description 7
- 235000012239 silicon dioxide Nutrition 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 3
- 238000001465 metallisation Methods 0.000 claims description 2
- 230000000063 preceeding effect Effects 0.000 claims 5
- 229910018509 Al—N Inorganic materials 0.000 claims 1
- 239000010410 layer Substances 0.000 description 83
- 235000012431 wafers Nutrition 0.000 description 12
- 239000013078 crystal Substances 0.000 description 9
- 150000002500 ions Chemical class 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 8
- 230000035515 penetration Effects 0.000 description 7
- 239000010409 thin film Substances 0.000 description 7
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 101100422780 Caenorhabditis elegans sur-5 gene Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- -1 helium ions Chemical class 0.000 description 1
- 238000001657 homoepitaxy Methods 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012776 robust process Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/26506—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/0445—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/7602—Making of isolation regions between components between components manufactured in an active substrate comprising SiC compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/30—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
- H01L29/32—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being within the semiconductor body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0093—Wafer bonding; Removal of the growth substrate
Definitions
- the present invention relates to a method for forming a layered semiconductor technology structure having a layer of a first semiconductor technology material on a substrate of at least one second semiconductor technology material and to a corresponding layered semiconductor technology structure.
- substrate as used herein is to be understood in a general form and should include all substrates known in semiconductor technology process technology, such as wafer substrates, layer substrates, well substrates, epitaxial substrates, SIMOX substrates, SOI substrates, silicon on sapphire substrates etc..
- semiconductor technology material is to be understood as any conducting, semiconducting or isolating material used in semiconductor technology processes.
- Silicon carbide is a semiconductor technology material which, due to its excellent physical properties combined with its technological compatibility to established semiconductor technology processes and materials, has gained increasing industrial importance in the last ten years .
- Fig. 6a-c show a prior art process sequence for manufacturing a silicon carbide device known from US 6,214,107 Bl.
- the starting point of this process is an expensive silicon carbide wafer 11.
- an implantation I is performed for implanting ions in at least a part of a surface of said silicon carbide wafer 11 in or- der to introduce crystal defects in a layer lib near the crystal surface, leaving a substrate region 11a undamaged.
- an oxidation 0 is performed to form a silicon dioxide thin film in the implanted layer lib on the crystal surface.
- the silicon dioxide thin film in the layer lib is removed by an etching process using HF chemistry, resulting in a silicon carbide device of substrate region 11a having a cleaned surface of SiC.
- a disadvantage of this known method is the fact that expensive silicon carbide wafer substrates are needed. Moreover, the necessity of an oxidation step after the implantation treatment makes the known method complicated.
- the method and structure according to the present invention contribute to a cost-efficient manufacture of epitaxial silicon carbide thin films having large smooth surfaces on unexpensive substrates. Moreover, the structure according to the present invention offers the advantage that the substrate manufacturer provides a semiprocessed structure which is finished at the user. Here the upper layer serves as protection for the buried layer to be exposed later in a simple etching process.
- the idea underlying the present invention is to provide a buried layer and thereafter to create a buried damage layer which at least partly adjoins and/or at least partly includes an upper surface of said buried layer.
- said first semiconductor technology material is silicon carbide and said second semiconductor technology material is silicon.
- said step of burying is performed by a first ion implantation step at a first temperature followed by an optional annealing step.
- said step of creating a buried damage layer is performed by a second ion implantation step at a second temperature.
- said step of re- moving said upper part of said substrate and said buried damage layer is an etching step.
- said buried damage layer adjoins from below or includes said upper surface of said buried layer such that a part of said buried layer belongs to said damage layer.
- said part is selectively etched in said etching step against the other part of said buried layer.
- the width of said damage layer is varied along said upper surface of said buried layer. In this way, a structure may be patterned into said damage layer which is transferred to the buried layer.
- said damage layer traverses said buried layer in a laterally limited region.
- the width of said damage layer is varied by performing a locally limited third ion implantation step at a third temperature.
- the width of said damage layer is varied by performing said second ion implantation step in a locally modulated way.
- said substrate comprises a layer of a third semiconductor technology material.
- said layer of said third semiconductor technology material is a silicon oxide layer located under said buried layer.
- said layer of said third semiconductor technology material is a doped silicon layer located under said buried layer.
- a LED structure is formed on said layered structure.
- Fig. la-e show a process sequence of a first embodiment of the method according to the invention
- Fig. 2 shows a modification of the substrate of Fig. 1 5 in a second ' embodiment of the method according to the invention
- Fig. 3a-c show a modification of the damage layer implantation step of Fig. 1 in a third embodiment of the 10 method according to the invention
- Fig. 4a-c show a process sequence of a fourth embodiment of the method according to the invention.
- L5 Fig. 5 show a process sequence of a fifth embodiment of the method according to the invention.
- Fig. ⁇ a-c a prior art process sequence for manufacturing a silicon carbide device known from US 6,214,107 .0 Bl.
- FIG. la-e show a process sequence of a first embodiment of the method according to the invention.
- the starting point of the first embodiment of the method according to the present invention is a float zone silicon wafer 1, the main surface of which is denoted with reference sign 101 in Fig. la.
- the wafer 1 had a ⁇ 100> orientation and was of n-type conductivity (doped with phosphor) having a specific resistance of 1000 ⁇ cm.
- n-type conductivity doped with phosphor
- specific resistance 1000 ⁇ cm.
- other wafer substrates having different orientations and/or dopings and/or differently grown wafers f.e. Czochralsky are suitable.
- carbon C is implanted in a first implantation step II at a temperature Tl such that a stoi- chiometric buried silicon carbide layer 5 is formed around the maximum of the C distribution.
- Said distribution is shown on the left-hand side of Fig. lb and denoted p(x) where x is the penetration depth.
- the distribution can be fairly well described by a Gaussian distribution.
- the implantation parameters are the following:
- the implantation step II results in a diffuse surface profile of the upper and lower surfaces 105, 104 of the implanted silicon carbide layer 5, namely because of said Gaussian distribution. In other words, there is no ⁇ _
- a thermal annealing step at a temperature T2 of 1250 °C for approximately 10 hours is performed in an argon atmosphere.
- This annealing step provides a homogeneous single crystal 3C-SiC layer having plane upper and lower surface 105, 104.
- other annealing conditions may be applicable, f.e. temperatures between 1200°C and 1350°C.
- an implantation step 12 at a temperature T2 is performed wherein a damage layer 10, in this example an amorphous layer, having a sharp interface to the single crystal silicon carbide of the buried silicon carbide layer 5 is created.
- the noble gas helium is used, namely because of its chemical inert behavior.
- other ions may be used, e.g. hydrogen, oxygen, boron, phosphorous, neon etc..
- the amorphous damage layer 10 includes or embraces the upper surface 105 of the buried silicon carbide layer 5.
- the amorphous damage layer 10 extends to a part of the upper part la of the substrate and to a part 5a of the buried silicon carbide layer 5.
- the energy, ion-type, dose and target temperature it is possible to obtain a sharp interface between the crystalline phase of the buried silicon carbide layer 5 and the damaged part 5a.
- the penetration depth and width of the amorphous damage layer 10 can be varied as desired.
- the temperature T2 should not be too high in order to avoid an in situ annealing.
- Heavy ion species exhibits the advantage that the necessary dose (implantation time) may be drastically reduced.
- the ion energy has to be enhanced for heavier ions because of their smaller penetration depth. If the implantation te - perature T2 is too low, however, the smoothness of the surfaces of the exposed silicon carbide layer may be decreased.
- a next step as illustrated in Fig. le, the upper part of the substrate la and the buried damage layer 10 are removed in an etch step using an etching solution containing HF/HN0 3 which is a standard etching solution in silicon process technology.
- etching solution containing HF/HN0 3 which is a standard etching solution in silicon process technology.
- a mixing ratio of 1:6 has proved to be very efficient.
- other etching chemistry including other concentration ratios and/or other etchants may be applied, such as KOH, TMAH, etc.
- the etching time amounts to a few seconds, and the chemical reaction is selectively stopped on the crystalline part of the buried silicon carbide layer 5.
- the time of the etching step is therefore not critical and a robust process may be obtained.
- the main advantage of the obtained silicon carbide layer 5 after this etching step is the smoothness of its surface.
- the reason is that SiC precipitations in the upper substrate part la near the surface 105 are completely etched away.
- SiC particles which are contained in the upper part of the substrate la which lies above the buried sili- con carbide layer are not redeposited on the surface to the exposed, but are contained in a damage layer and removed in the final etching step.
- it is of advantage to remove a certain fraction of the buried silicon carbide layer by having an appropriate penetration depth of the damage layer 10 into said silicon carbide layer 5 in order to provide an intermediate part of the buried SiC layer as new surface, because this part is structurally better developed than the upper part and therefore provides best conditions for a smooth surface.
- a cleaning treatment in deionized water for removing residuals of the etching solution may be performed.
- Fig. 2 shows a modification of the substrate of Fig. 1 in a second embodiment of the method according to the invention.
- the substrate 1' comprises lower parts lb' and lc', where lb' denotes a silicon part and lc' denotes a silicon dioxide part.
- SOI silicon on insulator
- Fig. 3a-c show a modification of the damage layer implantation step of Fig. 1 in a third embodiment of the method ac- cording to the invention.
- a damage layer 10' is created which does not penetrate into the buried silicon carbide layer 5, but merely adjoins or stops at its upper surface 105.
- the damage layer could also adjoin the upper surface 105 from below or, in other words, be only contained in the buried silicon carbide layer 5.
- Fig. 4a-c show a process sequence of a fourth embodiment of the method according to the invention.
- the starting point is the structure shown in Fig. lc.
- an implantation step 13 at the temperature T3 is applied which does not produce a damage layer having a plane upper and lower sur- 5 face, but a damage layer 10'' which is modulated in penetration depth.
- the damage layer 10'' includes an intermediate portion 100'' which fully penetrates the buried silicon carbide layer 5 and also enters the lower part of the substrate lb.
- This can be achieved by an ion L0 beam implantation step 13 wherein the penetration depth is modulated by locally changing the energy of the ion beam without using any mask.
- the result of this implantation step 13 is shown in Fig. 4a.
- L5 Another possiblity for obtaining a modulated penetration depth would be the use of two implantation steps where the first step corresponds to 12 and the second step one has higher energy and is limited to the intermediate portion 100'' by means of a mask.
- the etching is performed with HF/HN0 3 as in the first to third embodiments resulting in the structure shown in Fig. 4b.
- the exposed silicon carbide layer 5 is separated into two parts having a deep trench
- Fig. 4b is very well suited for micromechanical designs the manufacture of which includes an under-etching step for producing sensor parts suspended over the substrate. Such an under-etching step is illustrated with respect to Fig. 4c creating an under-etching region 110.
- any structure can be patterned into said damage layer and then be transferred by etching to the SiC layer.
- Fig. 5 show a process sequence of a fifth embodiment of the method according to the invention.
- the substrate part lb' denotes a silicon wafer part
- the substrate part Id' denotes a doped silicon part, which part is, for example, obtained by an additional implantation step.
- the inventive method provides a suitable substrate for making LEDs in a non-expensive process sequence.
- substrate part lb' as a silicon wafer part and substrate part Id' as a doped sili- con part
- substrate part Id' as a doped sili- con part
- a suitably highly doped substrate may be used.
- the described materials are only examples and replaceable by other suitable materials.
- the same is true for the etch processes.
- the invention may be used for other semiconductor technology substrate layers.
- the implantation step has resulted in an amorphous buried damage layer
- the pres- ent invention is not restricted thereto.
- a certain degree of damage may be sufficient to obtain a damage layer which can be easily removed in the etching step leaving back a smooth surface of the exposed silicon carbide layer.
- the first annealing step for converting the Gaussian profile into the box shape profile may be omitted, if the implantation step for providing the buried damage layer enables to cut off a sufficiently large portion of the tail of the Gaussian distribution. This would further simplify the method for obtaining the smooth silicon carbide surface.
- the LED structure is merely an example of a broad variety of possible structures that can be formed on the layered semiconductor technology structure according to the invention.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- High Energy & Nuclear Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Element Separation (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003537114A JP4225905B2 (en) | 2001-10-12 | 2002-10-11 | Method for forming a laminated semiconductor structure and corresponding laminated semiconductor structure |
US10/492,329 US7294564B2 (en) | 2001-10-12 | 2002-10-11 | Method for forming a layered semiconductor technology structure and corresponding layered semiconductor technology structure |
AU2002340555A AU2002340555A1 (en) | 2001-10-12 | 2002-10-11 | A method for forming a layered semiconductor structure and corresponding structure |
EP02774705A EP1435110B1 (en) | 2001-10-12 | 2002-10-11 | A method for forming a layered semiconductor structure and corresponding structure |
DE60211190T DE60211190T2 (en) | 2001-10-12 | 2002-10-11 | METHOD FOR PRODUCING A SEMICONDUCTOR COATING STRUCTURE AND CORRESPONDING STRUCTURE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US32875901P | 2001-10-12 | 2001-10-12 | |
US60/328,759 | 2001-10-12 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2003034484A2 true WO2003034484A2 (en) | 2003-04-24 |
WO2003034484A3 WO2003034484A3 (en) | 2003-09-18 |
Family
ID=23282315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2002/011423 WO2003034484A2 (en) | 2001-10-12 | 2002-10-11 | A method for forming a layered semiconductor structure and corresponding structure |
Country Status (8)
Country | Link |
---|---|
US (1) | US7294564B2 (en) |
EP (1) | EP1435110B1 (en) |
JP (1) | JP4225905B2 (en) |
KR (1) | KR100618103B1 (en) |
CN (1) | CN1316586C (en) |
AU (1) | AU2002340555A1 (en) |
DE (1) | DE60211190T2 (en) |
WO (1) | WO2003034484A2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1727190A1 (en) * | 2005-05-25 | 2006-11-29 | Siltronic AG | Semiconductor layer structure and method of fabricating it |
US7309658B2 (en) | 2004-11-22 | 2007-12-18 | Intermolecular, Inc. | Molecular self-assembly in substrate processing |
WO2008025475A2 (en) * | 2006-08-30 | 2008-03-06 | Siltronic Ag | Multilayered semiconductor wafer and process for manufacturing the same |
US7390739B2 (en) | 2005-05-18 | 2008-06-24 | Lazovsky David E | Formation of a masking layer on a dielectric region to facilitate formation of a capping layer on electrically conductive regions separated by the dielectric region |
US7544574B2 (en) | 2005-10-11 | 2009-06-09 | Intermolecular, Inc. | Methods for discretized processing of regions of a substrate |
WO2009095173A1 (en) * | 2008-01-30 | 2009-08-06 | Siltronic Ag | Method for the production of a semiconductor structure |
US7749881B2 (en) | 2005-05-18 | 2010-07-06 | Intermolecular, Inc. | Formation of a masking layer on a dielectric region to facilitate formation of a capping layer on electrically conductive regions separated by the dielectric region |
US7879710B2 (en) | 2005-05-18 | 2011-02-01 | Intermolecular, Inc. | Substrate processing including a masking layer |
US7955436B2 (en) | 2006-02-24 | 2011-06-07 | Intermolecular, Inc. | Systems and methods for sealing in site-isolated reactors |
US8011317B2 (en) | 2006-12-29 | 2011-09-06 | Intermolecular, Inc. | Advanced mixing system for integrated tool having site-isolated reactors |
US8084400B2 (en) | 2005-10-11 | 2011-12-27 | Intermolecular, Inc. | Methods for discretized processing and process sequence integration of regions of a substrate |
US8772772B2 (en) | 2006-05-18 | 2014-07-08 | Intermolecular, Inc. | System and method for increasing productivity of combinatorial screening |
US8882914B2 (en) | 2004-09-17 | 2014-11-11 | Intermolecular, Inc. | Processing substrates using site-isolated processing |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2843061B1 (en) * | 2002-08-02 | 2004-09-24 | Soitec Silicon On Insulator | MATERIAL WAFER POLISHING PROCESS |
US7932560B2 (en) * | 2006-01-12 | 2011-04-26 | Nxp B.V. | Method of fabricating a semiconductor on insulator device having a frontside substrate contact |
JP2009149481A (en) * | 2007-12-21 | 2009-07-09 | Siltronic Ag | Method for manufacturing semiconductor substrate |
EP2172967A1 (en) | 2008-08-04 | 2010-04-07 | Siltronic AG | Method for manufacturing silicon carbide |
US7868306B2 (en) * | 2008-10-02 | 2011-01-11 | Varian Semiconductor Equipment Associates, Inc. | Thermal modulation of implant process |
US10049914B2 (en) | 2015-11-20 | 2018-08-14 | Infineon Technologies Ag | Method for thinning substrates |
EP4135006A1 (en) | 2021-08-13 | 2023-02-15 | Siltronic AG | A method for manufacturing a substrate wafer for building group iii-v devices thereon and a substrate wafer for building group iii-v devices thereon |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3622382A (en) * | 1969-05-05 | 1971-11-23 | Ibm | Semiconductor isolation structure and method of producing |
WO2001072104A1 (en) * | 2000-03-31 | 2001-10-04 | Consejo Superior De Investigaciones Científicas | Method for the production of silicon carbide (sic) layers by means of ionic implantation of carbon and anneals |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1531491A2 (en) * | 1996-04-18 | 2005-05-18 | Matsushita Electric Industrial Co., Ltd. | SiC device and method for manufacturing the same |
JP3958404B2 (en) * | 1997-06-06 | 2007-08-15 | 三菱電機株式会社 | Semiconductor device having lateral high voltage element |
-
2002
- 2002-10-11 DE DE60211190T patent/DE60211190T2/en not_active Expired - Lifetime
- 2002-10-11 EP EP02774705A patent/EP1435110B1/en not_active Expired - Lifetime
- 2002-10-11 WO PCT/EP2002/011423 patent/WO2003034484A2/en active IP Right Grant
- 2002-10-11 JP JP2003537114A patent/JP4225905B2/en not_active Expired - Fee Related
- 2002-10-11 US US10/492,329 patent/US7294564B2/en not_active Expired - Fee Related
- 2002-10-11 KR KR1020047005378A patent/KR100618103B1/en not_active IP Right Cessation
- 2002-10-11 CN CNB028201957A patent/CN1316586C/en not_active Expired - Fee Related
- 2002-10-11 AU AU2002340555A patent/AU2002340555A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3622382A (en) * | 1969-05-05 | 1971-11-23 | Ibm | Semiconductor isolation structure and method of producing |
WO2001072104A1 (en) * | 2000-03-31 | 2001-10-04 | Consejo Superior De Investigaciones Científicas | Method for the production of silicon carbide (sic) layers by means of ionic implantation of carbon and anneals |
Non-Patent Citations (2)
Title |
---|
LINDNER J K N ET AL: "Controlling the density distribution of SiC nanocrystals for the ion beam synthesis of buried SiC layers in silicon" NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH, SECTION - B: BEAM INTERACTIONS WITH MATERIALS AND ATOMS, NORTH-HOLLAND PUBLISHING COMPANY. AMSTERDAM, NL, vol. 147, no. 1-4, 1999, pages 249-255, XP004196310 ISSN: 0168-583X * |
VOLZ K ET AL: "Ion beam induced amorphization and recrystallization of Si/SiC/Si layer systems" NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH, SECTION - B: BEAM INTERACTIONS WITH MATERIALS AND ATOMS, NORTH-HOLLAND PUBLISHING COMPANY. AMSTERDAM, NL, vol. 120, no. 1-4, 1 December 1996 (1996-12-01), pages 133-138, XP004065668 ISSN: 0168-583X * |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8882914B2 (en) | 2004-09-17 | 2014-11-11 | Intermolecular, Inc. | Processing substrates using site-isolated processing |
US7309658B2 (en) | 2004-11-22 | 2007-12-18 | Intermolecular, Inc. | Molecular self-assembly in substrate processing |
US7749881B2 (en) | 2005-05-18 | 2010-07-06 | Intermolecular, Inc. | Formation of a masking layer on a dielectric region to facilitate formation of a capping layer on electrically conductive regions separated by the dielectric region |
US8030772B2 (en) | 2005-05-18 | 2011-10-04 | Intermolecular, Inc. | Formation of a masking layer on a dielectric region to facilitate formation of a capping layer on electrically conductive regions separated by the dielectric region |
US7879710B2 (en) | 2005-05-18 | 2011-02-01 | Intermolecular, Inc. | Substrate processing including a masking layer |
US7390739B2 (en) | 2005-05-18 | 2008-06-24 | Lazovsky David E | Formation of a masking layer on a dielectric region to facilitate formation of a capping layer on electrically conductive regions separated by the dielectric region |
DE102005024073A1 (en) * | 2005-05-25 | 2006-11-30 | Siltronic Ag | Semiconductor layer structure and method for producing a semiconductor layer structure |
EP1727190A1 (en) * | 2005-05-25 | 2006-11-29 | Siltronic AG | Semiconductor layer structure and method of fabricating it |
US7544574B2 (en) | 2005-10-11 | 2009-06-09 | Intermolecular, Inc. | Methods for discretized processing of regions of a substrate |
US8084400B2 (en) | 2005-10-11 | 2011-12-27 | Intermolecular, Inc. | Methods for discretized processing and process sequence integration of regions of a substrate |
US7902063B2 (en) | 2005-10-11 | 2011-03-08 | Intermolecular, Inc. | Methods for discretized formation of masking and capping layers on a substrate |
US7955436B2 (en) | 2006-02-24 | 2011-06-07 | Intermolecular, Inc. | Systems and methods for sealing in site-isolated reactors |
US8772772B2 (en) | 2006-05-18 | 2014-07-08 | Intermolecular, Inc. | System and method for increasing productivity of combinatorial screening |
US8395164B2 (en) | 2006-08-30 | 2013-03-12 | Siltronic Ag | Multilayered semiconductor wafer and process for manufacturing the same |
WO2008025475A2 (en) * | 2006-08-30 | 2008-03-06 | Siltronic Ag | Multilayered semiconductor wafer and process for manufacturing the same |
US8039361B2 (en) | 2006-08-30 | 2011-10-18 | Siltronic Ag | Multilayered semiconductor wafer and process for manufacturing the same |
EP1901345A1 (en) * | 2006-08-30 | 2008-03-19 | Siltronic AG | Multilayered semiconductor wafer and process for manufacturing the same |
WO2008025475A3 (en) * | 2006-08-30 | 2008-07-31 | Siltronic Ag | Multilayered semiconductor wafer and process for manufacturing the same |
US8011317B2 (en) | 2006-12-29 | 2011-09-06 | Intermolecular, Inc. | Advanced mixing system for integrated tool having site-isolated reactors |
US8492243B2 (en) | 2008-01-30 | 2013-07-23 | Siltronic Ag | Method for the production of a semiconductor structure |
DE102008006745B3 (en) * | 2008-01-30 | 2009-10-08 | Siltronic Ag | Method for producing a semiconductor structure |
WO2009095173A1 (en) * | 2008-01-30 | 2009-08-06 | Siltronic Ag | Method for the production of a semiconductor structure |
Also Published As
Publication number | Publication date |
---|---|
AU2002340555A1 (en) | 2003-04-28 |
EP1435110B1 (en) | 2006-05-03 |
EP1435110A2 (en) | 2004-07-07 |
CN1698193A (en) | 2005-11-16 |
WO2003034484A3 (en) | 2003-09-18 |
JP4225905B2 (en) | 2009-02-18 |
DE60211190T2 (en) | 2006-10-26 |
JP2005506699A (en) | 2005-03-03 |
CN1316586C (en) | 2007-05-16 |
DE60211190D1 (en) | 2006-06-08 |
KR100618103B1 (en) | 2006-08-29 |
US20040248390A1 (en) | 2004-12-09 |
KR20050035156A (en) | 2005-04-15 |
US7294564B2 (en) | 2007-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1435110B1 (en) | A method for forming a layered semiconductor structure and corresponding structure | |
AU744654B2 (en) | Substrate and production method thereof | |
KR100348514B1 (en) | Semiconductor substrate and producing method thereof | |
CA2198552C (en) | Fabrication process of semiconductor substrate | |
TWI269384B (en) | Formation of patterned silicon-on-insulator (SOI)/silicon-on-nothing (SON) composite structure by porous Si engineering | |
US20060270190A1 (en) | Method of transferring a thin crystalline semiconductor layer | |
CA2233132C (en) | Semiconductor substrate and process for producing same | |
JP2007123875A (en) | Method for forming germanium-on-insulator semiconductor structure using porous layer and semiconductor structure formed by the method | |
EP1896270A2 (en) | Etching technique for the fabrication of thin (ai, in, ga)n layers | |
US10714377B2 (en) | Semiconductor device and semiconductor wafer including a porous layer and method of manufacturing | |
JP2000315807A (en) | Manufacture for planar heterostructure | |
US7060587B2 (en) | Method for forming macropores in a layer and products obtained thereof | |
JP2004511102A (en) | The process of revealing crystal defects and / or stress fields at the molecular bonding interface of two solid materials | |
US20220189761A1 (en) | Integrated Method for Low-Cost Wide Band Gap Semiconductor Device Manufacturing | |
USRE41841E1 (en) | Method for making a silicon substrate comprising a buried thin silicon oxide film | |
KR101766799B1 (en) | Method for manufacturing soi wafer | |
JP3927977B2 (en) | Manufacturing method of semiconductor member | |
T.-H. Lee | Nanoscale layer transfer by hydrogen ion-cut processing: A brief review through recent US patents | |
US12125697B2 (en) | Integrated method for low-cost wide band gap semiconductor device manufacturing | |
US20230066574A1 (en) | Method for forming semiconductor-on-insulator (soi) substrate | |
JPH0832037A (en) | Manufacture of semiconductor substrate | |
JP3755857B2 (en) | Method for manufacturing semiconductor substrate and method for separating semiconductor layer from substrate | |
KR100925136B1 (en) | FORMATION OF PATTERNED SILICON-ON-INSULATORSOI/SILICON-ON-NOTHINGSON COMPOSITE STRUCTURE BY POROUS Si ENGINEERING | |
JP3796358B2 (en) | Method for manufacturing semiconductor substrate and method for separating semiconductor layer from substrate | |
JP2005197525A (en) | Production process of soi wafer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VC VN YU ZA ZM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG US |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2002774705 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10492329 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20028201957 Country of ref document: CN Ref document number: 2003537114 Country of ref document: JP Ref document number: 1020047005378 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2002774705 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 2002774705 Country of ref document: EP |