WO2003033582A1 - Anti-uv compositions based on cerium and titanium phosphates and method for preparing same - Google Patents

Anti-uv compositions based on cerium and titanium phosphates and method for preparing same Download PDF

Info

Publication number
WO2003033582A1
WO2003033582A1 PCT/FR2002/003540 FR0203540W WO03033582A1 WO 2003033582 A1 WO2003033582 A1 WO 2003033582A1 FR 0203540 W FR0203540 W FR 0203540W WO 03033582 A1 WO03033582 A1 WO 03033582A1
Authority
WO
WIPO (PCT)
Prior art keywords
cerium
titanium
phosphate
compositions
mixed
Prior art date
Application number
PCT/FR2002/003540
Other languages
French (fr)
Inventor
Gin-Ya Adachi
Nobuhito Imanaka
Toshiyuki Masui
Original Assignee
Rhodia Electronics And Catalysis
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Electronics And Catalysis filed Critical Rhodia Electronics And Catalysis
Priority to JP2003536315A priority Critical patent/JP2005505669A/en
Publication of WO2003033582A1 publication Critical patent/WO2003033582A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/24Phosphorous; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations

Definitions

  • the present invention relates to anti-UV compositions which are based on mixed phosphates of cerium and titanium and which have high transparency and stability, and to their preparation.
  • Ultraviolet rays not only deteriorate organic materials like plastics, but also have a bad influence on human beings.
  • UV-B radiation (290-320 nm) causes sunburn and inflammation of the skin and UV-A radiation (320 - 400 nm) produces tanning.
  • UV-B radiation 290-320 nm
  • UV-A radiation 320 - 400 nm
  • Organic agents absorbing UV radiation are generally used in practice in plastics and cosmetic products because of their lack of color and their high transparency. However, the amount of use of the latter is currently limited due to the many problems they cause, such as poor stability and harmful decomposition products.
  • titanium dioxide and zinc oxide are generally used as inorganic anti-UV materials and recently, cerium dioxide has become a new sun protection material. These compounds have both advantages and disadvantages in terms of the UV protective effect, transparency and weak photocatalysis and thermocatalysis. The surface is thus usually coated with silica, alumina and boron nitride before practical application.
  • the object of the present invention is to provide anti-UV compositions and their preparation process, which have high transparency, good protection both against UV-A and UV-B radiation, and extremely photocatalysis and thermocatalysis. low.
  • the compositions of the invention anti-UV are based on cerium and titanium phosphates which provides compositions excellent from the point of view of UV protection, having the property of protection quite both against UV-A and UV-B radiation thanks to the phosphate of cerium and titanium, respectively. Since these compounds are stable to each other, it is possible to obtain very stable mixed particles and it is possible to use them as anti-UV materials, even if they are used in a harsh environment.
  • the compositions according to the invention for protection against ultraviolet rays are characterized in that they are based on a mixed phosphate of cerium and titanium of formula (1): CexTi 1 .xP 2 O 7 -.nH 2 O in which 0 ⁇ x ⁇ 1.
  • the invention also relates to a process for protecting a material against ultraviolet rays, which is characterized in that a mixed phosphate of cerium and titanium corresponding to the above formula is used.
  • the invention also relates to a material of the resin, plastic, paint, glass or cosmetic product type, which is characterized in that it contains, as agent for protection against ultraviolet rays, a composition as defined below. -above.
  • FIG. 1 is an X-ray diffractogram of a mixed cerium-titanium phosphate according to the invention
  • FIG. 2 is a TEM photo of a mixed cerium-titanium phosphate according to the invention.
  • orthophosphates and polyphosphates are well known.
  • the orthophosphates of formula MPO 4 .nH 2 ⁇ M: metal ions
  • M metal ions
  • An effective anti-UV property cannot, however, be obtained in orthophosphates, since the valence of metal ions in orthophosphates is trivalent.
  • the pyrophosphates, materials of the present invention exhibit good anti-UV effects, because the valence of the metal ions is tetravalent, as mentioned above.
  • the value of x can be freely chosen in the whole range, and the anti-UV effect and the degree of yellow color of the composition can be optionally controlled. Therefore, the value of x is not limited and is selected depending on the application. For example, in the case of an application to cosmetic products, the advantageous value of x is in the range of 0.001 - 0.5 and more particularly of 0.01 - 0.2, with a view to reducing the yellow color , maintaining high UV protection.
  • n which indicates the number of molecules of water of hydration, is greater than 0, because the hydrated phosphates are synthesized in the formation of the compositions.
  • n is advantageously less than 5, more particularly less than 3, and preferably less than 2.
  • the values of x and n described above can be determined by elemental analysis of Ce and Ti and by thermo-gravimetric analysis of the dry powder samples.
  • the anti-UV compositions of mixed cerium and titanium phosphates of the invention have a constitution as explained above.
  • the phosphates of the anti-UV compositions of the invention consist of fine particles whose average size is in the range of 0.003 ⁇ m - 1 ⁇ m.
  • the advantageous value of the average size is greater than 0.003 ⁇ m, more preferably greater than 0.01 ⁇ m and even more preferably greater than 0.03 ⁇ m, and it is less than 1 ⁇ m, advantageously less than 0.1 ⁇ m and preferably less than 0.05 ⁇ m, having regard to the increase in transparency in the visible region.
  • the average size is determined by MET electron transmission microscopy.
  • cerium-titanium phosphates The crystalline structure of cerium-titanium phosphates is amorphous, unless heated to high temperature or hydrothermal treatment, after obtaining and drying.
  • the UV protection effect is preserved if the particles are in pyrophosphate form after crystallization.
  • the particles transform into orthophosphates and lose their UV protection property. Consequently, the particles are advantageously used in the amorphous state, so as not to change into orthophosphates and not to cause growth and aggregation of the particles.
  • the anti-UV cerium-titanium phosphate particles of the invention not only have good transparency in the visible region due to their fine size and exhibit weak photocatalysis and thermocatalysis, but they also have high anti-UV properties.
  • the particles of cerium-titanium phosphates which are the basis of the anti-UV compositions of the invention are prepared by a process in which a solution containing phosphate ions is mixed with a solution containing cerium ions and / or ions of titanium and where the precipitate formed is separated. More precisely, a basic solution containing phosphate ions is mixed with an aqueous solution containing cerium (IV) ions and titanium (IV) ions, the pH value of the solution is preferably adjusted between 1 and
  • the solution then undergoing hot ripening, at a temperature which can be between 60 ° C. and 100 ° C., for example at 80 ° C.
  • a solution of alkali metal phosphates or ammonium phosphate can be chosen as an example of the basic solutions containing the phosphate ions described above.
  • a basic solution prepared by adding a basic solution to a phosphoric acid solution can also be used.
  • alkali metal phosphate solutions sodium pyrophosphate, disodium hydrogen phosphate, sodium dihydrogen phosphate, sodium orthophosphate, potassium pyrophosphate, dipotassium hydrogen phosphate may be given as examples.
  • sodium pyrophosphate, potassium pyrophosphate and lithium pyrophosphate are advantageously employed in order to efficiently produce the cerium-titanium pyrophosphates.
  • solutions of ammonium phosphate, ammonium dihydrogen phosphate, ammonium trihydrogen phosphate, and their hydrates are used.
  • the amount of phosphate ions in the basic solution is advantageously adjusted to less than ten times, advantageously to less than 6 times, and preferably to less 4 times the total amount of the cerium and titanium ions.
  • This quantity is also advantageously adjusted to more than once, preferably to more than 1.5 times, and even more preferably to more than two times relative to this quantity to react completely.
  • cerium compound can be used as a source of tetravalent cerium if it is a tetravalent cerium salt and if it is soluble in water or in an acid.
  • diammonium cerium (IV) nitrate, tetraammonic cerium (IV) dihydrate and cerium (IV) tetrahydrate are advantageously used.
  • cerium (IV) sulfate tetrahydrate is used.
  • Any titanium compound can be used as a source of tetravalent titanium if it is a tetravalent titanium salt and if it is soluble in water or in an acid.
  • titanium chloride (IV), titanium sulfate (IV) and titanium iodide (IV) are used.
  • solutions of these compounds which are commercially available can also be used due to their easy handling.
  • the amount of metal ions in the solution containing the tetravalent cerium and tetravalent titanium ions i.e. the total amount of the cerium and titanium ions is advantageously adjusted more than 0.01 mole per liter, preferably more than 0.05 mole per liter and even more preferably more than 0.1 mole per liter, after mixing with the phosphate solution.
  • the upper limit is advantageously adjusted to less than 0.5 mole per liter, preferably to less than 0.3 mole per liter, and even more preferably less than 0.2 mole per liter.
  • the pH value of the solution should advantageously be adjusted to more than 1, preferably to more than 2, and even more preferably to more than 3, after mixing the mixed cerium-titanium solution with the phosphate solution to inhibit the particle growth and decreased anti-UV properties.
  • the pH value, however, of the solution should advantageously not exceed 11, preferably 7 and even more preferably 6, so as not to increase the solubility of the particles obtained in the solution.
  • One of the examples of the methods of mixing the mixed cerium-titanium solution with the phosphate ion solution is the addition of the phosphate ion solution dropwise to the mixed cerium-titanium solution with stirring for 5 seconds. 1 hour at a temperature of 0 to 50 ° C. Using this method, amorphous gel particles are produced.
  • the gel obtained then undergoes hot curing, for example at a temperature of 80 ° C.
  • the ripening time is advantageously adjusted to be greater than 30 minutes and preferably greater than 1 hour, but advantageously less than 5 hours and preferably less than 3 hours, having regard to the homogeneity of the quality and the effectiveness of preparation, respectively.
  • the gel obtained can undergo hydrothermal treatment or calcination at a temperature of 120-200 ° C, if necessary. However, it should not be changed to orthophosphate by these treatments.
  • the temperatures should advantageously be greater than 120 ° C, preferably greater than 130 ° C, and even more preferably greater than 140 ° C to increase the crystallinity.
  • the temperature should advantageously not exceed 200 ° C, preferably 190 ° C, and even more preferably 185 ° C, to avoid aggregation and growth of the particles.
  • the time for hydrothermal treatment or calcinations should advantageously be greater than 1 hour and preferably greater than 1.5 hours to achieve high crystallinity, but should advantageously be less than 10 hours and preferably less than 15 hours, for productivity reasons.
  • the anti-UV particles of cerium-titanium phosphate of the invention are thus obtained.
  • the anti-UV particles are filtered or centrifuged, washed with water or with the aid of alcohols, and dried.
  • the particles can be washed by any known means. After washing, the particles are dried at room temperature, or in an oven. Some vacuum drying facilities or spray dryers are also available. The drying temperature should be set between 80 and 200 ° C.
  • the particles When the cerium-titanium phosphate particles are applied in an aqueous dispersion system, the particles may not be collected after the last step of the washing process.
  • the preparation process of the invention is very simple and convenient, because the preparation process does not contain a heating step at high temperature, and the particles produced show a sufficient anti-UV effect, even in case drying at a temperature of 80 ° C.
  • the use of the anti-UV compositions of the invention is not limited and these compositions can be used in practically any article which needs to be protected against UV rays.
  • they are advantageous for anti-sun cosmetic products, films with UV filters, anti-UV plastics and anti-UV paints. Above all, they are suitable for anti-sun cosmetic products and films with UV filters, especially.
  • the anti-UV compositions of the invention alone or in combination, in cosmetic products, plastics, films and paints, a high UV protection effect is achieved throughout the region of UV-A and UV-B radiation, without decreasing the transparency in the visible region.
  • These compositions are also stable and safe, because they have no catalysis effect.
  • the phosphates described above can be used in the anti-UV compositions of the invention and can be combined with cosmetic products, films, plastics and paints as such, just as it is possible to use them in several formulations such as pastes and dispersions.
  • the quantity of anti-UV phosphates according to the invention used is not limited and can be freely selected, it is advantageous to adjust it between 0.5 and 50% by mass.
  • the combination rate is less than 0.5%, it is very difficult to have enough anti-UV effect.
  • the effectiveness of the dispersion becomes poor when the amount exceeds 50%. There is no problem if certain additives, such as dispersing agents, are also combined.
  • the materials under the coating layer such as adhesives, plastic plates, wooden blocks, steel sheets and pigments, are stable for an extended period because they are protected from UV radiation.
  • the type of paint which is combined with the anti-UV compositions is not limited.
  • the anti-UV compositions are advantageously applied to a paint which is dried at room temperature or to another paint which is dried at a higher temperature.
  • anti-sun cosmetic products films with UV filters, anti-UV plastic materials and anti-UV paints, which are combined with the anti-UV compositions of the invention
  • electrical materials and devices such as electromagnetic lenses, various articles for automobiles, transparent films and trays for products, food, nets, fibers, panels, sheets of steel and plastic, cover films for vegetables, roofs, tents, cars, ships, planes, electrical appliances, machinery, house walls, bridges, office supplies, spectacle lenses, toys and miscellaneous products.
  • the application is, however, not limited and the anti-UV compositions can be used in any film, plastic material and paint in need of UV protection.
  • the resins which are raw materials for the film and the plastics described above are thermoplastic or thermosetting resins.
  • thermoplastic resins are fluorine-containing resins, acrylic fiber, polyamide, vinyl chloride, polycarbonate resins, olefin resins, epoxy resins, polyacetal, polyester, poly (etherimide) resins , poly (ethersulfone), poly (etherketone), poly (phenylene sulfide), polysulfone, polyallylate, poly (ethylene terephthalate), poly (ethylene naphthalate), poly (methylpentene) , ABS, vinyl acetate, and polyethylene.
  • a fluorine-containing resin, acrylic fiber, polyamide, polycarbonate and polyester resins are advantageously used, because of their high thermal stability.
  • thermosetting resins examples include melamine, phenol, urea, furan, alkyd resins, unsaturated polyester, diallyl phthalate, epoxy resins, silicon resins, polyurethanes, polyimides and polyparabanic resins.
  • epoxy resins, diallyl phthalate and polyimide are advantageously used.
  • the anti-UV cerium-titanium phosphate compositions of the invention can be combined with cosmetic products.
  • the cosmetic products which are combined with the anti-UV compositions of the invention have a high transparency and excellent properties of protection against UV radiation.
  • Concrete products are, for example, emulsions, creams, lotions, foundations, compact powders, nail polishes, lipsticks, eye shadows, and hair styling creams. It is desirable to use them in sun filters.
  • the quantity of the combined anti-UV phosphates is not limited, it is advantageous to adjust it between 0.1 and 70% by mass. When the combination rate is less than 0.1%, it is very difficult to have enough anti-UV effects. The transparency and the dispersion efficiency become, however, poor when the amount exceeds 70%.
  • additives such as dispersing agents, surfactants, oils, gels, polymers, pigments, powders and perfumes, in the case where the additives do not affect the effects of the anti-UV compositions of the invention.
  • anti-UV compositions can be applied to the products described above after coating their surfaces with the aid of certain materials such as amino acids, collagen, lecithin, triglycerides, silicones, soap, chitin and chitosan.
  • anti-UV compositions of the invention a small amount of conventional organic and inorganic anti-sun agents can be added to the products to improve the anti-UV effect, unless their use causes harmful problems for products.
  • organic sunscreens are salicylates, benzophenones, benzotriazoles, cyanoacryiates and 4-tert.-butyl-4'-methoxybenzoylmethane and their derivatives.
  • the salicylates are octyl salicylate, homomenthyl salicylate, and methyl salicylate.
  • the benzophenones are hydroxybenzophenone, tetrahydroxybenzophenone, hydroxymethoxybenzophenonesulfonic acid, hydroxymethoxybenzophenone sodium, hydroxymethoxybenzophenone sulfonate and oxybenzone.
  • the benzotriazoles are 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-butylphenyl) benzotriazole, and 2- (2-hydroxy-3,5-di-tert- butylphenyl) -5- chlorobenzotriazole.
  • the cyanoacryiates are 2-ethylhexyl-2-2-cyano-3,3'-diphenylacrylates and ethyl-2-cyano-3,3'-diphenylacrylate.
  • inorganic sunscreen filters can be chosen from titanium dioxide, zinc oxide and cerium oxide. Among these, materials whose average size is less than 50 nm are advantageously combined.
  • the phases were identified by X-ray diffraction (Mac Science diffractometer, M18XHF-SHA) and the morphologies and the average particle size were measured by TEM (Hitachi H-800).
  • the optical properties of the powder were measured using a UV-Visible spectrometer (Shimadzu UV-2550).
  • the optical reflectance of the powder was measured using barium sulfate as a reference.
  • the effective color is represented in the L * , a * , b * system (Minolta CR-300).
  • a fixed amount of the UV powder was dissolved in a mixed solution of concentrated HCl (35%) and hydrogen peroxide (30%).
  • the contents of Ti, Ce and P in this solution were determined using an ICP analyzer (Shimadzu ICP-S1000IV).
  • the catalysis effect of the samples was measured by the conductometric determination method reported in the publication J. Soc. Cosmet. Chem. Jpn., 31 (1997) 329-332.
  • a 0.3 g sample was mixed with 5.0 g of beaver oil and kept at a temperature of 130 ° C with stirring by passing air bubbles.
  • the effluent gas was introduced into 50 ml of deionized water placed in a cell for measuring the electrical conductivity.
  • the volatile molecules produced by the oxidation of beaver oil have been trapped in water.
  • the degree of catalysis was determined by the degree of change in conductivity, sigma, after 3 hours of oxidation.
  • the photocatalysis of the samples was also determined by light radiation for 9 hours using a solar simulator (Yamashita Denso YSS-80), instead of heating to 130 ° C.
  • Sodium pyrophosphate (Na 4 P 2 ⁇ 7 ) is prepared by calcining disodium hydrogen phosphate (Na 2 HPO 4 ) at 500 ° C for 5 hours. 15mmol (3.988g) of sodium pyrophosphate are dissolved in 150ml of deionized water to constitute a solution A at 0.1mol.dm "3 .
  • Sulfate tetrahydrate, cerium (Ce (SO 4) 2 .4H 2 O) and titanium sulfate (IV) solution at 30% are mixed in 100 cm 3 or 150 cm 3 of deionized water and in different ratios so as to vary the value of x Ce x Ti ⁇ -x P 2 ⁇ 7 from 0; 0.05; 0.5; 0.90; 0.93; 0.95 to 1.0 to constitute a solution B.
  • the total concentration of metal ions in the solution is fixed at 0.1 mol.dm "3 .
  • Solution B is added dropwise and with stirring to solution A.
  • the mixture of solutions is then matured at a temperature of 80 ° C for 30 minutes with stirring.
  • the mixture is then kept at ambient temperature and with stirring for 16 hours.
  • the precipitated particles are separated by centrifugation and then washed five times with deionized water and then dried in an oven at 100 ° C for 24 hours.
  • the powder obtained is crushed with a pestle in an agate mortar.
  • Figure 1 is an X-ray diffractogram of the product of Example 2. We observe a bump which is characteristic of amorphous compounds.
  • FIG. 2 is a MET photo of the product of Example 4.
  • FIGS. 3 and 4 show UV-visible reflectance spectra of phosphates according to the examples.
  • This example relates to the application in a polymer of the products of examples 1, 3 and 4.
  • the polymer used is a polypropylene (MF13), in which 0.5% by weight of phosphate is added, as well as 0.1% by weight polyethylene glycol (PEG).
  • MF13 polypropylene
  • PEG polyethylene glycol
  • T 180 ° C (Hollimix type device).
  • the additive polymer is introduced into a mold placed between two metal plates.
  • the assembly is pressurized and brought to a temperature of the order of 200 ° C. (thermocompression).
  • the whole is cooled (the pressure is maintained).
  • the plates obtained are perfectly smooth and have a thickness of the order of 800 ⁇ m.
  • the optical properties are characterized in the UV-Visible range using a Lambda 900 - Perkin Elmer type spectrophotometer. The measurement is made in transmission (direct transmission). A UV-visible transmission spectrum is given in FIG. 5.
  • a UV filter effect is clearly observed: shift towards the longest wavelengths of the cut-off threshold of the additive polymers compared to that of the polypropylene matrix alone.
  • the transparency in the visible range of the additive plates is close to or similar to that of the non-additive polypropylene matrix.
  • the anti-UV compositions of the invention exhibit high transparency, good dispersion and good stability.
  • the UV protection and coloring properties can be adjusted by controlling their Ce / Ti ratio. Consequently, the combination of the compositions of the invention anti-UV with cosmetic products, films, plastics, paints, etc., is very useful in the protection against deterioration by UV radiation.

Abstract

The invention concerns compositions for protection against ultraviolet rays, characterized in that they are based on a mixed cerium and titanium phosphate of formula (1): CexTi1-xP2O7.nH2O wherein 0 </= x </= 1. Said compositions can be used as additives in materials such as resin, plastic, paint, glass or cosmetic product.

Description

COMPOSITIONS ANTI-UV A BASE DE PHOSPHATES DE CÉRIUM ET DE TITANE ET LEUR PRÉPARATION ANTI-UV COMPOSITIONS BASED ON CERIUM PHOSPHATES AND TITANIUM AND THEIR PREPARATION
La présente invention se rapporte à des compositions anti-UV qui sont à base de phosphates mixtes de cérium et de titane et qui possèdent une transparence et une stabilité élevées, et à leur préparation. Les rayons ultraviolets détériorent non seulement les matériaux organiques comme les matières plastiques, mais ont également une mauvaise influence sur les êtres humains. Le rayonnement UV-B (290-320 nm) provoque des coups de soleil et une inflammation de la peau et le rayonnement UV-A (320 - 400 nm) produit le bronzage. De manière à protéger la peau des rayons UV, une variété de produits anti-solaires organiques et inorganiques ont été développés.The present invention relates to anti-UV compositions which are based on mixed phosphates of cerium and titanium and which have high transparency and stability, and to their preparation. Ultraviolet rays not only deteriorate organic materials like plastics, but also have a bad influence on human beings. UV-B radiation (290-320 nm) causes sunburn and inflammation of the skin and UV-A radiation (320 - 400 nm) produces tanning. In order to protect the skin from UV rays, a variety of organic and inorganic sunscreen products have been developed.
Les agents organiques absorbant des rayonnements UV sont utilisés en général en pratique dans les matières plastiques et les produits cosmétiques en raison de leur absence de couleur et de leur transparence élevée. La quantité d'utilisation de ces derniers est toutefois limitée à l'heure actuelle, en raison des nombreux problèmes qu'ils entraînent, comme une stabilité faible et des produits de décomposition nocifs. Par ailleurs, le dioxyde de titane et l'oxyde de zinc sont en général utilisés en tant que matériaux anti-UV inorganiques et récemment, le dioxyde de cérium est devenu un nouveau matériau de protection solaire. Ces composés ont tout à la fois des avantages et des inconvénients pour ce qui est de l'effet de protection contre les UV, de la transparence et de la photocatalyse et de la thermocatalyse faibles. La surface est ainsi habituellement revêtue de silice, d'alumine et de nitrure de bore avant l'application pratique. La diminution, toutefois, de la taille des particules induit une agrégation et une agglomération des particules et l'on ne parvient pas à obtenir une bonne dispersion des particules. Par conséquent, il a été impossible d'atteindre une transparence élevée et une catalyse faible, tout en maintenant un effet de protection élevé contre les UV.Organic agents absorbing UV radiation are generally used in practice in plastics and cosmetic products because of their lack of color and their high transparency. However, the amount of use of the latter is currently limited due to the many problems they cause, such as poor stability and harmful decomposition products. On the other hand, titanium dioxide and zinc oxide are generally used as inorganic anti-UV materials and recently, cerium dioxide has become a new sun protection material. These compounds have both advantages and disadvantages in terms of the UV protective effect, transparency and weak photocatalysis and thermocatalysis. The surface is thus usually coated with silica, alumina and boron nitride before practical application. The reduction, however, in the size of the particles induces an aggregation and an agglomeration of the particles and it is not possible to obtain a good dispersion of the particles. Consequently, it was impossible to achieve high transparency and low catalysis, while maintaining a high UV protective effect.
Bien que certains agents anti-solaires, comme le phosphate de cérium, le phosphate de titane ou le phosphate de zirconium, comme il ressort des documents JP-A-11-189766 et JP-A-10-204288, semblent résoudre ces problèmes, le phosphate de cérium confère une couleur jaune intense et le phosphate de titane et le phosphate de zirconium ne protègent pas d'une manière efficace du rayonnement UV-A. Ces propriétés ne sont particulièrement pas appropriées aux produits cosmétiques.Although some sunscreen agents, such as cerium phosphate, titanium phosphate or zirconium phosphate, as shown in documents JP-A-11-189766 and JP-A-10-204288, seem to solve these problems, the cerium phosphate gives an intense yellow color and the titanium phosphate and zirconium phosphate do not protect from UV-A radiation effectively. These properties are particularly unsuitable for cosmetic products.
La présente invention a pour objet de fournir des compositions anti-UV et leur procédé de préparation, lesquels présentent une transparence élevée, une bonne protection tout à la fois contre des rayonnements UV-A et UV-B, et une photocatalyse et une thermocatalyse extrêmement faibles.The object of the present invention is to provide anti-UV compositions and their preparation process, which have high transparency, good protection both against UV-A and UV-B radiation, and extremely photocatalysis and thermocatalysis. low.
De manière à atteindre cet objet, les compositions de l'invention anti-UV sont à base de phosphates de cérium et de titane ce qui procure des compositions excellentes du point de vue de la protection anti-UV, ayant la propriété de protection tout à la fois contre des rayonnements UV-A et UV-B grâce au phosphate de cérium et de titane, respectivement. Puisque ces composés sont stables l'un vis-à-vis de l'autre, il est possible d'obtenir des particules mélangées très stables et il est possible de les utiliser en tant que matériaux anti-UV, même s'ils sont utilisés dans un environnement sévère. Dans ce but, les compositions selon l'invention pour la protection contre les rayons ultraviolets, sont caractérisées en ce qu'elles sont à base d'un phosphate mixte de cérium et de titane de formule (1) : CexTi1.xP2O7-.nH2O dans laquelle 0 < x < 1.In order to achieve this object, the compositions of the invention anti-UV are based on cerium and titanium phosphates which provides compositions excellent from the point of view of UV protection, having the property of protection quite both against UV-A and UV-B radiation thanks to the phosphate of cerium and titanium, respectively. Since these compounds are stable to each other, it is possible to obtain very stable mixed particles and it is possible to use them as anti-UV materials, even if they are used in a harsh environment. For this purpose, the compositions according to the invention for protection against ultraviolet rays, are characterized in that they are based on a mixed phosphate of cerium and titanium of formula (1): CexTi 1 .xP 2 O 7 -.nH 2 O in which 0 <x <1.
L'invention concerne aussi un procédé pour la protection d'un matériau contre les rayons ultraviolets, qui est caractérisée en ce qu'on utilise un phosphate mixte de cérium et de titane répondant à la formule ci-dessus.The invention also relates to a process for protecting a material against ultraviolet rays, which is characterized in that a mixed phosphate of cerium and titanium corresponding to the above formula is used.
Enfin, l'invention concerne aussi un matériau du type résine, plastique, peinture, verre ou produit cosmétique, qui est caractérisé en ce qu'il contient, à titre d'agent de protection contre les rayons ultraviolets, une composition telle que définie ci-dessus.Finally, the invention also relates to a material of the resin, plastic, paint, glass or cosmetic product type, which is characterized in that it contains, as agent for protection against ultraviolet rays, a composition as defined below. -above.
D'autres caractéristiques, détails et avantages de l'invention apparaîtront encore plus complètement à la lecture de la description qui va suivre faite en référence aux dessins annexés dans lesquels :Other characteristics, details and advantages of the invention will appear even more completely on reading the description which follows, made with reference to the appended drawings in which:
- la figure 1 est un diffractogramme RX d'un phosphate mixte cérium- titane selon l'invention;- Figure 1 is an X-ray diffractogram of a mixed cerium-titanium phosphate according to the invention;
- la figure 2 est une photo MET d'un phosphate mixte cérium-titane selon l'invention;- Figure 2 is a TEM photo of a mixed cerium-titanium phosphate according to the invention;
- la figure 3 donne des spectres de réflectance UV-visible de phosphates mixtes cérium-titane selon l'invention et de produits de l'art antérieur; - la figure 4 donne des spectres de réflectance UV-visible de phosphates mixtes cérium-titane selon l'invention;- Figure 3 gives UV-visible reflectance spectra of mixed cerium-titanium phosphates according to the invention and of products of the prior art; - Figure 4 gives UV-visible reflectance spectra of mixed cerium-titanium phosphates according to the invention;
- la figure 5 donne un spectre de transmission UV-visible pour des produits de l'invention utilisés dans un polymère. On notera ici et pour l'ensemble de la description que, par commodité, le terme « phosphate mixte » est utilisé au sens large, c'est à dire qu'il désigne les phosphates contenant en combinaison du cérium et du titane mais aussi les phosphates ne contenant qu'un seul de ces éléments. Les produits anti-UV de l'invention sont des pyrophosphates de cérium et/ou de titane qui peuvent être fabriqués par co-précipitation homogène des ions Ce4+ et Ti4+ à un niveau atomique avec des ions phosphates en solution. Par conséquent, les ions de cérium sont tétravalents dans les phosphates mixtes de cérium-titane, synthétisés par cette méthode. Les indices de réfraction des phosphates mixtes sont dans le domaine- Figure 5 gives a UV-visible transmission spectrum for products of the invention used in a polymer. It will be noted here and for the whole of the description that, for convenience, the term “mixed phosphate” is used in the broad sense, that is to say that it designates the phosphates containing in combination cerium and titanium but also the phosphates containing only one of these elements. The anti-UV products of the invention are cerium and / or titanium pyrophosphates which can be produced by homogeneous co-precipitation of the Ce 4+ and Ti 4+ ions at an atomic level with phosphate ions in solution. Consequently, the cerium ions are tetravalent in the mixed cerium-titanium phosphates, synthesized by this method. The refractive indices of mixed phosphates are in the field
1 ,8 - 2,0, bien qu'ils dépendent de la composition de ces derniers. Des petits indices de réfraction diminuent la diffraction de la lumière visible et la transparence devient plus élevée que celle des filtres solaires à oxydes classiques, tout spécialement dans des applications dans le domaine des produits cosmétiques et de la peinture. De plus, l'utilisation des phosphates mixtes diminue d'une manière extrême la photocatalyse et la thermocatalyse, qui est l'un des problèmes majeurs dans les matériaux anti-UV inorganiques classiques.1, 8 - 2.0, although they depend on the composition of the latter. Small refractive indices decrease the diffraction of visible light and the transparency becomes higher than that of conventional oxide sun filters, especially in applications in the field of cosmetics and paint. In addition, the use of mixed phosphates drastically reduces photocatalysis and thermocatalysis, which is one of the major problems in conventional inorganic anti-UV materials.
Outre les pyrophosphates, les orthophosphates et les polyphosphates sont bien connus. On sait surtout que les orthophosphates de formule MPO4.nH2θ (M: ions métalliques) sont stables du point de vue chimique. Une propriété anti-UV efficace ne peut, toutefois, pas être obtenue dans les orthophosphates, puisque la valence des ions métalliques dans les orthophosphates est trivalente. D'autre part, les pyrophosphates, matériaux de la présente invention, présentent de bons effets anti-UV, parce que la valence des ions métalliques est tétravalente, comme cité ci-dessus.Besides pyrophosphates, orthophosphates and polyphosphates are well known. We know above all that the orthophosphates of formula MPO 4 .nH 2 θ (M: metal ions) are chemically stable. An effective anti-UV property cannot, however, be obtained in orthophosphates, since the valence of metal ions in orthophosphates is trivalent. On the other hand, the pyrophosphates, materials of the present invention, exhibit good anti-UV effects, because the valence of the metal ions is tetravalent, as mentioned above.
Dans la formule générale (1) des phosphates mixtes de l'invention : CexTiι-xP2O7.nH2θ (0 <x < 1 ), la valeur de x peut être choisie librement dans la gamme toute entière, et l'effet anti-UV et le degré de couleur jaune de la composition peuvent être contrôlés en option. Par conséquent, la valeur de x n'est pas limitée et est sélectionnée en fonction de l'application. Par exemple, dans le cas d'une application aux produits cosmétiques, la valeur avantageuse de x est dans le domaine de 0,001 - 0,5 et plus particulièrement de 0,01 - 0,2, en vue de la diminution de la couleur jaune, en maintenant une protection solaire anti-UV élevée.In the general formula (1) of the mixed phosphates of the invention: Ce x Tiι- x P 2 O 7 .nH 2 θ (0 <x <1), the value of x can be freely chosen in the whole range, and the anti-UV effect and the degree of yellow color of the composition can be optionally controlled. Therefore, the value of x is not limited and is selected depending on the application. For example, in the case of an application to cosmetic products, the advantageous value of x is in the range of 0.001 - 0.5 and more particularly of 0.01 - 0.2, with a view to reducing the yellow color , maintaining high UV protection.
Également dans la formule générale (1 ) des phosphates mixtes de l'invention, la valeur de n, qui indique le nombre de molécules d'eau d'hydratation, est supérieure à 0, parce que les phosphates hydratés sont synthétisés dans la formation des compositions. En général et compte tenu de la diminution de la solubilité dans l'eau, n est avantageusement inférieur à 5, plus particulièrement inférieur à 3, et de préférence inférieur à 2.Also in the general formula (1) of the mixed phosphates of the invention, the value of n, which indicates the number of molecules of water of hydration, is greater than 0, because the hydrated phosphates are synthesized in the formation of the compositions. In general and taking into account the decrease in solubility in water, n is advantageously less than 5, more particularly less than 3, and preferably less than 2.
Les valeurs de x et de n décrites ci-dessus peuvent être déterminées par l'analyse élémentaire de Ce et de Ti et par une analyse thermo-gravimétrique des échantillons de poudre secs. Les compositions anti-UV de phosphates mixtes de cérium et de titane de l'invention ont une constitution telle qu'expliquée ci-dessus.The values of x and n described above can be determined by elemental analysis of Ce and Ti and by thermo-gravimetric analysis of the dry powder samples. The anti-UV compositions of mixed cerium and titanium phosphates of the invention have a constitution as explained above.
Les phosphates des compositions anti-UV de l'invention sont constitués de particules fines dont la taille moyenne est dans le domaine de 0,003μm - 1μm. En vue de diminuer l'agrégation et l'agglomération des particules, la valeur avantageuse de la taille moyenne est supérieure à 0,003μm, plus préférentiellement supérieure à 0,01 μm et encore plus préférentiellement supérieure à 0,03μm, et elle est inférieure à 1 μm, avantageusement inférieure à 0,1 μm et de préférence inférieure à 0,05μm, eu égard à l'augmentation de la transparence dans la région visible. La taille moyenne est déterminée par microscopie à transmission électronique MET.The phosphates of the anti-UV compositions of the invention consist of fine particles whose average size is in the range of 0.003 μm - 1 μm. In order to reduce the aggregation and agglomeration of the particles, the advantageous value of the average size is greater than 0.003 μm, more preferably greater than 0.01 μm and even more preferably greater than 0.03 μm, and it is less than 1 μm, advantageously less than 0.1 μm and preferably less than 0.05 μm, having regard to the increase in transparency in the visible region. The average size is determined by MET electron transmission microscopy.
La structure cristalline des phosphates de cérium-titane est amorphe, à moins d'un chauffage à température élevée ou d'un traitement hydrothermique, après obtention et séchage. L'effet de protection contre les UV est préservé si les particules sont sous forme pyrophosphate après la cristallisation. Toutefois, après chauffage à 650°C, par exemple, les particules se transforment en orthophosphates et perdent leur propriété de protection contre les UV. Par conséquent, les particules sont utilisées avantageusement à l'état amorphe, de manière à ne pas se changer en orthophosphates et à ne pas causer une croissance et une agrégation des particules.The crystalline structure of cerium-titanium phosphates is amorphous, unless heated to high temperature or hydrothermal treatment, after obtaining and drying. The UV protection effect is preserved if the particles are in pyrophosphate form after crystallization. However, after heating to 650 ° C, for example, the particles transform into orthophosphates and lose their UV protection property. Consequently, the particles are advantageously used in the amorphous state, so as not to change into orthophosphates and not to cause growth and aggregation of the particles.
Les particules de phosphates de cérium-titane anti-UV de l'invention non seulement ont une bonne transparence dans la région visible en raison de leur taille fine et présentent une photocatalyse et thermocatalyse faibles, mais elles ont également des propriétés anti-UV élevées.The anti-UV cerium-titanium phosphate particles of the invention not only have good transparency in the visible region due to their fine size and exhibit weak photocatalysis and thermocatalysis, but they also have high anti-UV properties.
Le procédé de préparation des phosphates de cérium-titane des compositions anti-UV de l'invention va maintenant être décrit.The process for the preparation of the cerium-titanium phosphates of the anti-UV compositions of the invention will now be described.
Les particules de phosphates de cérium-titane qui sont la base des compositions anti-UV de l'invention sont préparées par un procédé dans lequel on mélange une solution contenant des ions phosphates avec une solution contenant des ions de cérium et/ou des ions de titane et où l'on sépare le précipité formé. Plus précisément, on mélange une solution basique contenant des ions phosphate à une solution aqueuse contenant des ions cérium (IV) et des ions de titane (IV), on ajuste de préférence la valeur de pH de la solution entre 1 etThe particles of cerium-titanium phosphates which are the basis of the anti-UV compositions of the invention are prepared by a process in which a solution containing phosphate ions is mixed with a solution containing cerium ions and / or ions of titanium and where the precipitate formed is separated. More precisely, a basic solution containing phosphate ions is mixed with an aqueous solution containing cerium (IV) ions and titanium (IV) ions, the pH value of the solution is preferably adjusted between 1 and
11 , la solution subissant alors un mûrissement à chaud, à une température qui peut être comprise entre 60°C et 100°C, par exemple à 80°C.11, the solution then undergoing hot ripening, at a temperature which can be between 60 ° C. and 100 ° C., for example at 80 ° C.
Une solution de phosphates de métaux alcalins ou de phosphate d'ammonium peut être choisie en tant qu'exemple des solutions basiques contenant les ions phosphates décrites ci-dessus. Une solution basique préparée par addition d'une solution basique à une solution d'acide phosphorique est également utilisable. Lorsque des solutions de phosphates de métaux alcalins sont utilisées, on peut donner en tant qu'exemples le pyrophosphate de sodium, l'hydrogénophosphate disodique, le dihydrogénophosphate de sodium, l'orthophosphate de sodium, le pyrophosphate de potassium, l'hydrogénophosphate de dipotassium, le dihydrogénophosphate de potassium, l'orthophosphate de potassium, le pyrophosphate de lithium, l'hydrogénophosphate de dilithium, le dihydrogénophosphate de lithium et l'orthophosphate de lithium. Dans ces exemples, le pyrophosphate de sodium, le pyrophosphate de potassium et le pyrophosphate de lithium sont employés avantageusement afin de produire de manière efficace les pyrophosphates de cérium-titane. Lorsqu'il est nécessaire d'éviter une contamination avec des ions métalliques alcalins, les solutions de phosphate d'ammonium, de dihydrogénophosphate d'ammonium, de trihydrogénophosphate d'ammonium, et de leurs hydrates, sont utilisées.A solution of alkali metal phosphates or ammonium phosphate can be chosen as an example of the basic solutions containing the phosphate ions described above. A basic solution prepared by adding a basic solution to a phosphoric acid solution can also be used. When alkali metal phosphate solutions are used, sodium pyrophosphate, disodium hydrogen phosphate, sodium dihydrogen phosphate, sodium orthophosphate, potassium pyrophosphate, dipotassium hydrogen phosphate may be given as examples. , potassium dihydrogen phosphate, potassium orthophosphate, lithium pyrophosphate, dilithium hydrogen phosphate, lithium dihydrogen phosphate and lithium orthophosphate. In these examples, sodium pyrophosphate, potassium pyrophosphate and lithium pyrophosphate are advantageously employed in order to efficiently produce the cerium-titanium pyrophosphates. When it is necessary to avoid contamination with alkali metal ions, solutions of ammonium phosphate, ammonium dihydrogen phosphate, ammonium trihydrogen phosphate, and their hydrates are used.
De manière à produire un phosphate de cérium-titane en faisant l'économie d'un lavage, la quantité des ions phosphate dans la solution basique est ajustée avantageusement à moins de dix fois, avantageusement à moins de 6 fois, et de préférence à moins de 4 fois par rapport à la quantité totale des ions cérium et titane. Cette quantité est aussi ajustée avantageusement à plus d'une fois, de préférence à plus de 1 ,5 fois et encore plus préférentiellement à plus de deux fois par rapport à cette quantité pour réagir complètement.In order to produce a cerium-titanium phosphate while saving on washing, the amount of phosphate ions in the basic solution is advantageously adjusted to less than ten times, advantageously to less than 6 times, and preferably to less 4 times the total amount of the cerium and titanium ions. This quantity is also advantageously adjusted to more than once, preferably to more than 1.5 times, and even more preferably to more than two times relative to this quantity to react completely.
Tout composé de cérium peut être utilisé en tant que source de cérium tétravalent s'il s'agit d'un sel de cérium tétravalent et s'il est soluble dans l'eau ou dans un acide. Par exemple, on emploie avantageusement le nitrate de cérium (IV) diammonique, le dihydrate de sulfate de cérium (IV) tétraammonique et le tétrahydrate de sulfate de cérium (IV). Habituellement, on utilise le tétrahydrate de sulfate de cérium (IV). Tout composé de titane peut être utilisé en tant que source de titane tétravalent s'il s'agit d'un sel de titane tétravalent et s'il est soluble dans l'eau ou dans un acide. On emploie avantageusement par exemple le chlorure de titane (IV), le sulfate de titane (IV) et l'iodure de titane (IV). En plus, les solutions de ces composés qui sont disponibles commercialement peuvent également être utilisées en raison de leur manipulation facile.Any cerium compound can be used as a source of tetravalent cerium if it is a tetravalent cerium salt and if it is soluble in water or in an acid. For example, diammonium cerium (IV) nitrate, tetraammonic cerium (IV) dihydrate and cerium (IV) tetrahydrate are advantageously used. Usually, cerium (IV) sulfate tetrahydrate is used. Any titanium compound can be used as a source of tetravalent titanium if it is a tetravalent titanium salt and if it is soluble in water or in an acid. Advantageously, for example, titanium chloride (IV), titanium sulfate (IV) and titanium iodide (IV) are used. In addition, solutions of these compounds which are commercially available can also be used due to their easy handling.
De manière à réagir d'une façon efficace, la quantité d'ions métalliques dans la solution contenant les ions de cérium tétravalent et de titane tétravalent, c'est-à-dire la quantité totale des ions de cérium et de titane est ajustée avantageusement à plus de 0,01 mole par litre, de préférence à plus de 0,05 mole par litre et encore plus préférentiellement à plus de 0,1 mole par litre, après mélange à la solution de phosphate. D'autre part, de manière à éviter une agitation vigoureuse avec une augmentation de la viscosité, la limite supérieure est réglée avantageusement à moins de 0,5 mole par litre, de préférence à moins de 0,3 mole par litre, et encore plus préférentiellement à moins de 0,2 mole par litre.In order to react effectively, the amount of metal ions in the solution containing the tetravalent cerium and tetravalent titanium ions, i.e. the total amount of the cerium and titanium ions is advantageously adjusted more than 0.01 mole per liter, preferably more than 0.05 mole per liter and even more preferably more than 0.1 mole per liter, after mixing with the phosphate solution. On the other hand, in order to avoid vigorous stirring with an increase in viscosity, the upper limit is advantageously adjusted to less than 0.5 mole per liter, preferably to less than 0.3 mole per liter, and even more preferably less than 0.2 mole per liter.
La valeur de pH de la solution devrait être ajustée avantageusement à plus de 1 , de préférence à plus de 2, et encore plus préférentiellement à plus de 3, après mélange de la solution mixte de cérium-titane à la solution de phosphate pour inhiber la croissance des particules et la diminution des propriétés anti-UV. La valeur de pH, toutefois, de la solution ne devrait pas dépasser avantageusement 11 , de préférence 7 et encore plus préférentiellement 6, de manière à ne pas augmenter la solubilité des particules obtenues dans la solution. Un des exemples des méthodes de mélange de la solution mixte cérium- titane à la solution d'ions phosphates est l'addition de la solution d'ions phosphates au goutte à goutte à la solution mixte de cérium-titane en agitant de 5 secondes à 1 heure à une température de 0 à 50°C. Grâce à cette méthode, on produit des particules de gel amorphe. Le gel obtenu subit alors un mûrissement à chaud, par exemple à une température de 80°C. Le temps de mûrissement est ajusté avantageusement pour être supérieur à 30 minutes et de préférence supérieur à 1 heure, mais avantageusement inférieur à 5 heures et de préférence inférieur à 3 heures, eu égard à l'homogénéité de la qualité et à l'efficacité de la préparation, respectivement.The pH value of the solution should advantageously be adjusted to more than 1, preferably to more than 2, and even more preferably to more than 3, after mixing the mixed cerium-titanium solution with the phosphate solution to inhibit the particle growth and decreased anti-UV properties. The pH value, however, of the solution should advantageously not exceed 11, preferably 7 and even more preferably 6, so as not to increase the solubility of the particles obtained in the solution. One of the examples of the methods of mixing the mixed cerium-titanium solution with the phosphate ion solution is the addition of the phosphate ion solution dropwise to the mixed cerium-titanium solution with stirring for 5 seconds. 1 hour at a temperature of 0 to 50 ° C. Using this method, amorphous gel particles are produced. The gel obtained then undergoes hot curing, for example at a temperature of 80 ° C. The ripening time is advantageously adjusted to be greater than 30 minutes and preferably greater than 1 hour, but advantageously less than 5 hours and preferably less than 3 hours, having regard to the homogeneity of the quality and the effectiveness of preparation, respectively.
Le gel obtenu peut subir un traitement hydrothermique ou une calcination à une température de 120 - 200°C, si besoin est. Il ne doit cependant pas être changé en orthophosphate par ces traitements. Dans le procédé de cristallisation ci-dessus, les températures devraient être avantageusement supérieures à 120°C, de préférence supérieures à 130°C, et encore plus préférentiellement supérieures à 140°C pour augmenter la cristallinité. Toutefois, la température ne devrait pas dépasser avantageusement 200°C, de préférence 190°C, et encore plus préférentiellement 185°C, pour éviter l'agrégation et la croissance des particules.The gel obtained can undergo hydrothermal treatment or calcination at a temperature of 120-200 ° C, if necessary. However, it should not be changed to orthophosphate by these treatments. In the above crystallization process, the temperatures should advantageously be greater than 120 ° C, preferably greater than 130 ° C, and even more preferably greater than 140 ° C to increase the crystallinity. However, the temperature should advantageously not exceed 200 ° C, preferably 190 ° C, and even more preferably 185 ° C, to avoid aggregation and growth of the particles.
Le temps pour le traitement hydrothermique ou les calcinations devrait être avantageusement supérieur à 1 heure et de préférence supérieur à 1 ,5 heures pour parvenir à une cristallinité élevée, mais devrait être inférieur avantageusement à 10 heures et de préférence inférieur à 15 heures, pour des raisons de productivité.The time for hydrothermal treatment or calcinations should advantageously be greater than 1 hour and preferably greater than 1.5 hours to achieve high crystallinity, but should advantageously be less than 10 hours and preferably less than 15 hours, for productivity reasons.
On obtient ainsi les particules anti-UV de phosphate de cérium-titane de l'invention. Après le mûrissement, les particules anti-UV sont filtrées ou centrifugées, lavées à l'eau ou à l'aide d'alcools, et séchées. Les particules peuvent être lavées par tout moyen connu. Après le lavage, les particules sont séchées à température ambiante, ou dans un four. Certaines installations de séchage sous vide ou certains sécheurs à pulvérisation sont également disponibles. La température de séchage devrait être réglée entre 80 et 200°C.The anti-UV particles of cerium-titanium phosphate of the invention are thus obtained. After curing, the anti-UV particles are filtered or centrifuged, washed with water or with the aid of alcohols, and dried. The particles can be washed by any known means. After washing, the particles are dried at room temperature, or in an oven. Some vacuum drying facilities or spray dryers are also available. The drying temperature should be set between 80 and 200 ° C.
Lorsque les particules de phosphates de cérium-titane sont appliquées dans un système de dispersion aqueuse, les particules peuvent ne pas être recueillies après la dernière étape du processus de lavage. De plus, le procédé de préparation de l'invention est très simple et commode, parce que le procédé de préparation ne contient pas d'étape de chauffage à température élevée, et les particules produites montrent un effet anti-UV suffisant, même en cas de séchage à une température de 80°C.When the cerium-titanium phosphate particles are applied in an aqueous dispersion system, the particles may not be collected after the last step of the washing process. In addition, the preparation process of the invention is very simple and convenient, because the preparation process does not contain a heating step at high temperature, and the particles produced show a sufficient anti-UV effect, even in case drying at a temperature of 80 ° C.
L'utilisation des compositions anti-UV de l'invention n'est pas limitée et ces compositions sont utilisables dans pratiquement tout article qui a besoin d'être protégé contre les rayons UV. Par exemple, elles sont avantageuses pour les produits cosmétiques anti-solaires, les films à filtres UV, les matières plastiques anti-UV et les peintures anti-UV. Avant tout, elles sont appropriées pour les produits cosmétiques anti-solaires et les films à filtres UV, tout spécialement. Lors de l'utilisation des compositions anti-UV de l'invention, seules ou en combinaison, dans des produits cosmétiques, des matières plastiques, des films et des peintures, un effet de protection élevé contre les UV est atteint dans toute la région de rayonnements UV-A et UV-B, sans décroissance de la transparence dans la région visible. Ces compositions sont également stables et sans danger, parce qu'elles ne présentent aucun effet de catalyse.The use of the anti-UV compositions of the invention is not limited and these compositions can be used in practically any article which needs to be protected against UV rays. For example, they are advantageous for anti-sun cosmetic products, films with UV filters, anti-UV plastics and anti-UV paints. Above all, they are suitable for anti-sun cosmetic products and films with UV filters, especially. When using the anti-UV compositions of the invention, alone or in combination, in cosmetic products, plastics, films and paints, a high UV protection effect is achieved throughout the region of UV-A and UV-B radiation, without decreasing the transparency in the visible region. These compositions are also stable and safe, because they have no catalysis effect.
Les phosphates décrits ci-dessus peuvent être utilisés dans les compositions anti-UV de l'invention et être combinées à des produits cosmétiques, à des films, à des matières plastiques et à des peintures tels quels tout comme il est possible de les utiliser dans plusieurs formulations comme des pâtes et des dispersions.The phosphates described above can be used in the anti-UV compositions of the invention and can be combined with cosmetic products, films, plastics and paints as such, just as it is possible to use them in several formulations such as pastes and dispersions.
En ce qui concerne l'utilisation des compositions anti-UV de phosphates de cérium-titane de l'invention dans les matières plastiques on peut faire les commentaires qui suivent. En général, il est bien connu que les matières plastiques se détériorent sous l'action d'un rayonnement aux rayons UV. La combinaison des compositions anti-UV de l'invention à des matières plastiques est très efficace pour éviter ou diminuer la détérioration.With regard to the use of the anti-UV compositions of cerium-titanium phosphates of the invention in plastics, the following comments can be made. In general, it is well known that plastics deteriorate under the action of UV radiation. The combination of the anti-UV compositions of the invention with plastics is very effective in preventing or reducing deterioration.
Bien que la quantité de phosphates anti-UV selon l'invention utilisée ne soit pas limitée et puisse être sélectionnée librement, il est avantageux de la régler entre 0,5 et 50% en masse. Lorsque le taux de combinaison est inférieur à 0,5%, il est très difficile d'avoir suffisamment d'effet anti-UV. Cependant, l'efficacité de la dispersion devient médiocre lorsque la quantité dépasse 50%. Il n'y a aucun problème si certains additifs, comme des agents de dispersion, sont également combinés.Although the quantity of anti-UV phosphates according to the invention used is not limited and can be freely selected, it is advantageous to adjust it between 0.5 and 50% by mass. When the combination rate is less than 0.5%, it is very difficult to have enough anti-UV effect. However, the effectiveness of the dispersion becomes poor when the amount exceeds 50%. There is no problem if certain additives, such as dispersing agents, are also combined.
Lorsque les compositions anti-UV sont combinées à des films et qu'elles sont appliquées en tant qu'agents de revêtement superficiel, les matériaux sous la couche de revêtement, tels que des adhésifs, des plaques en matière plastique, des blocs en bois, des feuilles en acier et des pigments, sont stables pendant une période prolongée parce qu'ils sont protégés du rayonnement UV.When the anti-UV compositions are combined with films and they are applied as surface coating agents, the materials under the coating layer, such as adhesives, plastic plates, wooden blocks, steel sheets and pigments, are stable for an extended period because they are protected from UV radiation.
Le type de peinture qui est combiné aux compositions anti-UV n'est pas limité. Par exemple, les compositions anti-UV sont appliquées avantageusement à une peinture qui est séchée à la température ambiante ou à une autre peinture qui est séchée à une température plus élevée.The type of paint which is combined with the anti-UV compositions is not limited. For example, the anti-UV compositions are advantageously applied to a paint which is dried at room temperature or to another paint which is dried at a higher temperature.
Comme exemples de produits cosmétiques anti-solaires, de films à filtres UV, de matières plastiques anti-UV et de peintures anti-UV, qui sont combinés aux compositions anti-UV de l'invention, on peut citer des matériaux électriques et des dispositifs tels que les lentilles électromagnétiques, divers articles pour automobiles, des films transparents et des plateaux pour produits, alimentaires, des filets , des fibres, des panneaux, des feuilles en acier et en matière plastique, des films de couverture pour légumes, des toits, des tentes, des voitures, des navires, des avions, des appareils électriques, des machines, des parois de maison, des ponts, des articles de bureau, des verres de lunettes, des jouets et des produits divers. L'application n'est, toutefois, pas limitée et les compositions anti-UV peuvent être utilisées dans n'importe quel film, matière plastique et peinture ayant besoin d'une protection contre les UV. Les résines qui sont des matières premières du film et des matières plastiques décrits ci-dessus sont des résines thermoplastiques ou thermodurcissables. Des exemples de résines thermoplastiques sont des résines contenant du fluor, des résines à fibres acryliques, à polyamide, à chlorure de vinyle, à polycarbonate, des résines oléfiniques, des résines époxydiques, des résines de polyacétal, de polyester, de poly(étherimide), de poly(éthersulfone), de poly(éthercétone), de poly(sulfure de phénylène), de polysulfone, de polyallylate, de poly(téréphtalate d'éthylène), de poly(naphtalate d'éthylène), de poly(méthylpentène), d'ABS, d'acétate de vinyle, et de polyéthylène. Parmi ces résines, une résine contenant du fluor, des résines à fibre acrylique, à polyamide, à polycarbonate et à polyester sont utilisées avantageusement, en raison de leur stabilité thermique élevée.As examples of anti-sun cosmetic products, films with UV filters, anti-UV plastic materials and anti-UV paints, which are combined with the anti-UV compositions of the invention, there may be mentioned electrical materials and devices. such as electromagnetic lenses, various articles for automobiles, transparent films and trays for products, food, nets, fibers, panels, sheets of steel and plastic, cover films for vegetables, roofs, tents, cars, ships, planes, electrical appliances, machinery, house walls, bridges, office supplies, spectacle lenses, toys and miscellaneous products. The application is, however, not limited and the anti-UV compositions can be used in any film, plastic material and paint in need of UV protection. The resins which are raw materials for the film and the plastics described above are thermoplastic or thermosetting resins. Examples of thermoplastic resins are fluorine-containing resins, acrylic fiber, polyamide, vinyl chloride, polycarbonate resins, olefin resins, epoxy resins, polyacetal, polyester, poly (etherimide) resins , poly (ethersulfone), poly (etherketone), poly (phenylene sulfide), polysulfone, polyallylate, poly (ethylene terephthalate), poly (ethylene naphthalate), poly (methylpentene) , ABS, vinyl acetate, and polyethylene. Among these resins, a fluorine-containing resin, acrylic fiber, polyamide, polycarbonate and polyester resins are advantageously used, because of their high thermal stability.
Des exemples de résines thermodurcissables sont les résines de mélamine, de phénol, d'urée, de furanne, des résines alkydes, de polyester insaturé, de phtalate de diallyle, des résines époxydiques, des résines de silicium, de polyuréthanne, de polyimide et des résines polyparabaniques. Parmi ces résines, on utilise avantageusement les résines époxydiques, de phtalate de diallyle et de polyimide.Examples of thermosetting resins are melamine, phenol, urea, furan, alkyd resins, unsaturated polyester, diallyl phthalate, epoxy resins, silicon resins, polyurethanes, polyimides and polyparabanic resins. Among these resins, epoxy resins, diallyl phthalate and polyimide are advantageously used.
Les compositions anti-UV de phosphate de cérium-titane de l'invention peuvent être combinées aux produits cosmétiques. Les produits cosmétiques qui sont combinés aux compositions anti-UV de l'invention ont une transparence élevée et des propriétés excellentes de protection contre les rayonnements UV. Des produits concrets sont, par exemple, des émulsions, des crèmes, des lotions, des fonds de teint, des poudres compactes, des vernis à ongles, des rouges-à-lèvres, des fards à paupières, et des crèmes haute coiffure. Il est désirable de les utiliser dans des filtres solaires. Bien que la quantité des phosphates anti-UV combinés ne soit pas limitée, il est avantageux de la régler entre 0,1 et 70% en masse. Lorsque le taux de la combinaison est inférieur à 0,1%, il est très difficile d'avoir suffisamment d'effets anti-UV. La transparence et l'efficacité de dispersion deviennent, toutefois, médiocres lorsque la quantité dépasse 70%.The anti-UV cerium-titanium phosphate compositions of the invention can be combined with cosmetic products. The cosmetic products which are combined with the anti-UV compositions of the invention have a high transparency and excellent properties of protection against UV radiation. Concrete products are, for example, emulsions, creams, lotions, foundations, compact powders, nail polishes, lipsticks, eye shadows, and hair styling creams. It is desirable to use them in sun filters. Although the quantity of the combined anti-UV phosphates is not limited, it is advantageous to adjust it between 0.1 and 70% by mass. When the combination rate is less than 0.1%, it is very difficult to have enough anti-UV effects. The transparency and the dispersion efficiency become, however, poor when the amount exceeds 70%.
Lorsque les compositions anti-UV sont combinées à des produits cosmétiques, il peut y avoir présence de certains additifs, comme des agents de dispersion, des tensioactifs, des huiles, des gels, des polymères, des pigments, des poudres et des parfums, dans le cas où les additifs n'affectent pas les effets des compositions anti-UV de l'invention.When the anti-UV compositions are combined with cosmetic products, there may be the presence of certain additives, such as dispersing agents, surfactants, oils, gels, polymers, pigments, powders and perfumes, in the case where the additives do not affect the effects of the anti-UV compositions of the invention.
De plus, les compositions anti-UV peuvent être appliquées aux produits décrits ci-dessus après revêtement de leurs surfaces à l'aide de certains matériaux comme des aminoacides, du collagène, de la lécithine, des triglycérides, des silicones, un savon, de la chitine et de la chitosane.In addition, the anti-UV compositions can be applied to the products described above after coating their surfaces with the aid of certain materials such as amino acids, collagen, lecithin, triglycerides, silicones, soap, chitin and chitosan.
Il peut être efficace de mélanger plus de deux types de phosphates anti- UV différents, lorsque les phosphates anti-UV sont combinés aux produits ci- dessus. Avec les compositions anti-UV de l'invention, une petite quantité d'agents anti-solaires organiques et inorganiques classiques peut être ajoutée aux produits pour améliorer l'effet anti-UV, à moins que leur utilisation n'entraîne des problèmes néfastes pour les produits. Dans ce cas, des exemples de filtres anti-solaires organiques sont les salicylates, les benzophénones, les benzotriazoles, les cyanoacryiates et le 4-tert.-butyl-4'- méthoxybenzoylméthane et leurs dérivés. De manière spécifique, les salicylates sont le salicylate d'octyle, le salicylate d'homomenthyle, et le salicylate de méthyle. Les benzophénones sont l'hydroxybenzophénone, la tétrahydroxybenzophénone, l'acide hydroxyméthoxybenzophénonesulfonique, l'hydroxyméthoxybenzophénone sodique, le sulfonate d'hydroxyméthoxybenzophénone et l'oxybenzone. Les benzotriazoles sont le 2-(2-hydroxy-5-méthylphényl)benzotriazole, le 2-(2-hydroxy-5-tert- butylphényl)benzotriazole, et le 2-(2-hydroxy-3,5-di-tert-butylphényl)-5- chlorobenzotriazole. Les cyanoacryiates sont le 2-éthylhexyl-2-2-cyano-3,3'- diphénylacrylates et l'éthyl-2-cyano-3,3'-diphénylacrylate. D'autre part, des filtres anti-solaires inorganiques peuvent être choisis parmi le dioxyde de titane, l'oxyde de zinc et l'oxyde de cérium. Parmi ces derniers, les matériaux dont la taille moyenne est inférieure à 50 nm sont combinés avantageusement.It can be effective to mix more than two different types of anti-UV phosphates when the anti-UV phosphates are combined with the above products. With the anti-UV compositions of the invention, a small amount of conventional organic and inorganic anti-sun agents can be added to the products to improve the anti-UV effect, unless their use causes harmful problems for products. In this case, examples of organic sunscreens are salicylates, benzophenones, benzotriazoles, cyanoacryiates and 4-tert.-butyl-4'-methoxybenzoylmethane and their derivatives. Specifically, the salicylates are octyl salicylate, homomenthyl salicylate, and methyl salicylate. The benzophenones are hydroxybenzophenone, tetrahydroxybenzophenone, hydroxymethoxybenzophenonesulfonic acid, hydroxymethoxybenzophenone sodium, hydroxymethoxybenzophenone sulfonate and oxybenzone. The benzotriazoles are 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-butylphenyl) benzotriazole, and 2- (2-hydroxy-3,5-di-tert- butylphenyl) -5- chlorobenzotriazole. The cyanoacryiates are 2-ethylhexyl-2-2-cyano-3,3'-diphenylacrylates and ethyl-2-cyano-3,3'-diphenylacrylate. On the other hand, inorganic sunscreen filters can be chosen from titanium dioxide, zinc oxide and cerium oxide. Among these, materials whose average size is less than 50 nm are advantageously combined.
On donne ci-dessous des précisions sur la caractérisation des phosphates selon l'invention.Details of the characterization of the phosphates according to the invention are given below.
Les phases ont été identifiées par diffraction RX (diffractomètre Mac Science, M18XHF-SHA) et l'on a mesuré les morphologies et la taille moyenne des particules par MET (Hitachi H-800).The phases were identified by X-ray diffraction (Mac Science diffractometer, M18XHF-SHA) and the morphologies and the average particle size were measured by TEM (Hitachi H-800).
Les propriétés optiques de la poudre ont été mesurées à l'aide d'un spectromètre UV-Visible (Shimadzu UV-2550). La réflectance optique de la poudre a été mesurée par utilisation de sulfate de baryum en tant que référence. Une réflectance, inférieure dans la région UV-A (320-400 nm) et UV-B (250-320 nm) à celle mesurée dans la région visible, signifie une absorption sélective des rayons UV.The optical properties of the powder were measured using a UV-Visible spectrometer (Shimadzu UV-2550). The optical reflectance of the powder was measured using barium sulfate as a reference. A lower reflectance in the UV-A region (320-400 nm) and UV-B (250-320 nm) to that measured in the visible region, means a selective absorption of UV rays.
La couleur effective est représentée dans le système L*,a* ,b* (Minolta CR-300). Une quantité fixée de la poudre anti-UV a été dissoute dans une solution mixte d'HCI concentré (35%) et de peroxyde d'hydrogène (30%). Les teneurs en Ti, Ce et P dans cette solution ont été déterminées à l'aide d'un analyseur ICP (Shimadzu ICP-S1000IV).The effective color is represented in the L * , a * , b * system (Minolta CR-300). A fixed amount of the UV powder was dissolved in a mixed solution of concentrated HCl (35%) and hydrogen peroxide (30%). The contents of Ti, Ce and P in this solution were determined using an ICP analyzer (Shimadzu ICP-S1000IV).
L'effet de catalyse des échantillons a été mesuré par le procédé de détermination conductométrique rapporté dans la publication J. Soc. Cosmet. Chem. Jpn., 31 (1997) 329-332. Un échantillon de 0,3 g a été mélangé à 5,0 g d'huile de castor et maintenu à une température de 130°C avec une agitation par passage de bulles d'air. Le gaz effluent a été introduit dans 50 ml d'eau désionisée placés dans une cellule de mesure de la conductivité électrique. Les molécules volatiles produites par l'oxydation de l'huile de castor ont été piégées dans l'eau. Le degré de catalyse a été déterminé par le degré de modification de la conductivité, sigma, après 3 heures d'oxydation. De plus, la photocatalyse des échantillons a également été déterminée par un rayonnement de lumière pendant 9 heures en utilisant un simulateur solaire (Yamashita Denso YSS-80), au lieu d'un chauffage à 130°C. Des exemples non limitatifs vont maintenant être donnés.The catalysis effect of the samples was measured by the conductometric determination method reported in the publication J. Soc. Cosmet. Chem. Jpn., 31 (1997) 329-332. A 0.3 g sample was mixed with 5.0 g of beaver oil and kept at a temperature of 130 ° C with stirring by passing air bubbles. The effluent gas was introduced into 50 ml of deionized water placed in a cell for measuring the electrical conductivity. The volatile molecules produced by the oxidation of beaver oil have been trapped in water. The degree of catalysis was determined by the degree of change in conductivity, sigma, after 3 hours of oxidation. In addition, the photocatalysis of the samples was also determined by light radiation for 9 hours using a solar simulator (Yamashita Denso YSS-80), instead of heating to 130 ° C. Non-limiting examples will now be given.
EXEMPLES 1 A 7EXAMPLES 1 TO 7
On prépare du pyrophosphate de sodium (Na4P2θ7) par calcination d'hydrogénophosphate disodique (Na2HPO4) à 500°C pendant 5 heures. 15mmol (3,988g) du pyrophosphate de sodium sont dissoutes dans 150ml d'eau déionisée pour constituer une solution A à 0,1mol.dm"3.Sodium pyrophosphate (Na 4 P 2 θ 7 ) is prepared by calcining disodium hydrogen phosphate (Na 2 HPO 4 ) at 500 ° C for 5 hours. 15mmol (3.988g) of sodium pyrophosphate are dissolved in 150ml of deionized water to constitute a solution A at 0.1mol.dm "3 .
Du sulfate de cérium tétrahydrate (Ce(SO4)2.4H2O) et une solution de sulfate de titane (IV) à 30% sont mélangés dans 100cm3 ou 150cm3 d'eau déionisée et dans différents rapports de manière à faire varier la valeur de x CexTiι-xP2θ7 de 0; 0,05; 0,5 ; 0,90 ; 0,93 ; 0,95 à 1 ,0 pour constituer une solution B. La concentratfbn totale en ions métalliques dans la solution est fixée à 0,1 mol.dm"3.Sulfate tetrahydrate, cerium (Ce (SO 4) 2 .4H 2 O) and titanium sulfate (IV) solution at 30% are mixed in 100 cm 3 or 150 cm 3 of deionized water and in different ratios so as to vary the value of x Ce x Tiι -x P 2 θ 7 from 0; 0.05; 0.5; 0.90; 0.93; 0.95 to 1.0 to constitute a solution B. The total concentration of metal ions in the solution is fixed at 0.1 mol.dm "3 .
La solution B est ajoutée goutte à goutte et sous agitation dans la solution A.Solution B is added dropwise and with stirring to solution A.
Le mélange des solutions subit ensuite un mûrissement à une température de 80°C pendant 30 minutes sous agitation. Le mélange est maintenu ensuite à température ambiante et sous agitation pendant 16 heures. Les particules précipitées sont séparées par centrifugation puis lavées cinq fois à l'eau déionisée puis séchées en étuve à 100°C pendant 24 heures.The mixture of solutions is then matured at a temperature of 80 ° C for 30 minutes with stirring. The mixture is then kept at ambient temperature and with stirring for 16 hours. The precipitated particles are separated by centrifugation and then washed five times with deionized water and then dried in an oven at 100 ° C for 24 hours.
La poudre obtenue est broyée au pilon dans un mortier en agate.The powder obtained is crushed with a pestle in an agate mortar.
Les conditions de synthèse sont récapitulées dans le tableau 1 ci- dessous.The synthesis conditions are summarized in Table 1 below.
Tableau 1Table 1
Figure imgf000013_0001
Figure imgf000013_0001
EXEMPLES COMPARATIFS 8 ET 9COMPARATIVE EXAMPLES 8 AND 9
A titre d'exemples comparatifs, on utilise aussi des particules ultrafines, du commerce, de dioxyde de titane (rutile) pour l'exemple 8 et des particules ultrafines du commerce, d'oxyde de zinc pour l'exemple 9.By way of comparative examples, commercial ultrafine particles of titanium dioxide (rutile) are also used for Example 8 and commercial ultrafine particles of zinc oxide for Example 9.
Les produits obtenus ont été caractérisés par utilisation des méthodes et appareils décrits ci-dessus pour ce qui concerne la composition, la taille moyenne, l'effet anti-UV, la transparence, la thermo-catalyse et la photocatalyse. Les résultats sont résumés dans le tableau 2. The products obtained were characterized by using the methods and apparatus described above with regard to the composition, the average size, the anti-UV effect, the transparency, the thermo-catalysis and the photocatalysis. The results are summarized in Table 2.
Tableau 2Table 2
Figure imgf000014_0001
Figure imgf000014_0001
Les symboles utilisés pour évaluer la catalyse dans le tableau 2 sont comme suit :The symbols used to assess catalysis in Table 2 are as follows:
0 : Aucune catalyse0: No catalysis
1 : Légère catalyse, peu avantageux en vue d'une utilisation pratique1: Slight catalysis, not very advantageous for practical use
2 : Catalyse marquée, non appropriée à une utilisation pratique2: Marked catalysis, not suitable for practical use
La figure 1 est un diffractogramme RX du produit de l'exemple 2. On observe une bosse qui est caractéristique des composés amorphes.Figure 1 is an X-ray diffractogram of the product of Example 2. We observe a bump which is characteristic of amorphous compounds.
La figure 2 est une photo MET du produit de l'exemple 4.FIG. 2 is a MET photo of the product of Example 4.
Les figures 3 et 4 montrent donnent des spectres de réflectance UV- visible de phosphates selon les exemples.FIGS. 3 and 4 show UV-visible reflectance spectra of phosphates according to the examples.
Il apparaît à partir de ces spectres que les propriétés d'absorption UV peuvent être ajustée par changement du rapport Ce/Ti.It appears from these spectra that the UV absorption properties can be adjusted by changing the Ce / Ti ratio.
EXEMPLE 10EXAMPLE 10
Cet exemple concerne l'application dans un polymère des produits des exemples 1 , 3 et 4. Le polymère utilisé est un polypropylène (MF13), dans lequel 0,5% en poids de phosphate est ajouté, ainsi que 0,1% en poids de polyéthylène glycol (PEG). L'ensemble est mélangé dans un pré-mélangeur, puis mis en cisaillement et en température, T = 180°C (appareil de type Hollimix). Après obtention d'un système homogène, le polymère additive est introduit dans un moule placé entre deux plaques métalliques. L'ensemble est mis sous pression et est porté à une température de l'ordre de 200°C (thermocompression). Après différents dégazages de façon à obtenir in fine un aspect de surface de parfaite qualité, l'ensemble est refroidi (la pression est maintenue). Après démoulage, les plaques obtenues sont parfaitement lisses et présentent une épaisseur de l'ordre de 800 μm.This example relates to the application in a polymer of the products of examples 1, 3 and 4. The polymer used is a polypropylene (MF13), in which 0.5% by weight of phosphate is added, as well as 0.1% by weight polyethylene glycol (PEG). The whole is mixed in a pre-mixer, then sheared and at temperature, T = 180 ° C (Hollimix type device). After obtaining a homogeneous system, the additive polymer is introduced into a mold placed between two metal plates. The assembly is pressurized and brought to a temperature of the order of 200 ° C. (thermocompression). After various degassings so as to obtain in fine a surface appearance of perfect quality, the whole is cooled (the pressure is maintained). After demolding, the plates obtained are perfectly smooth and have a thickness of the order of 800 μm.
Les propriétés optiques sont caractérisées dans le domaine UV-Visible grâce à un spectrophotomètre de type Lambda 900 - Perkin Elmer. La mesure est effectuée en transmission (transmission directe). Un spectre de transmission UV-visible est donné en figure 5.The optical properties are characterized in the UV-Visible range using a Lambda 900 - Perkin Elmer type spectrophotometer. The measurement is made in transmission (direct transmission). A UV-visible transmission spectrum is given in FIG. 5.
On observe nettement un effet de filtre UV : décalage vers les plus grandes longueurs d'onde du seuil de coupure des polymères additivés par rapport à celui de la matrice de polypropylène seule.A UV filter effect is clearly observed: shift towards the longest wavelengths of the cut-off threshold of the additive polymers compared to that of the polypropylene matrix alone.
On note également que la transparence dans le domaine visible des plaques additivées est voisine ou semblable à celle de la matrice de polypropylène non additivée.It is also noted that the transparency in the visible range of the additive plates is close to or similar to that of the non-additive polypropylene matrix.
Il apparaît des exemples ci-dessus que les compositions anti-UV de l'invention présentent une transparence élevée, une bonne dispersion et une bonne stabilité. Les propriétés de protection contre les UV et la coloration peuvent être ajustées par contrôle de leur rapport Ce/Ti. Par conséquent, la combinaison des compositions de l'invention anti-UV à des produits cosmétiques, à des films, à des matières plastiques, à des peintures etc., est très utile à la protection contre la détérioration par les rayonnements UV. It appears from the above examples that the anti-UV compositions of the invention exhibit high transparency, good dispersion and good stability. The UV protection and coloring properties can be adjusted by controlling their Ce / Ti ratio. Consequently, the combination of the compositions of the invention anti-UV with cosmetic products, films, plastics, paints, etc., is very useful in the protection against deterioration by UV radiation.

Claims

REVENDICATIONS
1- Composition de protection contre les rayons ultraviolets, caractérisée en ce qu'elle est à base d'un phosphate mixte de cérium et de titane de formule (1 ) :1- Composition for protection against ultraviolet rays, characterized in that it is based on a mixed phosphate of cerium and titanium of formula (1):
CexTii.xP2O7.nH2O dans laquelle 0 < x < 1.CexTii.xP 2 O 7 .nH 2 O in which 0 <x <1.
2- Composition selon la revendication 1 , caractérisée en ce que le phosphate est constitué de particules dont la taille moyenne est comprise entre 0,003μm et 1μm.2- Composition according to claim 1, characterized in that the phosphate consists of particles whose average size is between 0.003μm and 1μm.
3- Composition selon la revendication 2, caractérisée en ce qu'elle est à base d'un phosphate de formule (1 ) dans laquelle 0,001 < x < 0,5.3- Composition according to claim 2, characterized in that it is based on a phosphate of formula (1) in which 0.001 <x <0.5.
4- Composition selon l'une des revendications précédentes, caractérisée en ce que 0 < n < 5.4- Composition according to one of the preceding claims, characterized in that 0 <n <5.
5- Composition selon l'une des revendications précédentes, caractérisée en ce que le phosphate mixte de cérium et de titane présente une structure cristalline amorphe.5- Composition according to one of the preceding claims, characterized in that the mixed phosphate of cerium and titanium has an amorphous crystal structure.
6- Composition selon l'une des revendications précédentes, caractérisée en ce que le phosphate mixte de cérium et de titane est préparé par un procédé dans lequel on mélange une solution contenant des ions phosphates avec une solution contenant des ions de cérium et/ou des ions de titane et où l'on sépare le précipité formé.6- Composition according to one of the preceding claims, characterized in that the mixed phosphate of cerium and titanium is prepared by a process in which a solution containing phosphate ions is mixed with a solution containing cerium ions and / or titanium ions and where the precipitate formed is separated.
7- Procédé pour la protection d'un matériau contre les rayons ultraviolets, caractérisée en ce qu'on utilise un phosphate mixte de cérium et de titane de formule (1 ) :7- Process for the protection of a material against ultraviolet rays, characterized in that a mixed phosphate of cerium and titanium of formula (1) is used:
CexTii.xP2O7.nH2O dans laquelle 0 < x < 1.CexTii.xP 2 O 7 .nH 2 O in which 0 <x <1.
8- Matériau du type résine, plastique, peinture, verre, film ou produit cosmétique, caractérisé en ce qu'il contient, à titre d'agent de protection contre les rayons ultraviolets, une composition selon l'une des revendications 1 à 6. 9- Matériau selon la revendication 8, caractérisé en ce qu'il est à base de polypropylène. 8- Material of the resin, plastic, paint, glass, film or cosmetic product type, characterized in that it contains, as an agent for protection against ultraviolet rays, a composition according to one of claims 1 to 6. 9- Material according to claim 8, characterized in that it is based on polypropylene.
PCT/FR2002/003540 2001-10-17 2002-10-16 Anti-uv compositions based on cerium and titanium phosphates and method for preparing same WO2003033582A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003536315A JP2005505669A (en) 2002-10-16 2002-10-16 Ultraviolet protective agent containing phosphate of cerium and titanium and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-319100 2001-10-17
JP2001319100A JP3866076B2 (en) 2001-10-17 2001-10-17 Cerium phosphate-titanium phosphate UV blocking agent and method for producing the same

Publications (1)

Publication Number Publication Date
WO2003033582A1 true WO2003033582A1 (en) 2003-04-24

Family

ID=19136696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/003540 WO2003033582A1 (en) 2001-10-17 2002-10-16 Anti-uv compositions based on cerium and titanium phosphates and method for preparing same

Country Status (2)

Country Link
JP (1) JP3866076B2 (en)
WO (1) WO2003033582A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009001335A1 (en) 2009-03-04 2010-09-09 Chemische Fabrik Budenheim Kg Radiation absorbing material
WO2015067545A1 (en) 2013-11-11 2015-05-14 Chemische Fabrik Budenheim Kg Doped copper-ii-hydroxide phosphate, method for producing same, and use thereof
CN110698191A (en) * 2019-10-28 2020-01-17 南京航空航天大学 Biological ceramic material with ultraviolet high reflection

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4649102B2 (en) * 2003-09-16 2011-03-09 阿南化成株式会社 Amorphous phosphate, and ultraviolet blocking agent, cosmetic, resin molded article and paint containing the same
JP7271235B2 (en) * 2019-03-08 2023-05-11 Dowaエレクトロニクス株式会社 Method for producing titanium pyrophosphate and method for producing solid electrolyte

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936304A (en) * 1970-12-29 1976-02-03 Tsuneo Kasugai Article having a whitened polyolefin surface
JPH10204288A (en) * 1997-01-20 1998-08-04 Toagosei Co Ltd Discoloration inhibitor for nylon resin and nylon resin
JPH11189766A (en) * 1997-12-26 1999-07-13 Kao Corp Cerium phosphate-based ultraviolet absorber and its production
JPH11209109A (en) * 1998-01-21 1999-08-03 Pola Chem Ind Inc Multiple phosphate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936304A (en) * 1970-12-29 1976-02-03 Tsuneo Kasugai Article having a whitened polyolefin surface
JPH10204288A (en) * 1997-01-20 1998-08-04 Toagosei Co Ltd Discoloration inhibitor for nylon resin and nylon resin
JPH11189766A (en) * 1997-12-26 1999-07-13 Kao Corp Cerium phosphate-based ultraviolet absorber and its production
JPH11209109A (en) * 1998-01-21 1999-08-03 Pola Chem Ind Inc Multiple phosphate

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 199938, Derwent World Patents Index; Class A60, AN 1999-453063, XP002232042 *
DATABASE WPI Section Ch Week 199941, Derwent World Patents Index; Class D21, AN 1999-488654, XP002232041 *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 13 30 November 1998 (1998-11-30) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009001335A1 (en) 2009-03-04 2010-09-09 Chemische Fabrik Budenheim Kg Radiation absorbing material
WO2010100153A1 (en) 2009-03-04 2010-09-10 Chemische Fabrik Budenheim Kg Radiation-absorbing material
WO2015067545A1 (en) 2013-11-11 2015-05-14 Chemische Fabrik Budenheim Kg Doped copper-ii-hydroxide phosphate, method for producing same, and use thereof
US10023465B2 (en) 2013-11-11 2018-07-17 Chemische Fabrik Budenheim Kg Doped copper-II-hydroxide phosphate, method for producing same and use thereof
CN110698191A (en) * 2019-10-28 2020-01-17 南京航空航天大学 Biological ceramic material with ultraviolet high reflection
CN110698191B (en) * 2019-10-28 2021-01-05 南京航空航天大学 Biological ceramic material with ultraviolet high reflection

Also Published As

Publication number Publication date
JP3866076B2 (en) 2007-01-10
JP2003119452A (en) 2003-04-23

Similar Documents

Publication Publication Date Title
FR2640635A1 (en) ULTRAVIOLET-ABSORBING TITANIUM DIOXIDE DISPERSIONS AND THEIR MANUFACTURING METHOD
FR2615859A1 (en) ULTRAVIOLET ABSORBENT TITANIUM DIOXIDE ACICULAR PARTICLES HAVING A COATING OF ALUMINUM AND SILICON OXIDES
US8753614B2 (en) Nanodiamond UV protectant formulations
KR100849586B1 (en) Surface-modified zinc-titanium mixed oxides
CA2121428C (en) Rare-earth metal compositions; process for synthesizing them and use thereof
CA2148761C (en) Rare earth sulfide composition containing at least one alkaline element; process for preparing the same and use thereof as a colored pigment
AU2001262691B9 (en) Cosmetic preparation
JP2010532808A5 (en)
JP2015052117A (en) Interference pigments on the basis of perlite flakes
KR20080032083A (en) Process for the treatment of particles using a plasma torch
JP2010525125A (en) Reinforced metal oxide flakes for effect pigments
JP2010511757A (en) Surface modified (effect) pigments
TW201441155A (en) Synthetic zinc hectorite via hydrothermal preparation
US20220212946A1 (en) Cerium (iii) carbonate formulations
FR2655052A1 (en) PROCESS FOR STABILIZING BISMUTH VANADATE PIGMENTS AGAINST ATTACK BY HYDROCHLORIC ACID, AND MACROMOLECULAR ORGANIC MATERIALS THAT HAVE BEEN COLORED BY PIGMENTS SO STABILIZED
TW201441153A (en) Synthetic megakalsilite via hydrothermal preparation
KR20150127093A (en) Coated perlite flakes
JP2021519846A (en) Effect pigments based on colored hectorite and coated colored hectorite and their manufacture
KR20050085063A (en) Optically variable pigments having an asymmetrical layer structure
WO2003033582A1 (en) Anti-uv compositions based on cerium and titanium phosphates and method for preparing same
Lima et al. Single crystalline rhabdophane-type CePO4 nanoparticles as efficient UV filters
Wirunchit et al. The study of UV protection materials
JP2001139926A (en) Ultraviolet screening agent, method for producing the same, and cosmetic, film, plastic and coating comprising the same compounded therein
JP4382612B2 (en) Cosmetics
FR2750603A1 (en) DISPERSION OF A HUMIDITY RETENTION AGENT INTERCEPTING ULTRAVIOLET LIGHT, AND COSMETIC PRODUCT COMPRISING THIS DISPERSION

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003536315

Country of ref document: JP

122 Ep: pct application non-entry in european phase