WO2003029782A1 - Nondestructive method and device for investigating underground air, nondestructive method for controlling contamination of soil, and pressure partition used for the control - Google Patents

Nondestructive method and device for investigating underground air, nondestructive method for controlling contamination of soil, and pressure partition used for the control Download PDF

Info

Publication number
WO2003029782A1
WO2003029782A1 PCT/JP2002/009942 JP0209942W WO03029782A1 WO 2003029782 A1 WO2003029782 A1 WO 2003029782A1 JP 0209942 W JP0209942 W JP 0209942W WO 03029782 A1 WO03029782 A1 WO 03029782A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
pressure bulkhead
opening
underground air
air
Prior art date
Application number
PCT/JP2002/009942
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshikazu Suzuki
Tetsuya Endo
Masayuki Ogawa
Takeshi Manri
Yutaka Kaneko
Original Assignee
Koken Boring Machine Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001297719A external-priority patent/JP3965505B2/en
Application filed by Koken Boring Machine Co., Ltd. filed Critical Koken Boring Machine Co., Ltd.
Publication of WO2003029782A1 publication Critical patent/WO2003029782A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2294Sampling soil gases or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/24Suction devices

Definitions

  • the present invention relates to a nondestructive underground air investigation method, an investigation device, a nondestructive geocontamination purification method, and a pressure bulkhead used for the method. More specifically, a geological layer to be investigated or purified is subjected to boring or the like. And survey methods that do not involve destruction of the in-situ position. Background art
  • VOCs volatile organic compounds
  • the method using underground air suction using a borehole is to collect underground air containing volatile gas etc. from a hole with a small area with a hole diameter of about ⁇ 10 Omm in plan. Also, when a sampling hole is made with a simple driving tool, the sampling area is very small, with a hole diameter of about 10 mm. For this reason,
  • the above conventional technologies require the installation of boreholes and wells, and excavation by hydraulic shovels, etc., and although they are for purification, all technologies involve in situ destruction. For this reason, the in situ cannot be restored to the state before contamination after purification. In addition, drilling and construction using large machines will increase purification costs.
  • the present invention has been made based on the technical background as described above, and achieves the following objects.
  • An object of the present invention is to provide a non-destructive underground air inspection method and method which can omit a high-cost and in-situ destruction process such as boring, and can perform a low-cost, simple and reliable geological pollution inspection at any place. It is to provide a device.
  • Another object of the present invention is that purification can be performed without destruction of the purification site, and the environment of the construction site is not restricted, and installation, movement, and removal of the purification facility are easy.
  • An object of the present invention is to provide a non-destructive method for remediating geological pollution which can reduce the construction cost and a pressure bulkhead used for the method. Disclosure of the invention
  • the present invention provides a pressure partition having an opening, A part facing the ground surface, a method of collecting and investigating underground air in the pressure bulkhead by making the inside of the pressure bulkhead a negative pressure, comprising: It has at least a double structure consisting of an inner pressure bulkhead, and discharges the underground air flowing into the outer space between the outer pressure bulkhead and the inner pressure bulkhead to the outside, and releases the underground air flowing into the inner space inside the inner pressure bulkhead. It is a nondestructive underground air survey method characterized by sampling and surveying.
  • the present invention provides a pressure bulkhead having an opening so that the opening faces the ground surface, and makes the inside of the pressure bulkhead a negative pressure to collect underground air into the pressure bulkhead and investigate.
  • the pressure bulkhead has at least a double structure of an outer pressure bulkhead and an inner pressure bulkhead,
  • Suction means for making the outer space between the outer pressure partition and the inner pressure partition and the inner space in the inner pressure partition a negative pressure, and discharging the underground air flowing into the outer space to the outside;
  • Means for collecting the underground air flowing into the inner space are provided.
  • the suction means is connected to a suction hole provided in the outer pressure partition, and the inner pressure partition has a communication hole communicating the outer space and the inner space.
  • An airtight holding member is provided at the opening of the outer pressure partition to block air from flowing into the outer space.
  • the airtight holding member is a ring-shaped elastic body attached to the opening of the outer pressure partition.
  • the airtight holding member is a tubular body embedded in the ground.
  • the means for collecting the underground air includes: a collection hole provided in each of the outer pressure bulkhead and the inner pressure bulkhead; and a collection pipe which is introduced into the inner space through these collection holes and sucks and collects the underground air. Be prepared. Furthermore, the present invention for achieving the above object provides a method for forming an enclosed space on the surface of a geological layer to be purified,
  • a non-destructive geological pollution purification method wherein the sucked pollutant is sucked and discharged to the outside by the suction device.
  • the closed space can be formed by installing a pressure partition having an opening so that the opening faces the ground surface.
  • Means for blocking the inflow of air into the pressure bulkhead may be provided around the opening.
  • an embankment may be laid around the opening, or the opening may be buried below the ground surface.
  • the present invention also relates to a method for cleaning volatile organic compounds contained in the above-mentioned geological layer, wherein the opening is provided on the surface of the geological layer to be purified so that the opening faces the ground surface, and the internal pressure is reduced.
  • a pressure partition used for purification of geological pollution characterized in that an airtight holding member for blocking inflow of air is provided at an end of the opening.
  • the airtight holding member can be formed of a ring-shaped elastic body that can be deformed according to the shape of the ground surface.
  • the airtight holding member may be formed of a sheet-like elastic body having a widened portion extending around the outer periphery of the opening. Further, the airtightness maintaining member may be constituted by a hard cylindrical body embedded in the geological layer.
  • FIG. 1 is a longitudinal sectional view showing an embodiment of the method and apparatus for investigating underground air according to the present invention
  • FIG. 2 is a longitudinal sectional view showing a state of collecting underground air
  • FIG. FIG. 4 is a diagram showing a process of collecting underground air together with a pressure state in a pressure bulkhead.
  • FIG. 4 is a longitudinal sectional view showing an embodiment of a purification method according to the present invention.
  • FIG. 5 is another embodiment of the purification method.
  • FIG. 6 is a longitudinal sectional view showing still another embodiment of the purification method
  • FIG. 7 is a longitudinal sectional view showing a preferred embodiment of the pressure bulkhead
  • FIG. FIG. 9 is a longitudinal sectional view showing another embodiment of the pressure bulkhead
  • FIG. 9 is a longitudinal sectional view showing still another embodiment of the pressure bulkhead.
  • FIG. 1 shows a nondestructive type underground air inspection device according to the present invention, in which a pressure bulkhead 1 has a double structure of an outer pressure bulkhead 2 and an inner bulkhead 3 disposed inside thereof. Both the outer pressure partition 2 and the inner pressure partition 3 have openings 4 and 5.
  • the outer pressure bulkhead 2 and the inner pressure bulkhead 3 are installed on the ground surface G so that the openings 4 and 5 face the ground surface G.
  • an outer space 7 between the outer pressure bulkhead 2 and the inner pressure bulkhead 3 and an inner space 8 inside the inner pressure bulkhead 3 are formed on the ground surface G, which are hermetically sealed.
  • the opening 4 of the outer pressure bulkhead 2 is provided with an airtight member 9 for blocking the inflow of the atmosphere into the outer space 7.
  • the airtight holding member 9 is a ring-shaped elastic body attached to the entire periphery of the opening 4.
  • the ring-shaped elastic body is made of rubber or a polymer material which closely adheres to the unevenness of the ground surface G and exhibits a sealing function. It is desirable to provide a similar airtight holding member 10 also in the opening 5 of the inner pressure partition 3.
  • a cylindrical body may be provided in the openings 4 and 5 instead of the ring-shaped elastic body as the air-tightness maintaining member, and the cylindrical body may be buried by being pushed to an appropriate depth in the ground. Thus, a sealing function can be exhibited.
  • the outer pressure bulkhead 2 is provided with a suction hole 11, and a suction means 13 such as a vacuum pump is connected to the suction hole 11 via a suction pipe 12.
  • the suction pipe 12 is provided with a pressure gauge 14.
  • the operation of the suction means 13 is controlled by a controller 15 to which the measurement signal of the pressure gauge 14 is inputted. As shown in FIG. 3, the pressure (negative pressure) in the pressure bulkhead 1 and the pressure The retention time can be set arbitrarily.
  • the outer pressure bulkhead 2 is further provided with a sampling hole 16 into which a below-described underground air sampling pipe is inserted, and the sampling hole 16 is closed by a plug 17 when suctioning the underground air.
  • the inner pressure bulkhead 3 is provided with a communication hole 18 for communicating the outer space 7 and the inner space 8. These communication holes 18 also serve as underground air sampling holes.
  • the inner pressure bulkhead 3 and the inner pressure bulkhead 3 are most preferably formed in a thin and lightweight substantially hemispherical shape having excellent buckling strength. Good, but it is also possible to use a cylindrical or square tube.
  • the outer pressure bulkhead 2 and the inner pressure bulkhead 3 are installed on the ground surface G such that the openings 4 and 5 face the ground surface G.
  • the pressure reducing means 13 When the pressure reducing means 13 is operated in this state, the air in the outer space 7 and the inner space 8 communicating with the outer space 7 via the communication hole 18 is sucked, and the pressure in the pressure bulkhead 1 becomes negative pressure. As a result, underground air 20 and 21 flow into the outer space 7 and inner space 8, respectively. I do.
  • the air 23 flows into the outer space 7 from the opening 4 of the outer pressure bulkhead 2 even though it has the airtightness retaining member 9, and the pressure distribution in the pressure barrier 1 ( The negative pressure distribution) is as shown by reference numeral 22. That is, the inflowing air 23 mixes with the underground air 20 flowing into the outer space 7, and such mixed air lowers the accuracy of the measurement. Released outside.
  • the inner pressure bulkhead 3 is set sufficiently smaller than the outer pressure bulkhead 2.
  • the size of the inner pressure bulkhead 3 is set in consideration of the size of the ground to be subjected to geological pollution at the original position and the transportability and handleability. Depending on the size of the suction means 13, for example, the diameter is ⁇ 300. mm or more can be easily achieved.
  • gas sampling pipes 24 are inserted into the sampling holes 17 and 18, and the underground air 21 stored in the inner space 8 is sucked and collected.
  • the gas sampling tube 24 a well-known gas detection tube having a gas suction hole for sucking air (gas) at the tip can be used. As described above in detail, according to the present invention, the following unprecedented excellent effects can be obtained.
  • the inner pressure bulkhead can be easily realized with a diameter of ⁇ 300 mm or more.
  • the sampling area can be more than 900 to 9 times larger than that of the existing borehole with a diameter of about 100 to 100 mm. Therefore, when identifying the source of geological pollution on a vast factory site as “area assessment”, the number of surveyed sites can be significantly reduced compared to the conventional survey method, which is extremely efficient.
  • FIG. 4 is a sectional view showing the same embodiment.
  • the geological stratum 31 shown in Fig. 4 is contaminated with VOCs (indicated by reference numeral 32), and the following treatment is performed on this geological stratum 31 for purification.
  • the pressure bulkhead 33 is a tubular member such as a cylinder or a square tube, and has an opening 34. Inside the pressure bulkhead 33, a suction pipe 38 connected to a suction device 37 such as a vacuum pump is opened.
  • the pressure bulkhead 33 is made of a pressure-resistant material such as a stainless steel plate, but any material may be used as long as it has the pressure resistance. For example, it may be constituted by a resin plate provided with a reinforcing member on the inner circumference or the outer circumference.
  • the shape is not limited to a cylindrical shape, but may be various shapes such as a hemisphere.
  • the pressure bulkhead 33 is installed on the ground surface G of the geological stratum 31 to be purified so that the opening 34 faces the ground surface G. As a result, a closed space 36 is formed on the ground surface G.
  • the suction device 37 By operating the suction device 37, the air inside the pressure bulkhead 33 is sucked, and the internal pressure is made lower (negative pressure) than the atmospheric pressure. As a result, the movement of fluid such as underground air in the geological layer 31 is promoted, and the underground fluid is sucked into the pressure bulkhead 33 as shown by an arrow in FIG.
  • the VOCs 32 contained therein also flow into the inside of the pressure bulkhead 33, where the liquid The VOCs that existed as a volatile gas volatilize, and are discharged to the outside through the suction pipe 38.
  • the concentration of VOCs discharged from the suction device 37 may be measured and monitored by a concentration measuring device (not shown) to manage the progress of the purification process. Further, an adsorption device using activated carbon or the like may be connected to the suction device 37 via a pipe to adsorb VOCs. Note that the above embodiment is based on the premise that VOCs are present in the preliminary survey, but the survey is conducted using the same method as described above, that is, the existence of the VOCs is confirmed using a concentration measurement device. In addition, it is also possible to adopt a procedure in which a purification process is subsequently performed.
  • FIG. 5 and FIG. 6 show an embodiment in which means for blocking the inflow of air into the inside of the pressure barrier 33 is taken. That is, the embodiment shown in FIG. 5 is an example in which an embankment 40 is laid around the opening 34 of the pressure bulkhead 33 as a means for blocking the inflow of air. The embodiment shown in FIG. 6 is an example in which an opening 34 is buried below the ground surface as a means for blocking the inflow of air.
  • FIG. 7 is an example in which a ring-shaped elastic body 41 is provided as an airtight holding member at an end of an opening 34 in a pressure bulkhead 33.
  • the ring-shaped elastic body 41 is a ring having the same shape as the shape of the opening 34, for example, a circular ring or a square ring, and has a predetermined height and a predetermined thickness which is larger than the thickness of the pressure bulkhead 33. (Dimension between the inner and outer diameters).
  • the ring-shaped elastic body 41 is made of, for example, a flexible rubber material.
  • the ring-shaped elastic body 41 is deformed according to the shape of the ground surface G, and the contact area with the ground surface G increases. Therefore, airtightness is maintained between the end surface of the opening 34 and the ground surface G, and the inflow of air can be prevented, so that fluid such as underground air can be effectively sucked.
  • FIG. 8 The embodiment shown in FIG. 8 is an example in which a sheet-like elastic body 42 is provided as an airtight holding member at an end of an opening 34 in a pressure bulkhead 33.
  • the sheet-like elastic body 42 has a widened part 43 spreading around the outer periphery of the opening part 34.
  • the sheet-like elastic body 42 is made of, for example, a flexible rubber material, similarly to the ring-like elastic body 41 shown in FIG. 7, and when the pressure bulkhead 33 is installed, the sheet-like elastic body 42 follows the ground surface G. It spreads in a disk shape (when the outer shape is circular), and a contact area with the ground surface G that is sufficiently large with respect to the thickness of the pressure bulkhead 33 is obtained.
  • a loading body 44 such as an embankment on the spread portion 43
  • the spread portion 43 is brought into close contact with the ground surface G, and sufficient airtightness can be maintained.
  • a fluid such as water is used as a sealing material at the portion of the ground surface G that comes into contact with the ring-shaped elastic body 41 or the sheet-shaped elastic body 42. It may be penetrated, which increases the adhesion to the ground surface and further increases the airtightness.
  • the embodiment shown in FIG. 9 is an example in which a tubular body 45 is provided as an airtight holding member at the end of the opening 34 in the pressure bulkhead 33.
  • the cylindrical body 45 is made of a hard material such as steel, and has a larger thickness than the pressure bulkhead 33.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Pathology (AREA)
  • Soil Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

A method of investigating underground air, comprising the steps of installing a pressure partition (1) having openings (4) and (5) so that the openings (4) and (5) face a ground surface (G), sampling the underground air into the pressure partition (1) by reducing a pressure in the pressure partition (1) to a negative pressure, and investigating the sampled air, wherein the pressure partition (1) is formed in an at least double structure comprising an outside pressure partition (2) and an inside pressure partition (3) and, since the underground air (20) flowing into an outside space (7) between the outside pressure partition (2) and the inside pressure partition (3) is mixed with the atmospheric air (23), the mixed air is released to the outside, and only the underground air (21) flowing into an inside space (8) on the inside of the inside pressure partition (3) is sampled and investigated.

Description

明 細 書 非破壊式地下空気調査方法、 調査装置、 非破壊式地質汚染浄化方法 及びそれに使用する圧力隔壁 技術分野  Description Non-destructive underground air survey method, survey equipment, non-destructive geological pollution purification method, and pressure bulkhead used for it
この発明は、 非破壊式地下空気調査方法、 調査装置、 非破壊式地質汚 染浄化方法及びそれに使用する圧力隔壁に関し, さらに詳細には、 調査 対象あるいは浄化対象としている地質層にボーリング等を施さず、 原位 置の破壊を伴わない調査方法等に関する。 背景技術  The present invention relates to a nondestructive underground air investigation method, an investigation device, a nondestructive geocontamination purification method, and a pressure bulkhead used for the method. More specifically, a geological layer to be investigated or purified is subjected to boring or the like. And survey methods that do not involve destruction of the in-situ position. Background art
例えば、 トリクロロエチレンゃテトラクロ口エチレン等の揮発性有機 化合物 (Volatile Organic Compounds 以下、 VOCsという) による土壌や 地下水の地質汚染が社会問題となっており、 その浄化対策が急務とされ ている。  For example, the geological pollution of soil and groundwater by volatile organic compounds (VOCs) such as trichloroethylene and tetrachloroethylene has become a social problem, and there is an urgent need for purification measures.
従来、 地質汚染を調査する技術として、 掘削孔に地下空気採取管ゃガ ス検知管などを揷入して地下空気を採取する地下空気調査方法や、 大気 を直接吸引するガス調査方法が一般に知られている。 しかし、 これらの 従来の技術には次のような欠点がある。  Conventionally, as techniques for investigating geological pollution, there are generally known underground air survey methods in which underground air sampling pipes and gas detection pipes are inserted into boreholes to sample ground air, and gas survey methods in which air is directly sucked into the air. Have been. However, these conventional techniques have the following disadvantages.
( 1 ) 掘削孔を利用しての地下空気吸引による方法は、 原位置でのボ 一リングが必要である。 このため、 施工開始から調査完了までの時間が 長く、 ボーリング費用も含め非常に不経済であるとともに、 原位置にお ける破壊試験であることから環境負荷が高い。  (1) Underground air suction using a borehole requires in-situ boring. As a result, the time from the start of construction to the completion of the survey is long, which is extremely uneconomical, including boring costs, and has a high environmental load due to in situ destructive testing.
簡易打ち込み器で採取孔を作る場合も、 規模には差があるが、 同様の 短所がある。 (2) 掘削孔を利用しての地下空気吸引による方法は、 所定の深度ま で掘削した後、 ドリルロッドの抜管が必要である。 このため、 ドリル口 ッ ドの抜管の際、 孔内への大気の流入によって地下空気が攪乱し適切な 調査を行うことができない。 Making a sampling hole with a simple driver also has similar disadvantages, albeit on a different scale. (2) The method using underground air suction using a drill hole requires excavation of a drill rod after drilling to a predetermined depth. For this reason, when excavating the drill port, the inflow of air into the hole disturbs the underground air, making it impossible to conduct an appropriate investigation.
(3) 掘削孔を利用しての地下空気吸引による方法は、 平面的には孔 直径 φ 1 0 Omm程度の小さな面積の孔から揮発性ガスなどを含む地下 空気を採取するものである。 また、 簡易打ち込み器で採取孔を作る場合 も、 孔直径 Φ 1 0 mm程度と非常に採取面積が小さい。 このため、 (3) The method using underground air suction using a borehole is to collect underground air containing volatile gas etc. from a hole with a small area with a hole diameter of about φ10 Omm in plan. Also, when a sampling hole is made with a simple driving tool, the sampling area is very small, with a hole diameter of about 10 mm. For this reason,
「点」 的な評価面積となり、 広大な工場敷地などでの地質汚染源を特定 する際、 多くの箇所での掘削調査が必要である。 It will be a “point” evaluation area, and when locating the source of geological pollution on a vast factory site, excavation surveys at many locations are required.
(4) 大気を直接吸引するガス調査方法は、 風等による流動があり、 汚染源を特定できない。  (4) In the gas survey method that directly sucks the atmosphere, there is a flow due to wind and the like, and the source of pollution cannot be identified.
また、 従来、 地質汚染を浄化する技術として、 次のようなものが一般 に知られている。  Conventionally, the following technologies have been generally known as technologies for purifying geological pollution.
( 1 ) ポーリング孔を介して地下に負圧環境を作り、 VOCs を揮発さ せる方法。  (1) A method of creating a negative pressure environment underground through polling holes to volatilize VOCs.
(2) 揚水用の井戸から汚染された地下水を汲み上げて、 地上の浄化 設備で地下水を浄化し、 還元用の井戸から浄化した地下水を地下に戻す 方法。  (2) A method in which contaminated groundwater is pumped from pumping wells, groundwater is purified by ground-based purification equipment, and the groundwater purified from the wells is returned to the ground.
(3) 地下に発熱材ゃ発熱薬品を揷入あるいは注入し、 VOCs を加熱 して揮発を促進する方法。  (3) A method of injecting or injecting exothermic materials or exothermic chemicals into the basement and heating VOCs to promote volatilization.
(4) 汚染された土壌などを油圧ショベルなどで掘削し、 地上の浄化 設備で土壌を浄化する方法。  (4) A method of excavating contaminated soil with a hydraulic excavator and purifying the soil with ground-based purification equipment.
( 5) ボ一リング孔を介し、 地下に微生物を注入し、 あるいは微生物 の活動を促進させる薬品を注入し、 微生物による汚染物質の分解活動を 利用した浄化方法。 しかし、 上記従来の技術は、 ボーリング孔ゃ井戸の設置、 油圧ショべ ルなどによる掘削が必要であり、 浄化のためとはいえ、 いずれの技術も 原位置の破壊を伴う方法である。 このため、 浄化後に原位置を汚染前の 状態に再現することはできない。 また、 ボーリング施工や、 大型機によ る施工は、 浄化コストの増加要因となる。 (5) A purification method in which microorganisms are injected into the basement through boring holes or chemicals that promote the activity of microorganisms are used, and the activity of decomposing pollutants by microorganisms is used. However, the above conventional technologies require the installation of boreholes and wells, and excavation by hydraulic shovels, etc., and although they are for purification, all technologies involve in situ destruction. For this reason, the in situ cannot be restored to the state before contamination after purification. In addition, drilling and construction using large machines will increase purification costs.
また、 狭隘な汚染現場の場合、 大型機の設置ができないことから、 浄 化に最適な位置に揚水井戸を設けることができないことも多い。 さらに、 地下水汚染の場合、 汚染範囲が広域であり、 诤化のためのポーリング施 ェなどの工事が、 住宅地や道路などにより制約され、 適切な浄化対策を とることができないことも多い。 さらに、 诤化開始後、 井戸の位置が最 適でないことが判明した場合など、 井戸の位置を移すことは困難であり、 コストもかかる。  In the case of narrow contaminated sites, large wells cannot be installed, and in many cases, pumping wells cannot be installed at the optimal locations for purification. Furthermore, in the case of groundwater pollution, the range of pollution is wide, and construction such as polluting for degradation is restricted by residential areas and roads, and it is often impossible to take appropriate purification measures. In addition, it is difficult and costly to relocate wells when it is found that the location of wells is not optimal after the start of degradation.
この発明は上記のような技術的背景に基づいてなされたものであって、 次の目的を達成するものである。  The present invention has been made based on the technical background as described above, and achieves the following objects.
この発明の目的は、 ボーリングなど高コストで原位置の破壊を伴うェ 程を省略することができ、 任意の箇所で低コストで簡便かつ確実な地質 汚染調査ができる非破壊式地下空気調査方法及び装置を提供することに ある。  An object of the present invention is to provide a non-destructive underground air inspection method and method which can omit a high-cost and in-situ destruction process such as boring, and can perform a low-cost, simple and reliable geological pollution inspection at any place. It is to provide a device.
この発明の別の目的は、 浄化現場の破壊を伴わずに浄化を実施するこ とができ、 しかも施工現場の環境の制約を受けることがなく、 また浄化 設備の据え付け、 移動、 撤収が容易であり、 施工コストも安価に抑える ことができる非破壊式地質汚染浄化方法及びそれに使用する圧力隔壁を 提供することにある。 発明の開示  Another object of the present invention is that purification can be performed without destruction of the purification site, and the environment of the construction site is not restricted, and installation, movement, and removal of the purification facility are easy. An object of the present invention is to provide a non-destructive method for remediating geological pollution which can reduce the construction cost and a pressure bulkhead used for the method. Disclosure of the invention
上記目的を達成するこの発明は、 開口部を有する圧力隔壁を前記開口 部が地表面を向くように設置し、 前記圧力隔壁内を負圧にすることによ り地下空気を前記圧力隔壁内に採取して調査する方法であって、 前記圧力隔壁を外側圧力隔壁及び内側圧力隔壁からなる少なくとも 2 重構造とし、 前記外側圧力隔壁と内側圧力隔壁との間の外側空間に流入 した地下空気を外部に放出するとともに、 内側圧力隔壁内の内側空間に 流入した地下空気を採取して調査することを特徴とする非破壊式地下空 気調査方法にある。 In order to achieve the above object, the present invention provides a pressure partition having an opening, A part facing the ground surface, a method of collecting and investigating underground air in the pressure bulkhead by making the inside of the pressure bulkhead a negative pressure, comprising: It has at least a double structure consisting of an inner pressure bulkhead, and discharges the underground air flowing into the outer space between the outer pressure bulkhead and the inner pressure bulkhead to the outside, and releases the underground air flowing into the inner space inside the inner pressure bulkhead. It is a nondestructive underground air survey method characterized by sampling and surveying.
また、 この発明は、 開口部を有する圧力隔壁を前記開口部が地表面を 向くように設置し、 前記圧力隔壁内を負圧にすることにより地下空気を 前記圧力隔壁内に採取して調査する調査装置であって、  In addition, the present invention provides a pressure bulkhead having an opening so that the opening faces the ground surface, and makes the inside of the pressure bulkhead a negative pressure to collect underground air into the pressure bulkhead and investigate. A survey device,
前記圧力隔壁は外側圧力隔壁と内側圧力隔壁との少なくとも 2重構造 となっており、  The pressure bulkhead has at least a double structure of an outer pressure bulkhead and an inner pressure bulkhead,
前記外側圧力隔壁と内側圧力隔壁との間の外側空間及び前記内側圧力 隔壁内の内側空間を負圧にし、 かつ前記外側空間に流入した地下空気を 外部に放出する吸引手段と、  Suction means for making the outer space between the outer pressure partition and the inner pressure partition and the inner space in the inner pressure partition a negative pressure, and discharging the underground air flowing into the outer space to the outside;
前記内側空間に流入した地下空気を採取する手段とを備えてなる地下 空気調査装置にある。  Means for collecting the underground air flowing into the inner space.
前記吸引手段は前記外側圧力隔壁に設けられた吸引孔に連結され、 前 記内側圧力隔壁には前記外側空間と前記内側空間とを連通する連通孔が 形成されている。 前記外側圧力隔壁の開口部に外側空間への大気の流入 を遮断する気密保持部材が設けられている。 前記気密保持部材は、 前記 外側圧力隔壁の前記開口部に取り付けられたリング状弾性体である。 前 記気密保持部材は、 地中に埋め込まれる筒状体である。 前記地下空気を 採取する手段は、 前記外側圧力隔壁及び内側圧力隔壁にそれぞれ設けら れた採取孔と、 これらの採取孔を通して前記内側空間に揷入されて地下 空気を吸引採取する採取管とを備えてなる。 さらに、 上記目的を達成するためのこの発明は、 浄化対象としている 地質層の地表面上に、 密閉空間を区画形成した後、 The suction means is connected to a suction hole provided in the outer pressure partition, and the inner pressure partition has a communication hole communicating the outer space and the inner space. An airtight holding member is provided at the opening of the outer pressure partition to block air from flowing into the outer space. The airtight holding member is a ring-shaped elastic body attached to the opening of the outer pressure partition. The airtight holding member is a tubular body embedded in the ground. The means for collecting the underground air includes: a collection hole provided in each of the outer pressure bulkhead and the inner pressure bulkhead; and a collection pipe which is introduced into the inner space through these collection holes and sucks and collects the underground air. Be prepared. Furthermore, the present invention for achieving the above object provides a method for forming an enclosed space on the surface of a geological layer to be purified,
吸引装置によって前記密閉空間内の空気を吸引して該密閉空間内を負 圧とすることにより、 前記地質層中に含まれる揮発性有機化合物などの 汚染物質を前記密閉空間内に吸引し、  By suctioning air in the closed space with a suction device to make the inside of the closed space a negative pressure, a contaminant such as a volatile organic compound contained in the geological layer is sucked into the closed space,
さらに、 吸引した汚染物質を前記吸引装置によって外部に吸引排出す ることを特徴とする非破壊式地質汚染浄化方法にある。  Further, there is provided a non-destructive geological pollution purification method, wherein the sucked pollutant is sucked and discharged to the outside by the suction device.
前記密閉空間は開口部を有する圧力隔壁を、 前記開口部が地表面を向 くように設置することにより形成することができる。 前記開口部の周囲 に前記圧力隔壁内への大気の流入を遮断する手段を施すとよい。 この場 合、 前記大気の流入を遮断する手段としては、 前記開口部の周囲に盛土 を敷設してもよいし、 あるいは前記開口部を地表面下に埋め込んでもよ い。  The closed space can be formed by installing a pressure partition having an opening so that the opening faces the ground surface. Means for blocking the inflow of air into the pressure bulkhead may be provided around the opening. In this case, as means for blocking the inflow of the air, an embankment may be laid around the opening, or the opening may be buried below the ground surface.
この発明は、 また、 浄化対象としている地質層の地表面上に開口部が 地表面を向くように設置され、 内部を負圧とすることにより前記地質層 中に含まれる揮発性有機化合物などの汚染物質を吸引するための圧力隔 壁であって、  The present invention also relates to a method for cleaning volatile organic compounds contained in the above-mentioned geological layer, wherein the opening is provided on the surface of the geological layer to be purified so that the opening faces the ground surface, and the internal pressure is reduced. A pressure barrier for aspirating contaminants,
前記開口部の端部に大気の流入を遮断する気密保持部材を設けたこと を特徴とする地質汚染浄化に使用する圧力隔壁にある。  A pressure partition used for purification of geological pollution, characterized in that an airtight holding member for blocking inflow of air is provided at an end of the opening.
前記気密保持部材は、 地表面の形状に倣って変形可能なリング状弾性 体で構成することができる。 前記気密保持部材は、 前記開口部の外周に 広がる広がり部を有するシート状弾性体で構成することもできる。 さら に、 前記気密保持部材は、 前記地質層中に埋め込まれる硬質の筒状体で 構成することもできる。 図面の簡単な説明 The airtight holding member can be formed of a ring-shaped elastic body that can be deformed according to the shape of the ground surface. The airtight holding member may be formed of a sheet-like elastic body having a widened portion extending around the outer periphery of the opening. Further, the airtightness maintaining member may be constituted by a hard cylindrical body embedded in the geological layer. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 この発明による地下空気調査方法及び装置の実施形態を示 す縦断面図であり、 第 2図は、 地下空気の採取状態を示す縦断面図であ り、 第 3図は、 地下空気の採取工程を圧力隔壁内の圧力状態ともに示す 図であり、 第 4図は、 この発明による浄化方法の実施形態を示す縦断面 図であり、 第 5図は浄化方法の別の実施形態を示す縦断面図であり、 第 6図は浄化方法のさらに別の実施形態を示す縦断面図であり、 第 7図は 圧力隔壁の好適な実施形態を示す縦断面図であり、 第 8図は圧力隔壁の 別の実施形態を示す縦断面図であり、 第 9図は、 圧力隔壁のさらに別の 実施形態を示す縦断面図である。 発明を実施するための最良の形態  FIG. 1 is a longitudinal sectional view showing an embodiment of the method and apparatus for investigating underground air according to the present invention, FIG. 2 is a longitudinal sectional view showing a state of collecting underground air, and FIG. FIG. 4 is a diagram showing a process of collecting underground air together with a pressure state in a pressure bulkhead. FIG. 4 is a longitudinal sectional view showing an embodiment of a purification method according to the present invention. FIG. 5 is another embodiment of the purification method. FIG. 6 is a longitudinal sectional view showing still another embodiment of the purification method, FIG. 7 is a longitudinal sectional view showing a preferred embodiment of the pressure bulkhead, and FIG. FIG. 9 is a longitudinal sectional view showing another embodiment of the pressure bulkhead, and FIG. 9 is a longitudinal sectional view showing still another embodiment of the pressure bulkhead. BEST MODE FOR CARRYING OUT THE INVENTION
この発明の実施の形態を図面を参照しながら以下に説明する。 第 1図 は、 この発明による非破壊式地下空気調査装置を示し、 圧力隔壁 1は外 側圧力隔壁 2及びその内方に配置される内側庄カ隔壁 3の 2重構造とな つている。 外側圧力隔壁 2及び内側圧力隔壁 3はいずれも開口部 4 , 5 を有している。 外側圧力隔壁 2及び内側圧力隔壁 3は、 開口部 4, 5が 地表面 Gを向くように地表面 G上に設置される。 これにより、 地表面 G 上にはそれぞれ密閉された、 外側圧力隔壁 2と内側圧力隔壁 3との間の 外側空間 7と、 内側圧力隔壁 3の内方の内側空間 8とが形成される。 外側圧力隔壁 2の開口部 4には外側空間 7への大気の流入を遮断する 気密保持部材 9が設けられている。 この気密保持部材 9は開口部 4の全 周に取り付けられたリング状弾性体である。 このリング状弾性体は、 地 表面 Gの凹凸に倣って密着してシール機能を発揮するゴム又は高分子材 料などからなる。 内側圧力隔壁 3の開口部 5にも、 同様の気密保持部材 1 0を設けることが望ましい。 また、 気密保持部材としては、 図示しないが、 リング状弾性体に代え て開口部 4, 5に筒状体を設けてもよく、 この筒状体を地中の適宜深さ まで押し込んで埋め込むことにより、 シール機能を発揮させることがで きる。 Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a nondestructive type underground air inspection device according to the present invention, in which a pressure bulkhead 1 has a double structure of an outer pressure bulkhead 2 and an inner bulkhead 3 disposed inside thereof. Both the outer pressure partition 2 and the inner pressure partition 3 have openings 4 and 5. The outer pressure bulkhead 2 and the inner pressure bulkhead 3 are installed on the ground surface G so that the openings 4 and 5 face the ground surface G. As a result, an outer space 7 between the outer pressure bulkhead 2 and the inner pressure bulkhead 3 and an inner space 8 inside the inner pressure bulkhead 3 are formed on the ground surface G, which are hermetically sealed. The opening 4 of the outer pressure bulkhead 2 is provided with an airtight member 9 for blocking the inflow of the atmosphere into the outer space 7. The airtight holding member 9 is a ring-shaped elastic body attached to the entire periphery of the opening 4. The ring-shaped elastic body is made of rubber or a polymer material which closely adheres to the unevenness of the ground surface G and exhibits a sealing function. It is desirable to provide a similar airtight holding member 10 also in the opening 5 of the inner pressure partition 3. Although not shown, a cylindrical body may be provided in the openings 4 and 5 instead of the ring-shaped elastic body as the air-tightness maintaining member, and the cylindrical body may be buried by being pushed to an appropriate depth in the ground. Thus, a sealing function can be exhibited.
外側圧力隔壁 2には吸引孔 1 1が設けられ、 この吸引孔 1 1には吸引 管 1 2を介して真空ポンプなどの吸引手段 1 3が連結されている。 吸引 管 1 2には圧力計 1 4が設けられている。 吸引手段 1 3は、 圧力計 1 4 の計測信号が入力されるコント口一ラ 1 5によって運転が制御され、 第 3図に示すように圧力隔壁 1内の圧力 (負圧) と、 その圧力保持時間を 任意に設定できるようになつている。  The outer pressure bulkhead 2 is provided with a suction hole 11, and a suction means 13 such as a vacuum pump is connected to the suction hole 11 via a suction pipe 12. The suction pipe 12 is provided with a pressure gauge 14. The operation of the suction means 13 is controlled by a controller 15 to which the measurement signal of the pressure gauge 14 is inputted. As shown in FIG. 3, the pressure (negative pressure) in the pressure bulkhead 1 and the pressure The retention time can be set arbitrarily.
外側圧力隔壁 2には、 また、 後述する地下空気の採取管が挿入される 採取孔 1 6が設けられ、 この採取孔 1 6は地下空気の吸引時にはプラグ 1 7によって密閉されている。 内側圧力隔壁 3には外側空間 7と内側空 間 8とを連通する連通孔 1 8が設けられている。 この連通孔 1 8は地下 空気の採取孔を兼ねている。  The outer pressure bulkhead 2 is further provided with a sampling hole 16 into which a below-described underground air sampling pipe is inserted, and the sampling hole 16 is closed by a plug 17 when suctioning the underground air. The inner pressure bulkhead 3 is provided with a communication hole 18 for communicating the outer space 7 and the inner space 8. These communication holes 18 also serve as underground air sampling holes.
外側圧力隔壁 2及び内側圧力隔壁 3は、 それらの内方が負圧すなわち 大気圧よりも低圧に維持されるため、 座屈強度に優れた薄肉軽量な略半 球体状に形成されるのが最もよいが、 円筒形や角筒形の筒形とすること も可能である。  Since the outer pressure bulkhead 2 and the inner pressure bulkhead 3 are maintained at a negative pressure, that is, a pressure lower than the atmospheric pressure, the inner pressure bulkhead 3 and the inner pressure bulkhead 3 are most preferably formed in a thin and lightweight substantially hemispherical shape having excellent buckling strength. Good, but it is also possible to use a cylindrical or square tube.
次に、 上述の地下空気調査装置を使用して、 原位置で地下空気を採取 する方法について、 第 1図〜第 3図を参照して説明する。  Next, a method for collecting in-situ underground air using the above-described underground air survey device will be described with reference to FIGS.
原位置において、 外側圧力隔壁 2及ぴ内側圧力隔壁 3は、 開口部 4 , 5が地表面 Gを向くように地表面 G上に設置される。 この状態で減圧手 段 1 3を作動させると、 外側空間 7及びこれと連通孔 1 8を介して連通 する内側空間 8の空気が吸引され、 圧力隔壁 1内は負圧となる。 この結 果、 外側空間 7及び内側空間 8には地下空気 2 0, 2 1がそれぞれ流入 する。 In the original position, the outer pressure bulkhead 2 and the inner pressure bulkhead 3 are installed on the ground surface G such that the openings 4 and 5 face the ground surface G. When the pressure reducing means 13 is operated in this state, the air in the outer space 7 and the inner space 8 communicating with the outer space 7 via the communication hole 18 is sucked, and the pressure in the pressure bulkhead 1 becomes negative pressure. As a result, underground air 20 and 21 flow into the outer space 7 and inner space 8, respectively. I do.
その際、 気密保持部材 9を有しているといえども、 外側圧力隔壁 2の 開口部 4から外側空間 7へ大気 2 3が流入するのは避けられず、 圧力隔 壁 1内の圧力分布 (負圧分布) は符号 2 2で示すようなものとなる。 す なわち、 外側空間 7に流入した地下空気 2 0には流入大気 2 3が混合し、 このような混合空気は測定の精度を低下させるので、 吸引手段 1 3によ り吸引孔 1 1から外部に放出される。  At that time, it is inevitable that the air 23 flows into the outer space 7 from the opening 4 of the outer pressure bulkhead 2 even though it has the airtightness retaining member 9, and the pressure distribution in the pressure barrier 1 ( The negative pressure distribution) is as shown by reference numeral 22. That is, the inflowing air 23 mixes with the underground air 20 flowing into the outer space 7, and such mixed air lowers the accuracy of the measurement. Released outside.
一方、 内側空間 8には流入大気 2 3が混合することのない地下空気 2 1のみが流入する。 このため、 内側圧力隔壁 3は外側圧力隔壁 2よりも 充分小さめに設定される。 内側圧力隔壁 3の大きさは、 原位置での地質 汚染調査対象地面の広さや運搬及び取扱い性を考慮して設定され、 吸引 手段 1 3の規模にもよるが、 例えば、 直径 Φ 3 0 0 mm以上を容易に実 現できる。  On the other hand, only the ground air 21 into which the incoming air 23 does not mix flows into the inner space 8. For this reason, the inner pressure bulkhead 3 is set sufficiently smaller than the outer pressure bulkhead 2. The size of the inner pressure bulkhead 3 is set in consideration of the size of the ground to be subjected to geological pollution at the original position and the transportability and handleability. Depending on the size of the suction means 13, for example, the diameter is Φ300. mm or more can be easily achieved.
そして、 所定時間経過後、 第 2図に示すように、 採取孔 1 7, 1 8に ガス採取管 2 4を挿入し、 内側空間 8に貯溜した地下空気 2 1を吸引し て採取する。 ガス採取管 2 4としては、 先端に空気 (ガス) を吸引する ガス吸引孔を有する周知のガス検知管を使用するとすることができる。 以上、 詳細に説明したように、 この発明によれば、 下記のような従来 にない優れた効果が得られる。  Then, after a lapse of a predetermined time, as shown in FIG. 2, gas sampling pipes 24 are inserted into the sampling holes 17 and 18, and the underground air 21 stored in the inner space 8 is sucked and collected. As the gas sampling tube 24, a well-known gas detection tube having a gas suction hole for sucking air (gas) at the tip can be used. As described above in detail, according to the present invention, the following unprecedented excellent effects can be obtained.
( 1 ) 掘削孔を利用しての従来の地下空気吸引に比べ、 高コストで原 位置における破壊を伴うポーリング工程が省略できる。 このため、 低コ ストで簡便かつ短時間に確実な地質汚染調査ができる。  (1) Compared to conventional underground air suction using a borehole, the polling process that involves high-cost destruction in situ can be omitted. For this reason, low cost, simple and reliable geological pollution survey can be performed in a short time.
( 2 ) 内側空間には大気の流入がなく、 流入大気によって混合攪乱さ れることのない地下空気を採取できるため、 確実な地質汚染調査ができ る。  (2) Since there is no inflow of air into the inner space and underground air that is not mixedly disturbed by the inflow air can be collected, a reliable geological pollution survey can be performed.
( 3 ) 内側圧力隔壁の直径を φ 3 0 0 mm以上に容易に実現でき、 従 来の孔直径 1 0〜 1 0 0 mm程度の掘削孔と比べ、 9 0 0〜 9倍以上 の採取面積とすることができる。 したがって、 広大な工場敷地などでの 地質汚染源を 「面評価」 として特定する際に、 従来の調査方法に比べて 調査箇所を大幅に削減でき、 非常に効率的である。 (3) The inner pressure bulkhead can be easily realized with a diameter of φ300 mm or more. The sampling area can be more than 900 to 9 times larger than that of the existing borehole with a diameter of about 100 to 100 mm. Therefore, when identifying the source of geological pollution on a vast factory site as “area assessment”, the number of surveyed sites can be significantly reduced compared to the conventional survey method, which is extremely efficient.
( 4 ) 大気を直接吸引するガス調査方法に比べ、 風等による流動にに 影響されないため、 確実な地質汚染調査ができる。  (4) Compared to the gas survey method that directly sucks the atmosphere, it is not affected by the flow due to wind, etc., so it is possible to conduct reliable geological pollution survey.
次に、 この発明による非破壊式地質汚染浄化方法の実施形態について 説明する。 第 4図は同実施形態を示す断面図である。 第 4図に示される 地質層 3 1は VOCs (符号 3 2で示す) で汚染され、 この地質層 3 1を 浄化対象として、 以下のような処理を施す。  Next, an embodiment of the non-destructive geological pollution purification method according to the present invention will be described. FIG. 4 is a sectional view showing the same embodiment. The geological stratum 31 shown in Fig. 4 is contaminated with VOCs (indicated by reference numeral 32), and the following treatment is performed on this geological stratum 31 for purification.
圧力隔壁 3 3は、 この実施形態では円筒形又は角筒形などの筒状の部 材であって、 開口部 3 4を有している。 この圧力隔壁 3 3の内部には、 真空ポンプなどの吸引装置 3 7に接続された吸引管 3 8が開口している。 なお、 圧力隔壁 3 3はステンレス鋼板などの耐圧性を有する材料で作ら れているが、 耐圧性を有するものであればよく材質は問われない。 例え ば、 内周または外周に補強部材を設けた樹脂板で構成してもよい。 また、 形状も筒状とするに限らず、 半球状などの種々の形状とすることができ る。  In this embodiment, the pressure bulkhead 33 is a tubular member such as a cylinder or a square tube, and has an opening 34. Inside the pressure bulkhead 33, a suction pipe 38 connected to a suction device 37 such as a vacuum pump is opened. The pressure bulkhead 33 is made of a pressure-resistant material such as a stainless steel plate, but any material may be used as long as it has the pressure resistance. For example, it may be constituted by a resin plate provided with a reinforcing member on the inner circumference or the outer circumference. In addition, the shape is not limited to a cylindrical shape, but may be various shapes such as a hemisphere.
この圧力隔壁 3 3を浄化対象としている地質層 3 1の地表面 G上に、 開口部 3 4が地表面 Gを向くように設置する。 この結果、 地表面 G上に 密閉された空間 3 6が区画形成される。 そして、 吸引装置 3 7を作動さ せることにより、 圧力隔壁 3 3の内部の空気を吸引し、 その内圧を大気 圧よりも低圧 (負圧) にする。 これにより、 地質層 3 1内の地下空気な どの流体の移動が促進され、 地下流体は第 4図に矢印で示すように、 圧 力隔壁 3 3の内部に吸引される。 この地下流体の吸引に伴って、 これに 含まれる VOCs 3 2もまた圧力隔壁 3 3の内部に流入し、 その際、 液体 として存在していた VOCs は揮発し、 さらに吸引管 3 8を通って外部に 排出される。 The pressure bulkhead 33 is installed on the ground surface G of the geological stratum 31 to be purified so that the opening 34 faces the ground surface G. As a result, a closed space 36 is formed on the ground surface G. By operating the suction device 37, the air inside the pressure bulkhead 33 is sucked, and the internal pressure is made lower (negative pressure) than the atmospheric pressure. As a result, the movement of fluid such as underground air in the geological layer 31 is promoted, and the underground fluid is sucked into the pressure bulkhead 33 as shown by an arrow in FIG. Along with the suction of the underground fluid, the VOCs 32 contained therein also flow into the inside of the pressure bulkhead 33, where the liquid The VOCs that existed as a volatile gas volatilize, and are discharged to the outside through the suction pipe 38.
吸引装置 3 7から排出される VOCs の濃度を図示しない濃度測定装置 によって測定監視し、 浄化処理の進行状態を管理するようにしてもよい。 また、 吸引装置 3 7に管路を介して活性炭などを使用した吸着装置を接 続し、 VOCs を吸着するようにしてもよい。 なお、 上記実施形態は、 事 前調査により VOCsが存在しているということを前提としたものである が、 上記と同様の手法によって調査を行い、 すなわち濃度測定装置によ つて VOCs の存在を確認したうえ、 これに引き続いて浄化処理を実行す るという手順を採ることもできる。  The concentration of VOCs discharged from the suction device 37 may be measured and monitored by a concentration measuring device (not shown) to manage the progress of the purification process. Further, an adsorption device using activated carbon or the like may be connected to the suction device 37 via a pipe to adsorb VOCs. Note that the above embodiment is based on the premise that VOCs are present in the preliminary survey, but the survey is conducted using the same method as described above, that is, the existence of the VOCs is confirmed using a concentration measurement device. In addition, it is also possible to adopt a procedure in which a purification process is subsequently performed.
圧力隔壁 3 3における開口部 3 4の端面と地表面 3 5との間の気密が 不十分であると、 圧力隔壁 3 3の内部へ大気が流入し、 地下空気などの 流体を効果的に吸引することができない。 第 5図及び第 6図は、 圧力隔 壁 3 3の内部への大気の流入を遮断する手段を講じた実施形態である。 すなわち、 第 5図に示す実施形態は、 大気の流入を遮断する手段として、 圧力隔壁 3 3の開口部 3 4の周囲に盛土 4 0を敷設した例である。 また、 第 6図に示す実施形態は、 大気の流入を遮断する手段として、 開口部 3 4を地表面下に埋め込んだ例である。  If the airtightness between the end surface of the opening 34 in the pressure bulkhead 33 and the ground surface 35 is insufficient, the air flows into the pressure bulkhead 33 and effectively sucks fluid such as underground air. Can not do it. FIG. 5 and FIG. 6 show an embodiment in which means for blocking the inflow of air into the inside of the pressure barrier 33 is taken. That is, the embodiment shown in FIG. 5 is an example in which an embankment 40 is laid around the opening 34 of the pressure bulkhead 33 as a means for blocking the inflow of air. The embodiment shown in FIG. 6 is an example in which an opening 34 is buried below the ground surface as a means for blocking the inflow of air.
上記浄化方法の実施形態は、 圧力隔壁自体に気密を保持する部材を設 けたものではない。 圧力隔壁自体に気密保持部材を設けて、 大気の流入 を遮断することもできる。 以下、 その好適な実施形態について説明する。 第 7図に示す実施形態は、 圧力隔壁 3 3における開口部 3 4の端部に 気密保持部材としてリング状弾性体 4 1を設けた例である。 リング状弾 性体 4 1は、 開口部 3 4の形状と同じ形状のリング、 例えば円形リング や角形リングであり、 所定の高さ及び圧力隔壁 3 3の肉厚よりも大きい 所定の肉厚 (内外径間の寸法) を有している。 リング状弾性体 4 1は、 例えば柔軟なゴム材料からなり、 圧力隔壁 3 3を設置した状態では、 地表面 Gの形状に倣って変形するとともに、 地 表面 Gとの接触面積が増加する。 したがって、 開口部 3 4の端面と地表 面 Gとの間の気密が保持され、 大気の流入を防止することができるので、 地下空気などの流体を効果的に吸引することができる。 In the above-described embodiment of the purification method, a member for maintaining airtightness is not provided in the pressure partition itself. An airtight member can be provided on the pressure bulkhead itself to block the inflow of air. Hereinafter, a preferred embodiment will be described. The embodiment shown in FIG. 7 is an example in which a ring-shaped elastic body 41 is provided as an airtight holding member at an end of an opening 34 in a pressure bulkhead 33. The ring-shaped elastic body 41 is a ring having the same shape as the shape of the opening 34, for example, a circular ring or a square ring, and has a predetermined height and a predetermined thickness which is larger than the thickness of the pressure bulkhead 33. (Dimension between the inner and outer diameters). The ring-shaped elastic body 41 is made of, for example, a flexible rubber material. When the pressure bulkhead 33 is installed, the ring-shaped elastic body 41 is deformed according to the shape of the ground surface G, and the contact area with the ground surface G increases. Therefore, airtightness is maintained between the end surface of the opening 34 and the ground surface G, and the inflow of air can be prevented, so that fluid such as underground air can be effectively sucked.
第 8図に示す実施形態は、 圧力隔壁 3 3における開口部 3 4の端部に 気密保持部材としてシート状弾性体 4 2を設けた例である。 シート状弾 性体 4 2は、 開口部 3 4の外周に広がる広がり部 4 3を有している。 シ 一ト状弾性体 4 2は、 第 7図に示したリング状弹性体 4 1と同様に例え ば柔軟なゴム材料からなり、 圧力隔壁 3 3を設置した状態では、 地表面 Gに倣って円盤状 (外形を円形とした場合) に広がり、 圧力隔壁 3 3の 肉厚に対して十分に大きい地表面 Gとの接触面積が得られる。  The embodiment shown in FIG. 8 is an example in which a sheet-like elastic body 42 is provided as an airtight holding member at an end of an opening 34 in a pressure bulkhead 33. The sheet-like elastic body 42 has a widened part 43 spreading around the outer periphery of the opening part 34. The sheet-like elastic body 42 is made of, for example, a flexible rubber material, similarly to the ring-like elastic body 41 shown in FIG. 7, and when the pressure bulkhead 33 is installed, the sheet-like elastic body 42 follows the ground surface G. It spreads in a disk shape (when the outer shape is circular), and a contact area with the ground surface G that is sufficiently large with respect to the thickness of the pressure bulkhead 33 is obtained.
そして、 広がり部 4 3の上に盛土などの載荷体 4 4を載置して固定す ることにより、 広がり部 4 3が地表面 Gに密着し、 十分な気密性を保持 することができる。 なお、 第 7図及び第 8図に示す実施形態の場合、 リ ング状弾性体 4 1あるいはシート状弾性体 4 2と接触することとなる地 表面 Gの部分に水などの流体をシール材として浸透させてもよく、 これ によって地表面との密着性が増し、 気密性をさらに高めることができる。 第 9図に示す実施形態は、 圧力隔壁 3 3における開口部 3 4の端部に 気密保持部材として筒状体 4 5を設けた例である。 筒状体 4 5は鋼材な どの硬質材料からなり、 圧力隔壁 3 3よりも肉厚が大きくなつている。 このような筒状体 4 5を地表面下に埋め込むことにより、 気密性を確実 に保持することができる。  Then, by mounting and fixing a loading body 44 such as an embankment on the spread portion 43, the spread portion 43 is brought into close contact with the ground surface G, and sufficient airtightness can be maintained. In the case of the embodiment shown in FIGS. 7 and 8, a fluid such as water is used as a sealing material at the portion of the ground surface G that comes into contact with the ring-shaped elastic body 41 or the sheet-shaped elastic body 42. It may be penetrated, which increases the adhesion to the ground surface and further increases the airtightness. The embodiment shown in FIG. 9 is an example in which a tubular body 45 is provided as an airtight holding member at the end of the opening 34 in the pressure bulkhead 33. The cylindrical body 45 is made of a hard material such as steel, and has a larger thickness than the pressure bulkhead 33. By embedding such a tubular body 45 below the ground surface, airtightness can be reliably maintained.
以上、 詳細に説明したように、 この発明によれば、 下記のような優れ た効果が得られる。  As described above, according to the present invention, the following excellent effects can be obtained.
( 1 ) 井戸の設置や油圧ショベルなどによる掘削が不要であるので、 原位置の地質状態を破壊することがない。 (1) Since there is no need to install wells or excavate with hydraulic excavators, Does not destroy in situ geological conditions.
(2) ボーリング施工や、 大型機による施工が不要であるので、 浄化 コストを大幅に低減することができる。  (2) Since there is no need to perform boring and construction using large machines, purification costs can be significantly reduced.
(3) 揚水井戸などが不要であるので、 狭隘な汚染現場でも対応可能 である。 また浄化のためのポーリング施工などの工事がないため、 住宅 地や道路などによる浄化対策の制約がない。  (3) Since a pumping well is not required, it can be used even in narrow contaminated sites. Also, since there is no construction such as polling for purification, there are no restrictions on purification measures due to residential areas and roads.
(4) 浄化開始後、 圧力隔壁の設置位置が最適でないことが判明した 場合でも、 容易に設置位置を変更することができる。  (4) Even if it is found that the installation position of the pressure bulkhead is not optimal after the purification, the installation position can be easily changed.

Claims

請 求 の 範 囲 The scope of the claims
1 . 開口部を有する圧力隔壁を前記開口部が地表面を向くように設置し、 前記圧力隔壁内を負圧にすることにより地下空気を前記圧力隔壁内に採 取して調査する方法であって、 1. A method in which a pressure bulkhead having an opening is installed so that the opening faces the ground surface, and a negative pressure is applied to the inside of the pressure bulkhead so that underground air is collected in the pressure bulkhead and investigated. hand,
前記圧力隔壁を外側圧力隔壁及び内側圧力隔壁からなる少なくとも 2 重構造とし、 前記外側圧力隔壁と内側圧力隔壁との間の外側空間に流入 した地下空気を外部に放出するとともに、 内側圧力隔壁内の内側空間に 流入した地下空気を採取して調査することを特徴とする非破壊式地下空 気調査方法。  The pressure bulkhead has at least a double structure composed of an outer pressure bulkhead and an inner pressure bulkhead, and discharges underground air flowing into an outer space between the outer pressure bulkhead and the inner pressure bulkhead to the outside, and also includes a A non-destructive underground air survey method, characterized by collecting and investigating underground air that has flowed into the interior space.
2 . 開口部を有する圧力隔壁を前記開口部が地表面を向くように設置し、 前記圧力隔壁内を負圧にすることにより地下空気を前記圧力隔壁内に採 取して調査する調査装置であって、  2. A surveying device that installs a pressure bulkhead with an opening so that the opening faces the ground surface, and takes underground air into the pressure bulkhead by making the inside of the pressure bulkhead a negative pressure and investigates it. So,
前記圧力隔壁は外側圧力隔壁と内側圧力隔壁との少なくとも 2重構造 となっており、  The pressure bulkhead has at least a double structure of an outer pressure bulkhead and an inner pressure bulkhead,
前記外側圧力隔壁と内側圧力隔壁との間の外側空間及び前記内側圧力 隔壁内の内側空間を負圧にし、 かつ前記外側空間に流入した地下空気を 外部に放出する吸引手段と、  Suction means for making the outer space between the outer pressure partition and the inner pressure partition and the inner space in the inner pressure partition a negative pressure, and discharging the underground air flowing into the outer space to the outside;
前記内側空間に流入した地下空気を採取する手段とを備えてなる地下 空気調査装置。  Means for collecting the underground air flowing into the inner space.
3 . 前記吸引手段は前記外側圧力隔壁に連結され、 前記内側圧力隔壁に は前記外側空間と前記内側空間とを連通する連通孔が形成されているこ とを特徴とする請求の範囲第 2項記載の地下空気調査装置。  3. The suction means is connected to the outer pressure partition, and the inner pressure partition is formed with a communication hole communicating the outer space and the inner space. Underground air survey device as described.
4 . 前記外側圧力隔壁の開口部に外側空間への大気の流入を遮断する気 密保持部材が設けられていることを特徴とする請求の範囲第 2項記載の 地下空気調査装置。 4. The underground air survey device according to claim 2, wherein an airtightness retaining member that blocks inflow of air into an outer space is provided at an opening of the outer pressure partition.
5 . 前記気密保持部材は、 前記外側圧力隔壁の前記開口部に取り付けら れたリング状弾性体であることを特徴とする請求の範囲第 4項記載の地 下空気調査装置。 5. The underground air inspection device according to claim 4, wherein the airtight holding member is a ring-shaped elastic body attached to the opening of the outer pressure bulkhead.
6 . 前記気密保持部材は、 地中に埋め込まれる筒状体であることを特徴 とする請求の範囲第 4項記載の地下空気調査装置。  6. The underground air survey device according to claim 4, wherein the airtight holding member is a tubular body embedded in the ground.
7 . 前記地下空気を採取する手段は、 前記外側圧力隔壁及び内側圧力隔 壁にそれぞれ設けられた採取孔と、 これらの採取孔を通して前記内側空 間に挿入されて地下空気を吸引採取する採取管とを備えてなる請求の範 囲第 2項記載の地下空気調査装置。  7. The means for collecting the underground air includes: a collection hole provided in each of the outer pressure partition wall and the inner pressure partition wall; and a collection pipe which is inserted into the inner space through the collection holes to suction and collect the underground air. 3. The underground air survey device according to claim 2, comprising:
8 . 浄化対象としている地質層の地表面上に、 密閉空間を区画形成した 後、 '  8. After forming an enclosed space on the surface of the geological layer to be purified,
吸引装置によって前記密閉空間内の空気を吸引して該密閉空間内を負 圧とすることにより、 前記地質層中に含まれる揮発性有機化合物などの 汚染物質を前記密閉空間内に吸引し、  By suctioning air in the closed space with a suction device to make the inside of the closed space a negative pressure, a contaminant such as a volatile organic compound contained in the geological layer is sucked into the closed space,
さらに、 吸引した汚染物質を前記吸引装置によって外部に吸引排出す ることを特徴とする非破壊式地質汚染浄化方法。  Further, a non-destructive geological pollution purification method, wherein the sucked pollutant is sucked and discharged to the outside by the suction device.
9 .. 前記密閉空間は開口部を有する圧力隔壁を、 前記開口部が地表面を 向くように設置することにより形成されることを特徴とする請求の範囲 第 8項記載の非破壊式地質汚染浄化方法。  9. The non-destructive geological pollution according to claim 8, wherein the enclosed space is formed by installing a pressure bulkhead having an opening so that the opening faces the ground surface. Purification method.
1 0 . 前記開口部の周囲に前記圧力隔壁内への大気の流入を遮断する手 段を施すことを特徴とする請求の範囲第 9項記載の非破壊式地質汚染浄 化方法。  10. The method for purifying nondestructive geological pollution according to claim 9, wherein a means for blocking the inflow of air into the pressure bulkhead is provided around the opening.
1 1 . 前記大気の流入を遮断する手段は、 前記開口部の周囲に盛土を敷 設すること、 あるいは前記開口部を地表面下に埋め込むことであること を特徴とする請求の範囲第 1 0項記載の非破壊式地質汚染浄化方法。 11. The means for blocking the inflow of the air, comprising: laying an embankment around the opening or embedding the opening below the ground surface. The method for purifying non-destructive geological pollution according to claim 1.
1 2 . 浄化対象としている地質層の地表面上に開口部が地表面を向くよ うに設置され、 内部を負圧とすることにより前記地質層中に含まれる揮 発性有機化合物などの汚染物質を吸引するための圧力隔壁であって、 前記開口部に大気の流入を遮断する気密保持部材を設けたことを特徴 とする地質汚染浄化に使用する圧力隔壁。 1 2. The opening faces the ground surface of the geological layer to be purified. A pressure barrier for sucking contaminants such as volatile organic compounds contained in the geological formation by applying a negative pressure to the inside, and an airtight seal for blocking the inflow of air into the opening. A pressure bulkhead used for purification of geological pollution, which is provided with a holding member.
1 3 . 前記気密保持部材は、 地表面の形状に倣って変形可能なリング状 弾性体からなることを特徴とする請求の範囲第 1 2項記載の地質汚染浄 化に使用する圧力隔壁。  13. The pressure bulkhead used for purifying geological contamination according to claim 12, wherein the airtight holding member is formed of a ring-shaped elastic body that can be deformed according to the shape of the ground surface.
1 4 . 前記気密保持部材は、 前記開口部の外周に広がる広がり部を有す るシート状弾性体からなることを特徴とする請求の範囲第 1 2項記載の 地質汚染浄化に使用する圧力隔壁。  14. The pressure bulkhead used for purifying geological pollution according to claim 12, wherein the airtight holding member is formed of a sheet-like elastic body having a spread portion extending around the outer periphery of the opening. .
1 5 . 前記気密保持部材は、 前記地質層中に埋め込まれる硬質の筒状体 からなることを特徴とする請求の範囲第 1 2項記載の地質汚染浄化に使 用する圧力隔壁。  15. The pressure bulkhead for use in purifying geological pollution according to claim 12, wherein the airtight holding member is formed of a hard cylindrical body embedded in the geological layer.
PCT/JP2002/009942 2001-09-27 2002-09-26 Nondestructive method and device for investigating underground air, nondestructive method for controlling contamination of soil, and pressure partition used for the control WO2003029782A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001297719A JP3965505B2 (en) 2001-09-27 2001-09-27 Underground air survey method and apparatus
JP2001-297719 2001-09-27
JP2001-382234 2001-12-14
JP2001382234 2001-12-14

Publications (1)

Publication Number Publication Date
WO2003029782A1 true WO2003029782A1 (en) 2003-04-10

Family

ID=26623126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/009942 WO2003029782A1 (en) 2001-09-27 2002-09-26 Nondestructive method and device for investigating underground air, nondestructive method for controlling contamination of soil, and pressure partition used for the control

Country Status (1)

Country Link
WO (1) WO2003029782A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112611858A (en) * 2020-10-20 2021-04-06 浙江省海洋水产研究所 Toxicity experimental device for volatile organic compounds

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513719Y2 (en) * 1974-03-28 1980-03-27
JPS60156437U (en) * 1984-03-28 1985-10-18 理研計器株式会社 Ground gas sampling device
JPH11281605A (en) * 1998-03-30 1999-10-15 Osaka Gas Co Ltd Gas measuring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513719Y2 (en) * 1974-03-28 1980-03-27
JPS60156437U (en) * 1984-03-28 1985-10-18 理研計器株式会社 Ground gas sampling device
JPH11281605A (en) * 1998-03-30 1999-10-15 Osaka Gas Co Ltd Gas measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112611858A (en) * 2020-10-20 2021-04-06 浙江省海洋水产研究所 Toxicity experimental device for volatile organic compounds

Similar Documents

Publication Publication Date Title
US7278800B2 (en) Method of installing subsurface barrier
US6910829B2 (en) In situ retreival of contaminants or other substances using a barrier system and leaching solutions and components, processes and methods relating thereto
JP2011167685A (en) Advanced containment system
CN111872095B (en) Flexible bushing and pollution site monitoring method combined with flexible bushing
Wilson et al. In situ pore-liquid sampling in the vadose zone
US7153061B2 (en) Method of in situ retrieval of contaminants or other substances using a barrier system and leaching solutions
WO2003029782A1 (en) Nondestructive method and device for investigating underground air, nondestructive method for controlling contamination of soil, and pressure partition used for the control
Furukawa et al. Improved slant drilling well for in situ remediation of groundwater and soil at contaminated sites
JP4044794B2 (en) Non-destructive geological pollution purification method and pressure bulkhead used therefor
JP3433389B2 (en) How to detect water leaks and air leaks from shutoff structures
JP3605673B2 (en) Soil pollution detector
JP5789289B2 (en) Survey method for contaminated soil
Eiswirth et al. Detection of contaminant transport from damaged sewerage systems and leaky landfills
JP3782845B2 (en) Method for measuring air permeability and air permeability in contaminated strata or waste collection points
Bishop et al. A low-cost dedicated multi-level groundwater sampling system
CN220568431U (en) Soil sampling device
O'Melia et al. Dual-phase vacuum extraction technology for soil and ground-water remediation: A case study
Hubbell et al. Design, installation, and uses of combination ground water and gas sampling wells
JP3965505B2 (en) Underground air survey method and apparatus
US10590765B1 (en) Well sampling system incorporating corrugated and slotted injection system and method of use
CN114888066A (en) Flexible lining method and method for treating, monitoring and treating polluted site by using same
WO2002062668A2 (en) Subsurface materials management and containment system, components thereof and methods relating thereto
KR20030055225A (en) Non-destructive inspection method for geological features and apparatus therefor
PARSONS ENGINEERING SCIENCE INC DENVER CO Bioventing Pilot Test Work Plan for Closed Waste POL Pit, SWMU 14, Fort Rucker, Alabama
PARSONS ENGINEERING SCIENCE INC ALAMEDACA PART I: Bioventing Pilot Test Work Plan for South Gas Station (SGS) Site Fuel Storage Area G (Site 1) Travis Air Force Base, California. PART II: Draft Interim Pilot Test Results for South Gas Station (SGS) Site Fuel Storage Area G (Site 1) Travis Air Force Base, California

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AU BA BB BR BZ CA CN CR CU DM DZ EC GD GE HR HU ID IL IS KP KR LC LK LR LT LV MA MG MN MX NO NZ OM PH PL RO SG SI TT UA US UZ VN YU

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase