WO2003028074A1 - Diaphragm device, projection optical system and projection exposure device, and micro-device producing method - Google Patents

Diaphragm device, projection optical system and projection exposure device, and micro-device producing method Download PDF

Info

Publication number
WO2003028074A1
WO2003028074A1 PCT/JP2002/009956 JP0209956W WO03028074A1 WO 2003028074 A1 WO2003028074 A1 WO 2003028074A1 JP 0209956 W JP0209956 W JP 0209956W WO 03028074 A1 WO03028074 A1 WO 03028074A1
Authority
WO
WIPO (PCT)
Prior art keywords
aperture
diaphragm
opening
blade
diaphragm blade
Prior art date
Application number
PCT/JP2002/009956
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Tamaoki
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2003531506A priority Critical patent/JPWO2003028074A1/en
Publication of WO2003028074A1 publication Critical patent/WO2003028074A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/005Diaphragms

Definitions

  • the present invention relates to a diaphragm apparatus, a projection optical system, a projection exposure apparatus, and a microdevice manufacturing method.
  • the present invention provides a stop device that adjusts the size of an aperture in an optical path, a projection optical system that changes the size of a numerical aperture by an aperture stop, and a mask pattern formed by a light flux based on the numerical aperture defined by the aperture stop.
  • the present invention relates to an exposure apparatus that exposes a substrate, and a method of manufacturing a micro device that is manufactured by exposing a photosensitive substrate with a pattern of a mask. Background art
  • a mask or reticle (hereinafter, referred to as a reticle) has been used in a lithographic process, which is one of the manufacturing processes for imaging devices such as semiconductor devices, CCDs, liquid crystal display devices, and thin-film magnetic heads.
  • Various exposure apparatuses for transferring a circuit pattern formed on a substrate eg, a wafer or a glass plate) coated with a resist (photosensitive agent) are used.
  • a reticle pattern is projected onto a wafer using a projection optical system in accordance with the miniaturization of the minimum line width (device rule) of a pattern accompanying the high integration of an integrated circuit in recent years.
  • a reduction projection exposure apparatus that performs reduction transfer is mainly used.
  • This reduction projection exposure apparatus is a step-and-rebeat type static exposure reduction projection exposure apparatus (so-called stepper) that sequentially transfers a reticle pattern to a plurality of shot areas (exposure areas) on a wafer.
  • the reticle and the wafer are moved one-dimensionally in synchronism with the reticle and the wafer as described in Japanese Patent Application Laid-Open No. 8-16643, etc.
  • a step-and-scan type scanning exposure type exposure apparatus (so-called scan Jung 'stepper) for transferring an image to an area is known.
  • FIG. 16 shows an example of a conventional diaphragm device.
  • the drawing device 50 shown in this figure has a donut-shaped annular part 51 and a metal part 53 having an L-shape in sectional view having a peripheral wall part 52 erected on the outer peripheral part of the annular part 51. And a wheel set 54 rotatably fitted to the peripheral wall portion 52 of the metal piece 53, and a plurality of pieces arranged in a gap between the annular portion 51 and the wheel set 54 of the metal piece 53 (here In this case, 10 diaphragm blades 55 are provided.
  • Each of the diaphragm blades 5 has a planar shape that forms a part of a ring shape, and a shaft portion (a dowel) (not shown) provided at one end side (counterclockwise direction side) is rotatably supported by the hardware 53.
  • a shaft (dove) (not shown) provided on the other end side (clockwise side) is formed in a wobble 54 along a substantially radial direction of the annular portion 51 (not shown). It is supported so that it can move freely.
  • the aperture blades 55 are annularly mounted so as to be overlapped with each other by being inserted under the adjacent aperture blades 55 on the other end side.
  • the outer contour on the inner diameter side (the center side of the annular portion 51) of each of the aperture blades 55 is formed in a substantially circular arc shape.
  • the opening S is set.
  • the other end side of the diaphragm blade 55 is located at the center side (the inner peripheral side) of the annular portion 51 when the wicker wheel 54 rotates relative to the hardware 53, for example, clockwise. ), The other end of the diaphragm blade 55 rotates toward the outer periphery of the annular portion 51 when rotated counterclockwise, so that the size (aperture) of the opening S is adjusted (changed).
  • the conventional diaphragm device as described above has the following problems.
  • the dowels of the diaphragm blades that fit with the wheel are fixed to the diaphragm blades by pinching the pins, so it is difficult to withstand high operation times as durability.
  • the outer contour of the aperture S is an approximate arc synthesized by the arc contours on the inner diameter side (substantially the center side of the aperture S) of the plurality of diaphragm blades, but when the aperture s is set to the maximum diameter,
  • the conventional arc shape is formed so that the error is minimized at the maximum diaphragm diameter.
  • such a circular arc profile has a problem that the deviation from the perfect circle in the outer contour (diameter) of the opening s at the minimum aperture diameter increases, that is, the roundness decreases. For this reason, it has been difficult for conventional aperture devices to have a wide adjustable aperture size (aperture range).
  • the present invention has been made in consideration of the above points, and has a diaphragm device capable of withstanding a high number of operations and securing a wide diaphragm range, a projection optical system having the diaphragm device, and An object of the present invention is to provide a projection exposure apparatus and a micro device manufactured by the projection exposure apparatus. It is another object of the present invention to provide a projection optical system and a projection exposure apparatus capable of accurately projecting a pattern image of a mask onto a substrate, and a method of manufacturing a microphone opening device that achieves high integration. Disclosure of the invention
  • the present invention employs the following configuration.
  • An aperture device is an aperture device (16) having a plurality of aperture blades (32 or 61) for adjusting the size of the aperture (S), wherein the plurality of aperture blades (32 or 61) are provided. 6 1) is linearly moved to any center of the aperture (S 2) at the center side of the aperture (S) toward the approximate center of the aperture, out of the external contour of each diaphragm blade (32 or 61). Sa A driving mechanism (33).
  • the aperture blade (32 or 61) having a shape obtained by dividing the ring shape into a plurality in the circumferential direction has a circumferential gap between the adjacent aperture blade (32 or 61). May be overlapped to such an extent that is not formed. Therefore, even when the diaphragm blades come into contact with each other, the contact area is reduced, and the abrasion that occurs on the diaphragm blades (32 or 61) can be reduced, and it is possible to withstand a high number of operations.
  • Each of the aperture blades may be arranged with a gap between adjacent aperture blades in a direction substantially parallel to the central axis of the opening. In this case, the contact between the aperture blades can be prevented, and the generation of dust and abrasion due to the contact can be further suppressed to withstand a higher number of operations.
  • Every one of the aperture blades may be arranged in the same plane substantially perpendicular to the central axis of the opening. In this case, the installation range of the diaphragm blade in the center direction of the opening can be reduced, and the size of the apparatus can be reduced.
  • the contour on the center side of the opening may be formed to have an arc portion having a predetermined curvature and a straight line portion connected from the arc portion. In this case, irrespective of the size of the aperture diameter, it is possible to prevent a decrease in the roundness of the aperture, thereby making it possible to increase the adjustable aperture range of the aperture and to realize a highly accurate aperture diameter.
  • the drive mechanism may include a rotating member that rotates around a substantially central axis of the opening as a rotation axis, and a converting member that converts the rotational movement of the rotating member into a linear movement of the plurality of aperture blades.
  • a bearing may be mounted on a convex portion that slides by fitting into the fitting groove. In this case, it is possible to withstand a higher number of operations for the linear movement of the aperture blade.
  • the aperture device may include an aperture blade base that holds the aperture blade so as to be capable of the linear movement.
  • the aperture range of the adjustable aperture can be widened without increasing the size in a plane, and the amount of rotation of the rotating member can be reduced when adjusting the aperture diameter of the aperture. The time required can be shortened.
  • the diaphragm blade base may linearly move in the same direction as the direction of movement of the diaphragm blade in accordance with the linear movement of the diaphragm blade.
  • a rotating member that rotates about a substantially central axis of the opening as a rotation axis; and a rotational movement of the rotating member that linearly moves the diaphragm blade, and after the diaphragm blade moves,
  • a link mechanism for linearly moving the aperture blade base In this case, the aperture range of the adjustable aperture can be widened without increasing the plane by the speed increase by the link mechanism.
  • the diaphragm blade may be provided with a guide member for guiding the linear movement of the diaphragm blade base. In this case, downsizing of the aperture device and the projection optical system is realized.
  • the projection optical system according to the present invention is a projection optical system (PL) having an aperture stop (16) capable of changing a numerical aperture, wherein the aperture stop is used as one of claims 1 to 7.
  • a diaphragm device (16) according to (1) is used.
  • the projection optical system of the present invention dust generation due to friction of the aperture blades (32 or 61) is reduced, and for example, an adverse effect that occurs when projecting a pattern can be suppressed, and the projection optical system can be used for a long time.
  • the size of the numerical aperture can be made variable throughout.
  • a projection exposure apparatus is a projection exposure apparatus (1) for projecting and exposing a pattern image of a mask (R) illuminated by a light beam onto a substrate (W).
  • the aperture device (16) is used as an aperture stop that makes the aperture variable.
  • a pattern image of a mask (R) can be accurately projected and exposed on a substrate (W) for a long period of time with little influence of dust generation.
  • An aperture stop included in the stop device may be arranged on a pupil plane of the projection optical system.
  • the numerical aperture in the projection optical system accurate and variable over a high number of operations, it is possible to obtain an effect that a fine pattern of a mask can be accurately formed on a substrate.
  • the method for manufacturing a micro device according to claim 9 or 10 wherein the method for manufacturing a micro device is a method for manufacturing a micro device by exposing a photosensitive substrate (W) with a pattern image of a mask (R).
  • the method includes the steps of: exposing the self-photosensitive substrate with the device pattern image of the mask using the apparatus (1); and developing the exposed photosensitive substrate. Therefore, the microdevice of the present invention can be manufactured with predetermined characteristics and can form a fine pattern, so that high integration can be realized.
  • FIG. 1 is a view showing an embodiment of the present invention, and is a schematic configuration diagram of a projection exposure apparatus.
  • FIG. 2 is an external perspective view of a first embodiment of the aperture stop constituting the projection exposure apparatus.
  • FIG. 3 is an external perspective view of a linear guide supporting the aperture blade.
  • FIG. 4 is a right side view of FIG.
  • FIG. 5 is a plan view of hardware that forms the aperture stop.
  • FIG. 6 is a partial cross-sectional view of the aperture stop.
  • FIG. 7 is a sectional view taken along line AA in FIG.
  • FIG. 8 is a plan view of the arrow wheel constituting the aperture stop.
  • FIG. 9 is an exploded perspective view of the aperture stop according to the second embodiment.
  • FIG. 10 is an external perspective view in which two diaphragm blades are configured to be relatively movable.
  • FIG. 11 is a side sectional view of FIG.
  • FIG. 12 is an external perspective view of a saddle member constituting the aperture stop.
  • FIG. 13 is a cross-sectional view in which a linear guide is coupled to an aperture blade.
  • FIG. 14 is a side sectional view of FIG.
  • FIG. 15 is a diagram illustrating the operation of the link mechanism.
  • FIG. 16 is an external perspective view showing an example of a conventional aperture stop.
  • FIG. 17 is a flowchart illustrating an example of a semiconductor device manufacturing process. BEST MODE FOR CARRYING OUT THE INVENTION
  • the aperture device of the present invention is applied to a projection exposure device that exposes a substrate to a reticle pattern via a projection optical system.
  • the substrate is a wafer for manufacturing semiconductor devices
  • the projection exposure apparatus is a scanning projection exposure apparatus that scans and exposes the reticle pattern onto the wafer by synchronously moving the reticle and the wafer. Explanation using I do.
  • the same components as those in FIG. 16 shown as a conventional example are denoted by the same reference numerals, and description thereof will be simplified.
  • FIG. 1 shows a schematic configuration of a projection exposure apparatus 1 according to the present invention.
  • an ArF excimer laser beam (energy beam) as a light beam having an output wavelength of, for example, 193 nm is emitted from the light source unit 2 to the illumination apparatus side.
  • the light is emitted toward the optical system IU.
  • the main body of the exposure apparatus is housed in a chamber 13 filled or circulated with an inert gas such as nitrogen gas that transmits exposure light, and is controlled so that the temperature and the humidity are kept constant. .
  • the light source unit 2 includes a light source that oscillates pulse light as a substantially parallel light beam narrowed to avoid the oxygen absorption band, and the optical path of the narrowed laser light is located between the illumination optical system IU.
  • a beam matching unit BMU
  • BMU beam matching unit
  • a beam shaping optical system that shapes the laser beam into a predetermined cross-sectional shape, and the like.
  • the laser light incident on the illumination optical system IU is reflected by the reflection mirror 5 and guided to a fly-eye lens 6 as an optical integrator.
  • the fly-eye lens 6 is configured by bundling a large number of lens elements. On the exit surface side of this lens element, a large number of light source images (secondary light sources) corresponding to the number of lens elements constituting the lens element are provided. It is formed.
  • one fly-eye lens 6 is provided, but a fly-eye lens as a second optical integrator may be provided between the fly-eye lens 6 and the light source unit 2 or the reflection mirror 5.
  • an internal reflection type aperture-shaped optical member may be used as an optical integrator.
  • a turret plate 7 having a predetermined shape and a plurality of aperture stops of a predetermined size is provided. ing.
  • the turret plate 7 is driven to rotate by a motor 8, and one aperture stop is selected according to the pattern of the reticle (mask) R to be transferred onto the wafer (substrate, photosensitive substrate) W, and the illumination optical system IU Inserted in the optical path.
  • the turret plate 7 and the motor 8 constitute a variable aperture stop device for an illumination system.
  • Light beams from a number of secondary light sources formed by the fly-eye lens 6 pass through a variable aperture stop and are split into two light paths by a beam splitter 9, and the reflected light is converted into an optical path.
  • the illuminance of the illumination light is detected by being guided to the grater sensor 10.
  • the signal S1 corresponding to the detected illuminance is input to the control circuit 40.
  • the transmitted light is driven by the relay lens 11 and the driving mechanism 12a, passes through the field stop 12 that defines the illumination area for the reticle R, passes through the relay lens 13 and is reflected by the reflection mirror 14
  • the light is condensed by a condenser optical system 15 composed of a plurality of refractive optical elements such as lenses.
  • the optical elements 5, 6, 7, 9, 9, 11, 12, 13, 14, and 15 described above constitute an illumination optical system IU.
  • the laser light emitted from the illumination optical system IU illuminates the circuit pattern (pattern) formed on the reticle R uniformly in a superimposed manner. Then, an image of the circuit pattern on the reticle R is formed on the wafer W by the projection optical system PL, the resist applied on the wafer W is exposed, and the image of the circuit pattern is transferred onto the wafer W.
  • the reticle R is held and fixed to the reticle stage 18 by the reticle holder 17 at the object plane of the projection optical system PL.
  • the reticle stage 18 is provided on the base 22 so as to move two-dimensionally along a plane orthogonal to the plane of FIG.
  • the reticle holder 17 is provided with a mirror 21.
  • the laser light from the laser interferometer 20 is reflected by the mirror 21 and enters the laser interferometer 20. Eight positions are measured with high accuracy.
  • the position information is input to the control circuit 40, and the control circuit 40 controls the position of the reticle R by driving the reticle stage drive motor 19 based on the position information.
  • the projection optical system PL has a configuration in which refractive optical elements such as lenses are all arranged in a plurality of stages, and at least one lens element (for example, a reticle) is used to correct aberrations (magnification errors and the like).
  • a drive mechanism (not shown) that moves the lens element (the lens element closest to R) is provided.
  • An aperture stop (stop device) 16 is arranged on or near the pupil plane of the projection optical system PL (entrance pupil).
  • the aperture stop 16 in the projection optical system PL and the variable aperture stop in the illumination optical system IU are arranged at optically conjugate positions.
  • the size of the aperture stop 16 can be changed so as to change the numerical aperture of the projection optical system PL. The details of the aperture stop 16 will be described later.
  • the wafer W is transferred from the projection optical system PL to the wafer stage 27 by the wafer holder 26. It is located on the image plane.
  • the wafer stage 27 is provided so as to move two-dimensionally along a plane orthogonal to the plane of FIG.
  • a mirror 31 is set on the wafer stage 27, and the laser light from the laser interferometer 30 is reflected by the mirror 31 and enters the laser interferometer 30. Stage 27 position is measured.
  • the position information is input to the control circuit 40, and the control circuit 40 controls the position of the wafer W by driving the wafer stage driving motor 29 based on the position information.
  • An illuminance sensor 28 is provided on the wafer stage 27, and detects illuminance (energy) of exposure light (laser light) applied to the wafer W.
  • the detection signal of the illuminance sensor 28 is output to the control circuit 40.
  • the aperture stop 16 is composed of a plurality of (in this case, 12) aperture blade bases 32, which are arranged equally in an annular shape and form an opening S by the outer contour on the inner diameter side, and And a drive mechanism 33 for linearly moving the diaphragm blade base 32 forward and backward toward the center of the opening S.
  • an aperture blade base 32 is arranged on or near the pupil plane of the projection optical system PL.
  • each of the aperture blade bases 32 is formed of a material that does not generate outgas (eg, an organic substance) that absorbs exposure light, for example, stainless steel, and has a shape obtained by dividing an annular shape in the circumferential direction. It comprises a ring-shaped portion 34 presenting, and rectangular portions 35, 35 having a substantially rectangular shape in plan view located on both sides in the circumferential direction of the ring-shaped portion 34.
  • the contour 34a on the center side (ie, the inner diameter side) of the opening S has an arc shape (arc portion) formed with a predetermined curvature.
  • the outline 35a on the center side of the opening S is a linear shape (linear portion) formed continuously from the outline 34a on the center side of the annular portion 34. ing.
  • the circumferential size of the diaphragm blade base 32 is such that when the diaphragm blade base 32 is positioned at the maximum diameter setting position of the opening S, a gap is formed between the circumferentially adjacent diaphragm blade bases 32.
  • the rectangular The center side contour 35 a overlaps the diaphragm blade base 32 adjacent in the circumferential direction and is set to the minimum size that does not form the outer diameter of the opening S. Therefore, when the opening S is set to the minimum diameter, the contour of the opening S is the center-side contour 34 a of the annular portion 34.
  • the drive mechanism 33 has an L-shape in cross section having a donut-shaped annular portion 51 and a peripheral wall portion 52 erected on the outer peripheral portion of the annular portion 51.
  • Hardware 5 3 a wheel (rotating member) 54 rotatably fitted to the peripheral wall 52 of the metal 5 3, a rotation drive unit (not shown) for rotating the wheel 54, FIGS.
  • FIGS. As shown in the figure, it is roughly composed of a linear guide (conversion member) 36 that supports the diaphragm blade base 32 and moves linearly.
  • the drive mechanisms 33 hardware 53, wickers 54, and linear guides 36 are installed inside the lens barrel of the projection optical system PL, and the rotary drive unit is installed outside the lens barrel, and dust generated by driving Etc. do not affect the projection characteristics of the projection optical system PL.
  • the linear guide 36 includes a guide portion 37 formed in a linear shape, and a moving body 38 to which the diaphragm blade base 32 is fixed and which moves linearly along the guide portion 37.
  • the moving body 38 is provided with a projection 41 on which a bearing 39 is mounted (see FIG. 4).
  • the hardware 53 has guides 37 on the linear guide 36 and grooves 42a and 42b for installing the moving body 38 at equal intervals around the center of the opening S. (At an interval of 30 °) and extend radially from the center.
  • the guide portion 37 is fixed to the grooves 42a and 42b, and the moving body 38 moves along the fixed guide portion 37.
  • the depth of the grooves 42a, 42b is determined by the distance between the adjacent diaphragm blade bases 32, which are fixed to the linear guide 36 when the linear guide 36 is mounted in the grooves 42a, 42b. Are set so as to be spaced from each other in the center direction of the opening S (the direction perpendicular to the paper surface in FIG. 5), that is, the direction substantially parallel to the center axis. Also, every other groove 42 a, 42 b is arranged so that each of the aperture blade bases 32 is disposed in the same plane substantially orthogonal to the center direction (center axis) of the opening S. Formed at different depths.
  • FIG. 6 is a sectional view taken along line AA in FIG.
  • a through hole 47 is formed in the peripheral wall portion 52 of the metal piece 53 at a position substantially at the same height as the wicker wheel 54 to open outward.
  • the through holes 47 are formed at three points at equal intervals (120 ° intervals) in the circumferential direction (see FIG. 5), and each through hole 47 extends over approximately 30 ° in the circumferential direction. It is formed.
  • fitting grooves 46 into which the protrusions 41 of the linear guides 36 are slidably fitted via bearings 39 are provided at equal intervals in the circumferential direction (30). At 12 ° intervals).
  • Each fitting groove 46 has a position where the inner diameter side contour of the diaphragm blade base 32 forms the minimum aperture diameter of the opening S and a position of the convex portion 41, and the inner diameter side contour of the aperture blade base 32 has the opening S
  • the projection 41 is formed in a linear shape that is connected to the position of the convex portion 41 when forming the maximum aperture diameter at a predetermined angle (for example, 20 °) in the circumferential direction.
  • each of the fitting grooves 46 is such that the position of the convex portion 41 when forming the maximum aperture diameter of the opening S is different from the position of the convex portion 41 when forming the minimum aperture diameter of the opening S. It is formed in a linear shape located clockwise.
  • a fluorine-based lubricant that generates little gas is used.
  • the protrusions 41 themselves are also formed of a fluorine-based resin.
  • three levers 48 are provided on the outer periphery of the arrow wheel 54 at positions corresponding to the positions of the through holes 47 of the hardware 53.
  • the above-described rotation drive unit rotates the arrow wheel 54 through the lever 48.
  • the rotation drive unit drives the rotation wheel 54 around the central axis of the opening S with respect to the hardware 53, for example, clockwise in FIG. 2, the protrusion fits into the fitting groove 46 of the rotation wheel 54.
  • the part 41 moves toward the center of the opening S when the moving body 38 is guided by the guide part 37.
  • the rotational movement of the arrow wheel 54 is converted into a linear movement by the linear guide 36, and the convex portion 41 moves toward the center of the opening S. Due to the movement of the convex portion 41, the aperture blade base 32 opens any point of the center side contours 34a and 35a with a gap between the adjacent aperture blade base 32.
  • the aperture device of the present embodiment differs from the conventional one in that any point on the inner contour 34 a and 35 a of the aperture blade moves linearly.
  • the configuration of the diaphragm device of this embodiment is different from that of the diaphragm device of the present embodiment.
  • the protrusion 41 is rotated with respect to the center of the opening S in the reverse operation by rotating counterclockwise in FIG.
  • the aperture diameter of the aperture S is increased. Therefore, by adjusting the rotation amount (rotation angle) and the rotation direction of the impeller 54, it is possible to control the movement amount of the diaphragm blade base 32 that advances or retreats to the approximate center, that is, the diaphragm diameter of the opening S. it can.
  • the rectangular portion 35 forms a part of the opening S
  • the center side contour 35a of the rectangular part 35 is a linear shape that is continuous from the center side contour 34a of the ring-shaped part 34, the center is compared to the case of an arc shape with the center side contour 34a extended. Part of the side profile does not protrude into the opening S and does not reduce the roundness.
  • the reticle R on which the pattern to be transferred is drawn is transferred to the reticle stage 1 by a reticle loading mechanism (not shown). 8 to be transported and placed.
  • the position of the reticle R is measured by a reticle alignment system (not shown) so that the reticle R is installed at a predetermined position, and the reticle R is controlled by a reticle position control circuit (not shown) according to the result. Set the position to a predetermined position.
  • the surface of the wafer W to which the pattern of the reticle R is transferred is coated in advance with a resist, which is a photosensitive material, and in this state, the wafer W is transported by a wafer loading mechanism (not shown) and is placed on the wafer stage 27. Will be installed.
  • the wafer W is aligned and held and fixed on the wafer stage 27.
  • the wafer W placed on the wafer stage 27 does not have a pattern on the wafer W, and is located at a predetermined position on the wafer stage 27, for example, a wafer.
  • W is installed at a position determined based on its outer diameter (such as orientation flat or notch).
  • the reticle stage 18 and the wafer stage 27 are designed so that the pattern to be transferred has a predetermined positional relationship with the pattern previously transferred on the wafer W. Control the position of.
  • the reticle is adjusted via the motor 8 in the variable aperture stop for the illumination system so that the optimum resolution and depth of focus are obtained.
  • the rotation drive unit of the aperture stop 16 in the projection optical system PL is driven to change the size of the numerical aperture.
  • the pattern of reticle R is a so-called rough pattern that requires relatively loose precision when performing double exposure, or when the wiring density is relatively low, that is, when it is a so-called isolated line Set a small numerical aperture to increase the depth of focus.
  • the pattern of the reticle R is a so-called fine pattern that requires strict accuracy when performing double exposure, or when the wiring density is relatively high, for example, a line-and-space pattern In such a case, the resolution is improved by setting a large numerical aperture.
  • a pattern image is projected and exposed on the wafer W by a step-and-scan method using a light beam having a numerical aperture defined by the illumination system variable aperture stop and the aperture stop 16.
  • a part of the pattern on the reticle R is selectively illuminated by the field stop 12, the reticle R is moved by the reticle stage 18, and the wafer W is synchronized with the reticle R by the wafer stage 27.
  • This is a so-called scanning type transfer that moves.
  • a step-and-repeat method in which the pattern on the reticle R to be transferred while the reticle R and the wafer W are stationary is illuminated and transferred at a time may be used.
  • the diaphragm blade base 32 is configured to linearly move back and forth toward the approximate center of the opening S, no gap is formed between the diaphragm blades adjacent in the circumferential direction. Therefore, even if the diaphragm blade bases 32 come into contact with each other, these contact portions are only at both circumferential ends of the respective diaphragm blade bases 32, which significantly reduces the contact area as compared with the conventional case. be able to. Therefore, dust generation and abrasion due to the contact between the aperture blade bases 32 can be largely suppressed, and the device can sufficiently withstand the high number of operations associated with the double exposure.
  • the center direction of the opening S (See Fig. 5 and Fig. 8 in the direction perpendicular to the plane of the paper.) By further suppressing it, it is possible to withstand even higher number of operations.
  • every other aperture blade base 32 is disposed in the same plane substantially orthogonal to the center direction of the opening S. Therefore, the installation range of the aperture blade base 32 in the center direction of the aperture S can be reduced, and the aperture stop 16 and the projection optical system PL, and further, the projection exposure apparatus 1 can be downsized.
  • the linear movement of the diaphragm blade base 32 is realized by a simple configuration in which the rotational movement of the yaw wheel 54 is converted into the linear movement by the linear guide 36, so that the structure is complicated. It is possible to contribute to miniaturization and cost reduction of the device without becoming unnecessary.
  • the center-side contour 35 a of the rectangular portion 35 located on both circumferential sides of the diaphragm blade base 32 is in direct contact with the center-side contour 34 a of the arc-shaped annular portion 34. Because of the linear shape, even if the diameter of the opening S that is larger than the radius of the opening S formed by the center-side contour 34 a is formed, the center-side contour 35 a protrudes into the opening S. There is no. Therefore, in this embodiment, regardless of the size of the aperture diameter, it is possible to prevent the roundness of the opening S from being reduced, and to increase the size (aperture range) of the adjustable aperture S.
  • the projection exposure apparatus 1 can accurately form a fine pattern of the reticle R on the wafer W, Higher integration can be achieved by enabling formation of fine patterns also in semiconductor devices.
  • FIG. 9 to FIG. 15 are diagrams showing a second embodiment of the present invention.
  • FIG. 9 is an exploded perspective view showing a second embodiment of the diaphragm device according to the present invention.
  • the aperture stop device 16 includes an aperture blade base 32 and an aperture blade 61, and a drive mechanism 33 that linearly moves the aperture blade base 32 and the aperture blade 61 toward the center of the opening S so as to be able to advance and retreat. It is roughly constituted from.
  • the aperture blades 61 are arranged on or substantially in the same plane as the pupil plane of the projection optical system PL.
  • the aperture blades 61 are made of stainless steel that absorbs exposure light and generate little outgas, and have a shape obtained by dividing the ring shape in the circumferential direction as shown in FIG. It comprises a ring-shaped portion 62 presenting, and rectangular portions 63, 63, which are located on both circumferential sides of the ring-shaped portion 62 and have a substantially rectangular shape in plan view.
  • the contour 62a on the center side (that is, the inner diameter side) of the opening S has an arc shape (arc portion) formed with a predetermined curvature.
  • the contour 63a on the center side of the opening S is a linear shape (linear portion) continuously formed from the center contour 62a of the annular portion 62. ing.
  • the center-side contour 6 3 a of the rectangular portion 6 3 overlaps with the circumferentially adjacent diaphragm blade 6 1, and the outer periphery of the opening S It is set to the minimum size that does not form a diameter. Therefore, when the opening S is set to the minimum diameter, the outline of the opening S is formed by the center-side outline 62 a of the annular portion 62.
  • the diaphragm blade base 32 does not form the outer diameter of the opening S. Therefore, when the diaphragm blade 61 is positioned at the minimum diameter setting position of the opening S, the outer diameter of the diaphragm blade 61 is smaller. That is, the size is set so that no gap is formed between the diaphragm blade 61 and the annular portion 51.
  • a rectangular frame 71 in a plan view is provided at the center in the width direction.
  • the frame body 71 is provided with a support portion 73 extending in the direction (radial direction) toward the center of the opening S at the center in the width direction. Openings 72, 72 are provided along the direction. As shown in FIG.
  • the frame 71 in the sectional view taken along the line BB in FIG. 10 has a U-shape. That is, the frame 71 has a box shape with the support portion 73 as a bottom plate, and the frame 71 has an internal space 74 formed therein. Further, as shown in FIG. 10, moving bodies 69, which constitute linear guides 66 described later, protrude from the diaphragm blade base 32 on both sides in the width direction of the frame 71. I have. A pair of the diaphragm blade base 32 and the diaphragm blade 61 is disposed in the same plane that is substantially orthogonal to the center direction (center axis) of the opening S every other as in the first embodiment. Like every other, they are installed at different heights.
  • the drive mechanism 33 includes a metal part 53 having an annular part 51 and a peripheral wall part 52, a wheel 5 4 rotatably fitted to the peripheral wall part 52 of the metal part 53, and a rotation for rotating the wheel 5 4.
  • Drive part 53 has a metal part 53 having an annular part 51 and a peripheral wall part 52, a wheel 5 4 rotatably fitted to the peripheral wall part 52 of the metal part 53, and a rotation for rotating the wheel 5 4.
  • the linear guide 65 includes a guide member 67 fixed to the aperture blade base 32 and a guide member 6 fixed to the aperture blade 61 as shown in FIG. 11. 7 and a moving body 6 8 that moves linearly along.
  • the guide member 67 has substantially the same width as the support portion 73 of the frame 71, and is provided along the support portion 73 in the internal space 74 by a fastening member 75 such as a mounting screw. Fixed.
  • a rectangular saddle member 76 shown in FIG. 12 is fixed to the moving body 68 so as to straddle the guide member 67 and the support portion 73.
  • the saddle member 76 has a flat plate portion 76 a disposed above the support portion 73 (the front side in FIG. 10 and the upper side in FIG. 13), and a longitudinal direction of the flat plate portion 76 a.
  • (Radial direction) Center position and width direction (Circumferential direction)
  • Legs 7 that are vertically suspended from both sides so as to pass through openings 7 2 of frame 7 1 and hold both sides of moving body 6 8 6b, 76b and the corner of the flat plate portion 76a are vertically installed so as to pass through the opening 72 of the frame 71, and as shown in FIG.
  • legs 76c to 76c for holding both ends in the vertical direction.
  • the leg portion 76c has a length in contact with the diaphragm blade 61, and the diaphragm blade 61 is formed by a leg member 76c ( That is, it is fixed (at four places) to the saddle member 76).
  • a shaft portion 78 protrudes from substantially the center of the flat plate portion 76a, and a bearing 79 is provided on the shaft portion 78 (see FIGS. 10 and 11).
  • the guides 66 are arranged on both sides of the guide 65 and the frame 71 in the circumferential direction.
  • the linear guide 66 includes a guide member 70 attached to a support ring 80 (see FIG. 10) fixed to the hardware 53, and a linear guide 66 provided on the diaphragm blade base 32 and along the guide member 70. And movable bodies 69. Each guide member 70 is installed in parallel with the guide member 67 of the linear guide 65.
  • the link mechanism 64 includes a base 81 having a rotating shaft 81 a that is rotatably fitted around a shaft parallel to the central axis of the opening S to the hardware 53, and a base 81. And a link portion 82 extending in a direction perpendicular to the central axis from the tip of the link. At the tip of the link portion 82, a fitting groove 83 extending in the length direction and opening to the hardware 53 side (the lower side in FIG. 15) and fitting with the bearing 79 of the saddle member 76 is provided. Is formed.
  • a shaft portion 84 protrudes upward from the base portion 81 side from the center in the length direction of the link portion 82, and the shaft portion 84 has a fitting groove 4 6 for a wheel wheel 54.
  • a bearing 85 slidably fitted on the bearing.
  • the fitting groove 46 has the position of the shaft portion 84 when the inner diameter side contour of the aperture blade 61 forms the minimum aperture diameter of the opening S, and the inner diameter side contour of the aperture blade 61 has the maximum aperture diameter of the opening S.
  • the shaft portion 84 at the time of forming the diameter is connected at a predetermined angle (for example, 20 °) in the circumferential direction and is tied, for example, in a straight line or when the wicker 54 is rotated, the rotation angle and It is formed in a shape expressed by a function that makes the relationship with the aperture diameter linear.
  • the bearing 85 moves along the fitting groove 46 of the wicker 54. Then, it moves to the center side of the opening S.
  • the link portion 82 provided with the bearing 85 is rotated counterclockwise in FIG. 9 around the axis of the rotating shaft 81a by the movement of the bearing 85.
  • the bearing 79 fitted into the fitting groove 83 of the link portion 82 has a distance between the rotating shaft 81a and the bearing 85, and the rotating shaft 81a. It moves a distance according to the ratio of the distance from 8 1 a to the bearing 79.
  • the distance from the rotating shaft 81a to the bearing 85 is L1
  • the distance from the rotating shaft 8la to the bearing 79 is L2
  • the moving distance of the bearing 85 is S1.
  • the shaft accompanying the movement of the bearing 85 is expressed by the following equation.
  • the bearing 79 moves a distance (L 2 Z L 1) times the moving distance of the bearing 85.
  • the diaphragm blade 61 moves relative to the diaphragm blade base 32 toward the center of the opening S along the guide member 67 via the saddle member 76 and the moving body 68. .
  • the saddle member 76 engages with the frame 71 at the center side of the opening S as shown in FIG. Movement is restricted.
  • the diaphragm blade base 32 moves linearly along the guide member 70 of the linear guide 66 this time.
  • the diaphragm blade 61 moves again toward the center of the opening S with the linear movement of the diaphragm blade base 32.
  • the diaphragm blade 61 linearly moves along the guide member 70 of the linear guide 66 that linearly moves the diaphragm blade base 32.
  • the movement of the bearing 85 causes the diaphragm blade base 32 and diaphragm blade 61 to move physically.
  • the center side contour of the diaphragm blade base 32 is set so as not to protrude beyond the center side contour of the diaphragm blade 61. Therefore, there is no problem in forming the aperture diameter by the aperture blades 61.
  • the rotation of the rotating shaft 8 1a by rotating the wicker wheel 54 with respect to the hardware 53 in the counterclockwise direction in FIG. 5 retreats with respect to the center of the opening S.
  • the diaphragm blade 61 moves in a direction away from the central axis of the opening S, and the diaphragm diameter of the opening S is enlarged. Therefore, by adjusting the amount of rotation (rotation angle) and the direction of rotation of the impeller 54, the amount of movement of the diaphragm blade 61, which advances or retreats to the approximate center, ie, the diameter of the aperture S, can be controlled to an arbitrary size. can do.
  • the aperture blade 61 is configured to move linearly using both the linear guides 65 and 66.
  • the diaphragm blade base 32 and the diaphragm blade 61 that can move relative to each other are used. Therefore, even if the aperture blade having the same size as that of the first embodiment is used, the size of the adjustable aperture S (aperture range) can be doubled without increasing the aperture stop 16 in a planar manner. Can be as wide as possible.
  • the guide member 67 for relatively moving the aperture blade base 32 and the aperture blade 61 is provided on the aperture blade base 32, it is compared with a case where the guide member 67 is provided at another location.
  • the aperture stop 16 and, consequently, the projection optical system PL can be reduced in size, and the amount of rotation of the rotating member 54 can be reduced when adjusting the aperture diameter of the aperture S. The time required for work can be reduced.
  • the force using the link mechanism 64 to relatively move the aperture blade base 32 and the aperture blade 61 is not limited to this.
  • the aperture blade base 3 2 The wire that is engaged at the center edge of the wire is folded back, and the wire tip is fixed to the diaphragm blade 61, or the gear with a gear ratio of 1: 2 is provided between the diaphragm blade base 32 and the diaphragm blade 61. It is also possible.
  • the aperture device of the present invention is applied to the aperture stop of the projection optical system PL.
  • the present invention is not limited to this, and may be applied to a variable aperture stop for an illumination system.
  • the moving body 38 of the linear guide 36 is provided with the convex portion 41 and the whirler 54 is provided with the fitting groove 46.
  • the moving body 38 has A configuration may be adopted in which a fitting groove is provided, and a convex portion is provided in the wheel 54. Also in this case, it is desirable to provide a bearing on the projection.
  • the aperture blade base 32 and the aperture blade 61 are configured to move linearly in a direction orthogonal to the center direction of the opening S.
  • the adjacent aperture blade bases 32 approach the center.
  • the linear movement direction may be slightly inclined within an allowable error range with respect to the above-mentioned orthogonal direction so as to gradually separate in the center direction.
  • the diaphragm blade base 32 and the diaphragm blade 61 are deflected by their own weight toward the center, and can be prevented from coming into contact with adjacent diaphragm blades even when approaching.
  • the substrate of the present embodiment is not only a semiconductor wafer W for a semiconductor device, but also a glass substrate for a liquid crystal display device, a ceramic wafer for a thin film magnetic head, or a mask or reticle used in an exposure apparatus.
  • the original plate synthetic quartz, silicon wafer
  • the projection exposure apparatus 1 includes a step-and-scan type scanning exposure apparatus (scanning stepper; US Pat. No. 5,473,410) for scanning and exposing the pattern of the reticle R by synchronously moving the reticle R and the wafer W.
  • the present invention can also be applied to a projection exposure apparatus (stepper) of a step-and-repeat type in which the pattern of the reticle R is exposed while the reticle R and the wafer W are stationary, and the wafer W is sequentially moved in steps.
  • stepper a projection exposure apparatus of a step-and-repeat type in which the pattern of the reticle R is exposed while the reticle R and the wafer W are stationary, and the wafer W is sequentially moved in steps.
  • the type of the projection exposure apparatus 1 is not limited to an exposure apparatus for manufacturing a semiconductor device that exposes a semiconductor device pattern onto a wafer W, but may be an exposure apparatus for manufacturing a liquid crystal display element, a thin-film magnetic head, an imaging device (CCD), or the like. It can be widely applied to an exposure apparatus for manufacturing a reticle and the like.
  • the aperture device of the present invention can be applied not only to a projection exposure device but also to an optical apparatus (for example, a camera) including various aperture devices.
  • the magnification of the projection optical system PL may be not only a reduction system but also an equal magnification system or an enlargement system.
  • the projection optical system PL when far ultraviolet rays such as an excimer laser are used, a material which transmits far ultraviolet rays such as quartz or fluorite is used as a glass material, and when a F 2 laser or X-ray is used, a catadioptric system is used.
  • An optical system of a refraction system (a reticle R of a reflection type is also used), and when an electron beam is used, an electron optical system including an electron lens and a deflector may be used as the optical system.
  • the optical path through which the electron beam passes must be vacuum.
  • each of the stages 18 and 27 may be of a type that moves along a guide, or may be a guideless type that does not have a guide.
  • each stage 18 and 27 consists of a magnet unit (permanent magnet) in which magnets are arranged two-dimensionally and an armature unit in which coils are arranged two-dimensionally.
  • a planar motor for driving 18 and 27 may be used.
  • one of the magnet unit and the armature unit is connected to the stages 18 and 27, and the other of the magnet unit and the armature unit is connected to the moving surface side of the stages 18 and 27 (base). ).
  • the reaction force generated by the movement of the wafer stage 27 is not transmitted to the projection optical system PL so that the reaction force is not transmitted to the projection optical system PL, as described in Japanese Patent Application Laid-Open No. Hei 8-166475 (USP 5,528,118). It is possible to mechanically escape to the floor (ground) using members.
  • the present invention is also applicable to an exposure apparatus having such a structure.
  • the reaction force generated by the movement of the reticle stage 18 is not transmitted to the projection optical system PL so as to be described in Japanese Patent Application Laid-Open No. 8-3330224 (US S / N 08 / 416,558). Also, you can mechanically escape to the floor (ground) using the frame member.
  • the present invention is also applicable to an exposure apparatus having such a structure.
  • a micro device such as a semiconductor device has a step 201 for designing the function and performance of the micro device, a step 202 for manufacturing a reticle R based on this design step, and a silicon material.
  • Step 203 of manufacturing wafer W from wafer exposure processing step 204 of projecting and exposing the pattern of reticle R onto wafer W by projection exposure apparatus 1 of the above-described embodiment, and developing wafer W, device It is manufactured through an assembly step (including a dicing step, a bonding step, and a package step) 205 and an inspection step 206.
  • the projection exposure apparatus 1 is capable of controlling various subsystems including the respective components listed in the claims of the present application to predetermined mechanical accuracy, electrical accuracy, and optical accuracy.
  • Manufactured by assembling to keep Before and after this assembly, adjustments to achieve optical accuracy for various optical systems, adjustments to achieve mechanical accuracy for various mechanical systems, and various electrical
  • the air system is adjusted to achieve electrical accuracy.
  • the process of assembling the exposure apparatus from various subsystems includes mechanical connections, wiring connections of electric circuits, and piping connections of pneumatic circuits among the various subsystems. It goes without saying that there is an individual assembly process for each subsystem before the assembly process from these various subsystems to the exposure apparatus. After the process of assembling the various subsystems into the exposure apparatus is completed, comprehensive adjustments are made to ensure the various accuracy of the entire exposure apparatus. It is desirable to manufacture the exposure equipment in a clean room where the temperature and cleanliness are controlled. Industrial applicability
  • An aperture device is configured such that each of the plurality of aperture blades is provided with an outer ring of each aperture blade.
  • any point of the contour on the center side of the opening is moved linearly toward the approximate center of the opening.
  • dust generation and abrasion can be greatly reduced by greatly reducing the contact area between the aperture blades, and it is sufficient for the high number of operations associated with the execution of double exposure. Can withstand.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

This diaphragm device has a plurality of diaphragm blade bases (32) for adjusting the size of the opening (S). This device has a driving mechanism (33) for reciprocally linearly moving the respective diaphragm blade bases (32) in such a manner that, of the outer contours of the diaphragm blade bases (32), an optional point on the contour disposed on the center side of the opening (S) is directed toward substantially the center of the opening (S). This enables the diaphragm device to stand a high frequency of operation and to have a wide diaphragming range.

Description

明 細 書 絞り装置、 投影光学系および投影露光装置並びにマイクロデバイスの製造方法 技術分野  TECHNICAL FIELD The present invention relates to a diaphragm apparatus, a projection optical system, a projection exposure apparatus, and a microdevice manufacturing method.
本発明は、 光路における開口の大きさを調整する絞り装置と、 開口絞りにより 開口数の大きさを可変とする投影光学系、 および開口絞りで規定された開口数に 基づく光束でマスクのパターンを基板に露光する露光装置、 並びにマスクのバタ —ン像で感光基板を露光して製造されるマイクロデバイスの製造方法に関する。 背景技術  The present invention provides a stop device that adjusts the size of an aperture in an optical path, a projection optical system that changes the size of a numerical aperture by an aperture stop, and a mask pattern formed by a light flux based on the numerical aperture defined by the aperture stop. The present invention relates to an exposure apparatus that exposes a substrate, and a method of manufacturing a micro device that is manufactured by exposing a photosensitive substrate with a pattern of a mask. Background art
従来より、 半導体デバイス、 C C D等の撮像デバイス、 液晶表示デバイス、 ま たは薄膜磁気へッ ド等の製造工程の 1つであるリソグラフイエ程においては、 マ スク又はレチクル (以下、 レチクルと称する) に形成された回路パターンをレジ スト(感光剤)が塗布されたウェハ又はガラスプレート等の基板上に転写する種々 の露光装置が用いられている。 例えば、 半導体デバイス用の露光装置としては、 近年における集積回路の高集積化に伴うパターンの最小線幅 (デバイスルール) の微細化に応じて、 レチクルのパターンを投影光学系を用いてウェハ上に縮小転 写する縮小投影露光装置が主として用いられている。  Conventionally, a mask or reticle (hereinafter, referred to as a reticle) has been used in a lithographic process, which is one of the manufacturing processes for imaging devices such as semiconductor devices, CCDs, liquid crystal display devices, and thin-film magnetic heads. Various exposure apparatuses for transferring a circuit pattern formed on a substrate (eg, a wafer or a glass plate) coated with a resist (photosensitive agent) are used. For example, as an exposure apparatus for semiconductor devices, a reticle pattern is projected onto a wafer using a projection optical system in accordance with the miniaturization of the minimum line width (device rule) of a pattern accompanying the high integration of an integrated circuit in recent years. A reduction projection exposure apparatus that performs reduction transfer is mainly used.
この縮小投影露光装置としては、 レチクルのパターンをウェハ上の複数のショ ット領域 (露光領域) に順次転写するステップ ·アンド · リ ビート方式の静止露 光型の縮小投影露光装置 (いわゆるステツパ) や、 このステツパを改良したもの で、 特開平 8— 1 6 6 0 4 3号公報等に開示されるようなレチクルとウェハとを 一次元方向に同期移動してレチクルパターンをウェハ上の各ショット領域に転写 するステップ ·アンド · スキャン方式の走査露光型の露光装置 (いわゆるスキヤ ユング 'ステッパ) が知られている。  This reduction projection exposure apparatus is a step-and-rebeat type static exposure reduction projection exposure apparatus (so-called stepper) that sequentially transfers a reticle pattern to a plurality of shot areas (exposure areas) on a wafer. The reticle and the wafer are moved one-dimensionally in synchronism with the reticle and the wafer as described in Japanese Patent Application Laid-Open No. 8-16643, etc. A step-and-scan type scanning exposure type exposure apparatus (so-called scan Jung 'stepper) for transferring an image to an area is known.
近年の投影露光装置におけるパターンの微細化および高スループットの要求に より、 パターン精度に応じて二回の露光でパターンを形成する、 いわゆる二重露 光への要求の高まりは著しい。 通常、 この種の二重露光を実施する際には、 複数 枚の絞り羽根を有する絞り装置を用いて N A (開口数) を変更する必要がある。 図 1 6に従来技術による絞り装置の一例を示す。 Due to the demand for finer patterns and higher throughput in recent projection exposure apparatuses, the demand for so-called double exposure, in which a pattern is formed by two exposures in accordance with the pattern accuracy, is increasing remarkably. Usually, when performing this type of double exposure, It is necessary to change the NA (numerical aperture) by using a diaphragm device having two diaphragm blades. FIG. 16 shows an example of a conventional diaphragm device.
この図に示す絞り装置 5 0は、 ドーナツ状の円環部 5 1、 及びこの円環部 5 1 の外周部に立設された周壁部 5 2を有する断面視 L字形状を成す金物 5 3と、 金 物 5 3の周壁部 5 2に回転自在に嵌合する矢車 5 4と、 金物 5 3の円環部 5 1と 矢車 5 4との間の隙間に配設される複数枚 (ここでは 1 0枚) の絞り羽根 5 5と から概略構成されている。  The drawing device 50 shown in this figure has a donut-shaped annular part 51 and a metal part 53 having an L-shape in sectional view having a peripheral wall part 52 erected on the outer peripheral part of the annular part 51. And a wheel set 54 rotatably fitted to the peripheral wall portion 52 of the metal piece 53, and a plurality of pieces arranged in a gap between the annular portion 51 and the wheel set 54 of the metal piece 53 (here In this case, 10 diaphragm blades 55 are provided.
各絞り羽根 5 5は、 環形の一部を成す平面形状を呈しており、 一端側 (反時計 回り方向側) に設けられた不図示の軸部 (ダボ) が金物 5 3に回転自在に支持さ れ、 他端側 (時計回り方向側) に設けられた不図示の軸部 (ダボ) が矢車 5 4に 円環部 5 1の略半径方向に沿って形成された溝 (図示せず) に移動自在に支持さ れている。 また、 各絞り羽根 5 5は、 他端側で隣り合う絞り羽根 5 5の下側に入 れ込まれることで互いに重なった状態で環状に装着されている。 各絞り羽根 5 5 の内径側 (円環部 5 1の中心側) の外形輪郭は略円弧形状に形成され、 これら重 なった複数枚の絞り羽根 5 5の内径側円弧輪郭により、 近似円弧の開口 Sが設定 される。  Each of the diaphragm blades 5 has a planar shape that forms a part of a ring shape, and a shaft portion (a dowel) (not shown) provided at one end side (counterclockwise direction side) is rotatably supported by the hardware 53. A shaft (dove) (not shown) provided on the other end side (clockwise side) is formed in a wobble 54 along a substantially radial direction of the annular portion 51 (not shown). It is supported so that it can move freely. Further, the aperture blades 55 are annularly mounted so as to be overlapped with each other by being inserted under the adjacent aperture blades 55 on the other end side. The outer contour on the inner diameter side (the center side of the annular portion 51) of each of the aperture blades 55 is formed in a substantially circular arc shape. The opening S is set.
また、 上記の絞り装置 5 0では、 矢車 5 4が金物 5 3に対して、 例えば時計回 りに回転したときに絞り羽根 5 5の他端側が円環部 5 1の中心側 (内周側) に回 転し、 反時計回りに回転したときに絞り羽根 5 5の他端側が円環部 5 1の外周側 に回転することで、 開口 Sの大きさ (絞り) が調整 (変更) される。  Also, in the above-described diaphragm device 50, the other end side of the diaphragm blade 55 is located at the center side (the inner peripheral side) of the annular portion 51 when the wicker wheel 54 rotates relative to the hardware 53, for example, clockwise. ), The other end of the diaphragm blade 55 rotates toward the outer periphery of the annular portion 51 when rotated counterclockwise, so that the size (aperture) of the opening S is adjusted (changed). You.
しかしながら、 上述したような従来の絞り装置には、 以下のような問題が存在 する。  However, the conventional diaphragm device as described above has the following problems.
二重露光を実施するには N Aを頻繁に変更する必要があり、 そのためには絞り 装置の高い動作回数 (例えば従来の 1 0 0倍) および耐久性を確保しなければな らない。 ところが、 上述したように、 絞り羽根が他端側で隣り合う絞り羽根の下 側に入れ込まれる方式を用いていたので、 動作毎に絞り羽根同士が互いに接触 · 押圧し、 発塵の一因になるとともに、 絞り羽根に摩耗が生じ、 高い動作回数に対 する耐久性が得られないという問題があった。 特に、 上記の絞り装置 5 0では、 絞り羽根 5 5が全周に亘つて 4〜 5枚ずつ重なった状態で装着されているので、 絞り羽根同士の接触面積が大きくなり、 絞り羽根に生じる摩耗がより大きいとい う問題があった。 In order to perform double exposure, it is necessary to change the NA frequently, and to achieve this, it is necessary to ensure a high number of operations (for example, 100 times the conventional value) and durability of the aperture device. However, as described above, a method is used in which the diaphragm blades are inserted under the adjacent diaphragm blades on the other end side, so that the diaphragm blades come into contact with and press each other at each operation, which causes dust generation. At the same time, there is a problem that the diaphragm blades are worn out and durability against a high number of operations cannot be obtained. In particular, in the above-described aperture device 50, since the aperture blades 55 are mounted so as to overlap by 4 to 5 sheets over the entire circumference, There was a problem that the contact area between the aperture blades was increased, and the abrasion generated on the aperture blades was larger.
しかも、 矢車と嵌合する絞り羽根のダボは、 ピンを力シメて絞り羽根に固定し ているので、 耐久性として高い動作回数に耐えることは困難である。  In addition, the dowels of the diaphragm blades that fit with the wheel are fixed to the diaphragm blades by pinching the pins, so it is difficult to withstand high operation times as durability.
一方、 開口 Sの外形輪郭は、 複数枚の絞り羽根の内径側 (開口 Sの略中心側) の円弧輪郭で合成される近似円弧となっているが、 開口 sを最大径に設定した際 にも絞り羽根の回転先端が開口 sを遮蔽しないことを考慮して、 従来では最大絞 り径で最も誤差が小さくなるように円弧輪郭が形成されている。 しかし、 このよ うな円弧輪郭では、 最小絞り径で開口 sの外形輪郭 (絞り径) における真円から のずれが大きくなる、すなわち真円度が低下するという問題が生じる。そのため、 従来の絞り装置では、 調整可能な開口の大きさ (絞り範囲) を広く取ることが困 難であった。  On the other hand, the outer contour of the aperture S is an approximate arc synthesized by the arc contours on the inner diameter side (substantially the center side of the aperture S) of the plurality of diaphragm blades, but when the aperture s is set to the maximum diameter, In consideration of the fact that the rotating tip of the diaphragm blade does not cover the opening s, the conventional arc shape is formed so that the error is minimized at the maximum diaphragm diameter. However, such a circular arc profile has a problem that the deviation from the perfect circle in the outer contour (diameter) of the opening s at the minimum aperture diameter increases, that is, the roundness decreases. For this reason, it has been difficult for conventional aperture devices to have a wide adjustable aperture size (aperture range).
また、 このように開口の絞り径の精度が低下すると、 レチクルのパターン像を 基板に投影露光しても、 微細なパターンが正確に形成できない等、 投影露光装置 における不具合となって現れ、 また、 半導体デバイス等のマイクロデバイスに関 しても集積度を高めることが困難になるという問題が生じてしまう。  In addition, if the accuracy of the aperture diameter of the aperture is reduced as described above, even if the pattern image of the reticle is projected and exposed on the substrate, a fine pattern cannot be accurately formed. There is also a problem that it is difficult to increase the degree of integration of micro devices such as semiconductor devices.
本発明は、 以上のような点を考慮してなされたもので、 高い動作回数にも耐え ることができ、 また広い絞り範囲を確保できる絞り装置と、 この絞り装置を備え た投影光学系および投影露光装置、 並びに投影露光装置で製造されるマイクロデ バイスを提供することを目的とする。 また、 本発明は、 マスクのパターン像を正 確に基板に投影できる投影光学系および投影露光装置、 並びに高集積化を実現し たマイク口デバイスの製造方法を提供することを目的とする。 発明の開示  SUMMARY OF THE INVENTION The present invention has been made in consideration of the above points, and has a diaphragm device capable of withstanding a high number of operations and securing a wide diaphragm range, a projection optical system having the diaphragm device, and An object of the present invention is to provide a projection exposure apparatus and a micro device manufactured by the projection exposure apparatus. It is another object of the present invention to provide a projection optical system and a projection exposure apparatus capable of accurately projecting a pattern image of a mask onto a substrate, and a method of manufacturing a microphone opening device that achieves high integration. Disclosure of the invention
上記の目的を達成するために本発明は、 以下の構成を採用している。  In order to achieve the above object, the present invention employs the following configuration.
本発明の絞り装置は、 開口 (S ) の大きさを調整する複数の絞り羽根 (3 2ま たは 6 1 ) を有する絞り装置 (1 6 ) であって、 複数の絞り羽根 (3 2または 6 1 ) のそれぞれを、 各絞り羽根 (3 2または 6 1 ) の外形輪郭のうち、 開口 (S ) の中心側にある輪郭の任意の点を開口の略中心に向かつて進退自在に直線移動さ せる駆動機構 (3 3 ) を備えたことを特徴とする。 An aperture device according to the present invention is an aperture device (16) having a plurality of aperture blades (32 or 61) for adjusting the size of the aperture (S), wherein the plurality of aperture blades (32 or 61) are provided. 6 1) is linearly moved to any center of the aperture (S 2) at the center side of the aperture (S) toward the approximate center of the aperture, out of the external contour of each diaphragm blade (32 or 61). Sa A driving mechanism (33).
従って、 本発明の絞り装置では、 例えば、 環形を周方向に複数分割した形状の 絞り羽根 (3 2または 6 1 ) は隣り合う絞り羽根 (3 2または 6 1 ) との間で周 方向に隙間が形成されない程度に重なればよい。 そのため、 絞り羽根同士が接触 する場合でも接触面積が小さくなり、 絞り羽根 (3 2または 6 1 ) に生じる摩耗 を小さくすることができ、 高い動作回数にも耐えることが可能になる。  Therefore, in the aperture device of the present invention, for example, the aperture blade (32 or 61) having a shape obtained by dividing the ring shape into a plurality in the circumferential direction has a circumferential gap between the adjacent aperture blade (32 or 61). May be overlapped to such an extent that is not formed. Therefore, even when the diaphragm blades come into contact with each other, the contact area is reduced, and the abrasion that occurs on the diaphragm blades (32 or 61) can be reduced, and it is possible to withstand a high number of operations.
前記絞り羽根のそれぞれが隣り合う絞り羽根との間に開口の中心軸と略平行な 方向に関し、 互いに隙間をあけて配置されてもよい。 この場合、 絞り羽根同士が 接触することを防止でき、 接触に起因する発塵や摩耗を一層抑制することでさら に高い動作回数にも耐えられる。  Each of the aperture blades may be arranged with a gap between adjacent aperture blades in a direction substantially parallel to the central axis of the opening. In this case, the contact between the aperture blades can be prevented, and the generation of dust and abrasion due to the contact can be further suppressed to withstand a higher number of operations.
前記絞り羽根のそれぞれがーつおきに開口の中心軸と略直交する同一面内に配 置されていてもよい。 この場合、 開口の中心方向に関する絞り羽根の設置範囲を 小さくすることができ、 装置の小型化を実現できる。  Every one of the aperture blades may be arranged in the same plane substantially perpendicular to the central axis of the opening. In this case, the installation range of the diaphragm blade in the center direction of the opening can be reduced, and the size of the apparatus can be reduced.
前記絞り羽根の外形輪郭のうち、 開口の中心側にある輪郭が、 所定の曲率を有 する円弧部分と円弧部分から連結する直線部分とを有して形成されていてもよレ、。 この場合、 絞り径の大きさに拘わらず、 開口の真円度低下を防ぐことができ、 調 整可能な開口の絞り範囲を広くことができるとともに、 高精度の絞り径を実現で きる。  Among the outer contours of the aperture blade, the contour on the center side of the opening may be formed to have an arc portion having a predetermined curvature and a straight line portion connected from the arc portion. In this case, irrespective of the size of the aperture diameter, it is possible to prevent a decrease in the roundness of the aperture, thereby making it possible to increase the adjustable aperture range of the aperture and to realize a highly accurate aperture diameter.
駆動機構は、 開口の略中心軸を回転軸として回転する回転部材と、 回転部材の 回転移動を複数の絞り羽根の直線移動に変換する変換部材とを備えていてもよレ、。 この場合、構造が複雑になることなく、装置の小型化及び低価格化に寄与できる。 嵌合溝に嵌合して摺動する凸部に軸受が装着されていてもよい。 この場合、 絞 り羽根の直線移動に関してより高い動作回数に耐えることが可能になる。  The drive mechanism may include a rotating member that rotates around a substantially central axis of the opening as a rotation axis, and a converting member that converts the rotational movement of the rotating member into a linear movement of the plurality of aperture blades. In this case, it is possible to contribute to miniaturization and cost reduction of the device without complicating the structure. A bearing may be mounted on a convex portion that slides by fitting into the fitting groove. In this case, it is possible to withstand a higher number of operations for the linear movement of the aperture blade.
前記絞り装置は、 前記絞り羽根を前記直線移動可能に保持する絞り羽根基部を 有していてもよい。 この場合、 平面的に大きくすることなく、 調整可能な開口の 絞り範囲を広くできるとともに、 開口の絞り径を調整する際にも、 回転部材の回 転量を小さくすることができ、 調整作業に要する時間を短くできる。  The aperture device may include an aperture blade base that holds the aperture blade so as to be capable of the linear movement. In this case, the aperture range of the adjustable aperture can be widened without increasing the size in a plane, and the amount of rotation of the rotating member can be reduced when adjusting the aperture diameter of the aperture. The time required can be shortened.
前記絞り羽根基部は、 前記絞り羽根の直線移動に伴って、 前記絞り羽根の移動 方向と同じ方向に直線移動してもよい。 前記駆動機構は、 前記開口の略中心軸を回転軸として回転する回転部材と、 前 記回転部材の回転移動により、 前記絞り羽根を前記直線移動させるとともに、 前 記絞り羽根が移動した後に、 前記絞り羽根基部を前記直線移動させるリンク機構 とを有していてもよレ、。 この場合、 リンク機構による増速で平面的に大きくする ことなく、 調整可能な開口の絞り範囲を広くできる。 The diaphragm blade base may linearly move in the same direction as the direction of movement of the diaphragm blade in accordance with the linear movement of the diaphragm blade. A rotating member that rotates about a substantially central axis of the opening as a rotation axis; and a rotational movement of the rotating member that linearly moves the diaphragm blade, and after the diaphragm blade moves, A link mechanism for linearly moving the aperture blade base. In this case, the aperture range of the adjustable aperture can be widened without increasing the plane by the speed increase by the link mechanism.
前記絞り羽根には、 前記絞り羽根基部の前記直線移動をガイ ドするガイ ド部材 が設けられていてもよい。 この場合、 絞り装置及び投影光学系の小型化が実現す る。  The diaphragm blade may be provided with a guide member for guiding the linear movement of the diaphragm blade base. In this case, downsizing of the aperture device and the projection optical system is realized.
本発明の投影光学系は、 開口数の大きさを可変とする開口絞り (1 6 ) を有す る投影光学系 (P L ) であって、 開口絞りとして請求項 1から 7のいずれか 1項 に記載の絞り装置 (1 6 ) が用いられることを特徴とする。  The projection optical system according to the present invention is a projection optical system (PL) having an aperture stop (16) capable of changing a numerical aperture, wherein the aperture stop is used as one of claims 1 to 7. A diaphragm device (16) according to (1) is used.
従って、 本発明の投影光学系では、 絞り羽根 (3 2または 6 1 ) の摩擦に起因 する発塵が少なくなり、 例えばパターンを投影する際に生じる悪影響を抑制する ことができるとともに、 長期間に亘つて開口数の大きさを可変にすることができ る。  Therefore, in the projection optical system of the present invention, dust generation due to friction of the aperture blades (32 or 61) is reduced, and for example, an adverse effect that occurs when projecting a pattern can be suppressed, and the projection optical system can be used for a long time. The size of the numerical aperture can be made variable throughout.
本発明の投影露光装置は、 光束で照明されたマスク (R ) のパターン像を基板 (W) に投影露光する投影露光装置 (1 ) において、 光束の光路中に配置され、 開口数の大きさを可変とする開口絞りとして前記絞り装置 (1 6 ) が用いられる ことを特徴とする。  A projection exposure apparatus according to the present invention is a projection exposure apparatus (1) for projecting and exposing a pattern image of a mask (R) illuminated by a light beam onto a substrate (W). The aperture device (16) is used as an aperture stop that makes the aperture variable.
この投影露光装置では、 発塵の影響が少ない状態で長期間に亘つて正確にマス ク (R ) のパターン像を基板 (W) に投影露光することができる。  In this projection exposure apparatus, a pattern image of a mask (R) can be accurately projected and exposed on a substrate (W) for a long period of time with little influence of dust generation.
絞り装置が備える開口絞りが投影光学系の瞳面上に配置されていてもよい。 こ の場合、 投影光学系における開口数を正確、 且つ高い動作回数に亘つて可変とす ることで、 マスクの微細なパターンを正確に基板上に形成できるという効果が得 られる。  An aperture stop included in the stop device may be arranged on a pupil plane of the projection optical system. In this case, by making the numerical aperture in the projection optical system accurate and variable over a high number of operations, it is possible to obtain an effect that a fine pattern of a mask can be accurately formed on a substrate.
本発明のマイクロデバイスの製造方法は、 マスク (R ) のパターン像で感光基 板 (W) を露光して製造されるマイクロデバイスの製造方法であって、 請求項 9 または 1 0記載の投影露光装置 (1 ) を用いて前記マスクのデバイスパターン像 で前言己感光基板を露光する工程と、 露光した感光基板を現像する工程とを含む。 従って、 本発明のマイクロデバイスでは、 所定の特性で製造でき、 微細パター ンの形成が可能になるため、 高集積化を実現できる。 図面の簡単な説明 The method for manufacturing a micro device according to claim 9 or 10, wherein the method for manufacturing a micro device is a method for manufacturing a micro device by exposing a photosensitive substrate (W) with a pattern image of a mask (R). The method includes the steps of: exposing the self-photosensitive substrate with the device pattern image of the mask using the apparatus (1); and developing the exposed photosensitive substrate. Therefore, the microdevice of the present invention can be manufactured with predetermined characteristics and can form a fine pattern, so that high integration can be realized. BRIEF DESCRIPTION OF THE FIGURES
図 1は、本発明の実施例を示す図であって、投影露光装置の概略構成図である。 図 2は、投影露光装置を構成する開口絞りの第 1の実施例の外観斜視図である。 図 3は、 絞り羽根を支持するリニアガイ ドの外観斜視図である。  FIG. 1 is a view showing an embodiment of the present invention, and is a schematic configuration diagram of a projection exposure apparatus. FIG. 2 is an external perspective view of a first embodiment of the aperture stop constituting the projection exposure apparatus. FIG. 3 is an external perspective view of a linear guide supporting the aperture blade.
図 4は、 図 3における右側面図である。  FIG. 4 is a right side view of FIG.
図 5は、 開口絞りを構成する金物の平面図である。  FIG. 5 is a plan view of hardware that forms the aperture stop.
図 6は、 開口絞りの部分断面図である。  FIG. 6 is a partial cross-sectional view of the aperture stop.
図 7は、 図 2における A _ A線視断面図である。  FIG. 7 is a sectional view taken along line AA in FIG.
図 8は、 開口絞りを構成する矢車の平面図である。  FIG. 8 is a plan view of the arrow wheel constituting the aperture stop.
図 9は、 第 2の実施例に係る開口絞りの分解斜視図である。  FIG. 9 is an exploded perspective view of the aperture stop according to the second embodiment.
図 1 0は、 2枚の絞り羽根が相対移動自在に構成された外観斜視図である。 図 1 1は、 図 1 0における側面断面図である。  FIG. 10 is an external perspective view in which two diaphragm blades are configured to be relatively movable. FIG. 11 is a side sectional view of FIG.
図 1 2は、 開口絞りを構成する鞍部材の外観斜視図である。  FIG. 12 is an external perspective view of a saddle member constituting the aperture stop.
図 1 3は、 リニアガイ ドが絞り羽根に結合された断面図である。  FIG. 13 is a cross-sectional view in which a linear guide is coupled to an aperture blade.
図 1 4は、 図 1 3における側面断面図である。  FIG. 14 is a side sectional view of FIG.
図 1 5は、 リンク機構の動作を説明する図である。  FIG. 15 is a diagram illustrating the operation of the link mechanism.
図 1 6は、 従来の開口絞りの一例を示す外観斜視図である。  FIG. 16 is an external perspective view showing an example of a conventional aperture stop.
図 1 7は、 半導体デバイスの製造工程の一例を示すフローチャートである。 発明を実施するための最良の形態  FIG. 17 is a flowchart illustrating an example of a semiconductor device manufacturing process. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の絞り装置、 投影光学系および投影露光装置並びにマイクロデバ イスの第 1の実施例を、 図 1ないし図 8を参照して説明する。 ここでは、 本発明 の絞り装置を、 レチクルのパターンを投影光学系を介して基板に露光する投影露 光装置に適用するものとする。 また、 ここでは、 基板を半導体デバイス製造用の ウェハとし、 投影露光装置をレチクルとウェハとを同期移動してレチクルのパタ —ンをウェハに走査露光する走査型の投影露光装置とする場合の例を用いて説明 する。 これらの図において、 従来例として示した図 1 6と同一の構成要素には同 一符号を付し、 その説明を簡略化する。 Hereinafter, a first embodiment of a stop device, a projection optical system, a projection exposure device, and a micro device of the present invention will be described with reference to FIGS. Here, the aperture device of the present invention is applied to a projection exposure device that exposes a substrate to a reticle pattern via a projection optical system. Here, an example in which the substrate is a wafer for manufacturing semiconductor devices, and the projection exposure apparatus is a scanning projection exposure apparatus that scans and exposes the reticle pattern onto the wafer by synchronously moving the reticle and the wafer. Explanation using I do. In these figures, the same components as those in FIG. 16 shown as a conventional example are denoted by the same reference numerals, and description thereof will be simplified.
図 1は、 本発明による投影露光装置 1の概略的構成を示している。 この図に示 すように、 投影露光装置 1においては、 光源ユニット 2から例えば 1 9 3 n mの 出力波長を持つ光束としての A r Fエキシマレーザ光 (エネルギービーム) が露 光装置本体側の照明光学系 I Uへ向けて出射される。 露光装置本体は、 露光光を 透過する窒素ガスのような不活性ガスが充填、 あるいは流通されるチャンバ一 3 内に収容されており、 温度、 湿度が一定に保たれるように制御されている。 光源 ュニット 2には、 酸素の吸収帯を避けて狭帯化されたほぼ平行光束としてのパル ス光を発振する光源、 狭帯化されたレーザ光の光路を照明光学系 I Uとの間で位 置的にマッチングさせるビームマッチングュ-ット (B MU)、 レーザ光を所定断 面形状に整形するビーム整形光学系等が配設されている。  FIG. 1 shows a schematic configuration of a projection exposure apparatus 1 according to the present invention. As shown in this figure, in the projection exposure apparatus 1, an ArF excimer laser beam (energy beam) as a light beam having an output wavelength of, for example, 193 nm is emitted from the light source unit 2 to the illumination apparatus side. The light is emitted toward the optical system IU. The main body of the exposure apparatus is housed in a chamber 13 filled or circulated with an inert gas such as nitrogen gas that transmits exposure light, and is controlled so that the temperature and the humidity are kept constant. . The light source unit 2 includes a light source that oscillates pulse light as a substantially parallel light beam narrowed to avoid the oxygen absorption band, and the optical path of the narrowed laser light is located between the illumination optical system IU. There is a beam matching unit (BMU) that matches the beam, a beam shaping optical system that shapes the laser beam into a predetermined cross-sectional shape, and the like.
照明光学系 I Uに入射したレーザ光は、 反射ミラー 5で反射して、 ォプティカ ルインテグレータとしてのフライアイレンズ 6に導かれる。 フライアイレンズ 6 は、 多数のレンズ素子が束ねられて構成されており、 このレンズ素子の射出面側 には、 それを構成するレンズ素子の数に対応した多数の光源像 (2次光源) が形 成される。 本例ではフライアイレンズ 6を 1つ設けているが、 このフライアイレ ンズ 6と光源ュニット 2あるいは反射ミラー 5との間に、 第 2オプティカルイン テグレ一タとしてのフライアイレンズを設けてもよく、 さらにはフライアイレン ズの代わりに内面反射型の口ッド状の光学部材をォプティカルインテグレータと して用いてもよレ、。  The laser light incident on the illumination optical system IU is reflected by the reflection mirror 5 and guided to a fly-eye lens 6 as an optical integrator. The fly-eye lens 6 is configured by bundling a large number of lens elements. On the exit surface side of this lens element, a large number of light source images (secondary light sources) corresponding to the number of lens elements constituting the lens element are provided. It is formed. In this example, one fly-eye lens 6 is provided, but a fly-eye lens as a second optical integrator may be provided between the fly-eye lens 6 and the light source unit 2 or the reflection mirror 5. In addition, instead of a fly-eye lens, an internal reflection type aperture-shaped optical member may be used as an optical integrator.
フライアイレンズ 6により形成される多数の 2次光源が形成される位置におい て、 所定の形状あるレ、は所定の大きさの複数の開口絞りが形成されているタレッ ト板 7が配設されている。 このタレッ ト板 7はモータ 8で回転駆動され、 ウェハ (基板、感光基板) W上に転写すべきレチクル(マスク) Rのパターンに応じて、 1つの開口絞りが選択されて照明光学系 I Uの光路中に挿入される。 タレツト板 7とモータ 8で照明系用可変開口絞り装置が構成される。  At a position where a number of secondary light sources formed by the fly-eye lens 6 are formed, a turret plate 7 having a predetermined shape and a plurality of aperture stops of a predetermined size is provided. ing. The turret plate 7 is driven to rotate by a motor 8, and one aperture stop is selected according to the pattern of the reticle (mask) R to be transferred onto the wafer (substrate, photosensitive substrate) W, and the illumination optical system IU Inserted in the optical path. The turret plate 7 and the motor 8 constitute a variable aperture stop device for an illumination system.
フライアイレンズ 6によって形成される多数の 2次光源からの光束は、 可変開 口絞りを通過してビームスプリッタ 9で 2つの光路に分岐され、 反射光はィンテ グレータセンサ 1 0に導かれて照明光の照度が検出される。 検出された照度に応 じた信号 S 1は制御回路 4 0に入力される。 一方、 通過光はリレーレンズ 1 1、 駆動機構 1 2 aに駆動されてレチクル Rに対する照明領域を規定する視野絞り 1 2、 リ レーレンズ 1 3を通って反射ミラ一 1 4で反射された後、 複数のレンズ等 の屈折光学素子で構成されるコンデンサ光学系 1 5にて集光される。 この実施例 の投影露光装置では、 以上説明した光学素子 5 , 6 , 7, 9 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5が照明光学系 I Uを構成している。 Light beams from a number of secondary light sources formed by the fly-eye lens 6 pass through a variable aperture stop and are split into two light paths by a beam splitter 9, and the reflected light is converted into an optical path. The illuminance of the illumination light is detected by being guided to the grater sensor 10. The signal S1 corresponding to the detected illuminance is input to the control circuit 40. On the other hand, the transmitted light is driven by the relay lens 11 and the driving mechanism 12a, passes through the field stop 12 that defines the illumination area for the reticle R, passes through the relay lens 13 and is reflected by the reflection mirror 14 The light is condensed by a condenser optical system 15 composed of a plurality of refractive optical elements such as lenses. In the projection exposure apparatus of this embodiment, the optical elements 5, 6, 7, 9, 9, 11, 12, 13, 14, and 15 described above constitute an illumination optical system IU.
照明光学系 I Uから出射したレーザ光は、 レチクル R上に形成された回路パタ ーン (パターン) を重畳的に均一照明する。 そして投影光学系 P Lによってゥェ ハ W上にレチクル R上の回路パターンの像が形成され、 ウェハ W上に塗布された レジストが感光して、 ウェハ W上に回路パターンの像が転写される。  The laser light emitted from the illumination optical system IU illuminates the circuit pattern (pattern) formed on the reticle R uniformly in a superimposed manner. Then, an image of the circuit pattern on the reticle R is formed on the wafer W by the projection optical system PL, the resist applied on the wafer W is exposed, and the image of the circuit pattern is transferred onto the wafer W.
レチクル Rはレチクルホルダ 1 7により レチクルステージ 1 8に投影光学系 P Lの物体面に位置して保持固定される。 レチクルステージ 1 8は、 図 1の紙面と 直交する面内に沿って 2次元的に移動するようにベース 2 2に設けられている。 レチクルホルダ 1 7にはミラー 2 1が設置され、 レーザ干渉計 2 0からのレーザ 光がミラー 2 1で反射されてレーザ干渉計 2 0に入射することで、 レーザ干渉計 2 0により レチクルステージ 1 8の位置が高精度に計測される。 この位置情報は 制御回路 4 0に入力され、 この位置情報に基づいて制御回路 4 0はレチクルステ ージ駆動用モータ 1 9を駆動してレチクル Rの位置を制御している。  The reticle R is held and fixed to the reticle stage 18 by the reticle holder 17 at the object plane of the projection optical system PL. The reticle stage 18 is provided on the base 22 so as to move two-dimensionally along a plane orthogonal to the plane of FIG. The reticle holder 17 is provided with a mirror 21. The laser light from the laser interferometer 20 is reflected by the mirror 21 and enters the laser interferometer 20. Eight positions are measured with high accuracy. The position information is input to the control circuit 40, and the control circuit 40 controls the position of the reticle R by driving the reticle stage drive motor 19 based on the position information.
投影光学系 P Lは、 全てレンズ等の屈折光学素子が複数段に亘つて列設される 構成になっており、 収差 (倍率誤差等) を補正するために、 少なくとも 1つのレ ンズエレメント (例えばレチクル Rに最も近いレンズエレメント) を移動させる 駆動機構 (不図示) を備えている。  The projection optical system PL has a configuration in which refractive optical elements such as lenses are all arranged in a plurality of stages, and at least one lens element (for example, a reticle) is used to correct aberrations (magnification errors and the like). A drive mechanism (not shown) that moves the lens element (the lens element closest to R) is provided.
また、 投影光学系 P Lの瞳面上 (入射瞳) またはその近傍には開口絞り (絞り 装置) 1 6が配置されている。 この場合、 投影光学系 P L内の開口絞り 1 6と照 明光学系 I U内の可変開口絞りとは、 光学的に共役な位置に配置される。 この開 口絞り 1 6は投影光学系 P Lの開口数を可変するように、 その大きさを変更でき る。 開口絞り 1 6の詳細については後述する。  An aperture stop (stop device) 16 is arranged on or near the pupil plane of the projection optical system PL (entrance pupil). In this case, the aperture stop 16 in the projection optical system PL and the variable aperture stop in the illumination optical system IU are arranged at optically conjugate positions. The size of the aperture stop 16 can be changed so as to change the numerical aperture of the projection optical system PL. The details of the aperture stop 16 will be described later.
ウェハ Wは、 ウェハホルダ 2 6によりウェハステージ 2 7に投影光学系 P Lの 像面に位置される。 ウェハステージ 2 7は、 図 1の紙面と直交する面内に沿って 2次元的に移動するように設けられている。 ウェハステージ 2 7にはミラ一 3 1 が設置され、 レーザ干渉計 3 0からのレーザ光がミラ一 3 1で反射されてレーザ 干渉計 3 0に入射することで、 レーザ干渉計 3 0によりウェハステージ 2 7の位 置が計測される。 この位置情報は制御回路 4 0に入力され、 この位置情報に基づ いて制御回路 4 0はウェハステージ駆動用モータ 2 9を駆動してウェハ Wの位置 を制御している。 ウェハステージ 2 7上には照度センサ 2 8が設けられ、 ウェハ Wに照射される露光光 (レーザ光) の照度 (エネルギー) が検出される。 この照 度センサ 2 8の検出信号は制御回路 4 0に出力される。 The wafer W is transferred from the projection optical system PL to the wafer stage 27 by the wafer holder 26. It is located on the image plane. The wafer stage 27 is provided so as to move two-dimensionally along a plane orthogonal to the plane of FIG. A mirror 31 is set on the wafer stage 27, and the laser light from the laser interferometer 30 is reflected by the mirror 31 and enters the laser interferometer 30. Stage 27 position is measured. The position information is input to the control circuit 40, and the control circuit 40 controls the position of the wafer W by driving the wafer stage driving motor 29 based on the position information. An illuminance sensor 28 is provided on the wafer stage 27, and detects illuminance (energy) of exposure light (laser light) applied to the wafer W. The detection signal of the illuminance sensor 28 is output to the control circuit 40.
開口絞り 1 6は、 図 2に示すように、 環状に等分に配置され内径側の外形輪郭 により開口 Sを形成する複数枚 (ここでは 1 2枚) の絞り羽根基部 3 2と、 これ ら絞り羽根基部 3 2を開口 Sの中心に向かって進退自在に直線移動させる駆動機 構 3 3とから概略構成されている。 開口絞り 1 6の中、 絞り羽根基部 3 2が投影 光学系 P Lの瞳面上またはその近傍に配置される。  As shown in FIG. 2, the aperture stop 16 is composed of a plurality of (in this case, 12) aperture blade bases 32, which are arranged equally in an annular shape and form an opening S by the outer contour on the inner diameter side, and And a drive mechanism 33 for linearly moving the diaphragm blade base 32 forward and backward toward the center of the opening S. In the aperture stop 16, an aperture blade base 32 is arranged on or near the pupil plane of the projection optical system PL.
図 3に示すように、 絞り羽根基部 3 2のそれぞれは、 露光光を吸収するアウト ガス (例えば有機物等) の発生が少ない材質、 例えばステンレスで形成され、 環 形を周方向に分割した形状を呈する環形部 3 4と、 環形部 3 4の周方向両側に位 置する平面視略矩形の矩形部 3 5、 3 5とから構成されている。 環形部 3 4の外 形輪郭のうち、 開口 Sの中心側 (すなわち内径側) の輪郭 3 4 aは所定の曲率で 形成された円弧形状 (円弧部分) となっている。 また、 矩形部 3 5の外形輪郭の うち、 開口 Sの中心側の輪郭 3 5 aは、 環形部 3 4の中心側輪郭 3 4 aから連続 して形成された直線形状 (直線部分) となっている。  As shown in FIG. 3, each of the aperture blade bases 32 is formed of a material that does not generate outgas (eg, an organic substance) that absorbs exposure light, for example, stainless steel, and has a shape obtained by dividing an annular shape in the circumferential direction. It comprises a ring-shaped portion 34 presenting, and rectangular portions 35, 35 having a substantially rectangular shape in plan view located on both sides in the circumferential direction of the ring-shaped portion 34. Among the outer contours of the annular portion 34, the contour 34a on the center side (ie, the inner diameter side) of the opening S has an arc shape (arc portion) formed with a predetermined curvature. Also, of the outlines of the rectangular portion 35, the outline 35a on the center side of the opening S is a linear shape (linear portion) formed continuously from the outline 34a on the center side of the annular portion 34. ing.
環形部 3 4の中心側輪郭 3 4 aの曲率は、 開口 Sの最大曲率と最小曲率とのほ ぼ中間に設定されている。 すなわち、 輪郭 3 4 aの半径を R a、 開口 Sの最大半 径 (最大絞り径) を R MA X、 最小半径 (最小絞り径) を R M I Nとすると、 R a = ( R MA X + R M I N ) / 2に設定されている。 また、 絞り羽根基部 3 2の 周方向の大きさは、 開口 Sの最大径設定位置に絞り羽根基部 3 2が位置決めされ たときに、 周方向に隣り合う絞り羽根基部 3 2同士間に隙間が形成されず、 開口 Sの最小径設定位置に絞り羽根基部 3 2が位置決めされたときに、 矩形部 3 5の 中心側輪郭 3 5 aが周方向に隣り合う絞り羽根基部 3 2と重なり、 開口 Sの外径 を形成しない最低限度の大きさに設定されている。 従って、 開口 Sが最小径に設 定されたとき、 開口 Sの輪郭は、 環形部 3 4の中心側輪郭 3 4 aである。 The curvature of the center-side contour 34 a of the ring-shaped portion 34 is set almost in the middle between the maximum curvature and the minimum curvature of the opening S. That is, if the radius of the contour 34a is Ra, the maximum radius of the opening S (maximum aperture diameter) is R MAX, and the minimum radius (minimum aperture diameter) is RMIN, Ra = (R MAX + RMIN) / 2 is set. The circumferential size of the diaphragm blade base 32 is such that when the diaphragm blade base 32 is positioned at the maximum diameter setting position of the opening S, a gap is formed between the circumferentially adjacent diaphragm blade bases 32. When the diaphragm blade base 32 is positioned at the minimum diameter setting position of the opening S, the rectangular The center side contour 35 a overlaps the diaphragm blade base 32 adjacent in the circumferential direction and is set to the minimum size that does not form the outer diameter of the opening S. Therefore, when the opening S is set to the minimum diameter, the contour of the opening S is the center-side contour 34 a of the annular portion 34.
駆動機構 3 3は、 図 2に示すように、 ドーナツ状の円環部 5 1、 及びこの円環 部 5 1の外周部に立設された周壁部 5 2を有する断面視 L字形状を成す金物 5 3 と、 金物 5 3の周壁部 5 2に回転自在に嵌合する矢車 (回転部材) 5 4と、 矢車 5 4を回転させる回転駆動部 (不図示) と、 図 3及び図 4に示すように、 絞り羽 根基部 3 2を支持して直線移動させるリニアガイ ド (変換部材) 3 6とから概略 構成されている。駆動機構 3 3の中、金物 5 3、矢車 5 4、 リニァガイ ド 3 6は、 投影光学系 P Lの鏡筒内に設置され、 回転駆動部は鏡筒の外側に設置され、 駆動 に伴う発塵等が投影光学系 P Lの投影特性に影響を及ぼさない。  As shown in FIG. 2, the drive mechanism 33 has an L-shape in cross section having a donut-shaped annular portion 51 and a peripheral wall portion 52 erected on the outer peripheral portion of the annular portion 51. Hardware 5 3, a wheel (rotating member) 54 rotatably fitted to the peripheral wall 52 of the metal 5 3, a rotation drive unit (not shown) for rotating the wheel 54, FIGS. As shown in the figure, it is roughly composed of a linear guide (conversion member) 36 that supports the diaphragm blade base 32 and moves linearly. Among the drive mechanisms 33, hardware 53, wickers 54, and linear guides 36 are installed inside the lens barrel of the projection optical system PL, and the rotary drive unit is installed outside the lens barrel, and dust generated by driving Etc. do not affect the projection characteristics of the projection optical system PL.
リニアガイ ド 3 6は、 直線状に形成されたガイ ド部 3 7と、 絞り羽根基部 3 2 が固着されガイ ド部 3 7に沿って直線移動する移動体 3 8とから構成されている。 移動体 3 8には、 軸受 3 9が装着された凸部 4 1が突設されている (図 4参照)。 図 5に示すように、 金物 5 3には、 リニアガイ ド 3 6のガイ ド部 3 7及び移動 体 3 8を設置するための溝 4 2 a、 4 2 bが開口 Sの中心回りに等間隔 (3 0 ° 間隔) で、 且つ中心からそれぞれ放射状に延在させて形成されている。 この溝 4 2 a、 4 2 bにガイ ド部 3 7が固定され、 固定されたガイ ド部 3 7に沿って移動 体 3 8が移動する。 溝 4 2 a、 4 2 bの深さは、 当該溝 4 2 a、 4 2 bにリニア ガイ ド 3 6が装着されたときに、 リニアガイ ド 3 6に固着する隣り合う絞り羽根 基部 3 2同士の間が開口 Sの中心方向 (図 5中、紙面と直交する方向)、 即ち中心 軸と略平行な方向に関し、互いに隙間があけて配置されるように設定されている。 また、 溝 4 2 a、 4 2 bは、 絞り羽根基部 3 2のそれぞれがーつおきに開口 Sの 中心方向 (中心軸) と略直交する同一面内に配置されるように、 一つおきに異な る深さで形成されている。  The linear guide 36 includes a guide portion 37 formed in a linear shape, and a moving body 38 to which the diaphragm blade base 32 is fixed and which moves linearly along the guide portion 37. The moving body 38 is provided with a projection 41 on which a bearing 39 is mounted (see FIG. 4). As shown in Fig. 5, the hardware 53 has guides 37 on the linear guide 36 and grooves 42a and 42b for installing the moving body 38 at equal intervals around the center of the opening S. (At an interval of 30 °) and extend radially from the center. The guide portion 37 is fixed to the grooves 42a and 42b, and the moving body 38 moves along the fixed guide portion 37. The depth of the grooves 42a, 42b is determined by the distance between the adjacent diaphragm blade bases 32, which are fixed to the linear guide 36 when the linear guide 36 is mounted in the grooves 42a, 42b. Are set so as to be spaced from each other in the center direction of the opening S (the direction perpendicular to the paper surface in FIG. 5), that is, the direction substantially parallel to the center axis. Also, every other groove 42 a, 42 b is arranged so that each of the aperture blade bases 32 is disposed in the same plane substantially orthogonal to the center direction (center axis) of the opening S. Formed at different depths.
また、 金物 5 3には、 図 6に示すように、 矢車 5 4の外周部を支持する段部 4 3が形成されており、 段部 4 3に支持された矢車 5 4は、 金物 5 3の円環部 5 1 との間に絞り羽根基部 3 2を収容する隙間 4 4を形成する。 詳細な説明は省略し たが、 実際には矢車 5 4は、 金物 5 3に固着する押さえ部材 4 5によって金物 5 3に固定され開口 Sの中心方向と平行な方向への移動が制限される。 図 7は、 図 2における A— A線矢視断面図である。 この図に示すように、 金物 5 3の周壁部 5 2には、 矢車 5 4とほぼ同じ高さの位置に外側に開口する貫通孔 4 7が形成さ れている。 この貫通孔 4 7は、 周方向に等間隔 (1 2 0 ° 間隔) で 3力所形成さ れており (図 5参照)、各貫通孔 4 7は周方向におよそ 3 0 ° に亘つて形成されて いる。 As shown in FIG. 6, the metal piece 53 is provided with a step 43 for supporting the outer periphery of the wheel 5 4. The wheel 5 4 supported by the step 43 is a metal piece 5 3. A gap 44 for accommodating the diaphragm blade base 32 is formed between the annular portion 51 and the annular portion 51. Although detailed description has been omitted, in practice, the wheel 5 4 is formed by a holding member 4 5 fixed to the metal 5 3. 3, the movement of the opening S in a direction parallel to the center direction is restricted. FIG. 7 is a sectional view taken along line AA in FIG. As shown in this figure, a through hole 47 is formed in the peripheral wall portion 52 of the metal piece 53 at a position substantially at the same height as the wicker wheel 54 to open outward. The through holes 47 are formed at three points at equal intervals (120 ° intervals) in the circumferential direction (see FIG. 5), and each through hole 47 extends over approximately 30 ° in the circumferential direction. It is formed.
図 8に示すように、 矢車 5 4には、 リニアガイ ド 3 6の凸部 4 1が軸受 3 9を 介して摺動自在に嵌合する嵌合溝 4 6が周方向に等間隔 (3 0 ° 間隔) で 1 2力 所形成されている。 各嵌合溝 4 6は、 絞り羽根基部 3 2の内径側輪郭が開口 Sの 最小絞り径を形成するときの凸部 4 1の位置と、 絞り羽根基部 3 2の内径側輪郭 が開口 Sの最大絞り径を形成するときの凸部 4 1の位置とを、 周方向に所定角度 (例えば 2 0 ° ) 離間させて結んだ直線状に形成されている。 より詳細には、 各 嵌合溝 4 6は、 開口 Sの最大絞り径を形成するときの凸部 4 1の位置が開口 Sの 最小絞り径を形成するときの凸部 4 1の位置に対して時計回り方向に位置する直 線状に形成されている。 ガイド部 3 7と移動体 3 8との間及び軸受 3 9に用いら れる潤滑剤としては、 ァゥトガスの発生が少ないフッ素系のものが用いられる。 また、 凸部 4 1自体もフッ素系の樹脂で形成される。  As shown in FIG. 8, in the wheel 5, fitting grooves 46 into which the protrusions 41 of the linear guides 36 are slidably fitted via bearings 39 are provided at equal intervals in the circumferential direction (30). At 12 ° intervals). Each fitting groove 46 has a position where the inner diameter side contour of the diaphragm blade base 32 forms the minimum aperture diameter of the opening S and a position of the convex portion 41, and the inner diameter side contour of the aperture blade base 32 has the opening S The projection 41 is formed in a linear shape that is connected to the position of the convex portion 41 when forming the maximum aperture diameter at a predetermined angle (for example, 20 °) in the circumferential direction. More specifically, each of the fitting grooves 46 is such that the position of the convex portion 41 when forming the maximum aperture diameter of the opening S is different from the position of the convex portion 41 when forming the minimum aperture diameter of the opening S. It is formed in a linear shape located clockwise. As a lubricant used between the guide portion 37 and the moving body 38 and for the bearing 39, a fluorine-based lubricant that generates little gas is used. In addition, the protrusions 41 themselves are also formed of a fluorine-based resin.
また、 図 7に示すように、 矢車 5 4の外周部には、 金物 5 3の貫通孔 4 7の位 置に対応してレバー 4 8が 3力所設けられている。 上記の回転駆動部は、 このレ バー 4 8を介して矢車 5 4を回転させる。  Further, as shown in FIG. 7, three levers 48 are provided on the outer periphery of the arrow wheel 54 at positions corresponding to the positions of the through holes 47 of the hardware 53. The above-described rotation drive unit rotates the arrow wheel 54 through the lever 48.
上記構成の投影露光装置 1の中、 まず開口絞り 1 6の動作について説明する。 回転駆動部の駆動により矢車 5 4が金物 5 3に対して開口 Sの中心軸回りに、 例 えば図 2中、 時計回りに回転すると、 矢車 5 4の嵌合溝 4 6に嵌合する凸部 4 1 は、 移動体 3 8がガイ ド部 3 7にガイ ドされることにより、 開口 Sの中心に向か つて移動する。 換言すると、 矢車 5 4の回転移動がリニアガイ ド 3 6により直線 移動に変換されて、 凸部 4 1が開口 Sの中心に向けて移動する。 この凸部 4 1の 移動により、 絞り羽根基部 3 2は、 隣り合う絞り羽根基部 3 2との間で隙間をあ けた状態で、 中心側輪郭 3 4 a、 3 5 aの任意の点が開口 Sの略中心に向けて直 線移動し、 これにより開口 Sの絞り径が縮径される。 従来の絞り装置では、 絞り 羽根の内側輪郭の任意の点が螺旋状に移動するのに対し、 本実施例における絞り 装置では、 絞り羽根の内側輪郭 3 4 a、 3 5 aの任意の点が直線移動する点で、 従来の絞り装置と本実施例の絞り装置とで構成が異なる。 First, the operation of the aperture stop 16 in the projection exposure apparatus 1 having the above configuration will be described. When the rotation drive unit drives the rotation wheel 54 around the central axis of the opening S with respect to the hardware 53, for example, clockwise in FIG. 2, the protrusion fits into the fitting groove 46 of the rotation wheel 54. The part 41 moves toward the center of the opening S when the moving body 38 is guided by the guide part 37. In other words, the rotational movement of the arrow wheel 54 is converted into a linear movement by the linear guide 36, and the convex portion 41 moves toward the center of the opening S. Due to the movement of the convex portion 41, the aperture blade base 32 opens any point of the center side contours 34a and 35a with a gap between the adjacent aperture blade base 32. The beam moves linearly toward the approximate center of S, whereby the aperture diameter of the aperture S is reduced. With the conventional diaphragm device, the diaphragm Whereas any point on the inner contour of the blade moves spirally, the aperture device of the present embodiment differs from the conventional one in that any point on the inner contour 34 a and 35 a of the aperture blade moves linearly. The configuration of the diaphragm device of this embodiment is different from that of the diaphragm device of the present embodiment.
一方、 回転駆動部の駆動により矢車 5 4を金物 5 3に対して、 図 2中、 反時計 回りに回転させることで、 上記と逆の動作で凸部 4 1が開口 Sの中心に対して後 退し、 これにより開口 Sの絞り径が拡大される。 従って、 矢車 5 4の回転量 (回 転角) および回転方向を調整することで、 上記略中心へ進出または後退する絞り 羽根基部 3 2の移動量、 すなわち開口 Sの絞り径を制御することができる。  On the other hand, by rotating the whirler 54 with respect to the hardware 53 by driving the rotation drive unit, the protrusion 41 is rotated with respect to the center of the opening S in the reverse operation by rotating counterclockwise in FIG. As a result, the aperture diameter of the aperture S is increased. Therefore, by adjusting the rotation amount (rotation angle) and the rotation direction of the impeller 54, it is possible to control the movement amount of the diaphragm blade base 32 that advances or retreats to the approximate center, that is, the diaphragm diameter of the opening S. it can.
絞り羽根基部 3 2が中心側輪郭 3 4 aで形成される開口 Sの半径よりも大径の 開口 Sの径を形成した際に矩形部 3 5が開口 Sの一部を形成することになるが、 矩形部 3 5の中心側輪郭 3 5 aが環形部 3 4の中心側輪郭 3 4 aから連続する直 線形状なので、 中心側輪郭 3 4 aを延長させた円弧形状の場合に比べ中心側輪郭 の一部が開口 S内に突出して真円度を低下させることがない。  When the aperture blade base 32 forms the diameter of the opening S that is larger than the radius of the opening S formed by the center-side contour 34a, the rectangular portion 35 forms a part of the opening S However, since the center side contour 35a of the rectangular part 35 is a linear shape that is continuous from the center side contour 34a of the ring-shaped part 34, the center is compared to the case of an arc shape with the center side contour 34a extended. Part of the side profile does not protrude into the opening S and does not reduce the roundness.
上記の投影露光装置 1によりレチクル Rのパターン像をウェハ Wに投影露光す る際には、 不図示のレチクルローデイング機構により、 転写の目的となるパター ンの描画されたレチクル Rをレチクルステージ 1 8の上に搬送して載置する。 こ のとき、 そのレチクル Rが所定の位置に設置されるように、 不図示のレチクルァ ライメント系によりそのレチクル Rの位置を計測し、 その結果にしたがって、 不 図示のレチクル位置制御回路によってレチクル Rの位置を所定の位置に設定する。 レチクル Rのパターンが転写されるウェハ Wの表面には感光材料であるレジス トがあらかじめ塗布されており、 その状態で不図示のウェハローディング機構に よりウェハ Wが搬送されてウェハステージ 2 7上に設置される。 ウェハ Wはゥェ ハステージ 2 7上でァライメントされて保持固定される。 ウェハステージ 2 7上 に設置されたウェハ Wは第 1層目のレチクルのパターンの転写では、 そのウェハ W上にパターンは存在せず、 ウェハステージ 2 7上の所定の位置に、 例えばゥェ ハ Wはその外径 (オリフラまたはノッチなど) を基準として定められる位置に設 置される。  When the pattern image of the reticle R is projected and exposed on the wafer W by the above-described projection exposure apparatus 1, the reticle R on which the pattern to be transferred is drawn is transferred to the reticle stage 1 by a reticle loading mechanism (not shown). 8 to be transported and placed. At this time, the position of the reticle R is measured by a reticle alignment system (not shown) so that the reticle R is installed at a predetermined position, and the reticle R is controlled by a reticle position control circuit (not shown) according to the result. Set the position to a predetermined position. The surface of the wafer W to which the pattern of the reticle R is transferred is coated in advance with a resist, which is a photosensitive material, and in this state, the wafer W is transported by a wafer loading mechanism (not shown) and is placed on the wafer stage 27. Will be installed. The wafer W is aligned and held and fixed on the wafer stage 27. In the transfer of the pattern of the reticle of the first layer, the wafer W placed on the wafer stage 27 does not have a pattern on the wafer W, and is located at a predetermined position on the wafer stage 27, for example, a wafer. W is installed at a position determined based on its outer diameter (such as orientation flat or notch).
ウェハ Wに対する第 2回目以降のパターンの転写の場合には、 ウェハ W上にパ ターンが存在するため、 予め転写されたパターンに付設されるマークを不図示の ウェハァライメント系で計測することにより、 ウェハ W上に先に転写されたパタ ーンに対して、 これから転写するパターンが所定の位置関係になるように、 レチ クルステージ 1 8やウェハステージ 2 7の位置を制御する。 In the case of the second and subsequent transfer of the pattern to the wafer W, since the pattern exists on the wafer W, the mark attached to the previously transferred pattern is not shown. By measuring with the wafer alignment system, the reticle stage 18 and the wafer stage 27 are designed so that the pattern to be transferred has a predetermined positional relationship with the pattern previously transferred on the wafer W. Control the position of.
また、 ウェハ W上に投影露光するレチクル Rのパターン特性 (パターン形状、 パターン種類) に応じて、 最適な解像度及び焦点深度となるように、 照明系用可 変開口絞りにおけるモータ 8を介してターレツト板 7を回転させるとともに、 投 影光学系 P Lにおける開口絞り 1 6の回転駆動部を駆動して開口数の大きさを変 更する。 具体的には、 レチクル Rのパターンが、 二重露光を実施する際に比較的 緩い精度が求められる、 いわゆるラフパターンである場合や、 比較的配線密度が 低い、 いわゆる孤立線である場合には開口数を小さく設定して焦点深度を大きく する。 逆に、 レチクル Rのパターンが、 二重露光を実施する際に厳密な精度が求 められる、 いわゆるファインパターンである場合や、 比較的配線密度が高い、 例 えばライン 'アンド · スペースパターンである場合には、 開口数を大きく設定す ることで解像度を向上させる。  In addition, according to the pattern characteristics (pattern shape and pattern type) of the reticle R to be projected and exposed on the wafer W, the reticle is adjusted via the motor 8 in the variable aperture stop for the illumination system so that the optimum resolution and depth of focus are obtained. While rotating the plate 7, the rotation drive unit of the aperture stop 16 in the projection optical system PL is driven to change the size of the numerical aperture. Specifically, when the pattern of reticle R is a so-called rough pattern that requires relatively loose precision when performing double exposure, or when the wiring density is relatively low, that is, when it is a so-called isolated line Set a small numerical aperture to increase the depth of focus. Conversely, when the pattern of the reticle R is a so-called fine pattern that requires strict accuracy when performing double exposure, or when the wiring density is relatively high, for example, a line-and-space pattern In such a case, the resolution is improved by setting a large numerical aperture.
その後、 照明系用可変開口絞り及び開口絞り 1 6で規定された開口数の光束に より、ウェハ W上にパターン像がステップアンドスキャン方式で投影露光される。 この転写は、 レチクル R上のパターンの一部を視野絞り 1 2によって選択的に照 明し、 レチクルステージ 1 8によってレチクル Rを移動させ、 それに同期しなが らウェハ Wをウェハステージ 2 7によって動かすいわゆる走査型の転写である。 あるいは、 レチクル Rとウェハ Wとを静止させた状態で転写したいレチクル R上 のパターンを 1度に全て照明して転写するステップアンドリピート方式でもよい。 以上のように、 本実施例では、 絞り羽根基部 3 2が開口 Sの略中心に向かって 進退自在に直線移動する構成なので、 周方向に隣り合う絞り羽根同士は、 間に隙 間が形成されない程度に重なればよく、 そのため、 絞り羽根基部 3 2同士が接触 する場合でも、 これらの接触部は各絞り羽根基部 3 2の周方向両端のみとなり、 従来に比べて大幅に接触面積を小さくすることができる。 従って、 絞り羽根基部 3 2同士の接触に起因する発塵や摩耗を大幅に抑制することが可能になり、 二重 露光の実施に伴う高い動作回数にも充分に耐えることができる。  Thereafter, a pattern image is projected and exposed on the wafer W by a step-and-scan method using a light beam having a numerical aperture defined by the illumination system variable aperture stop and the aperture stop 16. In this transfer, a part of the pattern on the reticle R is selectively illuminated by the field stop 12, the reticle R is moved by the reticle stage 18, and the wafer W is synchronized with the reticle R by the wafer stage 27. This is a so-called scanning type transfer that moves. Alternatively, a step-and-repeat method in which the pattern on the reticle R to be transferred while the reticle R and the wafer W are stationary is illuminated and transferred at a time may be used. As described above, in the present embodiment, since the diaphragm blade base 32 is configured to linearly move back and forth toward the approximate center of the opening S, no gap is formed between the diaphragm blades adjacent in the circumferential direction. Therefore, even if the diaphragm blade bases 32 come into contact with each other, these contact portions are only at both circumferential ends of the respective diaphragm blade bases 32, which significantly reduces the contact area as compared with the conventional case. be able to. Therefore, dust generation and abrasion due to the contact between the aperture blade bases 32 can be largely suppressed, and the device can sufficiently withstand the high number of operations associated with the double exposure.
しかも、 本実施例では、 隣り合う絞り羽根基部 3 2の間に、 開口 Sの中心方向 (図 5、 図 8中、 紙面と直交する方向) に関して、 互いに隙間をあけて配置して いるので、 絞り羽根基部 3 2同士が接触することを防止でき、 接触に起因する発 塵や摩耗を一層抑制することでさらに高い動作回数にも耐えることが可能になつ ている。 また、 本実施例では、 隣り合う絞り羽根基部 3 2の間で隙間を形成する にも、 一つおきに開口 Sの中心方向と略直交する同一面内に各絞り羽根基部 3 2 を配置しているので、 開口 Sの中心方向に関する絞り羽根基部 3 2の設置範囲を 小さくすることができ、 開口絞り 1 6および投影光学系 P L、 ひいては投影露光 装置 1の小型化を実現することができる。 Moreover, in the present embodiment, between the adjacent diaphragm blade bases 32, the center direction of the opening S (See Fig. 5 and Fig. 8 in the direction perpendicular to the plane of the paper.) By further suppressing it, it is possible to withstand even higher number of operations. Further, in the present embodiment, in order to form a gap between the adjacent aperture blade bases 32, every other aperture blade base 32 is disposed in the same plane substantially orthogonal to the center direction of the opening S. Therefore, the installation range of the aperture blade base 32 in the center direction of the aperture S can be reduced, and the aperture stop 16 and the projection optical system PL, and further, the projection exposure apparatus 1 can be downsized.
また、 本実施例では、 矢車 5 4の回転移動をリニアガイ ド 3 6で直線移動に変 換する、 という簡素な構成で絞り羽根基部 3 2の直線移動を実現しているので、 構造が複雑になることなく、 装置の小型化及び低価格化に寄与できる。  Further, in the present embodiment, the linear movement of the diaphragm blade base 32 is realized by a simple configuration in which the rotational movement of the yaw wheel 54 is converted into the linear movement by the linear guide 36, so that the structure is complicated. It is possible to contribute to miniaturization and cost reduction of the device without becoming unnecessary.
一方、 本実施例では、 絞り羽根基部 3 2の周方向両側に位置する矩形部 3 5の 中心側輪郭 3 5 aが、 円弧形状を成す環形部 3 4の中心側輪郭 3 4 aに接する直 線形状となっているので、 中心側輪郭 3 4 aで形成される開口 Sの半径よりも大 径の開口 Sの径を形成した場合でも中心側輪郭 3 5 aが開口 S内に突出すること がない。 そのため、 本実施例では、 絞り径の大きさに拘わらず、 開口 Sの真円度 低下を防ぐことができ、 調整可能な開口 Sの大きさ (絞り範囲) を広くことがで さる。  On the other hand, in the present embodiment, the center-side contour 35 a of the rectangular portion 35 located on both circumferential sides of the diaphragm blade base 32 is in direct contact with the center-side contour 34 a of the arc-shaped annular portion 34. Because of the linear shape, even if the diameter of the opening S that is larger than the radius of the opening S formed by the center-side contour 34 a is formed, the center-side contour 35 a protrudes into the opening S. There is no. Therefore, in this embodiment, regardless of the size of the aperture diameter, it is possible to prevent the roundness of the opening S from being reduced, and to increase the size (aperture range) of the adjustable aperture S.
また、 このように開口絞り 1 6により形成される絞り径の精度を確保できるの で、 投影露光装置 1においてはレチクル Rの微細なパターンを正確にゥェハ W上 に形成することが可能になり、 半導体デバイスにおいても微細パターンの形成が 可能になることで高集積化を実現することができる。  In addition, since the accuracy of the diameter of the aperture formed by the aperture stop 16 can be ensured in this manner, the projection exposure apparatus 1 can accurately form a fine pattern of the reticle R on the wafer W, Higher integration can be achieved by enabling formation of fine patterns also in semiconductor devices.
さらに、 本実施例では、 リニアガイド 3 6の移動体 3 8に設けられた凸部 4 1 に軸受 3 9を装着しているので、 絞り羽根基部 3 2の直線移動に関してより高い 動作回数に耐えることが可能になる。 ·  Furthermore, in this embodiment, since the bearing 39 is mounted on the convex portion 41 provided on the moving body 38 of the linear guide 36, the number of operation times can be increased with respect to the linear movement of the diaphragm blade base 32. It becomes possible. ·
図 9ないし図 1 5は、 本発明の第 2の実施例を示す図である。  FIG. 9 to FIG. 15 are diagrams showing a second embodiment of the present invention.
これらの図において、 図 1乃至図 8に示す第 1の実施例の構成要素と同一の要 素については同一符号を付し、 その説明を省略する。  In these figures, the same elements as those of the first embodiment shown in FIGS. 1 to 8 are denoted by the same reference numerals, and description thereof will be omitted.
図 9は、 本発明に係る絞り装置の第 2の実施例を示す分解斜視図である。 開口絞り装置 1 6は、 絞り羽根基部 3 2及び絞り羽根 6 1と、 これら絞り羽根 基部 3 2および絞り羽根 6 1を開口 Sの中心に向かって進退自在に直線移動させ る駆動機構 3 3とから概略構成されている。 開口絞り 1 6の中、 絞り羽根 6 1が 投影光学系 P Lの瞳面と略同一面上あるいはその近傍に配置される。 FIG. 9 is an exploded perspective view showing a second embodiment of the diaphragm device according to the present invention. The aperture stop device 16 includes an aperture blade base 32 and an aperture blade 61, and a drive mechanism 33 that linearly moves the aperture blade base 32 and the aperture blade 61 toward the center of the opening S so as to be able to advance and retreat. It is roughly constituted from. Of the aperture stop 16, the aperture blades 61 are arranged on or substantially in the same plane as the pupil plane of the projection optical system PL.
第 1の実施例と同様に、 絞り羽根 6 1は、 露光光を吸収するアウトガスの発生 が少ないステンレスで形成されており、 図 1 0に示すように、 環形を周方向に分 割した形状を呈する環形部 6 2と、 環形部 6 2の周方向両側に位置する平面視略 矩形の矩形部 6 3、 6 3とから構成されている。 環形部 6 2の外形輪郭のうち、 開口 Sの中心側 (すなわち内径側) の輪郭 6 2 aは所定の曲率で形成された円弧 形状 (円弧部分) となっている。 また、 矩形部 6 3の外形輪郭のうち、 開口 Sの 中心側の輪郭 6 3 aは、 環形部 6 2の中心側輪郭 6 2 aから連続して形成された 直線形状 (直線部分) となっている。  As in the first embodiment, the aperture blades 61 are made of stainless steel that absorbs exposure light and generate little outgas, and have a shape obtained by dividing the ring shape in the circumferential direction as shown in FIG. It comprises a ring-shaped portion 62 presenting, and rectangular portions 63, 63, which are located on both circumferential sides of the ring-shaped portion 62 and have a substantially rectangular shape in plan view. Among the outer contours of the ring-shaped portion 62, the contour 62a on the center side (that is, the inner diameter side) of the opening S has an arc shape (arc portion) formed with a predetermined curvature. Also, of the outer contours of the rectangular portion 63, the contour 63a on the center side of the opening S is a linear shape (linear portion) continuously formed from the center contour 62a of the annular portion 62. ing.
環形部 6 2の中心側輪郭 6 2 aの曲率は、 開口 Sの最大曲率と最小曲率とのほ ぼ中間に設定されている。 すなわち、 輪郭 6 2 aの半径を R a、 開口 Sの最大半 径 (最大絞り径) を RMA X、 最小半径 (最小絞り径) を RM I Nとすると、 R a = ( RMA X + RM I N) 2に設定される。 また、 絞り羽根 6 1の周方向の 大きさは、 開口 Sの最大径設定位置に絞り羽根 6 1が位置決めされたときに、 周 方向に隣り合う絞り羽根 6 1同士間に隙間が形成されず、 開口 Sの最小径設定位 置に絞り羽根基部 3 2が位置決めされたときに、 矩形部 6 3の中心側輪郭 6 3 a が周方向に隣り合う絞り羽根 6 1と重なり、 開口 Sの外径を形成しない最低限度 の大きさに設定されている。 従って、 開口 Sが最小径に設定されたとき、 開口 S の輪郭は、 環形部 6 2の中心側輪郭 6 2 aで形成される。  The curvature of the center-side contour 62 a of the ring-shaped portion 62 is set almost in the middle between the maximum curvature and the minimum curvature of the opening S. That is, if the radius of the contour 62 a is R a, the maximum radius of the opening S (maximum aperture diameter) is RMAX, and the minimum radius (minimum aperture diameter) is RM IN, then Ra = (RMA X + RM IN) Set to 2. Further, the size of the diaphragm blade 61 in the circumferential direction is such that when the diaphragm blade 61 is positioned at the maximum diameter setting position of the opening S, no gap is formed between the circumferentially adjacent diaphragm blades 61. When the diaphragm blade base 3 2 is positioned at the minimum diameter setting position of the opening S, the center-side contour 6 3 a of the rectangular portion 6 3 overlaps with the circumferentially adjacent diaphragm blade 6 1, and the outer periphery of the opening S It is set to the minimum size that does not form a diameter. Therefore, when the opening S is set to the minimum diameter, the outline of the opening S is formed by the center-side outline 62 a of the annular portion 62.
本実施例で絞り羽根基部 3 2は、 開口 Sの外径形状を形成しないため、 絞り羽 根 6 1が開口 Sの最小径設定位置に位置決めされたときに、 絞り羽根 6 1の外径 側に、 即ち絞り羽根 6 1と円環部 5 1との間に、 隙間が形成されない大きさに設 定されている。 また、 絞り羽根基部 3 2上には、 幅方向中央に位置して平面視矩 形の枠体 7 1が突設されている。 枠体 7 1には、 幅方向中央部に、 開口部 Sの中 心へ向かう方向 (半径方向) に延びる支持部 7 3が設けられており、 この支持部 7 3を挟むように、 上記半径方向に沿って開口部 7 2、 7 2が設けられている。 図 1 1に示すように、 図 1 0における B— B矢視断面図の枠体 7 1はコの字形状 をしている。 即ち、 枠体 7 1は支持部 7 3を底板とする箱型形状をしており、 枠 体 7 1には内部空間 7 4が形成されている。 さらに、 図 1 0に示すように、 絞り 羽根基部 3 2上には、 枠体 7 1の幅方向両側に位置して、 後述するリニアガイ ド 6 6を構成する移動体 6 9が突設されている。 絞り羽根基部 3 2および絞り羽根 6 1の対は、 上記第 1の実施例と同様に、 それぞれがーつおきに開口 Sの中心方 向 (中心軸) と略直交する同一面内に配置されるように、 一つおきに異なる高さ で設置されている。 In this embodiment, the diaphragm blade base 32 does not form the outer diameter of the opening S. Therefore, when the diaphragm blade 61 is positioned at the minimum diameter setting position of the opening S, the outer diameter of the diaphragm blade 61 is smaller. That is, the size is set so that no gap is formed between the diaphragm blade 61 and the annular portion 51. On the aperture blade base 32, a rectangular frame 71 in a plan view is provided at the center in the width direction. The frame body 71 is provided with a support portion 73 extending in the direction (radial direction) toward the center of the opening S at the center in the width direction. Openings 72, 72 are provided along the direction. As shown in FIG. 11, the frame 71 in the sectional view taken along the line BB in FIG. 10 has a U-shape. That is, the frame 71 has a box shape with the support portion 73 as a bottom plate, and the frame 71 has an internal space 74 formed therein. Further, as shown in FIG. 10, moving bodies 69, which constitute linear guides 66 described later, protrude from the diaphragm blade base 32 on both sides in the width direction of the frame 71. I have. A pair of the diaphragm blade base 32 and the diaphragm blade 61 is disposed in the same plane that is substantially orthogonal to the center direction (center axis) of the opening S every other as in the first embodiment. Like every other, they are installed at different heights.
駆動機構 3 3は、 円環部 5 1及び周壁部 5 2を有する金物 5 3と、 金物 5 3の 周壁部 5 2に回転自在に嵌合する矢車 5 4と、 矢車 5 4を回転させる回転駆動部 The drive mechanism 33 includes a metal part 53 having an annular part 51 and a peripheral wall part 52, a wheel 5 4 rotatably fitted to the peripheral wall part 52 of the metal part 53, and a rotation for rotating the wheel 5 4. Drive part
(不図示) と、 リンク機構 6 4と、 リニアガイ ド 6 5、 6 6とから概略構成され ている。 (Not shown), a link mechanism 64, and linear guides 65, 66.
図 1 0に示すように、 リニアガイ ド 6 5は、 絞り羽根基部 3 2に固着されるガ ィ ド部材 6 7と、 図 1 1に示すように、 絞り羽根 6 1が固着されガイ ド部材 6 7 に沿って直線移動する移動体 6 8とから構成されている。 ガイ ド部材 6 7は、 枠 体 7 1の支持部 7 3とほぼ同様の幅を有しており、 取付ネジ等の締結部材 7 5に より内部空間 7 4内に支持部 7 3に沿って固定されている。 移動体 6 8にはガイ ド部材 6 7及び支持部 7 3を跨いで、 図 1 2に示す平面視矩形の鞍部材 7 6がー 体的に固定される。  As shown in FIG. 10, the linear guide 65 includes a guide member 67 fixed to the aperture blade base 32 and a guide member 6 fixed to the aperture blade 61 as shown in FIG. 11. 7 and a moving body 6 8 that moves linearly along. The guide member 67 has substantially the same width as the support portion 73 of the frame 71, and is provided along the support portion 73 in the internal space 74 by a fastening member 75 such as a mounting screw. Fixed. A rectangular saddle member 76 shown in FIG. 12 is fixed to the moving body 68 so as to straddle the guide member 67 and the support portion 73.
鞍部材 7 6は、 支持部 7 3の上方 (図 1 0中では紙面手前側、 図 1 3中では上 側) に配置される平板部 7 6 aと、 平板部 7 6 aの長さ方向 (上記半径方向) 中 央に位置し幅方向 (上記周方向) 両側から枠体 7 1の開口部 7 2に挿通するよう に垂設されて移動体 6 8の両側部を保持する脚部 7 6 b、 7 6 bと、 平板部 7 6 aの隅部から枠体 7 1の開口部 7 2に挿通するように垂設されて、 図 1 4に示す ように、 移動体 6 8の長さ方向両端部を保持する脚部 7 6 c〜 7 6 cとを有して いる。 脚部 7 6 cは、 絞り羽根 6 1に当接する長さを有しており、 絞り羽根 6 1 は、 図 1 4中、 下側からビス等の締結部材 7 7により脚部 7 6 c (即ち鞍部材 7 6 ) に (4力所で) 固定される。 平板部 7 6 aの略中心部には軸部 7 8が突設さ れており、 この軸部 7 8には軸受 7 9が設けられている (図 1 0、 1 1参照)。 リユアガイ ド 6 6は、 リユアガイ ド 6 5及び枠体 7 1を挟んだ周方向両側に配 設される。 リニアガイ ド 6 6は、 金物 5 3に固着されるサポートリング 8 0 (図 1 0参照) に取り付けられるガイ ド部材 7 0と、 絞り羽根基部 3 2に設けられ、 かつガイ ド部材 7 0に沿って移動自在な移動体 6 9とからそれぞれ構成される。 各ガイ ド部材 7 0は、 リニアガイ ド 6 5のガイ ド部材 6 7と平行に設置されてい る。 The saddle member 76 has a flat plate portion 76 a disposed above the support portion 73 (the front side in FIG. 10 and the upper side in FIG. 13), and a longitudinal direction of the flat plate portion 76 a. (Radial direction) Center position and width direction (Circumferential direction) Legs 7 that are vertically suspended from both sides so as to pass through openings 7 2 of frame 7 1 and hold both sides of moving body 6 8 6b, 76b and the corner of the flat plate portion 76a are vertically installed so as to pass through the opening 72 of the frame 71, and as shown in FIG. And legs 76c to 76c for holding both ends in the vertical direction. The leg portion 76c has a length in contact with the diaphragm blade 61, and the diaphragm blade 61 is formed by a leg member 76c ( That is, it is fixed (at four places) to the saddle member 76). A shaft portion 78 protrudes from substantially the center of the flat plate portion 76a, and a bearing 79 is provided on the shaft portion 78 (see FIGS. 10 and 11). The guides 66 are arranged on both sides of the guide 65 and the frame 71 in the circumferential direction. The linear guide 66 includes a guide member 70 attached to a support ring 80 (see FIG. 10) fixed to the hardware 53, and a linear guide 66 provided on the diaphragm blade base 32 and along the guide member 70. And movable bodies 69. Each guide member 70 is installed in parallel with the guide member 67 of the linear guide 65.
図 1 5に示すように、 リンク機構 6 4は、 金物 5 3に開口 Sの中心軸と平行な 軸周りに回転自在に嵌合する回転軸 8 1 aを有する基部 8 1と、 基部 8 1の先端 から中心軸と直交する方向に延びるリンク部 8 2とから構成されている。 リンク 部 8 2の先端部には、 長さ方向に延び金物 5 3側 (図 1 5中、 下側) に開口して 鞍部材 7 6の軸受 7 9と嵌合する嵌合溝 8 3が形成されている。 また、 リンク部 8 2の長さ方向中央よりも基部 8 1側には、 上方に向けて軸部 8 4が突設されて おり、 軸部 8 4には矢車 5 4の嵌合溝 4 6に摺動自在に嵌合する軸受 8 5が設け られている。 嵌合溝 4 6は、 絞り羽根 6 1の内径側輪郭が開口 Sの最小絞り径を 形成するときの軸部 8 4の位置と、 絞り羽根 6 1の内径側輪郭が開口 Sの最大絞 り径を形成するときの軸部 8 4の位置とを、 周方向に所定角度 (例えば 2 0 ° ) 離間させて結んだ、 例えば直線状、 あるいは矢車 5 4を回転させた時に、 回転角 度と絞り径との関係が線形となるような関数で表される形状で形成されている As shown in FIG. 15, the link mechanism 64 includes a base 81 having a rotating shaft 81 a that is rotatably fitted around a shaft parallel to the central axis of the opening S to the hardware 53, and a base 81. And a link portion 82 extending in a direction perpendicular to the central axis from the tip of the link. At the tip of the link portion 82, a fitting groove 83 extending in the length direction and opening to the hardware 53 side (the lower side in FIG. 15) and fitting with the bearing 79 of the saddle member 76 is provided. Is formed. Further, a shaft portion 84 protrudes upward from the base portion 81 side from the center in the length direction of the link portion 82, and the shaft portion 84 has a fitting groove 4 6 for a wheel wheel 54. There is provided a bearing 85 slidably fitted on the bearing. The fitting groove 46 has the position of the shaft portion 84 when the inner diameter side contour of the aperture blade 61 forms the minimum aperture diameter of the opening S, and the inner diameter side contour of the aperture blade 61 has the maximum aperture diameter of the opening S. When the shaft portion 84 at the time of forming the diameter is connected at a predetermined angle (for example, 20 °) in the circumferential direction and is tied, for example, in a straight line or when the wicker 54 is rotated, the rotation angle and It is formed in a shape expressed by a function that makes the relationship with the aperture diameter linear.
(図 9参照)。 他の構成は、 上記第 1の実施例と同様である。 (See Figure 9). Other configurations are the same as those of the first embodiment.
次に、 上記構成の開口絞り 1 6の動作について説明する。  Next, the operation of the aperture stop 16 having the above configuration will be described.
回転駆動部の駆動により矢車 5 4が金物 5 3に対して開口 Sの中心軸回りに、 例えば図 9中、 時計回りに回転すると、 軸受 8 5は矢車 5 4の嵌合溝 4 6に沿つ て、 開口 Sの中心側に移動する。 軸受 8 5が設けられたリンク部 8 2は、 軸受 8 5の移動によって回転軸 8 1 aの軸周りに図 9中、 反時計回りに回転することに なる。 また、 回転軸 8 1 aの反時計回りの回転により、 リンク部 8 2の嵌合溝 8 3に嵌合する軸受 7 9は、 回転軸 8 1 aから軸受 8 5までの距離と、 回転軸 8 1 aから軸受 7 9までの距離との比に応じた距離移動する。 即ち、 図 1 5に示すよ うに、 回転軸 8 1 aから軸受 8 5までの距離を L 1、 回転軸 8 l aから軸受 7 9 までの距離を L 2、 軸受 8 5の移動量を S 1とすると、 軸受 8 5の移動に伴う軸 受 7 9の移動量 S 2は次式で表される。 When the rotation drive unit drives the wicker 54 with respect to the hardware 53 around the central axis of the opening S, for example, clockwise in FIG. 9, the bearing 85 moves along the fitting groove 46 of the wicker 54. Then, it moves to the center side of the opening S. The link portion 82 provided with the bearing 85 is rotated counterclockwise in FIG. 9 around the axis of the rotating shaft 81a by the movement of the bearing 85. In addition, due to the counterclockwise rotation of the rotating shaft 81a, the bearing 79 fitted into the fitting groove 83 of the link portion 82 has a distance between the rotating shaft 81a and the bearing 85, and the rotating shaft 81a. It moves a distance according to the ratio of the distance from 8 1 a to the bearing 79. That is, as shown in Fig. 15, the distance from the rotating shaft 81a to the bearing 85 is L1, the distance from the rotating shaft 8la to the bearing 79 is L2, and the moving distance of the bearing 85 is S1. Then, the shaft accompanying the movement of the bearing 85 The movement amount S 2 of the reception 79 is expressed by the following equation.
S 2 = ( L 2 / L 1 ) X S 1  S 2 = (L 2 / L 1) X S 1
すなわち、 軸受 7 9は、 軸受 8 5の移動量に対して (L 2 Z L 1 ) 倍の距離を 移動する。 この軸受 8 5の移動により、 絞り羽根 6 1は鞍部材 7 6及び移動体 6 8を介してガイ ド部材 6 7に沿って開口 Sの中心に向かって絞り羽根基部 3 2に 対し相対移動する。  That is, the bearing 79 moves a distance (L 2 Z L 1) times the moving distance of the bearing 85. By the movement of the bearing 85, the diaphragm blade 61 moves relative to the diaphragm blade base 32 toward the center of the opening S along the guide member 67 via the saddle member 76 and the moving body 68. .
絞り羽根 6 1の径方向への移動が進むと、 図 1 0に示すように、 鞍部材 7 6が 枠体 7 1に開口 Sの中心側で係合し、鞍部材 7 6の径方向への移動が制限される。 鞍部材 7 6の移動が制限されることによって、 今度は絞り羽根基部 3 2がリニア ガイ ド 6 6のガイ ド部材 7 0に沿って直線移動する。 この絞り羽根基部 3 2の直 線移動に伴い絞り羽根 6 1が開口 Sの中心に向かって再び移動する。 このとき、 絞り羽根 6 1は、 絞り羽根基部 3 2の移動を直線移動させるリニァガイ ド 6 6の ガイ ド部材 7 0に沿って直線移動することになる。 リニアガイ ド 6 5における摩 擦力がリニアガイ ド 6 6における摩擦力よりも大きい場合は、 軸受 8 5の移動に より絞り羽根基部 3 2および絞り羽根 6 1がー体的に移動することになるが、 鞍 部材 7 6が枠体 7 1に開口 Sの外側で係合しても、 絞り羽根基部 3 2の中心側輪 郭が絞り羽根 6 1の中心側輪郭よりも突出しないように設定されているため、 絞 り羽根 6 1による絞り径の形成に支障を来すことはない。  As the diaphragm blade 61 moves in the radial direction, the saddle member 76 engages with the frame 71 at the center side of the opening S as shown in FIG. Movement is restricted. By restricting the movement of the saddle member 76, the diaphragm blade base 32 moves linearly along the guide member 70 of the linear guide 66 this time. The diaphragm blade 61 moves again toward the center of the opening S with the linear movement of the diaphragm blade base 32. At this time, the diaphragm blade 61 linearly moves along the guide member 70 of the linear guide 66 that linearly moves the diaphragm blade base 32. If the friction force at the linear guide 65 is larger than the friction force at the linear guide 66, the movement of the bearing 85 causes the diaphragm blade base 32 and diaphragm blade 61 to move physically. However, even if the saddle member 76 is engaged with the frame 71 outside the opening S, the center side contour of the diaphragm blade base 32 is set so as not to protrude beyond the center side contour of the diaphragm blade 61. Therefore, there is no problem in forming the aperture diameter by the aperture blades 61.
一方、 回転駆動部の駆動により矢車 5 4を'金物 5 3に対して、 図 9中、 反時計 回りに回転させることで、 回転軸 8 1 aの回転により、 上記と逆の動作で軸受 8 5が開口 Sの中心に対して後退する。 これにより、 絞り羽根 6 1が開口 Sの中心 軸から離間する方向に移動し、 開口 Sの絞り径が拡大される。 従って、 矢車 5 4 の回転量 (回転角) および回転方向を調整することで、 上記略中心へ進出または 後退する絞り羽根 6 1の移動量、 すなわち開口 Sの絞り径を任意の大きさに制御 することができる。 例えば、 L 2 : L l = 2 : 1程度に設定すれば、 上記第 1の 実施例に対して約 2倍の範囲で絞り径を設定できることになる。 結果的に絞り羽 根 6 1は、 リニアガイ ド 6 5、 6 6の両方を使って直線移動する構成である。 このように、 本実施例では、 上記第 1の実施例と同様の作用 ·効果が得られる ことに加えて、 互いに相対移動自在な絞り羽根基部 3 2および絞り羽根 6 1を用 いることで、 第 1の実施例と同様の大きさの絞り羽根を用いても、 開口絞り 1 6 を平面的に大きくすることなく、 調整可能な開口 Sの大きさ (絞り範囲) を 2倍 程度に広くすることができる。 また、 本実施例では、 絞り羽根基部 3 2および絞 り羽根 6 1を相対移動させるためのガイ ド部材 6 7を絞り羽根基部 3 2に設けて いるので、 他の個所に設けた場合に比較して開口絞り 1 6、 ひいては投影光学系 P Lを小型化することが可能になるとともに、開口 Sの絞り径を調整する際にも、 回転部材 5 4の回転量を小さくすることができ、 調整作業に要する時間を短くす ることが可能になる。 On the other hand, the rotation of the rotating shaft 8 1a by rotating the wicker wheel 54 with respect to the hardware 53 in the counterclockwise direction in FIG. 5 retreats with respect to the center of the opening S. Thereby, the diaphragm blade 61 moves in a direction away from the central axis of the opening S, and the diaphragm diameter of the opening S is enlarged. Therefore, by adjusting the amount of rotation (rotation angle) and the direction of rotation of the impeller 54, the amount of movement of the diaphragm blade 61, which advances or retreats to the approximate center, ie, the diameter of the aperture S, can be controlled to an arbitrary size. can do. For example, by setting L 2: L l = 2: 1, it is possible to set the aperture diameter in a range about twice as large as that of the first embodiment. As a result, the aperture blade 61 is configured to move linearly using both the linear guides 65 and 66. As described above, in the present embodiment, in addition to obtaining the same operation and effect as the above-described first embodiment, the diaphragm blade base 32 and the diaphragm blade 61 that can move relative to each other are used. Therefore, even if the aperture blade having the same size as that of the first embodiment is used, the size of the adjustable aperture S (aperture range) can be doubled without increasing the aperture stop 16 in a planar manner. Can be as wide as possible. Further, in the present embodiment, since the guide member 67 for relatively moving the aperture blade base 32 and the aperture blade 61 is provided on the aperture blade base 32, it is compared with a case where the guide member 67 is provided at another location. The aperture stop 16 and, consequently, the projection optical system PL can be reduced in size, and the amount of rotation of the rotating member 54 can be reduced when adjusting the aperture diameter of the aperture S. The time required for work can be reduced.
上記第 2の実施例では、 絞り羽根基部 3 2および絞り羽根 6 1を相対移動させ るためにリンク機構 6 4を用いる構成とした力 これに限定されるものではなく、 例えば絞り羽根基部 3 2の中心側端縁で係合するワイヤを折り返し、 ワイャ先端 を絞り羽根 6 1に固定する構成や、 絞り羽根基部 3 2と絞り羽根 6 1とにギヤ比 1 : 2のギヤをそれぞれ設ける構成とすることも可能である。  In the second embodiment, the force using the link mechanism 64 to relatively move the aperture blade base 32 and the aperture blade 61 is not limited to this. For example, the aperture blade base 3 2 The wire that is engaged at the center edge of the wire is folded back, and the wire tip is fixed to the diaphragm blade 61, or the gear with a gear ratio of 1: 2 is provided between the diaphragm blade base 32 and the diaphragm blade 61. It is also possible.
また、 上記実施例において、 本発明の絞り装置を投影光学系 P Lの開口絞りに 適用する構成としたが、 これに限定されるものではなく、 照明系用可変開口絞り に適用してもよい。 また、 上記実施例では、 リニアガイ ド 3 6の移動体 3 8に凸 部 4 1が設けられ、 矢車 5 4に嵌合溝 4 6が設けられる構成としたが、 逆に、 移 動体 3 8に嵌合溝を設け、 矢車 5 4に凸部を設ける構成としてもよい。 この場合 も、 凸部に軸受を設けることが望ましい。  Further, in the above embodiment, the aperture device of the present invention is applied to the aperture stop of the projection optical system PL. However, the present invention is not limited to this, and may be applied to a variable aperture stop for an illumination system. Further, in the above embodiment, the moving body 38 of the linear guide 36 is provided with the convex portion 41 and the whirler 54 is provided with the fitting groove 46. On the contrary, the moving body 38 has A configuration may be adopted in which a fitting groove is provided, and a convex portion is provided in the wheel 54. Also in this case, it is desirable to provide a bearing on the projection.
また、 上記実施例では、 絞り羽根基部 3 2や絞り羽根 6 1が開口 Sの中心方向 と直交する方向に直線移動する構成としたが、 例えば、 隣り合う絞り羽根基部 3 2同士が中心に向かうに従って漸次中心方向で離間するように、 直線移動方向が 上記直交する方向に対して、許容される誤差範囲内で若干傾く構成としてもよレ、。 この場合、 絞り羽根基部 3 2および絞り羽根 6 1が中心に向かうに従って自重に より橈み、 隣り合う絞り羽根と接近しても接触することを回避できる。  Further, in the above embodiment, the aperture blade base 32 and the aperture blade 61 are configured to move linearly in a direction orthogonal to the center direction of the opening S. For example, the adjacent aperture blade bases 32 approach the center. , The linear movement direction may be slightly inclined within an allowable error range with respect to the above-mentioned orthogonal direction so as to gradually separate in the center direction. In this case, the diaphragm blade base 32 and the diaphragm blade 61 are deflected by their own weight toward the center, and can be prevented from coming into contact with adjacent diaphragm blades even when approaching.
本実施例の基板としては、 半導体デバイス用の半導体ウェハ Wのみならず、 液 晶ディスプレイデバイス用のガラス基板や、 薄膜磁気へッド用のセラミックウェ ハ、 あるいは露光装置で用いられるマスクまたはレチクルの原版 (合成石英、 シ リコンウェハ) 等が適用される。 投影露光装置 1としては、 レチクル Rとウェハ Wとを同期移動してレチクル R のパターンを走査露光するステップ'アンド.スキャン方式の走査型露光装置(ス キヤニング . ステッパー; USP5,473,410) の他に、 レチクル Rとウェハ Wとを 静止した状態でレチクル Rのパターンを露光し、 ウェハ Wを順次ステツプ移動さ せるステップ ' アンド ' リピート方式の投影露光装置 (ステッパー) にも適用す ることができる。 The substrate of the present embodiment is not only a semiconductor wafer W for a semiconductor device, but also a glass substrate for a liquid crystal display device, a ceramic wafer for a thin film magnetic head, or a mask or reticle used in an exposure apparatus. The original plate (synthetic quartz, silicon wafer) etc. are applied. The projection exposure apparatus 1 includes a step-and-scan type scanning exposure apparatus (scanning stepper; US Pat. No. 5,473,410) for scanning and exposing the pattern of the reticle R by synchronously moving the reticle R and the wafer W. The present invention can also be applied to a projection exposure apparatus (stepper) of a step-and-repeat type in which the pattern of the reticle R is exposed while the reticle R and the wafer W are stationary, and the wafer W is sequentially moved in steps.
投影露光装置 1の種類としては、 ウェハ Wに半導体デバイスパターンを露光す る半導体デバイス製造用の露光装置に限られず、 液晶表示素子製造用の露光装置 や、 薄膜磁気ヘッド、 撮像素子 (C C D ) あるいはレチクルなどを製造するため の露光装置などにも広く適用できる。 また、 本発明の絞り装置は、 投影露光装置 のみならず、種々の絞り装置を備える光学機器(例えばカメラ)にも適用できる。 投影光学系 P Lの倍率は、 縮小系のみならず等倍系および拡大系のいずれでも よい。 また、 投影光学系 P Lとしては、 エキシマレーザなどの遠紫外線を用いる 場合は硝材として石英や蛍石などの遠紫外線を透過する材料を用い、 F 2レーザ や X線を用いる場合は反射屈折系または屈折系の光学系にし (レチクル Rも反射 型タイプのものを用いる)、また電子線を用いる場合には光学系として電子レンズ および偏向器からなる電子光学系を用いればよい。 電子線が通過する光路は、 真 空状態にする。  The type of the projection exposure apparatus 1 is not limited to an exposure apparatus for manufacturing a semiconductor device that exposes a semiconductor device pattern onto a wafer W, but may be an exposure apparatus for manufacturing a liquid crystal display element, a thin-film magnetic head, an imaging device (CCD), or the like. It can be widely applied to an exposure apparatus for manufacturing a reticle and the like. Further, the aperture device of the present invention can be applied not only to a projection exposure device but also to an optical apparatus (for example, a camera) including various aperture devices. The magnification of the projection optical system PL may be not only a reduction system but also an equal magnification system or an enlargement system. Further, as the projection optical system PL, when far ultraviolet rays such as an excimer laser are used, a material which transmits far ultraviolet rays such as quartz or fluorite is used as a glass material, and when a F 2 laser or X-ray is used, a catadioptric system is used. An optical system of a refraction system (a reticle R of a reflection type is also used), and when an electron beam is used, an electron optical system including an electron lens and a deflector may be used as the optical system. The optical path through which the electron beam passes must be vacuum.
ウェハステージ 2 7ゃレチクルステージ 1 8にリニアモータ (USP5, 623,853 または USP5, 528,118参照) を用いる場合は、 エアベアリングを用いたエア浮上 型およびローレンツ力またはリアクタンス力を用いた磁気浮上型のどちらを用い てもよレ、。 また、 各ステージ 1 8、 2 7は、 ガイ ドに沿って移動するタイプでも よく、 ガイ ドを設けないガイ ドレスタイプであってもよい。  When a linear motor (see USP5,623,853 or USP5,528,118) is used for the wafer stage 27 reticle stage 18, either an air levitation type using an air bearing or a magnetic levitation type using Lorentz force or reactance force is used. You can use it. Further, each of the stages 18 and 27 may be of a type that moves along a guide, or may be a guideless type that does not have a guide.
各ステージ 1 8、 2 7の駆動機構としては、 二次元に磁石を配置した磁石ュニ ット (永久磁石) と、 二次元にコイルを配置した電機子ユニットとを対向させ電 磁力により各ステージ 1 8、 2 7を駆動する平面モータを用いてもよい。 この場 合、 磁石ュニットと電機子ュニッ卜とのいずれか一方をステージ 1 8、 2 7に接 続し、 磁石ユニットと電機子ユニットとの他方をステージ 1 8、 2 7の移動面側 (ベース) に設ければよい。 ウェハステージ 2 7の移動により発生する反力は、 投影光学系 P Lに伝わらな いように、 特開平 8— 1 6 6 4 7 5号公報 (USP5,528,118) に記載されているよ うに、 フレーム部材を用いて機械的に床 (大地) に逃がしてもよレ、。 本発明はこ のような構造を備えた露光装置においても適用可能である。 The drive mechanism of each stage 18 and 27 consists of a magnet unit (permanent magnet) in which magnets are arranged two-dimensionally and an armature unit in which coils are arranged two-dimensionally. A planar motor for driving 18 and 27 may be used. In this case, one of the magnet unit and the armature unit is connected to the stages 18 and 27, and the other of the magnet unit and the armature unit is connected to the moving surface side of the stages 18 and 27 (base). ). The reaction force generated by the movement of the wafer stage 27 is not transmitted to the projection optical system PL so that the reaction force is not transmitted to the projection optical system PL, as described in Japanese Patent Application Laid-Open No. Hei 8-166475 (USP 5,528,118). It is possible to mechanically escape to the floor (ground) using members. The present invention is also applicable to an exposure apparatus having such a structure.
レチクルステージ 1 8の移動により発生する反力は、 投影光学系 P Lに伝わら ないように、 特開平 8 _ 3 3 0 2 2 4号公報 (US S/N 08/416,558) に記載され ているように、 フレーム部材を用いて機械的に床 (大地) に逃がしてもよレ、。 本 発明はこのような構造を備えた露光装置においても適用可能である。  The reaction force generated by the movement of the reticle stage 18 is not transmitted to the projection optical system PL so as to be described in Japanese Patent Application Laid-Open No. 8-3330224 (US S / N 08 / 416,558). Also, you can mechanically escape to the floor (ground) using the frame member. The present invention is also applicable to an exposure apparatus having such a structure.
半導体デバイス等のマイクロデバイスは、 図 1 7に示すように、 マイクロデバ イスの機能 ·性能設計を行うステップ 2 0 1、 この設計ステップに基づいたレチ クル Rを製作するステップ 2 0 2、 シリコン材料からウェハ Wを製造するステツ プ 2 0 3、 前述した実施例の投影露光装置 1によりレチクル Rのパターンをゥェ ハ Wに投影露光し、 そのウェハ Wを現像する露光処理ステップ 2 0 4、 デバイス 組み立てステップ(ダイシング工程、 ボンディング工程、 パッケージ工程を含む) 2 0 5、 検査ステップ 2 0 6等を経て製造される。  As shown in Fig. 17, a micro device such as a semiconductor device has a step 201 for designing the function and performance of the micro device, a step 202 for manufacturing a reticle R based on this design step, and a silicon material. Step 203 of manufacturing wafer W from wafer, exposure processing step 204 of projecting and exposing the pattern of reticle R onto wafer W by projection exposure apparatus 1 of the above-described embodiment, and developing wafer W, device It is manufactured through an assembly step (including a dicing step, a bonding step, and a package step) 205 and an inspection step 206.
以上のように、 本願実施例の投影露光装置 1は、 本願特許請求の範囲に挙げら れた各構成要素を含む各種サブシステムを、 所定の機械的精度、 電気的精度、 光 学的精度を保つように、 組み立てることで製造される。 これら各種精度を確保す るために、 この組み立ての前後には、 各種光学系については光学的精度を達成す るための調整、 各種機械系については機械的精度を達成するための調整、 各種電 気系については電気的精度を達成するための調整が行われる。 各種サブシステム から露光装置への組み立て工程は、 各種サブシステム相互の、 機械的接続、 電気 回路の配線接続、 気圧回路の配管接続等が含まれる。 この各種サブシステムから 露光装置への組み立て工程の前に、 各サブシステム個々の組み立て工程があるこ とはいうまでもない。 各種サブシステムの露光装置への組み立て工程が終了した ら、 総合調整が行われ、 露光装置全体としての各種精度が確保される。 露光装置 の製造は温度およびクリーン度等が管理されたクリーンルームで行うことが望ま しい。 産業上の利用の可能性 As described above, the projection exposure apparatus 1 according to the embodiment of the present application is capable of controlling various subsystems including the respective components listed in the claims of the present application to predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Manufactured by assembling to keep. Before and after this assembly, adjustments to achieve optical accuracy for various optical systems, adjustments to achieve mechanical accuracy for various mechanical systems, and various electrical The air system is adjusted to achieve electrical accuracy. The process of assembling the exposure apparatus from various subsystems includes mechanical connections, wiring connections of electric circuits, and piping connections of pneumatic circuits among the various subsystems. It goes without saying that there is an individual assembly process for each subsystem before the assembly process from these various subsystems to the exposure apparatus. After the process of assembling the various subsystems into the exposure apparatus is completed, comprehensive adjustments are made to ensure the various accuracy of the entire exposure apparatus. It is desirable to manufacture the exposure equipment in a clean room where the temperature and cleanliness are controlled. Industrial applicability
本発明に係る絞り装置は、 複数の絞り羽根のそれぞれを、 各絞り羽根の外形輪 An aperture device according to the present invention is configured such that each of the plurality of aperture blades is provided with an outer ring of each aperture blade.
15のうち、 開口の中心側にある輪郭の任意の点を開口の略中心に向かって進退自 在に直線移動させる。 これにより、 この絞り装置では、 絞り羽根同士の接触面積 を大幅に小さくすることで、 発塵や摩耗を大幅に抑制することが可能になり、 二 重露光の実施に伴う高い動作回数にも充分に耐えることができる。 Of 15, any point of the contour on the center side of the opening is moved linearly toward the approximate center of the opening. As a result, in this aperture device, dust generation and abrasion can be greatly reduced by greatly reducing the contact area between the aperture blades, and it is sufficient for the high number of operations associated with the execution of double exposure. Can withstand.

Claims

請求の範囲 The scope of the claims
1 . 開口の大きさを調整する複数の絞り羽根を有する絞り装置であって、 前記複数の絞り羽根のそれぞれを、 該各絞り羽根の外形輪郭のうち、 前記開口 の中心側にある輪郭の任意の点を前記開口の略中心に向かって進退自在に直線移 動させる駆動機構を備えている。 1. A diaphragm device having a plurality of diaphragm blades for adjusting the size of an aperture, wherein each of the plurality of diaphragm blades is an arbitrary one of the outer contours of each diaphragm blade at the center side of the aperture. A drive mechanism is provided for linearly moving the point (4) linearly toward the center of the opening.
2 . 請求項 1記載の絞り装置であって、 2. The diaphragm device according to claim 1, wherein
前記絞り羽根のそれぞれは、 隣り合う絞り羽根との間が前記開口の中心軸と略 平行な方向に関し、 互いに隙間をあけて配置されている。  Each of the aperture blades is arranged with a gap between adjacent aperture blades in a direction substantially parallel to the central axis of the opening.
3 . 請求項 2記載の絞り装置であって、 3. The diaphragm device according to claim 2, wherein
前記絞り羽根のそれぞれは、 一つおきに前記開口の中心軸と略直交する同一面 内に配置されている。  Every other one of the aperture blades is disposed in the same plane substantially orthogonal to the central axis of the opening.
4 . 請求項 1記載の絞り装置であって、 4. The squeezing device according to claim 1, wherein
前記絞り羽根の外形輪郭のうち、 前記開口の中心側にある輪郭は、 所定の曲率 を有する円弧部分と該円弧部分から連続して形成された直線部分とを有する。  Among the outer contours of the aperture blade, a contour on the center side of the opening has an arc portion having a predetermined curvature and a straight line portion continuously formed from the arc portion.
5 . 請求項 1記載の絞り装置であって、 5. The diaphragm device according to claim 1, wherein
前記駆動機構は、 前記開口の略中心軸を回転軸として回転する回転部材と、 前記回転部材の回転移動を前記複数の絞り羽根の直線移動に変換する変換部材 とを備えている。  The drive mechanism includes: a rotation member that rotates about a substantially central axis of the opening as a rotation axis; and a conversion member that converts rotational movement of the rotary member into linear movement of the plurality of aperture blades.
6 . 請求項 5記載の絞り装置であって、 6. The aperture device according to claim 5, wherein
前記回転部材と前記変換部材との一方には嵌合溝が設けられ、  A fitting groove is provided on one of the rotating member and the conversion member,
前記回転部材と前記変換部材との他方には前記嵌合溝に嵌合して摺動する凸部 が設けられ、  The other of the rotating member and the conversion member is provided with a convex portion that slides by fitting into the fitting groove,
該凸部には軸受が装着されている。 A bearing is mounted on the projection.
7 . 請求項 1記載の絞り装置であって、 7. The aperture device according to claim 1, wherein
前記絞り羽根を前記直線移動可能に保持する絞り羽根基部を有する。  An aperture blade base for holding the aperture blade so as to be movable in the linear direction;
8 . 請求項 7記載の絞り装置であって、 8. The diaphragm device according to claim 7, wherein
前記絞り羽根基部は、 前記絞り羽根の直線移動に伴って、 前記絞り羽根の移動 方向と同じ方向に直線移動する。  The diaphragm blade base linearly moves in the same direction as the direction of movement of the diaphragm blade in accordance with the linear movement of the diaphragm blade.
9 . 請求項 7記載の絞り装置であって、 9. The aperture device according to claim 7, wherein
前記駆動機構は、 前記開口の略中心軸を回転軸として回転する回転部材と、 前記回転部材の回転移動により、前記絞り羽根を前記直線移動させるとともに、 前記絞り羽根が移動した後に、 前記絞り羽根基部を前記直線移動させるリンク機 構とを有する。  A rotation member that rotates about a substantially central axis of the opening as a rotation axis; and a rotation movement of the rotation member that linearly moves the diaphragm blade, and after the diaphragm blade moves, the diaphragm blade. A link mechanism for linearly moving the base.
1 0 . 請求項 7記載の絞り装置であって、 10. The diaphragm device according to claim 7, wherein
前記絞り羽根には、 前記絞り羽根基部の前記直線移動をガイドするガイ ド部材 が設けられている。  The diaphragm blade is provided with a guide member for guiding the linear movement of the diaphragm blade base.
1 1 . 開口数の大きさを可変とする開口絞りを有する投影光学系であって、 前記開口絞りとして請求項 1記載の絞り装置が用いられている。 11. A projection optical system having an aperture stop whose variable numerical aperture is variable, wherein the aperture device according to claim 1 is used as the aperture stop.
1 2 . 光束で照明されたマスクのパターン像を基板に投影露光する投影露光装置 であって、 12. A projection exposure apparatus for projecting and exposing a pattern image of a mask illuminated by a light beam onto a substrate,
前記光束の光路中に配置され、 開口数の大きさを可変とする開口絞りとして請 求項 1記載の絞り装置が用いられている。  The aperture device according to claim 1, wherein the aperture device is disposed in an optical path of the light beam and has a variable numerical aperture.
1 3 . 請求項 1 2記載の投影露光装置であって、 13. The projection exposure apparatus according to claim 12, wherein
前記マスクのパターン像を前記基板上に転写する投影光学系を有し、 前記絞り装置が備える前記開口絞りは、 前記投影光学系の瞳面上に配置されて いる。 A projection optical system for transferring the pattern image of the mask onto the substrate, wherein the aperture stop included in the aperture device is disposed on a pupil plane of the projection optical system; I have.
1 4 . マスクのパターン像で感光基板を露光して製造されるマイク口デバイスの 製造方法であって、 14. A method for manufacturing a microphone-mouth device manufactured by exposing a photosensitive substrate with a pattern image of a mask,
請求項 1 2記載の投影露光装置を用いて前記マスクのデバイスパターン像で前 記感光基板を露光する工程と、 露光した前記感光基板を現像する工程とを含む。  A step of exposing the photosensitive substrate with the device pattern image of the mask using the projection exposure apparatus according to claim 12, and a step of developing the exposed photosensitive substrate.
PCT/JP2002/009956 2001-09-26 2002-09-26 Diaphragm device, projection optical system and projection exposure device, and micro-device producing method WO2003028074A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003531506A JPWO2003028074A1 (en) 2001-09-26 2002-09-26 Aperture apparatus, projection optical system, projection exposure apparatus, and microdevice manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001-294382 2001-09-26
JP2001294382 2001-09-26
JP2002108183 2002-04-10
JP2002-108183 2002-04-10

Publications (1)

Publication Number Publication Date
WO2003028074A1 true WO2003028074A1 (en) 2003-04-03

Family

ID=26622957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/009956 WO2003028074A1 (en) 2001-09-26 2002-09-26 Diaphragm device, projection optical system and projection exposure device, and micro-device producing method

Country Status (2)

Country Link
JP (1) JPWO2003028074A1 (en)
WO (1) WO2003028074A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165256A (en) * 2004-12-07 2006-06-22 Nikon Corp Diaphragm device, optical system, exposure device, and method of manufacturing the device
JP2009204423A (en) * 2008-02-27 2009-09-10 Fujitsu Ltd Infrared imaging device
CN102109734A (en) * 2009-12-25 2011-06-29 日本精密测器株式会社 Aperture device and manufacturing method, electronic apparatus and mobile body driving device thereof
CN102736420A (en) * 2011-03-31 2012-10-17 上海微电子装备有限公司 Movable narrow crack blade
US20220128832A1 (en) * 2020-10-26 2022-04-28 Samsung Electro-Mechanics Co., Ltd. Aperture module and camera module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06333802A (en) * 1993-05-27 1994-12-02 Canon Inc Exposure device and manufacture of semiconductor element using the same
JPH07161601A (en) * 1993-12-02 1995-06-23 Nikon Corp Illumination optical device
US5717483A (en) * 1993-12-27 1998-02-10 Nikon Corporation Illumination optical apparatus and method and exposure apparatus using the illumination optical apparatus and method
JPH1050590A (en) * 1996-08-01 1998-02-20 Nikon Corp Projection aligner
JPH10256142A (en) * 1997-03-07 1998-09-25 Canon Inc Projection aligner, assembling method and adjusting method thereof and manufacturing device
JP2001291659A (en) * 2000-04-11 2001-10-19 Canon Inc Projection optical device and aligner using the same, and method of manufacturing the device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06333802A (en) * 1993-05-27 1994-12-02 Canon Inc Exposure device and manufacture of semiconductor element using the same
JPH07161601A (en) * 1993-12-02 1995-06-23 Nikon Corp Illumination optical device
US5717483A (en) * 1993-12-27 1998-02-10 Nikon Corporation Illumination optical apparatus and method and exposure apparatus using the illumination optical apparatus and method
JPH1050590A (en) * 1996-08-01 1998-02-20 Nikon Corp Projection aligner
JPH10256142A (en) * 1997-03-07 1998-09-25 Canon Inc Projection aligner, assembling method and adjusting method thereof and manufacturing device
JP2001291659A (en) * 2000-04-11 2001-10-19 Canon Inc Projection optical device and aligner using the same, and method of manufacturing the device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165256A (en) * 2004-12-07 2006-06-22 Nikon Corp Diaphragm device, optical system, exposure device, and method of manufacturing the device
JP4581662B2 (en) * 2004-12-07 2010-11-17 株式会社ニコン Projection optical system, exposure apparatus, and device manufacturing method
JP2009204423A (en) * 2008-02-27 2009-09-10 Fujitsu Ltd Infrared imaging device
CN102109734A (en) * 2009-12-25 2011-06-29 日本精密测器株式会社 Aperture device and manufacturing method, electronic apparatus and mobile body driving device thereof
CN102736420A (en) * 2011-03-31 2012-10-17 上海微电子装备有限公司 Movable narrow crack blade
US20220128832A1 (en) * 2020-10-26 2022-04-28 Samsung Electro-Mechanics Co., Ltd. Aperture module and camera module
CN114509904A (en) * 2020-10-26 2022-05-17 三星电机株式会社 Aperture module and camera module

Also Published As

Publication number Publication date
JPWO2003028074A1 (en) 2005-01-13

Similar Documents

Publication Publication Date Title
US6891603B2 (en) Manufacturing method in manufacturing line, manufacturing method for exposure apparatus, and exposure apparatus
US20090073407A1 (en) Exposure apparatus and exposure method
KR100525067B1 (en) Method for measuring optical feature of exposure apparatus and exposure apparatus having means for measuring optical feature
JP5387169B2 (en) Shielding unit, variable slit device, and exposure device
JP3413160B2 (en) Illumination apparatus and scanning exposure apparatus using the same
US20100290020A1 (en) Optical apparatus, exposure apparatus, exposure method, and method for producing device
JP4211272B2 (en) Exposure apparatus and exposure method
JP2005311020A (en) Exposure method and method of manufacturing device
WO2011040488A1 (en) Illumination optical system, exposure system and method for manufacturing device
JP2006279029A (en) Method and device for exposure
US20120105818A1 (en) Lithographic apparatus and method
US20090190117A1 (en) Exposure apparatus, manufacturing method and supporting method thereof
TWI409598B (en) Pattern forming method and pattern forming apparatus, exposure method and exposure apparatus, and component manufacturing method
WO2003028074A1 (en) Diaphragm device, projection optical system and projection exposure device, and micro-device producing method
US9304385B2 (en) Exposure method and device manufacturing method including selective deformation of a mask
US7817246B2 (en) Optical apparatus
JP2005085991A (en) Exposure apparatus and manufacturing method of device using the apparatus
JP4817700B2 (en) Exposure apparatus and method, and device manufacturing method
US7268855B2 (en) Projection optical system
US7177059B2 (en) Device and method for manipulation and routing of a metrology beam
US8436981B2 (en) Exposing method, exposure apparatus, and device fabricating method
JP2001338866A (en) Aligner, method for manufacturing device, and method for measuring accuracy in aligner
JPH09283434A (en) Projection aligner and method for manufacturing device using it
JP2003059817A (en) Exposure method aligner and micro-device manufacturing method
JP2000133563A (en) Exposure method and aligner

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KR KZ LK LR LS LT LU LV MA MD MG MK MW MX MZ NO NZ OM PH PL PT RO SD SE SG SI SK SL TJ TM TN TR TT UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003531506

Country of ref document: JP

122 Ep: pct application non-entry in european phase