WO2003026197A2 - A key agreement protocol based on network dynamics - Google Patents

A key agreement protocol based on network dynamics Download PDF

Info

Publication number
WO2003026197A2
WO2003026197A2 PCT/IE2002/000135 IE0200135W WO03026197A2 WO 2003026197 A2 WO2003026197 A2 WO 2003026197A2 IE 0200135 W IE0200135 W IE 0200135W WO 03026197 A2 WO03026197 A2 WO 03026197A2
Authority
WO
WIPO (PCT)
Prior art keywords
string
station
strings
length
steps
Prior art date
Application number
PCT/IE2002/000135
Other languages
French (fr)
Inventor
Aiden Bruen
Mario Forcinito
David Wehlau
Original Assignee
Non-Elephant Encryption Systems (Barbados) Inc.
Coyle, Philip, A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from IE20020742A external-priority patent/IE20020742A1/en
Application filed by Non-Elephant Encryption Systems (Barbados) Inc., Coyle, Philip, A. filed Critical Non-Elephant Encryption Systems (Barbados) Inc.
Priority to EP02777751A priority Critical patent/EP1436940A2/en
Priority to CA002462384A priority patent/CA2462384A1/en
Priority to IL16082902A priority patent/IL160829A0/en
Priority to JP2003529686A priority patent/JP2005503716A/en
Publication of WO2003026197A2 publication Critical patent/WO2003026197A2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0838Key agreement, i.e. key establishment technique in which a shared key is derived by parties as a function of information contributed by, or associated with, each of these
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography
    • H04L9/0858Details about key distillation or coding, e.g. reconciliation, error correction, privacy amplification, polarisation coding or phase coding

Definitions

  • the present invention relates to cryptographic systems and more particularly to a method of generating an unconditionally secure cipher key based on the time differences recorded between two parties communicating over a noiseless public channel.
  • Tn ia A pplication relates r corresponding Application f iled on the same date and entitled Hash
  • x be a common key that has been created for Alice and Bob. That is, x is a binary vector of length n. Then x can be used as a one-time pad, as follows.
  • m be a message that Alice wishes to transmit to Bob: m is some binary vector that is also of length n.
  • Alice encodes m as m ⁇ x where ⁇ denotes bitwise addition, i.e., exclusive OR.
  • m @ x not m, is broadcast over the public channel.
  • Bob then decodes in exactly the same way.
  • Bob receives the message (m ⁇ x) ⁇ x, which is m, because of the properties of bitwise addition.
  • the key x can be used in a standard symmetric key cryptosystem such as that of Rijndael [13] or Data Encryption Standard (DES) [14].
  • m as denotes bitwise addition, i.e., exclusive OR.
  • m ® x not m, is broadcast over the public channel.
  • Bob then decodes in exactly the same way.
  • Bob decodes the message (m ⁇ x) ⁇ x, which is m, because of the properties of bitwise addition.
  • the key x can be used in a standard symmetric key cryptosystem such as that of
  • the lowest layer connects two computers, i.e., creates a channel between them, by some physical means and is called the Physical Layer.
  • the second layer removes random physical errors (called "noise") from the channel to create an error-free communications path from one point to another.
  • This layer i.e., the Data Link Layer, is primarily responsible for dealing with transmission errors generated as electrical impulses (representing bits) as sent over a physical connection. Error detection techniques [15] are used to identify the transmission errors in many protocols. Once an error is detected the protocol requests a resend. Random errors in the Data Link Layer can be observed by noting timing delays.
  • the Medium Access Layer deals with allocating and scheduling all communications over a single channel.
  • a networked environment including the Internet, many computers communicate over a single channel. Bursts in packet traffic is a well-known characteristic and is due to the uncontrollable behavior of many individual computers communicating over a single channel [16] leading to random fluctuations in transmission times.
  • the Network Layer deals with routing information to create a true or virtual connection between two computers.
  • the routing is dependent on the variety of routing algorithms and the load placed on each router. These two factors makes the transmission times fluctuate randomly.
  • the Transport Layer interfaces with the final Application Layer to provide an end-to-end, reliable, connection-oriented byte stream from sender to receiver. To do so, the Transport Layer provides connection establishment and connection management. The times associated with Transport layer activities depend on all devices in the network and the algorithms being used. Thus, fluctuations in transmission times in the Transport Layer also occur, contributing to timing delays.
  • the present invention provides an efficient, practical system and method for a key agreement protocol based on network dynamics that has the strongest possible security, namely, unconditional security, and that does not require any additional hardware.
  • Previous work in this area is either theoretical [11] or practically infeasible due the requirement for additional channels based on expensive and complicated hardware such as satellites, radio transmitter arrays and accompanying additional computer hardware to communicate with these devices [7]. All previous cryptographic keys only satisfy the weaker criterion of computational security.
  • the present invention introduces relative time sequences based on round-trip timings of packets between two communicating parties. These packets form the basic building blocks for creating an efficient and unconditionally secure key agreement protocol that can be used as a replacement for current symmetric and asymmetric key cryptosystems.
  • the present invention is an unconditionally secure cryptographic system and method based on ideas that can be used in the domain of quantum encryption [1, 5 and 20 Chapter 6]..
  • the present invention for the first time provides a cryptographic protocol that exploits fundamental results (and their interconnectedness) in the fields of information theory, error-correction codes, block design and classical statistics.
  • the system and method of the present invention is computationally faster, simpler and more secure than existing cryptosystems.
  • the system and method of the present invention are invulnerable to all attacks from super-computers and even quantum computers. This is in sharp contrast to all previous protocols.
  • the present invention provides a protocol that uses two characteristics of network transit time: namely, its randomness, and the fact that, despite this, the average timing measured by two communicating parties will converge over a large number of repetitions.
  • the result is that two correlated random variables are obtained by measuring the relative time a packet takes to complete a round trip with respect to a first party, Alice or A, and a round trip with respect to a second party, Bob or B.
  • a and B engage in rallying packets back and forth and calculateround-trip times individually.
  • the packets may be used for any additional purpose since the contents of the packets are irrelevant. Only the round-trip times are of interest.
  • Figure 2 shows one round of a relative round-trip time generator of the present invention.
  • Figure 2 diagrammatically describes the process.
  • PHASE 1 -Alice and Bob employ the system and method of the present invention to construct a permuted remnant bit string from a sequence of observed packet round-trip times:
  • Alice and Bob exchange packets over a network, record round-trip times, and each form a bit string by concatenating a pre-arranged number of low order bits of successive packet round-trip times. Once sufficient bits are concatenated, the process is stopped and both Alice and Bob apply a pre-determined permutation to their respective concatenated bit strings to form permuted remnant raw keys K A and K B , respectively of equal lenght.
  • Alice and Bob systematically partition their respective permuted remnant raw keys, KA and K B , into sub-blocks, compute, exchange and compare parities for each sub-block, and, discarding the low order bit of the sub-block, re-concatenate the modified sub-blocks in their original order.
  • the partition process is iterated until mismatched bits are located and deleted.
  • Privacy amplification to eliminate any partial information that an eavesdropper, Eve, might have is applied by both Alice and Bob using a pre-determined proprietary hash function [4] to produce a final unconditionally secure key of a pre-determined length from the reconciled key.
  • FIG. 1 illustrates a typical multi-layer computer network protocol.
  • FIG. 2 illustrates one rallying round between two communicating parties for generating a permuted remnant bit string by each party.
  • FIG. 3 illustrates mean arrival time as a function of channel noise (noise parameter).
  • the key agreement scheme of the present invention comprises three phases.
  • the first phase is construction of a permuted remnant bit string wherein the two communicating parties, Alice and Bob, rally packets back and forth recording round-trip times. Some of the bits may still be different after the initial bit string construction so Alice and Bob then participate in a second phase called Information Reconciliation.
  • the second phase results in Alice and Bob holding exactly the same key.
  • Eve may have partial knowledge of the reconciled strings, in the form of Shannon bits. Therefore, a third and final phase called Privacy Amplification is performed to eliminate any partial information collected by Eve.
  • t be the smallest integer for which 2 1 ⁇ n .
  • M m y , (1 ⁇ i ⁇ t+ ⁇ , 1 ⁇ J ⁇ 2' ) as follows: a.
  • the entries m ⁇ , (1 ⁇ i,j ⁇ t ) are the entries of the t x t identity matrix / « • b.
  • c Denote the top / entries in the " 1 column by the binary vector v, ( 1 ⁇ j ⁇ 2' ).
  • vj ⁇ m, j
  • the set ⁇ j ⁇ equals the set of all 2' distinct binary vectors of length * * . d.
  • x, y denote the remnant keys KA, K written as row vectors of length n.
  • x denote the vectors that result when a row of zeros of length 2'-n is adjoined, on the right of x, y respectively.
  • the system and method of the present invention provide an unconditionally secure key agreement scheme based on network dynamics as follows.
  • PHASE I Alice and Bob permute the bits of what remains of their respective raw keys, which keys incorporate delay occasioned by network noise.
  • PHASE II the key from PHASE I undergoes the treatment of Lomonaco [5]. That is, in PHASE II Alice and Bob partition the remnant raw key into blocks of length /. An upper bound on the length of the final key has been estimated and the sequence of values of / that yield key lengths arbitrarily close to this upper bound has also been estimated [4].
  • PHASE II for each of these blocks, Alice and Bob publicly compare overall parity checks, making sure each time to discard the last bit of the compared block.
  • Alice and Bob initiate a binary search for the error, i.e., bisecting the mismatched block into two sub-blocks, publicly comparing the parities for each of these sub-blocks, while discarding the bottom bit of each sub-block. They continue their bisective search on the sub-block for which their parities are not in agreement. This bisective search continues until the erroneous bit is located and deleted. They then proceed to the next /-block.. PHASE I is then repeated, i.e., a suitable permutation is chosen and applied to obtain the permuted remnant raw key.
  • PHASE II is then repeated, i.e., the remnant raw key is partitioned into blocks of length /, parities are compared, etc.
  • Precise expressions for the expected bit correlation (see below) following each step have been obtained in [4], where it is also shown that this correlation converges to 1.
  • the expected number of steps to convergence as well as the expected length of the reconciled key are tabulated.
  • the final secret key can now be used for a one-time pad to create perfect secrecy or can be used as a key for a symmetric key cryptosystem such as Rijndael [12] or Triple DES [19].
  • Procedure for 7 2. Alice and Bob divide their bit strings K A and KB into pairs (ao, ⁇ ;)...and o, bi)... HK A and K B have odd lengths the last bit is dropped.
  • Working on the blocks (ao, a ⁇ ) and (bo, bj) we proceed as follows.
  • Alice announces the parity of the block namely the number ao + ai (module2 ⁇ ).
  • Bob compares the parity of his block. Then, if ao + aj (module2) equals bo+bj (rnodulel) we cancel the elements a ⁇ ,bj and retain the elements ao,bo- However, if ao + aj (module 2) is different than bo+bj (module2) we cancel the four elements ao,aj,bo,b ⁇ .
  • Procedure for / 3.
  • K A , K B into blocks of size 3 namely (ao, a ⁇ , ai)...and (bo, bubi)... respectively. If the size of K A is not divisible by 3 we discard the last one or two elements ofK A and K B as appropriate.
  • Working on each block of size 3, say the blocks (ao, a , ai) and (bo, b , bi) we again examine the parities and proceed as follows.
  • T e model wor s as follows- A particle is released at he node A, the particle is driven by a potential F towards node B over a potential flic,*). Because there is therm l noise., the particle will perform a random, -wal biased by the potential towards B r therefore if. will reach B in a finite amount of time.
  • the aver ge arrreil time is described by the Langevin equation-.
  • TA.B is calculated once for the original potential ix , hen for the 'perturbed* potential ⁇ j (x) and the difference between the two is obtainei
  • the perturbed version of the potential is defined as

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Theoretical Computer Science (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

A KEY AGREEMENT PROTOCOL BASED ON NETWORK DYNAMICS
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to cryptographic systems and more particularly to a method of generating an unconditionally secure cipher key based on the time differences recorded between two parties communicating over a noiseless public channel. Tn ia Application relates r corresponding Application f iled on the same date and entitled Hash
Functions based on Sylves ter Matrices " .
2. Discussion of the Related Art
An Achilles heel of classical cryptographic systems is that secret communication can only take place after a key is communicated in secret over a totally secure communication channel. Lomonaco describes [6,7] the matter as the "Catch 22" of cryptography, as follows.
"Catch 22. Before Alice and Bob can communicate in secret, they must first communicate in secret."
Lomonaco goes on to describe further difficulties involving the public key cryptographic systems that are currently in use. For a discussion on several other disadvantages of the Public Key Infrastructure (PKI) see U.S. General Accounting Office Report [9].
Let x be a common key that has been created for Alice and Bob. That is, x is a binary vector of length n. Then x can be used as a one-time pad, as follows. Let m be a message that Alice wishes to transmit to Bob: m is some binary vector that is also of length n. Alice encodes m as m Θ x where θ denotes bitwise addition, i.e., exclusive OR. Thus m @ x, not m, is broadcast over the public channel. Bob then decodes in exactly the same way. Thus Bob receives the message (m Φ x) θ x, which is m, because of the properties of bitwise addition.
Alternatively, the key x can be used in a standard symmetric key cryptosystem such as that of Rijndael [13] or Data Encryption Standard (DES) [14]. The idea now is to encode m as denotes bitwise addition, i.e., exclusive OR. Thus m ® x, not m, is broadcast over the public channel. Bob then decodes in exactly the same way. Thus Bob decodes the message (m Θ x) Φ x, which is m, because of the properties of bitwise addition.
Alternatively, the key x can be used in a standard symmetric key cryptosystem such as that of
Rijndael [12] or Data Encryption Standard (DES) [13]. The idea now is to encode m asfx(m) where fx denotes the Rijndael permutation with the parameter x. Then, to get the message, Bob decodes by gx\fx(nø] = m where gx is the inverse offχ_
To date, practical protocols for constructing such a common key x use for their security unproven mathematical assumptions concerning the complexity of various mathematical problems such as the factoring problem, the discrete log problem, and the Diffie-Hellman problem. Another serious difficulty concerning present systems involves the very long keys that are needed for even minimal security. In his monograph R. A. Mollin [17] points out that for elliptic curves cryptography an absolute minimum of 300 bits should be used for even the most modest security requirements and 500 bits for more sensitive communication. Further, key lengths of 2048 bits are recommended for RSA in the same reference.
In [20] chapter 5, Julian Brown gives an example of a financial encryption system depending on RSA keys of 512-bit, namely the CREST system introduced in 1997 by the Bank of England. He quotes the noted cryptographer A. Lenstra concerning such codes as follows: "Keys of 512 bits might even be within the reach of cypherpunks. In principle they could crack such numbers overnight".
Randomness in Arrival Times of Network Communications
Computer networks are very complex systems formed by the superposition of several protocol layers [14]. Figure 1 shows the layers in a typical network. The following analysis of how the layers work together serves to explain the randomness in networks.
The lowest layer connects two computers, i.e., creates a channel between them, by some physical means and is called the Physical Layer. The second layer removes random physical errors (called "noise") from the channel to create an error-free communications path from one point to another. This layer, i.e., the Data Link Layer, is primarily responsible for dealing with transmission errors generated as electrical impulses (representing bits) as sent over a physical connection. Error detection techniques [15] are used to identify the transmission errors in many protocols. Once an error is detected the protocol requests a resend. Random errors in the Data Link Layer can be observed by noting timing delays.
The Medium Access Layer deals with allocating and scheduling all communications over a single channel. In a networked environment, including the Internet, many computers communicate over a single channel. Bursts in packet traffic is a well-known characteristic and is due to the uncontrollable behavior of many individual computers communicating over a single channel [16] leading to random fluctuations in transmission times.
The Network Layer deals with routing information to create a true or virtual connection between two computers. The routing is dependent on the variety of routing algorithms and the load placed on each router. These two factors makes the transmission times fluctuate randomly.
The Transport Layer interfaces with the final Application Layer to provide an end-to-end, reliable, connection-oriented byte stream from sender to receiver. To do so, the Transport Layer provides connection establishment and connection management. The times associated with Transport layer activities depend on all devices in the network and the algorithms being used. Thus, fluctuations in transmission times in the Transport Layer also occur, contributing to timing delays.
However, not only the network influences timing fluctuations. The transmitting and receiving computers have internal delays resulting from servicing network packets. Thus, even the act of observing the timings will also introduce random fluctuations. (See appendix B for an analysis of the effects of perturbations on arrival timing).
SUMMARY OF THE INVENTION
The present invention provides an efficient, practical system and method for a key agreement protocol based on network dynamics that has the strongest possible security, namely, unconditional security, and that does not require any additional hardware. Previous work in this area is either theoretical [11] or practically infeasible due the requirement for additional channels based on expensive and complicated hardware such as satellites, radio transmitter arrays and accompanying additional computer hardware to communicate with these devices [7]. All previous cryptographic keys only satisfy the weaker criterion of computational security.
The present invention introduces relative time sequences based on round-trip timings of packets between two communicating parties. These packets form the basic building blocks for creating an efficient and unconditionally secure key agreement protocol that can be used as a replacement for current symmetric and asymmetric key cryptosystems. The present invention is an unconditionally secure cryptographic system and method based on ideas that can be used in the domain of quantum encryption [1, 5 and 20 Chapter 6].. Moreover, the present invention for the first time provides a cryptographic protocol that exploits fundamental results (and their interconnectedness) in the fields of information theory, error-correction codes, block design and classical statistics. The system and method of the present invention is computationally faster, simpler and more secure than existing cryptosystems. In addition, due to the unconditional security provided by the present invention, the system and method of the present invention are invulnerable to all attacks from super-computers and even quantum computers. This is in sharp contrast to all previous protocols.
The present invention provides a protocol that uses two characteristics of network transit time: namely, its randomness, and the fact that, despite this, the average timing measured by two communicating parties will converge over a large number of repetitions. The result is that two correlated random variables are obtained by measuring the relative time a packet takes to complete a round trip with respect to a first party, Alice or A, and a round trip with respect to a second party, Bob or B.
In a preferred embodiment, A and B engage in rallying packets back and forth and calculateround-trip times individually. The packets may be used for any additional purpose since the contents of the packets are irrelevant. Only the round-trip times are of interest. Figure 2 shows one round of a relative round-trip time generator of the present invention. Figure 2 diagrammatically describes the process. PHASE 1 -Alice and Bob employ the system and method of the present invention to construct a permuted remnant bit string from a sequence of observed packet round-trip times:
Alice and Bob exchange packets over a network, record round-trip times, and each form a bit string by concatenating a pre-arranged number of low order bits of successive packet round-trip times. Once sufficient bits are concatenated, the process is stopped and both Alice and Bob apply a pre-determined permutation to their respective concatenated bit strings to form permuted remnant raw keys KA and KB, respectively of equal lenght.
PHASE 2- Alice and Bob employ these remnant raw keys to create a reconciled key:
Alice and Bob systematically partition their respective permuted remnant raw keys, KA and KB, into sub-blocks, compute, exchange and compare parities for each sub-block, and, discarding the low order bit of the sub-block, re-concatenate the modified sub-blocks in their original order. In the case of blocks with mismatched parities the partition process is iterated until mismatched bits are located and deleted.
PHASE 3- Alice and Bob create an unconditionally secure pad or key from their common reconciled key:
Privacy amplification to eliminate any partial information that an eavesdropper, Eve, might have is applied by both Alice and Bob using a pre-determined proprietary hash function [4] to produce a final unconditionally secure key of a pre-determined length from the reconciled key.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates a typical multi-layer computer network protocol.
FIG. 2 illustrates one rallying round between two communicating parties for generating a permuted remnant bit string by each party.
FIG. 3 illustrates mean arrival time as a function of channel noise (noise parameter). DETAILED DESCRIPTION OF THE INVENTION
In a preferred embodiment, the key agreement scheme of the present invention comprises three phases. The first phase is construction of a permuted remnant bit string wherein the two communicating parties, Alice and Bob, rally packets back and forth recording round-trip times. Some of the bits may still be different after the initial bit string construction so Alice and Bob then participate in a second phase called Information Reconciliation. The second phase results in Alice and Bob holding exactly the same key. However, Eve may have partial knowledge of the reconciled strings, in the form of Shannon bits. Therefore, a third and final phase called Privacy Amplification is performed to eliminate any partial information collected by Eve.
PHASE I - Alice and Bob rally packets back and forth to generate a bit string from truncated round-trip timings. This string is then systematically permuted. The procedure is as follows:
(i) Alice sends Bob a network packet and logs the time tAo.
(ii) Bob records the time of reception as tβo and responds immediately to Alice with another network packet.
(iii) Alice records the time of reception as tAi, and responds immediately with a network packet.
(iv) Bob records the time of reception as tsi and responds immediately to Alice with another network packet.
(v) Alice and Bob respectively calculate
Δ* = tAl - tAO and
Figure imgf000007_0001
Depending on the quality of the network connection, only some bits of AtA and Ate are kept. The higher order bits are dropped. Typical experimental data and criteria for the truncation can be found in [18].
By taking a suitable probability distribution it can be shown that the average of ΔtA equals the average of MB. (vi) Repeat steps (i) through (v) in order to create enough bits which are then concatenated as a string of bits of a pre-determined length.
PHASE π - Once sufficient bits are created, the process is stopped. Alice and Bob must now use the relative time series to create an unconditionally secure pad or key. One skilled in the art can deduce, from a study of various papers in the list of references that there are many ways to proceed. The present invention uses an approach which, very loosely speaking, is initially related to that of Bennett et al.[l]. However in [3, 4 and 10], several changes and improvements have been indicated. These changes, based on fundamental results in algebraic coding theory, information theory, block design and classical statistics together achieve the following results:
(a) an a-priori bound on key-lengths;
(b) a method for estimating the initial and subsequent bit correlations and key-lengths;
(c) a precise procedure on how to proceed optimally at each stage;
(d) a formal proof that KA converges to KB, (e) a stopping rule;
(f) a verification procedure for equality; and
(g) a new systematic hash function for Privacy Amplification.
After PHASE I, Alice and Bob have their respective binary arrays KA and KB and both perform the following steps of PHASE II:
(vii) Shuffle and partition. Alice and Bob apply a permutation to KA and KB • They then partition the remnant raw keys into sub-blocks of length / = 4.
(viii) Parity exchange and bisective search with 1 = 4: Parities are computed and exchanged for each sub-block of length 4 by Alice and Bob. Simultaneously they discard the bottom bit of each sub-block so that no new information is revealed to Eve. If the parities agree Alice and Bob retain the three top bits of each sub-block. If the parities disagree Alice and Bob perform a bisective search discarding the bottom element in each sub-block exactly as described in [1] and [5] (see also [4]). The procedure in steps (vii) and (viii) is denoted by KAP4 .
(ix) Estimate Correlation From the length of the new key, we can calculate the expected initial bit correlation x0 between KA and KB [4]. Using xo we can calculate the present expected correlation x = φ ( xo ).
(x) Shuffle, parity exchange, bisective search with the optimal / : To the remnant keys KA, KB we apply a permutation/in order to separate adjacent keys. As a non-restrictive example, one such/can be implemented by shuffling the bit order from (1,2,3, — ,ή) into the order (\,p + 1, 2/7 + 1, ... , qxp + \, 2,p + 2, 2p + 2, ..., q2p + 2,... ,p-\, 2p-l, 3 p-\, ... , qp + p-\,p,
2p, 3 p, qpp +p), where qt = (n - i) I p.
Given the present correlation x we choose the optimal value for / = l(x) by using the tables in [4]. Similar to (viii), (ix) for the case / = 4, we carry out the procedure KAPi . From x, or from the new common length of the remnant keys, we calculate the expected present correlation after KAPi has been applied. We repeat (xi) until the stopping condition holds, (xi) Stopping Condition : For key length n and correlation x we have n(\-x) < ε ,a predetermined small positive number. We then proceed to the verification procedure, an example of which is as follows. (xii) Verification Procedure : Let KA , KB both be of length n. Let t be the smallest integer for which 21 ≤ n . Construct a binary matrix M = my, (1 < i ≤ t+\ , 1 ≤J ≤ 2' ) as follows: a. The entries mυ, (1 < i,j < t ) are the entries of the t x t identity matrix /« • b. The (t +1)* row of M is the all-ones vector, that is ntt+i j = 1 ( 1 ≤J ≤ 2' ). c. Denote the top / entries in the "1 column by the binary vector v, ( 1 ≤j ≤ 2' ). Thus, vj = {m,j | 1 ≤ i ≤ t}. Then we impose the condition that the vectors Vj are all distinct. Thus, the set { j } equals the set of all 2' distinct binary vectors of length **. d. Denote the rows of M by Rl5 R2, ..., R,+ι . Let x, y denote the remnant keys KA, K written as row vectors of length n. Let x, denote the vectors that result when a row of zeros of length 2'-n is adjoined, on the right of x, y respectively. Thus x = (x,000..0),z = (y,000..0). e. Our verification criterion is to check that x . R, =j> . Ri, (1 ≤ i ≤ t+l ).
If the verification criterion is not satisfied we remove the first f+1 bits from KA , KB and repeat steps (x), (xi) and check again if the verification criterion is satisfied. Eventually, it will be satisfied. At this stage Alice and Bob have confirmed that they now share the same key. Once confirmed, the final remnant raw key as transformed by Phase 2 is modified by removing the first f+1 bits from KA = KB ■ Our new key is re-named the "reconciled key" and phase 3, Privacy amplification is performed.
PHASE III- At this stage Alice and Bob now have a common reconciled key. In certain cases it is possible that the key is only partially secret to eavesdropper, Eve, in the sense that Eve may have some information on the reconciled key in the form of Shannon bits. Alice and Bob now begin the process of PrivacyAmplification that is the extraction of a final secret key from a partially secret one (see [1] and [2]). A well-known result of Bennett, Brassard and Robert (see [19]) shows that Eve's average information about the final secret key is less than 2~slln 2 Shannon bits as explained below (See also Shannon [9]).
(xiii) Privacy Amplification - Let the upper-bound on Eve's number of Shannon Bits be k and let * > 0 be some security parameter that Alice and Bob may adjust as desired. Alice and Bob now apply a hash function described in "Method For The Construction Of Hash Functions Based On Sylvester Matrices, Balanced Incomplete Block Designs And Error- Correcting Codes", co-pending Irish Patent Application, (the entire contents of which is hereby included by reference as if fully set forth herein [3]) which produces a final secret key of length n - k- s from the reconciled key of length n.
The system and method of the present invention provide an unconditionally secure key agreement scheme based on network dynamics as follows. In PHASE I, Alice and Bob permute the bits of what remains of their respective raw keys, which keys incorporate delay occasioned by network noise. In PHASE II, the key from PHASE I undergoes the treatment of Lomonaco [5]. That is, in PHASE II Alice and Bob partition the remnant raw key into blocks of length /. An upper bound on the length of the final key has been estimated and the sequence of values of / that yield key lengths arbitrarily close to this upper bound has also been estimated [4]. In PHASE II, for each of these blocks, Alice and Bob publicly compare overall parity checks, making sure each time to discard the last bit of the compared block. Each time an overall parity check does not agree, Alice and Bob initiate a binary search for the error, i.e., bisecting the mismatched block into two sub-blocks, publicly comparing the parities for each of these sub-blocks, while discarding the bottom bit of each sub-block. They continue their bisective search on the sub-block for which their parities are not in agreement. This bisective search continues until the erroneous bit is located and deleted. They then proceed to the next /-block.. PHASE I is then repeated, i.e., a suitable permutation is chosen and applied to obtain the permuted remnant raw key. PHASE II is then repeated, i.e., the remnant raw key is partitioned into blocks of length /, parities are compared, etc. Precise expressions for the expected bit correlation (see below) following each step have been obtained in [4], where it is also shown that this correlation converges to 1. Moreover in [4] the expected number of steps to convergence as well as the expected length of the reconciled key are tabulated.
The probability that corresponding bits agree in the arrays KA , KB is known as the bit correlation probability or, simply, as the bit correlation. It can be shown (see [4]) that each rotmd can be used to increase the bit-correlation. For example, if we start with a bit-correlation of 0.7 then after one round with / = 3 the bit-correlation increases to about 0.77 and then to 0.87. For / = 2 the corresponding numbers are 0.84 and 0.97. Estimates are also available for the key lengths after a round of the protocol of the present invention, for various values of/ [4].
The final secret key can now be used for a one-time pad to create perfect secrecy or can be used as a key for a symmetric key cryptosystem such as Rijndael [12] or Triple DES [19].
A simplified version of the algorithm for the values / = 2 and 3 is described in Appendix A.
It will be understood by those skilled in the art, that the above-described embodiments are but examples from which it is possible to deviate without departing from the scope of the invention as defined in the appended claims.
REFERENCE AND BIBLIOGRAPHY
The following references are hereby incorporated by reference as if fully set forth herein.
[1] Charles Bennett, Francois Bessette, Gilles Brassard, Louis Salvail, and John Smolin, Experimental quantum cryptography, EUROPCRYPT '90 (Arhus, Denmark), 1990, pp. 253- 265. [2] Charles H. Bennett, Gilles Brassard, and Jean-Marc Robert, Privacy Amplification by
Public Discussion, Siam J. of Computing 17, no.2 (1988), pp. 210-229.
[3] Aiden Bruen and David Wehlau, Method for the Construction of Hash Functions Based on Sylvester Matrices, Balanced Incomplete Block Designs, and Error-Correcting Codes, Irish Patent Co-pending Irish Patent Application.
[4] Aiden Bruen and David Wehlau, A Note On Bit-Reconciliation Algorithms, Non-Elephant Encryption Systems Technical Note 01. xx NE2, 2001. [5] Samuel J. Lomonaco, A quick glance at quantum cryptography, Cryptologia 23 (1999), no. l, pp. 1-41.
[6] , A Rosetta Stone for Quantum Mechanics With An Introduction to Quantum
Computation, quant-ph/0007045 (2000).
[7] Ueli M. Maurer, Secret Key Agreement By Public Discussion From Common Information, IEEE Transactions on Information Theory 39 no.3 (1993), pp. 733-742.
[8] United States General Accounting Office, Advances and Remaining Challenges to Adoption ofPpublic Key Infrastructure Technology, GAO 01-227 Report, February 2001,
Report to the Chairman, Subcommittee on Government Efficiency, Financial Management and Intergovernmental Relations, Committee on Government Reform, House of Representatives. [9] Claude E. Shannon, Communication Theory of Secrecy Systems, Bell System Technical
Journal 28(1949), 656-715.
[10] David Wehlau, Report for Non-Elephant Encryption, Non-Elephant Encryption Technical Note 01.08.2001.
[11] A. D. Wyner, The Wire-Tap Channel, Bell System Technical Journal 54 no.8(1975), 7555-1387.
[12] Joan Daemon and Vincent Rijnmeien, The Rijndael Block Cypher, June 1998, http://csrc.nist.gov/encryption/aes/riindael/riindael.pdf
[13] Bruce Schneier, Applied Cryptography, 2 snά Edition, John Wiley & Sons, New York, 1996, Chapter 12.
[14] Andrew Tanenbaum, Computer Networks, Prentice Hall, 1996. [15] Claude E. Shannon, A Mathematical theory of Communication, Bell System Technical
Journal 27(1948), pp. 379-423 and 623-656.
[16] Will E. Leland, Murad S. Taqq, Walter Willinger, and Daniel V. Wilson, On the Self- Similar Nature of Ethernet Traffic, Proc. SIGCOMM (San Francisco, CA; Deepinder P. Sidhu, Ed.), 1993, pp. 183-193.
[17] R. A. Mollin, An Introduction to Cryptography, Chapman & Hall/CRC, 2000. Chapter 6.
[18] Gerald Staruiala and Mario Forcinito, A Novel Application of The Entropic Transformation Concept to Cryptography, Non-Elephant Encryption, Inc. hite Paper,
November 2000.
[19] Douglas R. Stinson, Cryptography: Theory and Practice, CRC Press, 1995. [20] Julian R. Brown, The Quest for the Quantum Computer, Simon & Schuster, New York,
2001.
Appendix A - Procedure for / = 2 and 1 = 3
Let us describe in more detail the procedures for / = 2 and / = 3 in the extraction of the reconciled key described earlier.
Procedure for 7 = 2. Alice and Bob divide their bit strings KA and KB into pairs (ao, α;)...and o, bi)... HKA and KB have odd lengths the last bit is dropped. Working on the blocks (ao, aϊ) and (bo, bj) we proceed as follows.
Alice announces the parity of the block namely the number ao + ai (module2~). Bob compares the parity of his block. Then, if ao + aj (module2) equals bo+bj (rnodulel) we cancel the elements aι,bj and retain the elements ao,bo- However, if ao + aj (module 2) is different than bo+bj (module2) we cancel the four elements ao,aj,bo,bι.
Procedure for / = 3. We divide the bit strings KA, KB into blocks of size 3 namely (ao, a\, ai)...and (bo, bubi)... respectively. If the size of KA is not divisible by 3 we discard the last one or two elements ofKA and KB as appropriate. Working on each block of size 3, say the blocks (ao, a , ai) and (bo, b , bi) we again examine the parities and proceed as follows.
Case 1 : If the parities agree, then cancel the elements α2, 62.
Case 2: If the parities disagree, then cancel the elements α2, b2. Then, if af=- bj, we cancel both blocks of size 3. However, if α; ≠ bj, then cancel aj.bi.
As / increases, the number of rounds needed for convergence increases, but the key-length will be longer. Optimal procedures are described in [4].
Appendix B - Perturbed Channel Model
A simplified theoretical model shows th t in a channel with noise, a per- tυrbat-øn tϋta-odxiced by an observer can be detec ed under certain conditions. We have assesse this possibility by nalyzing a mechanical syste that mimics he dynamic of e network.
T e model wor s as follows- A particle is released at he node A, the particle is driven by a potential F towards node B over a potential flic,*). Because there is therm l noise., the particle will perform a random, -wal biased by the potential towards Br therefore if. will reach B in a finite amount of time. The aver ge arrreil time is described by the Langevin equation-.
Figure imgf000015_0001
flist-aπl'viBl time of the particle to B;
TI = ioi{t ≥ Oj≠t) = B with xi 0) = A) (2)
TA.B is calculated once for the original potential ix , hen for the 'perturbed* potential <j (x) and the difference between the two is obtainei The perturbed version of the potential is defined as
#(*) = { {x) + £{-* + * + e) x e fo c + e)
where h is the height of the potential barrier at point c € [Λt ] an £ is half the length over which the effect of the perturbation is s rea . In the limit € — ♦ 0, the perturbation is a Dirac 6 functi n at point c.
Solutions carried on using a simple potential φ(x.) = ctfttst sbπw that arrival time changes (increases) with the perturbation and the incre se is more noticeable as the noise ξ → 0 (Figure 3). The conditions for which the conclusion from this model can be applied to a communication channel are being actively researched at NE2.

Claims

We claim:
1 ) A method of generating an unconditionally secure cryptographic key between a first and a second cryptographic station A and B, said method comprising the steps of: a) in said first and second station A and B, constructing, in a pre-arranged way from an independently recorded measurement of a given physical phenomena, a first and second correlated string LA, LB each of a given length N (i.e., said first and second string LA, LB constructed such that the corresponding statistical variables are not independent) of digits selected from a finite alphabet; b) in said first and second station A and B, applying a predetermined permutation g = gN to LA, LB to obtain a first and second permuted string g(LA) and g(Lβ), wherein g = gH is a pre-determined permutation and then expressing g(LA), g(Lβ) as a pre-determined concatenation UΪ(=SA), U2, ... ,Um and
VJ(=SB), V2, ... ,Vm' respectively wherein SA is a substring of said first permuted string g(LA), SB is a substring of said second permuted string g(Lβ), and the length of Uj equals the length of Vj for 1 ≤ i < m; c) evaluating recursively P (SA,SB) = P/ (SA,SB) wherein / = |SA| = |SB| is the common length of SA and SB, and P is a function defined on certain ordered pairs (U,V) of strings U, V having a common length s= |U| = |V|, said evaluating step further comprising the substeps of;
(i) in said first station A, transmitting to said second station B, the computed value r(SA), of a predetermined function T on SA, wherein T is a function mapping strings to strings that maps the null string to the null string having the property that for strings X,Y with |X| = |Y|, r(X) = r(Y)- and transmitting said value to station B;
(ii) in said second station B, transmitting to said first station A the digit 1 if T(SA) is equal to the computed value T(SB) and the digit 0 otherwise;
(iii) in said first and second station A and B, respectively, calculating strings f(SA), f(Sβ) wherein f is a pre-assigned function mapping strings to strings that maps the null string to the null string, maps all strings of length one to the null string and is such that for any string X the length of f(X) is less than or equal to the length of X and having the property that for strings X,Y with |X| = |Y|, |f(X)| = |f(Y)|;
(iv) in said first and second station A and B, setting
P/ (SA,SB) = (f(SA),f(SB)) in the case when T(SA) = T(SB);
(v) when T(SA) ≠ T(SB), performing the substeps of: a. in said first station A, writing f(SA) as a concatenation MA NA of strings MA, NΛ having λ = |NA| = V 1 or lA t + Yz (when t is even or odd respectively) where t is the common length of f(SA), f(Sβ), b. in said second station B, writing f(Sβ) as a concatenation MB Nβ of strings MB, NB having λ = |NA|
Figure imgf000016_0001
;
(vi) in said first station A, transmitting T(NA) to said second station B; (vii) in said second station B, transmitting to said first station A the digit 1 if
T(NA) = r(NB) and the digit 0 otherwise; (viii) setting ?, (SA,SB) = (K\,Y\) in the case when T(NA) = T(NB) wherein
Xi is a concatenation of the first component of P,-X(MA,MB) with the string f(NA) and Y] is a concatenation of the second component of P,.χ
(MA, MB) with f(NB); (ix) setting P/ (SA,SB) = (X2, Y2) i the case when T(NA) ≠ T(NB), where X2 is a concatenation of MA with the first component of P (NA,NB) and Y2 is the concatenation of Mβ with the second component of P (NA,NB). (x) recursively calculating Pχ(NA,Nβ), (or P,.X(MA,MB)) by repetition of sub-steps (i) to (ix) with SA=NA ,
Figure imgf000017_0001
) thereby obtaining P/ (SA,SB). d) calculating successively P« (Ui,Vj) with k - |Uj|=|Vi| by repeating step (c) with SA = Uj , SB = V; and then concatenating Wl5 W2, W3, ... Wm to construct a first concatenated string KA in said station A where i is the first component of the pair P/ (Uι,Vι) = P/ (SA,SB) and Wj is the first component of the pair P/ OJ V ^ ≤ i ≤ w, ; e) calculating successively P/j (Ui,Vj) with l = |Uj|=|Vj| by repeating step (c) with SA = Uj , SB = Vj and then concatenating the strings Zi, Z2, Z3, ... Zm to construct a second concatenated string KB of length n in said station B where Z\ is the second component of the pair P/ (Uι,Vι) = P/ (SA,SB) and Zi is the second component of the pair P/ (Ui,Vj), with l = |Ui|=|Vi|, 2 ≤ i < m; f) from |KA|=|KB| calculating a bit correlation x = X(KA,KB) from a predetermined formula using the length n = |KA|=|KB| wherein KB is replaced by a Boolean complement KB* (obtained by replacing 1 and 0 in KB by 0 and 1 respectively ) whenever the bit correlation between KA and KB is less than 0.5, yielding* > 0.5; g) determining whether JC(KA,KB) satisfies a pre-determined stopping inequality S; h) repeating steps (b) to (g) with LA = KA, LB = KB in the case that S is not satisfied; i) otherwise in the event that inequality S is satisfied, performing the substeps of;
(i) evaluating C(KA) in said first station A where C is a pre-determined hash function defined on all non-null strings;
(ii) in said first station A, transmitting C(KA) to said second station B;
(iii) evaluating C(KB) in said second station B;
(iv) in said second station B, transmitting to said first station A a digit 1 if
C(KB)= C(KA) and a digit 0 otherwise; j) in the event that C(KA) = C(KB), constructing Λ(KA) = Λ(KB), an unconditionally secure cryptographic key shared by said first and second cryptographic stations A and B, wherein Λ is a pre-determined hash function that eliminates all of an eavesdropper's potential information; and k) repeating steps (b) to (j) in the event that C(KA) D C(KB), wherein LA = KA and
LB = KB, respectively.
2) A method of generating an unconditionally secure cryptographic key between a first and second cryptographic station A and B according to claim 1, wherein step a) further comprises the substeps of: a.l) respectively providing said first and second station A and B a first secret string Ri and a second secret string R2, R] and R2 being correlated (i.e., the statistical variables corresponding to Ri and R2 are not independent) and having the same length; and a.2) respectively replacing said first and second string LAand LB with said first and second secret string Rjand R2.
3) A method of generating an unconditionally secure cryptographic key between a first and second cryptographic station A and B, said method comprising the method of claim 2, wherein said secret strings Rj and R2 are obtained from the bounded storage model (of Maurer and Rabin).
4) The method of claim 1, wherein said predetermined hash function C of step i) is the syndrome of a binary linear code of minimum distance d wherein d is some predetermined positive integer.
5) The method of claim 1 , wherein step a) further comprises the substeps of: a.l) in said first and second station A and B, respectively concatenating a generated first and second random string RA and RB with said first and second string LA and LB to result in a first and second concatenated string LARA and LBRB; and a.2) in said first and second station A and B, respectively substituting said first concatenated string LAR for said first string LA and said second concatenated string LBRB for said second string Lβ.
6) The method of claim 2, wherein the strings Ri and R2 are replaced by the concatenated strings Ri RA, R2 RB respectively wherein RA is a random string generated in station A and RB is a random string generated in station B with RA and RB having the same length.
7) The method of claim 1, wherein step a) further comprises the substep of in said first and second station A and B, respectively, replacing said first and second string LA and Lβ with the dot product modulo 2 of a generated first and second random binary string RA and RB with said first and second string LA and LB to form a first and second dot product string LA #RA and LB*RB, wherein RA and RB are generated random binary strings having the same length as LA and LB, respectively.
8) The method of claim 2, wherein the strings Ri and R2 are replaced by the strings R^RA, R2 »RB, respectively, wherein RA is a random string generated in station A and RB is a random string generated in station B with RA and RB having the same length as
Figure imgf000018_0001
and R , respectively.
9) A method of generating a first and second string U and V in first and second station A and B, respectively, said first and second string U and V having a predetermined bit correlation xo, 0.5 < xo< 1, said method comprising the steps of: i. conducting steps a) to f) of claim 1 to construct a first and second string KA and KB having bit correlation x > 0.5; ii. if x < xo, repeatedly conducting steps a) to f) of claim 1 until the bit correlation x = x (KA KB) is greater than or equal to xo\ and iii. if x > xo, replacing KA, KB by a first and second concatenated string U = RAKA and V = RβKβ, respectively, wherein RA and RB is a first and second random string generated in first and second station A and B, respectively, each having a length which ensures that the bit correlation of U and V is equal to xo.
10) A method of generating a first and second string U and V in a first and second station A and B, respectively, said first and second string having a predetermined bit correlation xo in the range of 0 < xo < 0.5, said method comprising the steps of: i. constructing a third and fourth string KA, KB with bit correlation Xi = 1 - Xo according to the method of claim 9; and ii. replacing KB by its Boolean complement KB*, wherein said complement is obtained by replacing 1 and 0 in KB by 0 and 1, respectively.
11) A method of generating a first and second string U and V in a first and second station A and B, respectively, said first and second string U and V having a predetermined bit correlation xo in the range 0.5 < xo< 1, said method comprising the steps of: i. conducting steps a) to f) of claim 2 to construct a first and second concatenated string KA and KB having bit correlation x > 0.5; ii. if j < xo, repeatedly conducting steps a) to f) of claim 2 until the bit correlation x = x (KA, KB) is greater than or equal to xo; and iii. if x > xo , replacing KA, KB by a third and fourth concatenated string U= KA RA, V = KB RB, respectively, where RA and RB is a first and second random string generated in said first and second station A and B, respectively, each said first and second random string having a length which ensures that the bit correlation of U and V is equal to xo-
12) A method of predicting with arbitrarily high precision the length of an unconditionally secure cryptographic key generated by the method of claim 2, said method comprising the steps of: i. conducting steps of a) to e) of claim 2 to create first and second concatenated strings
KA and KB; ii. calculating the initial bit correlation JC(KA,KB); and iii. estimating the length of an unconditionally secure cryptographic key based on this calculated correlation.
13) An unconditionally secure encryption method, said method comprising the steps of: i. generating first and second unconditionally secure keys Λ(KA) = Λ(Kβ) according to the method of claim 1; and ii. concatenating said first and second unconditionally secure keys Λ(KA) and Λ(Kβ) to generate a one-time pad.
14) A complete cryptographic system, comprising: a standard Kerberos configuration, wherein a server authenticates a plurality of communicating parties and said parties generate an unconditionally secure cryptographic key according to the method of claim 1.
15) A complete cryptographic system, comprising: an unconditionally secure key generated by claim 1 ; and an authentication algorithm.
16) The method of claim 1 , wherein all strings are binary strings.
17) The method of claim 1 , wherein the function f maps a non-null string to that same string with the last element deleted.
18) The method of claim 1 , wherein: the alphabet is a finite abelian group G; and the function T maps a string over G to the sum of the elements in the string.
19) The method of claim 17 wherein G is the binary field and Tmaps a string to its parity.
20) The method of claim 1 , wherein the function T maps all strings to a given fixed string such that for any two strings X and Y, F(X) = T(Y).
21) The method of claim 1 , wherein: for a binary string U of length / ≥ 1, f(U) = parity of U; and for a first and second substring X and Y of LA and LB, respectively, T(X) = T(Y) such that
P/(X,Y) = (parity(X),parity(Y)).
22) The method of claim 1 wherein: f maps a non-null string to that same string with the last element deleted; r maps a binary sting to its parity; and the strings UI(=SA), U2, ... ,Um; and I(=SB), V2, ... ,Vm all have a common length /.
23) The method of claim 1, wherein: all strings are over the alphabet G, wherein G is a finite abelian group; in step a) said strings LA and LB are replaced by LA+RA,LB+RB, RAand RB being a first and second random string over G of the same length as LA and LB and + denoting component- wise addition over G.
24) The method of claim 1, wherein:
for each i, 1 < i < m, f and T are predefined on all substrings of all iterates f(Uj), f(f(Ui)), f(f(f(U0)), ... and f(V , f(f(V ), f(f(f(Vi))), ....; f, T map the null string to the null string; and f maps all strings of length 1 to the null string.
25) The method of claim 1, wherein in step a) the physical phenomena comprises measurement by said first station A of a plurality of message round-trip times from said first station A to second station B, and measurement by said second station B of a plurality of message round-trip times from said second station B to said first station A. 26) The method of claim 1 , wherein in step a) the physical phenomenon comprises a common signal emanating from an outside transmitting source selected from at least one of a satellite, a group of satellites, a radio transmitter, and a group of radio transmitters.
27) The method of claim 1, wherein S of step g) is the inequality n(l- ) < ε where ε is a pre-determined positive number.
28) The method of claim 1 , wherein λ is a pre-determined fraction of r, said fraction lying in the range between 0 and 1.
29) A method for verifying with pre-determined probability equality of a first string Si in a first station A with a second string S2 in a second station B, S\ and S2 having the same length, said method comprising the steps of: i. conducting steps a) to i) of the method of claim 2 wherein R]= Si and R2= S ; and ii. conducting steps b) to f) of the method of claim 2 if C(KA) ≠ C(Kβ).
30) A method for determining the correlation between a first secret string U in a first station A and a second secret string V in a second station B, said method comprising the steps of conducting steps a) through i) of the method of claim 2 wherein Rι=U and R2=V.
31) A method for checking the equality of a first and second key U and V in a first and second station A and B, respectively, comprising the steps of: obtaining said first and second key U and V, respectively, from a public key exchange algorithm used between said first and second; and conducting the method of claim 28 wherein S1=U and S2=V.
PCT/IE2002/000135 2001-09-20 2002-09-20 A key agreement protocol based on network dynamics WO2003026197A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP02777751A EP1436940A2 (en) 2001-09-20 2002-09-20 A key agreement protocol based on network dynamics
CA002462384A CA2462384A1 (en) 2001-09-20 2002-09-20 A key agreement protocol based on network dynamics
IL16082902A IL160829A0 (en) 2001-09-20 2002-09-20 A key agreement protocol based on network dynamics
JP2003529686A JP2005503716A (en) 2001-09-20 2002-09-20 Key agreement protocol based on network dynamics

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
IES2001/0842 2001-09-20
IE20010842 2001-09-20
IE20020742A IE20020742A1 (en) 2002-09-13 2002-09-13 A Key Agreement Protocol Based on Network Dynamics
IE2002/0742 2002-09-13

Publications (1)

Publication Number Publication Date
WO2003026197A2 true WO2003026197A2 (en) 2003-03-27

Family

ID=26320333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IE2002/000135 WO2003026197A2 (en) 2001-09-20 2002-09-20 A key agreement protocol based on network dynamics

Country Status (5)

Country Link
EP (1) EP1436940A2 (en)
JP (1) JP2005503716A (en)
CA (1) CA2462384A1 (en)
IL (1) IL160829A0 (en)
WO (1) WO2003026197A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007033845A1 (en) 2007-07-18 2009-01-22 Bernd Prof. Dr. Freisleben Public/private cryptographic key producing method for executing key agreement in digital data carrier, involves converting terminal end point address into key portion by applying inverse function of trap door one-way function for agreement
DE102007033848A1 (en) 2007-07-18 2009-01-22 Freisleben, Bernd, Prof. Dr. Method for verification of ownership of terminal address of communications device in network, involves verifying ownership of terminal address by communications device belonging to it, by private cryptographic key
DE102007033847A1 (en) 2007-07-18 2009-01-22 Bernd Prof. Dr. Freisleben Method for cryptographic key agreement between two communication devices in Internet protocol communications networks, involves arranging one or multiple Network address translation routers between two communication devices
DE102007033846A1 (en) 2007-07-18 2009-01-22 Freisleben, Bernd, Prof. Dr. Cryptographic key generating method for encrypted digital communication between communication devices, involves converting end product address of communication device into part of key, and utilizing address for key agreement

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007033845A1 (en) 2007-07-18 2009-01-22 Bernd Prof. Dr. Freisleben Public/private cryptographic key producing method for executing key agreement in digital data carrier, involves converting terminal end point address into key portion by applying inverse function of trap door one-way function for agreement
DE102007033848A1 (en) 2007-07-18 2009-01-22 Freisleben, Bernd, Prof. Dr. Method for verification of ownership of terminal address of communications device in network, involves verifying ownership of terminal address by communications device belonging to it, by private cryptographic key
DE102007033847A1 (en) 2007-07-18 2009-01-22 Bernd Prof. Dr. Freisleben Method for cryptographic key agreement between two communication devices in Internet protocol communications networks, involves arranging one or multiple Network address translation routers between two communication devices
DE102007033846A1 (en) 2007-07-18 2009-01-22 Freisleben, Bernd, Prof. Dr. Cryptographic key generating method for encrypted digital communication between communication devices, involves converting end product address of communication device into part of key, and utilizing address for key agreement

Also Published As

Publication number Publication date
IL160829A0 (en) 2004-08-31
JP2005503716A (en) 2005-02-03
EP1436940A2 (en) 2004-07-14
CA2462384A1 (en) 2003-03-27

Similar Documents

Publication Publication Date Title
US20030063751A1 (en) Key agreement protocol based on network dynamics
Tseng et al. New quantum private comparison protocol using EPR pairs
Maurer et al. Unconditionally secure key agreement and the intrinsic conditional information
KR102116877B1 (en) New cryptographic systems using pairing with errors
Zeng et al. A distributed fault/intrusion-tolerant sensor data storage scheme based on network coding and homomorphic fingerprinting
Cayrel et al. Post-quantum cryptography: Code-based signatures
Parakh A probabilistic quantum key transfer protocol
Hemenway et al. Non-committing encryption from Φ-hiding
Prakasan et al. Authenticated-encryption in the quantum key distribution classical channel using post-quantum cryptography
RU2295199C1 (en) Method for generation of encryption/decryption key
Huang et al. Stream privacy amplification for quantum cryptography
Maurer The role of information theory in cryptography
Ersoy et al. A CRT‐based verifiable secret sharing scheme secure against unbounded adversaries
WO2003026197A2 (en) A key agreement protocol based on network dynamics
Hegde et al. A Comparative study on state of art Cryptographic key distribution with quantum networks
Meiran et al. PROTOCOLS FOR SYMMETRIC SECRET KEY ESTABLISHMENT MODERN APPROACH
CN114465733A (en) Secure network coding method based on improved RSA
IE20020742A1 (en) A Key Agreement Protocol Based on Network Dynamics
AU2002339702A1 (en) A key agreement protocol based on network dynamics
Groza Using one-way chains to provide message authentication without shared secrets
Rawal et al. Challenges and opportunities on the horizon of post-quantum cryptography
Mathews et al. QS-Auth: A Quantum-secure mutual authentication protocol based on PUF and Post-Quantum Signature for Heterogeneous Delay-Tolerant Networks
Wu et al. A privacy preserving network coding signature scheme based on lattice
Schartner et al. Quantum key management
Yakovlev et al. Key distribution protocol based on noisy channel and error detecting codes

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 160829

Country of ref document: IL

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002339702

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2003529686

Country of ref document: JP

Ref document number: 2462384

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2002777751

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002777751

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2002777751

Country of ref document: EP